ERIC Educational Resources Information Center
Putten, Jim Vander; Nolen, Amanda L.
2010-01-01
This study compared qualitative research results obtained by manual constant comparative analysis with results obtained by computer software analysis of the same data. An investigated about issues of trustworthiness and accuracy ensued. Results indicated that the inductive constant comparative data analysis generated 51 codes and two coding levels…
NASA Technical Reports Server (NTRS)
Smith, Crawford F.; Podleski, Steve D.
1993-01-01
The proper use of a computational fluid dynamics code requires a good understanding of the particular code being applied. In this report the application of CFL3D, a thin-layer Navier-Stokes code, is compared with the results obtained from PARC3D, a full Navier-Stokes code. In order to gain an understanding of the use of this code, a simple problem was chosen in which several key features of the code could be exercised. The problem chosen is a cone in supersonic flow at an angle of attack. The issues of grid resolution, grid blocking, and multigridding with CFL3D are explored. The use of multigridding resulted in a significant reduction in the computational time required to solve the problem. Solutions obtained are compared with the results using the full Navier-Stokes equations solver PARC3D. The results obtained with the CFL3D code compared well with the PARC3D solutions.
SPIN: An Inversion Code for the Photospheric Spectral Line
NASA Astrophysics Data System (ADS)
Yadav, Rahul; Mathew, Shibu K.; Tiwary, Alok Ranjan
2017-08-01
Inversion codes are the most useful tools to infer the physical properties of the solar atmosphere from the interpretation of Stokes profiles. In this paper, we present the details of a new Stokes Profile INversion code (SPIN) developed specifically to invert the spectro-polarimetric data of the Multi-Application Solar Telescope (MAST) at Udaipur Solar Observatory. The SPIN code has adopted Milne-Eddington approximations to solve the polarized radiative transfer equation (RTE) and for the purpose of fitting a modified Levenberg-Marquardt algorithm has been employed. We describe the details and utilization of the SPIN code to invert the spectro-polarimetric data. We also present the details of tests performed to validate the inversion code by comparing the results from the other widely used inversion codes (VFISV and SIR). The inverted results of the SPIN code after its application to Hinode/SP data have been compared with the inverted results from other inversion codes.
A novel neutron energy spectrum unfolding code using particle swarm optimization
NASA Astrophysics Data System (ADS)
Shahabinejad, H.; Sohrabpour, M.
2017-07-01
A novel neutron Spectrum Deconvolution using Particle Swarm Optimization (SDPSO) code has been developed to unfold the neutron spectrum from a pulse height distribution and a response matrix. The Particle Swarm Optimization (PSO) imitates the bird flocks social behavior to solve complex optimization problems. The results of the SDPSO code have been compared with those of the standard spectra and recently published Two-steps Genetic Algorithm Spectrum Unfolding (TGASU) code. The TGASU code have been previously compared with the other codes such as MAXED, GRAVEL, FERDOR and GAMCD and shown to be more accurate than the previous codes. The results of the SDPSO code have been demonstrated to match well with those of the TGASU code for both under determined and over-determined problems. In addition the SDPSO has been shown to be nearly two times faster than the TGASU code.
Child Injury Deaths: Comparing Prevention Information from Two Coding Systems
Schnitzer, Patricia G.; Ewigman, Bernard G.
2006-01-01
Objectives The International Classification of Disease (ICD) external cause of injury E-codes do not sufficiently identify injury circumstances amenable to prevention. The researchers developed an alternative classification system (B-codes) that incorporates behavioral and environmental factors, for use in childhood injury research, and compare the two coding systems in this paper. Methods All fatal injuries among children less than age five that occurred between January 1, 1992, and December 31, 1994, were classified using both B-codes and E-codes. Results E-codes identified the most common causes of injury death: homicide (24%), fires (21%), motor vehicle incidents (21%), drowning (10%), and suffocation (9%). The B-codes further revealed that homicides (51%) resulted from the child being shaken or struck by another person; many fires deaths (42%) resulted from children playing with matches or lighters; drownings (46%) usually occurred in natural bodies of water; and most suffocation deaths (68%) occurred in unsafe sleeping arrangements. Conclusions B-codes identify additional information with specific relevance for prevention of childhood injuries. PMID:15944169
Comparison of space radiation calculations for deterministic and Monte Carlo transport codes
NASA Astrophysics Data System (ADS)
Lin, Zi-Wei; Adams, James; Barghouty, Abdulnasser; Randeniya, Sharmalee; Tripathi, Ram; Watts, John; Yepes, Pablo
For space radiation protection of astronauts or electronic equipments, it is necessary to develop and use accurate radiation transport codes. Radiation transport codes include deterministic codes, such as HZETRN from NASA and UPROP from the Naval Research Laboratory, and Monte Carlo codes such as FLUKA, the Geant4 toolkit and HETC-HEDS. The deterministic codes and Monte Carlo codes complement each other in that deterministic codes are very fast while Monte Carlo codes are more elaborate. Therefore it is important to investigate how well the results of deterministic codes compare with those of Monte Carlo transport codes and where they differ. In this study we evaluate these different codes in their space radiation applications by comparing their output results in the same given space radiation environments, shielding geometry and material. Typical space radiation environments such as the 1977 solar minimum galactic cosmic ray environment are used as the well-defined input, and simple geometries made of aluminum, water and/or polyethylene are used to represent the shielding material. We then compare various outputs of these codes, such as the dose-depth curves and the flux spectra of different fragments and other secondary particles. These comparisons enable us to learn more about the main differences between these space radiation transport codes. At the same time, they help us to learn the qualitative and quantitative features that these transport codes have in common.
A study of transonic aerodynamic analysis methods for use with a hypersonic aircraft synthesis code
NASA Technical Reports Server (NTRS)
Sandlin, Doral R.; Davis, Paul Christopher
1992-01-01
A means of performing routine transonic lift, drag, and moment analyses on hypersonic all-body and wing-body configurations were studied. The analysis method is to be used in conjunction with the Hypersonic Vehicle Optimization Code (HAVOC). A review of existing techniques is presented, after which three methods, chosen to represent a spectrum of capabilities, are tested and the results are compared with experimental data. The three methods consist of a wave drag code, a full potential code, and a Navier-Stokes code. The wave drag code, representing the empirical approach, has very fast CPU times, but very limited and sporadic results. The full potential code provides results which compare favorably to the wind tunnel data, but with a dramatic increase in computational time. Even more extreme is the Navier-Stokes code, which provides the most favorable and complete results, but with a very large turnaround time. The full potential code, TRANAIR, is used for additional analyses, because of the superior results it can provide over empirical and semi-empirical methods, and because of its automated grid generation. TRANAIR analyses include an all body hypersonic cruise configuration and an oblique flying wing supersonic transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, M.E.
1997-12-05
This V and V Report includes analysis of two revisions of the DMS [data management system] System Requirements Specification (SRS) and the Preliminary System Design Document (PSDD); the source code for the DMS Communication Module (DMSCOM) messages; the source code for selected DMS Screens, and the code for the BWAS Simulator. BDM Federal analysts used a series of matrices to: compare the requirements in the System Requirements Specification (SRS) to the specifications found in the System Design Document (SDD), to ensure the design supports the business functions, compare the discreet parts of the SDD with each other, to ensure thatmore » the design is consistent and cohesive, compare the source code of the DMS Communication Module with the specifications, to ensure that the resultant messages will support the design, compare the source code of selected screens to the specifications to ensure that resultant system screens will support the design, compare the source code of the BWAS simulator with the requirements to interface with DMS messages and data transfers relating to the BWAS operations.« less
Comparison of DAC and MONACO DSMC Codes with Flat Plate Simulation
NASA Technical Reports Server (NTRS)
Padilla, Jose F.
2010-01-01
Various implementations of the direct simulation Monte Carlo (DSMC) method exist in academia, government and industry. By comparing implementations, deficiencies and merits of each can be discovered. This document reports comparisons between DSMC Analysis Code (DAC) and MONACO. DAC is NASA's standard DSMC production code and MONACO is a research DSMC code developed in academia. These codes have various differences; in particular, they employ distinct computational grid definitions. In this study, DAC and MONACO are compared by having each simulate a blunted flat plate wind tunnel test, using an identical volume mesh. Simulation expense and DSMC metrics are compared. In addition, flow results are compared with available laboratory data. Overall, this study revealed that both codes, excluding grid adaptation, performed similarly. For parallel processing, DAC was generally more efficient. As expected, code accuracy was mainly dependent on physical models employed.
Influence of flowfield and vehicle parameters on engineering aerothermal methods
NASA Technical Reports Server (NTRS)
Wurster, Kathryn E.; Zoby, E. Vincent; Thompson, Richard A.
1989-01-01
The reliability and flexibility of three engineering codes used in the aerosphace industry (AEROHEAT, INCHES, and MINIVER) were investigated by comparing the results of these codes with Reentry F flight data and ground-test heat-transfer data for a range of cone angles, and with the predictions obtained using the detailed VSL3D code; the engineering solutions were also compared. In particular, the impact of several vehicle and flow-field parameters on the heat transfer and the capability of the engineering codes to predict these results were determined. It was found that entropy, pressure gradient, nose bluntness, gas chemistry, and angle of attack all affect heating levels. A comparison of the results of the three engineering codes with Reentry F flight data and with the predictions obtained of the VSL3D code showed a very good agreement in the regions of the applicability of the codes. It is emphasized that the parameters used in this study can significantly influence the actual heating levels and the prediction capability of a code.
INL Results for Phases I and III of the OECD/NEA MHTGR-350 Benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard Strydom; Javier Ortensi; Sonat Sen
2013-09-01
The Idaho National Laboratory (INL) Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Methods Core Simulation group led the construction of the Organization for Economic Cooperation and Development (OECD) Modular High Temperature Reactor (MHTGR) 350 MW benchmark for comparing and evaluating prismatic VHTR analysis codes. The benchmark is sponsored by the OECD's Nuclear Energy Agency (NEA), and the project will yield a set of reference steady-state, transient, and lattice depletion problems that can be used by the Department of Energy (DOE), the Nuclear Regulatory Commission (NRC), and vendors to assess their code suits. The Methods group is responsible formore » defining the benchmark specifications, leading the data collection and comparison activities, and chairing the annual technical workshops. This report summarizes the latest INL results for Phase I (steady state) and Phase III (lattice depletion) of the benchmark. The INSTANT, Pronghorn and RattleSnake codes were used for the standalone core neutronics modeling of Exercise 1, and the results obtained from these codes are compared in Section 4. Exercise 2 of Phase I requires the standalone steady-state thermal fluids modeling of the MHTGR-350 design, and the results for the systems code RELAP5-3D are discussed in Section 5. The coupled neutronics and thermal fluids steady-state solution for Exercise 3 are reported in Section 6, utilizing the newly developed Parallel and Highly Innovative Simulation for INL Code System (PHISICS)/RELAP5-3D code suit. Finally, the lattice depletion models and results obtained for Phase III are compared in Section 7. The MHTGR-350 benchmark proved to be a challenging simulation set of problems to model accurately, and even with the simplifications introduced in the benchmark specification this activity is an important step in the code-to-code verification of modern prismatic VHTR codes. A final OECD/NEA comparison report will compare the Phase I and III results of all other international participants in 2014, while the remaining Phase II transient case results will be reported in 2015.« less
Full core analysis of IRIS reactor by using MCNPX.
Amin, E A; Bashter, I I; Hassan, Nabil M; Mustafa, S S
2016-07-01
This paper describes neutronic analysis for fresh fuelled IRIS (International Reactor Innovative and Secure) reactor by MCNPX code. The analysis included criticality calculations, radial power and axial power distribution, nuclear peaking factor and axial offset percent at the beginning of fuel cycle. The effective multiplication factor obtained by MCNPX code is compared with previous calculations by HELIOS/NESTLE, CASMO/SIMULATE, modified CORD-2 nodal calculations and SAS2H/KENO-V code systems. It is found that k-eff value obtained by MCNPX is closer to CORD-2 value. The radial and axial powers are compared with other published results carried out using SAS2H/KENO-V code. Moreover, the WIMS-D5 code is used for studying the effect of enriched boron in form of ZrB2 on the effective multiplication factor (K-eff) of the fuel pin. In this part of calculation, K-eff is calculated at different concentrations of Boron-10 in mg/cm at different stages of burnup of unit cell. The results of this part are compared with published results performed by HELIOS code. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes
NASA Astrophysics Data System (ADS)
Aghara, S. K.; Sriprisan, S. I.; Singleterry, R. C.; Sato, T.
2015-01-01
Detailed analyses of Solar Particle Events (SPE) were performed to calculate primary and secondary particle spectra behind aluminum, at various thicknesses in water. The simulations were based on Monte Carlo (MC) radiation transport codes, MCNPX 2.7.0 and PHITS 2.64, and the space radiation analysis website called OLTARIS (On-Line Tool for the Assessment of Radiation in Space) version 3.4 (uses deterministic code, HZETRN, for transport). The study is set to investigate the impact of SPEs spectra transporting through 10 or 20 g/cm2 Al shield followed by 30 g/cm2 of water slab. Four historical SPE events were selected and used as input source spectra particle differential spectra for protons, neutrons, and photons are presented. The total particle fluence as a function of depth is presented. In addition to particle flux, the dose and dose equivalent values are calculated and compared between the codes and with the other published results. Overall, the particle fluence spectra from all three codes show good agreement with the MC codes showing closer agreement compared to the OLTARIS results. The neutron particle fluence from OLTARIS is lower than the results from MC codes at lower energies (E < 100 MeV). Based on mean square difference analysis the results from MCNPX and PHITS agree better for fluence, dose and dose equivalent when compared to OLTARIS results.
Job coding (PCS 2003): feedback from a study conducted in an Occupational Health Service
Henrotin, Jean-Bernard; Vaissière, Monique; Etaix, Maryline; Malard, Stéphane; Dziurla, Mathieu; Lafon, Dominique
2016-10-19
Aim: To examine the quality of manual job coding carried out by occupational health teams with access to a software application that provides assistance in job and business sector coding (CAPS). Methods: Data from a study conducted in an Occupational Health Service were used to examine the first-level coding of 1,495 jobs by occupational health teams according to the French job classification entitled “PSC- Professions and socio-professional categories” (INSEE, 2003 version). A second level of coding was also performed by an experienced coder and the first and second level codes were compared. Agreement between the two coding systems was studied using the kappa coefficient (κ) and frequencies were compared by Chi2 tests. Results: Missing data or incorrect codes were observed for 14.5% of social groups (1 digit) and 25.7% of job codes (4 digits). While agreement between the first two levels of PCS 2003 appeared to be satisfactory (κ=0.73 and κ=0.75), imbalances in reassignment flows were effectively noted. The divergent job code rate was 48.2%. Variation in the frequency of socio-occupational variables was as high as 8.6% after correcting for missing data and divergent codes. Conclusions: Compared with other studies, the use of the CAPS tool appeared to provide effective coding assistance. However, our results indicate that job coding based on PSC 2003 should be conducted using ancillary data by personnel trained in the use of this tool.
CFD Modeling of Free-Piston Stirling Engines
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.
2001-01-01
NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.
Aiello, Francesco A; Judelson, Dejah R; Messina, Louis M; Indes, Jeffrey; FitzGerald, Gordon; Doucet, Danielle R; Simons, Jessica P; Schanzer, Andres
2016-08-01
Vascular surgery procedural reimbursement depends on accurate procedural coding and documentation. Despite the critical importance of correct coding, there has been a paucity of research focused on the effect of direct physician involvement. We hypothesize that direct physician involvement in procedural coding will lead to improved coding accuracy, increased work relative value unit (wRVU) assignment, and increased physician reimbursement. This prospective observational cohort study evaluated procedural coding accuracy of fistulograms at an academic medical institution (January-June 2014). All fistulograms were coded by institutional coders (traditional coding) and by a single vascular surgeon whose codes were verified by two institution coders (multidisciplinary coding). The coding methods were compared, and differences were translated into revenue and wRVUs using the Medicare Physician Fee Schedule. Comparison between traditional and multidisciplinary coding was performed for three discrete study periods: baseline (period 1), after a coding education session for physicians and coders (period 2), and after a coding education session with implementation of an operative dictation template (period 3). The accuracy of surgeon operative dictations during each study period was also assessed. An external validation at a second academic institution was performed during period 1 to assess and compare coding accuracy. During period 1, traditional coding resulted in a 4.4% (P = .004) loss in reimbursement and a 5.4% (P = .01) loss in wRVUs compared with multidisciplinary coding. During period 2, no significant difference was found between traditional and multidisciplinary coding in reimbursement (1.3% loss; P = .24) or wRVUs (1.8% loss; P = .20). During period 3, traditional coding yielded a higher overall reimbursement (1.3% gain; P = .26) than multidisciplinary coding. This increase, however, was due to errors by institution coders, with six inappropriately used codes resulting in a higher overall reimbursement that was subsequently corrected. Assessment of physician documentation showed improvement, with decreased documentation errors at each period (11% vs 3.1% vs 0.6%; P = .02). Overall, between period 1 and period 3, multidisciplinary coding resulted in a significant increase in additional reimbursement ($17.63 per procedure; P = .004) and wRVUs (0.50 per procedure; P = .01). External validation at a second academic institution was performed to assess coding accuracy during period 1. Similar to institution 1, traditional coding revealed an 11% loss in reimbursement ($13,178 vs $14,630; P = .007) and a 12% loss in wRVU (293 vs 329; P = .01) compared with multidisciplinary coding. Physician involvement in the coding of endovascular procedures leads to improved procedural coding accuracy, increased wRVU assignments, and increased physician reimbursement. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zehtabian, M; Zaker, N; Sina, S
2015-06-15
Purpose: Different versions of MCNP code are widely used for dosimetry purposes. The purpose of this study is to compare different versions of the MCNP codes in dosimetric evaluation of different brachytherapy sources. Methods: The TG-43 parameters such as dose rate constant, radial dose function, and anisotropy function of different brachytherapy sources, i.e. Pd-103, I-125, Ir-192, and Cs-137 were calculated in water phantom. The results obtained by three versions of Monte Carlo codes (MCNP4C, MCNPX, MCNP5) were compared for low and high energy brachytherapy sources. Then the cross section library of MCNP4C code was changed to ENDF/B-VI release 8 whichmore » is used in MCNP5 and MCNPX codes. Finally, the TG-43 parameters obtained using the MCNP4C-revised code, were compared with other codes. Results: The results of these investigations indicate that for high energy sources, the differences in TG-43 parameters between the codes are less than 1% for Ir-192 and less than 0.5% for Cs-137. However for low energy sources like I-125 and Pd-103, large discrepancies are observed in the g(r) values obtained by MCNP4C and the two other codes. The differences between g(r) values calculated using MCNP4C and MCNP5 at the distance of 6cm were found to be about 17% and 28% for I-125 and Pd-103 respectively. The results obtained with MCNP4C-revised and MCNPX were similar. However, the maximum difference between the results obtained with the MCNP5 and MCNP4C-revised codes was 2% at 6cm. Conclusion: The results indicate that using MCNP4C code for dosimetry of low energy brachytherapy sources can cause large errors in the results. Therefore it is recommended not to use this code for low energy sources, unless its cross section library is changed. Since the results obtained with MCNP4C-revised and MCNPX were similar, it is concluded that the difference between MCNP4C and MCNPX is their cross section libraries.« less
NASA Astrophysics Data System (ADS)
Kong, Gyuyeol; Choi, Sooyong
2017-09-01
An enhanced 2/3 four-ary modulation code using soft-decision Viterbi decoding is proposed for four-level holographic data storage systems. While the previous four-ary modulation codes focus on preventing maximum two-dimensional intersymbol interference patterns, the proposed four-ary modulation code aims at maximizing the coding gains for better bit error rate performances. For achieving significant coding gains from the four-ary modulation codes, we design a new 2/3 four-ary modulation code in order to enlarge the free distance on the trellis through extensive simulation. The free distance of the proposed four-ary modulation code is extended from 1.21 to 2.04 compared with that of the conventional four-ary modulation code. The simulation result shows that the proposed four-ary modulation code has more than 1 dB gains compared with the conventional four-ary modulation code.
Flowfield Comparisons from Three Navier-Stokes Solvers for an Axisymmetric Separate Flow Jet
NASA Technical Reports Server (NTRS)
Koch, L. Danielle; Bridges, James; Khavaran, Abbas
2002-01-01
To meet new noise reduction goals, many concepts to enhance mixing in the exhaust jets of turbofan engines are being studied. Accurate steady state flowfield predictions from state-of-the-art computational fluid dynamics (CFD) solvers are needed as input to the latest noise prediction codes. The main intent of this paper was to ascertain that similar Navier-Stokes solvers run at different sites would yield comparable results for an axisymmetric two-stream nozzle case. Predictions from the WIND and the NPARC codes are compared to previously reported experimental data and results from the CRAFT Navier-Stokes solver. Similar k-epsilon turbulence models were employed in each solver, and identical computational grids were used. Agreement between experimental data and predictions from each code was generally good for mean values. All three codes underpredict the maximum value of turbulent kinetic energy. The predicted locations of the maximum turbulent kinetic energy were farther downstream than seen in the data. A grid study was conducted using the WIND code, and comments about convergence criteria and grid requirements for CFD solutions to be used as input for noise prediction computations are given. Additionally, noise predictions from the MGBK code, using the CFD results from the CRAFT code, NPARC, and WIND as input are compared to data.
Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes.
Aghara, S K; Sriprisan, S I; Singleterry, R C; Sato, T
2015-01-01
Detailed analyses of Solar Particle Events (SPE) were performed to calculate primary and secondary particle spectra behind aluminum, at various thicknesses in water. The simulations were based on Monte Carlo (MC) radiation transport codes, MCNPX 2.7.0 and PHITS 2.64, and the space radiation analysis website called OLTARIS (On-Line Tool for the Assessment of Radiation in Space) version 3.4 (uses deterministic code, HZETRN, for transport). The study is set to investigate the impact of SPEs spectra transporting through 10 or 20 g/cm(2) Al shield followed by 30 g/cm(2) of water slab. Four historical SPE events were selected and used as input source spectra particle differential spectra for protons, neutrons, and photons are presented. The total particle fluence as a function of depth is presented. In addition to particle flux, the dose and dose equivalent values are calculated and compared between the codes and with the other published results. Overall, the particle fluence spectra from all three codes show good agreement with the MC codes showing closer agreement compared to the OLTARIS results. The neutron particle fluence from OLTARIS is lower than the results from MC codes at lower energies (E<100 MeV). Based on mean square difference analysis the results from MCNPX and PHITS agree better for fluence, dose and dose equivalent when compared to OLTARIS results. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.
POPCORN: A comparison of binary population synthesis codes
NASA Astrophysics Data System (ADS)
Claeys, J. S. W.; Toonen, S.; Mennekens, N.
2013-01-01
We compare the results of three binary population synthesis codes to understand the differences in their results. As a first result we find that when equalizing the assumptions the results are similar. The main differences arise from deviating physical input.
Fenton, Susan H; Benigni, Mary Sue
2014-01-01
The transition from ICD-9-CM to ICD-10-CM/PCS is expected to result in longitudinal data discontinuities, as occurred with cause-of-death in 1999. The General Equivalence Maps (GEMs), while useful for suggesting potential maps do not provide guidance regarding the frequency of any matches. Longitudinal data comparisons can only be reliable if they use comparability ratios or factors which have been calculated using records coded in both classification systems. This study utilized 3,969 de-identified dually coded records to examine raw comparability ratios, as well as the comparability ratios between the Joint Commission Core Measures. The raw comparability factor results range from 16.216 for Nicotine dependence, unspecified, uncomplicated to 118.009 for Chronic obstructive pulmonary disease, unspecified. The Joint Commission Core Measure comparability factor results range from 27.15 for Acute Respiratory Failure to 130.16 for Acute Myocardial Infarction. These results indicate significant differences in comparability between ICD-9-CM and ICD-10-CM code assignment, including when the codes are used for external reporting such as the Joint Commission Core Measures. To prevent errors in decision-making and reporting, all stakeholders relying on longitudinal data for measure reporting and other purposes should investigate the impact of the conversion on their data.
Validation of the SINDA/FLUINT code using several analytical solutions
NASA Technical Reports Server (NTRS)
Keller, John R.
1995-01-01
The Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) code has often been used to determine the transient and steady-state response of various thermal and fluid flow networks. While this code is an often used design and analysis tool, the validation of this program has been limited to a few simple studies. For the current study, the SINDA/FLUINT code was compared to four different analytical solutions. The thermal analyzer portion of the code (conduction and radiative heat transfer, SINDA portion) was first compared to two separate solutions. The first comparison examined a semi-infinite slab with a periodic surface temperature boundary condition. Next, a small, uniform temperature object (lumped capacitance) was allowed to radiate to a fixed temperature sink. The fluid portion of the code (FLUINT) was also compared to two different analytical solutions. The first study examined a tank filling process by an ideal gas in which there is both control volume work and heat transfer. The final comparison considered the flow in a pipe joining two infinite reservoirs of pressure. The results of all these studies showed that for the situations examined here, the SINDA/FLUINT code was able to match the results of the analytical solutions.
Semantic enrichment of medical forms - semi-automated coding of ODM-elements via web services.
Breil, Bernhard; Watermann, Andreas; Haas, Peter; Dziuballe, Philipp; Dugas, Martin
2012-01-01
Semantic interoperability is an unsolved problem which occurs while working with medical forms from different information systems or institutions. Standards like ODM or CDA assure structural homogenization but in order to compare elements from different data models it is necessary to use semantic concepts and codes on an item level of those structures. We developed and implemented a web-based tool which enables a domain expert to perform semi-automated coding of ODM-files. For each item it is possible to inquire web services which result in unique concept codes without leaving the context of the document. Although it was not feasible to perform a totally automated coding we have implemented a dialog based method to perform an efficient coding of all data elements in the context of the whole document. The proportion of codable items was comparable to results from previous studies.
RETRANO3 benchmarks for Beaver Valley plant transients and FSAR analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaumont, E.T.; Feltus, M.A.
1993-01-01
Any best-estimate code (e.g., RETRANO3) results must be validated against plant data and final safety analysis report (FSAR) predictions. The need for two independent means of benchmarking is necessary to ensure that the results were not biased toward a particular data set and to have a certain degree of accuracy. The code results need to be compared with previous results and show improvements over previous code results. Ideally, the two best means of benchmarking a thermal hydraulics code are comparing results from previous versions of the same code along with actual plant data. This paper describes RETRAN03 benchmarks against RETRAN02more » results, actual plant data, and FSAR predictions. RETRAN03, the Electric Power Research Institute's latest version of the RETRAN thermal-hydraulic analysis codes, offers several upgrades over its predecessor, RETRAN02 Mod5. RETRAN03 can use either implicit or semi-implicit numerics, whereas RETRAN02 Mod5 uses only semi-implicit numerics. Another major upgrade deals with slip model options. RETRAN03 added several new models, including a five-equation model for more accurate modeling of two-phase flow. RETPAN02 Mod5 should give similar but slightly more conservative results than RETRAN03 when executed with RETRAN02 Mod5 options.« less
Separable concatenated codes with iterative map decoding for Rician fading channels
NASA Technical Reports Server (NTRS)
Lodge, J. H.; Young, R. J.
1993-01-01
Very efficient signalling in radio channels requires the design of very powerful codes having special structure suitable for practical decoding schemes. In this paper, powerful codes are obtained by combining comparatively simple convolutional codes to form multi-tiered 'separable' convolutional codes. The decoding of these codes, using separable symbol-by-symbol maximum a posteriori (MAP) 'filters', is described. It is known that this approach yields impressive results in non-fading additive white Gaussian noise channels. Interleaving is an inherent part of the code construction, and consequently, these codes are well suited for fading channel communications. Here, simulation results for communications over Rician fading channels are presented to support this claim.
NASA Technical Reports Server (NTRS)
Weilmuenster, K. J.; Hamilton, H. H., II
1983-01-01
A computer code HALIS, designed to compute the three dimensional flow about shuttle like configurations at angles of attack greater than 25 deg, is described. Results from HALIS are compared where possible with an existing flow field code; such comparisons show excellent agreement. Also, HALIS results are compared with experimental pressure distributions on shuttle models over a wide range of angle of attack. These comparisons are excellent. It is demonstrated that the HALIS code can incorporate equilibrium air chemistry in flow field computations.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2012-01-01
This paper presents the implementation of gust modeling capability in the CFD code FUN3D. The gust capability is verified by computing the response of an airfoil to a sharp edged gust. This result is compared with the theoretical result. The present simulations will be compared with other CFD gust simulations. This paper also serves as a users manual for FUN3D gust analyses using a variety of gust profiles. Finally, the development of an Auto-Regressive Moving-Average (ARMA) reduced order gust model using a gust with a Gaussian profile in the FUN3D code is presented. ARMA simulated results of a sequence of one-minus-cosine gusts is shown to compare well with the same gust profile computed with FUN3D. Proper Orthogonal Decomposition (POD) is combined with the ARMA modeling technique to predict the time varying pressure coefficient increment distribution due to a novel gust profile. The aeroelastic response of a pitch/plunge airfoil to a gust environment is computed with a reduced order model, and compared with a direct simulation of the system in the FUN3D code. The two results are found to agree very well.
NASA Astrophysics Data System (ADS)
Chan, Chia-Hsin; Tu, Chun-Chuan; Tsai, Wen-Jiin
2017-01-01
High efficiency video coding (HEVC) not only improves the coding efficiency drastically compared to the well-known H.264/AVC but also introduces coding tools for parallel processing, one of which is tiles. Tile partitioning is allowed to be arbitrary in HEVC, but how to decide tile boundaries remains an open issue. An adaptive tile boundary (ATB) method is proposed to select a better tile partitioning to improve load balancing (ATB-LoadB) and coding efficiency (ATB-Gain) with a unified scheme. Experimental results show that, compared to ordinary uniform-space partitioning, the proposed ATB can save up to 17.65% of encoding times in parallel encoding scenarios and can reduce up to 0.8% of total bit rates for coding efficiency.
Maclean, Donald; Younes, Hakim Ben; Forrest, Margaret; Towers, Hazel K
2012-03-01
Accurate and timely clinical data are required for clinical and organisational purposes and is especially important for patient management, audit of surgical performance and the electronic health record. The recent introduction of computerised theatre management systems has enabled real-time (point-of-care) operative procedure coding by clinical staff. However the accuracy of these data is unknown. The aim of this Scottish study was to compare the accuracy of theatre nurses' real-time coding on the local theatre management system with the central Scottish Morbidity Record (SMR01). Paired procedural codes were recorded, qualitatively graded for precision and compared (n = 1038). In this study, real-time, point-of-care coding by theatre nurses resulted in significant coding errors compared with the central SMR01 database. Improved collaboration between full-time coders and clinical staff using computerised decision support systems is suggested.
Interactive boundary-layer calculations of a transonic wing flow
NASA Technical Reports Server (NTRS)
Kaups, Kalle; Cebeci, Tuncer; Mehta, Unmeel
1989-01-01
Results obtained from iterative solutions of inviscid and boundary-layer equations are presented and compared with experimental values. The calculated results were obtained with an Euler code and a transonic potential code in order to furnish solutions for the inviscid flow; they were interacted with solutions of two-dimensional boundary-layer equations having a strip-theory approximation. Euler code results are found to be in better agreement with the experimental data than with the full potential code, especially in the presence of shock waves, (with the sole exception of the near-tip region).
Main steam line break accident simulation of APR1400 using the model of ATLAS facility
NASA Astrophysics Data System (ADS)
Ekariansyah, A. S.; Deswandri; Sunaryo, Geni R.
2018-02-01
A main steam line break simulation for APR1400 as an advanced design of PWR has been performed using the RELAP5 code. The simulation was conducted in a model of thermal-hydraulic test facility called as ATLAS, which represents a scaled down facility of the APR1400 design. The main steam line break event is described in a open-access safety report document, in which initial conditions and assumptionsfor the analysis were utilized in performing the simulation and analysis of the selected parameter. The objective of this work was to conduct a benchmark activities by comparing the simulation results of the CESEC-III code as a conservative approach code with the results of RELAP5 as a best-estimate code. Based on the simulation results, a general similarity in the behavior of selected parameters was observed between the two codes. However the degree of accuracy still needs further research an analysis by comparing with the other best-estimate code. Uncertainties arising from the ATLAS model should be minimized by taking into account much more specific data in developing the APR1400 model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasso, A.; Ferrari, A.; Ferrari, A.
In 1974, Nelson, Kase and Svensson published an experimental investigation on muon shielding around SLAC high-energy electron accelerators [1]. They measured muon fluence and absorbed dose induced by 14 and 18 GeV electron beams hitting a copper/water beamdump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical models available at that time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results are then compared between the codes, andmore » with the SLAC data.« less
Wiley, Kevin F; Yousuf, Tariq; Pasque, Charles B; Yousuf, Khalid
2014-06-01
Medical knowledge and surgical skills are necessary to become an effective orthopedic surgeon. To run an efficient practice, the surgeon must also possess a basic understanding of medical business practices, including billing and coding. In this study, we surveyed and compared the level of billing and coding knowledge among current orthopedic residents PGY3 and higher, academic and private practice attending orthopedic surgeons, and orthopedic coding professionals. According to the survey results, residents and fellows have a similar knowledge of coding and billing, regardless of their level of training or type of business education received in residency. Most residents would like formal training in coding, billing, and practice management didactics; this is consistent with data from previous studies.
Performance analysis of the word synchronization properties of the outer code in a TDRSS decoder
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Lin, S.
1984-01-01
A self-synchronizing coding scheme for NASA's TDRSS satellite system is a concatenation of a (2,1,7) inner convolutional code with a (255,223) Reed-Solomon outer code. Both symbol and word synchronization are achieved without requiring that any additional symbols be transmitted. An important parameter which determines the performance of the word sync procedure is the ratio of the decoding failure probability to the undetected error probability. Ideally, the former should be as small as possible compared to the latter when the error correcting capability of the code is exceeded. A computer simulation of a (255,223) Reed-Solomon code as carried out. Results for decoding failure probability and for undetected error probability are tabulated and compared.
ERIC Educational Resources Information Center
Baker, Opal Ruth
Research on Spanish/English code switching is reviewed and the definitions and categories set up by the investigators are examined. Their methods of locating, limiting, and classifying true code switches, and the terms used and results obtained, are compared. It is found that in these studies, conversational (intra-discourse) code switching is…
Concatenated Coding Using Trellis-Coded Modulation
NASA Technical Reports Server (NTRS)
Thompson, Michael W.
1997-01-01
In the late seventies and early eighties a technique known as Trellis Coded Modulation (TCM) was developed for providing spectrally efficient error correction coding. Instead of adding redundant information in the form of parity bits, redundancy is added at the modulation stage thereby increasing bandwidth efficiency. A digital communications system can be designed to use bandwidth-efficient multilevel/phase modulation such as Amplitude Shift Keying (ASK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK) or Quadrature Amplitude Modulation (QAM). Performance gain can be achieved by increasing the number of signals over the corresponding uncoded system to compensate for the redundancy introduced by the code. A considerable amount of research and development has been devoted toward developing good TCM codes for severely bandlimited applications. More recently, the use of TCM for satellite and deep space communications applications has received increased attention. This report describes the general approach of using a concatenated coding scheme that features TCM and RS coding. Results have indicated that substantial (6-10 dB) performance gains can be achieved with this approach with comparatively little bandwidth expansion. Since all of the bandwidth expansion is due to the RS code we see that TCM based concatenated coding results in roughly 10-50% bandwidth expansion compared to 70-150% expansion for similar concatenated scheme which use convolution code. We stress that combined coding and modulation optimization is important for achieving performance gains while maintaining spectral efficiency.
Lorio, Morgan; Martinson, Melissa; Ferrara, Lisa
2016-01-01
Minimally invasive sacroiliac joint arthrodesis ("MI SIJ fusion") received a Category I CPT ® code (27279) effective January 1, 2015 and was assigned a work relative value unit ("RVU") of 9.03. The International Society for the Advancement of Spine Surgery ("ISASS") conducted a study consisting of a Rasch analysis of two separate surveys of surgeons to assess the accuracy of the assigned work RVU. A survey was developed and sent to ninety-three ISASS surgeon committee members. Respondents were asked to compare CPT ® 27279 to ten other comparator CPT ® codes reflective of common spine surgeries. The survey presented each comparator CPT ® code with its code descriptor as well as the description of CPT ® 27279 and asked respondents to indicate whether CPT ® 27279 was greater, equal, or less in terms of work effort than the comparator code. A second survey was sent to 557 U.S.-based spine surgeon members of ISASS and 241 spine surgeon members of the Society for Minimally Invasive Spine Surgery ("SMISS"). The design of the second survey mirrored that of the first survey except for the use of a broader set of comparator CPT ® codes (27 vs. 10). Using the work RVUs of the comparator codes, a Rasch analysis was performed to estimate the relative difficulty of CPT ® 27279, after which the work RVU of CPT ® 27279 was estimated by regression analysis. Twenty surgeons responded to the first survey and thirty-four surgeons responded to the second survey. The results of the regression analysis of the first survey indicate a work RVU for CPT ® 27279 of 14.36 and the results of the regression analysis of the second survey indicate a work RVU for CPT ® 27279 of 14.1. The Rasch analysis indicates that the current work RVU assigned to CPT ® 27279 is undervalued at 9.03. Averaging the results of the regression analyses of the two surveys indicates a work RVU for CPT ® 27279 of 14.23.
Simulation of spacecraft attitude dynamics using TREETOPS and model-specific computer Codes
NASA Technical Reports Server (NTRS)
Cochran, John E.; No, T. S.; Fitz-Coy, Norman G.
1989-01-01
The simulation of spacecraft attitude dynamics and control using the generic, multi-body code called TREETOPS and other codes written especially to simulate particular systems is discussed. Differences in the methods used to derive equations of motion--Kane's method for TREETOPS and the Lagrangian and Newton-Euler methods, respectively, for the other two codes--are considered. Simulation results from the TREETOPS code are compared with those from the other two codes for two example systems. One system is a chain of rigid bodies; the other consists of two rigid bodies attached to a flexible base body. Since the computer codes were developed independently, consistent results serve as a verification of the correctness of all the programs. Differences in the results are discussed. Results for the two-rigid-body, one-flexible-body system are useful also as information on multi-body, flexible, pointing payload dynamics.
Implementation of a Blowing Boundary Condition in the LAURA Code
NASA Technical Reports Server (NTRS)
Thompson, Richard a.; Gnoffo, Peter A.
2008-01-01
Preliminary steps toward modeling a coupled ablation problem using a finite-volume Navier-Stokes code (LAURA) are presented in this paper. Implementation of a surface boundary condition with mass transfer (blowing) is described followed by verification and validation through comparisons with analytic results and experimental data. Application of the code to a carbon-nosetip ablation problem is demonstrated and the results are compared with previously published data. It is concluded that the code and coupled procedure are suitable to support further ablation analyses and studies.
Linearized Aeroelastic Solver Applied to the Flutter Prediction of Real Configurations
NASA Technical Reports Server (NTRS)
Reddy, Tondapu S.; Bakhle, Milind A.
2004-01-01
A fast-running unsteady aerodynamics code, LINFLUX, was previously developed for predicting turbomachinery flutter. This linearized code, based on a frequency domain method, models the effects of steady blade loading through a nonlinear steady flow field. The LINFLUX code, which is 6 to 7 times faster than the corresponding nonlinear time domain code, is suitable for use in the initial design phase. Earlier, this code was verified through application to a research fan, and it was shown that the predictions of work per cycle and flutter compared well with those from a nonlinear time-marching aeroelastic code, TURBO-AE. Now, the LINFLUX code has been applied to real configurations: fans developed under the Energy Efficient Engine (E-cubed) Program and the Quiet Aircraft Technology (QAT) project. The LINFLUX code starts with a steady nonlinear aerodynamic flow field and solves the unsteady linearized Euler equations to calculate the unsteady aerodynamic forces on the turbomachinery blades. First, a steady aerodynamic solution is computed for given operating conditions using the nonlinear unsteady aerodynamic code TURBO-AE. A blade vibration analysis is done to determine the frequencies and mode shapes of the vibrating blades, and an interface code is used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor is used to interpolate the mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh. Then, LINFLUX is used to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. Finally, a post-processor uses the unsteady pressures to calculate the generalized aerodynamic forces, eigenvalues, an esponse amplitudes. The eigenvalues determine the flutter frequency and damping. Results of flutter calculations from the LINFLUX code are presented for (1) the E-cubed fan developed under the E-cubed program and (2) the Quiet High Speed Fan (QHSF) developed under the Quiet Aircraft Technology project. The results are compared with those obtained from the TURBO-AE code. A graph of the work done per vibration cycle for the first vibration mode of the E-cubed fan is shown. It can be seen that the LINFLUX results show a very good comparison with TURBO-AE results over the entire range of interblade phase angle. The work done per vibration cycle for the first vibration mode of the QHSF fan is shown. Once again, the LINFLUX results compare very well with the results from the TURBOAE code.
Statistical Analysis of the AIAA Drag Prediction Workshop CFD Solutions
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.; Hemsch, Michael J.
2007-01-01
The first AIAA Drag Prediction Workshop (DPW), held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third AIAA Drag Prediction Workshop, held in June 2006, focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This report compares the transonic cruise prediction results of the second and third workshops using statistical analysis.
NASA Technical Reports Server (NTRS)
Van Dalsem, W. R.; Steger, J. L.
1983-01-01
A new, fast, direct-inverse, finite-difference boundary-layer code has been developed and coupled with a full-potential transonic airfoil analysis code via new inviscid-viscous interaction algorithms. The resulting code has been used to calculate transonic separated flows. The results are in good agreement with Navier-Stokes calculations and experimental data. Solutions are obtained in considerably less computer time than Navier-Stokes solutions of equal resolution. Because efficient inviscid and viscous algorithms are used, it is expected this code will also compare favorably with other codes of its type as they become available.
Finite element analysis of inviscid subsonic boattail flow
NASA Technical Reports Server (NTRS)
Chima, R. V.; Gerhart, P. M.
1981-01-01
A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.
Scalable Coding of Plenoptic Images by Using a Sparse Set and Disparities.
Li, Yun; Sjostrom, Marten; Olsson, Roger; Jennehag, Ulf
2016-01-01
One of the light field capturing techniques is the focused plenoptic capturing. By placing a microlens array in front of the photosensor, the focused plenoptic cameras capture both spatial and angular information of a scene in each microlens image and across microlens images. The capturing results in a significant amount of redundant information, and the captured image is usually of a large resolution. A coding scheme that removes the redundancy before coding can be of advantage for efficient compression, transmission, and rendering. In this paper, we propose a lossy coding scheme to efficiently represent plenoptic images. The format contains a sparse image set and its associated disparities. The reconstruction is performed by disparity-based interpolation and inpainting, and the reconstructed image is later employed as a prediction reference for the coding of the full plenoptic image. As an outcome of the representation, the proposed scheme inherits a scalable structure with three layers. The results show that plenoptic images are compressed efficiently with over 60 percent bit rate reduction compared with High Efficiency Video Coding intra coding, and with over 20 percent compared with an High Efficiency Video Coding block copying mode.
Baum, John M; Monhaut, Nanette M; Parker, Donald R; Price, Christopher P
2006-06-01
Two independent studies reported that 16% of people who self-monitor blood glucose used incorrectly coded meters. The degree of analytical error, however, was not characterized. Our study objectives were to demonstrate that miscoding can cause analytical errors and to characterize the potential amount of bias that can occur. The impact of calibration error with three selfblood glucose monitoring systems (BGMSs), one of which has an autocoding feature, is reported. Fresh capillary fingerstick blood from 50 subjects, 18 men and 32 women ranging in age from 23 to 82 years, was used to measure glucose with three BGMSs. Two BGMSs required manual coding and were purposely miscoded using numbers different from the one recommended for the reagent lot used. Two properly coded meters of each BGMS were included to assess within-system variability. Different reagent lots were used to challenge a third system that had autocoding capability and could not be miscoded. Some within-system comparisons showed deviations of greater than +/-30% when results obtained with miscoded meters were compared with data obtained with ones programmed using the correct code number. Similar erroneous results were found when the miscoded meter results were compared with those obtained with a glucose analyzer. For some miscoded meter and test strip combinations, error grid analysis showed that 90% of results fell into zones indicating altered clinical action. Such inaccuracies were not found with the BGMS having the autocoding feature. When certain meter code number settings of two BGMSs were used in conjunction with test strips having code numbers that did not match, statistically and clinically inaccurate results were obtained. Coding errors resulted in analytical errors of greater than +/-30% (-31.6 to +60.9%). These results confirm the value of a BGMS with an automatic coding feature.
Metrics for comparing dynamic earthquake rupture simulations
Barall, Michael; Harris, Ruth A.
2014-01-01
Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near‐fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (Ⓔ see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes’ results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each code’s results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.
Some partial-unit-memory convolutional codes
NASA Technical Reports Server (NTRS)
Abdel-Ghaffar, K.; Mceliece, R. J.; Solomon, G.
1991-01-01
The results of a study on a class of error correcting codes called partial unit memory (PUM) codes are presented. This class of codes, though not entirely new, has until now remained relatively unexplored. The possibility of using the well developed theory of block codes to construct a large family of promising PUM codes is shown. The performance of several specific PUM codes are compared with that of the Voyager standard (2, 1, 6) convolutional code. It was found that these codes can outperform the Voyager code with little or no increase in decoder complexity. This suggests that there may very well be PUM codes that can be used for deep space telemetry that offer both increased performance and decreased implementational complexity over current coding systems.
Revisiting Yasinsky and Henry`s benchmark using modern nodal codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Becker, M.W.
1995-12-31
The numerical experiments analyzed by Yasinsky and Henry are quite trivial by comparison with today`s standards because they used the finite difference code WIGLE for their benchmark. Also, this problem is a simple slab (one-dimensional) case with no feedback mechanisms. This research attempts to obtain STAR (Ref. 2) and NEM (Ref. 3) code results in order to produce a more modern kinetics benchmark with results comparable WIGLE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebennikov, A.N.; Zhitnik, A.K.; Zvenigorodskaya, O.A.
1995-12-31
In conformity with the protocol of the Workshop under Contract {open_quotes}Assessment of RBMK reactor safety using modern Western Codes{close_quotes} VNIIEF performed a neutronics computation series to compare western and VNIIEF codes and assess whether VNIIEF codes are suitable for RBMK type reactor safety assessment computation. The work was carried out in close collaboration with M.I. Rozhdestvensky and L.M. Podlazov, NIKIET employees. The effort involved: (1) cell computations with the WIMS, EKRAN codes (improved modification of the LOMA code) and the S-90 code (VNIIEF Monte Carlo). Cell, polycell, burnup computation; (2) 3D computation of static states with the KORAT-3D and NEUmore » codes and comparison with results of computation with the NESTLE code (USA). The computations were performed in the geometry and using the neutron constants presented by the American party; (3) 3D computation of neutron kinetics with the KORAT-3D and NEU codes. These computations were performed in two formulations, both being developed in collaboration with NIKIET. Formulation of the first problem maximally possibly agrees with one of NESTLE problems and imitates gas bubble travel through a core. The second problem is a model of the RBMK as a whole with imitation of control and protection system controls (CPS) movement in a core.« less
Grid-Adapted FUN3D Computations for the Second High Lift Prediction Workshop
NASA Technical Reports Server (NTRS)
Lee-Rausch, E. M.; Rumsey, C. L.; Park, M. A.
2014-01-01
Contributions of the unstructured Reynolds-averaged Navier-Stokes code FUN3D to the 2nd AIAA CFD High Lift Prediction Workshop are described, and detailed comparisons are made with experimental data. Using workshop-supplied grids, results for the clean wing configuration are compared with results from the structured code CFL3D Using the same turbulence model, both codes compare reasonably well in terms of total forces and moments, and the maximum lift is similarly over-predicted for both codes compared to experiment. By including more representative geometry features such as slat and flap brackets and slat pressure tube bundles, FUN3D captures the general effects of the Reynolds number variation, but under-predicts maximum lift on workshop-supplied grids in comparison with the experimental data, due to excessive separation. However, when output-based, off-body grid adaptation in FUN3D is employed, results improve considerably. In particular, when the geometry includes both brackets and the pressure tube bundles, grid adaptation results in a more accurate prediction of lift near stall in comparison with the wind-tunnel data. Furthermore, a rotation-corrected turbulence model shows improved pressure predictions on the outboard span when using adapted grids.
Benchmarking NNWSI flow and transport codes: COVE 1 results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayden, N.K.
1985-06-01
The code verification (COVE) activity of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project is the first step in certification of flow and transport codes used for NNWSI performance assessments of a geologic repository for disposing of high-level radioactive wastes. The goals of the COVE activity are (1) to demonstrate and compare the numerical accuracy and sensitivity of certain codes, (2) to identify and resolve problems in running typical NNWSI performance assessment calculations, and (3) to evaluate computer requirements for running the codes. This report describes the work done for COVE 1, the first step in benchmarking some of themore » codes. Isothermal calculations for the COVE 1 benchmarking have been completed using the hydrologic flow codes SAGUARO, TRUST, and GWVIP; the radionuclide transport codes FEMTRAN and TRUMP; and the coupled flow and transport code TRACR3D. This report presents the results of three cases of the benchmarking problem solved for COVE 1, a comparison of the results, questions raised regarding sensitivities to modeling techniques, and conclusions drawn regarding the status and numerical sensitivities of the codes. 30 refs.« less
A Lossless hybrid wavelet-fractal compression for welding radiographic images.
Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud
2016-01-01
In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm.
Cooperative MIMO communication at wireless sensor network: an error correcting code approach.
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.
Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732
Comparison of SPHC Hydrocode Results with Penetration Equations and Results of Other Codes
NASA Technical Reports Server (NTRS)
Evans, Steven W.; Stallworth, Roderick; Stellingwerf, Robert F.
2004-01-01
The SPHC hydrodynamic code was used to simulate impacts of spherical aluminum projectiles on a single-wall aluminum plate and on a generic Whipple shield. Simulations were carried out in two and three dimensions. Projectile speeds ranged from 2 kilometers per second to 10 kilometers per second for the single-wall runs, and from 3 kilometers per second to 40 kilometers per second for the Whipple shield runs. Spallation limit results of the single-wall simulations are compared with predictions from five standard penetration equations, and are shown to fall comfortably within the envelope of these analytical relations. Ballistic limit results of the Whipple shield simulations are compared with results from the AUTODYN-2D and PAM-SHOCK-3D codes presented in a paper at the Hypervelocity Impact Symposium 2000 and the Christiansen formulation of 2003.
NASA Technical Reports Server (NTRS)
Goldman, L. J.; Seasholtz, R. G.
1982-01-01
Experimental measurements of the velocity components in the blade to blade (axial tangential) plane were obtained with an axial flow turbine stator passage and were compared with calculations from three turbomachinery computer programs. The theoretical results were calculated from a quasi three dimensional inviscid code, a three dimensional inviscid code, and a three dimensional viscous code. Parameter estimation techniques and a particle dynamics calculation were used to assess the accuracy of the laser measurements, which allow a rational basis for comparison of the experimenal and theoretical results. The general agreement of the experimental data with the results from the two inviscid computer codes indicates the usefulness of these calculation procedures for turbomachinery blading. The comparison with the viscous code, while generally reasonable, was not as good as for the inviscid codes.
Analysis of SMA Hybrid Composite Structures using Commercial Codes
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Patel, Hemant D.
2004-01-01
A thermomechanical model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures has been recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilevered beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilevered beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.
2012-01-01
Background Detecting the borders between coding and non-coding regions is an essential step in the genome annotation. And information entropy measures are useful for describing the signals in genome sequence. However, the accuracies of previous methods of finding borders based on entropy segmentation method still need to be improved. Methods In this study, we first applied a new recursive entropic segmentation method on DNA sequences to get preliminary significant cuts. A 22-symbol alphabet is used to capture the differential composition of nucleotide doublets and stop codon patterns along three phases in both DNA strands. This process requires no prior training datasets. Results Comparing with the previous segmentation methods, the experimental results on three bacteria genomes, Rickettsia prowazekii, Borrelia burgdorferi and E.coli, show that our approach improves the accuracy for finding the borders between coding and non-coding regions in DNA sequences. Conclusions This paper presents a new segmentation method in prokaryotes based on Jensen-Rényi divergence with a 22-symbol alphabet. For three bacteria genomes, comparing to A12_JR method, our method raised the accuracy of finding the borders between protein coding and non-coding regions in DNA sequences. PMID:23282225
Audit of Clinical Coding of Major Head and Neck Operations
Mitra, Indu; Malik, Tass; Homer, Jarrod J; Loughran, Sean
2009-01-01
INTRODUCTION Within the NHS, operations are coded using the Office of Population Censuses and Surveys (OPCS) classification system. These codes, together with diagnostic codes, are used to generate Healthcare Resource Group (HRG) codes, which correlate to a payment bracket. The aim of this study was to determine whether allocated procedure codes for major head and neck operations were correct and reflective of the work undertaken. HRG codes generated were assessed to determine accuracy of remuneration. PATIENTS AND METHODS The coding of consecutive major head and neck operations undertaken in a tertiary referral centre over a retrospective 3-month period were assessed. Procedure codes were initially ascribed by professional hospital coders. Operations were then recoded by the surgical trainee in liaison with the head of clinical coding. The initial and revised procedure codes were compared and used to generate HRG codes, to determine whether the payment banding had altered. RESULTS A total of 34 cases were reviewed. The number of procedure codes generated initially by the clinical coders was 99, whereas the revised codes generated 146. Of the original codes, 47 of 99 (47.4%) were incorrect. In 19 of the 34 cases reviewed (55.9%), the HRG code remained unchanged, thus resulting in the correct payment. Six cases were never coded, equating to £15,300 loss of payment. CONCLUSIONS These results highlight the inadequacy of this system to reward hospitals for the work carried out within the NHS in a fair and consistent manner. The current coding system was found to be complicated, ambiguous and inaccurate, resulting in loss of remuneration. PMID:19220944
A comparison of cosmological hydrodynamic codes
NASA Technical Reports Server (NTRS)
Kang, Hyesung; Ostriker, Jeremiah P.; Cen, Renyue; Ryu, Dongsu; Hernquist, Lars; Evrard, August E.; Bryan, Greg L.; Norman, Michael L.
1994-01-01
We present a detailed comparison of the simulation results of various hydrodynamic codes. Starting with identical initial conditions based on the cold dark matter scenario for the growth of structure, with parameters h = 0.5 Omega = Omega(sub b) = 1, and sigma(sub 8) = 1, we integrate from redshift z = 20 to z = O to determine the physical state within a representative volume of size L(exp 3) where L = 64 h(exp -1) Mpc. Five indenpendent codes are compared: three of them Eulerian mesh-based and two variants of the smooth particle hydrodynamics 'SPH' Lagrangian approach. The Eulerian codes were run at N(exp 3) = (32(exp 3), 64(exp 3), 128(exp 3), and 256(exp 3)) cells, the SPH codes at N(exp 3) = 32(exp 3) and 64(exp 3) particles. Results were then rebinned to a 16(exp 3) grid with the exception that the rebinned data should converge, by all techniques, to a common and correct result as N approaches infinity. We find that global averages of various physical quantities do, as expected, tend to converge in the rebinned model, but that uncertainites in even primitive quantities such as (T), (rho(exp 2))(exp 1/2) persists at the 3%-17% level achieve comparable and satisfactory accuracy for comparable computer time in their treatment of the high-density, high-temeprature regions as measured in the rebinned data; the variance among the five codes (at highest resolution) for the mean temperature (as weighted by rho(exp 2) is only 4.5%. Examined at high resolution we suspect that the density resolution is better in the SPH codes and the thermal accuracy in low-density regions better in the Eulerian codes. In the low-density, low-temperature regions the SPH codes have poor accuracy due to statiscal effects, and the Jameson code gives the temperatures which are too high, due to overuse of artificial viscosity in these high Mach number regions. Overall the comparison allows us to better estimate errors; it points to ways of improving this current generation ofhydrodynamic codes and of suiting their use to problems which exploit their best individual features.
Zafirah, S A; Nur, Amrizal Muhammad; Puteh, Sharifa Ezat Wan; Aljunid, Syed Mohamed
2018-01-25
The accuracy of clinical coding is crucial in the assignment of Diagnosis Related Groups (DRGs) codes, especially if the hospital is using Casemix System as a tool for resource allocations and efficiency monitoring. The aim of this study was to estimate the potential loss of income due to an error in clinical coding during the implementation of the Malaysia Diagnosis Related Group (MY-DRG ® ) Casemix System in a teaching hospital in Malaysia. Four hundred and sixty-four (464) coded medical records were selected, re-examined and re-coded by an independent senior coder (ISC). This ISC re-examined and re-coded the error code that was originally entered by the hospital coders. The pre- and post-coding results were compared, and if there was any disagreement, the codes by the ISC were considered the accurate codes. The cases were then re-grouped using a MY-DRG ® grouper to assess and compare the changes in the DRG assignment and the hospital tariff assignment. The outcomes were then verified by a casemix expert. Coding errors were found in 89.4% (415/424) of the selected patient medical records. Coding errors in secondary diagnoses were the highest, at 81.3% (377/464), followed by secondary procedures at 58.2% (270/464), principal procedures of 50.9% (236/464) and primary diagnoses at 49.8% (231/464), respectively. The coding errors resulted in the assignment of different MY-DRG ® codes in 74.0% (307/415) of the cases. From this result, 52.1% (160/307) of the cases had a lower assigned hospital tariff. In total, the potential loss of income due to changes in the assignment of the MY-DRG ® code was RM654,303.91. The quality of coding is a crucial aspect in implementing casemix systems. Intensive re-training and the close monitoring of coder performance in the hospital should be performed to prevent the potential loss of hospital income.
The Use of Barker Coded Signal on the Measurement of Wave Velocity of Rock
NASA Astrophysics Data System (ADS)
Zhu, W.; Wu, H.
2016-12-01
The wave velocity of the rock is important petro physics parameters; it can be used to calculate the elastic parameters, monitor the variations in the stress suffered by rock; and the velocity anisotropy reflects the rock anisotropy. Furthermore, since the coda wave is more sensitive to the change in rock properties, its velocity variation has been applied to monitor the variations in rock structures caused by varying temperature, stress, water saturation and other factors. However, the measurements of velocities heavily depend on signal-to-noise ratio (SNR) of the signals, because low signal-to-noise ratio would result in the difficulty in the identification of information. Fortunately coded excitation technique, widely used in radar, and medical system, just can solve the problem above. Although this technique can effectively improve the SNR and resolution of received signal, there exits very high sidelobes after traditional matched filter. So a pseudo inverse filter was successfully applied to suppress the side lobes. After comparing different coded signals, Barker coded signal are selected to measure the velocity of P wave of Plexiglas, sandstone, granite, marble with automatic measurement method, which are compared with the measurement results of single pulse; the results showed that the measurement of coded signals is more closely to the manual measurement. Moreover, coda wave measurement of loading granite was also made with Barker coded signal, the results of which also showed that the detection result of coded signals is better than that of the single pulse. In conclusion, the experiments verify the effectiveness and reliability of coded signals used on the measurement of wave velocity of rock.
NASA Astrophysics Data System (ADS)
Braunmueller, F.; Tran, T. M.; Vuillemin, Q.; Alberti, S.; Genoud, J.; Hogge, J.-Ph.; Tran, M. Q.
2015-06-01
A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is the case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braunmueller, F., E-mail: falk.braunmueller@epfl.ch; Tran, T. M.; Alberti, S.
A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is themore » case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.« less
A comparison between EGS4 and MCNP computer modeling of an in vivo X-ray fluorescence system.
Al-Ghorabie, F H; Natto, S S; Al-Lyhiani, S H
2001-03-01
The Monte Carlo computer codes EGS4 and MCNP were used to develop a theoretical model of a 180 degrees geometry in vivo X-ray fluorescence system for the measurement of platinum concentration in head and neck tumors. The model included specification of the photon source, collimators, phantoms and detector. Theoretical results were compared and evaluated against X-ray fluorescence data obtained experimentally from an existing system developed by the Swansea In Vivo Analysis and Cancer Research Group. The EGS4 results agreed well with the MCNP results. However, agreement between the measured spectral shape obtained using the experimental X-ray fluorescence system and the simulated spectral shape obtained using the two Monte Carlo codes was relatively poor. The main reason for the disagreement between the results arises from the basic assumptions which the two codes used in their calculations. Both codes assume a "free" electron model for Compton interactions. This assumption will underestimate the results and invalidates any predicted and experimental spectra when compared with each other.
Validation of a Computational Fluid Dynamics (CFD) Code for Supersonic Axisymmetric Base Flow
NASA Technical Reports Server (NTRS)
Tucker, P. Kevin
1993-01-01
The ability to accurately and efficiently calculate the flow structure in the base region of bodies of revolution in supersonic flight is a significant step in CFD code validation for applications ranging from base heating for rockets to drag for protectives. The FDNS code is used to compute such a flow and the results are compared to benchmark quality experimental data. Flowfield calculations are presented for a cylindrical afterbody at M = 2.46 and angle of attack a = O. Grid independent solutions are compared to mean velocity profiles in the separated wake area and downstream of the reattachment point. Additionally, quantities such as turbulent kinetic energy and shear layer growth rates are compared to the data. Finally, the computed base pressures are compared to the measured values. An effort is made to elucidate the role of turbulence models in the flowfield predictions. The level of turbulent eddy viscosity, and its origin, are used to contrast the various turbulence models and compare the results to the experimental data.
Fast Computation of the Two-Point Correlation Function in the Age of Big Data
NASA Astrophysics Data System (ADS)
Pellegrino, Andrew; Timlin, John
2018-01-01
We present a new code which quickly computes the two-point correlation function for large sets of astronomical data. This code combines the ease of use of Python with the speed of parallel shared libraries written in C. We include the capability to compute the auto- and cross-correlation statistics, and allow the user to calculate the three-dimensional and angular correlation functions. Additionally, the code automatically divides the user-provided sky masks into contiguous subsamples of similar size, using the HEALPix pixelization scheme, for the purpose of resampling. Errors are computed using jackknife and bootstrap resampling in a way that adds negligible extra runtime, even with many subsamples. We demonstrate comparable speed with other clustering codes, and code accuracy compared to known and analytic results.
Multipath search coding of stationary signals with applications to speech
NASA Astrophysics Data System (ADS)
Fehn, H. G.; Noll, P.
1982-04-01
This paper deals with the application of multipath search coding (MSC) concepts to the coding of stationary memoryless and correlated sources, and of speech signals, at a rate of one bit per sample. Use is made of three MSC classes: (1) codebook coding, or vector quantization, (2) tree coding, and (3) trellis coding. This paper explains the performances of these coders and compares them both with those of conventional coders and with rate-distortion bounds. The potentials of MSC coding strategies are demonstrated by illustrations. The paper reports also on results of MSC coding of speech, where both the strategy of adaptive quantization and of adaptive prediction were included in coder design.
NASA Technical Reports Server (NTRS)
Salazar, Giovanni; Droba, Justin C.; Oliver, Brandon; Amar, Adam J.
2016-01-01
With the recent development of multi-dimensional thermal protection system (TPS) material response codes including the capabilities to account for radiative heating is a requirement. This paper presents the recent efforts to implement such capabilities in the CHarring Ablator Response (CHAR) code developed at NASA's Johnson Space Center. This work also describes the different numerical methods implemented in the code to compute view factors for radiation problems involving multiple surfaces. Furthermore, verification and validation of the code's radiation capabilities are demonstrated by comparing solutions to analytical results, to other codes, and to radiant test data.
Pseudo color ghost coding imaging with pseudo thermal light
NASA Astrophysics Data System (ADS)
Duan, De-yang; Xia, Yun-jie
2018-04-01
We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.
Comparison of three coding strategies for a low cost structure light scanner
NASA Astrophysics Data System (ADS)
Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming
2014-12-01
Coded structure light is widely used for 3D scanning, and different coding strategies are adopted to suit for different goals. In this paper, three coding strategies are compared, and one of them is selected to implement a low cost structure light scanner under the cost of €100. To reach this goal, the projector and the video camera must be the cheapest, which will lead to some problems related to light coding. For a cheapest projector, complex intensity pattern can't be generated; even if it can be generated, it can't be captured by a cheapest camera. Based on Gray code, three different strategies are implemented and compared, called phase-shift, line-shift, and bit-shift, respectively. The bit-shift Gray code is the contribution of this paper, in which a simple, stable light pattern is used to generate dense(mean points distance<0.4mm) and accurate(mean error<0.1mm) results. The whole algorithm details and some example are presented in the papers.
Efficient Prediction Structures for H.264 Multi View Coding Using Temporal Scalability
NASA Astrophysics Data System (ADS)
Guruvareddiar, Palanivel; Joseph, Biju K.
2014-03-01
Prediction structures with "disposable view components based" hierarchical coding have been proven to be efficient for H.264 multi view coding. Though these prediction structures along with the QP cascading schemes provide superior compression efficiency when compared to the traditional IBBP coding scheme, the temporal scalability requirements of the bit stream could not be met to the fullest. On the other hand, a fully scalable bit stream, obtained by "temporal identifier based" hierarchical coding, provides a number of advantages including bit rate adaptations and improved error resilience, but lacks in compression efficiency when compared to the former scheme. In this paper it is proposed to combine the two approaches such that a fully scalable bit stream could be realized with minimal reduction in compression efficiency when compared to state-of-the-art "disposable view components based" hierarchical coding. Simulation results shows that the proposed method enables full temporal scalability with maximum BDPSNR reduction of only 0.34 dB. A novel method also has been proposed for the identification of temporal identifier for the legacy H.264/AVC base layer packets. Simulation results also show that this enables the scenario where the enhancement views could be extracted at a lower frame rate (1/2nd or 1/4th of base view) with average extraction time for a view component of only 0.38 ms.
MOCCA code for star cluster simulation: comparison with optical observations using COCOA
NASA Astrophysics Data System (ADS)
Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Olech, Arkadiusz; Hypki, Arkadiusz
2016-02-01
We introduce and present preliminary results from COCOA (Cluster simulatiOn Comparison with ObservAtions) code for a star cluster after 12 Gyr of evolution simulated using the MOCCA code. The COCOA code is being developed to quickly compare results of numerical simulations of star clusters with observational data. We use COCOA to obtain parameters of the projected cluster model. For comparison, a FITS file of the projected cluster was provided to observers so that they could use their observational methods and techniques to obtain cluster parameters. The results show that the similarity of cluster parameters obtained through numerical simulations and observations depends significantly on the quality of observational data and photometric accuracy.
Investigation of CSRZ code in FSO communication
NASA Astrophysics Data System (ADS)
Zhang, Zhike; Chang, Mingchao; Zhu, Ninghua; Liu, Yu
2018-02-01
A cost-effective carrier-suppressed return-to-zero (CSRZ) code generation scheme is proposed by employing a directly modulated laser (DML) module operated at 1.5 μm wavelength. Furthermore, the performance of CSRZ code signal in free-space optical (FSO) link transmission is studied by simulation. It is found from the results that the atmospheric turbulence can deteriorate the transmission performance. However, due to have lower average transmit power and higher spectrum efficient, CSRZ code signal can obtain better amplitude suppression ratio compared to the Non-return-to-zero (NRZ) code.
Application of Finite Element Method to Analyze Inflatable Waveguide Structures
NASA Technical Reports Server (NTRS)
Deshpande, M. D.
1998-01-01
A Finite Element Method (FEM) is presented to determine propagation characteristics of deformed inflatable rectangular waveguide. Various deformations that might be present in an inflatable waveguide are analyzed using the FEM. The FEM procedure and the code developed here are so general that they can be used for any other deformations that are not considered in this report. The code is validated by applying the present code to rectangular waveguide without any deformations and comparing the numerical results with earlier published results.
Fan Flutter Computations Using the Harmonic Balance Method
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Thomas, Jeffrey P.; Reddy, T.S.R.
2009-01-01
An experimental forward-swept fan encountered flutter at part-speed conditions during wind tunnel testing. A new propulsion aeroelasticity code, based on a computational fluid dynamics (CFD) approach, was used to model the aeroelastic behavior of this fan. This threedimensional code models the unsteady flowfield due to blade vibrations using a harmonic balance method to solve the Navier-Stokes equations. This paper describes the flutter calculations and compares the results to experimental measurements and previous results from a time-accurate propulsion aeroelasticity code.
Ice Accretion and Performance Degradation Calculations with LEWICE/NS
NASA Technical Reports Server (NTRS)
Potapczuk, Mark G.; Al-Khalil, Kamel M.; Velazquez, Matthew T.
1993-01-01
The LEWICE ice accretion computer code has been extended to include the solution of the two-dimensional Navier-Stokes equations. The code is modular and contains separate stand-alone program elements that create a grid, calculate the flow field parameters, calculate the droplet trajectory paths, determine the amount of ice growth, calculate aeroperformance changes, and plot results. The new elements of the code are described. Calculated results are compared to experiment for several cases, including both ice shape and drag rise.
Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.
2015-01-01
The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.
NASA Technical Reports Server (NTRS)
Mehdipour, M.; Kaastra, J. S.; Kallman, T.
2016-01-01
Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionization codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionization equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionization codes, and compare their derived thermal and ionization states for various ionizing spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionized outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionization parameter, we find that on average there is about 30 deviation between the codes in where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in is smaller at about 10 on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30 deviation between the codes in the optical depth of the lines produced at log 1 to 2, reducing to about 20 deviation at log 3. We also simulate spectra of the ionized outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionization codes, which is about 10 to40. We compare the modeling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionization codes for the upcoming era of X-ray astronomy with Athena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzgrewe, F.; Hegedues, F.; Paratte, J.M.
1995-03-01
The light water reactor BOXER code was used to determine the fast azimuthal neutron fluence distribution at the inner surface of the reactor pressure vessel after the tenth cycle of a pressurized water reactor (PWR). Using a cross-section library in 45 groups, fixed-source calculations in transport theory and x-y geometry were carried out to determine the fast azimuthal neutron flux distribution at the inner surface of the pressure vessel for four different cycles. From these results, the fast azimuthal neutron fluence after the tenth cycle was estimated and compared with the results obtained from scraping test experiments. In these experiments,more » small samples of material were taken from the inner surface of the pressure vessel. The fast neutron fluence was then determined form the measured activity of the samples. Comparing the BOXER and scraping test results have maximal differences of 15%, which is very good, considering the factor of 10{sup 3} neutron attenuation between the reactor core and the pressure vessel. To compare the BOXER results with an independent code, the 21st cycle of the PWR was also calculated with the TWODANT two-dimensional transport code, using the same group structure and cross-section library. Deviations in the fast azimuthal flux distribution were found to be <3%, which verifies the accuracy of the BOXER results.« less
Weighted SAW reflector gratings for orthogonal frequency coded SAW tags and sensors
NASA Technical Reports Server (NTRS)
Puccio, Derek (Inventor); Malocha, Donald (Inventor)
2011-01-01
Weighted surface acoustic wave reflector gratings for coding identification tags and sensors to enable unique sensor operation and identification for a multi-sensor environment. In an embodiment, the weighted reflectors are variable while in another embodiment the reflector gratings are apodized. The weighting technique allows the designer to decrease reflectively and allows for more chips to be implemented in a device and, consequently, more coding diversity. As a result, more tags and sensors can be implemented using a given bandwidth when compared with uniform reflectors. Use of weighted reflector gratings with OFC makes various phase shifting schemes possible, such as in-phase and quadrature implementations of coded waveforms resulting in reduced device size and increased coding.
SU-D-BRD-03: A Gateway for GPU Computing in Cancer Radiotherapy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, X; Folkerts, M; Shi, F
Purpose: Graphics Processing Unit (GPU) has become increasingly important in radiotherapy. However, it is still difficult for general clinical researchers to access GPU codes developed by other researchers, and for developers to objectively benchmark their codes. Moreover, it is quite often to see repeated efforts spent on developing low-quality GPU codes. The goal of this project is to establish an infrastructure for testing GPU codes, cross comparing them, and facilitating code distributions in radiotherapy community. Methods: We developed a system called Gateway for GPU Computing in Cancer Radiotherapy Research (GCR2). A number of GPU codes developed by our group andmore » other developers can be accessed via a web interface. To use the services, researchers first upload their test data or use the standard data provided by our system. Then they can select the GPU device on which the code will be executed. Our system offers all mainstream GPU hardware for code benchmarking purpose. After the code running is complete, the system automatically summarizes and displays the computing results. We also released a SDK to allow the developers to build their own algorithm implementation and submit their binary codes to the system. The submitted code is then systematically benchmarked using a variety of GPU hardware and representative data provided by our system. The developers can also compare their codes with others and generate benchmarking reports. Results: It is found that the developed system is fully functioning. Through a user-friendly web interface, researchers are able to test various GPU codes. Developers also benefit from this platform by comprehensively benchmarking their codes on various GPU platforms and representative clinical data sets. Conclusion: We have developed an open platform allowing the clinical researchers and developers to access the GPUs and GPU codes. This development will facilitate the utilization of GPU in radiation therapy field.« less
Code of Ethics for Electrical Engineers
NASA Astrophysics Data System (ADS)
Matsuki, Junya
The Institute of Electrical Engineers of Japan (IEEJ) has established the rules of practice for its members recently, based on its code of ethics enacted in 1998. In this paper, first, the characteristics of the IEEJ 1998 ethical code are explained in detail compared to the other ethical codes for other fields of engineering. Secondly, the contents which shall be included in the modern code of ethics for electrical engineers are discussed. Thirdly, the newly-established rules of practice and the modified code of ethics are presented. Finally, results of questionnaires on the new ethical code and rules which were answered on May 23, 2007, by 51 electrical and electronic students of the University of Fukui are shown.
NASA Technical Reports Server (NTRS)
Coakley, T. J.; Hsieh, T.
1985-01-01
Numerical simulation of steady and unsteady transonic diffuser flows using two different computer codes are discussed and compared with experimental data. The codes solve the Reynolds-averaged, compressible, Navier-Stokes equations using various turbulence models. One of the codes has been applied extensively to diffuser flows and uses the hybrid method of MacCormack. This code is relatively inefficient numerically. The second code, which was developed more recently, is fully implicit and is relatively efficient numerically. Simulations of steady flows using the implicit code are shown to be in good agreement with simulations using the hybrid code. Both simulations are in good agreement with experimental results. Simulations of unsteady flows using the two codes are in good qualitative agreement with each other, although the quantitative agreement is not as good as in the steady flow cases. The implicit code is shown to be eight times faster than the hybrid code for unsteady flow calculations and up to 32 times faster for steady flow calculations. Results of calculations using alternative turbulence models are also discussed.
Asres, Yihunie Hibstie; Mathuthu, Manny; Birhane, Marelgn Derso
2018-04-22
This study provides current evidence about cross-section production processes in the theoretical and experimental results of neutron induced reaction of uranium isotope on projectile energy range of 1-100 MeV in order to improve the reliability of nuclear stimulation. In such fission reactions of 235 U within nuclear reactors, much amount of energy would be released as a product that able to satisfy the needs of energy to the world wide without polluting processes as compared to other sources. The main objective of this work is to transform a related knowledge in the neutron-induced fission reactions on 235 U through describing, analyzing and interpreting the theoretical results of the cross sections obtained from computer code COMPLET by comparing with the experimental data obtained from EXFOR. The cross section value of 235 U(n,2n) 234 U, 235 U(n,3n) 233 U, 235 U(n,γ) 236 U, 235 U(n,f) are obtained using computer code COMPLET and the corresponding experimental values were browsed by EXFOR, IAEA. The theoretical results are compared with the experimental data taken from EXFOR Data Bank. Computer code COMPLET has been used for the analysis with the same set of input parameters and the graphs were plotted by the help of spreadsheet & Origin-8 software. The quantification of uncertainties stemming from both experimental data and computer code calculation plays a significant role in the final evaluated results. The calculated results for total cross sections were compared with the experimental data taken from EXFOR in the literature, and good agreement was found between the experimental and theoretical data. This comparison of the calculated data was analyzed and interpreted with tabulation and graphical descriptions, and the results were briefly discussed within the text of this research work. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fuel burnup analysis for IRIS reactor using MCNPX and WIMS-D5 codes
NASA Astrophysics Data System (ADS)
Amin, E. A.; Bashter, I. I.; Hassan, Nabil M.; Mustafa, S. S.
2017-02-01
International Reactor Innovative and Secure (IRIS) reactor is a compact power reactor designed with especial features. It contains Integral Fuel Burnable Absorber (IFBA). The core is heterogeneous both axially and radially. This work provides the full core burn up analysis for IRIS reactor using MCNPX and WIMDS-D5 codes. Criticality calculations, radial and axial power distributions and nuclear peaking factor at the different stages of burnup were studied. Effective multiplication factor values for the core were estimated by coupling MCNPX code with WIMS-D5 code and compared with SAS2H/KENO-V code values at different stages of burnup. The two calculation codes show good agreement and correlation. The values of radial and axial powers for the full core were also compared with published results given by SAS2H/KENO-V code (at the beginning and end of reactor operation). The behavior of both radial and axial power distribution is quiet similar to the other data published by SAS2H/KENO-V code. The peaking factor values estimated in the present work are close to its values calculated by SAS2H/KENO-V code.
NASA Astrophysics Data System (ADS)
Lebreton, Yveline; Montalbán, Josefina; Christensen-Dalsgaard, Jørgen; Roxburgh, Ian W.; Weiss, Achim
2008-08-01
We compare stellar models produced by different stellar evolution codes for the CoRoT/ESTA project, comparing their global quantities, their physical structure, and their oscillation properties. We discuss the differences between models and identify the underlying reasons for these differences. The stellar models are representative of potential CoRoT targets. Overall we find very good agreement between the five different codes, but with some significant deviations. We find noticeable discrepancies (though still at the per cent level) that result from the handling of the equation of state, of the opacities and of the convective boundaries. The results of our work will be helpful in interpreting future asteroseismology results from CoRoT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui; Sumner, Tyler S.
2016-04-17
An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and whole-plant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP-302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulationmore » results are also included for a code-to-code comparison.« less
Trellis coding techniques for mobile communications
NASA Technical Reports Server (NTRS)
Divsalar, D.; Simon, M. K.; Jedrey, T.
1988-01-01
A criterion for designing optimum trellis codes to be used over fading channels is given. A technique is shown for reducing certain multiple trellis codes, optimally designed for the fading channel, to conventional (i.e., multiplicity one) trellis codes. The computational cutoff rate R0 is evaluated for MPSK transmitted over fading channels. Examples of trellis codes optimally designed for the Rayleigh fading channel are given and compared with respect to R0. Two types of modulation/demodulation techniques are considered, namely coherent (using pilot tone-aided carrier recovery) and differentially coherent with Doppler frequency correction. Simulation results are given for end-to-end performance of two trellis-coded systems.
Extension of the XGC code for global gyrokinetic simulations in stellarator geometry
NASA Astrophysics Data System (ADS)
Cole, Michael; Moritaka, Toseo; White, Roscoe; Hager, Robert; Ku, Seung-Hoe; Chang, Choong-Seock
2017-10-01
In this work, the total-f, gyrokinetic particle-in-cell code XGC is extended to treat stellarator geometries. Improvements to meshing tools and the code itself have enabled the first physics studies, including single particle tracing and flux surface mapping in the magnetic geometry of the heliotron LHD and quasi-isodynamic stellarator Wendelstein 7-X. These have provided the first successful test cases for our approach. XGC is uniquely placed to model the complex edge physics of stellarators. A roadmap to such a global confinement modeling capability will be presented. Single particle studies will include the physics of energetic particles' global stochastic motions and their effect on confinement. Good confinement of energetic particles is vital for a successful stellarator reactor design. These results can be compared in the core region with those of other codes, such as ORBIT3d. In subsequent work, neoclassical transport and turbulence can then be considered and compared to results from codes such as EUTERPE and GENE. After sufficient verification in the core region, XGC will move into the stellarator edge region including the material wall and neutral particle recycling.
Analysis of SMA Hybrid Composite Structures in MSC.Nastran and ABAQUS
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Patel, Hemant D.
2005-01-01
A thermoelastic constitutive model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures was recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilever beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilever beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.
Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Ma, Chunli
2009-11-01
In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.
Numerical study of supersonic combustors by multi-block grids with mismatched interfaces
NASA Technical Reports Server (NTRS)
Moon, Young J.
1990-01-01
A three dimensional, finite rate chemistry, Navier-Stokes code was extended to a multi-block code with mismatched interface for practical calculations of supersonic combustors. To ensure global conservation, a conservative algorithm was used for the treatment of mismatched interfaces. The extended code was checked against one test case, i.e., a generic supersonic combustor with transverse fuel injection, examining solution accuracy, convergence, and local mass flux error. After testing, the code was used to simulate the chemically reacting flow fields in a scramjet combustor with parallel fuel injectors (unswept and swept ramps). Computational results were compared with experimental shadowgraph and pressure measurements. Fuel-air mixing characteristics of the unswept and swept ramps were compared and investigated.
BINGO: a code for the efficient computation of the scalar bi-spectrum
NASA Astrophysics Data System (ADS)
Hazra, Dhiraj Kumar; Sriramkumar, L.; Martin, Jérôme
2013-05-01
We present a new and accurate Fortran code, the BI-spectra and Non-Gaussianity Operator (BINGO), for the efficient numerical computation of the scalar bi-spectrum and the non-Gaussianity parameter fNL in single field inflationary models involving the canonical scalar field. The code can calculate all the different contributions to the bi-spectrum and the parameter fNL for an arbitrary triangular configuration of the wavevectors. Focusing firstly on the equilateral limit, we illustrate the accuracy of BINGO by comparing the results from the code with the spectral dependence of the bi-spectrum expected in power law inflation. Then, considering an arbitrary triangular configuration, we contrast the numerical results with the analytical expression available in the slow roll limit, for, say, the case of the conventional quadratic potential. Considering a non-trivial scenario involving deviations from slow roll, we compare the results from the code with the analytical results that have recently been obtained in the case of the Starobinsky model in the equilateral limit. As an immediate application, we utilize BINGO to examine of the power of the non-Gaussianity parameter fNL to discriminate between various inflationary models that admit departures from slow roll and lead to similar features in the scalar power spectrum. We close with a summary and discussion on the implications of the results we obtain.
Extremely accurate sequential verification of RELAP5-3D
Mesina, George L.; Aumiller, David L.; Buschman, Francis X.
2015-11-19
Large computer programs like RELAP5-3D solve complex systems of governing, closure and special process equations to model the underlying physics of nuclear power plants. Further, these programs incorporate many other features for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. For RELAP5-3D, verification and validation are restricted to nuclear power plant applications. Verification means ensuring that the program is built right by checking that it meets its design specifications, comparing coding to algorithms and equations and comparing calculations against analytical solutions and method ofmore » manufactured solutions. Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. Recently, an automated, highly accurate sequential verification method has been developed for RELAP5-3D. The method also provides to test that no unintended consequences result from code development in the following code capabilities: repeating a timestep advancement, continuing a run from a restart file, multiple cases in a single code execution, and modes of coupled/uncoupled operation. In conclusion, mathematical analyses of the adequacy of the checks used in the comparisons are provided.« less
Ultra-wideband communication system prototype using orthogonal frequency coded SAW correlators.
Gallagher, Daniel R; Kozlovski, Nikolai Y; Malocha, Donald C
2013-03-01
This paper presents preliminary ultra-wideband (UWB) communication system results utilizing orthogonal frequency coded SAW correlators. Orthogonal frequency coding (OFC) and pseudo-noise (PN) coding provides a means for spread-spectrum UWB. The use of OFC spectrally spreads a PN sequence beyond that of CDMA; allowing for improved correlation gain. The transceiver approach is still very similar to that of the CDMA approach, but provides greater code diversity. Use of SAW correlators eliminates many of the costly components that are typically needed in the intermediate frequency (IF) section in the transmitter and receiver, and greatly reduces the signal processing requirements. Development and results of an experimental prototype system with center frequency of 250 MHz are presented. The prototype system is configured using modular RF components and benchtop pulse generator and frequency source. The SAW correlation filters used in the test setup were designed using 7 chip frequencies within the transducer. The fractional bandwidth of approximately 29% was implemented to exceed the defined UWB specification. Discussion of the filter design and results are presented and are compared with packaged device measurements. A prototype UWB system using OFC SAW correlators is demonstrated in wired and wireless configurations. OFC-coded SAW filters are used for generation of a transmitted spread-spectrum UWB and matched filter correlated reception. Autocorrelation and cross-correlation system outputs are compared. The results demonstrate the feasibility of UWB SAW correlators for use in UWB communication transceivers.
Verification of a neutronic code for transient analysis in reactors with Hex-z geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Pintor, S.; Verdu, G.; Ginestar, D.
Due to the geometry of the fuel bundles, to simulate reactors such as VVER reactors it is necessary to develop methods that can deal with hexagonal prisms as basic elements of the spatial discretization. The main features of a code based on a high order finite element method for the spatial discretization of the neutron diffusion equation and an implicit difference method for the time discretization of this equation are presented and the performance of the code is tested solving the first exercise of the AER transient benchmark. The obtained results are compared with the reference results of the benchmarkmore » and with the results provided by PARCS code. (authors)« less
Validation of CFD Codes for Parawing Geometries in Subsonic to Supersonic Flows
NASA Technical Reports Server (NTRS)
Cruz-Ayoroa, Juan G.; Garcia, Joseph A.; Melton, John E.
2014-01-01
Computational Fluid Dynamic studies of a rigid parawing at Mach numbers from 0.8 to 4.65 were carried out using three established inviscid, viscous and independent panel method codes. Pressure distributions along four chordwise sections of the wing were compared to experimental wind tunnel data gathered from NASA technical reports. Results show good prediction of the overall trends and magnitudes of the pressure distributions for the inviscid and viscous solvers. Pressure results for the panel method code diverge from test data at large angles of attack due to shock interaction phenomena. Trends in the flow behavior and their effect on the integrated force and moments on this type of wing are examined in detail using the inviscid CFD code results.
Performance and limitations of administrative data in the identification of AKI.
Grams, Morgan E; Waikar, Sushrut S; MacMahon, Blaithin; Whelton, Seamus; Ballew, Shoshana H; Coresh, Josef
2014-04-01
Billing codes are frequently used to identify AKI events in epidemiologic research. The goals of this study were to validate billing code-identified AKI against the current AKI consensus definition and to ascertain whether sensitivity and specificity vary by patient characteristic or over time. The study population included 10,056 Atherosclerosis Risk in Communities study participants hospitalized between 1996 and 2008. Billing code-identified AKI was compared with the 2012 Kidney Disease Improving Global Outcomes (KDIGO) creatinine-based criteria (AKIcr) and an approximation of the 2012 KDIGO creatinine- and urine output-based criteria (AKIcr_uop) in a subset with available outpatient data. Sensitivity and specificity of billing code-identified AKI were evaluated over time and according to patient age, race, sex, diabetes status, and CKD status in 546 charts selected for review, with estimates adjusted for sampling technique. A total of 34,179 hospitalizations were identified; 1353 had a billing code for AKI. The sensitivity of billing code-identified AKI was 17.2% (95% confidence interval [95% CI], 13.2% to 21.2%) compared with AKIcr (n=1970 hospitalizations) and 11.7% (95% CI, 8.8% to 14.5%) compared with AKIcr_uop (n=1839 hospitalizations). Specificity was >98% in both cases. Sensitivity was significantly higher in the more recent time period (2002-2008) and among participants aged 65 years and older. Billing code-identified AKI captured a more severe spectrum of disease than did AKIcr and AKIcr_uop, with a larger proportion of patients with stage 3 AKI (34.9%, 19.7%, and 11.5%, respectively) and higher in-hospital mortality (41.2%, 18.7%, and 12.8%, respectively). The use of billing codes to identify AKI has low sensitivity compared with the current KDIGO consensus definition, especially when the urine output criterion is included, and results in the identification of a more severe phenotype. Epidemiologic studies using billing codes may benefit from a high specificity, but the variation in sensitivity may result in bias, particularly when trends over time are the outcome of interest.
A QR code identification technology in package auto-sorting system
NASA Astrophysics Data System (ADS)
di, Yi-Juan; Shi, Jian-Ping; Mao, Guo-Yong
2017-07-01
Traditional manual sorting operation is not suitable for the development of Chinese logistics. For better sorting packages, a QR code recognition technology is proposed to identify the QR code label on the packages in package auto-sorting system. The experimental results compared with other algorithms in literatures demonstrate that the proposed method is valid and its performance is superior to other algorithms.
2012-01-01
Background Procedures documented by general practitioners in primary care have not been studied in relation to procedure coding systems. We aimed to describe procedures documented by Swedish general practitioners in electronic patient records and to compare them to the Swedish Classification of Health Interventions (KVÅ) and SNOMED CT. Methods Procedures in 200 record entries were identified, coded, assessed in relation to two procedure coding systems and analysed. Results 417 procedures found in the 200 electronic patient record entries were coded with 36 different Classification of Health Interventions categories and 148 different SNOMED CT concepts. 22.8% of the procedures could not be coded with any Classification of Health Interventions category and 4.3% could not be coded with any SNOMED CT concept. 206 procedure-concept/category pairs were assessed as a complete match in SNOMED CT compared to 10 in the Classification of Health Interventions. Conclusions Procedures documented by general practitioners were present in nearly all electronic patient record entries. Almost all procedures could be coded using SNOMED CT. Classification of Health Interventions covered the procedures to a lesser extent and with a much lower degree of concordance. SNOMED CT is a more flexible terminology system that can be used for different purposes for procedure coding in primary care. PMID:22230095
NASA Astrophysics Data System (ADS)
Miensopust, Marion P.; Queralt, Pilar; Jones, Alan G.; 3D MT modellers
2013-06-01
Over the last half decade the need for, and importance of, three-dimensional (3-D) modelling of magnetotelluric (MT) data have increased dramatically and various 3-D forward and inversion codes are in use and some have become commonly available. Comparison of forward responses and inversion results is an important step for code testing and validation prior to `production' use. The various codes use different mathematical approximations to the problem (finite differences, finite elements or integral equations), various orientations of the coordinate system, different sign conventions for the time dependence and various inversion strategies. Additionally, the obtained results are dependent on data analysis, selection and correction as well as on the chosen mesh, inversion parameters and regularization adopted, and therefore, a careful and knowledge-based use of the codes is essential. In 2008 and 2011, during two workshops at the Dublin Institute for Advanced Studies over 40 people from academia (scientists and students) and industry from around the world met to discuss 3-D MT inversion. These workshops brought together a mix of code writers as well as code users to assess the current status of 3-D modelling, to compare the results of different codes, and to discuss and think about future improvements and new aims in 3-D modelling. To test the numerical forward solutions, two 3-D models were designed to compare the responses obtained by different codes and/or users. Furthermore, inversion results of these two data sets and two additional data sets obtained from unknown models (secret models) were also compared. In this manuscript the test models and data sets are described (supplementary files are available) and comparisons of the results are shown. Details regarding the used data, forward and inversion parameters as well as computational power are summarized for each case, and the main discussion points of the workshops are reviewed. In general, the responses obtained from the various forward models are comfortingly very similar, and discrepancies are mainly related to the adopted mesh. For the inversions, the results show how the inversion outcome is affected by distortion and the choice of errors, as well as by the completeness of the data set. We hope that these compilations will become useful not only for those that were involved in the workshops, but for the entire MT community and also the broader geoscience community who may be interested in the resolution offered by MT.
Extension, validation and application of the NASCAP code
NASA Technical Reports Server (NTRS)
Katz, I.; Cassidy, J. J., III; Mandell, M. J.; Schnuelle, G. W.; Steen, P. G.; Parks, D. E.; Rotenberg, M.; Alexander, J. H.
1979-01-01
Numerous extensions were made in the NASCAP code. They fall into three categories: a greater range of definable objects, a more sophisticated computational model, and simplified code structure and usage. An important validation of NASCAP was performed using a new two dimensional computer code (TWOD). An interactive code (MATCHG) was written to compare material parameter inputs with charging results. The first major application of NASCAP was performed on the SCATHA satellite. Shadowing and charging calculation were completed. NASCAP was installed at the Air Force Geophysics Laboratory, where researchers plan to use it to interpret SCATHA data.
Coding efficiency of AVS 2.0 for CBAC and CABAC engines
NASA Astrophysics Data System (ADS)
Cui, Jing; Choi, Youngkyu; Chae, Soo-Ik
2015-12-01
In this paper we compare the coding efficiency of AVS 2.0[1] for engines of the Context-based Binary Arithmetic Coding (CBAC)[2] in the AVS 2.0 and the Context-Adaptive Binary Arithmetic Coder (CABAC)[3] in the HEVC[4]. For fair comparison, the CABAC is embedded in the reference code RD10.1 because the CBAC is in the HEVC in our previous work[5]. The rate estimation table is employed only for RDOQ in the RD code. To reduce the computation complexity of the video encoder, therefore we modified the RD code so that the rate estimation table is employed for all RDO decision. Furthermore, we also simplify the complexity of rate estimation table by reducing the bit depth of its fractional part to 2 from 8. The simulation result shows that the CABAC has the BD-rate loss of about 0.7% compared to the CBAC. It seems that the CBAC is a little more efficient than that the CABAC in the AVS 2.0.
TOPLHA and ALOHA: comparison between Lower Hybrid wave coupling codes
NASA Astrophysics Data System (ADS)
Meneghini, Orso; Hillairet, J.; Goniche, M.; Bilato, R.; Voyer, D.; Parker, R.
2008-11-01
TOPLHA and ALOHA are wave coupling simulation tools for LH antennas. Both codes are able to account for realistic 3D antenna geometries and use a 1D plasma model. In the framework of a collaboration between MIT and CEA laboratories, the two codes have been extensively compared. In TOPLHA the EM problem is self consistently formulated by means of a set of multiple coupled integral equations having as domain the triangles of the meshed antenna surface. TOPLHA currently uses the FELHS code for modeling the plasma response. ALOHA instead uses a mode matching approach and its own plasma model. Comparisons have been done for several plasma scenarios on different antenna designs: an array of independent waveguides, a multi-junction antenna and a passive/active multi-junction antenna. When simulating the same geometry and plasma conditions the two codes compare remarkably well both for the reflection coefficients and for the launched spectra. The different approach of the two codes to solve the same problem strengthens the confidence in the final results.
RETRACTED — PMD mitigation through interleaving LDPC codes with polarization scramblers
NASA Astrophysics Data System (ADS)
Han, Dahai; Chen, Haoran; Xi, Lixia
2012-11-01
The combination of forward error correction (FEC) and distributed fast polarization scramblers (D-FPSs) is approved as an effective method to mitigate polarization mode dispersion (PMD) in high-speed optical fiber communication system. The low-density parity-check (LDPC) codes are newly introduced into the PMD mitigation scheme with D-FPSs in this paper as one of the promising FEC codes to achieve better performance. The scrambling speed of FPS for LDPC (2040, 1903) codes system is discussed, and the reasonable speed 10 MHz is obtained from the simulation results. For easy application in practical large scale integrated (LSI) circuit, the number of iterations in decoding LDPC codes is also investigated. The PMD tolerance and cut-off optical signal-to-noise ratio (OSNR) of LDPC codes are compared with Reed-Solomon (RS) codes in different conditions. In the simulation, the interleaving LDPC codes brings incremental performance of error correction, and the PMD tolerance is 10 ps at OSNR=11.4 dB. The results show that the meaning of the work is that LDPC codes are a substitute for traditional RS codes with D-FPSs and all of the executable code files are open for researchers who have practical LSI platform for PMD mitigation.
PMD mitigation through interleaving LDPC codes with polarization scramblers
NASA Astrophysics Data System (ADS)
Han, Dahai; Chen, Haoran; Xi, Lixia
2013-09-01
The combination of forward error correction (FEC) and distributed fast polarization scramblers (D-FPSs) is approved an effective method to mitigate polarization mode dispersion (PMD) in high-speed optical fiber communication system. The low-density parity-check (LDPC) codes are newly introduced into the PMD mitigation scheme with D-FPSs in this article as one of the promising FEC codes to achieve better performance. The scrambling speed of FPS for LDPC (2040, 1903) codes system is discussed, and the reasonable speed 10MHz is obtained from the simulation results. For easy application in practical large scale integrated (LSI) circuit, the number of iterations in decoding LDPC codes is also investigated. The PMD tolerance and cut-off optical signal-to-noise ratio (OSNR) of LDPC codes are compared with Reed-Solomon (RS) codes in different conditions. In the simulation, the interleaving LDPC codes bring incremental performance of error correction, and the PMD tolerance is 10ps at OSNR=11.4dB. The results show the meaning of the work is that LDPC codes are a substitute for traditional RS codes with D-FPSs and all of the executable code files are open for researchers who have practical LSI platform for PMD mitigation.
Comparing Turbulence Simulation with Experiment in DIII-D
NASA Astrophysics Data System (ADS)
Ross, D. W.; Bravenec, R. V.; Dorland, W.; Beer, M. A.; Hammett, G. W.; McKee, G. R.; Murakami, M.; Jackson, G. L.
2000-10-01
Gyrofluid simulations of DIII-D discharges with the GRYFFIN code(D. W. Ross et al.), Transport Task Force Workshop, Burlington, VT, (2000). are compared with transport and fluctuation measurements. The evolution of confinement-improved discharges(G. R. McKee et al.), Phys. Plasmas 7, 1870 (200) is studied at early times following impurity injection, when EXB rotational shear plays a small role. The ion thermal transport predicted by the code is consistent with the experimental values. Experimentally, changes in density profiles resulting from the injection of neon, lead to reduction in fluctuation levels and transport following the injection. This triggers subsequent changes in the shearing rate that further reduce the turbulence.(M. Murakami et al.), European Physical Society, Budapest (2000); M. Murakami et al., this meeting. Estimated uncertainties in the plasma profiles, however, make it difficult to simulate these reductions with the code. These cases will also be studied with the GS2 gyrokinetic code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurosu, K; Department of Medical Physics ' Engineering, Osaka University Graduate School of Medicine, Osaka; Takashina, M
Purpose: Monte Carlo codes are becoming important tools for proton beam dosimetry. However, the relationships between the customizing parameters and percentage depth dose (PDD) of GATE and PHITS codes have not been reported which are studied for PDD and proton range compared to the FLUKA code and the experimental data. Methods: The beam delivery system of the Indiana University Health Proton Therapy Center was modeled for the uniform scanning beam in FLUKA and transferred identically into GATE and PHITS. This computational model was built from the blue print and validated with the commissioning data. Three parameters evaluated are the maximummore » step size, cut off energy and physical and transport model. The dependence of the PDDs on the customizing parameters was compared with the published results of previous studies. Results: The optimal parameters for the simulation of the whole beam delivery system were defined by referring to the calculation results obtained with each parameter. Although the PDDs from FLUKA and the experimental data show a good agreement, those of GATE and PHITS obtained with our optimal parameters show a minor discrepancy. The measured proton range R90 was 269.37 mm, compared to the calculated range of 269.63 mm, 268.96 mm, and 270.85 mm with FLUKA, GATE and PHITS, respectively. Conclusion: We evaluated the dependence of the results for PDDs obtained with GATE and PHITS Monte Carlo generalpurpose codes on the customizing parameters by using the whole computational model of the treatment nozzle. The optimal parameters for the simulation were then defined by referring to the calculation results. The physical model, particle transport mechanics and the different geometrybased descriptions need accurate customization in three simulation codes to agree with experimental data for artifact-free Monte Carlo simulation. This study was supported by Grants-in Aid for Cancer Research (H22-3rd Term Cancer Control-General-043) from the Ministry of Health, Labor and Welfare of Japan, Grants-in-Aid for Scientific Research (No. 23791419), and JSPS Core-to-Core program (No. 23003). The authors have no conflict of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajo, J.J.
1995-12-31
This study compares results obtained with two U.S. Nuclear Regulatory Commission (NRC)-sponsored codes, MELCOR version 1.8.3 (1.8PQ) and SCDAP/RELAP5 Mod3.1 release C, for the same transient - a low-pressure, short-term station blackout accident at the Browns Ferry nuclear plant. This work is part of MELCOR assessment activities to compare core damage progression calculations of MELCOR against SCDAP/RELAP5 since the two codes model core damage progression very differently.
NASA Astrophysics Data System (ADS)
Mylnikova, Anna; Yasyukevich, Yury; Yasyukevich, Anna
2017-04-01
We have developed a technique for vertical total electron content (TEC) and differential code biases (DCBs) estimation using data from a single GPS/GLONASS station. The algorithm is based on TEC expansion into Taylor series in space and time (TayAbsTEC). We perform the validation of the technique using Global Ionospheric Maps (GIM) computed by Center for Orbit Determination in Europe (CODE) and Jet Propulsion Laboratory (JPL). We compared differences between absolute vertical TEC (VTEC) from GIM and VTEC evaluated by TayAbsTEC for 2009 year (solar activity minimum - sunspot number about 0), and for 2014 year (solar activity maximum - sunspot number 110). Since there is difference between VTEC from CODE and VTEC from JPL, we compare TayAbsTEC VTEC with both of them. We found that TayAbsTEC VTEC is closer to CODE VTEC than to JPL VTEC. The difference between TayAbsTEC VTEC and GIM VTEC is more noticeable for solar activity maximum (2014) than for solar activity minimum (2009) for both CODE and JPL. The distribution of VTEC differences is close to Gaussian distribution, so we conclude that results of TayAbsTEC are in the agreement with GIM VTEC. We also compared DCBs evaluated by TayAbsTEC and DCBs from GIM, computed by CODE. The TayAbsTEC DCBs are in good agreement with CODE DCBs for GPS satellites, but differ noticeable for GLONASS. We used DCBs to correct slant TEC to find out which DCBs give better results. Slant TEC correction with CODE DCBs produces negative and nonphysical TEC values. Slant TEC correction with TayAbsTEC DCBs doesn't produce such artifacts. The technique we developed is used for VTEC and DCBs calculation given only local GPS/GLONASS networks data. The evaluated VTEC data are in GIM framework which is handy when various data analyses are made.
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Derlaga, Joseph M.; Stoll, Alex M.
2017-01-01
A variety of tools, from fundamental to high order, have been used to better understand applications of distributed electric propulsion to aid the wing and propulsion system design of the Leading Edge Asynchronous Propulsion Technology (LEAPTech) project and the X-57 Maxwell airplane. Three high-fidelity, Navier-Stokes computational fluid dynamics codes used during the project with results presented here are FUN3D, STAR-CCM+, and OVERFLOW. These codes employ various turbulence models to predict fully turbulent and transitional flow. Results from these codes are compared for two distributed electric propulsion configurations: the wing tested at NASA Armstrong on the Hybrid-Electric Integrated Systems Testbed truck, and the wing designed for the X-57 Maxwell airplane. Results from these computational tools for the high-lift wing tested on the Hybrid-Electric Integrated Systems Testbed truck and the X-57 high-lift wing presented compare reasonably well. The goal of the X-57 wing and distributed electric propulsion system design achieving or exceeding the required ?? (sub L) = 3.95 for stall speed was confirmed with all of the computational codes.
Chiavassa, S; Lemosquet, A; Aubineau-Lanièce, I; de Carlan, L; Clairand, I; Ferrer, L; Bardiès, M; Franck, D; Zankl, M
2005-01-01
This paper aims at comparing dosimetric assessments performed with three Monte Carlo codes: EGS4, MCNP4c2 and MCNPX2.5e, using a realistic voxel phantom, namely the Zubal phantom, in two configurations of exposure. The first one deals with an external irradiation corresponding to the example of a radiological accident. The results are obtained using the EGS4 and the MCNP4c2 codes and expressed in terms of the mean absorbed dose (in Gy per source particle) for brain, lungs, liver and spleen. The second one deals with an internal exposure corresponding to the treatment of a medullary thyroid cancer by 131I-labelled radiopharmaceutical. The results are obtained by EGS4 and MCNPX2.5e and compared in terms of S-values (expressed in mGy per kBq and per hour) for liver, kidney, whole body and thyroid. The results of these two studies are presented and differences between the codes are analysed and discussed.
Iterative Code-Aided ML Phase Estimation and Phase Ambiguity Resolution
NASA Astrophysics Data System (ADS)
Wymeersch, Henk; Moeneclaey, Marc
2005-12-01
As many coded systems operate at very low signal-to-noise ratios, synchronization becomes a very difficult task. In many cases, conventional algorithms will either require long training sequences or result in large BER degradations. By exploiting code properties, these problems can be avoided. In this contribution, we present several iterative maximum-likelihood (ML) algorithms for joint carrier phase estimation and ambiguity resolution. These algorithms operate on coded signals by accepting soft information from the MAP decoder. Issues of convergence and initialization are addressed in detail. Simulation results are presented for turbo codes, and are compared to performance results of conventional algorithms. Performance comparisons are carried out in terms of BER performance and mean square estimation error (MSEE). We show that the proposed algorithm reduces the MSEE and, more importantly, the BER degradation. Additionally, phase ambiguity resolution can be performed without resorting to a pilot sequence, thus improving the spectral efficiency.
Evaluation of the DRAGON code for VHTR design analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division
2006-01-12
This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by themore » IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.« less
Rao, Anoop; Wiley, Meg; Iyengar, Sridhar; Nadeau, Dan; Carnevale, Julie
2010-01-01
Background Studies have shown that controlling blood glucose can reduce the onset and progression of the long-term microvascular and neuropathic complications associated with the chronic course of diabetes mellitus. Improved glycemic control can be achieved by frequent testing combined with changes in medication, exercise, and diet. Technological advancements have enabled improvements in analytical accuracy of meters, and this paper explores two such parameters to which that accuracy can be attributed. Methods Four blood glucose monitoring systems (with or without dynamic electrochemistry algorithms, codeless or requiring coding prior to testing) were evaluated and compared with respect to their accuracy. Results Altogether, 108 blood glucose values were obtained for each system from 54 study participants and compared with the reference values. The analysis depicted in the International Organization for Standardization table format indicates that the devices with dynamic electrochemistry and the codeless feature had the highest proportion of acceptable results overall (System A, 101/103). Results were significant when compared at the 10% bias level with meters that were codeless and utilized static electrochemistry (p = .017) or systems that had static electrochemistry but needed coding (p = .008). Conclusions Analytical performance of these blood glucose meters differed significantly depending on their technologic features. Meters that utilized dynamic electrochemistry and did not require coding were more accurate than meters that used static electrochemistry or required coding. PMID:20167178
Comparison of Space Shuttle Hot Gas Manifold analysis to air flow data
NASA Technical Reports Server (NTRS)
Mcconnaughey, P. K.
1988-01-01
This paper summarizes several recent analyses of the Space Shuttle Main Engine Hot Gas Manifold and compares predicted flow environments to air flow data. Codes used in these analyses include INS3D, PAGE, PHOENICS, and VAST. Both laminar (Re = 250, M = 0.30) and turbulent (Re = 1.9 million, M = 0.30) results are discussed, with the latter being compared to data for system losses, outer wall static pressures, and manifold exit Mach number profiles. Comparison of predicted results for the turbulent case to air flow data shows that the analysis using INS3D predicted system losses within 1 percent error, while the PHOENICS, PAGE, and VAST codes erred by 31, 35, and 47 percent, respectively. The INS3D, PHOENICS, and PAGE codes did a reasonable job of predicting outer wall static pressure, while the PHOENICS code predicted exit Mach number profiles with acceptable accuracy. INS3D was approximately an order of magnitude more efficient than the other codes in terms of code speed and memory requirements. In general, it is seen that complex internal flows in manifold-like geometries can be predicted with a limited degree of confidence, and further development is necessary to improve both efficiency and accuracy of codes if they are to be used as design tools for complex three-dimensional geometries.
NASA Astrophysics Data System (ADS)
Huang, Sheng; Ao, Xiang; Li, Yuan-yuan; Zhang, Rui
2016-09-01
In order to meet the needs of high-speed development of optical communication system, a construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on multiplicative group of finite field is proposed. The Tanner graph of parity check matrix of the code constructed by this method has no cycle of length 4, and it can make sure that the obtained code can get a good distance property. Simulation results show that when the bit error rate ( BER) is 10-6, in the same simulation environment, the net coding gain ( NCG) of the proposed QC-LDPC(3 780, 3 540) code with the code rate of 93.7% in this paper is improved by 2.18 dB and 1.6 dB respectively compared with those of the RS(255, 239) code in ITU-T G.975 and the LDPC(3 2640, 3 0592) code in ITU-T G.975.1. In addition, the NCG of the proposed QC-LDPC(3 780, 3 540) code is respectively 0.2 dB and 0.4 dB higher compared with those of the SG-QC-LDPC(3 780, 3 540) code based on the two different subgroups in finite field and the AS-QC-LDPC(3 780, 3 540) code based on the two arbitrary sets of a finite field. Thus, the proposed QC-LDPC(3 780, 3 540) code in this paper can be well applied in optical communication systems.
Yang, Yiwei; Xu, Yuejin; Miu, Jichang; Zhou, Linghong; Xiao, Zhongju
2012-10-01
To apply the classic leakage integrate-and-fire models, based on the mechanism of the generation of physiological auditory stimulation, in the information processing coding of cochlear implants to improve the auditory result. The results of algorithm simulation in digital signal processor (DSP) were imported into Matlab for a comparative analysis. Compared with CIS coding, the algorithm of membrane potential integrate-and-fire (MPIF) allowed more natural pulse discharge in a pseudo-random manner to better fit the physiological structures. The MPIF algorithm can effectively solve the problem of the dynamic structure of the delivered auditory information sequence issued in the auditory center and allowed integration of the stimulating pulses and time coding to ensure the coherence and relevance of the stimulating pulse time.
Benchmarking GPU and CPU codes for Heisenberg spin glass over-relaxation
NASA Astrophysics Data System (ADS)
Bernaschi, M.; Parisi, G.; Parisi, L.
2011-06-01
We present a set of possible implementations for Graphics Processing Units (GPU) of the Over-relaxation technique applied to the 3D Heisenberg spin glass model. The results show that a carefully tuned code can achieve more than 100 GFlops/s of sustained performance and update a single spin in about 0.6 nanoseconds. A multi-hit technique that exploits the GPU shared memory further reduces this time. Such results are compared with those obtained by means of a highly-tuned vector-parallel code on latest generation multi-core CPUs.
Preliminary results of 3D dose calculations with MCNP-4B code from a SPECT image.
Rodríguez Gual, M; Lima, F F; Sospedra Alfonso, R; González González, J; Calderón Marín, C
2004-01-01
Interface software was developed to generate the input file to run Monte Carlo MCNP-4B code from medical image in Interfile format version 3.3. The software was tested using a spherical phantom of tomography slides with known cumulated activity distribution in Interfile format generated with IMAGAMMA medical image processing system. The 3D dose calculation obtained with Monte Carlo MCNP-4B code was compared with the voxel S factor method. The results show a relative error between both methods less than 1 %.
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert
2009-01-01
A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.
A comparison of two central difference schemes for solving the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Maksymiuk, C. M.; Swanson, R. C.; Pulliam, T. H.
1990-01-01
Five viscous transonic airfoil cases were computed by two significantly different computational fluid dynamics codes: An explicit finite-volume algorithm with multigrid, and an implicit finite-difference approximate-factorization method with Eigenvector diagonalization. Both methods are described in detail, and their performance on the test cases is compared. The codes utilized the same grids, turbulence model, and computer to provide the truest test of the algorithms. The two approaches produce very similar results, which, for attached flows, also agree well with experimental results; however, the explicit code is considerably faster.
Prati, Gabriele; Pietrantoni, Luca
2013-01-01
The aim of the present study was to examine the comprehension of gesture in a situation in which the communicator cannot (or can only with difficulty) use verbal communication. Based on theoretical considerations, we expected to obtain higher semantic comprehension for emblems (gestures with a direct verbal definition or translation that is well known by all members of a group, or culture) compared to illustrators (gestures regarded as spontaneous and idiosyncratic and that do not have a conventional definition). Based on the extant literature, we predicted higher semantic specificity associated with arbitrarily coded and iconically coded emblems compared to intrinsically coded illustrators. Using a scenario of emergency evacuation, we tested the difference in semantic specificity between different categories of gestures. 138 participants saw 10 videos each illustrating a gesture performed by a firefighter. They were requested to imagine themselves in a dangerous situation and to report the meaning associated with each gesture. The results showed that intrinsically coded illustrators were more successfully understood than arbitrarily coded emblems, probably because the meaning of intrinsically coded illustrators is immediately comprehensible without recourse to symbolic interpretation. Furthermore, there was no significant difference between the comprehension of iconically coded emblems and that of both arbitrarily coded emblems and intrinsically coded illustrators. It seems that the difference between the latter two types of gestures was supported by their difference in semantic specificity, although in a direction opposite to that predicted. These results are in line with those of Hadar and Pinchas-Zamir (2004), which showed that iconic gestures have higher semantic specificity than conventional gestures.
Benchmarking the SPHINX and CTH shock physics codes for three problems in ballistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, L.T.; Hertel, E.; Schwalbe, L.
1998-02-01
The CTH Eulerian hydrocode, and the SPHINX smooth particle hydrodynamics (SPH) code were used to model a shock tube, two long rod penetrations into semi-infinite steel targets, and a long rod penetration into a spaced plate array. The results were then compared to experimental data. Both SPHINX and CTH modeled the one-dimensional shock tube problem well. Both codes did a reasonable job in modeling the outcome of the axisymmetric rod impact problem. Neither code correctly reproduced the depth of penetration in both experiments. In the 3-D problem, both codes reasonably replicated the penetration of the rod through the first plate.more » After this, however, the predictions of both codes began to diverge from the results seen in the experiment. In terms of computer resources, the run times are problem dependent, and are discussed in the text.« less
Simulation realization of 2-D wavelength/time system utilizing MDW code for OCDMA system
NASA Astrophysics Data System (ADS)
Azura, M. S. A.; Rashidi, C. B. M.; Aljunid, S. A.; Endut, R.; Ali, N.
2017-11-01
This paper presents a realization of Wavelength/Time (W/T) Two-Dimensional Modified Double Weight (2-D MDW) code for Optical Code Division Multiple Access (OCDMA) system based on Spectral Amplitude Coding (SAC) approach. The MDW code has the capability to suppress Phase-Induce Intensity Noise (PIIN) and minimizing the Multiple Access Interference (MAI) noises. At the permissible BER 10-9, the 2-D MDW (APD) had shown minimum effective received power (Psr) = -71 dBm that can be obtained at the receiver side as compared to 2-D MDW (PIN) only received -61 dBm. The results show that 2-D MDW (APD) has better performance in achieving same BER with longer optical fiber length and with less received power (Psr). Also, the BER from the result shows that MDW code has the capability to suppress PIIN ad MAI.
Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B
2016-08-08
A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.
DRA/NASA/ONERA Collaboration on Icing Research. Part 2; Prediction of Airfoil Ice Accretion
NASA Technical Reports Server (NTRS)
Wright, William B.; Gent, R. W.; Guffond, Didier
1997-01-01
This report presents results from a joint study by DRA, NASA, and ONERA for the purpose of comparing, improving, and validating the aircraft icing computer codes developed by each agency. These codes are of three kinds: (1) water droplet trajectory prediction, (2) ice accretion modeling, and (3) transient electrothermal deicer analysis. In this joint study, the agencies compared their code predictions with each other and with experimental results. These comparison exercises were published in three technical reports, each with joint authorship. DRA published and had first authorship of Part 1 - Droplet Trajectory Calculations, NASA of Part 2 - Ice Accretion Prediction, and ONERA of Part 3 - Electrothermal Deicer Analysis. The results cover work done during the period from August 1986 to late 1991. As a result, all of the information in this report is dated. Where necessary, current information is provided to show the direction of current research. In this present report on ice accretion, each agency predicted ice shapes on two dimensional airfoils under icing conditions for which experimental ice shapes were available. In general, all three codes did a reasonable job of predicting the measured ice shapes. For any given experimental condition, one of the three codes predicted the general ice features (i.e., shape, impingement limits, mass of ice) somewhat better than did the other two. However, no single code consistently did better than the other two over the full range of conditions examined, which included rime, mixed, and glaze ice conditions. In several of the cases, DRA showed that the user's knowledge of icing can significantly improve the accuracy of the code prediction. Rime ice predictions were reasonably accurate and consistent among the codes, because droplets freeze on impact and the freezing model is simple. Glaze ice predictions were less accurate and less consistent among the codes, because the freezing model is more complex and is critically dependent upon unsubstantiated heat transfer and surface roughness models. Thus, heat transfer prediction methods used in the codes became the subject for a separate study in this report to compare predicted heat transfer coefficients with a limited experimental database of heat transfer coefficients for cylinders with simulated glaze and rime ice shapes. The codes did a good job of predicting heat transfer coefficients near the stagnation region of the ice shapes. But in the region of the ice horns, all three codes predicted heat transfer coefficients considerably higher than the measured values. An important conclusion of this study is that further research is needed to understand the finer detail of of the glaze ice accretion process and to develop improved glaze ice accretion models.
Progressive transmission of images over fading channels using rate-compatible LDPC codes.
Pan, Xiang; Banihashemi, Amir H; Cuhadar, Aysegul
2006-12-01
In this paper, we propose a combined source/channel coding scheme for transmission of images over fading channels. The proposed scheme employs rate-compatible low-density parity-check codes along with embedded image coders such as JPEG2000 and set partitioning in hierarchical trees (SPIHT). The assignment of channel coding rates to source packets is performed by a fast trellis-based algorithm. We examine the performance of the proposed scheme over correlated and uncorrelated Rayleigh flat-fading channels with and without side information. Simulation results for the expected peak signal-to-noise ratio of reconstructed images, which are within 1 dB of the capacity upper bound over a wide range of channel signal-to-noise ratios, show considerable improvement compared to existing results under similar conditions. We also study the sensitivity of the proposed scheme in the presence of channel estimation error at the transmitter and demonstrate that under most conditions our scheme is more robust compared to existing schemes.
NASA Astrophysics Data System (ADS)
Prakash, Ram; Gai, Sudhir L.; O'Byrne, Sean; Brown, Melrose
2016-11-01
The flow over a `tick' shaped configuration is performed using two Direct Simulation Monte Carlo codes: the DS2V code of Bird and the code from Sandia National Laboratory, called SPARTA. The configuration creates a flow field, where the flow is expanded initially but then is affected by the adverse pressure gradient induced by a compression surface. The flow field is challenging in the sense that the full flow domain is comprised of localized areas spanning continuum and transitional regimes. The present work focuses on the capability of SPARTA to model such flow conditions and also towards a comparative evaluation with results from DS2V. An extensive grid adaptation study is performed using both the codes on a model with a sharp leading edge and the converged results are then compared. The computational predictions are evaluated in terms of surface parameters such as heat flux, shear stress, pressure and velocity slip. SPARTA consistently predicts higher values for these surface properties. The skin friction predictions of both the codes don't give any indication of separation but the velocity slip plots indicate an incipient separation behavior at the corner. The differences in the results are attributed towards the flow resolution at the leading edge that dictates the downstream flow characteristics.
Performance evaluation of MPEG internet video coding
NASA Astrophysics Data System (ADS)
Luo, Jiajia; Wang, Ronggang; Fan, Kui; Wang, Zhenyu; Li, Ge; Wang, Wenmin
2016-09-01
Internet Video Coding (IVC) has been developed in MPEG by combining well-known existing technology elements and new coding tools with royalty-free declarations. In June 2015, IVC project was approved as ISO/IEC 14496-33 (MPEG- 4 Internet Video Coding). It is believed that this standard can be highly beneficial for video services in the Internet domain. This paper evaluates the objective and subjective performances of IVC by comparing it against Web Video Coding (WVC), Video Coding for Browsers (VCB) and AVC High Profile. Experimental results show that IVC's compression performance is approximately equal to that of the AVC High Profile for typical operational settings, both for streaming and low-delay applications, and is better than WVC and VCB.
Verification of a Viscous Computational Aeroacoustics Code using External Verification Analysis
NASA Technical Reports Server (NTRS)
Ingraham, Daniel; Hixon, Ray
2015-01-01
The External Verification Analysis approach to code verification is extended to solve the three-dimensional Navier-Stokes equations with constant properties, and is used to verify a high-order computational aeroacoustics (CAA) code. After a brief review of the relevant literature, the details of the EVA approach are presented and compared to the similar Method of Manufactured Solutions (MMS). Pseudocode representations of EVA's algorithms are included, along with the recurrence relations needed to construct the EVA solution. The code verification results show that EVA was able to convincingly verify a high-order, viscous CAA code without the addition of MMS-style source terms, or any other modifications to the code.
Verification of a Viscous Computational Aeroacoustics Code Using External Verification Analysis
NASA Technical Reports Server (NTRS)
Ingraham, Daniel; Hixon, Ray
2015-01-01
The External Verification Analysis approach to code verification is extended to solve the three-dimensional Navier-Stokes equations with constant properties, and is used to verify a high-order computational aeroacoustics (CAA) code. After a brief review of the relevant literature, the details of the EVA approach are presented and compared to the similar Method of Manufactured Solutions (MMS). Pseudocode representations of EVA's algorithms are included, along with the recurrence relations needed to construct the EVA solution. The code verification results show that EVA was able to convincingly verify a high-order, viscous CAA code without the addition of MMS-style source terms, or any other modifications to the code.
NASA Astrophysics Data System (ADS)
Jos, Sujit; Kumar, Preetam; Chakrabarti, Saswat
Orthogonal and quasi-orthogonal codes are integral part of any DS-CDMA based cellular systems. Orthogonal codes are ideal for use in perfectly synchronous scenario like downlink cellular communication. Quasi-orthogonal codes are preferred over orthogonal codes in the uplink communication where perfect synchronization cannot be achieved. In this paper, we attempt to compare orthogonal and quasi-orthogonal codes in presence of timing synchronization error. This will give insight into the synchronization demands in DS-CDMA systems employing the two classes of sequences. The synchronization error considered is smaller than chip duration. Monte-Carlo simulations have been carried out to verify the analytical and numerical results.
Information preserving coding for multispectral data
NASA Technical Reports Server (NTRS)
Duan, J. R.; Wintz, P. A.
1973-01-01
A general formulation of the data compression system is presented. A method of instantaneous expansion of quantization levels by reserving two codewords in the codebook to perform a folding over in quantization is implemented for error free coding of data with incomplete knowledge of the probability density function. Results for simple DPCM with folding and an adaptive transform coding technique followed by a DPCM technique are compared using ERTS-1 data.
Peter, Frank J.; Dalton, Larry J.; Plummer, David W.
2002-01-01
A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.
NASA Astrophysics Data System (ADS)
Janik, Tomasz; Środa, Piotr; Czuba, Wojciech; Lysynchuk, Dmytro
2016-12-01
The interpretation of seismic refraction and wide angle reflection data usually involves the creation of a velocity model based on an inverse or forward modelling of the travel times of crustal and mantle phases using the ray theory approach. The modelling codes differ in terms of model parameterization, data used for modelling, regularization of the result, etc. It is helpful to know the capabilities, advantages and limitations of the code used compared to others. This work compares some popular 2D seismic modelling codes using the dataset collected along the seismic wide-angle profile DOBRE-4, where quite peculiar/uncommon reflected phases were observed in the wavefield. The 505 km long profile was realized in southern Ukraine in 2009, using 13 shot points and 230 recording stations. Double PMP phases with a different reduced time (7.5-11 s) and a different apparent velocity, intersecting each other, are observed in the seismic wavefield. This is the most striking feature of the data. They are interpreted as reflections from strongly dipping Moho segments with an opposite dip. Two steps were used for the modelling. In the previous work by Starostenko et al. (2013), the trial-and-error forward model based on refracted and reflected phases (SEIS83 code) was published. The interesting feature is the high-amplitude (8-17 km) variability of the Moho depth in the form of downward and upward bends. This model is compared with results from other seismic inversion methods: the first arrivals tomography package FAST based on first arrivals; the JIVE3D code, which can also use later refracted arrivals and reflections; and the forward and inversion code RAYINVR using both refracted and reflected phases. Modelling with all the codes tested showed substantial variability of the Moho depth along the DOBRE-4 profile. However, SEIS83 and RAYINVR packages seem to give the most coincident results.
Emergency medicine summary code for reporting CT scan results: implementation and survey results.
Lam, Joanne; Coughlin, Ryan; Buhl, Luce; Herbst, Meghan; Herbst, Timothy; Martillotti, Jared; Coughlin, Bret
2018-06-01
The purpose of the study was to assess the emergency department (ED) providers' interest and satisfaction with ED CT result reporting before and after the implementation of a standardized summary code for all CT scan reporting. A summary code was provided at the end of all CTs ordered through the ED from August to October of 2016. A retrospective review was completed on all studies performed during this period. A pre- and post-survey was given to both ED and radiology providers. A total of 3980 CT scans excluding CTAs were ordered with 2240 CTs dedicated to the head and neck, 1685 CTs dedicated to the torso, and 55 CTs dedicated to the extremities. Approximately 74% CT scans were contrast enhanced. Of the 3980 ED CT examination ordered, 69% had a summary code assigned to it. Fifteen percent of the coded CTs had a critical or diagnostic positive result. The introduction of an ED CT summary code did not show a definitive improvement in communication. However, the ED providers are in consensus that radiology reports are crucial their patients' management. There is slightly increased satisfaction with the providers with less than 5 years of experience with the ED CT codes compared to more seasoned providers. The implementation of a user-friendly summary code may allow better analysis of results, practice improvement, and quality measurements in the future.
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
1994-01-01
A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.
NASA Astrophysics Data System (ADS)
Hoh, Siew Sin; Rapie, Nurul Nadiah; Lim, Edwin Suh Wen; Tan, Chun Yuan; Yavar, Alireza; Sarmani, Sukiman; Majid, Amran Ab.; Khoo, Kok Siong
2013-05-01
Instrumental Neutron Activation Analysis (INAA) is often used to determine and calculate the elemental concentrations of a sample at The National University of Malaysia (UKM) typically in Nuclear Science Programme, Faculty of Science and Technology. The objective of this study was to develop a database code-system based on Microsoft Access 2010 which could help the INAA users to choose either comparator method, k0-method or absolute method for calculating the elemental concentrations of a sample. This study also integrated k0data, Com-INAA, k0Concent, k0-Westcott and Abs-INAA to execute and complete the ECC-UKM database code-system. After the integration, a study was conducted to test the effectiveness of the ECC-UKM database code-system by comparing the concentrations between the experiments and the code-systems. 'Triple Bare Monitor' Zr-Au and Cr-Mo-Au were used in k0Concent, k0-Westcott and Abs-INAA code-systems as monitors to determine the thermal to epithermal neutron flux ratio (f). Calculations involved in determining the concentration were net peak area (Np), measurement time (tm), irradiation time (tirr), k-factor (k), thermal to epithermal neutron flux ratio (f), parameters of the neutron flux distribution epithermal (α) and detection efficiency (ɛp). For Com-INAA code-system, certified reference material IAEA-375 Soil was used to calculate the concentrations of elements in a sample. Other CRM and SRM were also used in this database codesystem. Later, a verification process to examine the effectiveness of the Abs-INAA code-system was carried out by comparing the sample concentrations between the code-system and the experiment. The results of the experimental concentration values of ECC-UKM database code-system were performed with good accuracy.
Magnetohydrodynamic modelling of exploding foil initiators
NASA Astrophysics Data System (ADS)
Neal, William
2015-06-01
Magnetohydrodynamic (MHD) codes are currently being developed, and used, to predict the behaviour of electrically-driven flyer-plates. These codes are of particular interest to the design of exploding foil initiator (EFI) detonators but there is a distinct lack of comparison with high-fidelity experimental data. This study aims to compare a MHD code with a collection of temporally and spatially resolved diagnostics including PDV, dual-axis imaging and streak imaging. The results show the code's excellent representation of the flyer-plate launch and highlight features within the experiment that the model fails to capture.
KEWPIE: A dynamical cascade code for decaying exited compound nuclei
NASA Astrophysics Data System (ADS)
Bouriquet, Bertrand; Abe, Yasuhisa; Boilley, David
2004-05-01
A new dynamical cascade code for decaying hot nuclei is proposed and specially adapted to the synthesis of super-heavy nuclei. For such a case, the interesting channel is of the tiny fraction that will decay through particles emission, thus the code avoids classical Monte-Carlo methods and proposes a new numerical scheme. The time dependence is explicitely taken into account in order to cope with the fact that fission decay rate might not be constant. The code allows to evaluate both statistical and dynamical observables. Results are successfully compared to experimental data.
Variable weight spectral amplitude coding for multiservice OCDMA networks
NASA Astrophysics Data System (ADS)
Seyedzadeh, Saleh; Rahimian, Farzad Pour; Glesk, Ivan; Kakaee, Majid H.
2017-09-01
The emergence of heterogeneous data traffic such as voice over IP, video streaming and online gaming have demanded networks with capability of supporting quality of service (QoS) at the physical layer with traffic prioritisation. This paper proposes a new variable-weight code based on spectral amplitude coding for optical code-division multiple-access (OCDMA) networks to support QoS differentiation. The proposed variable-weight multi-service (VW-MS) code relies on basic matrix construction. A mathematical model is developed for performance evaluation of VW-MS OCDMA networks. It is shown that the proposed code provides an optimal code length with minimum cross-correlation value when compared to other codes. Numerical results for a VW-MS OCDMA network designed for triple-play services operating at 0.622 Gb/s, 1.25 Gb/s and 2.5 Gb/s are considered.
Interactive QR code beautification with full background image embedding
NASA Astrophysics Data System (ADS)
Lin, Lijian; Wu, Song; Liu, Sijiang; Jiang, Bo
2017-06-01
QR (Quick Response) code is a kind of two dimensional barcode that was first developed in automotive industry. Nowadays, QR code has been widely used in commercial applications like product promotion, mobile payment, product information management, etc. Traditional QR codes in accordance with the international standard are reliable and fast to decode, but are lack of aesthetic appearance to demonstrate visual information to customers. In this work, we present a novel interactive method to generate aesthetic QR code. By given information to be encoded and an image to be decorated as full QR code background, our method accepts interactive user's strokes as hints to remove undesired parts of QR code modules based on the support of QR code error correction mechanism and background color thresholds. Compared to previous approaches, our method follows the intention of the QR code designer, thus can achieve more user pleasant result, while keeping high machine readability.
Mode-dependent templates and scan order for H.264/AVC-based intra lossless coding.
Gu, Zhouye; Lin, Weisi; Lee, Bu-Sung; Lau, Chiew Tong; Sun, Ming-Ting
2012-09-01
In H.264/advanced video coding (AVC), lossless coding and lossy coding share the same entropy coding module. However, the entropy coders in the H.264/AVC standard were original designed for lossy video coding and do not yield adequate performance for lossless video coding. In this paper, we analyze the problem with the current lossless coding scheme and propose a mode-dependent template (MD-template) based method for intra lossless coding. By exploring the statistical redundancy of the prediction residual in the H.264/AVC intra prediction modes, more zero coefficients are generated. By designing a new scan order for each MD-template, the scanned coefficients sequence fits the H.264/AVC entropy coders better. A fast implementation algorithm is also designed. With little computation increase, experimental results confirm that the proposed fast algorithm achieves about 7.2% bit saving compared with the current H.264/AVC fidelity range extensions high profile.
Improved Iterative Decoding of Network-Channel Codes for Multiple-Access Relay Channel.
Majumder, Saikat; Verma, Shrish
2015-01-01
Cooperative communication using relay nodes is one of the most effective means of exploiting space diversity for low cost nodes in wireless network. In cooperative communication, users, besides communicating their own information, also relay the information of other users. In this paper we investigate a scheme where cooperation is achieved using a common relay node which performs network coding to provide space diversity for two information nodes transmitting to a base station. We propose a scheme which uses Reed-Solomon error correcting code for encoding the information bit at the user nodes and convolutional code as network code, instead of XOR based network coding. Based on this encoder, we propose iterative soft decoding of joint network-channel code by treating it as a concatenated Reed-Solomon convolutional code. Simulation results show significant improvement in performance compared to existing scheme based on compound codes.
Validation of the WIMSD4M cross-section generation code with benchmark results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, L.C.; Deen, J.R.; Woodruff, W.L.
1995-02-01
The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment for Research and Test (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the procedure to generatemore » cross-section libraries for reactor analyses and calculations utilizing the WIMSD4M code. To do so, the results of calculations performed with group cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory(ORNL) unreflected critical spheres, the TRX critical experiments, and calculations of a modified Los Alamos highly-enriched heavy-water moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less
a Proposed Benchmark Problem for Scatter Calculations in Radiographic Modelling
NASA Astrophysics Data System (ADS)
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2009-03-01
Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilkey, Lindsay
This milestone presents a demonstration of the High-to-Low (Hi2Lo) process in the VVI focus area. Validation and additional calculations with the commercial computational fluid dynamics code, STAR-CCM+, were performed using a 5x5 fuel assembly with non-mixing geometry and spacer grids. This geometry was based on the benchmark experiment provided by Westinghouse. Results from the simulations were compared to existing experimental data and to the subchannel thermal-hydraulics code COBRA-TF (CTF). An uncertainty quantification (UQ) process was developed for the STAR-CCM+ model and results of the STAR UQ were communicated to CTF. Results from STAR-CCM+ simulations were used as experimental design pointsmore » in CTF to calibrate the mixing parameter β and compared to results obtained using experimental data points. This demonstrated that CTF’s β parameter can be calibrated to match existing experimental data more closely. The Hi2Lo process for the STAR-CCM+/CTF code coupling was documented in this milestone and closely linked L3:VVI.H2LP15.01 milestone report.« less
Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network
Lin, Kai; Wang, Di; Hu, Long
2016-01-01
With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods. PMID:27376302
Adaptive coded aperture imaging in the infrared: towards a practical implementation
NASA Astrophysics Data System (ADS)
Slinger, Chris W.; Gilholm, Kevin; Gordon, Neil; McNie, Mark; Payne, Doug; Ridley, Kevin; Strens, Malcolm; Todd, Mike; De Villiers, Geoff; Watson, Philip; Wilson, Rebecca; Dyer, Gavin; Eismann, Mike; Meola, Joe; Rogers, Stanley
2008-08-01
An earlier paper [1] discussed the merits of adaptive coded apertures for use as lensless imaging systems in the thermal infrared and visible. It was shown how diffractive (rather than the more conventional geometric) coding could be used, and that 2D intensity measurements from multiple mask patterns could be combined and decoded to yield enhanced imagery. Initial experimental results in the visible band were presented. Unfortunately, radiosity calculations, also presented in that paper, indicated that the signal to noise performance of systems using this approach was likely to be compromised, especially in the infrared. This paper will discuss how such limitations can be overcome, and some of the tradeoffs involved. Experimental results showing tracking and imaging performance of these modified, diffractive, adaptive coded aperture systems in the visible and infrared will be presented. The subpixel imaging and tracking performance is compared to that of conventional imaging systems and shown to be superior. System size, weight and cost calculations indicate that the coded aperture approach, employing novel photonic MOEMS micro-shutter architectures, has significant merits for a given level of performance in the MWIR when compared to more conventional imaging approaches.
Predicted and experimental aerodynamic forces on the Darrieus rotor
NASA Astrophysics Data System (ADS)
Paraschivoiu, I.
1983-12-01
The present paper compares the aerodynamic loads predicted by a double-multiple-streamtube model with wind tunnel measurements for a straight-bladed Darrieus rotor. Thus the CARDAA computer code uses two constant-interference factors in the induced velocity for estimating the aerodynamic loads. This code has been improved by considering the variation in the upwind and downwind induced velocities as a function of the blade position, and, in this case, the CARDAAV code is used. The Boeing-Vertol dynamic-stall model is incorporated in both the CARDAA and CARDAAV codes, and a better approach is obtained. The transient normal- and tangential-force coefficients predicted with and without dynamic-stall effects are compared with wind tunnel data for one and two NACA 0018 straight-bladed rotors. The results are given for a rotor with a large solidity (chord-to-radius ratio of 0.20) at two tip-speed ratios (X = 1.5 and 3.0) and at a low Reynolds number of 3.8 x 10 to the 4th. The comparisons between experimental data and theoretical results show the CARDAAV predictions to be more accurate than those estimated by the CARDAA code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virtanen, E.; Haapalehto, T.; Kouhia, J.
1995-09-01
Three experiments were conducted to study the behavior of the new horizontal steam generator construction of the PACTEL test facility. In the experiments the secondary side coolant level was reduced stepwise. The experiments were calculated with two computer codes RELAP5/MOD3.1 and APROS version 2.11. A similar nodalization scheme was used for both codes to that the results may be compared. Only the steam generator was modelled and the rest of the facility was given as a boundary condition. The results show that both codes calculate well the behaviour of the primary side of the steam generator. On the secondary sidemore » both codes calculate lower steam temperatures in the upper part of the heat exchange tube bundle than was measured in the experiments.« less
Power Aware Signal Processing Environment (PASPE) for PAC/C
2003-02-01
vs. FFT Size For our implementation , the Annapolis FFT core was radix-256, and therefore the smallest PN code length that could be processed was the...PN-64. A C- code version of correlate was compared to the FPGA 61 implementation . The results in Figure 68 show that for a PN-1024, the...12a. DISTRIBUTION / AVAILABILITY STATEMENT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum
NASA Technical Reports Server (NTRS)
Rudy, David H.; Kumar, Ajay; Thomas, James L.; Gnoffo, Peter A.; Chakravarthy, Sukumar R.
1988-01-01
A comparative study was made using 4 different computer codes for solving the compressible Navier-Stokes equations. Three different test problems were used, each of which has features typical of high speed internal flow problems of practical importance in the design and analysis of propulsion systems for advanced hypersonic vehicles. These problems are the supersonic flow between two walls, one of which contains a 10 deg compression ramp, the flow through a hypersonic inlet, and the flow in a 3-D corner formed by the intersection of two symmetric wedges. Three of the computer codes use similar recently developed implicit upwind differencing technology, while the fourth uses a well established explicit method. The computed results were compared with experimental data where available.
Afzal, Naveed; Sohn, Sunghwan; Abram, Sara; Scott, Christopher G.; Chaudhry, Rajeev; Liu, Hongfang; Kullo, Iftikhar J.; Arruda-Olson, Adelaide M.
2016-01-01
Objective Lower extremity peripheral arterial disease (PAD) is highly prevalent and affects millions of individuals worldwide. We developed a natural language processing (NLP) system for automated ascertainment of PAD cases from clinical narrative notes and compared the performance of the NLP algorithm to billing code algorithms, using ankle-brachial index (ABI) test results as the gold standard. Methods We compared the performance of the NLP algorithm to 1) results of gold standard ABI; 2) previously validated algorithms based on relevant ICD-9 diagnostic codes (simple model) and 3) a combination of ICD-9 codes with procedural codes (full model). A dataset of 1,569 PAD patients and controls was randomly divided into training (n= 935) and testing (n= 634) subsets. Results We iteratively refined the NLP algorithm in the training set including narrative note sections, note types and service types, to maximize its accuracy. In the testing dataset, when compared with both simple and full models, the NLP algorithm had better accuracy (NLP: 91.8%, full model: 81.8%, simple model: 83%, P<.001), PPV (NLP: 92.9%, full model: 74.3%, simple model: 79.9%, P<.001), and specificity (NLP: 92.5%, full model: 64.2%, simple model: 75.9%, P<.001). Conclusions A knowledge-driven NLP algorithm for automatic ascertainment of PAD cases from clinical notes had greater accuracy than billing code algorithms. Our findings highlight the potential of NLP tools for rapid and efficient ascertainment of PAD cases from electronic health records to facilitate clinical investigation and eventually improve care by clinical decision support. PMID:28189359
A Nonvolume Preserving Plasticity Theory with Applications to Powder Metallurgy
NASA Technical Reports Server (NTRS)
Cassenti, B. N.
1983-01-01
A plasticity theory has been developed to predict the mechanical response of powder metals during hot isostatic pressing. The theory parameters were obtained through an experimental program consisting of hydrostatic pressure tests, uniaxial compression and uniaxial tension tests. A nonlinear finite element code was modified to include the theory and the results of themodified code compared favorably to the results from a verification experiment.
Highly accurate calculation of rotating neutron stars
NASA Astrophysics Data System (ADS)
Ansorg, M.; Kleinwächter, A.; Meinel, R.
2002-01-01
A new spectral code for constructing general-relativistic models of rapidly rotating stars with an unprecedented accuracy is presented. As a first application, we reexamine uniformly rotating homogeneous stars and compare our results with those obtained by several previous codes. Moreover, representative relativistic examples corresponding to highly flattened rotating bodies are given.
Compression performance comparison in low delay real-time video for mobile applications
NASA Astrophysics Data System (ADS)
Bivolarski, Lazar
2012-10-01
This article compares the performance of several current video coding standards in the conditions of low-delay real-time in a resource constrained environment. The comparison is performed using the same content and the metrics and mix of objective and perceptual quality metrics. The metrics results in different coding schemes are analyzed from a point of view of user perception and quality of service. Multiple standards are compared MPEG-2, MPEG4 and MPEG-AVC and well and H.263. The metrics used in the comparison include SSIM, VQM and DVQ. Subjective evaluation and quality of service are discussed from a point of view of perceptual metrics and their incorporation in the coding scheme development process. The performance and the correlation of results are presented as a predictor of the performance of video compression schemes.
Compression performance of HEVC and its format range and screen content coding extensions
NASA Astrophysics Data System (ADS)
Li, Bin; Xu, Jizheng; Sullivan, Gary J.
2015-09-01
This paper presents a comparison-based test of the objective compression performance of the High Efficiency Video Coding (HEVC) standard, its format range extensions (RExt), and its draft screen content coding extensions (SCC). The current dominant standard, H.264/MPEG-4 AVC, is used as an anchor reference in the comparison. The conditions used for the comparison tests were designed to reflect relevant application scenarios and to enable a fair comparison to the maximum extent feasible - i.e., using comparable quantization settings, reference frame buffering, intra refresh periods, rate-distortion optimization decision processing, etc. It is noted that such PSNR-based objective comparisons generally provide more conservative estimates of HEVC benefit than are found in subjective studies. The experimental results show that, when compared with H.264/MPEG-4 AVC, HEVC version 1 provides a bit rate savings for equal PSNR of about 23% for all-intra coding, 34% for random access coding, and 38% for low-delay coding. This is consistent with prior studies and the general characterization that HEVC can provide about a bit rate savings of about 50% for equal subjective quality for most applications. The HEVC format range extensions provide a similar bit rate savings of about 13-25% for all-intra coding, 28-33% for random access coding, and 32-38% for low-delay coding at different bit rate ranges. For lossy coding of screen content, the HEVC screen content coding extensions achieve a bit rate savings of about 66%, 63%, and 61% for all-intra coding, random access coding, and low-delay coding, respectively. For lossless coding, the corresponding bit rate savings are about 40%, 33%, and 32%, respectively.
Tsopra, Rosy; Peckham, Daniel; Beirne, Paul; Rodger, Kirsty; Callister, Matthew; White, Helen; Jais, Jean-Philippe; Ghosh, Dipansu; Whitaker, Paul; Clifton, Ian J; Wyatt, Jeremy C
2018-07-01
Coding of diagnoses is important for patient care, hospital management and research. However coding accuracy is often poor and may reflect methods of coding. This study investigates the impact of three alternative coding methods on the inaccuracy of diagnosis codes and hospital reimbursement. Comparisons of coding inaccuracy were made between a list of coded diagnoses obtained by a coder using (i)the discharge summary alone, (ii)case notes and discharge summary, and (iii)discharge summary with the addition of medical input. For each method, inaccuracy was determined for the primary, secondary diagnoses, Healthcare Resource Group (HRG) and estimated hospital reimbursement. These data were then compared with a gold standard derived by a consultant and coder. 107 consecutive patient discharges were analysed. Inaccuracy of diagnosis codes was highest when a coder used the discharge summary alone, and decreased significantly when the coder used the case notes (70% vs 58% respectively, p < 0.0001) or coded from the discharge summary with medical support (70% vs 60% respectively, p < 0.0001). When compared with the gold standard, the percentage of incorrect HRGs was 42% for discharge summary alone, 31% for coding with case notes, and 35% for coding with medical support. The three coding methods resulted in an annual estimated loss of hospital remuneration of between £1.8 M and £16.5 M. The accuracy of diagnosis codes and percentage of correct HRGs improved when coders used either case notes or medical support in addition to the discharge summary. Further emphasis needs to be placed on improving the standard of information recorded in discharge summaries. Copyright © 2018 Elsevier B.V. All rights reserved.
Pseudo-orthogonal frequency coded wireless SAW RFID temperature sensor tags.
Saldanha, Nancy; Malocha, Donald C
2012-08-01
SAW sensors are ideal for various wireless, passive multi-sensor applications because they are small, rugged, radiation hard, and offer a wide range of material choices for operation over broad temperature ranges. The readable distance of a tag in a multi-sensor environment is dependent on the insertion loss of the device and the processing gain of the system. Single-frequency code division multiple access (CDMA) tags that are used in high-volume commercial applications must have universal coding schemes and large numbers of codes. The use of a large number of bits at the common center frequency to achieve sufficient code diversity in CDMA tags necessitates reflector banks with >30 dB loss. Orthogonal frequency coding is a spread-spectrum approach that employs frequency and time diversity to achieve enhanced tag properties. The use of orthogonal frequency coded (OFC) SAW tags reduces adjacent reflector interactions for low insertion loss, increased range, complex coding, and system processing gain. This work describes a SAW tag-sensor platform that reduces device loss by implementing long reflector banks with optimized spectral coding. This new pseudo-OFC (POFC) coding is defined and contrasted with the previously defined OFC coding scheme. Auto- and cross-correlation properties of the chips and their relation to reflectivity per strip and reflector length are discussed. Results at 250 MHz of 8-chip OFC and POFC SAW tags will be compared. The key parameters of insertion loss, cross-correlation, and autocorrelation of the two types of frequency-coded tags will be analyzed, contrasted, and discussed. It is shown that coded reflector banks can be achieved with near-zero loss and still maintain good coding properties. Experimental results and results predicted by the coupling of modes model are presented for varying reflector designs and codes. A prototype 915-MHz POFC sensor tag is used as a wireless temperature sensor and the results are shown.
Viterbi decoding for satellite and space communication.
NASA Technical Reports Server (NTRS)
Heller, J. A.; Jacobs, I. M.
1971-01-01
Convolutional coding and Viterbi decoding, along with binary phase-shift keyed modulation, is presented as an efficient system for reliable communication on power limited satellite and space channels. Performance results, obtained theoretically and through computer simulation, are given for optimum short constraint length codes for a range of code constraint lengths and code rates. System efficiency is compared for hard receiver quantization and 4 and 8 level soft quantization. The effects on performance of varying of certain parameters relevant to decoder complexity and cost are examined. Quantitative performance degradation due to imperfect carrier phase coherence is evaluated and compared to that of an uncoded system. As an example of decoder performance versus complexity, a recently implemented 2-Mbit/sec constraint length 7 Viterbi decoder is discussed. Finally a comparison is made between Viterbi and sequential decoding in terms of suitability to various system requirements.
Rao, Anoop; Wiley, Meg; Iyengar, Sridhar; Nadeau, Dan; Carnevale, Julie
2010-01-01
Studies have shown that controlling blood glucose can reduce the onset and progression of the long-term microvascular and neuropathic complications associated with the chronic course of diabetes mellitus. Improved glycemic control can be achieved by frequent testing combined with changes in medication, exercise, and diet. Technological advancements have enabled improvements in analytical accuracy of meters, and this paper explores two such parameters to which that accuracy can be attributed. Four blood glucose monitoring systems (with or without dynamic electrochemistry algorithms, codeless or requiring coding prior to testing) were evaluated and compared with respect to their accuracy. Altogether, 108 blood glucose values were obtained for each system from 54 study participants and compared with the reference values. The analysis depicted in the International Organization for Standardization table format indicates that the devices with dynamic electrochemistry and the codeless feature had the highest proportion of acceptable results overall (System A, 101/103). Results were significant when compared at the 10% bias level with meters that were codeless and utilized static electrochemistry (p = .017) or systems that had static electrochemistry but needed coding (p = .008). Analytical performance of these blood glucose meters differed significantly depending on their technologic features. Meters that utilized dynamic electrochemistry and did not require coding were more accurate than meters that used static electrochemistry or required coding. 2010 Diabetes Technology Society.
Testing hydrodynamics schemes in galaxy disc simulations
NASA Astrophysics Data System (ADS)
Few, C. G.; Dobbs, C.; Pettitt, A.; Konstandin, L.
2016-08-01
We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretized mesh-less code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans length with a greater number of grid cells, we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of GIZMO (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and time-scales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations.
Convolutional code performance in planetary entry channels
NASA Technical Reports Server (NTRS)
Modestino, J. W.
1974-01-01
The planetary entry channel is modeled for communication purposes representing turbulent atmospheric scattering effects. The performance of short and long constraint length convolutional codes is investigated in conjunction with coherent BPSK modulation and Viterbi maximum likelihood decoding. Algorithms for sequential decoding are studied in terms of computation and/or storage requirements as a function of the fading channel parameters. The performance of the coded coherent BPSK system is compared with the coded incoherent MFSK system. Results indicate that: some degree of interleaving is required to combat time correlated fading of channel; only modest amounts of interleaving are required to approach performance of memoryless channel; additional propagational results are required on the phase perturbation process; and the incoherent MFSK system is superior when phase tracking errors are considered.
Culbertson, C N; Wangerin, K; Ghandourah, E; Jevremovic, T
2005-08-01
The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for neutron capture therapy related modeling. A boron neutron capture therapy model was analyzed comparing COG calculational results to results from the widely used MCNP4B (Monte Carlo N-Particle) transport code. The approach for computing neutron fluence rate and each dose component relevant in boron neutron capture therapy is described, and calculated values are shown in detail. The differences between the COG and MCNP predictions are qualified and quantified. The differences are generally small and suggest that the COG code can be applied for BNCT research related problems.
Survival in commercially insured multiple sclerosis patients and comparator subjects in the U.S.
Kaufman, D W; Reshef, S; Golub, H L; Peucker, M; Corwin, M J; Goodin, D S; Knappertz, V; Pleimes, D; Cutter, G
2014-05-01
Compare survival in patients with multiple sclerosis (MS) from a U.S. commercial health insurance database with a matched cohort of non-MS subjects. 30,402 MS patients and 89,818 non-MS subjects (comparators) in the OptumInsight Research (OIR) database from 1996 to 2009 were included. An MS diagnosis required at least 3 consecutive months of database reporting, with two or more ICD-9 codes of 340 at least 30 days apart, or the combination of 1 ICD-9-340 code and at least 1 MS disease-modifying treatment (DMT) code. Comparators required the absence of ICD-9-340 and DMT codes throughout database reporting. Up to three comparators were matched to each patient for: age in the year of the first relevant code (index year - at least 3 months of reporting in that year were required); sex; region of residence in the index year. Deaths were ascertained from the National Death Index and the Social Security Administration Death Master File. Subjects not identified as deceased were assumed to be alive through the end of 2009. Annual mortality rates were 899/100,000 among MS patients and 446/100,000 among comparators. Standardized mortality ratios compared to the U.S. population were 1.70 and 0.80, respectively. Kaplan-Meier analysis yielded a median survival from birth that was 6 years lower among MS patients than among comparators. The results show, for the first time in a U.S. population, a survival disadvantage for contemporary MS patients compared to non-MS subjects from the same healthcare system. The 6-year decrement in lifespan parallels a recent report from British Columbia. Copyright © 2013 Elsevier B.V. All rights reserved.
Analysis of PANDA Passive Containment Cooling Steady-State Tests with the Spectra Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stempniewicz, Marek M
2000-07-15
Results of post test simulation of the PANDA passive containment cooling (PCC) steady-state tests (S-series tests), performed at the PANDA facility at the Paul Scherrer Institute, Switzerland, are presented. The simulation has been performed using the computer code SPECTRA, a thermal-hydraulic code, designed specifically for analyzing containment behavior of nuclear power plants.Results of the present calculations are compared to the measurement data as well as the results obtained earlier with the codes MELCOR, TRAC-BF1, and TRACG. The calculated PCC efficiencies are somewhat lower than the measured values. Similar underestimation of PCC efficiencies had been obtained in the past, with themore » other computer codes. To explain this difference, it is postulated that condensate coming into the tubes forms a stream of liquid in one or two tubes, leaving most of the tubes unaffected. The condensate entering the water box is assumed to fall down in the form of droplets. With these assumptions, the results calculated with SPECTRA are close to the experimental data.It is concluded that the SPECTRA code is a suitable tool for analyzing containments of advanced reactors, equipped with passive containment cooling systems.« less
Russ, Daniel E.; Ho, Kwan-Yuet; Colt, Joanne S.; Armenti, Karla R.; Baris, Dalsu; Chow, Wong-Ho; Davis, Faith; Johnson, Alison; Purdue, Mark P.; Karagas, Margaret R.; Schwartz, Kendra; Schwenn, Molly; Silverman, Debra T.; Johnson, Calvin A.; Friesen, Melissa C.
2016-01-01
Background Mapping job titles to standardized occupation classification (SOC) codes is an important step in identifying occupational risk factors in epidemiologic studies. Because manual coding is time-consuming and has moderate reliability, we developed an algorithm called SOCcer (Standardized Occupation Coding for Computer-assisted Epidemiologic Research) to assign SOC-2010 codes based on free-text job description components. Methods Job title and task-based classifiers were developed by comparing job descriptions to multiple sources linking job and task descriptions to SOC codes. An industry-based classifier was developed based on the SOC prevalence within an industry. These classifiers were used in a logistic model trained using 14,983 jobs with expert-assigned SOC codes to obtain empirical weights for an algorithm that scored each SOC/job description. We assigned the highest scoring SOC code to each job. SOCcer was validated in two occupational data sources by comparing SOC codes obtained from SOCcer to expert assigned SOC codes and lead exposure estimates obtained by linking SOC codes to a job-exposure matrix. Results For 11,991 case-control study jobs, SOCcer-assigned codes agreed with 44.5% and 76.3% of manually assigned codes at the 6- and 2-digit level, respectively. Agreement increased with the score, providing a mechanism to identify assignments needing review. Good agreement was observed between lead estimates based on SOCcer and manual SOC assignments (kappa: 0.6–0.8). Poorer performance was observed for inspection job descriptions, which included abbreviations and worksite-specific terminology. Conclusions Although some manual coding will remain necessary, using SOCcer may improve the efficiency of incorporating occupation into large-scale epidemiologic studies. PMID:27102331
Validation of the WIMSD4M cross-section generation code with benchmark results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deen, J.R.; Woodruff, W.L.; Leal, L.E.
1995-01-01
The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section librariesmore » for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D{sub 2}O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less
Comparison of theoretical and flight-measured local flow aerodynamics for a low-aspect-ratio fin
NASA Technical Reports Server (NTRS)
Johnson, J. B.; Sandlin, D. R.
1984-01-01
Flight test and theoretical aerodynamic data were obtained for a flight test fixture mounted on the underside of an F-104G aircraft. The theoretical data were generated using two codes, a two dimensional transonic code called Code H, and a three dimensional subsonic and supersonic code call wing-body. Pressure distributions generated by the codes for the flight test fixture as well as boundary layer displacement thickness generated by the two dimensional code were compared to the flight test data. The two dimensional code pressure distributions compared well except at the minimum pressure point and trailing edge. Shock locations compared well except at high transonic speeds. The three dimensional code pressure distributions compared well except at the trailing edge of the flight test fixture. The two dimensional code does not predict displacement thickness of the flight test fixture well.
High performance and cost effective CO-OFDM system aided by polar code.
Liu, Ling; Xiao, Shilin; Fang, Jiafei; Zhang, Lu; Zhang, Yunhao; Bi, Meihua; Hu, Weisheng
2017-02-06
A novel polar coded coherent optical orthogonal frequency division multiplexing (CO-OFDM) system is proposed and demonstrated through experiment for the first time. The principle of a polar coded CO-OFDM signal is illustrated theoretically and the suitable polar decoding method is discussed. Results show that the polar coded CO-OFDM signal achieves a net coding gain (NCG) of more than 10 dB at bit error rate (BER) of 10-3 over 25-Gb/s 480-km transmission in comparison with conventional CO-OFDM. Also, compared to the 25-Gb/s low-density parity-check (LDPC) coded CO-OFDM 160-km system, the polar code provides a NCG of 0.88 dB @BER = 10-3. Moreover, the polar code can relieve the laser linewidth requirement massively to get a more cost-effective CO-OFDM system.
Development of code evaluation criteria for assessing predictive capability and performance
NASA Technical Reports Server (NTRS)
Lin, Shyi-Jang; Barson, S. L.; Sindir, M. M.; Prueger, G. H.
1993-01-01
Computational Fluid Dynamics (CFD), because of its unique ability to predict complex three-dimensional flows, is being applied with increasing frequency in the aerospace industry. Currently, no consistent code validation procedure is applied within the industry. Such a procedure is needed to increase confidence in CFD and reduce risk in the use of these codes as a design and analysis tool. This final contract report defines classifications for three levels of code validation, directly relating the use of CFD codes to the engineering design cycle. Evaluation criteria by which codes are measured and classified are recommended and discussed. Criteria for selecting experimental data against which CFD results can be compared are outlined. A four phase CFD code validation procedure is described in detail. Finally, the code validation procedure is demonstrated through application of the REACT CFD code to a series of cases culminating in a code to data comparison on the Space Shuttle Main Engine High Pressure Fuel Turbopump Impeller.
Construction of a new regular LDPC code for optical transmission systems
NASA Astrophysics Data System (ADS)
Yuan, Jian-guo; Tong, Qing-zhen; Xu, Liang; Huang, Sheng
2013-05-01
A novel construction method of the check matrix for the regular low density parity check (LDPC) code is proposed. The novel regular systematically constructed Gallager (SCG)-LDPC(3969,3720) code with the code rate of 93.7% and the redundancy of 6.69% is constructed. The simulation results show that the net coding gain (NCG) and the distance from the Shannon limit of the novel SCG-LDPC(3969,3720) code can respectively be improved by about 1.93 dB and 0.98 dB at the bit error rate (BER) of 10-8, compared with those of the classic RS(255,239) code in ITU-T G.975 recommendation and the LDPC(32640,30592) code in ITU-T G.975.1 recommendation with the same code rate of 93.7% and the same redundancy of 6.69%. Therefore, the proposed novel regular SCG-LDPC(3969,3720) code has excellent performance, and is more suitable for high-speed long-haul optical transmission systems.
NASA Astrophysics Data System (ADS)
Fang, Yi; Huang, Yahong
2017-12-01
Conducting sand liquefaction estimated based on codes is the important content of the geotechnical design. However, the result, sometimes, fails to conform to the practical earthquake damages. Based on the damage of Tangshan earthquake and engineering geological conditions, three typical sites are chosen. Moreover, the sand liquefaction probability was evaluated on the three sites by using the method in the Code for Seismic Design of Buildings and the results were compared with the sand liquefaction phenomenon in the earthquake. The result shows that the difference between sand liquefaction estimated based on codes and the practical earthquake damage is mainly attributed to the following two aspects: The primary reasons include disparity between seismic fortification intensity and practical seismic oscillation, changes of groundwater level, thickness of overlying non-liquefied soil layer, local site effect and personal error. Meanwhile, although the judgment methods in the codes exhibit certain universality, they are another reason causing the above difference due to the limitation of basic data and the qualitative anomaly of the judgment formulas.
Deformations of thick two-material cylinder under axially varying radial pressure
NASA Technical Reports Server (NTRS)
Patel, Y. A.
1976-01-01
Stresses and deformations in thick, short, composite cylinder subjected to axially varying radial pressure are studied. Effect of slippage at the interface is examined. In the NASTRAN finite element model, multipoint constraint feature is utilized. Results are compared with theoretical analysis and SAP-IV computer code. Results from NASTRAN computer code are in good agreement with the analytical solutions. Results suggest a considerable influence of interfacial slippage on the axial bending stresses in the cylinder.
Improved Correction of Misclassification Bias With Bootstrap Imputation.
van Walraven, Carl
2018-07-01
Diagnostic codes used in administrative database research can create bias due to misclassification. Quantitative bias analysis (QBA) can correct for this bias, requires only code sensitivity and specificity, but may return invalid results. Bootstrap imputation (BI) can also address misclassification bias but traditionally requires multivariate models to accurately estimate disease probability. This study compared misclassification bias correction using QBA and BI. Serum creatinine measures were used to determine severe renal failure status in 100,000 hospitalized patients. Prevalence of severe renal failure in 86 patient strata and its association with 43 covariates was determined and compared with results in which renal failure status was determined using diagnostic codes (sensitivity 71.3%, specificity 96.2%). Differences in results (misclassification bias) were then corrected with QBA or BI (using progressively more complex methods to estimate disease probability). In total, 7.4% of patients had severe renal failure. Imputing disease status with diagnostic codes exaggerated prevalence estimates [median relative change (range), 16.6% (0.8%-74.5%)] and its association with covariates [median (range) exponentiated absolute parameter estimate difference, 1.16 (1.01-2.04)]. QBA produced invalid results 9.3% of the time and increased bias in estimates of both disease prevalence and covariate associations. BI decreased misclassification bias with increasingly accurate disease probability estimates. QBA can produce invalid results and increase misclassification bias. BI avoids invalid results and can importantly decrease misclassification bias when accurate disease probability estimates are used.
Analysis of typical WWER-1000 severe accident scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, Yu.S.; Shchekoldin, V.V.; Borisov, L.N.
2004-07-01
At present in EDO 'Gidropress' there is a certain experience of performing the analyses of severe accidents of reactor plant with WWER with application of domestic and foreign codes. Important data were also obtained by the results of calculation modeling of integrated experiments with fuel assembly melting comprising a real fuel. Systematization and consideration of these data in development and assimilation of codes are extremely important in connection with large uncertainty still existing in understanding and adequate description of phenomenology of severe accidents. The presented report gives a comparison of analysis results of severe accidents of reactor plant with WWER-1000more » for two typical scenarios made by using American MELCOR code and the Russian RATEG/SVECHA/HEFEST code. The results of calculation modeling are compared using above codes with the data of experiment FPT1 with fuel assembly melting comprising a real fuel, which has been carried out at the facility Phebus (France). The obtained results are considered in the report from the viewpoint of: - adequacy of results of calculation modeling of separate phenomena during severe accidents of RP with WWER by using the above codes; - influence of uncertainties (degree of details of calculation models, choice of parameters of models etc.); - choice of those or other setup variables (options) in the used codes; - necessity of detailed modeling of processes and phenomena as applied to design justification of safety of RP with WWER. (authors)« less
Dynamic Forces in Spur Gears - Measurement, Prediction, and Code Validation
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Townsend, Dennis P.; Rebbechi, Brian; Lin, Hsiang Hsi
1996-01-01
Measured and computed values for dynamic loads in spur gears were compared to validate a new version of the NASA gear dynamics code DANST-PC. Strain gage data from six gear sets with different tooth profiles were processed to determine the dynamic forces acting between the gear teeth. Results demonstrate that the analysis code successfully simulates the dynamic behavior of the gears. Differences between analysis and experiment were less than 10 percent under most conditions.
Context-aware and locality-constrained coding for image categorization.
Xiao, Wenhua; Wang, Bin; Liu, Yu; Bao, Weidong; Zhang, Maojun
2014-01-01
Improving the coding strategy for BOF (Bag-of-Features) based feature design has drawn increasing attention in recent image categorization works. However, the ambiguity in coding procedure still impedes its further development. In this paper, we introduce a context-aware and locality-constrained Coding (CALC) approach with context information for describing objects in a discriminative way. It is generally achieved by learning a word-to-word cooccurrence prior to imposing context information over locality-constrained coding. Firstly, the local context of each category is evaluated by learning a word-to-word cooccurrence matrix representing the spatial distribution of local features in neighbor region. Then, the learned cooccurrence matrix is used for measuring the context distance between local features and code words. Finally, a coding strategy simultaneously considers locality in feature space and context space, while introducing the weight of feature is proposed. This novel coding strategy not only semantically preserves the information in coding, but also has the ability to alleviate the noise distortion of each class. Extensive experiments on several available datasets (Scene-15, Caltech101, and Caltech256) are conducted to validate the superiority of our algorithm by comparing it with baselines and recent published methods. Experimental results show that our method significantly improves the performance of baselines and achieves comparable and even better performance with the state of the arts.
A multigroup radiation diffusion test problem: Comparison of code results with analytic solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shestakov, A I; Harte, J A; Bolstad, J H
2006-12-21
We consider a 1D, slab-symmetric test problem for the multigroup radiation diffusion and matter energy balance equations. The test simulates diffusion of energy from a hot central region. Opacities vary with the cube of the frequency and radiation emission is given by a Wien spectrum. We compare results from two LLNL codes, Raptor and Lasnex, with tabular data that define the analytic solution.
Akbari, Mahmoud Reza; Yousefnia, Hassan; Mirrezaei, Ehsan
2014-08-01
Water equivalent ratio (WER) was calculated for different proton energies in polymethyl methacrylate (PMMA), polystyrene (PS) and aluminum (Al) using FLUKA and SRIM codes. The results were compared with analytical, experimental and simulated SEICS code data obtained from the literature. The biggest difference between the codes was 3.19%, 1.9% and 0.67% for Al, PMMA and PS, respectively. FLUKA and SEICS had the greatest agreement (≤0.77% difference for PMMA and ≤1.08% difference for Al, respectively) with the experimental data. Copyright © 2014 Elsevier Ltd. All rights reserved.
Streamlined Genome Sequence Compression using Distributed Source Coding
Wang, Shuang; Jiang, Xiaoqian; Chen, Feng; Cui, Lijuan; Cheng, Samuel
2014-01-01
We aim at developing a streamlined genome sequence compression algorithm to support alternative miniaturized sequencing devices, which have limited communication, storage, and computation power. Existing techniques that require heavy client (encoder side) cannot be applied. To tackle this challenge, we carefully examined distributed source coding theory and developed a customized reference-based genome compression protocol to meet the low-complexity need at the client side. Based on the variation between source and reference, our protocol will pick adaptively either syndrome coding or hash coding to compress subsequences of changing code length. Our experimental results showed promising performance of the proposed method when compared with the state-of-the-art algorithm (GRS). PMID:25520552
The effect of a redundant color code on an overlearned identification task
NASA Technical Reports Server (NTRS)
Obrien, Kevin
1992-01-01
The possibility of finding redundancy gains with overlearned tasks was examined using a paradigm varying familiarity with the stimulus set. Redundant coding in a multidimensional stimulus was demonstrated to result in increased identification accuracy and decreased latency of identification when compared to stimuli varying on only one dimension. The advantages attributable to redundant coding are referred to as redundancy gain and were found for a variety of stimulus dimension combinations, including the use of hue or color as one of the dimensions. Factors that have affected redundancy gain include the discriminability of the levels of one stimulus dimension and the level of stimulus-to-response association. The results demonstrated that response time is in part a function of familiarity, but no effect of redundant color coding was demonstrated. Implications of research on coding in identification tasks for display design are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Robert P.; Miller, Paul; Howley, Kirsten
The NNSA Laboratories have entered into an interagency collaboration with the National Aeronautics and Space Administration (NASA) to explore strategies for prevention of Earth impacts by asteroids. Assessment of such strategies relies upon use of sophisticated multi-physics simulation codes. This document describes the task of verifying and cross-validating, between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), modeling capabilities and methods to be employed as part of the NNSA-NASA collaboration. The approach has been to develop a set of test problems and then to compare and contrast results obtained by use of a suite of codes, includingmore » MCNP, RAGE, Mercury, Ares, and Spheral. This document provides a short description of the codes, an overview of the idealized test problems, and discussion of the results for deflection by kinetic impactors and stand-off nuclear explosions.« less
The application of coded excitation technology in medical ultrasonic Doppler imaging
NASA Astrophysics Data System (ADS)
Li, Weifeng; Chen, Xiaodong; Bao, Jing; Yu, Daoyin
2008-03-01
Medical ultrasonic Doppler imaging is one of the most important domains of modern medical imaging technology. The application of coded excitation technology in medical ultrasonic Doppler imaging system has the potential of higher SNR and deeper penetration depth than conventional pulse-echo imaging system, it also improves the image quality, and enhances the sensitivity of feeble signal, furthermore, proper coded excitation is beneficial to received spectrum of Doppler signal. Firstly, this paper analyzes the application of coded excitation technology in medical ultrasonic Doppler imaging system abstractly, showing the advantage and bright future of coded excitation technology, then introduces the principle and the theory of coded excitation. Secondly, we compare some coded serials (including Chirp and fake Chirp signal, Barker codes, Golay's complementary serial, M-sequence, etc). Considering Mainlobe Width, Range Sidelobe Level, Signal-to-Noise Ratio and sensitivity of Doppler signal, we choose Barker codes as coded serial. At last, we design the coded excitation circuit. The result in B-mode imaging and Doppler flow measurement coincided with our expectation, which incarnated the advantage of application of coded excitation technology in Digital Medical Ultrasonic Doppler Endoscope Imaging System.
Burnup calculations and chemical analysis of irradiated fuel samples studied in LWR-PROTEUS phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimm, P.; Guenther-Leopold, I.; Berger, H. D.
2006-07-01
The isotopic compositions of 5 UO{sub 2} samples irradiated in a Swiss PWR power plant, which were investigated in the LWR-PROTEUS Phase II programme, were calculated using the CASMO-4 and BOXER assembly codes. The burnups of the samples range from 50 to 90 MWd/kg. The results for a large number of actinide and fission product nuclides were compared to those of chemical analyses performed using a combination of chromatographic separation and mass spectrometry. A good agreement of calculated and measured concentrations is found for many of the nuclides investigated with both codes. The concentrations of the Pu isotopes are mostlymore » predicted within {+-}10%, the two codes giving quite different results, except for {sup 242}Pu. Relatively significant deviations are found for some isotopes of Cs and Sm, and large discrepancies are observed for Eu and Gd. The overall quality of the predictions by the two codes is comparable, and the deviations from the experimental data do not generally increase with burnup. (authors)« less
Kim, Dong-Sun; Kwon, Jin-San
2014-01-01
Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor. PMID:25237900
MEASUREMENTS OF NEUTRON SPECTRA IN 0.8-GEV AND 1.6-GEV PROTON-IRRADIATED<2 OF 2>NA THICK TARGETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titarenko, Y. E.; Batyaev, V. F.; Zhivun, V. M.
2001-01-01
Measurements of neutron spectra in W, and Na targets irradiated by 0.8 GeV and 1.6 GeV protons are presented. Measurements were made by the TOF techniques using the proton beam from ITEP U-10 synchrotron. Neutrons were detected with BICRON-511 liquid scintillator-based detectors. The neutron detection efficiency was calculated via the SCINFUL and CECIL codes. The W results are compared with the similar data obtained elsewhere. The measured neutron spectra are compared with the LAHET and CEM2k code simulations results. Attempt is made to explain some observed disagreements between experiments and simulations. The presented results are of interest both in termsmore » of nuclear data buildup and as a benchmark of the up-to-date predictive power of the simulation codes used in designing the hybrid accelerator-driven system (ADS) facilities with sodium-cooled tungsten targets.« less
A Computational Study of an Oscillating VR-12 Airfoil with a Gurney Flap
NASA Technical Reports Server (NTRS)
Rhee, Myung
2004-01-01
Computations of the flow over an oscillating airfoil with a Gurney-flap are performed using a Reynolds Averaged Navier-Stokes code and compared with recent experimental data. The experimental results have been generated for different sizes of the Gurney flaps. The computations are focused mainly on a configuration. The baseline airfoil without a Gurney flap is computed and compared with the experiments in both steady and unsteady cases for the purpose of initial testing of the code performance. The are carried out with different turbulence models. Effects of the grid refinement are also examined and unsteady cases, in addition to the assessment of solver effects. The results of the comparisons of steady lift and drag computations indicate that the code is reasonably accurate in the attached flow of the steady condition but largely overpredicts the lift and underpredicts the drag in the higher angle steady flow.
Role of N-Methyl-D-Aspartate Receptors in Action-Based Predictive Coding Deficits in Schizophrenia.
Kort, Naomi S; Ford, Judith M; Roach, Brian J; Gunduz-Bruce, Handan; Krystal, John H; Jaeger, Judith; Reinhart, Robert M G; Mathalon, Daniel H
2017-03-15
Recent theoretical models of schizophrenia posit that dysfunction of the neural mechanisms subserving predictive coding contributes to symptoms and cognitive deficits, and this dysfunction is further posited to result from N-methyl-D-aspartate glutamate receptor (NMDAR) hypofunction. Previously, by examining auditory cortical responses to self-generated speech sounds, we demonstrated that predictive coding during vocalization is disrupted in schizophrenia. To test the hypothesized contribution of NMDAR hypofunction to this disruption, we examined the effects of the NMDAR antagonist, ketamine, on predictive coding during vocalization in healthy volunteers and compared them with the effects of schizophrenia. In two separate studies, the N1 component of the event-related potential elicited by speech sounds during vocalization (talk) and passive playback (listen) were compared to assess the degree of N1 suppression during vocalization, a putative measure of auditory predictive coding. In the crossover study, 31 healthy volunteers completed two randomly ordered test days, a saline day and a ketamine day. Event-related potentials during the talk/listen task were obtained before infusion and during infusion on both days, and N1 amplitudes were compared across days. In the case-control study, N1 amplitudes from 34 schizophrenia patients and 33 healthy control volunteers were compared. N1 suppression to self-produced vocalizations was significantly and similarly diminished by ketamine (Cohen's d = 1.14) and schizophrenia (Cohen's d = .85). Disruption of NMDARs causes dysfunction in predictive coding during vocalization in a manner similar to the dysfunction observed in schizophrenia patients, consistent with the theorized contribution of NMDAR hypofunction to predictive coding deficits in schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK
2014-01-01
Background Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system’s set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This “code-based” approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. Results As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. Conclusions The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming skills, and the graphical interface lends itself to easy modification and use by non-experts. PMID:24725437
Radiation shielding quality assurance
NASA Astrophysics Data System (ADS)
Um, Dallsun
For the radiation shielding quality assurance, the validity and reliability of the neutron transport code MCNP, which is now one of the most widely used radiation shielding analysis codes, were checked with lot of benchmark experiments. And also as a practical example, follows were performed in this thesis. One integral neutron transport experiment to measure the effect of neutron streaming in iron and void was performed with Dog-Legged Void Assembly in Knolls Atomic Power Laboratory in 1991. Neutron flux was measured six different places with the methane detectors and a BF-3 detector. The main purpose of the measurements was to provide benchmark against which various neutron transport calculation tools could be compared. Those data were used in verification of Monte Carlo Neutron & Photon Transport Code, MCNP, with the modeling for that. Experimental results and calculation results were compared in both ways, as the total integrated value of neutron fluxes along neutron energy range from 10 KeV to 2 MeV and as the neutron spectrum along with neutron energy range. Both results are well matched with the statistical error +/-20%. MCNP results were also compared with those of TORT, a three dimensional discrete ordinates code which was developed by Oak Ridge National Laboratory. MCNP results are superior to the TORT results at all detector places except one. This means that MCNP is proved as a very powerful tool for the analysis of neutron transport through iron & air and further it could be used as a powerful tool for the radiation shielding analysis. For one application of the analysis of variance (ANOVA) to neutron and gamma transport problems, uncertainties for the calculated values of critical K were evaluated as in the ANOVA on statistical data.
Comparison of two LES codes for wind turbine wake studies
NASA Astrophysics Data System (ADS)
Sarlak, H.; Pierella, F.; Mikkelsen, R.; Sørensen, J. N.
2014-06-01
For the third time a blind test comparison in Norway 2013, was conducted comparing numerical simulations for the rotor Cp and Ct and wake profiles with the experimental results. As the only large eddy simulation study among participants, results of the Technical University of Denmark (DTU) using their in-house CFD solver, EllipSys3D, proved to be more reliable among the other models for capturing the wake profiles and the turbulence intensities downstream the turbine. It was therefore remarked in the workshop to investigate other LES codes to compare their performance with EllipSys3D. The aim of this paper is to investigate on two CFD solvers, the DTU's in-house code, EllipSys3D and the open-sourse toolbox, OpenFoam, for a set of actuator line based LES computations. Two types of simulations are performed: the wake behind a signle rotor and the wake behind a cluster of three inline rotors. Results are compared in terms of velocity deficit, turbulence kinetic energy and eddy viscosity. It is seen that both codes predict similar near-wake flow structures with the exception of OpenFoam's simulations without the subgrid-scale model. The differences begin to increase with increasing the distance from the upstream rotor. From the single rotor simulations, EllipSys3D is found to predict a slower wake recovery in the case of uniform laminar flow. From the 3-rotor computations, it is seen that the difference between the codes is smaller as the disturbance created by the downstream rotors causes break down of the wake structures and more homogenuous flow structures. It is finally observed that OpenFoam computations are more sensitive to the SGS models.
The Continual Intercomparison of Radiation Codes: Results from Phase I
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Mlawer, Eli; Delamere, Jennifer; Shippert, Timothy; Cole, Jason; Iacono, Michael; Jin, Zhonghai; Li, Jiangnan; Manners, James; Raisanen, Petri;
2011-01-01
The computer codes that calculate the energy budget of solar and thermal radiation in Global Climate Models (GCMs), our most advanced tools for predicting climate change, have to be computationally efficient in order to not impose undue computational burden to climate simulations. By using approximations to gain execution speed, these codes sacrifice accuracy compared to more accurate, but also much slower, alternatives. International efforts to evaluate the approximate schemes have taken place in the past, but they have suffered from the drawback that the accurate standards were not validated themselves for performance. The manuscript summarizes the main results of the first phase of an effort called "Continual Intercomparison of Radiation Codes" (CIRC) where the cases chosen to evaluate the approximate models are based on observations and where we have ensured that the accurate models perform well when compared to solar and thermal radiation measurements. The effort is endorsed by international organizations such as the GEWEX Radiation Panel and the International Radiation Commission and has a dedicated website (i.e., http://circ.gsfc.nasa.gov) where interested scientists can freely download data and obtain more information about the effort's modus operandi and objectives. In a paper published in the March 2010 issue of the Bulletin of the American Meteorological Society only a brief overview of CIRC was provided with some sample results. In this paper the analysis of submissions of 11 solar and 13 thermal infrared codes relative to accurate reference calculations obtained by so-called "line-by-line" radiation codes is much more detailed. We demonstrate that, while performance of the approximate codes continues to improve, significant issues still remain to be addressed for satisfactory performance within GCMs. We hope that by identifying and quantifying shortcomings, the paper will help establish performance standards to objectively assess radiation code quality, and will guide the development of future phases of CIRC
Automated encoding of clinical documents based on natural language processing.
Friedman, Carol; Shagina, Lyudmila; Lussier, Yves; Hripcsak, George
2004-01-01
The aim of this study was to develop a method based on natural language processing (NLP) that automatically maps an entire clinical document to codes with modifiers and to quantitatively evaluate the method. An existing NLP system, MedLEE, was adapted to automatically generate codes. The method involves matching of structured output generated by MedLEE consisting of findings and modifiers to obtain the most specific code. Recall and precision applied to Unified Medical Language System (UMLS) coding were evaluated in two separate studies. Recall was measured using a test set of 150 randomly selected sentences, which were processed using MedLEE. Results were compared with a reference standard determined manually by seven experts. Precision was measured using a second test set of 150 randomly selected sentences from which UMLS codes were automatically generated by the method and then validated by experts. Recall of the system for UMLS coding of all terms was .77 (95% CI.72-.81), and for coding terms that had corresponding UMLS codes recall was .83 (.79-.87). Recall of the system for extracting all terms was .84 (.81-.88). Recall of the experts ranged from .69 to .91 for extracting terms. The precision of the system was .89 (.87-.91), and precision of the experts ranged from .61 to .91. Extraction of relevant clinical information and UMLS coding were accomplished using a method based on NLP. The method appeared to be comparable to or better than six experts. The advantage of the method is that it maps text to codes along with other related information, rendering the coded output suitable for effective retrieval.
Zou, Ding; Djordjevic, Ivan B
2016-09-05
In this paper, we propose a rate-adaptive FEC scheme based on LDPC codes together with its software reconfigurable unified FPGA architecture. By FPGA emulation, we demonstrate that the proposed class of rate-adaptive LDPC codes based on shortening with an overhead from 25% to 42.9% provides a coding gain ranging from 13.08 dB to 14.28 dB at a post-FEC BER of 10-15 for BPSK transmission. In addition, the proposed rate-adaptive LDPC coding combined with higher-order modulations have been demonstrated including QPSK, 8-QAM, 16-QAM, 32-QAM, and 64-QAM, which covers a wide range of signal-to-noise ratios. Furthermore, we apply the unequal error protection by employing different LDPC codes on different bits in 16-QAM and 64-QAM, which results in additional 0.5dB gain compared to conventional LDPC coded modulation with the same code rate of corresponding LDPC code.
TRAC-PD2 posttest analysis of the CCTF Evaluation-Model Test C1-19 (Run 38). [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motley, F.
The results of a Transient Reactor Analysis Code posttest analysis of the Cylindral Core Test Facility Evaluation-Model Test agree very well with the results of the experiment. The good agreement obtained verifies the multidimensional analysis capability of the TRAC code. Because of the steep radial power profile, the importance of using fine noding in the core region was demonstrated (as compared with poorer results obtained from an earlier pretest prediction that used a coarsely noded model).
Verification of the proteus two-dimensional Navier-Stokes code for flat plate and pipe flows
NASA Technical Reports Server (NTRS)
Conley, Julianne M.; Zeman, Patrick L.
1991-01-01
The Proteus Navier-Stokes Code is evaluated for 2-D/axisymmetric, viscous, incompressible, internal, and external flows. The particular cases to be discussed are laminar and turbulent flows over a flat plate, laminar and turbulent developing pipe flows, and turbulent pipe flow with swirl. Results are compared with exact solutions, empirical correlations, and experimental data. A detailed description of the code set-up, including boundary conditions, initial conditions, grid size, and grid packing is given for each case.
Comparison of computer codes for calculating dynamic loads in wind turbines
NASA Technical Reports Server (NTRS)
Spera, D. A.
1977-01-01
Seven computer codes for analyzing performance and loads in large, horizontal axis wind turbines were used to calculate blade bending moment loads for two operational conditions of the 100 kW Mod-0 wind turbine. Results were compared with test data on the basis of cyclic loads, peak loads, and harmonic contents. Four of the seven codes include rotor-tower interaction and three were limited to rotor analysis. With a few exceptions, all calculated loads were within 25 percent of nominal test data.
A TDM link with channel coding and digital voice.
NASA Technical Reports Server (NTRS)
Jones, M. W.; Tu, K.; Harton, P. L.
1972-01-01
The features of a TDM (time-division multiplexed) link model are described. A PCM telemetry sequence was coded for error correction and multiplexed with a digitized voice channel. An all-digital implementation of a variable-slope delta modulation algorithm was used to digitize the voice channel. The results of extensive testing are reported. The measured coding gain and the system performance over a Gaussian channel are compared with theoretical predictions and computer simulations. Word intelligibility scores are reported as a measure of voice channel performance.
NASA Astrophysics Data System (ADS)
Duan, Aiying; Jiang, Chaowei; Hu, Qiang; Zhang, Huai; Gary, G. Allen; Wu, S. T.; Cao, Jinbin
2017-06-01
Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ˜10°. This suggests that the CESE-MHD-NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (˜30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Aiying; Zhang, Huai; Jiang, Chaowei
Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE–MHD–NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from themore » region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO /AIA. It is found that the CESE–MHD–NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ∼10°. This suggests that the CESE–MHD–NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (∼30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.« less
Peng, Mingkai; Chen, Guanmin; Kaplan, Gilaad G.; Lix, Lisa M.; Drummond, Neil; Lucyk, Kelsey; Garies, Stephanie; Lowerison, Mark; Weibe, Samuel; Quan, Hude
2016-01-01
Background Electronic medical records (EMR) can be a cost-effective source for hypertension surveillance. However, diagnosis of hypertension in EMR is commonly under-coded and warrants the needs to review blood pressure and antihypertensive drugs for hypertension case identification. Methods We included all the patients actively registered in The Health Improvement Network (THIN) database, UK, on 31 December 2011. Three case definitions using diagnosis code, antihypertensive drug prescriptions and abnormal blood pressure, respectively, were used to identify hypertension patients. We compared the prevalence and treatment rate of hypertension in THIN with results from Health Survey for England (HSE) in 2011. Results Compared with prevalence reported by HSE (29.7%), the use of diagnosis code alone (14.0%) underestimated hypertension prevalence. The use of any of the definitions (38.4%) or combination of antihypertensive drug prescriptions and abnormal blood pressure (38.4%) had higher prevalence than HSE. The use of diagnosis code or two abnormal blood pressure records with a 2-year period (31.1%) had similar prevalence and treatment rate of hypertension with HSE. Conclusions Different definitions should be used for different study purposes. The definition of ‘diagnosis code or two abnormal blood pressure records with a 2-year period’ could be used for hypertension surveillance in THIN. PMID:26547088
Comparison of OpenFOAM and EllipSys3D actuator line methods with (NEW) MEXICO results
NASA Astrophysics Data System (ADS)
Nathan, J.; Meyer Forsting, A. R.; Troldborg, N.; Masson, C.
2017-05-01
The Actuator Line Method exists for more than a decade and has become a well established choice for simulating wind rotors in computational fluid dynamics. Numerous implementations exist and are used in the wind energy research community. These codes were verified by experimental data such as the MEXICO experiment. Often the verification against other codes were made on a very broad scale. Therefore this study attempts first a validation by comparing two different implementations, namely an adapted version of SOWFA/OpenFOAM and EllipSys3D and also a verification by comparing against experimental results from the MEXICO and NEW MEXICO experiments.
Neben, Nicole; Lenarz, Thomas; Schuessler, Mark; Harpel, Theo; Buechner, Andreas
2013-05-01
Results for speech recognition in noise tests when using a new research coding strategy designed to introduce the virtual channel effect provided no advantage over MP3(000™). Although statistically significant smaller just noticeable differences (JNDs) were obtained, the findings for pitch ranking proved to have little clinical impact. The aim of this study was to explore whether modifications to MP3000 by including sequential virtual channel stimulation would lead to further improvements in hearing, particularly for speech recognition in background noise and in competing-talker conditions, and to compare results for pitch perception and melody recognition, as well as informally collect subjective impressions on strategy preference. Nine experienced cochlear implant subjects were recruited for the prospective study. Two variants of the experimental strategy were compared to MP3000. The study design was a single-blinded ABCCBA cross-over trial paradigm with 3 weeks of take-home experience for each user condition. Comparing results of pitch-ranking, a significantly reduced JND was identified. No significant effect of coding strategy on speech understanding in noise or competing-talker materials was found. Melody recognition skills were the same under all user conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dearing, J F; Rose, S D; Nelson, W R
The predicted computational results of two well-known sub-channel analysis codes, COBRA-III-C and SABRE-I (wire wrap version), have been evaluated by comparison with steady state temperature data from the THORS Facility at ORNL. Both codes give good predictions of transverse and axial temperatures when compared with wire wrap thermocouple data. The crossflow velocity profiles predicted by these codes are similar which is encouraging since the wire wrap models are based on different assumptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leeb, Helmut; Dimitriou, Paraskevi; Thompson, Ian
A Consultants Meeting was held at the IAEA Headquarters, from 28 to 30 June 2017, to discuss the results of a test exercise that had been defined and assigned to all participants of the previous meeting held in December 2016. Five codes were used in this exercise: AMUR, AZURE2, RAC, SFRESCO and SAMMY. The results obtained from these codes were compared and further actions were proposed. Participants’ presentations and technical discussions, as well as proposed additional actions have been summarized in this report.
NASA Astrophysics Data System (ADS)
Shprits, Y.; Chen, Y.; Friedel, R.; Kondrashov, D.; Ni, B.; Subbotin, D.; Reeves, G.; Ghil, M.
2009-04-01
We present first results of the UCLA-LANL Reanalysis Project. Radiation belt relativistic electron Phase Space Density is obtained using the data assimilative VERB code combined with observations from GEO, CRRES, and Akebono data. Reanalysis of data shows the pronounced peaks in the phase space density and pronounced dropouts of fluxes during the main phase of a storm. The results of the reanalysis are discussed and compared to the simulations with the recently developed VERB 3D code.
Optimal Codes for the Burst Erasure Channel
NASA Technical Reports Server (NTRS)
Hamkins, Jon
2010-01-01
Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure protection. As can be seen, the simple interleaved RS codes have substantially lower inefficiency over a wide range of transmission lengths.
Bayesian decision support for coding occupational injury data.
Nanda, Gaurav; Grattan, Kathleen M; Chu, MyDzung T; Davis, Letitia K; Lehto, Mark R
2016-06-01
Studies on autocoding injury data have found that machine learning algorithms perform well for categories that occur frequently but often struggle with rare categories. Therefore, manual coding, although resource-intensive, cannot be eliminated. We propose a Bayesian decision support system to autocode a large portion of the data, filter cases for manual review, and assist human coders by presenting them top k prediction choices and a confusion matrix of predictions from Bayesian models. We studied the prediction performance of Single-Word (SW) and Two-Word-Sequence (TW) Naïve Bayes models on a sample of data from the 2011 Survey of Occupational Injury and Illness (SOII). We used the agreement in prediction results of SW and TW models, and various prediction strength thresholds for autocoding and filtering cases for manual review. We also studied the sensitivity of the top k predictions of the SW model, TW model, and SW-TW combination, and then compared the accuracy of the manually assigned codes to SOII data with that of the proposed system. The accuracy of the proposed system, assuming well-trained coders reviewing a subset of only 26% of cases flagged for review, was estimated to be comparable (86.5%) to the accuracy of the original coding of the data set (range: 73%-86.8%). Overall, the TW model had higher sensitivity than the SW model, and the accuracy of the prediction results increased when the two models agreed, and for higher prediction strength thresholds. The sensitivity of the top five predictions was 93%. The proposed system seems promising for coding injury data as it offers comparable accuracy and less manual coding. Accurate and timely coded occupational injury data is useful for surveillance as well as prevention activities that aim to make workplaces safer. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.
The use of a panel code on high lift configurations of a swept forward wing
NASA Technical Reports Server (NTRS)
Scheib, J. S.; Sandlin, D. R.
1985-01-01
A study was done on high lift configurations of a generic swept forward wing using a panel code prediction method. A survey was done of existing codes available at Ames, frow which the program VSAERO was chosen. The results of VSAERO were compared with data obtained from the Ames 7- by 10-foot wind tunnel. The results of the comparison in lift were good (within 3.5%). The comparison of the pressure coefficients was also good. The pitching moment coefficients obtained by VSAERO were not in good agreement with experiment. VSAERO's ability to predict drag is questionable and cannot be counted on for accurate trends. Further studies were done on the effects of a leading edge glove, canards, leading edge sweeps and various wing twists on spanwise loading and trim lift with encouraging results. An unsuccessful attempt was made to model spanwise blowing and boundary layer control on the trailing edge flap. The potential results of VSAERO were compared with experimental data of flap deflections with boundary layer control to check the first order effects.
M3D-K Simulations of Beam-Driven Alfven Eigenmodes in ASDEX-U
NASA Astrophysics Data System (ADS)
Wang, Ge; Fu, Guoyong; Lauber, Philipp; Schneller, Mirjam
2013-10-01
Core-localized Alfven eigenmodes are often observed in neutral beam-heated plasma in ASDEX-U tokamak. In this work, hybrid simulations with the global kinetic/MHD hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven Alfven eigenmodes using experimental parameters and profiles of an ASDEX-U discharge. The safety factor q profile is weakly reversed with minimum q value about qmin = 3.0. The simulation results show that the n = 3 mode transits from a reversed shear Alfven eigenmode (RSAE) to a core-localized toroidal Alfven eigenmode (TAE) as qmin drops from 3.0 to 2.79, consistent with results from the stability code NOVA as well as the experimental measurement. The M3D-K results are being compared with those of the linear gyrokinetic stability code LIGKA for benchmark. The simulation results will also be compared with the measured mode frequency and mode structure. This work was funded by the Max-Planck/Princeton Center for Plasma Physics.
Comparative Modelling of the Spectra of Cool Giants
NASA Technical Reports Server (NTRS)
Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.;
2012-01-01
Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.
A family of chaotic pure analog coding schemes based on baker's map function
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Jing; Lu, Xuanxuan; Yuen, Chau; Wu, Jun
2015-12-01
This paper considers a family of pure analog coding schemes constructed from dynamic systems which are governed by chaotic functions—baker's map function and its variants. Various decoding methods, including maximum likelihood (ML), minimum mean square error (MMSE), and mixed ML-MMSE decoding algorithms, have been developed for these novel encoding schemes. The proposed mirrored baker's and single-input baker's analog codes perform a balanced protection against the fold error (large distortion) and weak distortion and outperform the classical chaotic analog coding and analog joint source-channel coding schemes in literature. Compared to the conventional digital communication system, where quantization and digital error correction codes are used, the proposed analog coding system has graceful performance evolution, low decoding latency, and no quantization noise. Numerical results show that under the same bandwidth expansion, the proposed analog system outperforms the digital ones over a wide signal-to-noise (SNR) range.
Comparing thin slices of verbal communication behavior of varying number and duration.
Carcone, April Idalski; Naar, Sylvie; Eggly, Susan; Foster, Tanina; Albrecht, Terrance L; Brogan, Kathryn E
2015-02-01
The aim of this study was to assess the accuracy of thin slices to characterize the verbal communication behavior of counselors and patients engaged in Motivational Interviewing sessions relative to fully coded sessions. Four thin slice samples that varied in number (four versus six slices) and duration (one- versus two-minutes) were extracted from a previously coded dataset. In the parent study, an observational code scheme was used to characterize specific counselor and patient verbal communication behaviors. For the current study, we compared the frequency of communication codes and the correlations among the full dataset and each thin slice sample. Both the proportion of communication codes and strength of the correlation demonstrated the highest degree of accuracy when a greater number (i.e., six versus four) and duration (i.e., two- versus one-minute) of slices were extracted. These results suggest that thin slice sampling may be a useful and accurate strategy to reduce coding burden when coding specific verbal communication behaviors within clinical encounters. We suggest researchers interested in using thin slice sampling in their own work conduct preliminary research to determine the number and duration of thin slices required to accurately characterize the behaviors of interest. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Circumstances of Trauma and Accidents in Children: A Thesaurus-based Survey
Séjourné, Claire; Philbois, Olivier; Vercherin, Paul; Patural, Hugues
2016-11-25
Introduction : Injuries and accidents are major causes of morbidity and mortality in children in France. Identification and description of the mechanisms of accidents are essential to develop adapted prevention methods. For this purpose, a specific thesaurus of ICD-10 codes relating to the circumstances of trauma and accidents in children was created in the French Loire department. The objective of this study was to evaluate the relevance and acceptability of the thesaurus in the pediatric emergency unit of Saint-Etienne university hospital.Material and Methods : This study was conducted in two phases. The first, longitudinal phase was conducted over three periods between May and October 2014 to compare codings by emergency room physicians before using the thesaurus with those defined on the basis of the thesaurus. The second phase retrospectively compared coding in July and August 2014 before introduction of the thesaurus with thesaurus-based coding in July and August 2015.Results : The first phase showed a loss of more than half of the information without the thesaurus. The circumstances of trauma can be described by an appropriate code in more than 90% of cases. The second phase showed a 13% increase in coding of the circumstances of trauma, which nevertheless remains insufficient.Discussion : The thesaurus facilitates coding and generally meets the coding physician’s expectations and should be used in large-scale epidemiological surveys.
Inversion of Zeeman polarization for solar magnetic field diagnostics
NASA Astrophysics Data System (ADS)
Derouich, M.
2017-05-01
The topic of magnetic field diagnostics with the Zeeman effect is currently vividly discussed. There are some testable inversion codes available to the spectropolarimetry community and their application allowed for a better understanding of the magnetism of the solar atmosphere. In this context, we propose an inversion technique associated with a new numerical code. The inversion procedure is promising and particularly successful for interpreting the Stokes profiles in quick and sufficiently precise way. In our inversion, we fit a part of each Stokes profile around a target wavelength, and then determine the magnetic field as a function of the wavelength which is equivalent to get the magnetic field as a function of the height of line formation. To test the performance of the new numerical code, we employed "hare and hound" approach by comparing an exact solution (called input) with the solution obtained by the code (called output). The precision of the code is also checked by comparing our results to the ones obtained with the HAO MERLIN code. The inversion code has been applied to synthetic Stokes profiles of the Na D1 line available in the literature. We investigated the limitations in recovering the input field in case of noisy data. As an application, we applied our inversion code to the polarization profiles of the Fe Iλ 6302.5 Å observed at IRSOL in Locarno.
A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects
NASA Astrophysics Data System (ADS)
Schäfer, C.; Riecker, S.; Maindl, T. I.; Speith, R.; Scherrer, S.; Kley, W.
2016-05-01
Context. Modern graphics processing units (GPUs) lead to a major increase in the performance of the computation of astrophysical simulations. Owing to the different nature of GPU architecture compared to traditional central processing units (CPUs) such as x86 architecture, existing numerical codes cannot be easily migrated to run on GPU. Here, we present a new implementation of the numerical method smooth particle hydrodynamics (SPH) using CUDA and the first astrophysical application of the new code: the collision between Ceres-sized objects. Aims: The new code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. Methods: We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations and is treated by the use of a Barnes-Hut tree. Results: We find an impressive performance gain using NVIDIA consumer devices compared to our existing OpenMP code. The new code is freely available to the community upon request. If you are interested in our CUDA SPH code miluphCUDA, please write an email to Christoph Schäfer. miluphCUDA is the CUDA port of miluph. miluph is pronounced [maßl2v]. We do not support the use of the code for military purposes.
An Evaluation of Comparability between NEISS and ICD-9-CM Injury Coding
Thompson, Meghan C.; Wheeler, Krista K.; Shi, Junxin; Smith, Gary A.; Xiang, Huiyun
2014-01-01
Objective To evaluate the National Electronic Injury Surveillance System’s (NEISS) comparability with a data source that uses ICD-9-CM coding. Methods A sample of NEISS cases from a children’s hospital in 2008 was selected, and cases were linked with their original medical record. Medical records were reviewed and an ICD-9-CM code was assigned to each case. Cases in the NEISS sample that were non-injuries by ICD-9-CM standards were identified. A bridging matrix between the NEISS and ICD-9-CM injury coding systems, by type of injury classification, was proposed and evaluated. Results Of the 2,890 cases reviewed, 13.32% (n = 385) were non-injuries according to the ICD-9-CM diagnosis. Using the proposed matrix, the comparability of the NEISS with ICD-9-CM coding was favorable among injury cases (κ = 0.87, 95% CI: 0.85–0.88). The distribution of injury types among the entire sample was similar for the two systems, with percentage differences ≥1% for only open wounds or amputation, poisoning, and other or unspecified injury types. Conclusions There is potential for conducting comparable injury research using NEISS and ICD-9-CM data. Due to the inclusion of some non-injuries in the NEISS and some differences in type of injury definitions between NEISS and ICD-9-CM coding, best practice for studies using NEISS data obtained from the CPSC should include manual review of case narratives. Use of the standardized injury and injury type definitions presented in this study will facilitate more accurate comparisons in injury research. PMID:24658100
Palmer, Cameron S; Niggemeyer, Louise E; Charman, Debra
2010-09-01
The 2005 version of the Abbreviated Injury Scale (AIS05) potentially represents a significant change in injury spectrum classification, due to a substantial increase in the codeset size and alterations to the agreed severity of many injuries compared to the previous version (AIS98). Whilst many trauma registries around the world are moving to adopt AIS05 or its 2008 update (AIS08), its effect on patient classification in existing registries, and the optimum method of comparing existing data collections with new AIS05 collections are unknown. The present study aimed to assess the potential impact of adopting the AIS05 codeset in an established trauma system, and to identify issues associated with this change. A current subset of consecutive major trauma patients admitted to two large hospitals in the Australian state of Victoria were double-coded in AIS98 and AIS05. Assigned codesets were also mapped to the other AIS version using code lists supplied in the AIS05 manual, giving up to four AIS codes per injury sustained. Resulting codesets were assessed for agreement in codes used, injury severity and calculated severity scores. 602 injuries sustained by 109 patients were compared. Adopting AIS05 would lead to a decrease in the number of designated major trauma patients in Victoria, estimated at 22% (95% confidence interval, 15-31%). Differences in AIS level between versions were significantly more likely to occur amongst head and chest injuries. Data mapped to a different codeset performed better in paired comparisons than raw AIS98 and AIS05 codesets, with data mapping of AIS05 codes back to AIS98 giving significantly higher levels of agreement in AIS level, ISS and NISS than other potential comparisons, and resulting in significantly fewer conversion problems than attempting to map AIS98 codes to AIS05. This study provides new insights into AIS codeset change impact. Adoption of AIS05 or AIS08 in established registries will decrease major trauma patient numbers. Code mapping between AIS versions can improve comparisons between datasets in different AIS versions, although the injury profile of a trauma population will affect the degree of comparability. At present, mapping AIS05 data back to AIS98 is recommended. 2009 Elsevier Ltd. All rights reserved.
Information quality measurement of medical encoding support based on usability.
Puentes, John; Montagner, Julien; Lecornu, Laurent; Cauvin, Jean-Michel
2013-12-01
Medical encoding support systems for diagnoses and medical procedures are an emerging technology that begins to play a key role in billing, reimbursement, and health policies decisions. A significant problem to exploit these systems is how to measure the appropriateness of any automatically generated list of codes, in terms of fitness for use, i.e. their quality. Until now, only information retrieval performance measurements have been applied to estimate the accuracy of codes lists as quality indicator. Such measurements do not give the value of codes lists for practical medical encoding, and cannot be used to globally compare the quality of multiple codes lists. This paper defines and validates a new encoding information quality measure that addresses the problem of measuring medical codes lists quality. It is based on a usability study of how expert coders and physicians apply computer-assisted medical encoding. The proposed measure, named ADN, evaluates codes Accuracy, Dispersion and Noise, and is adapted to the variable length and content of generated codes lists, coping with limitations of previous measures. According to the ADN measure, the information quality of a codes list is fully represented by a single point, within a suitably constrained feature space. Using one scheme, our approach is reliable to measure and compare the information quality of hundreds of codes lists, showing their practical value for medical encoding. Its pertinence is demonstrated by simulation and application to real data corresponding to 502 inpatient stays in four clinic departments. Results are compared to the consensus of three expert coders who also coded this anonymized database of discharge summaries, and to five information retrieval measures. Information quality assessment applying the ADN measure showed the degree of encoding-support system variability from one clinic department to another, providing a global evaluation of quality measurement trends. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Dickinson, Dwight; Ramsey, Mary E; Gold, James M
2007-05-01
In focusing on potentially localizable cognitive impairments, the schizophrenia meta-analytic literature has overlooked the largest single impairment: on digit symbol coding tasks. To compare the magnitude of the schizophrenia impairment on coding tasks with impairments on other traditional neuropsychological instruments. MEDLINE and PsycINFO electronic databases and reference lists from identified articles. English-language studies from 1990 to present, comparing performance of patients with schizophrenia and healthy controls on coding tasks and cognitive measures representing at least 2 other cognitive domains. Of 182 studies identified, 40 met all criteria for inclusion in the meta-analysis. Means, standard deviations, and sample sizes were extracted for digit symbol coding and 36 other cognitive variables. In addition, we recorded potential clinical moderator variables, including chronicity/severity, medication status, age, and education, and potential study design moderators, including coding task variant, matching, and study publication date. Main analyses synthesized data from 37 studies comprising 1961 patients with schizophrenia and 1444 comparison subjects. Combination of mean effect sizes across studies by means of a random effects model yielded a weighted mean effect for digit symbol coding of g = -1.57 (95% confidence interval, -1.66 to -1.48). This effect compared with a grand mean effect of g = -0.98 and was significantly larger than effects for widely used measures of episodic memory, executive functioning, and working memory. Moderator variable analyses indicated that clinical and study design differences between studies had little effect on the coding task effect. Comparison with previous meta-analyses suggested that current results were representative of the broader literature. Subsidiary analysis of data from relatives of patients with schizophrenia also suggested prominent coding task impairments in this group. The 5-minute digit symbol coding task, reliable and easy to administer, taps an information processing inefficiency that is a central feature of the cognitive deficit in schizophrenia and deserves systematic investigation.
A Comparison of Six MMPI Short Forms: Code Type Correspondence and Indices of Psychopathology.
ERIC Educational Resources Information Center
Willcockson, James C.; And Others
1983-01-01
Compared six Minnesota Multiphasic Personality Inventory (MMPI) short forms with the full-length MMPI for ability to identify code-types and indices of psychopathology in renal dialysis patients (N=53) and paranoid schizophrenics (N=58). Results suggested that the accuracy of the short forms fluctuates for different patient populations and…
Airborne antenna radiation pattern code user's manual
NASA Technical Reports Server (NTRS)
Burnside, Walter D.; Kim, Jacob J.; Grandchamp, Brett; Rojas, Roberto G.; Law, Philip
1985-01-01
The use of a newly developed computer code to analyze the radiation patterns of antennas mounted on a ellipsoid and in the presence of a set of finite flat plates is described. It is shown how the code allows the user to simulate a wide variety of complex electromagnetic radiation problems using the ellipsoid/plates model. The code has the capacity of calculating radiation patterns around an arbitrary conical cut specified by the user. The organization of the code, definition of input and output data, and numerous practical examples are also presented. The analysis is based on the Uniform Geometrical Theory of Diffraction (UTD), and most of the computed patterns are compared with experimental results to show the accuracy of this solution.
The moving mesh code SHADOWFAX
NASA Astrophysics Data System (ADS)
Vandenbroucke, B.; De Rijcke, S.
2016-07-01
We introduce the moving mesh code SHADOWFAX, which can be used to evolve a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. The code is written in C++ and its source code is made available to the scientific community under the GNU Affero General Public Licence. We outline the algorithm and the design of our implementation, and demonstrate its validity through the results of a set of basic test problems, which are also part of the public version. We also compare SHADOWFAX with a number of other publicly available codes using different hydrodynamical integration schemes, illustrating the advantages and disadvantages of the moving mesh technique.
DCT based interpolation filter for motion compensation in HEVC
NASA Astrophysics Data System (ADS)
Alshin, Alexander; Alshina, Elena; Park, Jeong Hoon; Han, Woo-Jin
2012-10-01
High Efficiency Video Coding (HEVC) draft standard has a challenging goal to improve coding efficiency twice compare to H.264/AVC. Many aspects of the traditional hybrid coding framework were improved during new standard development. Motion compensated prediction, in particular the interpolation filter, is one area that was improved significantly over H.264/AVC. This paper presents the details of the interpolation filter design of the draft HEVC standard. The coding efficiency improvements over H.264/AVC interpolation filter is studied and experimental results are presented, which show a 4.0% average bitrate reduction for Luma component and 11.3% average bitrate reduction for Chroma component. The coding efficiency gains are significant for some video sequences and can reach up 21.7%.
Al Achkar, Morhaf; Kengeri-Srikantiah, Seema; Yamane, Biniyam M; Villasmil, Jomil; Busha, Michael E; Gebke, Kevin B
2018-06-13
Medical billing and coding are critical components of residency programs since they determine the revenues and vitality of residencies. It has been suggested that residents are less likely to bill higher evaluation and management (E/M) codes compared with attending physicians. The purpose of this study is to assess the variation in billing patterns between residents and attending physicians, considering provider, patient, and visit characteristics. A retrospective cohort study of all established outpatient visits at a family medicine residency clinic over a 5-year period was performed. We employed the logistic regression methodology to identify residents' and attending physicians' variations in coding E/M service levels. We also employed Poisson regression to test the sensitivity of our result. Between January 5, 2009 and September 25, 2015, 98,601 visits to 116 residents and 18 attending physicians were reviewed. After adjusting for provider, patient, and visit characteristics, residents billed higher E/M codes less often compared with attending physicians for comparable visits. In comparison with attending physicians, the odds ratios for billing higher E/M codes were 0.58 (p = 0.01), 0.56 (p = 0.01), and 0.63 (p = 0.01) for the third, second, and first years of postgraduate training, respectively. In addition to the main factors of patient age, medical conditions, and number of addressed problems, the gender of the provider was also implicated in the billing variations. Residents are less likely to bill higher E/M codes than attending physicians are for similar visits. While these variations are known to contribute to lost revenues, further studies are required to explore their effect on patient care in relation to attendings' direct involvement in higher E/M-coded versus their indirect involvement in lower E/M-coded visits.
Verification of MCNP simulation of neutron flux parameters at TRIGA MK II reactor of Malaysia.
Yavar, A R; Khalafi, H; Kasesaz, Y; Sarmani, S; Yahaya, R; Wood, A K; Khoo, K S
2012-10-01
A 3-D model for 1 MW TRIGA Mark II research reactor was simulated. Neutron flux parameters were calculated using MCNP-4C code and were compared with experimental results obtained by k(0)-INAA and absolute method. The average values of φ(th),φ(epi), and φ(fast) by MCNP code were (2.19±0.03)×10(12) cm(-2)s(-1), (1.26±0.02)×10(11) cm(-2)s(-1) and (3.33±0.02)×10(10) cm(-2)s(-1), respectively. These average values were consistent with the experimental results obtained by k(0)-INAA. The findings show a good agreement between MCNP code results and experimental results. Copyright © 2012 Elsevier Ltd. All rights reserved.
Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL
NASA Astrophysics Data System (ADS)
Paul, K.; Dimitrov, D. A.; Busby, R.; Bruhwiler, D. L.; Smithe, D.; Cary, J. R.; Kewisch, J.; Kayran, D.; Calaga, R.; Ben-Zvi, I.
2009-01-01
We have simulated Brookhaven National Laboratory's half-cell superconducting RF gun design for a proposed high-current ERL using the three-dimensional, electromagnetic particle-in-cell code VORPAL. VORPAL computes the fully self-consistent electromagnetic fields produced by the electron bunches, meaning that it accurately models space-charge effects as well as bunch-to-bunch beam loading effects and the effects of higher-order cavity modes, though these are beyond the scope of this paper. We compare results from VORPAL to the well-established space-charge code PARMELA, using RF fields produced by SUPERFISH, as a benchmarking exercise in which the two codes should agree well.
NASA Astrophysics Data System (ADS)
Pan, Xiaolong; Liu, Bo; Zheng, Jianglong; Tian, Qinghua
2016-08-01
We propose and demonstrate a low complexity Reed-Solomon-based low-density parity-check (RS-LDPC) code with adaptive puncturing decoding algorithm for elastic optical transmission system. Partial received codes and the relevant column in parity-check matrix can be punctured to reduce the calculation complexity by adaptive parity-check matrix during decoding process. The results show that the complexity of the proposed decoding algorithm is reduced by 30% compared with the regular RS-LDPC system. The optimized code rate of the RS-LDPC code can be obtained after five times iteration.
Structured Low-Density Parity-Check Codes with Bandwidth Efficient Modulation
NASA Technical Reports Server (NTRS)
Cheng, Michael K.; Divsalar, Dariush; Duy, Stephanie
2009-01-01
In this work, we study the performance of structured Low-Density Parity-Check (LDPC) Codes together with bandwidth efficient modulations. We consider protograph-based LDPC codes that facilitate high-speed hardware implementations and have minimum distances that grow linearly with block sizes. We cover various higher- order modulations such as 8-PSK, 16-APSK, and 16-QAM. During demodulation, a demapper transforms the received in-phase and quadrature samples into reliability information that feeds the binary LDPC decoder. We will compare various low-complexity demappers and provide simulation results for assorted coded-modulation combinations on the additive white Gaussian noise and independent Rayleigh fading channels.
Gnjidic, Danijela; Pearson, Sallie-Anne; Hilmer, Sarah N; Basilakis, Jim; Schaffer, Andrea L; Blyth, Fiona M; Banks, Emily
2015-03-30
Increasingly, automated methods are being used to code free-text medication data, but evidence on the validity of these methods is limited. To examine the accuracy of automated coding of previously keyed in free-text medication data compared with manual coding of original handwritten free-text responses (the 'gold standard'). A random sample of 500 participants (475 with and 25 without medication data in the free-text box) enrolled in the 45 and Up Study was selected. Manual coding involved medication experts keying in free-text responses and coding using Anatomical Therapeutic Chemical (ATC) codes (i.e. chemical substance 7-digit level; chemical subgroup 5-digit; pharmacological subgroup 4-digit; therapeutic subgroup 3-digit). Using keyed-in free-text responses entered by non-experts, the automated approach coded entries using the Australian Medicines Terminology database and assigned corresponding ATC codes. Based on manual coding, 1377 free-text entries were recorded and, of these, 1282 medications were coded to ATCs manually. The sensitivity of automated coding compared with manual coding was 79% (n = 1014) for entries coded at the exact ATC level, and 81.6% (n = 1046), 83.0% (n = 1064) and 83.8% (n = 1074) at the 5, 4 and 3-digit ATC levels, respectively. The sensitivity of automated coding for blank responses was 100% compared with manual coding. Sensitivity of automated coding was highest for prescription medications and lowest for vitamins and supplements, compared with the manual approach. Positive predictive values for automated coding were above 95% for 34 of the 38 individual prescription medications examined. Automated coding for free-text prescription medication data shows very high to excellent sensitivity and positive predictive values, indicating that automated methods can potentially be useful for large-scale, medication-related research.
An evaluation of the effect of JPEG, JPEG2000, and H.264/AVC on CQR codes decoding process
NASA Astrophysics Data System (ADS)
Vizcarra Melgar, Max E.; Farias, Mylène C. Q.; Zaghetto, Alexandre
2015-02-01
This paper presents a binarymatrix code based on QR Code (Quick Response Code), denoted as CQR Code (Colored Quick Response Code), and evaluates the effect of JPEG, JPEG2000 and H.264/AVC compression on the decoding process. The proposed CQR Code has three additional colors (red, green and blue), what enables twice as much storage capacity when compared to the traditional black and white QR Code. Using the Reed-Solomon error-correcting code, the CQR Code model has a theoretical correction capability of 38.41%. The goal of this paper is to evaluate the effect that degradations inserted by common image compression algorithms have on the decoding process. Results show that a successful decoding process can be achieved for compression rates up to 0.3877 bits/pixel, 0.1093 bits/pixel and 0.3808 bits/pixel for JPEG, JPEG2000 and H.264/AVC formats, respectively. The algorithm that presents the best performance is the H.264/AVC, followed by the JPEG2000, and JPEG.
NASA Technical Reports Server (NTRS)
Uslenghi, Piergiorgio L. E.; Laxpati, Sharad R.; Kawalko, Stephen F.
1993-01-01
The third phase of the development of the computer codes for scattering by coated bodies that has been part of an ongoing effort in the Electromagnetics Laboratory of the Electrical Engineering and Computer Science Department at the University of Illinois at Chicago is described. The work reported discusses the analytical and numerical results for the scattering of an obliquely incident plane wave by impedance bodies of revolution with phi variation of the surface impedance. Integral equation formulation of the problem is considered. All three types of integral equations, electric field, magnetic field, and combined field, are considered. These equations are solved numerically via the method of moments with parametric elements. Both TE and TM polarization of the incident plane wave are considered. The surface impedance is allowed to vary along both the profile of the scatterer and in the phi direction. Computer code developed for this purpose determines the electric surface current as well as the bistatic radar cross section. The results obtained with this code were validated by comparing the results with available results for specific scatterers such as the perfectly conducting sphere. Results for the cone-sphere and cone-cylinder-sphere for the case of an axially incident plane were validated by comparing the results with the results with those obtained in the first phase of this project. Results for body of revolution scatterers with an abrupt change in the surface impedance along both the profile of the scatterer and the phi direction are presented.
Low-temperature plasma simulations with the LSP PIC code
NASA Astrophysics Data System (ADS)
Carlsson, Johan; Khrabrov, Alex; Kaganovich, Igor; Keating, David; Selezneva, Svetlana; Sommerer, Timothy
2014-10-01
The LSP (Large-Scale Plasma) PIC-MCC code has been used to simulate several low-temperature plasma configurations, including a gas switch for high-power AC/DC conversion, a glow discharge and a Hall thruster. Simulation results will be presented with an emphasis on code comparison and validation against experiment. High-voltage, direct-current (HVDC) power transmission is becoming more common as it can reduce construction costs and power losses. Solid-state power-electronics devices are presently used, but it has been proposed that gas switches could become a compact, less costly, alternative. A gas-switch conversion device would be based on a glow discharge, with a magnetically insulated cold cathode. Its operation is similar to that of a sputtering magnetron, but with much higher pressure (0.1 to 0.3 Torr) in order to achieve high current density. We have performed 1D (axial) and 2D (axial/radial) simulations of such a gas switch using LSP. The 1D results were compared with results from the EDIPIC code. To test and compare the collision models used by the LSP and EDIPIC codes in more detail, a validation exercise was performed for the cathode fall of a glow discharge. We will also present some 2D (radial/azimuthal) LSP simulations of a Hall thruster. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.
Meyer, Anne-Marie; Kuo, Tzy-Mey; Chang, YunKyung; Carpenter, William R; Chen, Ronald C; Sturmer, Til
2017-05-01
Systematic coding systems are used to define clinically meaningful outcomes when leveraging administrative claims data for research. How and when these codes are applied within a research study can have implications for the study validity and their specificity can vary significantly depending on treatment received. Data are from the Surveillance, Epidemiology, and End Results-Medicare linked dataset. We use propensity score methods in a retrospective cohort of prostate cancer patients first examined in a recently published radiation oncology comparative effectiveness study. With the narrowly defined outcome definition, the toxicity event outcome rate ratio was 0.88 per 100 person-years (95% confidence interval, 0.71-1.08). With the broadly defined outcome, the rate ratio was comparable, with 0.89 per 100 person-years (95% confidence interval, 0.76-1.04), although individual event rates were doubled. Some evidence of surveillance bias was suggested by a higher rate of endoscopic procedures the first year of follow-up in patients who received proton therapy compared with those receiving intensity-modulated radiation treatment (11.15 vs. 8.90, respectively). This study demonstrates the risk of introducing bias through subjective application of procedure codes. Careful consideration is required when using procedure codes to define outcomes in administrative data.
Python Radiative Transfer Emission code (PyRaTE): non-LTE spectral lines simulations
NASA Astrophysics Data System (ADS)
Tritsis, A.; Yorke, H.; Tassis, K.
2018-05-01
We describe PyRaTE, a new, non-local thermodynamic equilibrium (non-LTE) line radiative transfer code developed specifically for post-processing astrochemical simulations. Population densities are estimated using the escape probability method. When computing the escape probability, the optical depth is calculated towards all directions with density, molecular abundance, temperature and velocity variations all taken into account. A very easy-to-use interface, capable of importing data from simulations outputs performed with all major astrophysical codes, is also developed. The code is written in PYTHON using an "embarrassingly parallel" strategy and can handle all geometries and projection angles. We benchmark the code by comparing our results with those from RADEX (van der Tak et al. 2007) and against analytical solutions and present case studies using hydrochemical simulations. The code will be released for public use.
Gaseous hydrogen/oxygen injector performance characterization
NASA Technical Reports Server (NTRS)
Degroot, W. A.; Tsuei, H. H.
1994-01-01
Results are presented of spontaneous Raman scattering measurements in the combustion chamber of a 110 N thrust class gaseous hydrogen/oxygen rocket. Temperature, oxygen number density, and water number density profiles at the injector exit plane are presented. These measurements are used as input profiles to a full Navier-Stokes computational fluid dynamics (CFD) code. Predictions of this code while using the measured profiles are compared with predictions while using assumed uniform injector profiles. Axial and radial velocity profiles derived from both sets of predictions are compared with Rayleigh scattering measurements in the exit plane of a 33:1 area ratio nozzle. Temperature and number density Raman scattering measurements at the exit plane of a test rocket with a 1:1.36 area ratio nozzle are also compared with results from both sets of predictions.
Epidemiology of angina pectoris: role of natural language processing of the medical record
Pakhomov, Serguei; Hemingway, Harry; Weston, Susan A.; Jacobsen, Steven J.; Rodeheffer, Richard; Roger, Véronique L.
2007-01-01
Background The diagnosis of angina is challenging as it relies on symptom descriptions. Natural language processing (NLP) of the electronic medical record (EMR) can provide access to such information contained in free text that may not be fully captured by conventional diagnostic coding. Objective To test the hypothesis that NLP of the EMR improves angina pectoris (AP) ascertainment over diagnostic codes. Methods Billing records of in- and out-patients were searched for ICD-9 codes for AP, chronic ischemic heart disease and chest pain. EMR clinical reports were searched electronically for 50 specific non-negated natural language synonyms to these ICD-9 codes. The two methods were compared to a standardized assessment of angina by Rose questionnaire for three diagnostic levels: unspecified chest pain, exertional chest pain, and Rose angina. Results Compared to the Rose questionnaire, the true positive rate of EMR-NLP for unspecified chest pain was 62% (95%CI:55–67) vs. 51% (95%CI:44–58) for diagnostic codes (p<0.001). For exertional chest pain, the EMR-NLP true positive rate was 71% (95%CI:61–80) vs. 62% (95%CI:52–73) for diagnostic codes (p=0.10). Both approaches had 88% (95%CI:65–100) true positive rate for Rose angina. The EMR-NLP method consistently identified more patients with exertional chest pain over 28-month follow-up. Conclusion EMR-NLP method improves the detection of unspecified and exertional chest pain cases compared to diagnostic codes. These findings have implications for epidemiological and clinical studies of angina pectoris. PMID:17383310
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Papadakis, Michael
2005-01-01
Collection efficiency and ice accretion calculations have been made for a series of business jet horizontal tail configurations using a three-dimensional panel code, an adaptive grid code, and the NASA Glenn LEWICE3D grid based ice accretion code. The horizontal tail models included two full scale wing tips and a 25 percent scale model. Flow solutions for the horizontal tails were generated using the PMARC panel code. Grids used in the ice accretion calculations were generated using the adaptive grid code ICEGRID. The LEWICE3D grid based ice accretion program was used to calculate impingement efficiency and ice shapes. Ice shapes typifying rime and mixed icing conditions were generated for a 30 minute hold condition. All calculations were performed on an SGI Octane computer. The results have been compared to experimental flow and impingement data. In general, the calculated flow and collection efficiencies compared well with experiment, and the ice shapes appeared representative of the rime and mixed icing conditions for which they were calculated.
NASA Astrophysics Data System (ADS)
Palmans, Hugo; Nafaa, Laila; de Patoul, Nathalie; Denis, Jean-Marc; Tomsej, Milan; Vynckier, Stefaan
2003-05-01
New codes of practice for reference dosimetry in clinical high-energy photon and electron beams have been published recently, to replace the air kerma based codes of practice that have determined the dosimetry of these beams for the past twenty years. In the present work, we compared dosimetry based on the two most widespread absorbed dose based recommendations (AAPM TG-51 and IAEA TRS-398) with two air kerma based recommendations (NCS report-5 and IAEA TRS-381). Measurements were performed in three clinical electron beam energies using two NE2571-type cylindrical chambers, two Markus-type plane-parallel chambers and two NACP-02-type plane-parallel chambers. Dosimetry based on direct calibrations of all chambers in 60Co was investigated, as well as dosimetry based on cross-calibrations of plane-parallel chambers against a cylindrical chamber in a high-energy electron beam. Furthermore, 60Co perturbation factors for plane-parallel chambers were derived. It is shown that the use of 60Co calibration factors could result in deviations of more than 2% for plane-parallel chambers between the old and new codes of practice, whereas the use of cross-calibration factors, which is the first recommendation in the new codes, reduces the differences to less than 0.8% for all situations investigated here. The results thus show that neither the chamber-to-chamber variations, nor the obtained absolute dose values are significantly altered by changing from air kerma based dosimetry to absorbed dose based dosimetry when using calibration factors obtained from the Laboratory for Standard Dosimetry, Ghent, Belgium. The values of the 60Co perturbation factor for plane-parallel chambers (katt . km for the air kerma based and pwall for the absorbed dose based codes of practice) that are obtained from comparing the results based on 60Co calibrations and cross-calibrations are within the experimental uncertainties in agreement with the results from other investigators.
Improving accuracy of clinical coding in surgery: collaboration is key.
Heywood, Nick A; Gill, Michael D; Charlwood, Natasha; Brindle, Rachel; Kirwan, Cliona C
2016-08-01
Clinical coding data provide the basis for Hospital Episode Statistics and Healthcare Resource Group codes. High accuracy of this information is required for payment by results, allocation of health and research resources, and public health data and planning. We sought to identify the level of accuracy of clinical coding in general surgical admissions across hospitals in the Northwest of England. Clinical coding departments identified a total of 208 emergency general surgical patients discharged between 1st March and 15th August 2013 from seven hospital trusts (median = 20, range = 16-60). Blinded re-coding was performed by a senior clinical coder and clinician, with results compared with the original coding outcome. Recorded codes were generated from OPCS-4 & ICD-10. Of all cases, 194 of 208 (93.3%) had at least one coding error and 9 of 208 (4.3%) had errors in both primary diagnosis and primary procedure. Errors were found in 64 of 208 (30.8%) of primary diagnoses and 30 of 137 (21.9%) of primary procedure codes. Median tariff using original codes was £1411.50 (range, £409-9138). Re-calculation using updated clinical codes showed a median tariff of £1387.50, P = 0.997 (range, £406-10,102). The most frequent reasons for incorrect coding were "coder error" and a requirement for "clinical interpretation of notes". Errors in clinical coding are multifactorial and have significant impact on primary diagnosis, potentially affecting the accuracy of Hospital Episode Statistics data and in turn the allocation of health care resources and public health planning. As we move toward surgeon specific outcomes, surgeons should increase collaboration with coding departments to ensure the system is robust. Copyright © 2016 Elsevier Inc. All rights reserved.
Case-crossover analysis of heat-coded deaths and vulnerable subpopulations: Oklahoma, 1990-2011
NASA Astrophysics Data System (ADS)
Moore, Brianna F.; Brooke Anderson, G.; Johnson, Matthew G.; Brown, Sheryll; Bradley, Kristy K.; Magzamen, Sheryl
2017-11-01
The extent of the association between temperature and heat-coded deaths, for which heat is the primary cause of death, remains largely unknown. We explored the association between temperature and heat-coded deaths and potential interactions with various demographic and environmental factors. A total of 335 heat-coded deaths that occurred in Oklahoma from 1990 through 2011 were identified using heat-related International Classification of Diseases codes, cause-of-death nomenclature, and narrative descriptions. Conditional logistic regression models examined the association between temperature and heat index on heat-coded deaths. Interaction by demographic factors (age, sex, marital status, living alone, outdoor/heavy labor occupations) and environmental factors (ozone, PM10, PM2.5) was also explored. Temperatures ≥99 °F (the median value) were associated with approximately five times higher odds of a heat-coded death as compared to temperatures <99 °F (adjusted OR = 4.9, 95% CI 3.3, 7.2). The effect estimates were attenuated when exposure to heat was characterized by heat index. The interaction results suggest that effect of temperature on heat-coded deaths may depend on sex and occupation. For example, the odds of a heat-coded death among outdoor/heavy labor workers exposed to temperatures ≥99 °F was greater than expected based on the sum of the individual effects (observed OR = 14.0, 95% CI 2.7, 72.0; expected OR = 4.1 [2.8 + 2.3-1.0]). Our results highlight the extent of the association between temperature and heat-coded deaths and emphasize the need for a comprehensive, multisource definition of heat-coded deaths. Furthermore, based on the interaction results, we recommend that states implement or expand heat safety programs to protect vulnerable subpopulations, such as outdoor workers.
Computational Predictions of the Performance Wright 'Bent End' Propellers
NASA Technical Reports Server (NTRS)
Wang, Xiang-Yu; Ash, Robert L.; Bobbitt, Percy J.; Prior, Edwin (Technical Monitor)
2002-01-01
Computational analysis of two 1911 Wright brothers 'Bent End' wooden propeller reproductions have been performed and compared with experimental test results from the Langley Full Scale Wind Tunnel. The purpose of the analysis was to check the consistency of the experimental results and to validate the reliability of the tests. This report is one part of the project on the propeller performance research of the Wright 'Bent End' propellers, intend to document the Wright brothers' pioneering propeller design contributions. Two computer codes were used in the computational predictions. The FLO-MG Navier-Stokes code is a CFD (Computational Fluid Dynamics) code based on the Navier-Stokes Equations. It is mainly used to compute the lift coefficient and the drag coefficient at specified angles of attack at different radii. Those calculated data are the intermediate results of the computation and a part of the necessary input for the Propeller Design Analysis Code (based on Adkins and Libeck method), which is a propeller design code used to compute the propeller thrust coefficient, the propeller power coefficient and the propeller propulsive efficiency.
ASTROP2 users manual: A program for aeroelastic stability analysis of propfans
NASA Technical Reports Server (NTRS)
Narayanan, G. V.; Kaza, K. R. V.
1991-01-01
A user's manual is presented for the aeroelastic stability and response of propulsion systems computer program called ASTROP2. The ASTROP2 code preforms aeroelastic stability analysis of rotating propfan blades. This analysis uses a two-dimensional, unsteady cascade aerodynamics model and a three-dimensional, normal-mode structural model. Analytical stability results from this code are compared with published experimental results of a rotating composite advanced turboprop model and of nonrotating metallic wing model.
NASA Astrophysics Data System (ADS)
Manjanaik, N.; Parameshachari, B. D.; Hanumanthappa, S. N.; Banu, Reshma
2017-08-01
Intra prediction process of H.264 video coding standard used to code first frame i.e. Intra frame of video to obtain good coding efficiency compare to previous video coding standard series. More benefit of intra frame coding is to reduce spatial pixel redundancy with in current frame, reduces computational complexity and provides better rate distortion performance. To code Intra frame it use existing process Rate Distortion Optimization (RDO) method. This method increases computational complexity, increases in bit rate and reduces picture quality so it is difficult to implement in real time applications, so the many researcher has been developed fast mode decision algorithm for coding of intra frame. The previous work carried on Intra frame coding in H.264 standard using fast decision mode intra prediction algorithm based on different techniques was achieved increased in bit rate, degradation of picture quality(PSNR) for different quantization parameters. Many previous approaches of fast mode decision algorithms on intra frame coding achieved only reduction of computational complexity or it save encoding time and limitation was increase in bit rate with loss of quality of picture. In order to avoid increase in bit rate and loss of picture quality a better approach was developed. In this paper developed a better approach i.e. Gaussian pulse for Intra frame coding using diagonal down left intra prediction mode to achieve higher coding efficiency in terms of PSNR and bitrate. In proposed method Gaussian pulse is multiplied with each 4x4 frequency domain coefficients of 4x4 sub macro block of macro block of current frame before quantization process. Multiplication of Gaussian pulse for each 4x4 integer transformed coefficients at macro block levels scales the information of the coefficients in a reversible manner. The resulting signal would turn abstract. Frequency samples are abstract in a known and controllable manner without intermixing of coefficients, it avoids picture getting bad hit for higher values of quantization parameters. The proposed work was implemented using MATLAB and JM 18.6 reference software. The proposed work measure the performance parameters PSNR, bit rate and compression of intra frame of yuv video sequences in QCIF resolution under different values of quantization parameter with Gaussian value for diagonal down left intra prediction mode. The simulation results of proposed algorithm are tabulated and compared with previous algorithm i.e. Tian et al method. The proposed algorithm achieved reduced in bit rate averagely 30.98% and maintain consistent picture quality for QCIF sequences compared to previous algorithm i.e. Tian et al method.
Improved double-multiple streamtube model for the Darrieus-type vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Berg, D. E.
Double streamtube codes model the curved blade (Darrieus-type) vertical axis wind turbine (VAWT) as a double actuator fish arrangement (one half) and use conservation of momentum principles to determine the forces acting on the turbine blades and the turbine performance. Sandia National Laboratories developed a double multiple streamtube model for the VAWT which incorporates the effects of the incident wind boundary layer, nonuniform velocity between the upwind and downwind sections of the rotor, dynamic stall effects and local blade Reynolds number variations. The theory underlying this VAWT model is described, as well as the code capabilities. Code results are compared with experimental data from two VAWT's and with the results from another double multiple streamtube and a vortex filament code. The effects of neglecting dynamic stall and horizontal wind velocity distribution are also illustrated.
Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction
Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin
2016-01-01
High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems. PMID:27814367
Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction.
Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin
2016-01-01
High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems.
Computation of Thermally Perfect Compressible Flow Properties
NASA Technical Reports Server (NTRS)
Witte, David W.; Tatum, Kenneth E.; Williams, S. Blake
1996-01-01
A set of compressible flow relations for a thermally perfect, calorically imperfect gas are derived for a value of c(sub p) (specific heat at constant pressure) expressed as a polynomial function of temperature and developed into a computer program, referred to as the Thermally Perfect Gas (TPG) code. The code is available free from the NASA Langley Software Server at URL http://www.larc.nasa.gov/LSS. The code produces tables of compressible flow properties similar to those found in NACA Report 1135. Unlike the NACA Report 1135 tables which are valid only in the calorically perfect temperature regime the TPG code results are also valid in the thermally perfect, calorically imperfect temperature regime, giving the TPG code a considerably larger range of temperature application. Accuracy of the TPG code in the calorically perfect and in the thermally perfect, calorically imperfect temperature regimes are verified by comparisons with the methods of NACA Report 1135. The advantages of the TPG code compared to the thermally perfect, calorically imperfect method of NACA Report 1135 are its applicability to any type of gas (monatomic, diatomic, triatomic, or polyatomic) or any specified mixture of gases, ease-of-use, and tabulated results.
An Efficient Method for Verifying Gyrokinetic Microstability Codes
NASA Astrophysics Data System (ADS)
Bravenec, R.; Candy, J.; Dorland, W.; Holland, C.
2009-11-01
Benchmarks for gyrokinetic microstability codes can be developed through successful ``apples-to-apples'' comparisons among them. Unlike previous efforts, we perform the comparisons for actual discharges, rendering the verification efforts relevant to existing experiments and future devices (ITER). The process requires i) assembling the experimental analyses at multiple times, radii, discharges, and devices, ii) creating the input files ensuring that the input parameters are faithfully translated code-to-code, iii) running the codes, and iv) comparing the results, all in an organized fashion. The purpose of this work is to automate this process as much as possible: At present, a python routine is used to generate and organize GYRO input files from TRANSP or ONETWO analyses. Another routine translates the GYRO input files into GS2 input files. (Translation software for other codes has not yet been written.) Other python codes submit the multiple GYRO and GS2 jobs, organize the results, and collect them into a table suitable for plotting. (These separate python routines could easily be consolidated.) An example of the process -- a linear comparison between GYRO and GS2 for a DIII-D discharge at multiple radii -- will be presented.
10Gbps 2D MGC OCDMA Code over FSO Communication System
NASA Astrophysics Data System (ADS)
Professor Urmila Bhanja, Associate, Dr.; Khuntia, Arpita; Alamasety Swati, (Student
2017-08-01
Currently, wide bandwidth signal dissemination along with low latency is a leading requisite in various applications. Free space optical wireless communication has introduced as a realistic technology for bridging the gap in present high data transmission fiber connectivity and as a provisional backbone for rapidly deployable wireless communication infrastructure. The manuscript highlights on the implementation of 10Gbps SAC-OCDMA FSO communications using modified two dimensional Golomb code (2D MGC) that possesses better auto correlation, minimum cross correlation and high cardinality. A comparison based on pseudo orthogonal (PSO) matrix code and modified two dimensional Golomb code (2D MGC) is developed in the proposed SAC OCDMA-FSO communication module taking different parameters into account. The simulative outcome signifies that the communication radius is bounded by the multiple access interference (MAI). In this work, a comparison is made in terms of bit error rate (BER), and quality factor (Q) based on modified two dimensional Golomb code (2D MGC) and PSO matrix code. It is observed that the 2D MGC yields better results compared to the PSO matrix code. The simulation results are validated using optisystem version 14.
Lin, M.C.; Vreeman, D.J.; Huff, S.M.
2012-01-01
Objectives We wanted to develop a method for evaluating the consistency and usefulness of LOINC code use across different institutions, and to evaluate the degree of interoperability that can be attained when using LOINC codes for laboratory data exchange. Our specific goals were to: 1) Determine if any contradictory knowledge exists in LOINC. 2) Determine how many LOINC codes were used in a truly interoperable fashion between systems. 3) Provide suggestions for improving the semantic interoperability of LOINC. Methods We collected Extensional Definitions (EDs) of LOINC usage from three institutions. The version space approach was used to divide LOINC codes into small sets, which made auditing of LOINC use across the institutions feasible. We then compared pairings of LOINC codes from the three institutions for consistency and usefulness. Results The number of LOINC codes evaluated were 1,917, 1,267 and 1,693 as obtained from ARUP, Intermountain and Regenstrief respectively. There were 2,022, 2,030, and 2,301 version spaces among ARUP & Intermountain, Intermountain & Regenstrief and ARUP & Regenstrief respectively. Using the EDs as the gold standard, there were 104, 109 and 112 pairs containing contradictory knowledge and there were 1,165, 765 and 1,121 semantically interoperable pairs. The interoperable pairs were classified into three levels: 1) Level I – No loss of meaning, complete information was exchanged by identical codes. 2) Level II – No loss of meaning, but processing of data was needed to make the data completely comparable. 3) Level III – Some loss of meaning. For example, tests with a specific ‘method’ could be rolled-up with tests that were ‘methodless’. Conclusions There are variations in the way LOINC is used for data exchange that result in some data not being truly interoperable across different enterprises. To improve its semantic interoperability, we need to detect and correct any contradictory knowledge within LOINC and add computable relationships that can be used for making reliable inferences about the data. The LOINC committee should also provide detailed guidance on best practices for mapping from local codes to LOINC codes and for using LOINC codes in data exchange. PMID:22306382
Limitations to the use of two-dimensional thermal modeling of a nuclear waste repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, B.W.
1979-01-04
Thermal modeling of a nuclear waste repository is basic to most waste management predictive models. It is important that the modeling techniques accurately determine the time-dependent temperature distribution of the waste emplacement media. Recent modeling studies show that the time-dependent temperature distribution can be accurately modeled in the far-field using a 2-dimensional (2-D) planar numerical model; however, the near-field cannot be modeled accurately enough by either 2-D axisymmetric or 2-D planar numerical models for repositories in salt. The accuracy limits of 2-D modeling were defined by comparing results from 3-dimensional (3-D) TRUMP modeling with results from both 2-D axisymmetric andmore » 2-D planar. Both TRUMP and ADINAT were employed as modeling tools. Two-dimensional results from the finite element code, ADINAT were compared with 2-D results from the finite difference code, TRUMP; they showed almost perfect correspondence in the far-field. This result adds substantially to confidence in future use of ADINAT and its companion stress code ADINA for thermal stress analysis. ADINAT was found to be somewhat sensitive to time step and mesh aspect ratio. 13 figures, 4 tables.« less
The MCNP6 Analytic Criticality Benchmark Suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
2016-06-16
Analytical benchmarks provide an invaluable tool for verifying computer codes used to simulate neutron transport. Several collections of analytical benchmark problems [1-4] are used routinely in the verification of production Monte Carlo codes such as MCNP® [5,6]. Verification of a computer code is a necessary prerequisite to the more complex validation process. The verification process confirms that a code performs its intended functions correctly. The validation process involves determining the absolute accuracy of code results vs. nature. In typical validations, results are computed for a set of benchmark experiments using a particular methodology (code, cross-section data with uncertainties, and modeling)more » and compared to the measured results from the set of benchmark experiments. The validation process determines bias, bias uncertainty, and possibly additional margins. Verification is generally performed by the code developers, while validation is generally performed by code users for a particular application space. The VERIFICATION_KEFF suite of criticality problems [1,2] was originally a set of 75 criticality problems found in the literature for which exact analytical solutions are available. Even though the spatial and energy detail is necessarily limited in analytical benchmarks, typically to a few regions or energy groups, the exact solutions obtained can be used to verify that the basic algorithms, mathematics, and methods used in complex production codes perform correctly. The present work has focused on revisiting this benchmark suite. A thorough review of the problems resulted in discarding some of them as not suitable for MCNP benchmarking. For the remaining problems, many of them were reformulated to permit execution in either multigroup mode or in the normal continuous-energy mode for MCNP. Execution of the benchmarks in continuous-energy mode provides a significant advance to MCNP verification methods.« less
Metalloid Aluminum Clusters with Fluorine
2016-12-01
molecular dynamics, binding energy , siesta code, density of states, projected density of states 15. NUMBER OF PAGES 69 16. PRICE CODE 17. SECURITY...high energy density compared to explosives, but typically release this energy slowly via diffusion-limited combustion. There is recent interest in using...examine the cluster binding energy and electronic structure. Partial fluorine substitution in a prototypical aluminum-cyclopentadienyl cluster results
ERIC Educational Resources Information Center
Ivanov, Anisoara; Neacsu, Andrei
2011-01-01
This study describes the possibility and advantages of utilizing simple computer codes to complement the teaching techniques for high school physics. The authors have begun working on a collection of open source programs which allow students to compare the results and graphics from classroom exercises with the correct solutions and further more to…
Evaluation of MOSTAS computer code for predicting dynamic loads in two-bladed wind turbines
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Janetzke, D. C.; Sullivan, T. L.
1979-01-01
Calculated dynamic blade loads are compared with measured loads over a range of yaw stiffnesses of the DOE/NASA Mod-0 wind turbine to evaluate the performance of two versions of the MOSTAS computer code. The first version uses a time-averaged coefficient approximation in conjunction with a multiblade coordinate transformation for two-bladed rotors to solve the equations of motion by standard eigenanalysis. The results obtained with this approximate analysis do not agree with dynamic blade load amplifications at or close to resonance conditions. The results of the second version, which accounts for periodic coefficients while solving the equations by a time history integration, compare well with the measured data.
Supersonic Coaxial Jet Experiment for CFD Code Validation
NASA Technical Reports Server (NTRS)
Cutler, A. D.; Carty, A. A.; Doerner, S. E.; Diskin, G. S.; Drummond, J. P.
1999-01-01
A supersonic coaxial jet facility has been designed to provide experimental data suitable for the validation of CFD codes used to analyze high-speed propulsion flows. The center jet is of a light gas and the coflow jet is of air, and the mixing layer between them is compressible. Various methods have been employed in characterizing the jet flow field, including schlieren visualization, pitot, total temperature and gas sampling probe surveying, and RELIEF velocimetry. A Navier-Stokes code has been used to calculate the nozzle flow field and the results compared to the experiment.
Skyshine radiation from a pressurized water reactor containment dome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, W.H.
1986-06-01
The radiation dose rates resulting from airborne activities inside a postaccident pressurized water reactor containment are calculated by a discrete ordinates/Monte Carlo combined method. The calculated total dose rates and the skyshine component are presented as a function of distance from the containment at three different elevations for various gamma-ray source energies. The one-dimensional (ANISN code) is used to approximate the skyshine dose rates from the hemisphere dome, and the results are compared favorably to more rigorous results calculated by a three-dimensional Monte Carlo code.
Statistical Analysis of CFD Solutions from the Third AIAA Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.; Hemsch, Michael J.
2007-01-01
The first AIAA Drag Prediction Workshop, held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third Drag Prediction Workshop focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This work evaluated the effect of grid refinement on the code-to-code scatter for the clean attached flow test cases and the separated flow test cases.
Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes
NASA Astrophysics Data System (ADS)
Jing, Lin; Brun, Todd; Quantum Research Team
Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.
Farzandipour, Mehrdad; Sheikhtaheri, Abbas
2009-01-01
To evaluate the accuracy of procedural coding and the factors that influence it, 246 records were randomly selected from four teaching hospitals in Kashan, Iran. “Recodes” were assigned blindly and then compared to the original codes. Furthermore, the coders' professional behaviors were carefully observed during the coding process. Coding errors were classified as major or minor. The relations between coding accuracy and possible effective factors were analyzed by χ2 or Fisher exact tests as well as the odds ratio (OR) and the 95 percent confidence interval for the OR. The results showed that using a tabular index for rechecking codes reduces errors (83 percent vs. 72 percent accuracy). Further, more thorough documentation by the clinician positively affected coding accuracy, though this relation was not significant. Readability of records decreased errors overall (p = .003), including major ones (p = .012). Moreover, records with no abbreviations had fewer major errors (p = .021). In conclusion, not using abbreviations, ensuring more readable documentation, and paying more attention to available information increased coding accuracy and the quality of procedure databases. PMID:19471647
Analysis of film cooling in rocket nozzles
NASA Technical Reports Server (NTRS)
Woodbury, Keith A.
1992-01-01
Computational Fluid Dynamics (CFD) programs are customarily used to compute details of a flow field, such as velocity fields or species concentrations. Generally they are not used to determine the resulting conditions at a solid boundary such as wall shear stress or heat flux. However, determination of this information should be within the capability of a CFD code, as the code supposedly contains appropriate models for these wall conditions. Before such predictions from CFD analyses can be accepted, the credibility of the CFD codes upon which they are based must be established. This report details the progress made in constructing a CFD model to predict the heat transfer to the wall in a film cooled rocket nozzle. Specifically, the objective of this work is to use the NASA code FDNS to predict the heat transfer which will occur during the upcoming hot-firing of the Pratt & Whitney 40K subscale nozzle (1Q93). Toward this end, an M = 3 wall jet is considered, and the resulting heat transfer to the wall is computed. The values are compared against experimental data available in Reference 1. Also, FDNS's ability to compute heat flux in a reacting flow will be determined by comparing the code's predictions against calorimeter data from the hot firing of a 40K combustor. The process of modeling the flow of combusting gases through the Pratt & Whitney 40K subscale combustor and nozzle is outlined. What follows in this report is a brief description of the FDNS code, with special emphasis on how it handles solid wall boundary conditions. The test cases and some FDNS solution are presented next, along with comparison to experimental data. The process of modeling the flow through a chamber and a nozzle using the FDNS code will also be outlined.
One-way quantum repeaters with quantum Reed-Solomon codes
NASA Astrophysics Data System (ADS)
Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang
2018-05-01
We show that quantum Reed-Solomon codes constructed from classical Reed-Solomon codes can approach the capacity on the quantum erasure channel of d -level systems for large dimension d . We study the performance of one-way quantum repeaters with these codes and obtain a significant improvement in key generation rate compared to previously investigated encoding schemes with quantum parity codes and quantum polynomial codes. We also compare the three generations of quantum repeaters using quantum Reed-Solomon codes and identify parameter regimes where each generation performs the best.
2014-01-01
Background The pediatric complex chronic conditions (CCC) classification system, developed in 2000, requires revision to accommodate the International Classification of Disease 10th Revision (ICD-10). To update the CCC classification system, we incorporated ICD-9 diagnostic codes that had been either omitted or incorrectly specified in the original system, and then translated between ICD-9 and ICD-10 using General Equivalence Mappings (GEMs). We further reviewed all codes in the ICD-9 and ICD-10 systems to include both diagnostic and procedural codes indicative of technology dependence or organ transplantation. We applied the provisional CCC version 2 (v2) system to death certificate information and 2 databases of health utilization, reviewed the resulting CCC classifications, and corrected any misclassifications. Finally, we evaluated performance of the CCC v2 system by assessing: 1) the stability of the system between ICD-9 and ICD-10 codes using data which included both ICD-9 codes and ICD-10 codes; 2) the year-to-year stability before and after ICD-10 implementation; and 3) the proportions of patients classified as having a CCC in both the v1 and v2 systems. Results The CCC v2 classification system consists of diagnostic and procedural codes that incorporate a new neonatal CCC category as well as domains of complexity arising from technology dependence or organ transplantation. CCC v2 demonstrated close comparability between ICD-9 and ICD-10 and did not detect significant discontinuity in temporal trends of death in the United States. Compared to the original system, CCC v2 resulted in a 1.0% absolute (10% relative) increase in the number of patients identified as having a CCC in national hospitalization dataset, and a 0.4% absolute (24% relative) increase in a national emergency department dataset. Conclusions The updated CCC v2 system is comprehensive and multidimensional, and provides a necessary update to accommodate widespread implementation of ICD-10. PMID:25102958
Potential flow theory and operation guide for the panel code PMARC
NASA Technical Reports Server (NTRS)
Ashby, Dale L.; Dudley, Michael R.; Iguchi, Steve K.; Browne, Lindsey; Katz, Joseph
1991-01-01
The theoretical basis for PMARC, a low-order potential-flow panel code for modeling complex three-dimensional geometries, is outlined. Several of the advanced features currently included in the code, such as internal flow modeling, a simple jet model, and a time-stepping wake model, are discussed in some detail. The code is written using adjustable size arrays so that it can be easily redimensioned for the size problem being solved and the computer hardware being used. An overview of the program input is presented, with a detailed description of the input available in the appendices. Finally, PMARC results for a generic wing/body configuration are compared with experimental data to demonstrate the accuracy of the code. The input file for this test case is given in the appendices.
NASA Astrophysics Data System (ADS)
Bai, Cheng-lin; Cheng, Zhi-hui
2016-09-01
In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.
NASA Technical Reports Server (NTRS)
Massey, J. L.
1976-01-01
Virtually all previously-suggested rate 1/2 binary convolutional codes with KE = 24 are compared. Their distance properties are given; and their performance, both in computation and in error probability, with sequential decoding on the deep-space channel is determined by simulation. Recommendations are made both for the choice of a specific KE = 24 code as well as for codes to be included in future coding standards for the deep-space channel. A new result given in this report is a method for determining the statistical significance of error probability data when the error probability is so small that it is not feasible to perform enough decoding simulations to obtain more than a very small number of decoding errors.
TrackEtching - A Java based code for etched track profile calculations in SSNTDs
NASA Astrophysics Data System (ADS)
Muraleedhara Varier, K.; Sankar, V.; Gangadathan, M. P.
2017-09-01
A java code incorporating a user friendly GUI has been developed to calculate the parameters of chemically etched track profiles of ion-irradiated solid state nuclear track detectors. Huygen's construction of wavefronts based on secondary wavelets has been used to numerically calculate the etched track profile as a function of the etching time. Provision for normal incidence and oblique incidence on the detector surface has been incorporated. Results in typical cases are presented and compared with experimental data. Different expressions for the variation of track etch rate as a function of the ion energy have been utilized. The best set of values of the parameters in the expressions can be obtained by comparing with available experimental data. Critical angle for track development can also be calculated using the present code.
History of the Nuclei Important for Cosmochemistry
NASA Technical Reports Server (NTRS)
Meyer, Bradley S.
2004-01-01
An essential aspect of studying the nuclei important for cosmochemistry is their production in stars. Over the grant period, we have further developed the Clemson/American University of Beirut stellar evolution code. Through use of a biconjugate-gradient matrix solver, we now routinely solve l0(exp 6) x l0(exp 6) sparse matrices on our desktop computers. This has allowed us to couple nucleosynthesis and convection fully in the 1-D star, which, in turn, provides better estimates of nuclear yields when the mixing and nuclear burning timescales are comparable. We also have incorporated radiation transport into our 1-D supernova explosion code. We used the stellar evolution and explosion codes to compute iron abundances in a 25 Solar mass star and compared the results to data from RIMS.
Comparative analysis of design codes for timber bridges in Canada, the United States, and Europe
James Wacker; James (Scott) Groenier
2010-01-01
The United States recently completed its transition from the allowable stress design code to the load and resistance factor design (LRFD) reliability-based code for the design of most highway bridges. For an international perspective on the LRFD-based bridge codes, a comparative analysis is presented: a study addressed national codes of the United States, Canada, and...
Practical moral codes in the transgenic organism debate.
Cooley, D R; Goreham, Gary; Youngs, George A
2004-01-01
In one study funded by the United States Department of Agriculture, people from North Dakota were interviewed to discover which moral principles they use in evaluating the morality of transgenic organisms and their introduction into markets. It was found that although the moral codes the human subjects employed were very similar, their views on transgenics were vastly different. In this paper, the codes that were used by the respondents are developed, compared to that of the academically composed Belmont Report, and then modified to create the more practical Common Moral Code. At the end, it is shown that the Common Moral Code has inherent inconsistency flaws that might be resolvable, but would require extensive work on the definition of terms and principles. However, the effort is worthwhile, especially if it results in a common moral code that all those involved in the debate are willing to use in negotiating a resolution to their differences.
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.
1991-01-01
Computations from two Navier-Stokes codes, NSS and F3D, are presented for a tangent-ogive-cylinder body at high angle of attack. Features of this steady flow include a pair of primary vortices on the leeward side of the body as well as secondary vortices. The topological and physical plausibility of this vortical structure is discussed. The accuracy of these codes are assessed by comparison of the numerical solutions with experimental data. The effects of turbulence model, numerical dissipation, and grid refinement are presented. The overall efficiency of these codes are also assessed by examining their convergence rates, computational time per time step, and maximum allowable time step for time-accurate computations. Overall, the numerical results from both codes compared equally well with experimental data, however, the NSS code was found to be significantly more efficient than the F3D code.
Adaptive distributed source coding.
Varodayan, David; Lin, Yao-Chung; Girod, Bernd
2012-05-01
We consider distributed source coding in the presence of hidden variables that parameterize the statistical dependence among sources. We derive the Slepian-Wolf bound and devise coding algorithms for a block-candidate model of this problem. The encoder sends, in addition to syndrome bits, a portion of the source to the decoder uncoded as doping bits. The decoder uses the sum-product algorithm to simultaneously recover the source symbols and the hidden statistical dependence variables. We also develop novel techniques based on density evolution (DE) to analyze the coding algorithms. We experimentally confirm that our DE analysis closely approximates practical performance. This result allows us to efficiently optimize parameters of the algorithms. In particular, we show that the system performs close to the Slepian-Wolf bound when an appropriate doping rate is selected. We then apply our coding and analysis techniques to a reduced-reference video quality monitoring system and show a bit rate saving of about 75% compared with fixed-length coding.
A blind dual color images watermarking based on IWT and state coding
NASA Astrophysics Data System (ADS)
Su, Qingtang; Niu, Yugang; Liu, Xianxi; Zhu, Yu
2012-04-01
In this paper, a state-coding based blind watermarking algorithm is proposed to embed color image watermark to color host image. The technique of state coding, which makes the state code of data set be equal to the hiding watermark information, is introduced in this paper. When embedding watermark, using Integer Wavelet Transform (IWT) and the rules of state coding, these components, R, G and B, of color image watermark are embedded to these components, Y, Cr and Cb, of color host image. Moreover, the rules of state coding are also used to extract watermark from the watermarked image without resorting to the original watermark or original host image. Experimental results show that the proposed watermarking algorithm cannot only meet the demand on invisibility and robustness of the watermark, but also have well performance compared with other proposed methods considered in this work.
Reed-Muller Codes in Error Correction in Wireless Adhoc Networks
2004-03-01
resulting spectrum is the spectrum of the windowed signal. Therefore, the window width is an important pa- rameter that affects the BER performanceof ... compare the results, the same random message was used. The seed value in msg.m was changed only for comparing the PAPR values of the system with
NASA Technical Reports Server (NTRS)
Hartenstein, Richard G., Jr.
1985-01-01
Computer codes have been developed to analyze antennas on aircraft and in the presence of scatterers. The purpose of this study is to use these codes to develop accurate computer models of various aircraft and antenna systems. The antenna systems analyzed are a P-3B L-Band antenna, an A-7E UHF relay pod antenna, and traffic advisory antenna system installed on a Bell Long Ranger helicopter. Computer results are compared to measured ones with good agreement. These codes can be used in the design stage of an antenna system to determine the optimum antenna location and save valuable time and costly flight hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKeown, J.; Labrie, J.P.
1983-08-01
A general purpose finite element computer code called MARC is used to calculate the temperature distribution and dimensional changes in linear accelerator rf structures. Both steady state and transient behaviour are examined with the computer model. Combining results from MARC with the cavity evaluation computer code SUPERFISH, the static and dynamic behaviour of a structure under power is investigated. Structure cooling is studied to minimize loss in shunt impedance and frequency shifts during high power operation. Results are compared with an experimental test carried out on a cw 805 MHz on-axis coupled structure at an energy gradient of 1.8 MeV/m.more » The model has also been used to compare the performance of on-axis and coaxial structures and has guided the mechanical design of structures suitable for average gradients in excess of 2.0 MeV/m at 2.45 GHz.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, J; Culberson, W; DeWerd, L
Purpose: To test the validity of a windowless extrapolation chamber used to measure surface dose rate from planar ophthalmic applicators and to compare different Monte Carlo based codes for deriving correction factors. Methods: Dose rate measurements were performed using a windowless, planar extrapolation chamber with a {sup 90}Sr/{sup 90}Y Tracerlab RA-1 ophthalmic applicator previously calibrated at the National Institute of Standards and Technology (NIST). Capacitance measurements were performed to estimate the initial air gap width between the source face and collecting electrode. Current was measured as a function of air gap, and Bragg-Gray cavity theory was used to calculate themore » absorbed dose rate to water. To determine correction factors for backscatter, divergence, and attenuation from the Mylar entrance window found in the NIST extrapolation chamber, both EGSnrc Monte Carlo user code and Monte Carlo N-Particle Transport Code (MCNP) were utilized. Simulation results were compared with experimental current readings from the windowless extrapolation chamber as a function of air gap. Additionally, measured dose rate values were compared with the expected result from the NIST source calibration to test the validity of the windowless chamber design. Results: Better agreement was seen between EGSnrc simulated dose results and experimental current readings at very small air gaps (<100 µm) for the windowless extrapolation chamber, while MCNP results demonstrated divergence at these small gap widths. Three separate dose rate measurements were performed with the RA-1 applicator. The average observed difference from the expected result based on the NIST calibration was −1.88% with a statistical standard deviation of 0.39% (k=1). Conclusion: EGSnrc user code will be used during future work to derive correction factors for extrapolation chamber measurements. Additionally, experiment results suggest that an entrance window is not needed in order for an extrapolation chamber to provide accurate dose rate measurements for a planar ophthalmic applicator.« less
Expression Profiling Smackdown: Human Transcriptome Array HTA 2.0 vs. RNA-Seq
Palermo, Meghann; Driscoll, Heather; Tighe, Scott; Dragon, Julie; Bond, Jeff; Shukla, Arti; Vangala, Mahesh; Vincent, James; Hunter, Tim
2014-01-01
The advent of both microarray and massively parallel sequencing have revolutionized high-throughput analysis of the human transcriptome. Due to limitations in microarray technology, detecting and quantifying coding transcript isoforms, in addition to non-coding transcripts, has been challenging. As a result, RNA-Seq has been the preferred method for characterizing the full human transcriptome, until now. A new high-resolution array from Affymetrix, GeneChip Human Transcriptome Array 2.0 (HTA 2.0), has been designed to interrogate all transcript isoforms in the human transcriptome with >6 million probes targeting coding transcripts, exon-exon splice junctions, and non-coding transcripts. Here we compare expression results from GeneChip HTA 2.0 and RNA-Seq data using identical RNA extractions from three samples each of healthy human mesothelial cells in culture, LP9-C1, and healthy mesothelial cells treated with asbestos, LP9-A1. For GeneChip HTA 2.0 sample preparation, we chose to compare two target preparation methods, NuGEN Ovation Pico WTA V2 with the Encore Biotin Module versus Affymetrix's GeneChip WT PLUS with the WT Terminal Labeling Kit, on identical RNA extractions from both untreated and treated samples. These same RNA extractions were used for the RNA-Seq library preparation. All analyses were performed in Partek Genomics Suite 6.6. Expression profiles for control and asbestos-treated mesothelial cells prepared with NuGEN versus Affymetrix target preparation methods (GeneChip HTA 2.0) are compared to each other as well as to RNA-Seq results.
A Low-Storage-Consumption XML Labeling Method for Efficient Structural Information Extraction
NASA Astrophysics Data System (ADS)
Liang, Wenxin; Takahashi, Akihiro; Yokota, Haruo
Recently, labeling methods to extract and reconstruct the structural information of XML data, which are important for many applications such as XPath query and keyword search, are becoming more attractive. To achieve efficient structural information extraction, in this paper we propose C-DO-VLEI code, a novel update-friendly bit-vector encoding scheme, based on register-length bit operations combining with the properties of Dewey Order numbers, which cannot be implemented in other relevant existing schemes such as ORDPATH. Meanwhile, the proposed method also achieves lower storage consumption because it does not require either prefix schema or any reserved codes for node insertion. We performed experiments to evaluate and compare the performance and storage consumption of the proposed method with those of the ORDPATH method. Experimental results show that the execution times for extracting depth information and parent node labels using the C-DO-VLEI code are about 25% and 15% less, respectively, and the average label size using the C-DO-VLEI code is about 24% smaller, comparing with ORDPATH.
Use of Fluka to Create Dose Calculations
NASA Technical Reports Server (NTRS)
Lee, Kerry T.; Barzilla, Janet; Townsend, Lawrence; Brittingham, John
2012-01-01
Monte Carlo codes provide an effective means of modeling three dimensional radiation transport; however, their use is both time- and resource-intensive. The creation of a lookup table or parameterization from Monte Carlo simulation allows users to perform calculations with Monte Carlo results without replicating lengthy calculations. FLUKA Monte Carlo transport code was used to develop lookup tables and parameterizations for data resulting from the penetration of layers of aluminum, polyethylene, and water with areal densities ranging from 0 to 100 g/cm^2. Heavy charged ion radiation including ions from Z=1 to Z=26 and from 0.1 to 10 GeV/nucleon were simulated. Dose, dose equivalent, and fluence as a function of particle identity, energy, and scattering angle were examined at various depths. Calculations were compared against well-known results and against the results of other deterministic and Monte Carlo codes. Results will be presented.
Results using the OPAL strategy in Mandarin speaking cochlear implant recipients.
Vandali, Andrew E; Dawson, Pam W; Arora, Komal
2017-01-01
To evaluate the effectiveness of an experimental pitch-coding strategy for improving recognition of Mandarin lexical tone in cochlear implant (CI) recipients. Adult CI recipients were tested on recognition of Mandarin tones in quiet and speech-shaped noise at a signal-to-noise ratio of +10 dB; Mandarin sentence speech-reception threshold (SRT) in speech-shaped noise; and pitch discrimination of synthetic complex-harmonic tones in quiet. Two versions of the experimental strategy were examined: (OPAL) linear (1:1) mapping of fundamental frequency (F0) to the coded modulation rate; and (OPAL+) transposed mapping of high F0s to a lower coded rate. Outcomes were compared to results using the clinical ACE™ strategy. Five Mandarin speaking users of Nucleus® cochlear implants. A small but significant benefit in recognition of lexical tones was observed using OPAL compared to ACE in noise, but not in quiet, and not for OPAL+ compared to ACE or OPAL in quiet or noise. Sentence SRTs were significantly better using OPAL+ and comparable using OPAL to those using ACE. No differences in pitch discrimination thresholds were observed across strategies. OPAL can provide benefits to Mandarin lexical tone recognition in moderately noisy conditions and preserve perception of Mandarin sentences in challenging noise conditions.
Simulation studies of chemical erosion on carbon based materials at elevated temperatures
NASA Astrophysics Data System (ADS)
Kenmotsu, T.; Kawamura, T.; Li, Zhijie; Ono, T.; Yamamura, Y.
1999-06-01
We simulated the fluence dependence of methane reaction yield in carbon with hydrogen bombardment using the ACAT-DIFFUSE code. The ACAT-DIFFUSE code is a simulation code based on a Monte Carlo method with a binary collision approximation and on solving diffusion equations. The chemical reaction model in carbon was studied by Roth or other researchers. Roth's model is suitable for the steady state methane reaction. But this model cannot estimate the fluence dependence of the methane reaction. Then, we derived an empirical formula based on Roth's model for methane reaction. In this empirical formula, we assumed the reaction region where chemical sputtering due to methane formation takes place. The reaction region corresponds to the peak range of incident hydrogen distribution in the target material. We adopted this empirical formula to the ACAT-DIFFUSE code. The simulation results indicate the similar fluence dependence compared with the experiment result. But, the fluence to achieve the steady state are different between experiment and simulation results.
Aerodynamic analysis of three advanced configurations using the TranAir full-potential code
NASA Technical Reports Server (NTRS)
Madson, M. D.; Carmichael, R. L.; Mendoza, J. P.
1989-01-01
Computational results are presented for three advanced configurations: the F-16A with wing tip missiles and under wing fuel tanks, the Oblique Wing Research Aircraft, and an Advanced Turboprop research model. These results were generated by the latest version of the TranAir full potential code, which solves for transonic flow over complex configurations. TranAir embeds a surface paneled geometry definition in a uniform rectangular flow field grid, thus avoiding the use of surface conforming grids, and decoupling the grid generation process from the definition of the configuration. The new version of the code locally refines the uniform grid near the surface of the geometry, based on local panel size and/or user input. This method distributes the flow field grid points much more efficiently than the previous version of the code, which solved for a grid that was uniform everywhere in the flow field. TranAir results are presented for the three configurations and are compared with wind tunnel data.
NASA Astrophysics Data System (ADS)
Clark, Stephen; Winske, Dan; Schaeffer, Derek; Everson, Erik; Bondarenko, Anton; Constantin, Carmen; Niemann, Christoph
2014-10-01
We present 3D hybrid simulations of laser produced expanding debris clouds propagating though a magnetized ambient plasma in the context of magnetized collisionless shocks. New results from the 3D code are compared to previously obtained simulation results using a 2D hybrid code. The 3D code is an extension of a previously developed 2D code developed at Los Alamos National Laboratory. It has been parallelized and ported to execute on a cluster environment. The new simulations are used to verify scaling relationships, such as shock onset time and coupling parameter (Rm /ρd), developed via 2D simulations. Previous 2D results focus primarily on laboratory shock formation relevant to experiments being performed on the Large Plasma Device, where the shock propagates across the magnetic field. The new 3D simulations show wave structure and dynamics oblique to the magnetic field that introduce new physics to be considered in future experiments.
An X-Ray Analysis Database of Photoionization Cross Sections Including Variable Ionization
NASA Technical Reports Server (NTRS)
Wang, Ping; Cohen, David H.; MacFarlane, Joseph J.; Cassinelli, Joseph P.
1997-01-01
Results of research efforts in the following areas are discussed: review of the major theoretical and experimental data of subshell photoionization cross sections and ionization edges of atomic ions to assess the accuracy of the data, and to compile the most reliable of these data in our own database; detailed atomic physics calculations to complement the database for all ions of 17 cosmically abundant elements; reconciling the data from various sources and our own calculations; and fitting cross sections with functional approximations and incorporating these functions into a compact computer code.Also, efforts included adapting an ionization equilibrium code, tabulating results, and incorporating them into the overall program and testing the code (both ionization equilibrium and opacity codes) with existing observational data. The background and scientific applications of this work are discussed. Atomic physics cross section models and calculations are described. Calculation results are compared with available experimental data and other theoretical data. The functional approximations used for fitting cross sections are outlined and applications of the database are discussed.
NASA Technical Reports Server (NTRS)
Mashnik, S. G.; Gudima, K. K.; Sierk, A. J.; Moskalenko, I. V.
2002-01-01
Space radiation shield applications and studies of cosmic ray propagation in the Galaxy require reliable cross sections to calculate spectra of secondary particles and yields of the isotopes produced in nuclear reactions induced both by particles and nuclei at energies from threshold to hundreds of GeV per nucleon. Since the data often exist in a very limited energy range or sometimes not at all, the only way to obtain an estimate of the production cross sections is to use theoretical models and codes. Recently, we have developed improved versions of the Cascade-Exciton Model (CEM) of nuclear reactions: the codes CEM97 and CEM2k for description of particle-nucleus reactions at energies up to about 5 GeV. In addition, we have developed a LANL version of the Quark-Gluon String Model (LAQGSM) to describe reactions induced both by particles and nuclei at energies up to hundreds of GeVhucleon. We have tested and benchmarked the CEM and LAQGSM codes against a large variety of experimental data and have compared their results with predictions by other currently available models and codes. Our benchmarks show that CEM and LAQGSM codes have predictive powers no worse than other currently used codes and describe many reactions better than other codes; therefore both our codes can be used as reliable event-generators for space radiation shield and cosmic ray propagation applications. The CEM2k code is being incorporated into the transport code MCNPX (and several other transport codes), and we plan to incorporate LAQGSM into MCNPX in the near future. Here, we present the current status of the CEM2k and LAQGSM codes, and show results and applications to studies of cosmic ray propagation in the Galaxy.
COCOA code for creating mock observations of star cluster models
NASA Astrophysics Data System (ADS)
Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele
2018-04-01
We introduce and present results from the COCOA (Cluster simulatiOn Comparison with ObservAtions) code that has been developed to create idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. In this paper, we describe the COCOA code and demonstrate its different applications by utilizing globular cluster (GC) models simulated with the MOCCA (MOnte Carlo Cluster simulAtor) code. COCOA is used to synthetically observe these different GC models with optical telescopes, perform point spread function photometry, and subsequently produce observed colour-magnitude diagrams. We also use COCOA to compare the results from synthetic observations of a cluster model that has the same age and metallicity as the Galactic GC NGC 2808 with observations of the same cluster carried out with a 2.2 m optical telescope. We find that COCOA can effectively simulate realistic observations and recover photometric data. COCOA has numerous scientific applications that maybe be helpful for both theoreticians and observers that work on star clusters. Plans for further improving and developing the code are also discussed in this paper.
Influence of the plasma environment on atomic structure using an ion-sphere model
NASA Astrophysics Data System (ADS)
Belkhiri, Madeny; Fontes, Christopher J.; Poirier, Michel
2015-09-01
Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for the six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe22 +, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the multiconfiguration Dirac-Fock value of B. Saha and S. Fritzsche [J. Phys. B 40, 259 (2007), 10.1088/0953-4075/40/2/002]. Last, the present model is compared to experimental data in titanium measured on the terawatt Astra facility and provides values for electron temperature and density in agreement with the maria code.
NASA Astrophysics Data System (ADS)
Drobny, Jon; Curreli, Davide; Ruzic, David; Lasa, Ane; Green, David; Canik, John; Younkin, Tim; Blondel, Sophie; Wirth, Brian
2017-10-01
Surface roughness greatly impacts material erosion, and thus plays an important role in Plasma-Surface Interactions. Developing strategies for efficiently introducing rough surfaces into ion-solid interaction codes will be an important step towards whole-device modeling of plasma devices and future fusion reactors such as ITER. Fractal TRIDYN (F-TRIDYN) is an upgraded version of the Monte Carlo, BCA program TRIDYN developed for this purpose that includes an explicit fractal model of surface roughness and extended input and output options for file-based code coupling. Code coupling with both plasma and material codes has been achieved and allows for multi-scale, whole-device modeling of plasma experiments. These code coupling results will be presented. F-TRIDYN has been further upgraded with an alternative, statistical model of surface roughness. The statistical model is significantly faster than and compares favorably to the fractal model. Additionally, the statistical model compares well to alternative computational surface roughness models and experiments. Theoretical links between the fractal and statistical models are made, and further connections to experimental measurements of surface roughness are explored. This work was supported by the PSI-SciDAC Project funded by the U.S. Department of Energy through contract DOE-DE-SC0008658.
Evolution of coding and non-coding genes in HOX clusters of a marsupial
2012-01-01
Background The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Results Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. Conclusions This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial. PMID:22708672
Discrete Cosine Transform Image Coding With Sliding Block Codes
NASA Astrophysics Data System (ADS)
Divakaran, Ajay; Pearlman, William A.
1989-11-01
A transform trellis coding scheme for images is presented. A two dimensional discrete cosine transform is applied to the image followed by a search on a trellis structured code. This code is a sliding block code that utilizes a constrained size reproduction alphabet. The image is divided into blocks by the transform coding. The non-stationarity of the image is counteracted by grouping these blocks in clusters through a clustering algorithm, and then encoding the clusters separately. Mandela ordered sequences are formed from each cluster i.e identically indexed coefficients from each block are grouped together to form one dimensional sequences. A separate search ensues on each of these Mandela ordered sequences. Padding sequences are used to improve the trellis search fidelity. The padding sequences absorb the error caused by the building up of the trellis to full size. The simulations were carried out on a 256x256 image ('LENA'). The results are comparable to any existing scheme. The visual quality of the image is enhanced considerably by the padding and clustering.
Conducting Retrospective Ontological Clinical Trials in ICD-9-CM in the Age of ICD-10-CM.
Venepalli, Neeta K; Shergill, Ardaman; Dorestani, Parvaneh; Boyd, Andrew D
2014-01-01
To quantify the impact of International Classification of Disease 10th Revision Clinical Modification (ICD-10-CM) transition in cancer clinical trials by comparing coding accuracy and data discontinuity in backward ICD-10-CM to ICD-9-CM mapping via two tools, and to develop a standard ICD-9-CM and ICD-10-CM bridging methodology for retrospective analyses. While the transition to ICD-10-CM has been delayed until October 2015, its impact on cancer-related studies utilizing ICD-9-CM diagnoses has been inadequately explored. Three high impact journals with broad national and international readerships were reviewed for cancer-related studies utilizing ICD-9-CM diagnoses codes in study design, methods, or results. Forward ICD-9-CM to ICD-10-CM mapping was performing using a translational methodology with the Motif web portal ICD-9-CM conversion tool. Backward mapping from ICD-10-CM to ICD-9-CM was performed using both Centers for Medicare and Medicaid Services (CMS) general equivalence mappings (GEMs) files and the Motif web portal tool. Generated ICD-9-CM codes were compared with the original ICD-9-CM codes to assess data accuracy and discontinuity. While both methods yielded additional ICD-9-CM codes, the CMS GEMs method provided incomplete coverage with 16 of the original ICD-9-CM codes missing, whereas the Motif web portal method provided complete coverage. Of these 16 codes, 12 ICD-9-CM codes were present in 2010 Illinois Medicaid data, and accounted for 0.52% of patient encounters and 0.35% of total Medicaid reimbursements. Extraneous ICD-9-CM codes from both methods (Centers for Medicare and Medicaid Services general equivalent mapping [CMS GEMs, n = 161; Motif web portal, n = 246]) in excess of original ICD-9-CM codes accounted for 2.1% and 2.3% of total patient encounters and 3.4% and 4.1% of total Medicaid reimbursements from the 2010 Illinois Medicare database. Longitudinal data analyses post-ICD-10-CM transition will require backward ICD-10-CM to ICD-9-CM coding, and data comparison for accuracy. Researchers must be aware that all methods for backward coding are not comparable in yielding original ICD-9-CM codes. The mandated delay is an opportunity for organizations to better understand areas of financial risk with regards to data management via backward coding. Our methodology is relevant for all healthcare-related coding data, and can be replicated by organizations as a strategy to mitigate financial risk.
FDNS CFD Code Benchmark for RBCC Ejector Mode Operation
NASA Technical Reports Server (NTRS)
Holt, James B.; Ruf, Joe
1999-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi-dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for both Diffusion and Afterburning (DAB) and Simultaneous Mixing and Combustion (SMC) test conditions. Results from both the 2D and the 3D models are presented.
Wangerin, K; Culbertson, C N; Jevremovic, T
2005-08-01
The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for gadolinium neutron capture therapy (GdNCT) related modeling. The validity of COG NCT model has been established for this model, and here the calculation was extended to analyze the effect of various gadolinium concentrations on dose distribution and cell-kill effect of the GdNCT modality and to determine the optimum therapeutic conditions for treating brain cancers. The computational results were compared with the widely used MCNP code. The differences between the COG and MCNP predictions were generally small and suggest that the COG code can be applied to similar research problems in NCT. Results for this study also showed that a concentration of 100 ppm gadolinium in the tumor was most beneficial when using an epithermal neutron beam.
Neoclassical orbit calculations with a full-f code for tokamak edge plasmas
NASA Astrophysics Data System (ADS)
Rognlien, T. D.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Xu, X. Q.; Collela, P.; Martin, D.
2008-11-01
Ion distribution function modifications are considered for the case of neoclassical orbit widths comparable to plasma radial-gradient scale-lengths. Implementation of proper boundary conditions at divertor plates in the continuum TEMPEST code, including the effect of drifts in determining the direction of total flow, enables such calculations in single-null divertor geometry, with and without an electrostatic potential. The resultant poloidal asymmetries in densities, temperatures, and flows are discussed. For long-time simulations, a slow numerical instability develops, even in simplified (circular) geometry with no endloss, which aids identification of the mixed treatment of parallel and radial convection terms as the cause. The new Edge Simulation Laboratory code, expected to be operational, has algorithmic refinements that should address the instability. We will present any available results from the new code on this problem as well as geodesic acoustic mode tests.
NASA Astrophysics Data System (ADS)
Sanchez, Gustavo; Marcon, César; Agostini, Luciano Volcan
2018-01-01
The 3D-high efficiency video coding has introduced tools to obtain higher efficiency in 3-D video coding, and most of them are related to the depth maps coding. Among these tools, the depth modeling mode-1 (DMM-1) focuses on better encoding edges regions of depth maps. The large memory required for storing all wedgelet patterns is one of the bottlenecks in the DMM-1 hardware design of both encoder and decoder since many patterns must be stored. Three algorithms to reduce the DMM-1 memory requirements and a hardware design targeting the most efficient among these algorithms are presented. Experimental results demonstrate that the proposed solutions surpass related works reducing up to 78.8% of the wedgelet memory, without degrading the encoding efficiency. Synthesis results demonstrate that the proposed algorithm reduces almost 75% of the power dissipation when compared to the standard approach.
NASA Technical Reports Server (NTRS)
Norment, H. G.
1980-01-01
Calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Any subsonic, external, non-lifting flow can be accommodated; flow into, but not through, inlets also can be simulated. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Code descriptions include operating instructions, card inputs and printouts for example problems, and listing of the FORTRAN codes. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.
Wavelet-based image compression using shuffling and bit plane correlation
NASA Astrophysics Data System (ADS)
Kim, Seungjong; Jeong, Jechang
2000-12-01
In this paper, we propose a wavelet-based image compression method using shuffling and bit plane correlation. The proposed method improves coding performance in two steps: (1) removing the sign bit plane by shuffling process on quantized coefficients, (2) choosing the arithmetic coding context according to maximum correlation direction. The experimental results are comparable or superior for some images with low correlation, to existing coders.
GRC RBCC Concept Multidisciplinary Analysis
NASA Technical Reports Server (NTRS)
Suresh, Ambady
2001-01-01
This report outlines the GRC RBCC Concept for Multidisciplinary Analysis. The multidisciplinary coupling procedure is presented, along with technique validations and axisymmetric multidisciplinary inlet and structural results. The NPSS (Numerical Propulsion System Simulation) test bed developments and code parallelization are also presented. These include milestones and accomplishments, a discussion of running R4 fan application on the PII cluster as compared to other platforms, and the National Combustor Code speedup.
Performance and structure of single-mode bosonic codes
NASA Astrophysics Data System (ADS)
Albert, Victor V.; Noh, Kyungjoo; Duivenvoorden, Kasper; Young, Dylan J.; Brierley, R. T.; Reinhold, Philip; Vuillot, Christophe; Li, Linshu; Shen, Chao; Girvin, S. M.; Terhal, Barbara M.; Jiang, Liang
2018-03-01
The early Gottesman, Kitaev, and Preskill (GKP) proposal for encoding a qubit in an oscillator has recently been followed by cat- and binomial-code proposals. Numerically optimized codes have also been proposed, and we introduce codes of this type here. These codes have yet to be compared using the same error model; we provide such a comparison by determining the entanglement fidelity of all codes with respect to the bosonic pure-loss channel (i.e., photon loss) after the optimal recovery operation. We then compare achievable communication rates of the combined encoding-error-recovery channel by calculating the channel's hashing bound for each code. Cat and binomial codes perform similarly, with binomial codes outperforming cat codes at small loss rates. Despite not being designed to protect against the pure-loss channel, GKP codes significantly outperform all other codes for most values of the loss rate. We show that the performance of GKP and some binomial codes increases monotonically with increasing average photon number of the codes. In order to corroborate our numerical evidence of the cat-binomial-GKP order of performance occurring at small loss rates, we analytically evaluate the quantum error-correction conditions of those codes. For GKP codes, we find an essential singularity in the entanglement fidelity in the limit of vanishing loss rate. In addition to comparing the codes, we draw parallels between binomial codes and discrete-variable systems. First, we characterize one- and two-mode binomial as well as multiqubit permutation-invariant codes in terms of spin-coherent states. Such a characterization allows us to introduce check operators and error-correction procedures for binomial codes. Second, we introduce a generalization of spin-coherent states, extending our characterization to qudit binomial codes and yielding a multiqudit code.
Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal
NASA Astrophysics Data System (ADS)
Zamudio, Gabriel S.; José, Marco V.
2018-03-01
In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.
Afzal, Naveed; Sohn, Sunghwan; Abram, Sara; Scott, Christopher G; Chaudhry, Rajeev; Liu, Hongfang; Kullo, Iftikhar J; Arruda-Olson, Adelaide M
2017-06-01
Lower extremity peripheral arterial disease (PAD) is highly prevalent and affects millions of individuals worldwide. We developed a natural language processing (NLP) system for automated ascertainment of PAD cases from clinical narrative notes and compared the performance of the NLP algorithm with billing code algorithms, using ankle-brachial index test results as the gold standard. We compared the performance of the NLP algorithm to (1) results of gold standard ankle-brachial index; (2) previously validated algorithms based on relevant International Classification of Diseases, Ninth Revision diagnostic codes (simple model); and (3) a combination of International Classification of Diseases, Ninth Revision codes with procedural codes (full model). A dataset of 1569 patients with PAD and controls was randomly divided into training (n = 935) and testing (n = 634) subsets. We iteratively refined the NLP algorithm in the training set including narrative note sections, note types, and service types, to maximize its accuracy. In the testing dataset, when compared with both simple and full models, the NLP algorithm had better accuracy (NLP, 91.8%; full model, 81.8%; simple model, 83%; P < .001), positive predictive value (NLP, 92.9%; full model, 74.3%; simple model, 79.9%; P < .001), and specificity (NLP, 92.5%; full model, 64.2%; simple model, 75.9%; P < .001). A knowledge-driven NLP algorithm for automatic ascertainment of PAD cases from clinical notes had greater accuracy than billing code algorithms. Our findings highlight the potential of NLP tools for rapid and efficient ascertainment of PAD cases from electronic health records to facilitate clinical investigation and eventually improve care by clinical decision support. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK.
Wang, Kaier; Steyn-Ross, Moira L; Steyn-Ross, D Alistair; Wilson, Marcus T; Sleigh, Jamie W; Shiraishi, Yoichi
2014-04-11
Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system's set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This "code-based" approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming skills, and the graphical interface lends itself to easy modification and use by non-experts.
The rotating movement of three immiscible fluids - A benchmark problem
Bakker, M.; Oude, Essink G.H.P.; Langevin, C.D.
2004-01-01
A benchmark problem involving the rotating movement of three immiscible fluids is proposed for verifying the density-dependent flow component of groundwater flow codes. The problem consists of a two-dimensional strip in the vertical plane filled with three fluids of different densities separated by interfaces. Initially, the interfaces between the fluids make a 45??angle with the horizontal. Over time, the fluids rotate to the stable position whereby the interfaces are horizontal; all flow is caused by density differences. Two cases of the problem are presented, one resulting in a symmetric flow field and one resulting in an asymmetric flow field. An exact analytical solution for the initial flow field is presented by application of the vortex theory and complex variables. Numerical results are obtained using three variable-density groundwater flow codes (SWI, MOCDENS3D, and SEAWAT). Initial horizontal velocities of the interfaces, as simulated by the three codes, compare well with the exact solution. The three codes are used to simulate the positions of the interfaces at two times; the three codes produce nearly identical results. The agreement between the results is evidence that the specific rotational behavior predicted by the models is correct. It also shows that the proposed problem may be used to benchmark variable-density codes. It is concluded that the three models can be used to model accurately the movement of interfaces between immiscible fluids, and have little or no numerical dispersion. ?? 2003 Elsevier B.V. All rights reserved.
Accumulate-Repeat-Accumulate-Accumulate-Codes
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy
2004-01-01
Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.
Comparison of heavy-ion transport simulations: Collision integral in a box
NASA Astrophysics Data System (ADS)
Zhang, Ying-Xun; Wang, Yong-Jia; Colonna, Maria; Danielewicz, Pawel; Ono, Akira; Tsang, Manyee Betty; Wolter, Hermann; Xu, Jun; Chen, Lie-Wen; Cozma, Dan; Feng, Zhao-Qing; Das Gupta, Subal; Ikeno, Natsumi; Ko, Che-Ming; Li, Bao-An; Li, Qing-Feng; Li, Zhu-Xia; Mallik, Swagata; Nara, Yasushi; Ogawa, Tatsuhiko; Ohnishi, Akira; Oliinychenko, Dmytro; Papa, Massimo; Petersen, Hannah; Su, Jun; Song, Taesoo; Weil, Janus; Wang, Ning; Zhang, Feng-Shou; Zhang, Zhen
2018-03-01
Simulations by transport codes are indispensable to extract valuable physical information from heavy-ion collisions. In order to understand the origins of discrepancies among different widely used transport codes, we compare 15 such codes under controlled conditions of a system confined to a box with periodic boundary, initialized with Fermi-Dirac distributions at saturation density and temperatures of either 0 or 5 MeV. In such calculations, one is able to check separately the different ingredients of a transport code. In this second publication of the code evaluation project, we only consider the two-body collision term; i.e., we perform cascade calculations. When the Pauli blocking is artificially suppressed, the collision rates are found to be consistent for most codes (to within 1 % or better) with analytical results, or completely controlled results of a basic cascade code. In orderto reach that goal, it was necessary to eliminate correlations within the same pair of colliding particles that can be present depending on the adopted collision prescription. In calculations with active Pauli blocking, the blocking probability was found to deviate from the expected reference values. The reason is found in substantial phase-space fluctuations and smearing tied to numerical algorithms and model assumptions in the representation of phase space. This results in the reduction of the blocking probability in most transport codes, so that the simulated system gradually evolves away from the Fermi-Dirac toward a Boltzmann distribution. Since the numerical fluctuations are weaker in the Boltzmann-Uehling-Uhlenbeck codes, the Fermi-Dirac statistics is maintained there for a longer time than in the quantum molecular dynamics codes. As a result of this investigation, we are able to make judgements about the most effective strategies in transport simulations for determining the collision probabilities and the Pauli blocking. Investigation in a similar vein of other ingredients in transport calculations, like the mean-field propagation or the production of nucleon resonances and mesons, will be discussed in the future publications.
Identifying Vasopressor and Inotrope Use for Health Services Research
Fawzy, Ashraf; Bradford, Mark; Lindenauer, Peter K.
2016-01-01
Rationale: Identifying vasopressor and inotrope (vasopressor) use from administrative claims data may provide an important resource to study the epidemiology of shock. Objectives: Determine accuracy of identifying vasopressor use using International Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM) coding. Methods: Using administrative data enriched with pharmacy billing files (Premier, Inc., Charlotte, NC), we identified two cohorts: adult patients admitted with a diagnosis of sepsis from 2010 to 2013 or pulmonary embolism (PE) from 2008 to 2011. Vasopressor administration was obtained using pharmacy billing files (dopamine, dobutamine, epinephrine, milrinone, norepinephrine, phenylephrine, vasopressin) and compared with ICD-9-CM procedure code for vasopressor administration (00.17). We estimated performance characteristics of the ICD-9-CM code and compared patients’ characteristics and mortality rates according to vasopressor identification method. Measurements and Main Results: Using either pharmacy data or the ICD-9-CM procedure code, 29% of 541,144 patients in the sepsis cohort and 5% of 81,588 patients in the PE cohort were identified as receiving a vasopressor. In the sepsis cohort, the ICD-9-CM procedure code had low sensitivity (9.4%; 95% confidence interval, 9.2–9.5), which increased over time. Results were similar in the PE cohort (sensitivity, 5.8%; 95% confidence interval, 5.1–6.6). The ICD-9-CM code exhibited high specificity in the sepsis (99.8%) and PE (100%) cohorts. However, patients identified as receiving vasopressors by ICD-9-CM code had significantly higher unadjusted in-hospital mortality, had more acute organ failures, and were more likely hospitalized in the Northeast and West. Conclusions: The ICD-9-CM procedure code for vasopressor administration has low sensitivity and selects for higher severity of illness in studies of shock. Temporal changes in sensitivity would likely make longitudinal shock surveillance using ICD-9-CM inaccurate. PMID:26653145
Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code
NASA Astrophysics Data System (ADS)
Haas, Roland; Ott, Christian D.; Szilagyi, Bela; Kaplan, Jeffrey D.; Lippuner, Jonas; Scheel, Mark A.; Barkett, Kevin; Muhlberger, Curran D.; Dietrich, Tim; Duez, Matthew D.; Foucart, Francois; Pfeiffer, Harald P.; Kidder, Lawrence E.; Teukolsky, Saul A.
2016-06-01
We present results on the inspiral, merger, and postmerger evolution of a neutron star-neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for ≈22 orbits before merger. This waveform is the longest waveform obtained from fully general-relativistic simulations for NSNSs to date. Such long (and accurate) numerical waveforms are required to further improve semianalytical models used in gravitational wave data analysis, for example, the effective one body models. We discuss in detail the improvements to SpEC's ability to simulate NSNS mergers, in particular mesh refined grids to better resolve the merger and postmerger phases. We provide a set of consistency checks and compare our results to NSNS merger simulations with the independent bam code. We find agreement between them, which increases confidence in results obtained with either code. This work paves the way for future studies using long waveforms and more complex microphysical descriptions of neutron star matter in SpEC.
Ultrasound strain imaging using Barker code
NASA Astrophysics Data System (ADS)
Peng, Hui; Tie, Juhong; Guo, Dequan
2017-01-01
Ultrasound strain imaging is showing promise as a new way of imaging soft tissue elasticity in order to help clinicians detect lesions or cancers in tissues. In this paper, Barker code is applied to strain imaging to improve its quality. Barker code as a coded excitation signal can be used to improve the echo signal-to-noise ratio (eSNR) in ultrasound imaging system. For the Baker code of length 13, the sidelobe level of the matched filter output is -22dB, which is unacceptable for ultrasound strain imaging, because high sidelobe level will cause high decorrelation noise. Instead of using the conventional matched filter, we use the Wiener filter to decode the Barker-coded echo signal to suppress the range sidelobes. We also compare the performance of Barker code and the conventional short pulse in simulation method. The simulation results demonstrate that the performance of the Wiener filter is much better than the matched filter, and Baker code achieves higher elastographic signal-to-noise ratio (SNRe) than the short pulse in low eSNR or great depth conditions due to the increased eSNR with it.
Status of BOUT fluid turbulence code: improvements and verification
NASA Astrophysics Data System (ADS)
Umansky, M. V.; Lodestro, L. L.; Xu, X. Q.
2006-10-01
BOUT is an electromagnetic fluid turbulence code for tokamak edge plasma [1]. BOUT performs time integration of reduced Braginskii plasma fluid equations, using spatial discretization in realistic geometry and employing a standard ODE integration package PVODE. BOUT has been applied to several tokamak experiments and in some cases calculated spectra of turbulent fluctuations compared favorably to experimental data. On the other hand, the desire to understand better the code results and to gain more confidence in it motivated investing effort in rigorous verification of BOUT. Parallel to the testing the code underwent substantial modification, mainly to improve its readability and tractability of physical terms, with some algorithmic improvements as well. In the verification process, a series of linear and nonlinear test problems was applied to BOUT, targeting different subgroups of physical terms. The tests include reproducing basic electrostatic and electromagnetic plasma modes in simplified geometry, axisymmetric benchmarks against the 2D edge code UEDGE in real divertor geometry, and neutral fluid benchmarks against the hydrodynamic code LCPFCT. After completion of the testing, the new version of the code is being applied to actual tokamak edge turbulence problems, and the results will be presented. [1] X. Q. Xu et al., Contr. Plas. Phys., 36,158 (1998). *Work performed for USDOE by Univ. Calif. LLNL under contract W-7405-ENG-48.
Adaptive image coding based on cubic-spline interpolation
NASA Astrophysics Data System (ADS)
Jiang, Jian-Xing; Hong, Shao-Hua; Lin, Tsung-Ching; Wang, Lin; Truong, Trieu-Kien
2014-09-01
It has been investigated that at low bit rates, downsampling prior to coding and upsampling after decoding can achieve better compression performance than standard coding algorithms, e.g., JPEG and H. 264/AVC. However, at high bit rates, the sampling-based schemes generate more distortion. Additionally, the maximum bit rate for the sampling-based scheme to outperform the standard algorithm is image-dependent. In this paper, a practical adaptive image coding algorithm based on the cubic-spline interpolation (CSI) is proposed. This proposed algorithm adaptively selects the image coding method from CSI-based modified JPEG and standard JPEG under a given target bit rate utilizing the so called ρ-domain analysis. The experimental results indicate that compared with the standard JPEG, the proposed algorithm can show better performance at low bit rates and maintain the same performance at high bit rates.
Applications of potential theory computations to transonic aeroelasticity
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1986-01-01
Unsteady aerodynamic and aeroelastic stability calculations based upon transonic small disturbance (TSD) potential theory are presented. Results from the two-dimensional XTRAN2L code and the three-dimensional XTRAN3S code are compared with experiment to demonstrate the ability of TSD codes to treat transonic effects. The necessity of nonisentropic corrections to transonic potential theory is demonstrated. Dynamic computational effects resulting from the choice of grid and boundary conditions are illustrated. Unsteady airloads for a number of parameter variations including airfoil shape and thickness, Mach number, frequency, and amplitude are given. Finally, samples of transonic aeroelastic calculations are given. A key observation is the extent to which unsteady transonic airloads calculated by inviscid potential theory may be treated in a locally linear manner.
Validating a Monotonically-Integrated Large Eddy Simulation Code for Subsonic Jet Acoustics
NASA Technical Reports Server (NTRS)
Ingraham, Daniel; Bridges, James
2017-01-01
The results of subsonic jet validation cases for the Naval Research Lab's Jet Engine Noise REduction (JENRE) code are reported. Two set points from the Tanna matrix, set point 3 (Ma = 0.5, unheated) and set point 7 (Ma = 0.9, unheated) are attempted on three different meshes. After a brief discussion of the JENRE code and the meshes constructed for this work, the turbulent statistics for the axial velocity are presented and compared to experimental data, with favorable results. Preliminary simulations for set point 23 (Ma = 0.5, Tj=T1 = 1.764) on one of the meshes are also described. Finally, the proposed configuration for the farfield noise prediction with JENRE's Ffowcs-Williams Hawking solver are detailed.
Community measures of low-fat milk consumption: comparing store shelves with households.
Fisher, B D; Strogatz, D S
1999-01-01
OBJECTIVES: This study examined the relationship between the proportion of milk in food stores that is low-fat and consumption of low-fat milk in the community. METHODS: Data were gathered from 503 stores across 53 New York State zip codes. In 19 zip codes, a telephone survey measured household low-fat milk use. Census data were obtained to examine sociodemographic predictors of the percentage of low-fat milk in stores. RESULTS: The proportion of low-fat milk in stores was directly related to low-fat milk consumption in households and to the median income and urban level of the zip code. CONCLUSIONS: These results support using food store shelf-space observations to estimate low-fat milk consumption. PMID:9949755
Numerical computation of space shuttle orbiter flow field
NASA Technical Reports Server (NTRS)
Tannehill, John C.
1988-01-01
A new parabolized Navier-Stokes (PNS) code has been developed to compute the hypersonic, viscous chemically reacting flow fields around 3-D bodies. The flow medium is assumed to be a multicomponent mixture of thermally perfect but calorically imperfect gases. The new PNS code solves the gas dynamic and species conservation equations in a coupled manner using a noniterative, implicit, approximately factored, finite difference algorithm. The space-marching method is made well-posed by special treatment of the streamwise pressure gradient term. The code has been used to compute hypersonic laminar flow of chemically reacting air over cones at angle of attack. The results of the computations are compared with the results of reacting boundary-layer computations and show excellent agreement.
Effect of URM infills on seismic vulnerability of Indian code designed RC frame buildings
NASA Astrophysics Data System (ADS)
Haldar, Putul; Singh, Yogendra; Paul, D. K.
2012-03-01
Unreinforced Masonry (URM) is the most common partitioning material in framed buildings in India and many other countries. Although it is well-known that under lateral loading the behavior and modes of failure of the frame buildings change significantly due to infill-frame interaction, the general design practice is to treat infills as nonstructural elements and their stiffness, strength and interaction with the frame is often ignored, primarily because of difficulties in simulation and lack of modeling guidelines in design codes. The Indian Standard, like many other national codes, does not provide explicit insight into the anticipated performance and associated vulnerability of infilled frames. This paper presents an analytical study on the seismic performance and fragility analysis of Indian code-designed RC frame buildings with and without URM infills. Infills are modeled as diagonal struts as per ASCE 41 guidelines and various modes of failure are considered. HAZUS methodology along with nonlinear static analysis is used to compare the seismic vulnerability of bare and infilled frames. The comparative study suggests that URM infills result in a significant increase in the seismic vulnerability of RC frames and their effect needs to be properly incorporated in design codes.
Lewkowitz, Adam K; O'Donnell, Betsy E; Nakagawa, Sanae; Vargas, Juan E; Zlatnik, Marya G
2016-03-01
Text4baby is the only free text-message program for pregnancy available. Our objective was to determine whether content differed between Text4baby and popular pregnancy smart phone applications (apps). Researchers enrolled in Text4baby in 2012 and downloaded the four most-popular free pregnancy smart phone apps in July 2013; content was re-extracted in February 2014. Messages were assigned thematic codes. Two researchers coded messages independently before reviewing all the codes jointly to ensure consistency. Logistic regression modeling determined statistical differences between Text4baby and smart phone apps. About 1399 messages were delivered. Of these, 333 messages had content related to more than one theme and were coded as such, resulting in 1820 codes analyzed. Compared to smart phone apps, Text4baby was significantly more likely to have content regarding Postpartum Planning, Seeking Care, Recruitment and Prevention and significantly less likely to mention Normal Pregnancy Symptoms. No messaging program included content regarding postpartum contraception. To improve content without increasing text message number, Text4baby could replace messages on recruitment with messages regarding normal pregnancy symptoms, fetal development and postpartum contraception.
NASA Astrophysics Data System (ADS)
Elgaud, M. M.; Zan, M. S. D.; Abushagur, A. G.; Bakar, A. Ashrif A.
2017-07-01
This paper reports the employment of autocorrelation properties of Golay complementary codes (GCC) to enhance the performance of the time domain multiplexing fiber Bragg grating (TDM-FBG) sensing network. By encoding the light from laser with a stream of non-return-to-zero (NRZ) form of GCC and launching it into the sensing area that consists of the FBG sensors, we have found that the FBG signals can be decoded correctly with the autocorrelation calculations, confirming the successful demonstration of coded TDM-FBG sensor network. OptiGrating and OptiSystem simulators were used to design customized FBG sensors and perform the coded TDM-FBG sensor simulations, respectively. Results have substantiated the theoretical dependence of SNR enhancement on the code length of GCC, where the maximum SNR improvement of about 9 dB is achievable with the use of 256 bits of GCC compared to that of 4 bits case. Furthermore, the GCC has also extended the strain exposure up to 30% higher compared to the maximum of the conventional single pulse case. The employment of GCC in the TDM-FBG sensor system provides overall performance enhancement over the conventional single pulse case, under the same conditions.
NASA Technical Reports Server (NTRS)
Hwang, D. P.; Boldman, D. R.; Hughes, C. E.
1994-01-01
An axisymmetric panel code and a three dimensional Navier-Stokes code (used as an inviscid Euler code) were verified for low speed, high angle of attack flow conditions. A three dimensional Navier-Stokes code (used as an inviscid code), and an axisymmetric Navier-Stokes code (used as both viscous and inviscid code) were also assessed for high Mach number cruise conditions. The boundary layer calculations were made by using the results from the panel code or Euler calculation. The panel method can predict the internal surface pressure distributions very well if no shock exists. However, only Euler and Navier-Stokes calculations can provide a good prediction of the surface static pressure distribution including the pressure rise across the shock. Because of the high CPU time required for a three dimensional Navier-Stokes calculation, only the axisymmetric Navier-Stokes calculation was considered at cruise conditions. The use of suction and tangential blowing boundary layer control to eliminate the flow separation on the internal surface was demonstrated for low free stream Mach number and high angle of attack cases. The calculation also shows that transition from laminar flow to turbulent flow on the external cowl surface can be delayed by using suction boundary layer control at cruise flow conditions. The results were compared with experimental data where possible.
Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals
NASA Technical Reports Server (NTRS)
Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.
1991-01-01
The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.
Recent Progress and Future Plans for Fusion Plasma Synthetic Diagnostics Platform
NASA Astrophysics Data System (ADS)
Shi, Lei; Kramer, Gerrit; Tang, William; Tobias, Benjamin; Valeo, Ernest; Churchill, Randy; Hausammann, Loic
2015-11-01
The Fusion Plasma Synthetic Diagnostics Platform (FPSDP) is a Python package developed at the Princeton Plasma Physics Laboratory. It is dedicated to providing an integrated programmable environment for applying a modern ensemble of synthetic diagnostics to the experimental validation of fusion plasma simulation codes. The FPSDP will allow physicists to directly compare key laboratory measurements to simulation results. This enables deeper understanding of experimental data, more realistic validation of simulation codes, quantitative assessment of existing diagnostics, and new capabilities for the design and optimization of future diagnostics. The Fusion Plasma Synthetic Diagnostics Platform now has data interfaces for the GTS and XGC-1 global particle-in-cell simulation codes with synthetic diagnostic modules including: (i) 2D and 3D Reflectometry; (ii) Beam Emission Spectroscopy; and (iii) 1D Electron Cyclotron Emission. Results will be reported on the delivery of interfaces for the global electromagnetic PIC code GTC, the extended MHD M3D-C1 code, and the electromagnetic hybrid NOVAK eigenmode code. Progress toward development of a more comprehensive 2D Electron Cyclotron Emission module will also be discussed. This work is supported by DOE contract #DEAC02-09CH11466.
Two-fluid 2.5D code for simulations of small scale magnetic fields in the lower solar atmosphere
NASA Astrophysics Data System (ADS)
Piantschitsch, Isabell; Amerstorfer, Ute; Thalmann, Julia Katharina; Hanslmeier, Arnold; Lemmerer, Birgit
2015-08-01
Our aim is to investigate magnetic reconnection as a result of the time evolution of magnetic flux tubes in the solar chromosphere. A new numerical two-fluid code was developed, which will perform a 2.5D simulation of the dynamics from the upper convection zone up to the transition region. The code is based on the Total Variation Diminishing Lax-Friedrichs method and includes the effects of ion-neutral collisions, ionisation/recombination, thermal/resistive diffusivity as well as collisional/resistive heating. What is innovative about our newly developed code is the inclusion of a two-fluid model in combination with the use of analytically constructed vertically open magnetic flux tubes, which are used as initial conditions for our simulation. First magnetohydrodynamic (MHD) tests have already shown good agreement with known results of numerical MHD test problems like e.g. the Orszag-Tang vortex test, the Current Sheet test or the Spherical Blast Wave test. Furthermore, the single-fluid approach will also be applied to the initial conditions, in order to compare the different rates of magnetic reconnection in both codes, the two-fluid code and the single-fluid one.
NASA Astrophysics Data System (ADS)
Insulander Björk, Klara; Kekkonen, Laura
2015-12-01
Thorium-plutonium Mixed OXide (Th-MOX) fuel is considered for use in light water reactors fuel due to some inherent benefits over conventional fuel types in terms of neutronic properties. The good material properties of ThO2 also suggest benefits in terms of thermal-mechanical fuel performance, but the use of Th-MOX fuel for commercial power production demands that its thermal-mechanical behavior can be accurately predicted using a well validated fuel performance code. Given the scant operational experience with Th-MOX fuel, no such code is available today. This article describes the first phase of the development of such a code, based on the well-established code FRAPCON 3.4, and in particular the correlations reviewed and chosen for the fuel material properties. The results of fuel temperature calculations with the code in its current state of development are shown and compared with data from a Th-MOX test irradiation campaign which is underway in the Halden research reactor. The results are good for fresh fuel, whereas experimental complications make it difficult to judge the adequacy of the code for simulations of irradiated fuel.
The r-Java 2.0 code: nuclear physics
NASA Astrophysics Data System (ADS)
Kostka, M.; Koning, N.; Shand, Z.; Ouyed, R.; Jaikumar, P.
2014-08-01
Aims: We present r-Java 2.0, a nucleosynthesis code for open use that performs r-process calculations, along with a suite of other analysis tools. Methods: Equipped with a straightforward graphical user interface, r-Java 2.0 is capable of simulating nuclear statistical equilibrium (NSE), calculating r-process abundances for a wide range of input parameters and astrophysical environments, computing the mass fragmentation from neutron-induced fission and studying individual nucleosynthesis processes. Results: In this paper we discuss enhancements to this version of r-Java, especially the ability to solve the full reaction network. The sophisticated fission methodology incorporated in r-Java 2.0 that includes three fission channels (beta-delayed, neutron-induced, and spontaneous fission), along with computation of the mass fragmentation, is compared to the upper limit on mass fission approximation. The effects of including beta-delayed neutron emission on r-process yield is studied. The role of Coulomb interactions in NSE abundances is shown to be significant, supporting previous findings. A comparative analysis was undertaken during the development of r-Java 2.0 whereby we reproduced the results found in the literature from three other r-process codes. This code is capable of simulating the physical environment of the high-entropy wind around a proto-neutron star, the ejecta from a neutron star merger, or the relativistic ejecta from a quark nova. Likewise the users of r-Java 2.0 are given the freedom to define a custom environment. This software provides a platform for comparing proposed r-process sites.
Real coded genetic algorithm for fuzzy time series prediction
NASA Astrophysics Data System (ADS)
Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.
2017-10-01
Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.
Extreme ultraviolet emission spectra of Gd and Tb ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilbane, D.; O'Sullivan, G.
2010-11-15
Theoretical extreme ultraviolet emission spectra of gadolinium and terbium ions calculated with the Cowan suite of codes and the flexible atomic code (FAC) relativistic code are presented. 4d-4f and 4p-4d transitions give rise to unresolved transition arrays in a range of ions. The effects of configuration interaction are investigated for transitions between singly excited configurations. Optimization of emission at 6.775 nm and 6.515 nm is achieved for Gd and Tb ions, respectively, by consideration of plasma effects. The resulting synthetic spectra are compared with experimental spectra recorded using the laser produced plasma technique.
Prediction of the Reactor Antineutrino Flux for the Double Chooz Experiment
NASA Astrophysics Data System (ADS)
Jones, Chirstopher LaDon
This thesis benchmarks the deterministic lattice code, DRAGON, against data, and then applies this code to make a prediction for the antineutrino flux from the Chooz Bl and B2 reactors. Data from the destructive assay of rods from the Takahama-3 reactor and from the SONGS antineutrino detector are used for comparisons. The resulting prediction from the tuned DRAGON code is then compared to the first antineutrino event spectra from Double Chooz. Use of this simulation in nuclear nonproliferation studies is discussed. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
King, J. R.; Pankin, A. Y.; Kruger, S. E.; ...
2016-06-24
The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. Lastly, the full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J. R.; Pankin, A. Y.; Kruger, S. E.
The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. The full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J. R.; Pankin, A. Y.; Kruger, S. E.
The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. Lastly, the full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.
Tobacco outlet density and converted versus native non-daily cigarette use in a national US sample
Kirchner, Thomas R; Anesetti-Rothermel, Andrew; Bennett, Morgane; Gao, Hong; Carlos, Heather; Scheuermann, Taneisha S; Reitzel, Lorraine R; Ahluwalia, Jasjit S
2017-01-01
Objective Investigate whether non-daily smokers’ (NDS) cigarette price and purchase preferences, recent cessation attempts, and current intentions to quit are associated with the density of the retail cigarette product landscape surrounding their residential address. Participants Cross-sectional assessment of N=904 converted NDS (CNDS). who previously smoked every day, and N=297 native NDS (NNDS) who only smoked non-daily, drawn from a national panel. Outcome measures Kernel density estimation was used to generate a nationwide probability surface of tobacco outlets linked to participants’ residential ZIP code. Hierarchically nested log-linear models were compared to evaluate associations between outlet density, non-daily use patterns, price sensitivity and quit intentions. Results Overall, NDS in ZIP codes with greater outlet density were less likely than NDS in ZIP codes with lower outlet density to hold 6-month quit intentions when they also reported that price affected use patterns (G2=66.1, p<0.001) and purchase locations (G2=85.2, p<0.001). CNDS were more likely than NNDS to reside in ZIP codes with higher outlet density (G2=322.0, p<0.001). Compared with CNDS in ZIP codes with lower outlet density, CNDS in high-density ZIP codes were more likely to report that price influenced the amount they smoke (G2=43.9, p<0.001), and were more likely to look for better prices (G2=59.3, p<0.001). NDS residing in high-density ZIP codes were not more likely to report that price affected their cigarette brand choice compared with those in ZIP codes with lower density. Conclusions This paper provides initial evidence that the point-of-sale cigarette environment may be differentially associated with the maintenance of CNDS versus NNDS patterns. Future research should investigate how tobacco control efforts can be optimised to both promote cessation and curb the rising tide of non-daily smoking in the USA. PMID:26969172
NASA Technical Reports Server (NTRS)
Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.
1988-01-01
A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.
Simulations of neutron transport at low energy: a comparison between GEANT and MCNP.
Colonna, N; Altieri, S
2002-06-01
The use of the simulation tool GEANT for neutron transport at energies below 20 MeV is discussed, in particular with regard to shielding and dose calculations. The reliability of the GEANT/MICAP package for neutron transport in a wide energy range has been verified by comparing the results of simulations performed with this package in a wide energy range with the prediction of MCNP-4B, a code commonly used for neutron transport at low energy. A reasonable agreement between the results of the two codes is found for the neutron flux through a slab of material (iron and ordinary concrete), as well as for the dose released in soft tissue by neutrons. These results justify the use of the GEANT/MICAP code for neutron transport in a wide range of applications, including health physics problems.
ERIC Educational Resources Information Center
Dulin, Charles Dewitt
2016-01-01
The purpose of this research is to evaluate the impact of uniform dress codes on a school's climate for student behavior and learning in four middle schools in North Carolina. The research will compare the perceptions of parents, teachers, and administrators in schools with uniform dress codes against schools without uniform dress codes. This…
NASA Technical Reports Server (NTRS)
Logan, Terry G.
1994-01-01
The purpose of this study is to investigate the performance of the integral equation computations using numerical source field-panel method in a massively parallel processing (MPP) environment. A comparative study of computational performance of the MPP CM-5 computer and conventional Cray-YMP supercomputer for a three-dimensional flow problem is made. A serial FORTRAN code is converted into a parallel CM-FORTRAN code. Some performance results are obtained on CM-5 with 32, 62, 128 nodes along with those on Cray-YMP with a single processor. The comparison of the performance indicates that the parallel CM-FORTRAN code near or out-performs the equivalent serial FORTRAN code for some cases.
Improvements of the particle-in-cell code EUTERPE for petascaling machines
NASA Astrophysics Data System (ADS)
Sáez, Xavier; Soba, Alejandro; Sánchez, Edilberto; Kleiber, Ralf; Castejón, Francisco; Cela, José M.
2011-09-01
In the present work we report some performance measures and computational improvements recently carried out using the gyrokinetic code EUTERPE (Jost, 2000 [1] and Jost et al., 1999 [2]), which is based on the general particle-in-cell (PIC) method. The scalability of the code has been studied for up to sixty thousand processing elements and some steps towards a complete hybridization of the code were made. As a numerical example, non-linear simulations of Ion Temperature Gradient (ITG) instabilities have been carried out in screw-pinch geometry and the results are compared with earlier works. A parametric study of the influence of variables (step size of the time integrator, number of markers, grid size) on the quality of the simulation is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oginni, B. M.; Iliadis, C.; Champagne, A. E.
2011-02-15
The reactions that destroy {sup 26}Al in massive stars have significance in a number of astrophysical contexts. We evaluate the reaction rates of {sup 26}Al(n,p){sup 26}Mg and {sup 26}Al(n,{alpha}){sup 23}Na using cross sections obtained from the codes empire and talys. These have been compared to the published rates obtained from the non-smoker code and to some experimental data. We show that the results obtained from empire and talys are comparable to those from non-smoker. We also show how the theoretical results vary with respect to changes in the input parameters. Finally, we present recommended rates for these reactions using themore » available experimental data and our new theoretical results.« less
PFLOTRAN-RepoTREND Source Term Comparison Summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, Jennifer M.
Code inter-comparison studies are useful exercises to verify and benchmark independently developed software to ensure proper function, especially when the software is used to model high-consequence systems which cannot be physically tested in a fully representative environment. This summary describes the results of the first portion of the code inter-comparison between PFLOTRAN and RepoTREND, which compares the radionuclide source term used in a typical performance assessment.
The effect of long-term relocation on child and adolescent survivors of Hurricane Katrina.
Hansel, Tonya C; Osofsky, Joy D; Osofsky, Howard J; Friedrich, Patricia
2013-10-01
The current study is designed to increase knowledge of the effects of relocation and its association with longer-term psychological symptoms following disaster. Following clinical observations and in discussions held with school officials expressing concerns about relocated students, it was hypothesized that students who relocated to a different city following Hurricane Katrina in 2005 would have more symptoms of posttraumatic stress compared to students who returned to New Orleans. The effect of Hurricane Katrina relocation was assessed on a sample of child and adolescent survivors in 5th through 12th grades (N = 795). Students with Orleans Parish zip codes prior to Hurricane Katrina were categorized into relocation groupings: (a) relocated to Baton Rouge, (b) returned to prior zip code, and (c) moved to a different zip code within Orleans Parish. Overall results revealed more trauma symptoms for relocated students. Results also revealed that younger relocated students had fewer symptoms compared to older students. The opposite was found for students who returned to their same zip code, with older students having fewer symptoms. This study supports the need for school-based services not only in disaster areas, but also in schools where survivors tend to migrate. Copyright © 2013 International Society for Traumatic Stress Studies.
Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove
NASA Technical Reports Server (NTRS)
Bui, Trong T.
2014-01-01
Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.
Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove
NASA Technical Reports Server (NTRS)
Bui, Trong T.
2014-01-01
Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.
Qiao, Shan; Jackson, Edward; Coussios, Constantin C.; Cleveland, Robin O.
2016-01-01
Nonlinear acoustics plays an important role in both diagnostic and therapeutic applications of biomedical ultrasound and a number of research and commercial software packages are available. In this manuscript, predictions of two solvers available in a commercial software package, pzflex, one using the finite-element-method (FEM) and the other a pseudo-spectral method, spectralflex, are compared with measurements and the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Texas code (a finite-difference time-domain algorithm). The pzflex methods solve the continuity equation, momentum equation and equation of state where they account for nonlinearity to second order whereas the KZK code solves a nonlinear wave equation with a paraxial approximation for diffraction. Measurements of the field from a single element 3.3 MHz focused transducer were compared with the simulations and there was good agreement for the fundamental frequency and the harmonics; however the FEM pzflex solver incurred a high computational cost to achieve equivalent accuracy. In addition, pzflex results exhibited non-physical oscillations in the spatial distribution of harmonics when the amplitudes were relatively low. It was found that spectralflex was able to accurately capture the nonlinear fields at reasonable computational cost. These results emphasize the need to benchmark nonlinear simulations before using codes as predictive tools. PMID:27914432
Qiao, Shan; Jackson, Edward; Coussios, Constantin C; Cleveland, Robin O
2016-09-01
Nonlinear acoustics plays an important role in both diagnostic and therapeutic applications of biomedical ultrasound and a number of research and commercial software packages are available. In this manuscript, predictions of two solvers available in a commercial software package, pzflex, one using the finite-element-method (FEM) and the other a pseudo-spectral method, spectralflex, are compared with measurements and the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Texas code (a finite-difference time-domain algorithm). The pzflex methods solve the continuity equation, momentum equation and equation of state where they account for nonlinearity to second order whereas the KZK code solves a nonlinear wave equation with a paraxial approximation for diffraction. Measurements of the field from a single element 3.3 MHz focused transducer were compared with the simulations and there was good agreement for the fundamental frequency and the harmonics; however the FEM pzflex solver incurred a high computational cost to achieve equivalent accuracy. In addition, pzflex results exhibited non-physical oscillations in the spatial distribution of harmonics when the amplitudes were relatively low. It was found that spectralflex was able to accurately capture the nonlinear fields at reasonable computational cost. These results emphasize the need to benchmark nonlinear simulations before using codes as predictive tools.
Fatigue Life Analysis of Tapered Hybrid Composite Flexbeams
NASA Technical Reports Server (NTRS)
Murri, Gretchen B.; Schaff, Jeffery R.; Dobyns, Alan L.
2002-01-01
Nonlinear-tapered flexbeam laminates from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. The two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) obtained from the above codes using the virtual crack closure technique (VCCT) at a resin crack location in the flexbeams are presented for both hybrid material types. These results compare well with each other and suggest that the initial delamination growth from the resin crack toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves and compared with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared reasonably well with the test results.
Aeroacoustic Codes For Rotor Harmonic and BVI Noise--CAMRAD.Mod1/HIRES
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Boyd, D. Douglas, Jr.; Burley, Casey L.; Jolly, J. Ralph, Jr.
1996-01-01
This paper presents a status of non-CFD aeroacoustic codes at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. The prediction approach incorporates three primary components: CAMRAD.Mod1 - a substantially modified version of the performance/trim/wake code CAMRAD; HIRES - a high resolution blade loads post-processor; and WOPWOP - an acoustic code. The functional capabilities and physical modeling in CAMRAD.Mod1/HIRES will be summarized and illustrated. A new multi-core roll-up wake modeling approach is introduced and validated. Predictions of rotor wake and radiated noise are compared with to the results of the HART program, a model BO-105 windtunnel test at the DNW in Europe. Additional comparisons are made to results from a DNW test of a contemporary design four-bladed rotor, as well as from a Langley test of a single proprotor (tiltrotor) three-bladed model configuration. Because the method is shown to help eliminate the necessity of guesswork in setting code parameters between different rotor configurations, it should prove useful as a rotor noise design tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guntur, Srinivas; Jonkman, Jason; Sievers, Ryan
This paper presents validation and code-to-code verification of the latest version of the U.S. Department of Energy, National Renewable Energy Laboratory wind turbine aeroelastic engineering simulation tool, FAST v8. A set of 1,141 test cases, for which experimental data from a Siemens 2.3 MW machine have been made available and were in accordance with the International Electrotechnical Commission 61400-13 guidelines, were identified. These conditions were simulated using FAST as well as the Siemens in-house aeroelastic code, BHawC. This paper presents a detailed analysis comparing results from FAST with those from BHawC as well as experimental measurements, using statistics including themore » means and the standard deviations along with the power spectral densities of select turbine parameters and loads. Results indicate a good agreement among the predictions using FAST, BHawC, and experimental measurements. Here, these agreements are discussed in detail in this paper, along with some comments regarding the differences seen in these comparisons relative to the inherent uncertainties in such a model-based analysis.« less
Guntur, Srinivas; Jonkman, Jason; Sievers, Ryan; ...
2017-08-29
This paper presents validation and code-to-code verification of the latest version of the U.S. Department of Energy, National Renewable Energy Laboratory wind turbine aeroelastic engineering simulation tool, FAST v8. A set of 1,141 test cases, for which experimental data from a Siemens 2.3 MW machine have been made available and were in accordance with the International Electrotechnical Commission 61400-13 guidelines, were identified. These conditions were simulated using FAST as well as the Siemens in-house aeroelastic code, BHawC. This paper presents a detailed analysis comparing results from FAST with those from BHawC as well as experimental measurements, using statistics including themore » means and the standard deviations along with the power spectral densities of select turbine parameters and loads. Results indicate a good agreement among the predictions using FAST, BHawC, and experimental measurements. Here, these agreements are discussed in detail in this paper, along with some comments regarding the differences seen in these comparisons relative to the inherent uncertainties in such a model-based analysis.« less
Code Properties from Holographic Geometries
NASA Astrophysics Data System (ADS)
Pastawski, Fernando; Preskill, John
2017-04-01
Almheiri, Dong, and Harlow [J. High Energy Phys. 04 (2015) 163., 10.1007/JHEP04(2015)163] proposed a highly illuminating connection between the AdS /CFT holographic correspondence and operator algebra quantum error correction (OAQEC). Here, we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes that admit a holographic interpretation. We introduce a new quantity called price, which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit uberholography, meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for quantum gravity in AdS space at distance scales that are small compared to the AdS curvature radius.
Verification and Validation of the BISON Fuel Performance Code for PCMI Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Novascone, Stephen Rhead; Gardner, Russell James
2016-06-01
BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. A brief overview of BISON’s computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described. Validation for application to light water reactor (LWR) PCMI problems is assessed by comparing predicted and measured rod diameter following base irradiation andmore » power ramps. Results indicate a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. Initial rod diameter comparisons have led to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to define priorities for ongoing code development and validation activities.« less
Fatigue Life Methodology for Tapered Hybrid Composite Flexbeams
NASA Technical Reports Server (NTRS)
urri, Gretchen B.; Schaff, Jeffery R.
2006-01-01
Nonlinear-tapered flexbeam specimens from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. Two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) associated with simulated delamination growth in the flexbeams are presented from both codes. These results compare well with each other and suggest that the initial delamination growth from the tip of the ply-drop toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves for comparison with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared well with the test results.
New test techniques and analytical procedures for understanding the behavior of advanced propellers
NASA Technical Reports Server (NTRS)
Stefko, G. L.; Bober, L. J.; Neumann, H. E.
1983-01-01
Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paratte, J.M.; Pelloni, S.; Grimm, P.
1991-04-01
This paper analyzes the capability of various code systems and JEF-1-based nuclear data libraries to compute light water reactor lattices by comparing calculations with results from thermal reactor benchmark experiments TRX and BAPL and with previously published values. With the JEF-1 evaluation, eigenvalues are generally well predicted within 8 mk (1 mk = 0.001) or less by all code systems, and all methods give reasonable results for the measured reaction rate ratios within, or not too far from, the experimental uncertainty.
FEMFLOW3D; a finite-element program for the simulation of three-dimensional aquifers; version 1.0
Durbin, Timothy J.; Bond, Linda D.
1998-01-01
This document also includes model validation, source code, and example input and output files. Model validation was performed using four test problems. For each test problem, the results of a model simulation with FEMFLOW3D were compared with either an analytic solution or the results of an independent numerical approach. The source code, written in the ANSI x3.9-1978 FORTRAN standard, and the complete input and output of an example problem are listed in the appendixes.
Validation of a three-dimensional viscous analysis of axisymmetric supersonic inlet flow fields
NASA Technical Reports Server (NTRS)
Benson, T. J.; Anderson, B. H.
1983-01-01
A three-dimensional viscous marching analysis for supersonic inlets was developed. To verify this analysis several benchmark axisymmetric test configurations were studied and are compared to experimental data. Detailed two-dimensional results for shock-boundary layer interactions are presented for flows with and without boundary layer bleed. Three dimensional calculations of a cone at angle of attack and a full inlet at attack are also discussed and evaluated. Results of the calculations demonstrate the code's ability to predict complex flow fields and establish guidelines for future calculations using similar codes.
Computation of neutron fluxes in clusters of fuel pins arranged in hexagonal assemblies (2D and 3D)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabha, H.; Marleau, G.
2012-07-01
For computations of fluxes, we have used Carvik's method of collision probabilities. This method requires tracking algorithms. An algorithm to compute tracks (in 2D and 3D) has been developed for seven hexagonal geometries with cluster of fuel pins. This has been implemented in the NXT module of the code DRAGON. The flux distribution in cluster of pins has been computed by using this code. For testing the results, they are compared when possible with the EXCELT module of the code DRAGON. Tracks are plotted in the NXT module by using MATLAB, these plots are also presented here. Results are presentedmore » with increasing number of lines to show the convergence of these results. We have numerically computed volumes, surface areas and the percentage errors in these computations. These results show that 2D results converge faster than 3D results. The accuracy on the computation of fluxes up to second decimal is achieved with fewer lines. (authors)« less
Go, Michael R; Masterson, Loren; Veerman, Brent; Satiani, Bhagwan
2016-02-01
To curb increasing volumes of diagnostic imaging and costs, reimbursement for carotid duplex ultrasound (CDU) is dependent on "appropriate" indications as documented by International Classification of Diseases (ICD) codes entered by ordering physicians. Historically, asymptomatic indications for CDU yield lower rates of abnormal results than symptomatic indications, and consensus documents agree that most asymptomatic indications for CDU are inappropriate. In our vascular laboratory, we perceived an increased rate of incorrect or inappropriate ICD codes. We therefore sought to determine if ICD codes were useful in predicting the frequency of abnormal CDU. We hypothesized that asymptomatic or nonspecific ICD codes would yield a lower rate of abnormal CDU than symptomatic codes, validating efforts to limit reimbursement in asymptomatic, low-yield groups. We reviewed all outpatient CDU done in 2011 at our institution. ICD codes were recorded, and each medical record was then reviewed by a vascular surgeon to determine if the assigned ICD code appropriately reflected the clinical scenario. CDU findings categorized as abnormal (>50% stenosis) or normal (<50% stenosis) were recorded. Each individual ICD code and group 1 (asymptomatic), group 2 (nonhemispheric symptoms), group 3 (hemispheric symptoms), group 4 (preoperative cardiovascular examination), and group 5 (nonspecific) ICD codes were analyzed for correlation with CDU results. Nine hundred ninety-four patients had 74 primary ICD codes listed as indications for CDU. Of assigned ICD codes, 17.4% were deemed inaccurate. Overall, 14.8% of CDU were abnormal. Of the 13 highest frequency ICD codes, only 433.10, an asymptomatic code, was associated with abnormal CDU. Four symptomatic codes were associated with normal CDU; none of the other high frequency codes were associated with CDU result. Patients in group 1 (asymptomatic) were significantly more likely to have an abnormal CDU compared to each of the other groups (P < 0.001, P < 0.001, P = 0.020, P = 0.002) and to all other groups combined (P < 0.001). Asymptomatic indications by ICD codes yielded higher rates of abnormal CDU than symptomatic indications. This finding is inconsistent with clinical experience and historical data, and we suggest that inaccurate coding may play a role. Limiting reimbursement for CDU in low-yield groups is reasonable. However, reimbursement policies based on ICD coding, for example, limiting payment for asymptomatic ICD codes, may impede use of CDU in high-yield patient groups. Copyright © 2016 Elsevier Inc. All rights reserved.
Mason, Marc A; Kuczmarski, Marie Fanelli; Allegro, Deanne; Zonderman, Alan B; Evans, Michele K
2016-01-01
Objective Analysing dietary data to capture how individuals typically consume foods is dependent on the coding variables used. Individual foods consumed simultaneously, like coffee with milk, are given codes to identify these combinations. Our literature review revealed a lack of discussion about using combination codes in analysis. The present study identified foods consumed at mealtimes and by race when combination codes were or were not utilized. Design Duplicate analysis methods were performed on separate data sets. The original data set consisted of all foods reported; each food was coded as if it was consumed individually. The revised data set was derived from the original data set by first isolating coded foods consumed as individual items from those foods consumed simultaneously and assigning a code to designate a combination. Foods assigned a combination code, like pancakes with syrup, were aggregated and associated with a food group, defined by the major food component (i.e. pancakes), and then appended to the isolated coded foods. Setting Healthy Aging in Neighborhoods of Diversity across the Life Span study. Subjects African-American and White adults with two dietary recalls (n 2177). Results Differences existed in lists of foods most frequently consumed by mealtime and race when comparing results based on original and revised data sets. African Americans reported consumption of sausage/luncheon meat and poultry, while ready-to-eat cereals and cakes/doughnuts/pastries were reported by Whites on recalls. Conclusions Use of combination codes provided more accurate representation of how foods were consumed by populations. This information is beneficial when creating interventions and exploring diet–health relationships. PMID:25435191
Lasaygues, Philippe; Arciniegas, Andres; Espinosa, Luis; Prieto, Flavio; Brancheriau, Loïc
2018-05-26
Ultrasound computed tomography (USCT) using the transmission mode is a way to detect and assess the extent of decay in wood structures. The resolution of the ultrasonic image is closely related to the different anatomical features of wood. The complexity of the wave propagation process generates complex signals consisting of several wave packets with different signatures. Wave paths, depth dependencies, wave velocities or attenuations are often difficult to interpret. For this kind of assessment, the focus is generally on signal pre-processing. Several approaches have been used so far including filtering, spectrum analysis and a method involving deconvolution using a characteristic transfer function of the experimental device. However, all these approaches may be too sophisticated and/or unstable. The alternative methods proposed in this work are based on coded excitation, which makes it possible to process both local and general information available such as frequency and time parameters. Coded excitation is based on the filtering of the transmitted signal using a suitable electric input signal. The aim of the present study was to compare two coded-excitation methods, a chirp- and a wavelet-coded excitation method, to determine the time of flight of the ultrasonic wave, and to investigate the feasibility, the robustness and the precision of the measurement of geometrical and acoustical properties in laboratory conditions. To obtain control experimental data, the two methods were compared with the conventional ultrasonic pulse method. Experiments were conducted on a polyurethane resin sample and two samples of different wood species using two 500 kHz-transducers. The relative errors in the measurement of thickness compared with the results of caliper measurements ranged from 0.13% minimum for the wavelet-coded excitation method to 2.3% maximum for the chirp-coded excitation method. For the relative errors in the measurement of ultrasonic wave velocity, the coded excitation methods showed differences ranging from 0.24% minimum for the wavelet-coded excitation method to 2.62% maximum for the chirp-coded excitation method. Methods based on coded excitation algorithms thus enable accurate measurements of thickness and ultrasonic wave velocity in samples of wood species. Copyright © 2018 Elsevier B.V. All rights reserved.
Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS
NASA Astrophysics Data System (ADS)
Barani, T.; Bruschi, E.; Pizzocri, D.; Pastore, G.; Van Uffelen, P.; Williamson, R. L.; Luzzi, L.
2017-04-01
The modelling of fission gas behaviour is a crucial aspect of nuclear fuel performance analysis in view of the related effects on the thermo-mechanical performance of the fuel rod, which can be particularly significant during transients. In particular, experimental observations indicate that substantial fission gas release (FGR) can occur on a small time scale during transients (burst release). To accurately reproduce the rapid kinetics of the burst release process in fuel performance calculations, a model that accounts for non-diffusional mechanisms such as fuel micro-cracking is needed. In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which is applied as an extension of conventional diffusion-based models to introduce the burst release effect. The concept and governing equations of the model are presented, and the sensitivity of results to the newly introduced parameters is evaluated through an analytic sensitivity analysis. The model is assessed for application to integral fuel rod analysis by implementation in two structurally different fuel performance codes: BISON (multi-dimensional finite element code) and TRANSURANUS (1.5D code). Model assessment is based on the analysis of 19 light water reactor fuel rod irradiation experiments from the OECD/NEA IFPE (International Fuel Performance Experiments) database, all of which are simulated with both codes. The results point out an improvement in both the quantitative predictions of integral fuel rod FGR and the qualitative representation of the FGR kinetics with the transient model relative to the canonical, purely diffusion-based models of the codes. The overall quantitative improvement of the integral FGR predictions in the two codes is comparable. Moreover, calculated radial profiles of xenon concentration after irradiation are investigated and compared to experimental data, illustrating the underlying representation of the physical mechanisms of burst release.
Tanana, Michael; Hallgren, Kevin A; Imel, Zac E; Atkins, David C; Srikumar, Vivek
2016-06-01
Motivational interviewing (MI) is an efficacious treatment for substance use disorders and other problem behaviors. Studies on MI fidelity and mechanisms of change typically use human raters to code therapy sessions, which requires considerable time, training, and financial costs. Natural language processing techniques have recently been utilized for coding MI sessions using machine learning techniques, rather than human coders, and preliminary results have suggested these methods hold promise. The current study extends this previous work by introducing two natural language processing models for automatically coding MI sessions via computer. The two models differ in the way they semantically represent session content, utilizing either 1) simple discrete sentence features (DSF model) and 2) more complex recursive neural networks (RNN model). Utterance- and session-level predictions from these models were compared to ratings provided by human coders using a large sample of MI sessions (N=341 sessions; 78,977 clinician and client talk turns) from 6 MI studies. Results show that the DSF model generally had slightly better performance compared to the RNN model. The DSF model had "good" or higher utterance-level agreement with human coders (Cohen's kappa>0.60) for open and closed questions, affirm, giving information, and follow/neutral (all therapist codes); considerably higher agreement was obtained for session-level indices, and many estimates were competitive with human-to-human agreement. However, there was poor agreement for client change talk, client sustain talk, and therapist MI-inconsistent behaviors. Natural language processing methods provide accurate representations of human derived behavioral codes and could offer substantial improvements to the efficiency and scale in which MI mechanisms of change research and fidelity monitoring are conducted. Copyright © 2016 Elsevier Inc. All rights reserved.
Mubeen; K.R., Vijayalakshmi; Bhuyan, Sanat Kumar; Panigrahi, Rajat G; Priyadarshini, Smita R; Misra, Satyaranjan; Singh, Chandravir
2014-01-01
Objectives: The identification and radiographic interpretation of periapical bone lesions is important for accurate diagnosis and treatment. The present study was undertaken to study the feasibility and diagnostic accuracy of colour coded digital radiographs in terms of presence and size of lesion and to compare the diagnostic accuracy of colour coded digital images with direct digital images and conventional radiographs for assessing periapical lesions. Materials and Methods: Sixty human dry cadaver hemimandibles were obtained and periapical lesions were created in first and second premolar teeth at the junction of cancellous and cortical bone using a micromotor handpiece and carbide burs of sizes 2, 4 and 6. After each successive use of round burs, a conventional, RVG and colour coded image was taken for each specimen. All the images were evaluated by three observers. The diagnostic accuracy for each bur and image mode was calculated statistically. Results: Our results showed good interobserver (kappa > 0.61) agreement for the different radiographic techniques and for the different bur sizes. Conventional Radiography outperformed Digital Radiography in diagnosing periapical lesions made with Size two bur. Both were equally diagnostic for lesions made with larger bur sizes. Colour coding method was least accurate among all the techniques. Conclusion: Conventional radiography traditionally forms the backbone in the diagnosis, treatment planning and follow-up of periapical lesions. Direct digital imaging is an efficient technique, in diagnostic sense. Colour coding of digital radiography was feasible but less accurate however, this imaging technique, like any other, needs to be studied continuously with the emphasis on safety of patients and diagnostic quality of images. PMID:25584318
Coding Local and Global Binary Visual Features Extracted From Video Sequences.
Baroffio, Luca; Canclini, Antonio; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2015-11-01
Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the bag-of-visual word model. Several applications, including, for example, visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget while attaining a target level of efficiency. In this paper, we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can conveniently be adopted to support the analyze-then-compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs the visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the compress-then-analyze (CTA) paradigm. In this paper, we experimentally compare the ATC and the CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: 1) homography estimation and 2) content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with the CTA, especially in bandwidth limited scenarios.
Coding Local and Global Binary Visual Features Extracted From Video Sequences
NASA Astrophysics Data System (ADS)
Baroffio, Luca; Canclini, Antonio; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2015-11-01
Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.
Vaerenberg, Bart; Péan, Vincent; Lesbros, Guillaume; De Ceulaer, Geert; Schauwers, Karen; Daemers, Kristin; Gnansia, Dan; Govaerts, Paul J
2013-06-01
To assess the auditory performance of Digisonic(®) cochlear implant users with electric stimulation (ES) and electro-acoustic stimulation (EAS) with special attention to the processing of low-frequency temporal fine structure. Six patients implanted with a Digisonic(®) SP implant and showing low-frequency residual hearing were fitted with the Zebra(®) speech processor providing both electric and acoustic stimulation. Assessment consisted of monosyllabic speech identification tests in quiet and in noise at different presentation levels, and a pitch discrimination task using harmonic and disharmonic intonating complex sounds ( Vaerenberg et al., 2011 ). These tests investigate place and time coding through pitch discrimination. All tasks were performed with ES only and with EAS. Speech results in noise showed significant improvement with EAS when compared to ES. Whereas EAS did not yield better results in the harmonic intonation test, the improvements in the disharmonic intonation test were remarkable, suggesting better coding of pitch cues requiring phase locking. These results suggest that patients with residual hearing in the low-frequency range still have good phase-locking capacities, allowing them to process fine temporal information. ES relies mainly on place coding but provides poor low-frequency temporal coding, whereas EAS also provides temporal coding in the low-frequency range. Patients with residual phase-locking capacities can make use of these cues.
Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA.
Bordage, M C; Bordes, J; Edel, S; Terrissol, M; Franceries, X; Bardiès, M; Lampe, N; Incerti, S
2016-12-01
A new alternative set of elastic and inelastic cross sections has been added to the very low energy extension of the Geant4 Monte Carlo simulation toolkit, Geant4-DNA, for the simulation of electron interactions in liquid water. These cross sections have been obtained from the CPA100 Monte Carlo track structure code, which has been a reference in the microdosimetry community for many years. They are compared to the default Geant4-DNA cross sections and show better agreement with published data. In order to verify the correct implementation of the CPA100 cross section models in Geant4-DNA, simulations of the number of interactions and ranges were performed using Geant4-DNA with this new set of models, and the results were compared with corresponding results from the original CPA100 code. Good agreement is observed between the implementations, with relative differences lower than 1% regardless of the incident electron energy. Useful quantities related to the deposited energy at the scale of the cell or the organ of interest for internal dosimetry, like dose point kernels, are also calculated using these new physics models. They are compared with results obtained using the well-known Penelope Monte Carlo code. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Linear microbunching analysis for recirculation machines
Tsai, C. -Y.; Douglas, D.; Li, R.; ...
2016-11-28
Microbunching instability (MBI) has been one of the most challenging issues in designs of magnetic chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of transport lines for recirculating or energy-recovery-linac machines. To quantify MBI for a recirculating machine and for more systematic analyses, we have recently developed a linear Vlasov solver and incorporated relevant collective effects into the code, including the longitudinal space charge, coherent synchrotron radiation, and linac geometric impedances, with extension of the existing formulation to include beam acceleration. In our code, we semianalytically solve the linearized Vlasov equation for microbunching amplification factor formore » an arbitrary linear lattice. In this study we apply our code to beam line lattices of two comparative isochronous recirculation arcs and one arc lattice preceded by a linac section. The resultant microbunching gain functions and spectral responses are presented, with some results compared to particle tracking simulation by elegant (M. Borland, APS Light Source Note No. LS-287, 2002). These results demonstrate clearly the impact of arc lattice design on the microbunching development. Lastly, the underlying physics with inclusion of those collective effects is elucidated and the limitation of the existing formulation is also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, C. -Y.; Douglas, D.; Li, R.
Microbunching instability (MBI) has been one of the most challenging issues in designs of magnetic chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of transport lines for recirculating or energy-recovery-linac machines. To quantify MBI for a recirculating machine and for more systematic analyses, we have recently developed a linear Vlasov solver and incorporated relevant collective effects into the code, including the longitudinal space charge, coherent synchrotron radiation, and linac geometric impedances, with extension of the existing formulation to include beam acceleration. In our code, we semianalytically solve the linearized Vlasov equation for microbunching amplification factor formore » an arbitrary linear lattice. In this study we apply our code to beam line lattices of two comparative isochronous recirculation arcs and one arc lattice preceded by a linac section. The resultant microbunching gain functions and spectral responses are presented, with some results compared to particle tracking simulation by elegant (M. Borland, APS Light Source Note No. LS-287, 2002). These results demonstrate clearly the impact of arc lattice design on the microbunching development. Lastly, the underlying physics with inclusion of those collective effects is elucidated and the limitation of the existing formulation is also discussed.« less
Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Jaradat, Safwan Qasim Mohammad
Molten salt reactor (MSR) is one of six reactors selected by the Generation IV International Forum (GIF). The liquid fluoride thorium reactor (LFTR) is a MSR concept based on thorium fuel cycle. LFTR uses liquid fluoride salts as a nuclear fuel. It uses 232Th and 233U as the fertile and fissile materials, respectively. Fluoride salt of these nuclides is dissolved in a mixed carrier salt of lithium and beryllium (FLiBe). The objective of this research was to complete feasibility studies of a small commercial thermal LFTR. The focus was on neutronic calculations in order to prescribe core design parameter such as core size, fuel block pitch (p), fuel channel radius, fuel path, reflector thickness, fuel salt composition, and power. In order to achieve this objective, the applicability of Monte Carlo N-Particle Transport Code (MCNP) to MSR modeling was verified. Then, a prescription for conceptual small thermal reactor LFTR and relevant calculations were performed using MCNP to determine the main neutronic parameters of the core reactor. The MCNP code was used to study the reactor physics characteristics for the FUJI-U3 reactor. The results were then compared with the results obtained from the original FUJI-U3 using the reactor physics code SRAC95 and the burnup analysis code ORIPHY2. The results were comparable with each other. Based on the results, MCNP was found to be a reliable code to model a small thermal LFTR and study all the related reactor physics characteristics. The results of this study were promising and successful in demonstrating a prefatory small commercial LFTR design. The outcome of using a small core reactor with a diameter/height of 280/260 cm that would operate for more than five years at a power level of 150 MWth was studied. The fuel system 7LiF - BeF2 - ThF4 - UF4 with a (233U/ 232Th) = 2.01 % was the candidate fuel for this reactor core.
Wang, Xiaogang; Chen, Wen; Chen, Xudong
2015-03-09
In this paper, we develop a new optical information authentication system based on compressed double-random-phase-encoded images and quick-response (QR) codes, where the parameters of optical lightwave are used as keys for optical decryption and the QR code is a key for verification. An input image attached with QR code is first optically encoded in a simplified double random phase encoding (DRPE) scheme without using interferometric setup. From the single encoded intensity pattern recorded by a CCD camera, a compressed double-random-phase-encoded image, i.e., the sparse phase distribution used for optical decryption, is generated by using an iterative phase retrieval technique with QR code. We compare this technique to the other two methods proposed in literature, i.e., Fresnel domain information authentication based on the classical DRPE with holographic technique and information authentication based on DRPE and phase retrieval algorithm. Simulation results show that QR codes are effective on improving the security and data sparsity of optical information encryption and authentication system.
NASA Astrophysics Data System (ADS)
Lou, Tak Pui; Ludewigt, Bernhard
2015-09-01
The simulation of the emission of beta-delayed gamma rays following nuclear fission and the calculation of time-dependent energy spectra is a computational challenge. The widely used radiation transport code MCNPX includes a delayed gamma-ray routine that is inefficient and not suitable for simulating complex problems. This paper describes the code "MMAPDNG" (Memory-Mapped Delayed Neutron and Gamma), an optimized delayed gamma module written in C, discusses usage and merits of the code, and presents results. The approach is based on storing required Fission Product Yield (FPY) data, decay data, and delayed particle data in a memory-mapped file. When compared to the original delayed gamma-ray code in MCNPX, memory utilization is reduced by two orders of magnitude and the ray sampling is sped up by three orders of magnitude. Other delayed particles such as neutrons and electrons can be implemented in future versions of MMAPDNG code using its existing framework.
Comparing Methods for Estimating Direct Costs of Adverse Drug Events.
Gyllensten, Hanna; Jönsson, Anna K; Hakkarainen, Katja M; Svensson, Staffan; Hägg, Staffan; Rehnberg, Clas
2017-12-01
To estimate how direct health care costs resulting from adverse drug events (ADEs) and cost distribution are affected by methodological decisions regarding identification of ADEs, assigning relevant resource use to ADEs, and estimating costs for the assigned resources. ADEs were identified from medical records and diagnostic codes for a random sample of 4970 Swedish adults during a 3-month study period in 2008 and were assessed for causality. Results were compared for five cost evaluation methods, including different methods for identifying ADEs, assigning resource use to ADEs, and for estimating costs for the assigned resources (resource use method, proportion of registered cost method, unit cost method, diagnostic code method, and main diagnosis method). Different levels of causality for ADEs and ADEs' contribution to health care resource use were considered. Using the five methods, the maximum estimated overall direct health care costs resulting from ADEs ranged from Sk10,000 (Sk = Swedish krona; ~€1,500 in 2016 values) using the diagnostic code method to more than Sk3,000,000 (~€414,000) using the unit cost method in our study population. The most conservative definitions for ADEs' contribution to health care resource use and the causality of ADEs resulted in average costs per patient ranging from Sk0 using the diagnostic code method to Sk4066 (~€500) using the unit cost method. The estimated costs resulting from ADEs varied considerably depending on the methodological choices. The results indicate that costs for ADEs need to be identified through medical record review and by using detailed unit cost data. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R
2014-03-01
Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen
2014-05-01
The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.
Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint.
Gao, Zhi; Lao, Mingjie; Sang, Yongsheng; Wen, Fei; Ramesh, Bharath; Zhai, Ruifang
2018-05-06
Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency.
Competitive region orientation code for palmprint verification and identification
NASA Astrophysics Data System (ADS)
Tang, Wenliang
2015-11-01
Orientation features of the palmprint have been widely investigated in coding-based palmprint-recognition methods. Conventional orientation-based coding methods usually used discrete filters to extract the orientation feature of palmprint. However, in real operations, the orientations of the filter usually are not consistent with the lines of the palmprint. We thus propose a competitive region orientation-based coding method. Furthermore, an effective weighted balance scheme is proposed to improve the accuracy of the extracted region orientation. Compared with conventional methods, the region orientation of the palmprint extracted using the proposed method can precisely and robustly describe the orientation feature of the palmprint. Extensive experiments on the baseline PolyU and multispectral palmprint databases are performed and the results show that the proposed method achieves a promising performance in comparison to conventional state-of-the-art orientation-based coding methods in both palmprint verification and identification.
Secure ADS-B authentication system and method
NASA Technical Reports Server (NTRS)
Viggiano, Marc J (Inventor); Valovage, Edward M (Inventor); Samuelson, Kenneth B (Inventor); Hall, Dana L (Inventor)
2010-01-01
A secure system for authenticating the identity of ADS-B systems, including: an authenticator, including a unique id generator and a transmitter transmitting the unique id to one or more ADS-B transmitters; one or more ADS-B transmitters, including a receiver receiving the unique id, one or more secure processing stages merging the unique id with the ADS-B transmitter's identification, data and secret key and generating a secure code identification and a transmitter transmitting a response containing the secure code and ADSB transmitter's data to the authenticator; the authenticator including means for independently determining each ADS-B transmitter's secret key, a receiver receiving each ADS-B transmitter's response, one or more secure processing stages merging the unique id, ADS-B transmitter's identification and data and generating a secure code, and comparison processing comparing the authenticator-generated secure code and the ADS-B transmitter-generated secure code and providing an authentication signal based on the comparison result.
The queueing perspective of asynchronous network coding in two-way relay network
NASA Astrophysics Data System (ADS)
Liang, Yaping; Chang, Qing; Li, Xianxu
2018-04-01
Asynchronous network coding (NC) has potential to improve the wireless network performance compared with a routing or the synchronous network coding. Recent researches concentrate on the optimization between throughput/energy consuming and delay with a couple of independent input flow. However, the implementation of NC requires a thorough investigation of its impact on relevant queueing systems where few work focuses on. Moreover, few works study the probability density function (pdf) in network coding scenario. In this paper, the scenario with two independent Poisson input flows and one output flow is considered. The asynchronous NC-based strategy is that a new arrival evicts a head packet holding in its queue when waiting for another packet from the other flow to encode. The pdf for the output flow which contains both coded and uncoded packets is derived. Besides, the statistic characteristics of this strategy are analyzed. These results are verified by numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, R.R.; Rittmann, P.D.; Wood, M.I.
The US Department of Energy Headquarters established a performance assessment task team (PATT) to integrate the activities of DOE sites that are preparing performance assessments for the disposal of newly generated low-level waste. The PATT chartered a subteam with the task of comparing computer codes and exposure scenarios used for dose calculations in performance assessments. This report documents the efforts of the subteam. Computer codes considered in the comparison include GENII, PATHRAE-EPA, MICROSHIELD, and ISOSHLD. Calculations were also conducted using spreadsheets to provide a comparison at the most fundamental level. Calculations and modeling approaches are compared for unit radionuclide concentrationsmore » in water and soil for the ingestion, inhalation, and external dose pathways. Over 30 tables comparing inputs and results are provided.« less
NASA Technical Reports Server (NTRS)
Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.
2006-01-01
The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.
Investigation of Near Shannon Limit Coding Schemes
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; Kim, J.; Mo, Fan
1999-01-01
Turbo codes can deliver performance that is very close to the Shannon limit. This report investigates algorithms for convolutional turbo codes and block turbo codes. Both coding schemes can achieve performance near Shannon limit. The performance of the schemes is obtained using computer simulations. There are three sections in this report. First section is the introduction. The fundamental knowledge about coding, block coding and convolutional coding is discussed. In the second section, the basic concepts of convolutional turbo codes are introduced and the performance of turbo codes, especially high rate turbo codes, is provided from the simulation results. After introducing all the parameters that help turbo codes achieve such a good performance, it is concluded that output weight distribution should be the main consideration in designing turbo codes. Based on the output weight distribution, the performance bounds for turbo codes are given. Then, the relationships between the output weight distribution and the factors like generator polynomial, interleaver and puncturing pattern are examined. The criterion for the best selection of system components is provided. The puncturing pattern algorithm is discussed in detail. Different puncturing patterns are compared for each high rate. For most of the high rate codes, the puncturing pattern does not show any significant effect on the code performance if pseudo - random interleaver is used in the system. For some special rate codes with poor performance, an alternative puncturing algorithm is designed which restores their performance close to the Shannon limit. Finally, in section three, for iterative decoding of block codes, the method of building trellis for block codes, the structure of the iterative decoding system and the calculation of extrinsic values are discussed.
Pediatric Severe Sepsis in US Children’s Hospitals
Balamuth, Fran; Weiss, Scott L.; Neuman, Mark I.; Scott, Halden; Brady, Patrick W.; Paul, Raina; Farris, Reid W.D.; McClead, Richard; Hayes, Katie; Gaieski, David; Hall, Matt; Shah, Samir S.; Alpern, Elizabeth R.
2014-01-01
Objective To compare the prevalence, resource utilization, and mortality for pediatric severe sepsis identified using two established identification strategies. Design Observational cohort study from 2004–2012. Setting Forty-four pediatric hospitals contributing data to the Pediatric Health Information Systems database. Patients Children ≤18 years of age. Measurements and Main Results We identified patients with severe sepsis or septic shock by using two International Classification of Diseases, 9th edition-Clinical Modification (ICD9-CM) based coding strategies: 1) combinations of ICD9-CM codes for infection plus organ dysfunction (combination code cohort); 2) ICD9-CM codes for severe sepsis and septic shock (sepsis code cohort). Outcomes included prevalence of severe sepsis, as well as hospital and intensive care unit (ICU) length of stay (LOS), and mortality. Outcomes were compared between the two cohorts examining aggregate differences over the study period and trends over time. The combination code cohort identified, 176,124 hospitalizations (3.1% of all hospitalizations), while the sepsis code cohort identified 25,236 hospitalizations (0.45%), a 7-fold difference. Between 2004 and 2012, the prevalence of sepsis increased from 3.7% to 4.4% using the combination code cohort and from 0.4% to 0.7% using the sepsis code cohort (p<0.001 for trend in each cohort). LOS (hospital and ICU) and costs decreased in both cohorts over the study period (p<0.001). Overall hospital mortality was higher in the sepsis code cohort than the combination code cohort (21.2%, (95% CI: 20.7–21.8 vs. 8.2%,(95% CI: 8.0–8.3). Over the 9 year study period, there was an absolute reduction in mortality of 10.9% (p<0.001) in the sepsis code cohort and 3.8% (p<0.001) in the combination code cohort. Conclusions Prevalence of pediatric severe sepsis increased in the studied US children’s hospitals over the past 9 years, though resource utilization and mortality decreased. Epidemiologic estimates of pediatric severe sepsis varied up to 7-fold depending on the strategy used for case ascertainment. PMID:25162514
A Degree Distribution Optimization Algorithm for Image Transmission
NASA Astrophysics Data System (ADS)
Jiang, Wei; Yang, Junjie
2016-09-01
Luby Transform (LT) code is the first practical implementation of digital fountain code. The coding behavior of LT code is mainly decided by the degree distribution which determines the relationship between source data and codewords. Two degree distributions are suggested by Luby. They work well in typical situations but not optimally in case of finite encoding symbols. In this work, the degree distribution optimization algorithm is proposed to explore the potential of LT code. Firstly selection scheme of sparse degrees for LT codes is introduced. Then probability distribution is optimized according to the selected degrees. In image transmission, bit stream is sensitive to the channel noise and even a single bit error may cause the loss of synchronization between the encoder and the decoder. Therefore the proposed algorithm is designed for image transmission situation. Moreover, optimal class partition is studied for image transmission with unequal error protection. The experimental results are quite promising. Compared with LT code with robust soliton distribution, the proposed algorithm improves the final quality of recovered images obviously with the same overhead.
Installed F/A-18 inlet flow calculations at 30 degrees angle-of-attack: A comparative study
NASA Technical Reports Server (NTRS)
Smith, C. Frederic; Podleski, Steve D.
1994-01-01
NASA Lewis is currently engaged in a research effort as a team member of the High Alpha Technology Program (HATP) within NASA. This program utilizes a specially equipped F/A-18, the High Alpha Research Vehicle (HARV), in an ambitious effort to improve the maneuverability of high-performance military aircraft at low subsonic speed, high angle of attack conditions. The overall objective of the Lewis effort is to develop inlet technology that will ensure efficient airflow delivery to the engine during these maneuvers. One part of the Lewis approach utilizes computational fluid dynamics codes to predict the installed performance of inlets for these highly maneuverable aircraft. Full Navier-Stokes (FNS) calculations on the installed F/A-18 inlet at 30 degrees angle of attack, 0 degrees yaw, and a freestream Mach number of 0.2 have been obtained in this study using an algebraic turbulence model with two grids (original and revised). Results obtained with the original grid were used to determine where further grid refinements and additional geometry were needed. In order to account properly for the external effects, the forebody, leading edge extension (LEX), ramp, and wing were included with inlet geometry. In the original grid, the diverter, LEX slot, and leading edge flap were not included due to insufficient geometry definition, but were included in a revised grid. In addition, a thin-layer Navier-Stokes (TLNS) code is used with the revised grid and the numerical results are compared to those obtained with the FNS code. The TLNS code was used to evaluate the effects on the solution using a code with more recent CFD developments such as upwinding with TVD schemes versus central differencing with artificial dissipation. The calculations are compared to a limited amount of available experimental data. The predicted forebody/fuselage surface static pressures compared well with data of all solutions. The predicted trajectory of the vortex generated under the LEX was different for each solution. These discrepancies are attributed to differences in the grid resolution and turbulence modeling. All solutions predict that this vortex is ingested by the inlet. The predicted inlet total pressure recoveries are lower than data and the distortions are higher than data. The results obtained with the revised grid were significantly improved from the original grid results. The original grid results indicated the ingested vortex migrated to the engine face and caused additional distortions to those already present due to secondary flow development. The revised grid results indicate that the ingested vortex is dissipated along the inlet duct inboard wall. The TLNS results indicate the flow at the engine face was much more distorted than the FNS results and is attributed to the pole boundary condition introducing numerical distortions into the flow field.
García-Betances, Rebeca I; Huerta, Mónica K
2012-01-01
A comparative review is presented of available technologies suitable for automatic reading of patient identification bracelet tags. Existing technologies' backgrounds, characteristics, advantages and disadvantages, are described in relation to their possible use by public health care centers with budgetary limitations. A comparative assessment is presented of suitable automatic identification systems based on graphic codes, both one- (1D) and two-dimensional (2D), printed on labels, as well as those based on radio frequency identification (RFID) tags. The analysis looks at the tradeoffs of these technologies to provide guidance to hospital administrator looking to deploy patient identification technology. The results suggest that affordable automatic patient identification systems can be easily and inexpensively implemented using 2D code printed on low cost bracelet labels, which can then be read and automatically decoded by ordinary mobile smart phones. Because of mobile smart phones' present versatility and ubiquity, the implantation and operation of 2D code, and especially Quick Response® (QR) Code, technology emerges as a very attractive alternative to automate the patients' identification processes in low-budget situations.
García-Betances, Rebeca I.; Huerta, Mónica K.
2012-01-01
A comparative review is presented of available technologies suitable for automatic reading of patient identification bracelet tags. Existing technologies’ backgrounds, characteristics, advantages and disadvantages, are described in relation to their possible use by public health care centers with budgetary limitations. A comparative assessment is presented of suitable automatic identification systems based on graphic codes, both one- (1D) and two-dimensional (2D), printed on labels, as well as those based on radio frequency identification (RFID) tags. The analysis looks at the tradeoffs of these technologies to provide guidance to hospital administrator looking to deploy patient identification technology. The results suggest that affordable automatic patient identification systems can be easily and inexpensively implemented using 2D code printed on low cost bracelet labels, which can then be read and automatically decoded by ordinary mobile smart phones. Because of mobile smart phones’ present versatility and ubiquity, the implantation and operation of 2D code, and especially Quick Response® (QR) Code, technology emerges as a very attractive alternative to automate the patients’ identification processes in low-budget situations. PMID:23569629
On the effect of updated MCNP photon cross section data on the simulated response of the HPA TLD.
Eakins, Jonathan
2009-02-01
The relative response of the new Health Protection Agency thermoluminescence dosimeter (TLD) has been calculated for Narrow Series X-ray distribution and (137)Cs photon sources using the Monte Carlo code MCNP5, and the results compared with those obtained during its design stage using the predecessor code, MCNP4c2. The results agreed at intermediate energies (approximately 0.1 MeV to (137)Cs), but differed at low energies (<0.1 MeV) by up to approximately 10%. This disparity has been ascribed to differences in the default photon interaction data used by the two codes, and derives ultimately from the effect on absorbed dose of the recent updates to the photoelectric cross sections. The sources of these data have been reviewed.
Spatially coupled low-density parity-check error correction for holographic data storage
NASA Astrophysics Data System (ADS)
Ishii, Norihiko; Katano, Yutaro; Muroi, Tetsuhiko; Kinoshita, Nobuhiro
2017-09-01
The spatially coupled low-density parity-check (SC-LDPC) was considered for holographic data storage. The superiority of SC-LDPC was studied by simulation. The simulations show that the performance of SC-LDPC depends on the lifting number, and when the lifting number is over 100, SC-LDPC shows better error correctability compared with irregular LDPC. SC-LDPC is applied to the 5:9 modulation code, which is one of the differential codes. The error-free point is near 2.8 dB and over 10-1 can be corrected in simulation. From these simulation results, this error correction code can be applied to actual holographic data storage test equipment. Results showed that 8 × 10-2 can be corrected, furthermore it works effectively and shows good error correctability.
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1993-01-01
A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.
Prediction of the explosion effect of aluminized explosives
NASA Astrophysics Data System (ADS)
Zhang, Qi; Xiang, Cong; Liang, HuiMin
2013-05-01
We present an approach to predict the explosion load for aluminized explosives using a numerical calculation. A code to calculate the species of detonation products of high energy ingredients and those of the secondary reaction of aluminum and the detonation products, velocity of detonation, pressure, temperature and JWL parameters of aluminized explosives has been developed in this study. Through numerical calculations carried out with this code, the predicted JWL parameters for aluminized explosives have been compared with those measured by the cylinder test. The predicted JWL parameters with this code agree with those measured by the cylinder test. Furthermore, the load of explosion for the aluminized explosive was calculated using the numerical simulation by using the JWL equation of state. The loads of explosion for the aluminized explosive obtained using the predicted JWL parameters have been compared with those using the measured JWL parameters. Both of them are almost the same. The numerical results using the predicted JWL parameters show that the explosion air shock wave is the strongest when the mass fraction of aluminum powder in the explosive mixtures is 30%. This result agrees with the empirical data.
Comparisons between MCNP, EGS4 and experiment for clinical electron beams.
Jeraj, R; Keall, P J; Ostwald, P M
1999-03-01
Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.
Development of Switchable Polarity Solvent Draw Solutes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Aaron D.
Results of a computational fluid dynamic (CFD) study of flow and heat transfer in a printed circuit heat exchanger (PCHE) geometry are presented. CFD results obtained from a two-plate model are compared to corresponding experimental results for the validation. This process provides the basis for further application of the CFD code to PCHE design and performance analysis in a variety of internal flow geometries. As a part of the code verification and validation (V&V) process, CFD simulation of a single semicircular straight channel under laminar isothermal conditions was also performed and compared to theoretical results. This comparison yielded excellent agreementmore » with the theoretical values. The two-plate CFD model based on the experimental PCHE design overestimated the effectiveness and underestimated the pressure drop. However, it is found that the discrepancy between the CFD result and experimental data was mainly caused by the uncertainty in the geometry of heat exchanger during the fabrication. The CFD results obtained using a slightly smaller channel diameter yielded good agreement with the experimental data. A separate investigation revealed that the average channel diameter of the OSU PCHE after the diffusion-bonding was 1.93 mm on the cold fluid side and 1.90 mm on the hot fluid side which are both smaller than the nominal design value. Consequently, the CFD code was shown to have sufficient capability to evaluate the heat exchanger thermal-hydraulic performance.« less
Processing of visually presented clock times.
Goolkasian, P; Park, D C
1980-11-01
The encoding and representation of visually presented clock times was investigated in three experiments utilizing a comparative judgment task. Experiment 1 explored the effects of comparing times presented in different formats (clock face, digit, or word), and Experiment 2 examined angular distance effects created by varying positions of the hands on clock faces. In Experiment 3, encoding and processing differences between clock faces and digitally presented times were directly measured. Same/different reactions to digitally presented times were faster than to times presented on a clock face, and this format effect was found to be a result of differences in processing that occurred after encoding. Angular separation also had a limited effect on processing. The findings are interpreted within the framework of theories that refer to the importance of representational codes. The applicability to the data of Bank's semantic-coding theory, Paivio's dual-coding theory, and the levels-of-processing view of memory are discussed.
NASA Technical Reports Server (NTRS)
Carpenter, M. H.
1988-01-01
The generalized chemistry version of the computer code SPARK is extended to include two higher-order numerical schemes, yielding fourth-order spatial accuracy for the inviscid terms. The new and old formulations are used to study the influences of finite rate chemical processes on nozzle performance. A determination is made of the computationally optimum reaction scheme for use in high-enthalpy nozzles. Finite rate calculations are compared with the frozen and equilibrium limits to assess the validity of each formulation. In addition, the finite rate SPARK results are compared with the constant ratio of specific heats (gamma) SEAGULL code, to determine its accuracy in variable gamma flow situations. Finally, the higher-order SPARK code is used to calculate nozzle flows having species stratification. Flame quenching occurs at low nozzle pressures, while for high pressures, significant burning continues in the nozzle.
NetCoDer: A Retransmission Mechanism for WSNs Based on Cooperative Relays and Network Coding
Valle, Odilson T.; Montez, Carlos; Medeiros de Araujo, Gustavo; Vasques, Francisco; Moraes, Ricardo
2016-01-01
Some of the most difficult problems to deal with when using Wireless Sensor Networks (WSNs) are related to the unreliable nature of communication channels. In this context, the use of cooperative diversity techniques and the application of network coding concepts may be promising solutions to improve the communication reliability. In this paper, we propose the NetCoDer scheme to address this problem. Its design is based on merging cooperative diversity techniques and network coding concepts. We evaluate the effectiveness of the NetCoDer scheme through both an experimental setup with real WSN nodes and a simulation assessment, comparing NetCoDer performance against state-of-the-art TDMA-based (Time Division Multiple Access) retransmission techniques: BlockACK, Master/Slave and Redundant TDMA. The obtained results highlight that the proposed NetCoDer scheme clearly improves the network performance when compared with other retransmission techniques. PMID:27258280
Neuhaus, Philipp; Doods, Justin; Dugas, Martin
2015-01-01
Automatic coding of medical terms is an important, but highly complicated and laborious task. To compare and evaluate different strategies a framework with a standardized web-interface was created. Two UMLS mapping strategies are compared to demonstrate the interface. The framework is a Java Spring application running on a Tomcat application server. It accepts different parameters and returns results in JSON format. To demonstrate the framework, a list of medical data items was mapped by two different methods: similarity search in a large table of terminology codes versus search in a manually curated repository. These mappings were reviewed by a specialist. The evaluation shows that the framework is flexible (due to standardized interfaces like HTTP and JSON), performant and reliable. Accuracy of automatically assigned codes is limited (up to 40%). Combining different semantic mappers into a standardized Web-API is feasible. This framework can be easily enhanced due to its modular design.
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.; Chima, Rodrick V.; Turkel, Eli
1997-01-01
A preconditioning scheme has been implemented into a three-dimensional viscous computational fluid dynamics code for turbomachine blade rows. The preconditioning allows the code, originally developed for simulating compressible flow fields, to be applied to nearly-incompressible, low Mach number flows. A brief description is given of the compressible Navier-Stokes equations for a rotating coordinate system, along with the preconditioning method employed. Details about the conservative formulation of artificial dissipation are provided, and different artificial dissipation schemes are discussed and compared. The preconditioned code was applied to a well-documented case involving the NASA large low-speed centrifugal compressor for which detailed experimental data are available for comparison. Performance and flow field data are compared for the near-design operating point of the compressor, with generally good agreement between computation and experiment. Further, significant differences between computational results for the different numerical implementations, revealing different levels of solution accuracy, are discussed.
A Simple Secure Hash Function Scheme Using Multiple Chaotic Maps
NASA Astrophysics Data System (ADS)
Ahmad, Musheer; Khurana, Shruti; Singh, Sushmita; AlSharari, Hamed D.
2017-06-01
The chaotic maps posses high parameter sensitivity, random-like behavior and one-way computations, which favor the construction of cryptographic hash functions. In this paper, we propose to present a novel hash function scheme which uses multiple chaotic maps to generate efficient variable-sized hash functions. The message is divided into four parts, each part is processed by a different 1D chaotic map unit yielding intermediate hash code. The four codes are concatenated to two blocks, then each block is processed through 2D chaotic map unit separately. The final hash value is generated by combining the two partial hash codes. The simulation analyses such as distribution of hashes, statistical properties of confusion and diffusion, message and key sensitivity, collision resistance and flexibility are performed. The results reveal that the proposed anticipated hash scheme is simple, efficient and holds comparable capabilities when compared with some recent chaos-based hash algorithms.
Microdosimetric investigation of the spectra from YAYOI by use of the Monte Carlo code PHITS.
Nakao, Minoru; Baba, Hiromi; Oishi, Ayumu; Onizuka, Yoshihiko
2010-07-01
The purpose of this study was to obtain the neutron energy spectrum on the surface of the moderator of the Tokyo University reactor YAYOI and to investigate the origins of peaks observed in the neutron energy spectrum by use of the Monte Carlo Code PHITS for evaluating biological studies. The moderator system was modeled with the use of details from an article that reported a calculation result and a measurement result for a neutron spectrum on the surface of the moderator of the reactor. Our calculation results with PHITS were compared to those obtained with the discrete ordinate code ANISN described in the article. In addition, the changes in the neutron spectrum at the boundaries of materials in the moderator system were examined with PHITS. Also, microdosimetric energy distributions of secondary charged particles from neutron recoil or reaction were calculated by use of PHITS and compared with a microdosimetric experiment. Our calculations of the neutron energy spectrum with PHITS showed good agreement with the results of ANISN in terms of the energy and structure of the peaks. However, the microdosimetric dose distribution spectrum with PHITS showed a remarkable discrepancy with the experimental one. The experimental spectrum could not be explained by PHITS when we used neutron beams of two mono-energies.
Castro-Chavez, Fernando
2014-01-01
Objective The objective of this article is to demonstrate that the genetic code can be studied and represented in a 3-D Sphered Cube for bioinformatics and for education by using the graphical help of the ancient “Book of Changes” or I Ching for the comparison, pair by pair, of the three basic characteristics of nucleotides: H-bonds, molecular structure, and their tautomerism. Methods The source of natural biodiversity is the high plasticity of the genetic code, analyzable with a reverse engineering of its 2-D and 3-D representations (here illustrated), but also through the classical 64-hexagrams of the ancient I Ching, as if they were the 64-codons or words of the genetic code. Results In this article, the four elements of the Yin/Yang were found by correlating the 3×2=6 sets of Cartesian comparisons of the mentioned properties of nucleic acids, to the directionality of their resulting blocks of codons grouped according to their resulting amino acids and/or functions, integrating a 384-codon Sphered Cube whose function is illustrated by comparing six brain peptides and a promoter of osteoblasts from Humans versus Neanderthal, as well as to Negadi’s work on the importance of the number 384 within the genetic code. Conclusions Starting with the codon/anticodon correlation of Nirenberg, published in full here for the first time, and by studying the genetic code and its 3-D display, the buffers of reiteration within codons codifying for the same amino acid, displayed the two long (binary number one) and older Yin/Yang arrows that travel in opposite directions, mimicking the parental DNA strands, while annealing to the two younger and broken (binary number zero) Yin/Yang arrows, mimicking the new DNA strands; the graphic analysis of the of the genetic code and its plasticity was helpful to compare compatible sequences (human compatible to human versus neanderthal compatible to neanderthal), while further exploring the wondrous biodiversity of nature for educational purposes. PMID:25340175
NASA Astrophysics Data System (ADS)
Bhooplapur, Sharad; Akbulut, Mehmetkan; Quinlan, Franklyn; Delfyett, Peter J.
2010-04-01
A novel scheme for recognition of electronic bit-sequences is demonstrated. Two electronic bit-sequences that are to be compared are each mapped to a unique code from a set of Walsh-Hadamard codes. The codes are then encoded in parallel on the spectral phase of the frequency comb lines from a frequency-stabilized mode-locked semiconductor laser. Phase encoding is achieved by using two independent spatial light modulators based on liquid crystal arrays. Encoded pulses are compared using interferometric pulse detection and differential balanced photodetection. Orthogonal codes eight bits long are compared, and matched codes are successfully distinguished from mismatched codes with very low error rates, of around 10-18. This technique has potential for high-speed, high accuracy recognition of bit-sequences, with applications in keyword searches and internet protocol packet routing.
Benchmark of FDNS CFD Code For Direct Connect RBCC Test Data
NASA Technical Reports Server (NTRS)
Ruf, J. H.
2000-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with experimental data from the Pennsylvania State University's (PSU) Propulsion Engineering Research Center (PERC) rocket based combined cycle (RBCC) rocket-ejector experiments. The PERC RBCC experimental hardware was in a direct-connect configuration in diffusion and afterburning (DAB) operation. The objective of the present work was to validate the Finite Difference Navier Stokes (FDNS) CFD code for the rocket-ejector mode internal fluid mechanics and combustion phenomena. A second objective was determine the best application procedures to use FDNS as a predictive/engineering tool. Three-dimensional CFD analysis was performed. Solution methodology and grid requirements are discussed. CFD results are compared to experimental data for static pressure, Raman Spectroscopy species distribution data and RBCC net thrust and specified impulse.
Optical observables in stars with non-stationary atmospheres. [fireballs and cepheid models
NASA Technical Reports Server (NTRS)
Hillendahl, R. W.
1980-01-01
Experience gained by use of Cepheid modeling codes to predict the dimensional and photometric behavior of nuclear fireballs is used as a means of validating various computational techniques used in the Cepheid codes. Predicted results from Cepheid models are compared with observations of the continuum and lines in an effort to demonstrate that the atmospheric phenomena in Cepheids are quite complex but that they can be quantitatively modeled.
ERIC Educational Resources Information Center
Nolan, Carson Y., Ed.
The second of a three-volume final report presents results of three studies on indexing systems for tape recordings used by blind persons. Study I is explained to have compared five tonal index codes in order to identify a code that required minimal display time, that had easily discriminable characters, and that could be easily learned. Results…
Tailored Codes for Small Quantum Memories
NASA Astrophysics Data System (ADS)
Robertson, Alan; Granade, Christopher; Bartlett, Stephen D.; Flammia, Steven T.
2017-12-01
We demonstrate that small quantum memories, realized via quantum error correction in multiqubit devices, can benefit substantially by choosing a quantum code that is tailored to the relevant error model of the system. For a biased noise model, with independent bit and phase flips occurring at different rates, we show that a single code greatly outperforms the well-studied Steane code across the full range of parameters of the noise model, including for unbiased noise. In fact, this tailored code performs almost optimally when compared with 10 000 randomly selected stabilizer codes of comparable experimental complexity. Tailored codes can even outperform the Steane code with realistic experimental noise, and without any increase in the experimental complexity, as we demonstrate by comparison in the observed error model in a recent seven-qubit trapped ion experiment.
Benchmarking the Multidimensional Stellar Implicit Code MUSIC
NASA Astrophysics Data System (ADS)
Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M. V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T.
2017-04-01
We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in future applications.
Punzalan, Florencio Rusty; Kunieda, Yoshitoshi; Amano, Akira
2015-01-01
Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to generate code for physiological simulations and provides a tool for studying cardiac electrophysiology. PMID:26356082
GAMERA - The New Magnetospheric Code
NASA Astrophysics Data System (ADS)
Lyon, J.; Sorathia, K.; Zhang, B.; Merkin, V. G.; Wiltberger, M. J.; Daldorff, L. K. S.
2017-12-01
The Lyon-Fedder-Mobarry (LFM) code has been a main-line magnetospheric simulation code for 30 years. The code base, designed in the age of memory to memory vector ma- chines,is still in wide use for science production but needs upgrading to ensure the long term sustainability. In this presentation, we will discuss our recent efforts to update and improve that code base and also highlight some recent results. The new project GAM- ERA, Grid Agnostic MHD for Extended Research Applications, has kept the original design characteristics of the LFM and made significant improvements. The original de- sign included high order numerical differencing with very aggressive limiting, the ability to use arbitrary, but logically rectangular, grids, and maintenance of div B = 0 through the use of the Yee grid. Significant improvements include high-order upwinding and a non-clipping limiter. One other improvement with wider applicability is an im- proved averaging technique for the singularities in polar and spherical grids. The new code adopts a hybrid structure - multi-threaded OpenMP with an overarching MPI layer for large scale and coupled applications. The MPI layer uses a combination of standard MPI and the Global Array Toolkit from PNL to provide a lightweight mechanism for coupling codes together concurrently. The single processor code is highly efficient and can run magnetospheric simulations at the default CCMC resolution faster than real time on a MacBook pro. We have run the new code through the Athena suite of tests, and the results compare favorably with the codes available to the astrophysics community. LFM/GAMERA has been applied to many different situations ranging from the inner and outer heliosphere and magnetospheres of Venus, the Earth, Jupiter and Saturn. We present example results the Earth's magnetosphere including a coupled ring current (RCM), the magnetospheres of Jupiter and Saturn, and the inner heliosphere.
User Manual for the NASA Glenn Ice Accretion Code LEWICE: Version 2.0
NASA Technical Reports Server (NTRS)
Wright, William B.
1999-01-01
A research project is underway at NASA Glenn to produce a computer code which can accurately predict ice growth under a wide range of meteorological conditions for any aircraft surface. This report will present a description of the code inputs and outputs from version 2.0 of this code, which is called LEWICE. This version differs from previous releases due to its robustness and its ability to reproduce results accurately for different spacing and time step criteria across computing platform. It also differs in the extensive effort undertaken to compare the results against the database of ice shapes which have been generated in the NASA Glenn Icing Research Tunnel (IRT) 1. This report will only describe the features of the code related to the use of the program. The report will not describe the inner working of the code or the physical models used. This information is available in the form of several unpublished documents which will be collectively referred to as a Programmers Manual for LEWICE 2 in this report. These reports are intended as an update/replacement for all previous user manuals of LEWICE. In addition to describing the changes and improvements made for this version, information from previous manuals may be duplicated so that the user will not need to consult previous manuals to use this code.
Adaptive format conversion for scalable video coding
NASA Astrophysics Data System (ADS)
Wan, Wade K.; Lim, Jae S.
2001-12-01
The enhancement layer in many scalable coding algorithms is composed of residual coding information. There is another type of information that can be transmitted instead of (or in addition to) residual coding. Since the encoder has access to the original sequence, it can utilize adaptive format conversion (AFC) to generate the enhancement layer and transmit the different format conversion methods as enhancement data. This paper investigates the use of adaptive format conversion information as enhancement data in scalable video coding. Experimental results are shown for a wide range of base layer qualities and enhancement bitrates to determine when AFC can improve video scalability. Since the parameters needed for AFC are small compared to residual coding, AFC can provide video scalability at low enhancement layer bitrates that are not possible with residual coding. In addition, AFC can also be used in addition to residual coding to improve video scalability at higher enhancement layer bitrates. Adaptive format conversion has not been studied in detail, but many scalable applications may benefit from it. An example of an application that AFC is well-suited for is the migration path for digital television where AFC can provide immediate video scalability as well as assist future migrations.
Novel Integration of Frame Rate Up Conversion and HEVC Coding Based on Rate-Distortion Optimization.
Guo Lu; Xiaoyun Zhang; Li Chen; Zhiyong Gao
2018-02-01
Frame rate up conversion (FRUC) can improve the visual quality by interpolating new intermediate frames. However, high frame rate videos by FRUC are confronted with more bitrate consumption or annoying artifacts of interpolated frames. In this paper, a novel integration framework of FRUC and high efficiency video coding (HEVC) is proposed based on rate-distortion optimization, and the interpolated frames can be reconstructed at encoder side with low bitrate cost and high visual quality. First, joint motion estimation (JME) algorithm is proposed to obtain robust motion vectors, which are shared between FRUC and video coding. What's more, JME is embedded into the coding loop and employs the original motion search strategy in HEVC coding. Then, the frame interpolation is formulated as a rate-distortion optimization problem, where both the coding bitrate consumption and visual quality are taken into account. Due to the absence of original frames, the distortion model for interpolated frames is established according to the motion vector reliability and coding quantization error. Experimental results demonstrate that the proposed framework can achieve 21% ~ 42% reduction in BDBR, when compared with the traditional methods of FRUC cascaded with coding.
Psychometric challenges and proposed solutions when scoring facial emotion expression codes.
Olderbak, Sally; Hildebrandt, Andrea; Pinkpank, Thomas; Sommer, Werner; Wilhelm, Oliver
2014-12-01
Coding of facial emotion expressions is increasingly performed by automated emotion expression scoring software; however, there is limited discussion on how best to score the resulting codes. We present a discussion of facial emotion expression theories and a review of contemporary emotion expression coding methodology. We highlight methodological challenges pertinent to scoring software-coded facial emotion expression codes and present important psychometric research questions centered on comparing competing scoring procedures of these codes. Then, on the basis of a time series data set collected to assess individual differences in facial emotion expression ability, we derive, apply, and evaluate several statistical procedures, including four scoring methods and four data treatments, to score software-coded emotion expression data. These scoring procedures are illustrated to inform analysis decisions pertaining to the scoring and data treatment of other emotion expression questions and under different experimental circumstances. Overall, we found applying loess smoothing and controlling for baseline facial emotion expression and facial plasticity are recommended methods of data treatment. When scoring facial emotion expression ability, maximum score is preferred. Finally, we discuss the scoring methods and data treatments in the larger context of emotion expression research.
Haylen, Bernard T; Lee, Joseph; Maher, Chris; Deprest, Jan; Freeman, Robert
2014-06-01
Results of interobserver reliability studies for the International Urogynecological Association-International Continence Society (IUGA-ICS) Complication Classification coding can be greatly influenced by study design factors such as participant instruction, motivation, and test-question clarity. We attempted to optimize these factors. After a 15-min instructional lecture with eight clinical case examples (including images) and with classification/coding charts available, those clinicians attending an IUGA Surgical Complications workshop were presented with eight similar-style test cases over 10 min and asked to code them using the Category, Time and Site classification. Answers were compared to predetermined correct codes obtained by five instigators of the IUGA-ICS prostheses and grafts complications classification. Prelecture and postquiz participant confidence levels using a five-step Likert scale were assessed. Complete sets of answers to the questions (24 codings) were provided by 34 respondents, only three of whom reported prior use of the charts. Average score [n (%)] out of eight, as well as median score (range) for each coding category were: (i) Category: 7.3 (91 %); 7 (4-8); (ii) Time: 7.8 (98 %); 7 (6-8); (iii) Site: 7.2 (90 %); 7 (5-8). Overall, the equivalent calculations (out of 24) were 22.3 (93 %) and 22 (18-24). Mean prelecture confidence was 1.37 (out of 5), rising to 3.85 postquiz. Urogynecologists had the highest correlation with correct coding, followed closely by fellows and general gynecologists. Optimizing training and study design can lead to excellent results for interobserver reliability of the IUGA-ICS Complication Classification coding, with increased participant confidence in complication-coding ability.
Processing Code-Switching in Algerian Bilinguals: Effects of Language Use and Semantic Expectancy
Kheder, Souad; Kaan, Edith
2016-01-01
Using a cross-modal naming paradigm this study investigated the effect of sentence constraint and language use on the expectancy of a language switch during listening comprehension. Sixty-five Algerian bilinguals who habitually code-switch between Algerian Arabic and French (AA-FR) but not between Standard Arabic and French (SA-FR) listened to sentence fragments and named a visually presented French target NP out loud. Participants’ speech onset times were recorded. The sentence context was either highly semantically constraining toward the French NP or not. The language of the sentence context was either in Algerian Arabic or in Standard Arabic, but the target NP was always in French, thus creating two code-switching contexts: a typical and recurrent code-switching context (AA-FR) and a non-typical code-switching context (SA-FR). Results revealed a semantic constraint effect indicating that the French switches were easier to process in the high compared to the low-constraint context. In addition, the effect size of semantic constraint was significant in the more typical code-switching context (AA-FR) suggesting that language use influences the processing of switching between languages. The effect of semantic constraint was also modulated by code-switching habits and the proficiency of L2 French. Semantic constraint was reduced in bilinguals who frequently code-switch and in bilinguals with high proficiency in French. Results are discussed with regards to the bilingual interactive activation model (Dijkstra and Van Heuven, 2002) and the control process model of code-switching (Green and Wei, 2014). PMID:26973559
Seals Code Development Workshop
NASA Technical Reports Server (NTRS)
Hendricks, Robert C. (Compiler); Liang, Anita D. (Compiler)
1996-01-01
Seals Workshop of 1995 industrial code (INDSEAL) release include ICYL, GCYLT, IFACE, GFACE, SPIRALG, SPIRALI, DYSEAL, and KTK. The scientific code (SCISEAL) release includes conjugate heat transfer and multidomain with rotordynamic capability. Several seals and bearings codes (e.g., HYDROFLEX, HYDROTRAN, HYDROB3D, FLOWCON1, FLOWCON2) are presented and results compared. Current computational and experimental emphasis includes multiple connected cavity flows with goals of reducing parasitic losses and gas ingestion. Labyrinth seals continue to play a significant role in sealing with face, honeycomb, and new sealing concepts under investigation for advanced engine concepts in view of strict environmental constraints. The clean sheet approach to engine design is advocated with program directions and anticipated percentage SFC reductions cited. Future activities center on engine applications with coupled seal/power/secondary flow streams.
Unsteady Cascade Aerodynamic Response Using a Multiphysics Simulation Code
NASA Technical Reports Server (NTRS)
Lawrence, C.; Reddy, T. S. R.; Spyropoulos, E.
2000-01-01
The multiphysics code Spectrum(TM) is applied to calculate the unsteady aerodynamic pressures of oscillating cascade of airfoils representing a blade row of a turbomachinery component. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena, in the present case being between fluids and structures. Interaction constraints are enforced in a fully coupled manner using the augmented-Lagrangian method. The arbitrary Lagrangian-Eulerian method is utilized to account for deformable fluid domains resulting from blade motions. Unsteady pressures are calculated for a cascade designated as the tenth standard, and undergoing plunging and pitching oscillations. The predicted unsteady pressures are compared with those obtained from an unsteady Euler co-de refer-red in the literature. The Spectrum(TM) code predictions showed good correlation for the cases considered.
NASA Astrophysics Data System (ADS)
Gao, Shanghua; Fu, Guangyu; Liu, Tai; Zhang, Guoqing
2017-03-01
Tanaka et al. (Geophys J Int 164:273-289, 2006, Geophys J Int 170:1031-1052, 2007) proposed the spherical dislocation theory (SDT) in a spherically symmetric, self-gravitating visco-elastic earth model. However, to date there have been no reports on easily adopted, widely used software that utilizes Tanaka's theory. In this study we introduce a new code to compute post-seismic deformations (PSD), including displacements as well as Geoid and gravity changes, caused by a seismic source at any position. This new code is based on the above-mentioned SDT. The code consists of two parts. The first part is the numerical frame of the dislocation Green function (DGF), which contains a set of two-dimensional discrete numerical frames of DGFs on a symmetric earth model. The second part is an integration function, which performs bi-quadratic spline interpolation operations on the frame of DGFs. The inputs are the information on the seismic fault models and the information on the observation points. After the user prepares the inputs in a file with given format, the code will automatically compute the PSD. As an example, we use the new code to calculate the co-seismic displacements caused by the Tohoku-Oki Mw 9.0 earthquake. We compare the result with observations and the result from a full-elastic SDT, and we found that the Root Mean Square error between the calculated and observed results is 7.4 cm. This verifies the suitability of our new code. Finally, we discuss several issues that require attention when using the code, which should be helpful for users.
Vilches, M; García-Pareja, S; Guerrero, R; Anguiano, M; Lallena, A M
2009-09-01
In this work, recent results from experiments and simulations (with EGSnrc) performed by Ross et al. [Med. Phys. 35, 4121-4131 (2008)] on electron scattering by foils of different materials and thicknesses are compared to those obtained using several Monte Carlo codes. Three codes have been used: GEANT (version 3.21), Geant4 (version 9.1, patch03), and PENELOPE (version 2006). In the case of PENELOPE, mixed and fully detailed simulations have been carried out. Transverse dose distributions in air have been obtained in order to compare with measurements. The detailed PENELOPE simulations show excellent agreement with experiment. The calculations performed with GEANT and PENELOPE (mixed) agree with experiment within 3% except for the Be foil. In the case of Geant4, the distributions are 5% narrower compared to the experimental ones, though the agreement is very good for the Be foil. Transverse dose distribution in water obtained with PENELOPE (mixed) is 4% wider than those calculated by Ross et al. using EGSnrc and is 1% narrower than the transverse dose distributions in air, as considered in the experiment. All the codes give a reasonable agreement (within 5%) with the experimental results for all the material and thicknesses studied.
FDNS CFD Code Benchmark for RBCC Ejector Mode Operation: Continuing Toward Dual Rocket Effects
NASA Technical Reports Server (NTRS)
West, Jeff; Ruf, Joseph H.; Turner, James E. (Technical Monitor)
2000-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi -dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code [2] was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for the Diffusion and Afterburning (DAB) test conditions at the 200-psia thruster operation point, Results with and without downstream fuel injection are presented.
An evaluation of four single element airfoil analytic methods
NASA Technical Reports Server (NTRS)
Freuler, R. J.; Gregorek, G. M.
1979-01-01
A comparison of four computer codes for the analysis of two-dimensional single element airfoil sections is presented for three classes of section geometries. Two of the computer codes utilize vortex singularities methods to obtain the potential flow solution. The other two codes solve the full inviscid potential flow equation using finite differencing techniques, allowing results to be obtained for transonic flow about an airfoil including weak shocks. Each program incorporates boundary layer routines for computing the boundary layer displacement thickness and boundary layer effects on aerodynamic coefficients. Computational results are given for a symmetrical section represented by an NACA 0012 profile, a conventional section illustrated by an NACA 65A413 profile, and a supercritical type section for general aviation applications typified by a NASA LS(1)-0413 section. The four codes are compared and contrasted in the areas of method of approach, range of applicability, agreement among each other and with experiment, individual advantages and disadvantages, computer run times and memory requirements, and operational idiosyncrasies.
Antman, Yair; Yaron, Lior; Langer, Tomi; Tur, Moshe; Levanon, Nadav; Zadok, Avi
2013-11-15
Dynamic Brillouin gratings (DBGs), inscribed by comodulating two writing pump waves with a perfect Golomb code, are demonstrated and characterized experimentally. Compared with pseudo-random bit sequence (PRBS) modulation of the pump waves, the Golomb code provides lower off-peak reflectivity due to the unique properties of its cyclic autocorrelation function. Golomb-coded DBGs allow the long variable delay of one-time probe waveforms with higher signal-to-noise ratios, and without averaging. As an example, the variable delay of return-to-zero, on-off keyed data at a 1 Gbit/s rate, by as much as 10 ns, is demonstrated successfully. The eye diagram of the reflected waveform remains open, whereas PRBS modulation of the pump waves results in a closed eye. The variable delay of data at 2.5 Gbit/s is reported as well, with a marginally open eye diagram. The experimental results are in good agreement with simulations.
Lin, Michael F.; Deoras, Ameya N.; Rasmussen, Matthew D.; Kellis, Manolis
2008-01-01
Comparative genomics of multiple related species is a powerful methodology for the discovery of functional genomic elements, and its power should increase with the number of species compared. Here, we use 12 Drosophila genomes to study the power of comparative genomics metrics to distinguish between protein-coding and non-coding regions. First, we study the relative power of different comparative metrics and their relationship to single-species metrics. We find that even relatively simple multi-species metrics robustly outperform advanced single-species metrics, especially for shorter exons (≤240 nt), which are common in animal genomes. Moreover, the two capture largely independent features of protein-coding genes, with different sensitivity/specificity trade-offs, such that their combinations lead to even greater discriminatory power. In addition, we study how discovery power scales with the number and phylogenetic distance of the genomes compared. We find that species at a broad range of distances are comparably effective informants for pairwise comparative gene identification, but that these are surpassed by multi-species comparisons at similar evolutionary divergence. In particular, while pairwise discovery power plateaued at larger distances and never outperformed the most advanced single-species metrics, multi-species comparisons continued to benefit even from the most distant species with no apparent saturation. Last, we find that genes in functional categories typically considered fast-evolving can nonetheless be recovered at very high rates using comparative methods. Our results have implications for comparative genomics analyses in any species, including the human. PMID:18421375
Short-term memory for pictures and words by mentally retarded and nonretarded persons.
Ellis, N R; Wooldridge, P W
1985-05-01
Mentally retarded and nonretarded persons were compared in a Brown-Peterson short-term memory task for the retention of words and pictures over intervals up to 30 seconds. The retarded subjects forgot more rapidly over the initial 10 seconds. They also retained pictures better than they did words; the nonretarded subjects retained these stimuli equally well. The results were theoretically interpreted as reflecting a structural memory deficit in retarded individuals, who were viewed as having greater facility with an imaginal memory code than with a verbal code. Transforming information from one code to another may also have been more difficult for retarded persons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faillace, E.R.; Cheng, J.J.; Yu, C.
A series of benchmarking runs were conducted so that results obtained with the RESRAD code could be compared against those obtained with six pathway analysis models used to determine the radiation dose to an individual living on a radiologically contaminated site. The RESRAD computer code was benchmarked against five other computer codes - GENII-S, GENII, DECOM, PRESTO-EPA-CPG, and PATHRAE-EPA - and the uncodified methodology presented in the NUREG/CR-5512 report. Estimated doses for the external gamma pathway; the dust inhalation pathway; and the soil, food, and water ingestion pathways were calculated for each methodology by matching, to the extent possible, inputmore » parameters such as occupancy, shielding, and consumption factors.« less
Comparing the coding of complications in Queensland and Victorian admitted patient data.
Michel, Jude L; Cheng, Diana; Jackson, Terri J
2011-08-01
To examine differences between Queensland and Victorian coding of hospital-acquired conditions and suggest ways to improve the usefulness of these data in the monitoring of patient safety events. Secondary analysis of admitted patient episode data collected in Queensland and Victoria. Comparison of depth of coding, and patterns in the coding of ten commonly coded complications of five elective procedures. Comparison of the mean complication codes assigned per episode revealed Victoria assigns more valid codes than Queensland for all procedures, with the difference between the states being significantly different in all cases. The proportion of the codes flagged as complications was consistently lower for Queensland when comparing 10 common complications for each of the five selected elective procedures. The estimated complication rates for the five procedures showed Victoria to have an apparently higher complication rate than Queensland for 35 of the 50 complications examined. Our findings demonstrate that the coding of complications is more comprehensive in Victoria than in Queensland. It is known that inconsistencies exist between states in routine hospital data quality. Comparative use of patient safety indicators should be viewed with caution until standards are improved across Australia. More exploration of data quality issues is needed to identify areas for improvement.
Nonisentropic unsteady three dimensional small disturbance potential theory
NASA Technical Reports Server (NTRS)
Gibbons, M. D.; Whitlow, W., Jr.; Williams, M. H.
1986-01-01
Modifications that allow for more accurate modeling of flow fields when strong shocks are present were made into three dimensional transonic small disturbance (TSD) potential theory. The Engquist-Osher type-dependent differencing was incorporated into the solution algorithm. The modified theory was implemented in the XTRAN3S computer code. Steady flows over a rectangular wing with a constant NACA 0012 airfoil section and an aspect ratio of 12 were calculated for freestream Mach numbers (M) of 0.82, 0.84, and 0.86. The obtained results are compared using the modified and unmodified TSD theories and the results from a three dimensional Euler code are presented. Nonunique solutions in three dimensions are shown to appear for the rectangular wing as aspect ratio increases. Steady and unsteady results are shown for the RAE tailplane model at M = 0.90. Calculations using unmodified theory, modified theory and experimental data are compared.
Fast particles in a steady-state compact FNS and compact ST reactor
NASA Astrophysics Data System (ADS)
Gryaznevich, M. P.; Nicolai, A.; Buxton, P.
2014-10-01
This paper presents results of studies of fast particles (ions and alpha particles) in a steady-state compact fusion neutron source (CFNS) and a compact spherical tokamak (ST) reactor with Monte-Carlo and Fokker-Planck codes. Full-orbit simulations of fast particle physics indicate that a compact high field ST can be optimized for energy production by a reduction of the necessary (for the alpha containment) plasma current compared with predictions made using simple analytic expressions, or using guiding centre approximation in a numerical code. Alpha particle losses may result in significant heating and erosion of the first wall, so such losses for an ST pilot plant have been calculated and total and peak wall loads dependence on the plasma current has been studied. The problem of dilution has been investigated and results for compact and big size devices are compared.
Verification testing of the compression performance of the HEVC screen content coding extensions
NASA Astrophysics Data System (ADS)
Sullivan, Gary J.; Baroncini, Vittorio A.; Yu, Haoping; Joshi, Rajan L.; Liu, Shan; Xiu, Xiaoyu; Xu, Jizheng
2017-09-01
This paper reports on verification testing of the coding performance of the screen content coding (SCC) extensions of the High Efficiency Video Coding (HEVC) standard (Rec. ITU-T H.265 | ISO/IEC 23008-2 MPEG-H Part 2). The coding performance of HEVC screen content model (SCM) reference software is compared with that of the HEVC test model (HM) without the SCC extensions, as well as with the Advanced Video Coding (AVC) joint model (JM) reference software, for both lossy and mathematically lossless compression using All-Intra (AI), Random Access (RA), and Lowdelay B (LB) encoding structures and using similar encoding techniques. Video test sequences in 1920×1080 RGB 4:4:4, YCbCr 4:4:4, and YCbCr 4:2:0 colour sampling formats with 8 bits per sample are tested in two categories: "text and graphics with motion" (TGM) and "mixed" content. For lossless coding, the encodings are evaluated in terms of relative bit-rate savings. For lossy compression, subjective testing was conducted at 4 quality levels for each coding case, and the test results are presented through mean opinion score (MOS) curves. The relative coding performance is also evaluated in terms of Bjøntegaard-delta (BD) bit-rate savings for equal PSNR quality. The perceptual tests and objective metric measurements show a very substantial benefit in coding efficiency for the SCC extensions, and provided consistent results with a high degree of confidence. For TGM video, the estimated bit-rate savings ranged from 60-90% relative to the JM and 40-80% relative to the HM, depending on the AI/RA/LB configuration category and colour sampling format.
NASA Technical Reports Server (NTRS)
Shinn, Judy L.; Wilson, John W.; Lone, M. A.; Wong, P. Y.; Costen, Robert C.
1994-01-01
A baryon transport code (BRYNTRN) has previously been verified using available Monte Carlo results for a solar-flare spectrum as the reference. Excellent results were obtained, but the comparisons were limited to the available data on dose and dose equivalent for moderate penetration studies that involve minor contributions from secondary neutrons. To further verify the code, the secondary energy spectra of protons and neutrons are calculated using BRYNTRN and LAHET (Los Alamos High-Energy Transport code, which is a Monte Carlo code). These calculations are compared for three locations within a water slab exposed to the February 1956 solar-proton spectrum. Reasonable agreement was obtained when various considerations related to the calculational techniques and their limitations were taken into account. Although the Monte Carlo results are preliminary, it appears that the neutron albedo, which is not currently treated in BRYNTRN, might be a cause for the large discrepancy seen at small penetration depths. It also appears that the nonelastic neutron production cross sections in BRYNTRN may underestimate the number of neutrons produced in proton collisions with energies below 200 MeV. The notion that the poor energy resolution in BRYNTRN may cause a large truncation error in neutron elastic scattering requires further study.
Timing group delay and differential code bias corrections for BeiDou positioning
NASA Astrophysics Data System (ADS)
Guo, Fei; Zhang, Xiaohong; Wang, Jinling
2015-05-01
This article first clearly figures out the relationship between parameters of timing group delay (TGD) and differential code bias (DCB) for BDS, and demonstrates the equivalence of TGD and DCB correction models combining theory with practice. The TGD/DCB correction models have been extended to various occasions for BDS positioning, and such models have been evaluated by real triple-frequency datasets. To test the effectiveness of broadcast TGDs in the navigation message and DCBs provided by the Multi-GNSS Experiment (MGEX), both standard point positioning (SPP) and precise point positioning (PPP) tests are carried out for BDS signals with different schemes. Furthermore, the influence of differential code biases on BDS positioning estimates such as coordinates, receiver clock biases, tropospheric delays and carrier phase ambiguities is investigated comprehensively. Comparative analysis show that the unmodeled differential code biases degrade the performance of BDS SPP by a factor of two or more, whereas the estimates of PPP are subject to varying degrees of influences. For SPP, the accuracy of dual-frequency combinations is slightly worse than that of single-frequency, and they are much more sensitive to the differential code biases, particularly for the B2B3 combination. For PPP, the uncorrected differential code biases are mostly absorbed into the receiver clock bias and carrier phase ambiguities and thus resulting in a much longer convergence time. Even though the influence of the differential code biases could be mitigated over time and comparable positioning accuracy could be achieved after convergence, it is suggested to properly handle with the differential code biases since it is vital for PPP convergence and integer ambiguity resolution.
Validation of Living Donor Nephrectomy Codes
Lam, Ngan N.; Lentine, Krista L.; Klarenbach, Scott; Sood, Manish M.; Kuwornu, Paul J.; Naylor, Kyla L.; Knoll, Gregory A.; Kim, S. Joseph; Young, Ann; Garg, Amit X.
2018-01-01
Background: Use of administrative data for outcomes assessment in living kidney donors is increasing given the rarity of complications and challenges with loss to follow-up. Objective: To assess the validity of living donor nephrectomy in health care administrative databases compared with the reference standard of manual chart review. Design: Retrospective cohort study. Setting: 5 major transplant centers in Ontario, Canada. Patients: Living kidney donors between 2003 and 2010. Measurements: Sensitivity and positive predictive value (PPV). Methods: Using administrative databases, we conducted a retrospective study to determine the validity of diagnostic and procedural codes for living donor nephrectomies. The reference standard was living donor nephrectomies identified through the province’s tissue and organ procurement agency, with verification by manual chart review. Operating characteristics (sensitivity and PPV) of various algorithms using diagnostic, procedural, and physician billing codes were calculated. Results: During the study period, there were a total of 1199 living donor nephrectomies. Overall, the best algorithm for identifying living kidney donors was the presence of 1 diagnostic code for kidney donor (ICD-10 Z52.4) and 1 procedural code for kidney procurement/excision (1PC58, 1PC89, 1PC91). Compared with the reference standard, this algorithm had a sensitivity of 97% and a PPV of 90%. The diagnostic and procedural codes performed better than the physician billing codes (sensitivity 60%, PPV 78%). Limitations: The donor chart review and validation study was performed in Ontario and may not be generalizable to other regions. Conclusions: An algorithm consisting of 1 diagnostic and 1 procedural code can be reliably used to conduct health services research that requires the accurate determination of living kidney donors at the population level. PMID:29662679
Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui; ...
2014-10-02
Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui
Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less
Increased length of inpatient stay and poor clinical coding: audit of patients with diabetes
Daultrey, Harriet; Gooday, Catherine; Dhatariya, Ketan
2011-01-01
Objectives People with diabetes stay in hospital for longer than those without diabetes for similar conditions. Clinical coding is poor across all specialties. Inpatients with diabetes often have unrecognized foot problems. We wanted to look at the relationships between these factors. Design A single day audit, looking at the prevalence of diabetes in all adult inpatients. Also looking at their feet to find out how many were high-risk or had existing problems. Setting A 998-bed university teaching hospital. Participants All adult inpatients. Main outcome measures (a) To see if patients with diabetes and foot problems were in hospital for longer than the national average length of stay compared with national data; (b) to see if there were people in hospital with acute foot problems who were not known to the specialist diabetic foot team; and (c) to assess the accuracy of clinical coding. Results We identified 110 people with diabetes. However, discharge coding data for inpatients on that day showed 119 people with diabetes. Length of stay (LOS) was substantially higher for those with diabetes compared to those without (± SD) at 22.39 (22.26) days, vs. 11.68 (6.46) (P < 0.001). Finally, clinical coding was poor with some people who had been identified as having diabetes on the audit, who were not coded as such on discharge. Conclusion Clinical coding – which is dependent on discharge summaries – poorly reflects diagnoses. Additionally, length of stay is significantly longer than previous estimates. The discrepancy between coding and diagnosis needs addressing by increasing the levels of awareness and education of coders and physicians. We suggest that our data be used by healthcare planners when deciding on future tariffs. PMID:22140609
NASA Astrophysics Data System (ADS)
Dickens, J. K.
1991-04-01
The organic scintillation detector response code SCINFUL has been used to compute secondary-particle energy spectra, d(sigma)/dE, following nonelastic neutron interactions with C-12 for incident neutron energies between 15 and 60 MeV. The resulting spectra are compared with published similar spectra computed by Brenner and Prael who used an intranuclear cascade code, including alpha clustering, a particle pickup mechanism, and a theoretical approach to sequential decay via intermediate particle-unstable states. The similarities of and the differences between the results of the two approaches are discussed.
CAG12 - A CSCM based procedure for flow of an equilibrium chemically reacting gas
NASA Technical Reports Server (NTRS)
Green, M. J.; Davy, W. C.; Lombard, C. K.
1985-01-01
The Conservative Supra Characteristic Method (CSCM), an implicit upwind Navier-Stokes algorithm, is extended to the numerical simulation of flows in chemical equilibrium. The resulting computer code known as Chemistry and Gasdynamics Implicit - Version 2 (CAG12) is described. First-order accurate results are presented for inviscid and viscous Mach 20 flows of air past a hemisphere-cylinder. The solution procedure captures the bow shock in a chemically reacting gas, a technique that is needed for simulating high altitude, rarefied flows. In an initial effort to validate the code, the inviscid results are compared with published gasdynamic and chemistry solutions and satisfactorily agreement is obtained.
Anisn-Dort Neutron-Gamma Flux Intercomparison Exercise for a Simple Testing Model
NASA Astrophysics Data System (ADS)
Boehmer, B.; Konheiser, J.; Borodkin, G.; Brodkin, E.; Egorov, A.; Kozhevnikov, A.; Zaritsky, S.; Manturov, G.; Voloschenko, A.
2003-06-01
The ability of transport codes ANISN, DORT, ROZ-6, MCNP and TRAMO, as well as nuclear data libraries BUGLE-96, ABBN-93, VITAMIN-B6 and ENDF/B-6 to deliver consistent gamma and neutron flux results was tested in the calculation of a one-dimensional cylindrical model consisting of a homogeneous core and an outer zone with a single material. Model variants with H2O, Fe, Cr and Ni in the outer zones were investigated. The results are compared with MCNP-ENDF/B-6 results. Discrepancies are discussed. The specified test model is proposed as a computational benchmark for testing calculation codes and data libraries.
SANTA BARBARA CLUSTER COMPARISON TEST WITH DISPH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, Takayuki R.; Makino, Junichiro, E-mail: saitoh@elsi.jp
2016-06-01
The Santa Barbara cluster comparison project revealed that there is a systematic difference between entropy profiles of clusters of galaxies obtained by Eulerian mesh and Lagrangian smoothed particle hydrodynamics (SPH) codes: mesh codes gave a core with a constant entropy, whereas SPH codes did not. One possible reason for this difference is that mesh codes are not Galilean invariant. Another possible reason is the problem of the SPH method, which might give too much “protection” to cold clumps because of the unphysical surface tension induced at contact discontinuities. In this paper, we apply the density-independent formulation of SPH (DISPH), whichmore » can handle contact discontinuities accurately, to simulations of a cluster of galaxies and compare the results with those with the standard SPH. We obtained the entropy core when we adopt DISPH. The size of the core is, however, significantly smaller than those obtained with mesh simulations and is comparable to those obtained with quasi-Lagrangian schemes such as “moving mesh” and “mesh free” schemes. We conclude that both the standard SPH without artificial conductivity and Eulerian mesh codes have serious problems even with such an idealized simulation, while DISPH, SPH with artificial conductivity, and quasi-Lagrangian schemes have sufficient capability to deal with it.« less
Increased Rate of Hospitalization for Diabetes and Residential Proximity of Hazardous Waste Sites
Kouznetsova, Maria; Huang, Xiaoyu; Ma, Jing; Lessner, Lawrence; Carpenter, David O.
2007-01-01
Background Epidemiologic studies suggest that there may be an association between environmental exposure to persistent organic pollutants (POPs) and diabetes. Objective The aim of this study was to test the hypothesis that residential proximity to POP-contaminated waste sites result in increased rates of hospitalization for diabetes. Methods We determined the number of hospitalized patients 25–74 years of age diagnosed with diabetes in New York State exclusive of New York City for the years 1993–2000. Descriptive statistics and negative binomial regression were used to compare diabetes hospitalization rates in individuals who resided in ZIP codes containing or abutting hazardous waste sites containing POPs (“POP” sites); ZIP codes containing hazardous waste sites but with wastes other than POPs (“other” sites); and ZIP codes without any identified hazardous waste sites (“clean” sites). Results Compared with the hospitalization rates for diabetes in clean sites, the rate ratios for diabetes discharges for people residing in POP sites and “other” sites, after adjustment for potential confounders were 1.23 [95% confidence interval (CI), 1.15–1.32] and 1.25 (95% CI, 1.16–1.34), respectively. In a subset of POP sites along the Hudson River, where there is higher income, less smoking, better diet, and more exercise, the rate ratio was 1.36 (95% CI, 1.26–1.47) compared to clean sites. Conclusions After controlling for major confounders, we found a statistically significant increase in the rate of hospitalization for diabetes among the population residing in the ZIP codes containing toxic waste sites. PMID:17366823
NASA Astrophysics Data System (ADS)
Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong
2016-03-01
Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.
Travnik, Jaden B; Pilarski, Patrick M
2017-07-01
Prosthetic devices have advanced in their capabilities and in the number and type of sensors included in their design. As the space of sensorimotor data available to a conventional or machine learning prosthetic control system increases in dimensionality and complexity, it becomes increasingly important that this data be represented in a useful and computationally efficient way. Well structured sensory data allows prosthetic control systems to make informed, appropriate control decisions. In this study, we explore the impact that increased sensorimotor information has on current machine learning prosthetic control approaches. Specifically, we examine the effect that high-dimensional sensory data has on the computation time and prediction performance of a true-online temporal-difference learning prediction method as embedded within a resource-limited upper-limb prosthesis control system. We present results comparing tile coding, the dominant linear representation for real-time prosthetic machine learning, with a newly proposed modification to Kanerva coding that we call selective Kanerva coding. In addition to showing promising results for selective Kanerva coding, our results confirm potential limitations to tile coding as the number of sensory input dimensions increases. To our knowledge, this study is the first to explicitly examine representations for realtime machine learning prosthetic devices in general terms. This work therefore provides an important step towards forming an efficient prosthesis-eye view of the world, wherein prompt and accurate representations of high-dimensional data may be provided to machine learning control systems within artificial limbs and other assistive rehabilitation technologies.
NASA Technical Reports Server (NTRS)
Norment, H. G.
1985-01-01
Subsonic, external flow about nonlifting bodies, lifting bodies or combinations of lifting and nonlifting bodies is calculated by a modified version of the Hess lifting code. Trajectory calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Inlet flow can be accommodated, and high Mach number compressibility effects are corrected for approximately. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.
Whiteford, Kelly L.; Oxenham, Andrew J.
2015-01-01
The question of how frequency is coded in the peripheral auditory system remains unresolved. Previous research has suggested that slow rates of frequency modulation (FM) of a low carrier frequency may be coded via phase-locked temporal information in the auditory nerve, whereas FM at higher rates and/or high carrier frequencies may be coded via a rate-place (tonotopic) code. This hypothesis was tested in a cohort of 100 young normal-hearing listeners by comparing individual sensitivity to slow-rate (1-Hz) and fast-rate (20-Hz) FM at a carrier frequency of 500 Hz with independent measures of phase-locking (using dynamic interaural time difference, ITD, discrimination), level coding (using amplitude modulation, AM, detection), and frequency selectivity (using forward-masking patterns). All FM and AM thresholds were highly correlated with each other. However, no evidence was obtained for stronger correlations between measures thought to reflect phase-locking (e.g., slow-rate FM and ITD sensitivity), or between measures thought to reflect tonotopic coding (fast-rate FM and forward-masking patterns). The results suggest that either psychoacoustic performance in young normal-hearing listeners is not limited by peripheral coding, or that similar peripheral mechanisms limit both high- and low-rate FM coding. PMID:26627783
Whiteford, Kelly L; Oxenham, Andrew J
2015-11-01
The question of how frequency is coded in the peripheral auditory system remains unresolved. Previous research has suggested that slow rates of frequency modulation (FM) of a low carrier frequency may be coded via phase-locked temporal information in the auditory nerve, whereas FM at higher rates and/or high carrier frequencies may be coded via a rate-place (tonotopic) code. This hypothesis was tested in a cohort of 100 young normal-hearing listeners by comparing individual sensitivity to slow-rate (1-Hz) and fast-rate (20-Hz) FM at a carrier frequency of 500 Hz with independent measures of phase-locking (using dynamic interaural time difference, ITD, discrimination), level coding (using amplitude modulation, AM, detection), and frequency selectivity (using forward-masking patterns). All FM and AM thresholds were highly correlated with each other. However, no evidence was obtained for stronger correlations between measures thought to reflect phase-locking (e.g., slow-rate FM and ITD sensitivity), or between measures thought to reflect tonotopic coding (fast-rate FM and forward-masking patterns). The results suggest that either psychoacoustic performance in young normal-hearing listeners is not limited by peripheral coding, or that similar peripheral mechanisms limit both high- and low-rate FM coding.
Tests of Exoplanet Atmospheric Radiative Transfer Codes
NASA Astrophysics Data System (ADS)
Harrington, Joseph; Challener, Ryan; DeLarme, Emerson; Cubillos, Patricio; Blecic, Jasmina; Foster, Austin; Garland, Justin
2016-10-01
Atmospheric radiative transfer codes are used both to predict planetary spectra and in retrieval algorithms to interpret data. Observational plans, theoretical models, and scientific results thus depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. In the process of writing our own code, we became aware of several others with artifacts of unknown origin and even outright errors in their spectra. We present a series of tests to verify atmospheric radiative-transfer codes. These include: simple, single-line line lists that, when combined with delta-function abundance profiles, should produce a broadened line that can be verified easily; isothermal atmospheres that should produce analytically-verifiable blackbody spectra at the input temperatures; and model atmospheres with a range of complexities that can be compared to the output of other codes. We apply the tests to our own code, Bayesian Atmospheric Radiative Transfer (BART) and to several other codes. The test suite is open-source software. We propose this test suite as a standard for verifying current and future radiative transfer codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.
Learning Short Binary Codes for Large-scale Image Retrieval.
Liu, Li; Yu, Mengyang; Shao, Ling
2017-03-01
Large-scale visual information retrieval has become an active research area in this big data era. Recently, hashing/binary coding algorithms prove to be effective for scalable retrieval applications. Most existing hashing methods require relatively long binary codes (i.e., over hundreds of bits, sometimes even thousands of bits) to achieve reasonable retrieval accuracies. However, for some realistic and unique applications, such as on wearable or mobile devices, only short binary codes can be used for efficient image retrieval due to the limitation of computational resources or bandwidth on these devices. In this paper, we propose a novel unsupervised hashing approach called min-cost ranking (MCR) specifically for learning powerful short binary codes (i.e., usually the code length shorter than 100 b) for scalable image retrieval tasks. By exploring the discriminative ability of each dimension of data, MCR can generate one bit binary code for each dimension and simultaneously rank the discriminative separability of each bit according to the proposed cost function. Only top-ranked bits with minimum cost-values are then selected and grouped together to compose the final salient binary codes. Extensive experimental results on large-scale retrieval demonstrate that MCR can achieve comparative performance as the state-of-the-art hashing algorithms but with significantly shorter codes, leading to much faster large-scale retrieval.
Implicit Coupling Approach for Simulation of Charring Carbon Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Gokcen, Tahir
2013-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption
Luyckx, Kim; Luyten, Léon; Daelemans, Walter; Van den Bulcke, Tim
2016-01-01
Objective Enormous amounts of healthcare data are becoming increasingly accessible through the large-scale adoption of electronic health records. In this work, structured and unstructured (textual) data are combined to assign clinical diagnostic and procedural codes (specifically ICD-9-CM) to patient stays. We investigate whether integrating these heterogeneous data types improves prediction strength compared to using the data types in isolation. Methods Two separate data integration approaches were evaluated. Early data integration combines features of several sources within a single model, and late data integration learns a separate model per data source and combines these predictions with a meta-learner. This is evaluated on data sources and clinical codes from a broad set of medical specialties. Results When compared with the best individual prediction source, late data integration leads to improvements in predictive power (eg, overall F-measure increased from 30.6% to 38.3% for International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnostic codes), while early data integration is less consistent. The predictive strength strongly differs between medical specialties, both for ICD-9-CM diagnostic and procedural codes. Discussion Structured data provides complementary information to unstructured data (and vice versa) for predicting ICD-9-CM codes. This can be captured most effectively by the proposed late data integration approach. Conclusions We demonstrated that models using multiple electronic health record data sources systematically outperform models using data sources in isolation in the task of predicting ICD-9-CM codes over a broad range of medical specialties. PMID:26316458
Peng, Mingkai; Sundararajan, Vijaya; Williamson, Tyler; Minty, Evan P; Smith, Tony C; Doktorchik, Chelsea T A; Quan, Hude
2018-03-01
Data quality assessment is a challenging facet for research using coded administrative health data. Current assessment approaches are time and resource intensive. We explored whether association rule mining (ARM) can be used to develop rules for assessing data quality. We extracted 2013 and 2014 records from the hospital discharge abstract database (DAD) for patients between the ages of 55 and 65 from five acute care hospitals in Alberta, Canada. The ARM was conducted using the 2013 DAD to extract rules with support ≥0.0019 and confidence ≥0.5 using the bootstrap technique, and tested in the 2014 DAD. The rules were compared against the method of coding frequency and assessed for their ability to detect error introduced by two kinds of data manipulation: random permutation and random deletion. The association rules generally had clear clinical meanings. Comparing 2014 data to 2013 data (both original), there were 3 rules with a confidence difference >0.1, while coding frequency difference of codes in the right hand of rules was less than 0.004. After random permutation of 50% of codes in the 2014 data, average rule confidence dropped from 0.72 to 0.27 while coding frequency remained unchanged. Rule confidence decreased with the increase of coding deletion, as expected. Rule confidence was more sensitive to code deletion compared to coding frequency, with slope of change ranging from 1.7 to 184.9 with a median of 9.1. The ARM is a promising technique to assess data quality. It offers a systematic way to derive coding association rules hidden in data, and potentially provides a sensitive and efficient method of assessing data quality compared to standard methods. Copyright © 2018 Elsevier Inc. All rights reserved.
[Comparative review of the Senegalese and French deontology codes].
Soumah, M; Mbaye, I; Bah, H; Gaye Fall, M C; Sow, M L
2005-01-01
The medical deontology regroups duties of the physicians and regulate the exercise of medicine. The code of medical deontology of Senegal inspired of the French medical deontology code, has not been revised since its institution whereas the French deontology code knew three revisions. Comparing the two codes of deontology titles by title and article by article, this work beyond a parallel between the two codes puts in inscription the progress in bioethics that are to the basis of the revisions of the French medical deontology code. This article will permit an advocacy of the health professionals, in favor of a setting to level of the of Senegalese medical deontology code. Because legal litigation, that is important in the developed countries, intensify in our developing countries. It is inherent to the technological progress and to the awareness of the patients of their rights.
Multiple-rule bias in the comparison of classification rules
Yousefi, Mohammadmahdi R.; Hua, Jianping; Dougherty, Edward R.
2011-01-01
Motivation: There is growing discussion in the bioinformatics community concerning overoptimism of reported results. Two approaches contributing to overoptimism in classification are (i) the reporting of results on datasets for which a proposed classification rule performs well and (ii) the comparison of multiple classification rules on a single dataset that purports to show the advantage of a certain rule. Results: This article provides a careful probabilistic analysis of the second issue and the ‘multiple-rule bias’, resulting from choosing a classification rule having minimum estimated error on the dataset. It quantifies this bias corresponding to estimating the expected true error of the classification rule possessing minimum estimated error and it characterizes the bias from estimating the true comparative advantage of the chosen classification rule relative to the others by the estimated comparative advantage on the dataset. The analysis is applied to both synthetic and real data using a number of classification rules and error estimators. Availability: We have implemented in C code the synthetic data distribution model, classification rules, feature selection routines and error estimation methods. The code for multiple-rule analysis is implemented in MATLAB. The source code is available at http://gsp.tamu.edu/Publications/supplementary/yousefi11a/. Supplementary simulation results are also included. Contact: edward@ece.tamu.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21546390
Giantsoudi, Drosoula; Schuemann, Jan; Jia, Xun; Dowdell, Stephen; Jiang, Steve; Paganetti, Harald
2015-03-21
Monte Carlo (MC) methods are recognized as the gold-standard for dose calculation, however they have not replaced analytical methods up to now due to their lengthy calculation times. GPU-based applications allow MC dose calculations to be performed on time scales comparable to conventional analytical algorithms. This study focuses on validating our GPU-based MC code for proton dose calculation (gPMC) using an experimentally validated multi-purpose MC code (TOPAS) and compare their performance for clinical patient cases. Clinical cases from five treatment sites were selected covering the full range from very homogeneous patient geometries (liver) to patients with high geometrical complexity (air cavities and density heterogeneities in head-and-neck and lung patients) and from short beam range (breast) to large beam range (prostate). Both gPMC and TOPAS were used to calculate 3D dose distributions for all patients. Comparisons were performed based on target coverage indices (mean dose, V95, D98, D50, D02) and gamma index distributions. Dosimetric indices differed less than 2% between TOPAS and gPMC dose distributions for most cases. Gamma index analysis with 1%/1 mm criterion resulted in a passing rate of more than 94% of all patient voxels receiving more than 10% of the mean target dose, for all patients except for prostate cases. Although clinically insignificant, gPMC resulted in systematic underestimation of target dose for prostate cases by 1-2% compared to TOPAS. Correspondingly the gamma index analysis with 1%/1 mm criterion failed for most beams for this site, while for 2%/1 mm criterion passing rates of more than 94.6% of all patient voxels were observed. For the same initial number of simulated particles, calculation time for a single beam for a typical head and neck patient plan decreased from 4 CPU hours per million particles (2.8-2.9 GHz Intel X5600) for TOPAS to 2.4 s per million particles (NVIDIA TESLA C2075) for gPMC. Excellent agreement was demonstrated between our fast GPU-based MC code (gPMC) and a previously extensively validated multi-purpose MC code (TOPAS) for a comprehensive set of clinical patient cases. This shows that MC dose calculations in proton therapy can be performed on time scales comparable to analytical algorithms with accuracy comparable to state-of-the-art CPU-based MC codes.
Comparison of Engine Cycle Codes for Rocket-Based Combined Cycle Engines
NASA Technical Reports Server (NTRS)
Waltrup, Paul J.; Auslender, Aaron H.; Bradford, John E.; Carreiro, Louis R.; Gettinger, Christopher; Komar, D. R.; McDonald, J.; Snyder, Christopher A.
2002-01-01
This paper summarizes the results from a one day workshop on Rocket-Based Combined Cycle (RBCC) Engine Cycle Codes held in Monterey CA in November of 2000 at the 2000 JANNAF JPM with the authors as primary participants. The objectives of the workshop were to discuss and compare the merits of existing Rocket-Based Combined Cycle (RBCC) engine cycle codes being used by government and industry to predict RBCC engine performance and interpret experimental results. These merits included physical and chemical modeling, accuracy and user friendliness. The ultimate purpose of the workshop was to identify the best codes for analyzing RBCC engines and to document any potential shortcomings, not to demonstrate the merits or deficiencies of any particular engine design. Five cases representative of the operating regimes of typical RBCC engines were used as the basis of these comparisons. These included Mach 0 sea level static and Mach 1.0 and Mach 2.5 Air-Augmented-Rocket (AAR), Mach 4 subsonic combustion ramjet or dual-mode scramjet, and Mach 8 scramjet operating modes. Specification of a generic RBCC engine geometry and concomitant component operating efficiencies, bypass ratios, fuel/oxidizer/air equivalence ratios and flight dynamic pressures were provided. The engine included an air inlet, isolator duct, axial rocket motor/injector, axial wall fuel injectors, diverging combustor, and exit nozzle. Gaseous hydrogen was used as the fuel with the rocket portion of the system using a gaseous H2/O2 propellant system to avoid cryogenic issues. The results of the workshop, even after post-workshop adjudication of differences, were surprising. They showed that the codes predicted essentially the same performance at the Mach 0 and I conditions, but progressively diverged from a common value (for example, for fuel specific impulse, Isp) as the flight Mach number increased, with the largest differences at Mach 8. The example cases and results are compared and discussed in this paper.
NASA Astrophysics Data System (ADS)
Zhang, Yujia; Yilmaz, Alper
2016-06-01
Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new combined coding method.
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Herrmann, Kimberly A.; Kory, Carol L.; Wilson, Jeffrey D.; Cross, Andrew W.; Santana , Samuel
2003-01-01
The electromagnetic field simulation software package CST MICROWAVE STUDIO (MWS) was used to compute the cold-test parameters - frequency-phase dispersion, on-axis impedance, and attenuation - for a traveling-wave tube (TWT) slow-wave circuit. The results were compared to experimental data, as well as to results from MAFIA, another three-dimensional simulation code from CST currently used at the NASA Glenn Research Center (GRC). The strong agreement between cold-test parameters simulated with MWS and those measured experimentally demonstrates the potential of this code to reduce the time and cost of TWT development.
Simulation of Fatigue Behavior of High Temperature Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Tong, Mike T.; Singhal, Suren N.; Chamis, Christos C.; Murthy, Pappu L. N.
1996-01-01
A generalized relatively new approach is described for the computational simulation of fatigue behavior of high temperature metal matrix composites (HT-MMCs). This theory is embedded in a specialty-purpose computer code. The effectiveness of the computer code to predict the fatigue behavior of HT-MMCs is demonstrated by applying it to a silicon-fiber/titanium-matrix HT-MMC. Comparative results are shown for mechanical fatigue, thermal fatigue, thermomechanical (in-phase and out-of-phase) fatigue, as well as the effects of oxidizing environments on fatigue life. These results show that the new approach reproduces available experimental data remarkably well.
The POPOP4 library and codes for preparing secondary gamma-ray production cross sections
NASA Technical Reports Server (NTRS)
Ford, W. E., III
1972-01-01
The POPOP4 code for converting secondary gamma ray yield data to multigroup secondary gamma ray production cross sections and the POPOP4 library of secondary gamma ray yield data are described. Recent results of the testing of uranium and iron data sets from the POPOP4 library are given. The data sets were tested by comparing calculated secondary gamma ray pulse height spectra measured at the ORNL TSR-II reactor.
Bedard, Tanya; Lowry, R Brian; Sibbald, Barbara; Thomas, Mary Ann; Innes, A Micheil
2016-01-01
The use of array-based comparative genomic hybridization to assess DNA copy number is increasing in many jurisdictions. Such technology identifies more genetic causes of congenital anomalies; however, the clinical significance of some results may be challenging to interpret. A coding strategy to address cases with copy number variants has recently been implemented by the Alberta Congenital Anomalies Surveillance System and is described.
NASA Astrophysics Data System (ADS)
He, Jing; Dai, Min; Chen, Qinghui; Deng, Rui; Xiang, Changqing; Chen, Lin
2017-07-01
In this paper, an effective bit-loading combined with adaptive LDPC code rate algorithm is proposed and investigated in software reconfigurable multiband UWB over fiber system. To compensate the power fading and chromatic dispersion for the high frequency of multiband OFDM UWB signal transmission over standard single mode fiber (SSMF), a Mach-Zehnder modulator (MZM) with negative chirp parameter is utilized. In addition, the negative power penalty of -1 dB for 128 QAM multiband OFDM UWB signal are measured at the hard-decision forward error correction (HD-FEC) limitation of 3.8 × 10-3 after 50 km SSMF transmission. The experimental results show that, compared to the fixed coding scheme with the code rate of 75%, the signal-to-noise (SNR) is improved by 2.79 dB for 128 QAM multiband OFDM UWB system after 100 km SSMF transmission using ALCR algorithm. Moreover, by employing bit-loading combined with ALCR algorithm, the bit error rate (BER) performance of system can be further promoted effectively. The simulation results present that, at the HD-FEC limitation, the value of Q factor is improved by 3.93 dB at the SNR of 19.5 dB over 100 km SSMF transmission, compared to the fixed modulation with uncoded scheme at the same spectrum efficiency (SE).
Tam, Vivian; Edge, Jennifer S; Hoffman, Steven J
2016-10-12
Shortages of health workers in low-income countries are exacerbated by the international migration of health workers to more affluent countries. This problem is compounded by the active recruitment of health workers by destination countries, particularly Australia, Canada, UK and USA. The World Health Organization (WHO) adopted a voluntary Code of Practice in May 2010 to mitigate tensions between health workers' right to migrate and the shortage of health workers in source countries. The first empirical impact evaluation of this Code was conducted 11-months after its adoption and demonstrated a lack of impact on health workforce recruitment policy and practice in the short-term. This second empirical impact evaluation was conducted 4-years post-adoption using the same methodology to determine whether there have been any changes in the perceived utility, applicability, and implementation of the Code in the medium-term. Forty-four respondents representing government, civil society and the private sector from Australia, Canada, UK and USA completed an email-based survey evaluating their awareness of the Code, perceived impact, changes to policy or recruitment practices resulting from the Code, and the effectiveness of non-binding Codes generally. The same survey instrument from the original study was used to facilitate direct comparability of responses. Key lessons were identified through thematic analysis. The main findings between the initial impact evaluation and the current one are unchanged. Both sets of key informants reported no significant policy or regulatory changes to health worker recruitment in their countries as a direct result of the Code due to its lack of incentives, institutional mechanisms and interest mobilizers. Participants emphasized the existence of previous bilateral and regional Codes, the WHO Code's non-binding nature, and the primacy of competing domestic healthcare priorities in explaining this perceived lack of impact. The Code has probably still not produced the tangible improvements in health worker flows it aspired to achieve. Several actions, including a focus on developing bilateral codes, linking the Code to topical global priorities, and reframing the Code's purpose to emphasize health system sustainability, are proposed to improve the Code's uptake and impact.
Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks.
Sharghi Ido, A; Bonyadi, M R; Etaati, G R; Shahriari, M
2009-10-01
Artificial neural networks technology has been applied to unfold the neutron spectra from the pulse height distribution measured with NE213 liquid scintillator. Here, both the single and multi-layer perceptron neural network models have been implemented to unfold the neutron spectrum from an Am-Be neutron source. The activation function and the connectivity of the neurons have been investigated and the results have been analyzed in terms of the network's performance. The simulation results show that the neural network that utilizes the Satlins transfer function has the best performance. In addition, omitting the bias connection of the neurons improve the performance of the network. Also, the SCINFUL code is used for generating the response functions in the training phase of the process. Finally, the results of the neural network simulation have been compared with those of the FORIST unfolding code for both (241)Am-Be and (252)Cf neutron sources. The results of neural network are in good agreement with FORIST code.
Numerical applications of the advective-diffusive codes for the inner magnetosphere
NASA Astrophysics Data System (ADS)
Aseev, N. A.; Shprits, Y. Y.; Drozdov, A. Y.; Kellerman, A. C.
2016-11-01
In this study we present analytical solutions for convection and diffusion equations. We gather here the analytical solutions for the one-dimensional convection equation, the two-dimensional convection problem, and the one- and two-dimensional diffusion equations. Using obtained analytical solutions, we test the four-dimensional Versatile Electron Radiation Belt code (the VERB-4D code), which solves the modified Fokker-Planck equation with additional convection terms. The ninth-order upwind numerical scheme for the one-dimensional convection equation shows much more accurate results than the results obtained with the third-order scheme. The universal limiter eliminates unphysical oscillations generated by high-order linear upwind schemes. Decrease in the space step leads to convergence of a numerical solution of the two-dimensional diffusion equation with mixed terms to the analytical solution. We compare the results of the third- and ninth-order schemes applied to magnetospheric convection modeling. The results show significant differences in electron fluxes near geostationary orbit when different numerical schemes are used.
NASA Astrophysics Data System (ADS)
Usta, Metin; Tufan, Mustafa Çağatay; Aydın, Güral; Bozkurt, Ahmet
2018-07-01
In this study, we have performed the calculations stopping power, depth dose, and range verification for proton beams using dielectric and Bethe-Bloch theories and FLUKA, Geant4 and MCNPX Monte Carlo codes. In the framework, as analytical studies, Drude model was applied for dielectric theory and effective charge approach with Roothaan-Hartree-Fock charge densities was used in Bethe theory. In the simulations different setup parameters were selected to evaluate the performance of three distinct Monte Carlo codes. The lung and breast tissues were investigated are considered to be related to the most common types of cancer throughout the world. The results were compared with each other and the available data in literature. In addition, the obtained results were verified with prompt gamma range data. In both stopping power values and depth-dose distributions, it was found that the Monte Carlo values give better results compared with the analytical ones while the results that agree best with ICRU data in terms of stopping power are those of the effective charge approach between the analytical methods and of the FLUKA code among the MC packages. In the depth dose distributions of the examined tissues, although the Bragg curves for Monte Carlo almost overlap, the analytical ones show significant deviations that become more pronounce with increasing energy. Verifications with the results of prompt gamma photons were attempted for 100-200 MeV protons which are regarded important for proton therapy. The analytical results are within 2%-5% and the Monte Carlo values are within 0%-2% as compared with those of the prompt gammas.
The Scylla Multi-Code Comparison Project
NASA Astrophysics Data System (ADS)
Maller, Ariyeh; Stewart, Kyle; Bullock, James; Oñorbe, Jose; Scylla Team
2016-01-01
Cosmological hydrodynamical simulations are one of the main techniques used to understand galaxy formation and evolution. However, it is far from clear to what extent different numerical techniques and different implementations of feedback yield different results. The Scylla Multi-Code Comparison Project seeks to address this issue by running idenitical initial condition simulations with different popular hydrodynamic galaxy formation codes. Here we compare simulations of a Milky Way mass halo using the codes enzo, ramses, art, arepo and gizmo-psph. The different runs produce galaxies with a variety of properties. There are many differences, but also many similarities. For example we find that in all runs cold flow disks exist; extended gas structures, far beyond the galactic disk, that show signs of rotation. Also, the angular momentum of warm gas in the halo is much larger than the angular momentum of the dark matter. We also find notable differences between runs. The temperature and density distribution of hot gas can differ by over an order of magnitude between codes and the stellar mass to halo mass relation also varies widely. These results suggest that observations of galaxy gas halos and the stellar mass to halo mass relation can be used to constarin the correct model of feedback.
Verification and validation of RADMODL Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimball, K.D.
1993-03-01
RADMODL is a system of linked computer codes designed to calculate the radiation environment following an accident in which nuclear materials are released. The RADMODL code and the corresponding Verification and Validation (V&V) calculations (Appendix A), were developed for Westinghouse Savannah River Company (WSRC) by EGS Corporation (EGS). Each module of RADMODL is an independent code and was verified separately. The full system was validated by comparing the output of the various modules with the corresponding output of a previously verified version of the modules. The results of the verification and validation tests show that RADMODL correctly calculates the transportmore » of radionuclides and radiation doses. As a result of this verification and validation effort, RADMODL Version 1.0 is certified for use in calculating the radiation environment following an accident.« less
FLUKA simulation of TEPC response to cosmic radiation.
Beck, P; Ferrari, A; Pelliccioni, M; Rollet, S; Villari, R
2005-01-01
The aircrew exposure to cosmic radiation can be assessed by calculation with codes validated by measurements. However, the relationship between doses in the free atmosphere, as calculated by the codes and from results of measurements performed within the aircraft, is still unclear. The response of a tissue-equivalent proportional counter (TEPC) has already been simulated successfully by the Monte Carlo transport code FLUKA. Absorbed dose rate and ambient dose equivalent rate distributions as functions of lineal energy have been simulated for several reference sources and mixed radiation fields. The agreement between simulation and measurements has been well demonstrated. In order to evaluate the influence of aircraft structures on aircrew exposure assessment, the response of TEPC in the free atmosphere and on-board is now simulated. The calculated results are discussed and compared with other calculations and measurements.
An attempt to make a reliable assessment of the wet steam flow field in the de Laval nozzle
NASA Astrophysics Data System (ADS)
Dykas, Sławomir; Majkut, Mirosław; Smołka, Krystian; Strozik, Michał
2018-02-01
This paper presents the results of research on the wet steam flow with spontaneous condensation in the de Laval nozzle. A comparison is made between the results of numerical modelling performed for two cases of boundary conditions obtained using an in-house CFD code and the Ansys CFX commercial package. The numerical modelling results are compared to the results of experimental testing carried out on an in-house laboratory steam tunnel. The differences between the numerical results produced by the two codes in terms of place and intensity of condensations of steam to water point to the difficulty in correct modelling of this type of flows and emphasize the need for further studies in this field.
2017-01-01
Binaural cues occurring in natural environments are frequently time varying, either from the motion of a sound source or through interactions between the cues produced by multiple sources. Yet, a broad understanding of how the auditory system processes dynamic binaural cues is still lacking. In the current study, we directly compared neural responses in the inferior colliculus (IC) of unanesthetized rabbits to broadband noise with time-varying interaural time differences (ITD) with responses to noise with sinusoidal amplitude modulation (SAM) over a wide range of modulation frequencies. On the basis of prior research, we hypothesized that the IC, one of the first stages to exhibit tuning of firing rate to modulation frequency, might use a common mechanism to encode time-varying information in general. Instead, we found weaker temporal coding for dynamic ITD compared with amplitude modulation and stronger effects of adaptation for amplitude modulation. The differences in temporal coding of dynamic ITD compared with SAM at the single-neuron level could be a neural correlate of “binaural sluggishness,” the inability to perceive fluctuations in time-varying binaural cues at high modulation frequencies, for which a physiological explanation has so far remained elusive. At ITD-variation frequencies of 64 Hz and above, where a temporal code was less effective, noise with a dynamic ITD could still be distinguished from noise with a constant ITD through differences in average firing rate in many neurons, suggesting a frequency-dependent tradeoff between rate and temporal coding of time-varying binaural information. NEW & NOTEWORTHY Humans use time-varying binaural cues to parse auditory scenes comprising multiple sound sources and reverberation. However, the neural mechanisms for doing so are poorly understood. Our results demonstrate a potential neural correlate for the reduced detectability of fluctuations in time-varying binaural information at high speeds, as occurs in reverberation. The results also suggest that the neural mechanisms for processing time-varying binaural and monaural cues are largely distinct. PMID:28381487
Energy levels and radiative rates for transitions in Cr-like Co IV and Ni V
NASA Astrophysics Data System (ADS)
Aggarwal, K. M.; Bogdanovich, P.; Karpuškienė, R.; Keenan, F. P.; Kisielius, R.; Stancalie, V.
2016-01-01
We report calculations of energy levels and radiative rates (A-values) for transitions in Cr-like Co IV and Ni V. The quasi-relativistic Hartree-Fock (QRHF) code is adopted for calculating the data although GRASP (general-purpose relativistic atomic structure package) and flexible atomic code (FAC) have also been employed for comparison purposes. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST for a majority of the levels. However, there are discrepancies for a few levels of up to 3%. The A-values are listed for all significantly contributing E1, E2 and M1 transitions, and the corresponding lifetimes reported, although unfortunately no previous theoretical or experimental results exist to compare with our data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.
Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptionsmore » in HydroDyn are evaluated based on this code-to-code comparison.« less
Connaughton, Veronica M; Amiruddin, Azhani; Clunies-Ross, Karen L; French, Noel; Fox, Allison M
2017-05-01
A major model of the cerebral circuits that underpin arithmetic calculation is the triple-code model of numerical processing. This model proposes that the lateralization of mathematical operations is organized across three circuits: a left-hemispheric dominant verbal code; a bilateral magnitude representation of numbers and a bilateral Arabic number code. This study simultaneously measured the blood flow of both middle cerebral arteries using functional transcranial Doppler ultrasonography to assess hemispheric specialization during the performance of both language and arithmetic tasks. The propositions of the triple-code model were assessed in a non-clinical adult group by measuring cerebral blood flow during the performance of multiplication and subtraction problems. Participants were 17 adults aged between 18-27 years. We obtained laterality indices for each type of mathematical operation and compared these in participants with left-hemispheric language dominance. It was hypothesized that blood flow would lateralize to the left hemisphere during the performance of multiplication operations, but would not lateralize during the performance of subtraction operations. Hemispheric blood flow was significantly left lateralized during the multiplication task, but was not lateralized during the subtraction task. Compared to high spatial resolution neuroimaging techniques previously used to measure cerebral lateralization, functional transcranial Doppler ultrasonography is a cost-effective measure that provides a superior temporal representation of arithmetic cognition. These results provide support for the triple-code model of arithmetic processing and offer complementary evidence that multiplication operations are processed differently in the adult brain compared to subtraction operations. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Pei; Song, Fan; Cai, Wanzhi
2014-01-01
Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN). Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes. PMID:24988409
A comparison of fitness-case sampling methods for genetic programming
NASA Astrophysics Data System (ADS)
Martínez, Yuliana; Naredo, Enrique; Trujillo, Leonardo; Legrand, Pierrick; López, Uriel
2017-11-01
Genetic programming (GP) is an evolutionary computation paradigm for automatic program induction. GP has produced impressive results but it still needs to overcome some practical limitations, particularly its high computational cost, overfitting and excessive code growth. Recently, many researchers have proposed fitness-case sampling methods to overcome some of these problems, with mixed results in several limited tests. This paper presents an extensive comparative study of four fitness-case sampling methods, namely: Interleaved Sampling, Random Interleaved Sampling, Lexicase Selection and Keep-Worst Interleaved Sampling. The algorithms are compared on 11 symbolic regression problems and 11 supervised classification problems, using 10 synthetic benchmarks and 12 real-world data-sets. They are evaluated based on test performance, overfitting and average program size, comparing them with a standard GP search. Comparisons are carried out using non-parametric multigroup tests and post hoc pairwise statistical tests. The experimental results suggest that fitness-case sampling methods are particularly useful for difficult real-world symbolic regression problems, improving performance, reducing overfitting and limiting code growth. On the other hand, it seems that fitness-case sampling cannot improve upon GP performance when considering supervised binary classification.
NASA Astrophysics Data System (ADS)
Birdsell, D.; Karra, S.; Rajaram, H.
2016-12-01
The governing equations for subsurface flow codes in deformable porous media are derived from the fluid mass balance equation. One class of these codes, which we call general subsurface flow (GSF) codes, does not explicitly track the motion of the solid porous media but does accept general constitutive relations for porosity, density, and fluid flux. Examples of GSF codes include PFLOTRAN, FEHM, STOMP, and TOUGH2. Meanwhile, analytical and numerical solutions based on the groundwater flow equation have assumed forms for porosity, density, and fluid flux. We review the derivation of the groundwater flow equation, which uses the form of Darcy's equation that accounts for the velocity of fluids with respect to solids and defines the soil matrix compressibility accordingly. We then show how GSF codes have a different governing equation if they use the form of Darcy's equation that is written only in terms of fluid velocity. The difference is seen in the porosity change, which is part of the specific storage term in the groundwater flow equation. We propose an alternative definition of soil matrix compressibility to correct for the untracked solid velocity. Simulation results show significantly less error for our new compressibility definition than the traditional compressibility when compared to analytical solutions from the groundwater literature. For example, the error in one calculation for a pumped sandstone aquifer goes from 940 to <70 Pa when the new compressibility is used. Code users and developers need to be aware of assumptions in the governing equations and constitutive relations in subsurface flow codes, and our newly-proposed compressibility function should be incorporated into GSF codes.
NASA Astrophysics Data System (ADS)
Birdsell, D.; Karra, S.; Rajaram, H.
2017-12-01
The governing equations for subsurface flow codes in deformable porous media are derived from the fluid mass balance equation. One class of these codes, which we call general subsurface flow (GSF) codes, does not explicitly track the motion of the solid porous media but does accept general constitutive relations for porosity, density, and fluid flux. Examples of GSF codes include PFLOTRAN, FEHM, STOMP, and TOUGH2. Meanwhile, analytical and numerical solutions based on the groundwater flow equation have assumed forms for porosity, density, and fluid flux. We review the derivation of the groundwater flow equation, which uses the form of Darcy's equation that accounts for the velocity of fluids with respect to solids and defines the soil matrix compressibility accordingly. We then show how GSF codes have a different governing equation if they use the form of Darcy's equation that is written only in terms of fluid velocity. The difference is seen in the porosity change, which is part of the specific storage term in the groundwater flow equation. We propose an alternative definition of soil matrix compressibility to correct for the untracked solid velocity. Simulation results show significantly less error for our new compressibility definition than the traditional compressibility when compared to analytical solutions from the groundwater literature. For example, the error in one calculation for a pumped sandstone aquifer goes from 940 to <70 Pa when the new compressibility is used. Code users and developers need to be aware of assumptions in the governing equations and constitutive relations in subsurface flow codes, and our newly-proposed compressibility function should be incorporated into GSF codes.
Methods for Coding Tobacco-Related Twitter Data: A Systematic Review
Unger, Jennifer B; Cruz, Tess Boley; Chu, Kar-Hai
2017-01-01
Background As Twitter has grown in popularity to 313 million monthly active users, researchers have increasingly been using it as a data source for tobacco-related research. Objective The objective of this systematic review was to assess the methodological approaches of categorically coded tobacco Twitter data and make recommendations for future studies. Methods Data sources included PsycINFO, Web of Science, PubMed, ABI/INFORM, Communication Source, and Tobacco Regulatory Science. Searches were limited to peer-reviewed journals and conference proceedings in English from January 2006 to July 2016. The initial search identified 274 articles using a Twitter keyword and a tobacco keyword. One coder reviewed all abstracts and identified 27 articles that met the following inclusion criteria: (1) original research, (2) focused on tobacco or a tobacco product, (3) analyzed Twitter data, and (4) coded Twitter data categorically. One coder extracted data collection and coding methods. Results E-cigarettes were the most common type of Twitter data analyzed, followed by specific tobacco campaigns. The most prevalent data sources were Gnip and Twitter’s Streaming application programming interface (API). The primary methods of coding were hand-coding and machine learning. The studies predominantly coded for relevance, sentiment, theme, user or account, and location of user. Conclusions Standards for data collection and coding should be developed to be able to more easily compare and replicate tobacco-related Twitter results. Additional recommendations include the following: sample Twitter’s databases multiple times, make a distinction between message attitude and emotional tone for sentiment, code images and URLs, and analyze user profiles. Being relatively novel and widely used among adolescents and black and Hispanic individuals, Twitter could provide a rich source of tobacco surveillance data among vulnerable populations. PMID:28363883
Theory-based model for the pedestal, edge stability and ELMs in tokamaks
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Bateman, G.; Brennan, D. P.; Schnack, D. D.; Snyder, P. B.; Voitsekhovitch, I.; Kritz, A. H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G. W.; Pacher, H. D.
2006-04-01
An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD.
NASA Astrophysics Data System (ADS)
Bari, Md. S.; Das, T.
2013-09-01
Tectonic framework of Bangladesh and adjoining areas indicate that Bangladesh lies well within an active seismic zone. The after effect of earthquake is more severe in an underdeveloped and a densely populated country like ours than any other developed countries. Bangladesh National Building Code (BNBC) was first established in 1993 to provide guidelines for design and construction of new structure subject to earthquake ground motions in order to minimize the risk to life for all structures. A revision of BNBC 1993 is undergoing to make this up to date with other international building codes. This paper aims at the comparison of various provisions of seismic analysis as given in building codes of different countries. This comparison will give an idea regarding where our country stands when it comes to safety against earth quake. Primarily, various seismic parameters in BNBC 2010 (draft) have been studied and compared with that of BNBC 1993. Later, both 1993 and 2010 edition of BNBC codes have been compared graphically with building codes of other countries such as National Building Code of India 2005 (NBC-India 2005), American Society of Civil Engineering 7-05 (ASCE 7-05). The base shear/weight ratios have been plotted against the height of the building. The investigation in this paper reveals that BNBC 1993 has the least base shear among all the codes. Factored Base shear values of BNBC 2010 are found to have increased significantly than that of BNBC 1993 for low rise buildings (≤20 m) around the country than its predecessor. Despite revision of the code, BNBC 2010 (draft) still suggests less base shear values when compared to the Indian and American code. Therefore, this increase in factor of safety against the earthquake imposed by the proposed BNBC 2010 code by suggesting higher values of base shear is appreciable.
Meddings, Jennifer; Saint, Sanjay; McMahon, Laurence F
2010-06-01
To evaluate whether hospital-acquired catheter-associated urinary tract infections (CA-UTIs) are accurately documented in discharge records with the use of International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis codes so that nonpayment is triggered, as mandated by the Centers for Medicare and Medicaid Services (CMS) Hospital-Acquired Conditions Initiative. We conducted a retrospective medical record review of 80 randomly selected adult discharges from May 2006 through September 2007 from the University of Michigan Health System (UMHS) with secondary-diagnosis urinary tract infections (UTIs). One physician-abstractor reviewed each record to categorize UTIs as catheter associated and/or hospital acquired; these results (considered "gold standard") were compared with diagnosis codes assigned by hospital coders. Annual use of the catheter association code (996.64) by UMHS coders was compared with state and US rates by using Healthcare Cost and Utilization Project data. Patient mean age was 58 years; 56 (70%) were women; median length of hospital stay was 6 days; 50 patients (62%) used urinary catheters during hospitalization. Hospital coders had listed 20 secondary-diagnosis UTIs (25%) as hospital acquired, whereas physician-abstractors indicated that 37 (46%) were hospital acquired. Hospital coders had identified no CA-UTIs (code 996.64 was never used), whereas physician-abstractors identified 36 CA-UTIs (45%; 28 hospital acquired and 8 present on admission). Catheter use often was evident only from nursing notes, which, unlike physician notes, cannot be used by coders to assign discharge codes. State and US annual rates of 996.64 coding (approximately 1% of secondary-diagnosis UTIs) were similar to those at UMHS. Hospital coders rarely use the catheter association code needed to identify CA-UTI among secondary-diagnosis UTIs. Coders often listed a UTI as present on admission, although the medical record indicated that it was hospital acquired. Because coding of hospital-acquired CA-UTI seems to be fraught with error, nonpayment according to CMS policy may not reliably occur.
Pian, Cong; Zhang, Guangle; Chen, Zhi; Chen, Yuanyuan; Zhang, Jin; Yang, Tao; Zhang, Liangyun
2016-01-01
As a novel class of noncoding RNAs, long noncoding RNAs (lncRNAs) have been verified to be associated with various diseases. As large scale transcripts are generated every year, it is significant to accurately and quickly identify lncRNAs from thousands of assembled transcripts. To accurately discover new lncRNAs, we develop a classification tool of random forest (RF) named LncRNApred based on a new hybrid feature. This hybrid feature set includes three new proposed features, which are MaxORF, RMaxORF and SNR. LncRNApred is effective for classifying lncRNAs and protein coding transcripts accurately and quickly. Moreover,our RF model only requests the training using data on human coding and non-coding transcripts. Other species can also be predicted by using LncRNApred. The result shows that our method is more effective compared with the Coding Potential Calculate (CPC). The web server of LncRNApred is available for free at http://mm20132014.wicp.net:57203/LncRNApred/home.jsp.
A Coded Structured Light System Based on Primary Color Stripe Projection and Monochrome Imaging
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-01-01
Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy. PMID:24129018
A coded structured light system based on primary color stripe projection and monochrome imaging.
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-10-14
Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zizin, M. N.; Zimin, V. G.; Zizina, S. N., E-mail: zizin@adis.vver.kiae.ru
2010-12-15
The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit ofmore » the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.« less
NASA Astrophysics Data System (ADS)
Zizin, M. N.; Zimin, V. G.; Zizina, S. N.; Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.
2010-12-01
The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit of the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.
The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebe, A.; Leveling, A.; Lu, T.
The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay gamma-quanta by the residuals in the activated structures and scoring the prompt doses of these gamma-quanta at arbitrary distances frommore » those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and showed a good agreement. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.« less
The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose
NASA Astrophysics Data System (ADS)
Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.
2018-01-01
The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay γ-quanta by the residuals in the activated structures and scoring the prompt doses of these γ-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and against experimental data from the CERF facility at CERN, and FermiCORD showed reasonable agreement with these. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.
Near Zone: Basic scattering code user's manual with space station applications
NASA Technical Reports Server (NTRS)
Marhefka, R. J.; Silvestro, J. W.
1989-01-01
The Electromagnetic Code - Basic Scattering Code, Version 3, is a user oriented computer code to analyze near and far zone patterns of antennas in the presence of scattering structures, to provide coupling between antennas in a complex environment, and to determine radiation hazard calculations at UHF and above. The analysis is based on uniform asymptotic techniques formulated in terms of the Uniform Geometrical Theory of Diffraction (UTD). Complicated structures can be simulated by arbitrarily oriented flat plates and an infinite ground plane that can be perfectly conducting or dielectric. Also, perfectly conducting finite elliptic cylinder, elliptic cone frustum sections, and finite composite ellipsoids can be used to model the superstructure of a ship, the body of a truck, and airplane, a satellite, etc. This manual gives special consideration to space station modeling applications. This is a user manual designed to give an overall view of the operation of the computer code, to instruct a user in how to model structures, and to show the validity of the code by comparing various computed results against measured and alternative calculations such as method of moments whenever available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.P. Cramer & Associates, Inc.
2002-05-31
We recently received data on the decoded coded wire tags (CWT's) recovered from spring chinook snouts we collected during spawning surveys in the Clearwater Basin last fall (2001). We were curious about what could be learned from the tags recovered (even though our project is over), so we did some cursory analyses and have described our findings in the attached memo. Snouts were processed and codes determined by Idaho Department of Fish and Game. Most snouts did not contain CWTs, because most ad-clipped fish were not given a CWT. Further, because adults were outplanted live, we do not know whatmore » codes they contained. Each of the hatcheries from which outplanted adults were obtained had several CWT code groups returning. That means that the best we can do with the codes recovered is compare the hatchery of origin for the tag with the hatchery from which outplants were taken. The results are interesting and not exactly as we would have predicted.« less
Pressure measurements in a low-density nozzle plume for code verification
NASA Technical Reports Server (NTRS)
Penko, Paul F.; Boyd, Iain D.; Meissner, Dana L.; Dewitt, Kenneth J.
1991-01-01
Measurements of Pitot pressure were made in the exit plane and plume of a low-density, nitrogen nozzle flow. Two numerical computer codes were used to analyze the flow, including one based on continuum theory using the explicit MacCormack method, and the other on kinetic theory using the method of direct-simulation Monte Carlo (DSMC). The continuum analysis was carried to the nozzle exit plane and the results were compared to the measurements. The DSMC analysis was extended into the plume of the nozzle flow and the results were compared with measurements at the exit plane and axial stations 12, 24 and 36 mm into the near-field plume. Two experimental apparatus were used that differed in design and gave slightly different profiles of pressure measurements. The DSMC method compared well with the measurements from each apparatus at all axial stations and provided a more accurate prediction of the flow than the continuum method, verifying the validity of DSMC for such calculations.
Rohling, Heide; Sihver, Lembit; Priegnitz, Marlen; Enghardt, Wolfgang; Fiedler, Fine
2013-09-21
For quality assurance in particle therapy, a non-invasive, in vivo range verification is highly desired. Particle therapy positron-emission-tomography (PT-PET) is the only clinically proven method up to now for this purpose. It makes use of the β(+)-activity produced during the irradiation by the nuclear fragmentation processes between the therapeutic beam and the irradiated tissue. Since a direct comparison of β(+)-activity and dose is not feasible, a simulation of the expected β(+)-activity distribution is required. For this reason it is essential to have a quantitatively reliable code for the simulation of the yields of the β(+)-emitting nuclei at every position of the beam path. In this paper results of the three-dimensional Monte-Carlo simulation codes PHITS, GEANT4, and the one-dimensional deterministic simulation code HIBRAC are compared to measurements of the yields of the most abundant β(+)-emitting nuclei for carbon, lithium, helium, and proton beams. In general, PHITS underestimates the yields of positron-emitters. With GEANT4 the overall most accurate results are obtained. HIBRAC and GEANT4 provide comparable results for carbon and proton beams. HIBRAC is considered as a good candidate for the implementation to clinical routine PT-PET.
NASA Astrophysics Data System (ADS)
Rohling, Heide; Sihver, Lembit; Priegnitz, Marlen; Enghardt, Wolfgang; Fiedler, Fine
2013-09-01
For quality assurance in particle therapy, a non-invasive, in vivo range verification is highly desired. Particle therapy positron-emission-tomography (PT-PET) is the only clinically proven method up to now for this purpose. It makes use of the β+-activity produced during the irradiation by the nuclear fragmentation processes between the therapeutic beam and the irradiated tissue. Since a direct comparison of β+-activity and dose is not feasible, a simulation of the expected β+-activity distribution is required. For this reason it is essential to have a quantitatively reliable code for the simulation of the yields of the β+-emitting nuclei at every position of the beam path. In this paper results of the three-dimensional Monte-Carlo simulation codes PHITS, GEANT4, and the one-dimensional deterministic simulation code HIBRAC are compared to measurements of the yields of the most abundant β+-emitting nuclei for carbon, lithium, helium, and proton beams. In general, PHITS underestimates the yields of positron-emitters. With GEANT4 the overall most accurate results are obtained. HIBRAC and GEANT4 provide comparable results for carbon and proton beams. HIBRAC is considered as a good candidate for the implementation to clinical routine PT-PET.
Results of the 1974 NACUBO Comparative Performance Study and Investment Questionnaire.
ERIC Educational Resources Information Center
National Association of College and University Business Officers, Washington, DC.
The 1974 Comparative Performance Study includes 150 endowment pools representing 136 institutions. The market value of the pools which provided information as of June 30, 1974, was 6.9 billion dollars. The study identifies endowment pools by code and indicates each pool's investment objective, approximate market value, the percentage in cash and…
Hybrid services efficient provisioning over the network coding-enabled elastic optical networks
NASA Astrophysics Data System (ADS)
Wang, Xin; Gu, Rentao; Ji, Yuefeng; Kavehrad, Mohsen
2017-03-01
As a variety of services have emerged, hybrid services have become more common in real optical networks. Although the elastic spectrum resource optimizations over the elastic optical networks (EONs) have been widely investigated, little research has been carried out on the hybrid services of the routing and spectrum allocation (RSA), especially over the network coding-enabled EON. We investigated the RSA for the unicast service and network coding-based multicast service over the network coding-enabled EON with the constraints of time delay and transmission distance. To address this issue, a mathematical model was built to minimize the total spectrum consumption for the hybrid services over the network coding-enabled EON under the constraints of time delay and transmission distance. The model guarantees different routing constraints for different types of services. The immediate nodes over the network coding-enabled EON are assumed to be capable of encoding the flows for different kinds of information. We proposed an efficient heuristic algorithm of the network coding-based adaptive routing and layered graph-based spectrum allocation algorithm (NCAR-LGSA). From the simulation results, NCAR-LGSA shows highly efficient performances in terms of the spectrum resources utilization under different network scenarios compared with the benchmark algorithms.
The effect of multiple internal representations on context-rich instruction
NASA Astrophysics Data System (ADS)
Lasry, Nathaniel; Aulls, Mark W.
2007-11-01
We discuss n-coding, a theoretical model of multiple internal mental representations. The n-coding construct is developed from a review of cognitive and imaging data that demonstrates the independence of information processed along different modalities such as verbal, visual, kinesthetic, logico-mathematic, and social modalities. A study testing the effectiveness of the n-coding construct in classrooms is presented. Four sections differing in the level of n-coding opportunities were compared. Besides a traditional-instruction section used as a control group, each of the remaining three sections were given context-rich problems, which differed by the level of n-coding opportunities designed into their laboratory environment. To measure the effectiveness of the construct, problem-solving skills were assessed as conceptual learning using the force concept inventory. We also developed several new measures that take students' confidence in concepts into account. Our results show that the n-coding construct is useful in designing context-rich environments and can be used to increase learning gains in problem solving, conceptual knowledge, and concept confidence. Specifically, when using props in designing context-rich problems, we find n-coding to be a useful construct in guiding which additional dimensions need to be attended to.
Cui, Laizhong; Lu, Nan; Chen, Fu
2014-01-01
Most large-scale peer-to-peer (P2P) live streaming systems use mesh to organize peers and leverage pull scheduling to transmit packets for providing robustness in dynamic environment. The pull scheduling brings large packet delay. Network coding makes the push scheduling feasible in mesh P2P live streaming and improves the efficiency. However, it may also introduce some extra delays and coding computational overhead. To improve the packet delay, streaming quality, and coding overhead, in this paper are as follows. we propose a QoS driven push scheduling approach. The main contributions of this paper are: (i) We introduce a new network coding method to increase the content diversity and reduce the complexity of scheduling; (ii) we formulate the push scheduling as an optimization problem and transform it to a min-cost flow problem for solving it in polynomial time; (iii) we propose a push scheduling algorithm to reduce the coding overhead and do extensive experiments to validate the effectiveness of our approach. Compared with previous approaches, the simulation results demonstrate that packet delay, continuity index, and coding ratio of our system can be significantly improved, especially in dynamic environments. PMID:25114968