Science.gov

Sample records for comparing denitrification estimates

  1. Comparing denitrification estimates for a Texas estuary by using acetylene inhibition and membrane inlet mass spectrometry.

    PubMed

    Bernot, Melody J; Dodds, Walter K; Gardner, Wayne S; McCarthy, Mark J; Sobolev, Dmitri; Tank, Jennifer L

    2003-10-01

    Characterizing denitrification rates in aquatic ecosystems is essential to understanding how systems may respond to increased nutrient loading. Thus, it is important to ensure the precision and accuracy of the methods employed for measuring denitrification rates. The acetylene (C2H2) inhibition method is a simple technique for estimating denitrification. However, potential problems, such as inhibition of nitrification and incomplete inhibition of nitrous oxide reduction, may influence rate estimates. Recently, membrane inlet mass spectrometry (MIMS) has been used to measure denitrification in aquatic systems. Comparable results were obtained with MIMS and C2H2 inhibition methods when chloramphenicol was added to C2H2 inhibition assay mixtures to inhibit new synthesis of denitrifying enzymes. Dissolved-oxygen profiles indicated that surface layers of sediment cores subjected to the MIMS flowthrough incubation remained oxic whereas cores incubated using the C2H2 inhibition methods did not. Analysis of the microbial assemblages before and after incubations indicated significant changes in the sediment surface populations during the long flowthrough incubation for MIMS analysis but not during the shorter incubation used for the C2H2 inhibition method. However, bacterial community changes were also small in MIMS cores at the oxygen transition zone where denitrification occurs. The C2H2 inhibition method with chloramphenicol addition, conducted over short incubation intervals, provides a cost-effective method for estimating denitrification, and rate estimates are comparable to those obtained by the MIMS method.

  2. Denitrification associated with stream periphyton: Chamber estimates from undisrupted communities

    USGS Publications Warehouse

    Duff, J.H.; Triska, F.J.; Oremland, R.S.

    1984-01-01

    Undisrupted periphyton communities from a N-rich (NO3- = 63 ??mol L-1) and pristine (NO3- = 2.9 ??mol L-1) stream were assayed for denitrifying activity (acetylene-blockage technique) in 40-L chambers incubated at in situ temperature and nutrient concentrations. Nitrous oxide formation associated with periphyton from the N-rich stream was immediate and linear (52.1 ??mol N2O m-2 h-1) in the dark, anaerobic chamber (50 kPa C2H2). In the corresponding light, aerobic chamber (50 kPa C2H2), N2O production was inhibited by 82% (9.3 ??mol N2O m-2 h-1). Nitrous oxide formation was not associated with periphyton from the pristine stream incubated in situ, either with or without NO3- amendment. Denitrification estimates made with undisrupted periphyton communities at in situ temperature and nutrient concentrations (40-L chambers) were less variable than estimates made with periphyton 'scrapings' in small flasks (room temperature). The calculated diel periphyton-associated denitrification rate based on a 14-h light-10-h dark day was 651 ??mol N2O m-2 d-1. The data suggest denitrification within periphyton mats may contribute toward removal of NO3- from N-rich fluvial environments.

  3. Directly measured denitrification reveals oyster aquaculture and restored oyster reefs remove nitrogen at comparable high rates

    EPA Science Inventory

    Coastal systems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for ecosystem functioning. Oyster restoration and aquaculture are both hypothesized to mitigate excessive nitrogen (N) loads via benthic denitrification (DNF). However, this has...

  4. Landscape-scale estimation of denitrification rates and nitrous oxide to dinitrogen ratio at Georgia and Pennsylvania LTAR sites

    NASA Astrophysics Data System (ADS)

    Dell, C. J.; Groffman, P. M.; Strickland, T.; Kleinman, P. J. A.; Bosch, D. D.; Bryant, R.

    2015-12-01

    Denitrification results in a significant loss of plant-available nitrogen from agricultural systems and contributes to climate change, due to the emissions of both the potent greenhouse gas nitrous oxide (N2O) and environmentally benign dinitrogen (N2). However total quantities of the gases emitted and the ratio of N2:N2O are often not clearly understood, because N2 emissions cannot be directly measured in the field because of the high background level of N2 in the atmosphere. While variability in soil conditions across landscapes, especially water content and aeration, is believed to greatly impact both total denitrification rates and N2:N2O, the measurement limitations have prevented a clear understanding of landscape-scale emissions of denitrification products. The Cary Institute has developed an approach where soil core are maintained in a sealed system with an N2-free airstream, allowing emitted N2 and N2O emissions to be measured without interference from atmospheric N2. Emissions of the gases are measured under a range of oxygen concentrations and soil water contents. Laboratory responses can then be correlated with measured field conditions at the sampling points and resulting emission estimates extrapolated to the field-scale. Measurements are currently being conducted on peanut/cotton rotations, dairy forage rotations (silage corn/alfalfa), and bioenergy crops (switchgrass and miscanthus) at Long Term Agricultural Research (LTAR) sites at Tifton, GA and University Park, PA.

  5. Evaluation of denitrification decomposition model for estimating ammonia fluxes from chemical fertilizer application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DeNitrification DeComposition (DNDC) model predictions of NH3 fluxes following chemical fertilizer application were evaluated by comparison to relaxed eddy accumulation (REA) measurements, in Central Illinois, United States, over the 2014 growing season of corn. Practical issues for evaluating closu...

  6. Denitrification in Aquifer Soil and Nearshore Marine Sediments Influenced by Groundwater Nitrate

    PubMed Central

    Slater, Jennifer M.; Capone, Douglas G.

    1987-01-01

    We estimated rates of denitrification at various depths in sediments known to be affected by submarine discharge of groundwater, and also in the parent aquifer. Surface denitrification was only measured in the autumn; at 40-cm depth, where groundwater-imported nitrate has been measured, denitrification occurred consistently throughout the year, at rates from 0.14 to 2.8 ng-atom of N g−1 day−1. Denitrification consistently occurred below the zone of sulfate reduction and was sometimes comparable to it in magnitude. Denitrification occurred deep (14 to 40 cm) in the sediments along 30 km of shoreline, with highest rates occurring where groundwater input was greatest. Denitrification rates decreased with distance offshore, as does groundwater influx. Added glucose greatly stimulated denitrification at depth, but added nitrate did not. High rates of denitrification were measured in the aquifer (17 ng-atom of N g−1 day−1), and added nitrate did stimulate denitrification there. The denitrification measured was enough to remove 46% of the nitrate decrease observed between 40- and 14-cm depth in the sediment. PMID:16347361

  7. Comparative analysis of microbial community between different cathode systems of microbial fuel cells for denitrification.

    PubMed

    Li, Chao; Xu, Ming; Lu, Yi; Fang, Fang; Cao, Jiashun

    2016-01-01

    Two types of cathodic biofilm in microbial fuel cells (MFC) were established for comparison on their performance and microbial communities. Complete autotrophic simultaneous nitrification and denitrification (SND) without organics addition was achieved in nitrifying-MFC (N-MFC) with a total nitrogen (TN) removal rate of 0.35 mg/(L·h), which was even higher than that in denitrifying-MFC (D-MFC) at same TN level. Integrated denaturing gradient gel electrophoresis analysis based on both 16S rRNA and nirK genes showed that Alpha-, Gammaproteobacteria were the main denitrifier communities. Some potential autotrophic denitrifying bacteria which can use electrons and reducing power from cathodes, such as Shewanella oneidensis, Shewanella loihica, Pseudomonas aeruginosa, Starkeya novella and Rhodopseudomonas palustris were identified and selectively enriched on cathode biofilms. Further, relative abundance of denitrifying bacteria characterized by nirK/16S ratios was much higher in biofilm than suspended sludge according to real-time polymerase chain reaction. The highest enrichment efficiency for denitrifiers was obtained in N-MFC cathode biofilms, which confirmed autotrophic denitrifying bacteria enrichment is the key factor for a D-MFC system.

  8. Comparison of Whole-stream and Hyporheic-zone Estimates of Denitrification Determined Simultaneously During an Isotope Tracer Injection in a Nitrate-Rich Stream

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Bohlke, J. K.; Voytek, M. A.

    2005-05-01

    15N labeled nitrate is increasingly being used as a reactive tracer in stream tracer tests to estimate whole-stream denitrification averaged at a spatial scale large enough to allow comparisons across disparate stream ecosystems. No matter how valuable, these whole-stream estimates are not very informative about controlling processes and will have limited transfer value unless processes controlling denitrification are investigated simultaneously at finer scales. Insights about the processes that influence the whole-stream rates could be especially informative if simultaneous rate measurements are made representing variable hydrologic and biogeochemical conditions near reactive surfaces in the stream and in the streambed. Our approach was to investigate factors that control denitrification by simultaneously measuring denitrification in-situ in a variety of streambed environments by sampling evolution of the (15NO3-) tracer during transport through shallow hyporheic flow paths. Here we report results from two tracer studies conducted in Sugar Creek, western Indiana, in a basin dominated by corn and soybean agriculture. The two tracer experiments were conducted in September 2001 and September 2003, when streamflows (40 and 20 L s-1) and stream NO3- concentrations (70 and 175 μmoles L-1) in the two reaches were near their annual minimum values. The experiments involved co-injection of conservative (Br), reactive (15NO3-), and dissolved gas (SF6) tracers into streamflow allowing quantification of advection, dispersion, gas evasion, hydrologic retention in "storage" zones, and also allowing in-situ estimation of denitrification within selected hyporheic flow paths. The experiments resulted in estimates of both whole-stream and hyporheic-zone rates of denitrification and related nitrogen reactions. The streambed of Sugar Creek is covered in most areas with a relatively thin layer (ranging from <1 to 3 cm) of fine granular and organic sediment and periphyton, overlying a

  9. Incorporating denitrification-decomposition method to estimate field emissions for Life Cycle Assessment.

    PubMed

    Deng, Yelin; Paraskevas, Dimos; Cao, Shi-Jie

    2017-03-22

    This study focuses on a detailed Life Cycle Assessment (LCA) for flax cultivation in Northern France. Nitrogen related field emissions are derived both from a process-oriented DeNitrification-DeComposition (DNDC) method and the generic Intergovernmental Panel on Climate Change (IPCC) method. Since the IPCC method is synthesised from field measurements at sites with various soil types, climate conditions, and crops, it contains significant uncertainties. In contrast, the outputs from the DNDC method are considered as more site specific as it is built according to complex models of soil science. As it is demonstrated in this paper the emission factors from the DNDC method and the recommended values from the IPCC method exhibit significant variations for the case of flax cultivation. The DNDC based emission factor for direct N2O emission, which is a strong greenhouse gas, is 0.25-0.5%, significantly lower than the recommend 1% level derived from the IPCC method. The DNDC method leads to a reduction of 17% in the impact category of climate change per kg retted flax straw production from the level obtained from the IPCC method. Much higher reductions are recorded for particulate matter formation, terrestrial acidification, and marine eutrophication impact categories. Meanwhile, based on the DNDC and IPCC methods, a comparative LCA per kg flax straw is presented. For both methods sensitivity analysis as well as comparison of uncertainties parameterisation of the N2O estimates via Monte-Carlo analysis are performed. The DNDC method incorporates more relevant field emissions from the agricultural life cycle phase, which can also improve the quality of the Life Cycle Inventory as well as allow more precise uncertainty calibration in the LCA inventory.

  10. Landscape scale estimation of denitrification rate and nitrous oxide to dinitrogen ratio at Georgia and Pennsylvania sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification results in a significant loss of plant-available nitrogen from agricultural systems and contributes to climate change, due to the emissions of both the potent greenhouse gas nitrous oxide and environmentally benign dinitrogen. However total quantities of the gases emitted and the ra...

  11. The challenge of denitrification

    NASA Astrophysics Data System (ADS)

    Groffman, P. M.

    2015-12-01

    Understanding the nitrogen cycle at ecosystem, landscape, regional and global scales is a great current challenge in environmental science. Large amounts of "missing nitrogen" dominate nitrogen balances at all scales and have complicated efforts to address the effects of excess reactive nitrogen pollution on tropospheric ozone levels, coastal eutrophication and drinking water quality, and to determine "critical loads" for atmospheric nitrogen deposition. Uncertainty about nitrogen balances has led to increased interest in nitrogen gas fluxes as a fate of excess nitrogen. Denitrification, the conversion of reactive nitrogen oxides such as nitrate and nitrite into nitrogen gases, is a challenging process to study in terrestrial ecosystems. This process is difficult to quantify because of problematic measurement techniques, high spatial and temporal variability, and a lack of methods for scaling point measurements to larger areas. A particular challenge is that small areas (hotspots) and brief periods (hot moments) account for a high percentage of nitrogen gas flux activity. However, recent advances have yielded new methods capable of producing well constrained estimates of denitrification at the ecosystem scale, new ideas about the occurrence of hotspots and hot moments at ecosystem and landscape scales, and powerful new tools for extrapolation and validation. Progress on the challenges of denitrification suggest that we are poised for advances more generally across the genomes-to-ecosystems cascade.

  12. Comparative investigation on integrated vertical-flow biofilters applying sulfur-based and pyrite-based autotrophic denitrification for domestic wastewater treatment.

    PubMed

    Kong, Zhe; Li, Lu; Feng, Chuanping; Dong, Shanshan; Chen, Nan

    2016-07-01

    Two parallel biofilters applying sulfur/pyrite-based autotrophic denitrification were investigated for removing COD, TP and TN by a coordinated process. Results demonstrated good performance by removing 86.32% vs 87.14% COD and 92.56% vs 89.65% NH4(+)-N. Biofilter with sulfur (BS) was superior on nitrate (89.74% vs 80.72%) and TN removal (83.18% vs 70.42%) while biofilter with pyrite (BP) was better on TP removal (82.58% vs 77.40%) and maintaining sulfate (27.56mgL(-1) vs 41.55mgL(-1)) and pH (7.13 vs 6.31). Water-permeable adsorbents lowered clogging risk and buffered loading. Clone library revealed reasons of diversities, pH variation and sulfate accumulation of both biofilters. Sulfur was efficient on denitrification but whose byproducts were troublesome, pyrite produced less byproduct but which was sensitive to organics. This research was the first attempt to systematically compare two promising alternatives and their merits/demerits for rural wastewater on-site treatment.

  13. Comparing population size estimators for plethodontid salamanders

    USGS Publications Warehouse

    Bailey, L.L.; Simons, T.R.; Pollock, K.H.

    2004-01-01

    Despite concern over amphibian declines, few studies estimate absolute abundances because of logistic and economic constraints and previously poor estimator performance. Two estimation approaches recommended for amphibian studies are mark-recapture and depletion (or removal) sampling. We compared abundance estimation via various mark-recapture and depletion methods, using data from a three-year study of terrestrial salamanders in Great Smoky Mountains National Park. Our results indicate that short-term closed-population, robust design, and depletion methods estimate surface population of salamanders (i.e., those near the surface and available for capture during a given sampling occasion). In longer duration studies, temporary emigration violates assumptions of both open- and closed-population mark-recapture estimation models. However, if the temporary emigration is completely random, these models should yield unbiased estimates of the total population (superpopulation) of salamanders in the sampled area. We recommend using Pollock's robust design in mark-recapture studies because of its flexibility to incorporate variation in capture probabilities and to estimate temporary emigration probabilities.

  14. Distributed Denitrification in a Northeastern Agricultural Landscape

    NASA Astrophysics Data System (ADS)

    Anderson, T. R.; Groffman, P. M.; Kaushal, S. S.; Walter, M. T.

    2009-05-01

    Denitrification may be an important sink of anthropogenic nitrogen (N) in eastern US watersheds. Denitrification occurs primarily under anaerobic conditions by heterotrophic microbes, and is therefore expected to be vigorous in wet soils containing high amounts of organic carbon. Actual rates of denitrification, however, have been difficult to quantify, and remain one of the critical unresolved N processes at the landscape scale. We measured denitrification rates in situ along hydrologic flow paths and across gradients of hydroperiodicities, i.e., frequencies and durations of saturated conditions, at Cornell University's Teaching and Research Center in Harford, NY (an active dairy farm). Denitrification rates were measured monthly using the 15N push-pull method from 14 mini-piezometers arrayed along a gradient of hydroperiodicity as indicated by a soil topographic index (STI). Measured rates of denitrification were spatially variable across sites and ranged from undetectable to over 200 µg N/kg soil/day with a mean of 55.9 ± 16.4 µg N/kg soil/day. Mean rates of denitrification increased with STI, which ranged from 10 to 23. This relationship was used to estimate distributed denitrification rates across the landscape and resolve a missing piece of the N budget for the farm. We found that 16% of the farm fell into areas of STI greater than 10. Using the distributed denitrification rates, this area accounts for 15-27% of the missing N balance for the farm (9.7-17.8 Mg N/yr). Improved understanding of the distribution and magnitudes of denitrification in agricultural landscapes has good potential to facilitate new, novel, and better management practices for controlling nitrogen loading to streams and rivers. Indeed, the very areas that appear to have a propensity to harbor denitrification, i.e., areas prone to be wet, are often artificially drained as part of standard agricultural practices which effectively increase N loading to rivers and contributes to downstream

  15. Distributed denitrification in a northeastern agricultural landscape

    NASA Astrophysics Data System (ADS)

    Anderson, T. R.; Groffman, P. M.; Walter, M. T.

    2011-12-01

    Denitrification may be an important sink of anthropogenic nitrogen (N) in eastern US watersheds. Denitrification occurs primarily under anaerobic conditions by heterotrophic microbes, and is therefore expected to be vigorous in wet soils containing large amounts of organic carbon. Actual rates of denitrification, however, have been difficult to quantify, and remain one of the critical unresolved N processes at the landscape scale. We measured denitrification rates in situ along hydrologic flow paths and across gradients of hydroperiodicities, i.e., frequencies and durations of saturated conditions, at Cornell University's Teaching & Research Center in Harford, NY (an active dairy farm). Denitrification rates were measured monthly using the 15N push-pull method from 14 mini-piezometers arrayed along a gradient of hydroperiodicity as indicated by a soil topographic index (STI). Measured rates of denitrification were spatially variable across sites and ranged from undetectable to over 4500 μg N/kg soil/day with a mean of 572 ± 167 μg N/kg soil/day. Mean rates of denitrification increased with STI, which ranged from 8.7 to 23.0 across our mini-piezometer sites. This relationship was used to estimate denitrification rates across the landscape and resolve a missing piece of the N budget for the farm. Only 14% of the farm fell into areas of STI greater than 8.7; however, denitrification in these areas account for more than 60% of the missing N balance for the entire landscape. Improved understanding of the distribution and magnitudes of denitrification in agricultural landscapes has good potential to facilitate new, novel, and better management practices for controlling N loading to streams and rivers. Indeed, the very areas that appear to have a propensity to harbor denitrification, i.e., areas prone to be wet, are often artificially drained as part of standard agricultural practices which reduces the frequency that these areas are likely to be anaerobic and

  16. Wetland Characteristics and Denitrification

    EPA Science Inventory

    This presentation serves as an initial summary of our wetland field work's watershed characteristics hydrologic characteristics, water quality measurements, and denitrification assays. We present our measurement results in the context of wetland type (Estuarine, Freshwater Mars...

  17. Denitrification across landscapes and waterscapes--A synthesis

    USGS Publications Warehouse

    Seitzinger, S.; Harrison, J.A.; Böhlke, J.K.; Bouwman, A.F.; Lowrance, R.; Peterson, B.; Tobias, C.; Van Drecht, G.

    2006-01-01

    Denitrification is a critical process regulating the removal of bioavailable nitrogen (N) from natural and human-altered systems. While it has been extensively studied in terrestrial, freshwater, and marine systems, there has been limited communication among denitrification scientists working in these individual systems. Here, we compare rates of denitrification and controlling factors across a range of ecosystem types. We suggest that terrestrial, freshwater, and marine systems in which denitrification occurs can be organized along a continuum ranging from (1) those in which nitrification and denitrification are tightly coupled in space and time to (2) those in which nitrate production and denitrification are relatively decoupled.In aquatic ecosystems, N inputs influence denitrification rates whereas hydrology and geomorphology influence the proportion of N inputs that are denitrified. Relationships between denitrification and water residence time and N load are remarkably similar across lakes, river reaches, estuaries, and continental shelves.Spatially distributed global models of denitrification suggest that continental shelf sediments account for the largest portion (44%) of total global denitrification, followed by terrestrial soils (22%) and oceanic oxygen minimum zones (OMZs; 14%). Freshwater systems (groundwater, lakes, rivers) account for about 20% and estuaries 1% of total global denitrification. Denitrification of land-based N sources is distributed somewhat differently. Within watersheds, the amount of land-based N denitrified is generally highest in terrestrial soils, with progressively smaller amounts denitrified in groundwater, rivers, lakes and reservoirs, and estuaries. A number of regional exceptions to this general trend of decreasing denitrification in a downstream direction exist, including significant denitrification in continental shelves of N from terrestrial sources. Though terrestrial soils and groundwater are responsible for much

  18. Estimating rates of denitrification enzyme activity in wetland soils and direct simultaneous quantification of nitrogen and nitrous oxide by membrane inlet mass spectrometry

    EPA Science Inventory

    Denitrification enzyme activity (DEA) was measured in short-term (4 h) anaerobic assays using Membrane Inlet Mass Spectrometry (MIMS) and electron capture gas chromatography (GC-ECD). Using MIMS, modifications of the instrument and sample handling allowed for the simultaneous me...

  19. Parameter estimation uncertainty: Comparing apples and apples?

    NASA Astrophysics Data System (ADS)

    Hart, D.; Yoon, H.; McKenna, S. A.

    2012-12-01

    Given a highly parameterized ground water model in which the conceptual model of the heterogeneity is stochastic, an ensemble of inverse calibrations from multiple starting points (MSP) provides an ensemble of calibrated parameters and follow-on transport predictions. However, the multiple calibrations are computationally expensive. Parameter estimation uncertainty can also be modeled by decomposing the parameterization into a solution space and a null space. From a single calibration (single starting point) a single set of parameters defining the solution space can be extracted. The solution space is held constant while Monte Carlo sampling of the parameter set covering the null space creates an ensemble of the null space parameter set. A recently developed null-space Monte Carlo (NSMC) method combines the calibration solution space parameters with the ensemble of null space parameters, creating sets of calibration-constrained parameters for input to the follow-on transport predictions. Here, we examine the consistency between probabilistic ensembles of parameter estimates and predictions using the MSP calibration and the NSMC approaches. A highly parameterized model of the Culebra dolomite previously developed for the WIPP project in New Mexico is used as the test case. A total of 100 estimated fields are retained from the MSP approach and the ensemble of results defining the model fit to the data, the reproduction of the variogram model and prediction of an advective travel time are compared to the same results obtained using NSMC. We demonstrate that the NSMC fields based on a single calibration model can be significantly constrained by the calibrated solution space and the resulting distribution of advective travel times is biased toward the travel time from the single calibrated field. To overcome this, newly proposed strategies to employ a multiple calibration-constrained NSMC approach (M-NSMC) are evaluated. Comparison of the M-NSMC and MSP methods suggests

  20. Denitrification in upland of China: Magnitude and influencing factors

    NASA Astrophysics Data System (ADS)

    Wang, Jinyang; Yan, Xiaoyuan

    2016-12-01

    A better understanding of influencing factors and accurate estimate of soil denitrification is a global concern. Here we present a synthesis of 300 observations of denitrification in Chinese upland soils from 39 field and laboratory studies using the acetylene inhibition technique. The results of a linear mixed model analysis showed that the rates of soil denitrification were significantly affected by crop type, soil organic carbon, soil pH, the measurement period, and the rate of N application. The emission factor (EF) and N2O/(N2O + N2) ratio for soil denitrification were on average 2.11 ± 0.17% and 0.508 ± 0.020, respectively. Our meta-analysis indicated that N fertilization increased soil denitrification by 311% (95% CI: 279-346%) and 112% (95% CI: 66-171%) in the field and laboratory studies, respectively. Substantial interactive effects between soil properties and N fertilization on soil denitrification were found. Although the highest values of both the rate of denitrification and the EF were found in vegetable fields, the size of the stimulating effect of N fertilization on soil denitrification was lower in vegetable fields than in maize and wheat fields. These results suggest that the crop-specific effect is important and that vegetable fields are potential hot spots of denitrification in Chinese uplands. Based on either the EF or the N2O/(N2O + N2) ratio obtained, the estimated amount of total denitrification from the upland soils was an order of magnitude lower than that from budget calculations, suggesting that the acetylene inhibition technique may significantly underestimate denitrification in Chinese upland soils.

  1. Denitrification in Sinorhizobium meliloti.

    PubMed

    Torres, María J; Rubia, María I; Bedmar, Eulogio J; Delgado, María J

    2011-12-01

    Denitrification is the complete reduction of nitrate or nitrite to N2, via the intermediates nitric oxide (NO) and nitrous oxide (N2O), and is coupled to energy conservation and growth under O2-limiting conditions. In Bradyrhizobium japonicum, this process occurs through the action of the napEDABC, nirK, norCBQD and nosRZDFYLX gene products. DNA sequences showing homology with nap, nirK, nor and nos genes have been found in the genome of the symbiotic plasmid pSymA of Sinorhizobium meliloti strain 1021. Whole-genome transcriptomic analyses have demonstrated that S. meliloti denitrification genes are induced under micro-oxic conditions. Furthermore, S. meliloti has also been shown to possess denitrifying activities in both free-living and symbiotic forms. Despite possessing and expressing the complete set of denitrification genes, S. meliloti is considered a partial denitrifier since it does not grow under anaerobic conditions with nitrate or nitrite as terminal electron acceptors. In the present paper, we show that, under micro-oxic conditions, S. meliloti is able to grow by using nitrate or nitrite as respiratory substrates, which indicates that, in contrast with anaerobic denitrifiers, O2 is necessary for denitrification by S. meliloti. Current knowledge of the regulation of S. meliloti denitrification genes is also included.

  2. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands.

    PubMed

    Hallin, Sara; Hellman, Maria; Choudhury, Maidul I; Ecke, Frauke

    2015-11-15

    Reactive nitrogen (N) species released from undetonated ammonium-nitrate based explosives used in mining or other blasting operations are an emerging environmental problem. Wetlands are frequently used to treat N-contaminated water in temperate climate, but knowledge on plant-microbial interactions and treatment potential in sub-arctic wetlands is limited. Here, we compare the relative importance of plant uptake and denitrification among five plant species commonly occurring in sub-arctic wetlands for removal of N in nitrate-rich mine drainage in northern Sweden. Nitrogen uptake and plant associated potential denitrification activity and genetic potential for denitrification based on quantitative PCR of the denitrification genes nirS, nirK, nosZI and nosZII were determined in plants growing both in situ and cultivated in a growth chamber. The growth chamber and in situ studies generated similar results, suggesting high relevance and applicability of results from growth chamber experiments. We identified denitrification as the dominating pathway for N-removal and abundances of denitrification genes were strong indicators of plant associated denitrification activity. The magnitude and direction of the effect differed among the plant species, with the aquatic moss Drepanocladus fluitans showing exceptionally high ratios between denitrification and uptake rates, compared to the other species. However, to acquire realistic estimates of N-removal potential of specific wetlands and their associated plant species, the total plant biomass needs to be considered. The species-specific plant N-uptake and abundance of denitrification genes on the root or plant surfaces were affected by the presence of other plant species, which show that both multi- and inter-trophic interactions are occurring. Future studies on N-removal potential of wetland plant species should consider how to best exploit these interactions in sub-arctic wetlands.

  3. CROSS-STREAM COMPARISON OF SUBSTRATE-SPECIFIC DENITRIFICATION POTENTIAL

    SciTech Connect

    Findlay, Stuart; Mulholland, Patrick J; Hamilton, Stephen; Tank, Jennifer; Bernot, Melody; Burgin, Amy; Crenshaw, Chelsea; Grimm, Nancy; McDowell, William; Potter, Jody; Sobota, Daniel

    2011-01-01

    Headwater streams have a demonstrated ability to denitrify a portion of their nitrate (NO(3) (-)) load but there has not been an extensive consideration of where in a stream this process is occurring and how various habitats contribute to total denitrification capability. As part of the Lotic Intersite Nitrogen Experiment II (LINX II) we measured denitrification potential in 65 streams spanning eight regions of the US and draining three land-use types. In each stream, potential denitrification rates were measured in common substrate types found across many streams as well as locations unique to particular streams. Overall, habitats from streams draining urban and agricultural land-uses showed higher potential rates of denitrification than reference streams draining native vegetation. This difference among streams was probably driven by higher ambient nitrate concentrations found in urban or agricultural streams. Within streams, sandy habitats and accumulations of fine benthic organic matter contributed more than half of the total denitrification capacity (mg N removed m(-2) h(-1)). A particular rate of potential denitrification per unit area could be achieved either by high activity per unit organic matter or lower activities associated with larger standing stocks of organic matter. We found that both small patches with high rates (hot spots) or more widespread but less active areas (cool matrix) contributed significantly to whole stream denitrification capacity. Denitrification estimated from scaled-up denitrification enzyme assay (DEA) potentials were not always dramatically higher than in situ rates of denitrification measured as (15)N gas generation following 24-h (15)N-NO(3) tracer additions. In general, headwater streams draining varying land-use types have significant potential to remove nitrate via denitrification and some appear to be functioning near their maximal capacity.

  4. Comparative yield estimation via shock hydrodynamic methods

    SciTech Connect

    Attia, A.V.; Moran, B.; Glenn, L.A.

    1991-06-01

    Shock TOA (CORRTEX) from recent underground nuclear explosions in saturated tuff were used to estimate yield via the simulated explosion-scaling method. The sensitivity of the derived yield to uncertainties in the measured shock Hugoniot, release adiabats, and gas porosity is the main focus of this paper. In this method for determining yield, we assume a point-source explosion in an infinite homogeneous material. The rock is formulated using laboratory experiments on core samples, taken prior to the explosion. Results show that increasing gas porosity from 0% to 2% causes a 15% increase in yield per ms/kt{sup 1/3}. 6 refs., 4 figs.

  5. Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States

    USGS Publications Warehouse

    Green, C.T.; Puckett, L.J.; Böhlke, J.K.; Bekins, B.A.; Phillips, S.P.; Kauffman, L.J.; Denver, J.M.; Johnson, H.M.

    2008-01-01

    The ability of natural attenuation to mitigate agricultural nitrate contamination in recharging aquifers was investigated in four important agricultural settings in the United States. The study used laboratory analyses, field measurements, and flow and transport modeling for monitoring well transects (0.5 to 2.5 km in length) in the San Joaquin watershed, California, the Elkhorn watershed, Nebraska, the Yakima watershed, Washington, and the Chester watershed, Maryland. Ground water analyses included major ion chemistry, dissolved gases, nitrogen and oxygen stable isotopes, and estimates of recharge date. Sediment analyses included potential electron donors and stable nitrogen and carbon isotopes. Within each site and among aquifer-based medians, dissolved oxygen decreases with ground water age, and excess N2 from denitrification increases with age. Stable isotopes and excess N2 imply minimal denitrifying activity at the Maryland and Washington sites, partial denitrification at the California site, and total denitrification across portions of the Nebraska site. At all sites, recharging electron donor concentrations are not sufficient to account for the losses of dissolved oxygen and nitrate, implying that relict, solid phase electron donors drive redox reactions. Zero-order rates of denitrification range from 0 to 0.14 ??mol N L-1d-1, comparable to observations of other studies using the same methods. Many values reported in the literature are, however, orders of magnitude higher, which is attributed to a combination of method limitations and bias for selection of sites with rapid denitrification. In the shallow aquifers below these agricultural fields, denitrification is limited in extent and will require residence times of decades or longer to mitigate modern nitrate contamination. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  6. Improved interval estimation of comparative treatment effects

    NASA Astrophysics Data System (ADS)

    Van Krevelen, Ryne Christian

    Comparative experiments, in which subjects are randomized to one of two treatments, are performed often. There is no shortage of papers testing whether a treatment effect exists and providing confidence intervals for the magnitude of this effect. While it is well understood that the object and scope of inference for an experiment will depend on what assumptions are made, these entities are not always clearly presented. We have proposed one possible method, which is based on the ideas of Jerzy Neyman, that can be used for constructing confidence intervals in a comparative experiment. The resulting intervals, referred to as Neyman-type confidence intervals, can be applied in a wide range of cases. Special care is taken to note which assumptions are made and what object and scope of inference are being investigated. We have presented a notation that highlights which parts of a problem are being treated as random. This helps ensure the focus on the appropriate scope of inference. The Neyman-type confidence intervals are compared to possible alternatives in two different inference settings: one in which inference is made about the units in the sample and one in which inference is made about units in a fixed population. A third inference setting, one in which inference is made about a process distribution, is also discussed. It is stressed that certain assumptions underlying this third type of inference are unverifiable. When these assumptions are not met, the resulting confidence intervals may cover their intended target well below the desired rate. Through simulation, we demonstrate that the Neyman-type intervals have good coverage properties when inference is being made about a sample or a population. In some cases the alternative intervals are much wider than necessary on average. Therefore, we recommend that researchers consider using our Neyman-type confidence intervals when carrying out inference about a sample or a population as it may provide them with more

  7. Denitrification in San Francisco Bay intertidal sediments

    USGS Publications Warehouse

    Oremland, Ronald S.; Umberger, Cindy; Culbertson, Charles W.; Smith, Richard L.

    1984-01-01

    The acetylene block technique was employed to study denitrification in intertidal estuarine sediments. Addition of nitrate to sediment slurries stimulated denitrification. During the dry season, sediment-slurry denitrification rates displayed Michaelis-Menten kinetics, and ambient NO3− + NO2− concentrations (≤26 μM) were below the apparent Km (50 μM) for nitrate. During the rainy season, when ambient NO3− + NO2− concentrations were higher (37 to 89 μM), an accurate estimate of the Km could not be obtained. Endogenous denitrification activity was confined to the upper 3 cm of the sediment column. However, the addition of nitrate to deeper sediments demonstrated immediate N2O production, and potential activity existed at all depths sampled (the deepest was 15 cm). Loss of N2O in the presence of C2H2 was sometimes observed during these short-term sediment incubations. Experiments with sediment slurries and washed cell suspensions of a marine pseudomonad confirmed that this N2O loss was caused by incomplete blockage of N2O reductase by C2H2 at low nitrate concentrations. Areal estimates of denitrification (in the absence of added nitrate) ranged from 0.8 to 1.2 μmol of N2 m−2 h−1 (for undisturbed sediments) to 17 to 280 μmol of N2 m−2 h−1 (for shaken sediment slurries).

  8. Denitrification in San Francisco Bay intertidal sediments

    SciTech Connect

    Oremland, R.S.; Umberger, C.; Culbertson, C.W.; Smith, R.L.

    1984-05-01

    The acetylene block technique was employed to study denitrification in intertidal estuarine sediments. Addition of nitrate to sediment slurries stimulated denitrification. During the dry season, sediment-slurry denitrification rates displayed Michaelis-Menten kinetics, and ambient NO/sub 3//sup -/ + NO/sub 2//sup -/ concentrations (less than or equal to26 ..mu..M) were below the apparent K/sub m/ (50 ..mu..M) for nitrate. During the rainy season, when ambient NO/sub 3//sup -/ + NO/sub 2//sup -/ concentrations were higher (37 to 89 ..mu..M), an accurate estimate of the K/sub m/ could not be obtained. Endogenous denitrification activity was confined to the upper 3 cm of the sediment column. However, the addition of nitrate to deeper sediments demonstrated immediate N/sub 2/O production, and potential activity existed at all depths sampled (the deepest was 15 cm). Loss of N/sub 2/O in the presence of C/sub 2/H/sub 2/ was sometimes observed during these short-term sediment incubations. Experiments with sediment slurries and washed cells suspensions of a marine pseudomonad confirmed that this N/sub 2/O loss was caused by incomplete blockage of N/sub 2/O reductase by C/sub 2/H/sub 2/ at low nitrate concentrations. Areal estimates of denitrification (in the absence of added nitrate) ranged from 0.8 to 1.2 ..mu..mol of N/sub 2/ m/sup -2/ h/sup -1/ (for undisturbed sediments) to 17 to 280 ..mu..mol of N/sub 2/ m/sup -2/ h/sup -1/ (for shaken sediment slurries). 32 references

  9. Ambient and potential denitrification rates in marsh soils of Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2012-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park on Mount Desert Island, Maine, because of the potential problems of degradation of water quality and eutrophication in estuaries. Degradation of water quality has been observed at Bass Harbor Marsh estuary in the park but only minimally in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential source of nutrients. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in-place denitrification rates in marsh soils in Northeast Creek and in Bass Harbor Marsh watersheds during summer 2008 and summer 2009. Denitrification was measured under ambient conditions as well as after additions of inorganic nitrogen and glucose. In-place denitrification rates under ambient conditions were similar to those reported for other coastal wetlands, although they were generally lower than those reported for salt marshes having high ambient concentrations of nitrate (NO3). Denitrification rates generally increased by at least an order of magnitude following NO3 additions, with or without glucose (as the carbohydrate) additions, compared with the ambient treatments that received no nutrient additions. The treatment that added both glucose and NO3 resulted in a variety of denitrification responses when compared with the addition of NO3 alone. In most cases, the addition of glucose to a given rate of NO3 addition resulted in higher rates of denitrification. These variable responses indicate that the amount of

  10. Evaluation of the denitrification rate of terraced paddy fields

    NASA Astrophysics Data System (ADS)

    Onishi, Takeo; Nakamura, Kimihito; Horino, Haruhiko; Adachi, Toru; Mitsuno, Toru

    2012-05-01

    SummaryRice is one of the most important staple foods in the world. Lowland paddy fields are well known for functioning as denitrification areas, but few studies have been conducted of paddy fields situated on hill slopes (terraced paddy fields). These terraced paddy fields have a characteristic artificial stepped shape, and this unique shape and periodic ponding from rice production may configure unique hydrological properties that might be different from lowland paddy fields. The shape and hydrological properties may also affect transport of nutrients such as nitrogen. This study is particularly focused on the denitrification rate in terraced paddy fields. To understand the hydrological properties of terraced paddy fields, a detailed water budget including the subsurface flow components was calculated. Combining the water budget components and chemical measurements of surface and subsurface water, a nitrogen budget was calculated. The results showed that about 10% of the total nitrogen input, mainly from fertilizers, was lost, suggesting the occurrence of denitrification in the area. The average denitrification rate of the study site was estimated at about 0.53-0.67 g N m-2 year-1. Spatial variations in the measured groundwater nitrate concentration suggest that denitrification is important in both the plough layer and the sloping area. The denitrification rate in the sloping area was estimated at 0.67-0.78 g N m-2 year-1, which is slightly higher than the estimates of denitrification rate in paddy lots, i.e., 0.56-0.61 g N m-2 year-1. The result indicates the importance of sloping areas for denitrification in terraced paddy fields.

  11. Insights into Denitrification in Methylotenera mobilis from Denitrification Pathway and Methanol Metabolism Mutants

    PubMed Central

    Mustakhimov, Ildar; Kalyuzhnaya, Marina G.; Lidstrom, Mary E.

    2013-01-01

    We investigated phenotypes of mutants of Methylotenera mobilis JLW8 with lesions in genes predicted to encode functions of the denitrification pathway, as well as mutants with mutations in methanol dehydrogenase-like structural genes xoxF1 and xoxF2, in order to obtain insights into denitrification and methanol metabolism by this bacterium. By monitoring the accumulation of nitrous oxide, we demonstrate that a periplasmic nitrate reductase, NAD(P)-linked and copper-containing nitrite reductases, and a nitric oxide reductase are involved in the denitrification pathway and that the pathway must be operational in aerobic conditions. However, only the assimilatory branch of the denitrification pathway was essential for growth on methanol in nitrate-supplemented medium. Mutants with mutations in each of the two xoxF genes maintained their ability to grow on methanol, but not the double XoxF mutant, suggesting that XoxF proteins act as methanol dehydrogenase enzymes in M. mobilis JLW8. Reduced levels of nitrous oxide accumulated by the XoxF mutants compared to the wild type suggest that these enzymes must be capable of donating electrons for denitrification. PMID:23475964

  12. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    NASA Astrophysics Data System (ADS)

    Green, Christopher T.; Jurgens, Bryant C.; Zhang, Yong; Starn, J. Jeffrey; Singleton, Michael J.; Esser, Bradley K.

    2016-12-01

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O2 reduction and denitrification (NO3- reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H (tritiogenic He), 14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3- and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that O2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O2 and NO3- reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Estimated historical NO3- trends were similar to historical measurements. Results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.

  13. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    USGS Publications Warehouse

    Green, Christopher T.; Jurgens, Bryant; Zhang, Yong; Starn, Jeffrey; Singleton, Michael J.; Esser, Bradley K.

    2016-01-01

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O2 reduction and denitrification (NO3− reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H (tritiogenic He),14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3− and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that O2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O2 and NO3− reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Estimated historical NO3− trends were similar to historical measurements. Results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.

  14. Modeling denitrification in a tile-drained, corn and soybean agroecosystem of Illinois, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification is known as an important pathway for nitrate loss in agroecosystems. It is important to estimate denitrification fluxes to close field and watershed N mass balances, determine greenhouse gas emissions (N2O), and help constrain estimates of other major N fluxes (e.g., nitrate leaching...

  15. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer

    USGS Publications Warehouse

    Green, C.T.; Böhlke, J.K.; Bekins, B.A.; Phillips, S.P.

    2010-01-01

    Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field-scale (apparent) estimated reaction rates and isotopic fractionations and local-scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O 2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample-based estimates of "apparent" parameters with "true" (intrinsic) values. For this aquifer, non-Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2 threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport. ?? 2010 by the American Geophysical Union.

  16. Effective denitrification at the groundwater surface-water interface: exposure rather than residence time

    NASA Astrophysics Data System (ADS)

    Peiffer, Stefan; Frei, Sven

    2014-05-01

    Effective processing of material in aquatic systems, e. g. removal of nitrate upon denitrification, requires sufficient reaction time. This statement sounds trivial albeit its implication for biogeochemistry seems to be not fully recognized. The time teff required for effective processing of nitrate is controlled by the underlying biogeochemical rate law. In the simplest case of a 1st order reaction, teff is often calculated as the time when 63% of the initial concentration is consumed setting teff as 1/kreaction. It may, however, be more appropriate to derive teff,90%or teff,99% from the respective rate law. Hence a minimum time t > teff is required that exposes a specific biogeochemical process to conditions favourable for this process, which is anoxia in case of denitrification. This exposure time τexp is not necessarily identical to the residence time τ of water in the particular system or flow path. Rather, the exposure time can be much shorter and may even fluctuate with time. As a consequence, Damköhler numbers (Da = τexp/teff) for denitrification < 1 may be the consequence even though the age of water may be comparatively high. We therefore argue that the key for understanding denitrification efficiency at the groundwater surface-water interface (or in groundwater systems in general) is the quantification of the exposure time. This contribution therefore aims i) to estimate exposure times required for effective denitrification based on an analysis of rate constants for denitrification, ii) to relate these time scales to typical residence time distributions found at the groundwater surface-water interface and iii) to discuss implications for denitrification efficiencies. References: Oldham, C; Farrow, DE; Peiffer, S (2013): A generalized Damköhler number for classifying material processing in hydrological systems, Hydrology and Earth System Sciences, 17, 1133-1148 Frei, S; Knorr, KH; Peiffer, S; Fleckenstein, J (2012): Surface micro-topography causes

  17. Denitrification in coastal Louisiana: A spatial assessment and research needs

    NASA Astrophysics Data System (ADS)

    Rivera-Monroy, Victor H.; Lenaker, Peter; Twilley, Robert R.; Delaune, Ronald D.; Lindau, Charles W.; Nuttle, William; Habib, Emad; Fulweiler, Robinson W.; Castañeda-Moya, Edward

    2010-04-01

    By transforming fixed nitrogen (N) into nitrogen gas, the biochemical processes that support denitrification provide a function critical to maintaining the integrity of ecosystems subjected to increased loading of N from anthropogenic sources. The Louisiana coastal region receives high nitrate (NO 3-) concentrations (> 100 µM) from the Mississippi-Ohio-Missouri River Basin and is also an area undergoing high rates of wetland loss. Ongoing and anticipated changes in the Louisiana coastal region promise to alter biogeochemical cycles including the net rate of denitrification by ecosystems. Projecting what these changes could mean for coastal water quality and natural resources requires an understanding of the magnitude and patterns of variation in denitrification rates and their connection to estuarine water quality at large temporal and spatial scales under current conditions. We compile and review denitrification rates reported in 32 studies conducted in a variety of habitats across coastal Louisiana during the period 1981- 2008. The acetylene inhibition and 15N flux were the preferred techniques (95%); most of the studies used sediment slurries rather than intact sediment cores. There are no estimates of denitrification rates using the N 2/Ar ratio and isotope pairing techniques, which address some of the problems and limitations of the acetylene inhibition and 15N flux techniques. These studies have shown that sediments from estuaries, lakes, marshes, forested wetlands, and the coastal shelf region are capable of high potential denitrification rates when exposed to high NO 3- concentrations (> 100 µM). Maximum potential denitrification rates in experimental and natural settings can reach values > 2500 µmol m 2 h - 1 . The lack of contemporary studies to understand the interactions among critical nitrogen transformations (e.g., organic matter mineralization, immobilization, aquatic plant assimilation, nitrification, nitrogen fixation, dissimilatory nitrate

  18. Hydrogen Station Cost Estimates: Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates

    SciTech Connect

    Melaina, M.; Penev, M.

    2013-09-01

    This report compares hydrogen station cost estimates conveyed by expert stakeholders through the Hydrogen Station Cost Calculation (HSCC) to a select number of other cost estimates. These other cost estimates include projections based upon cost models and costs associated with recently funded stations.

  19. Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer

    USGS Publications Warehouse

    Heffernan, J.B.; Albertin, A.R.; Fork, M.L.; Katz, B.G.; Cohen, M.J.

    2011-01-01

    Aquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA) and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar) to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived) N2 is highly variable in space and inversely correlated with dissolved oxygen (O2). Negative relationship between O2 and ??15NNO 3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15N: 18O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32% of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source ??15NNO 3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3-) in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs. ?? Author(s) 2011.

  20. Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer

    NASA Astrophysics Data System (ADS)

    Heffernan, J. B.; Albertin, A. R.; Fork, M. L.; Katz, B. G.; Cohen, M. J.

    2011-10-01

    Aquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA) and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar) to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived) N2 is highly variable in space and inversely correlated with dissolved oxygen (O2). Negative relationship between O2 and δ15NNO3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15N : 18O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32% of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source δ15NNO3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3-) in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs.

  1. Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer

    NASA Astrophysics Data System (ADS)

    Heffernan, J. B.; Albertin, A. R.; Fork, M. L.; Katz, B. G.; Cohen, M. J.

    2012-05-01

    Aquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA) and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar) to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived) N2 is highly variable in space and inversely correlated with dissolved oxygen (O2). Negative relationships between O2 and δ15NNO3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15N:18O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32 % of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source δ15NNO3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3-) in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs.

  2. Global change, nitrification, and denitrification: A review

    NASA Astrophysics Data System (ADS)

    Barnard, Romain; Leadley, Paul W.; Hungate, Bruce A.

    2005-03-01

    We reviewed responses of nitrification, denitrification, and soil N2O efflux to elevated CO2, N availability, and temperature, based on published experimental results. We used meta-analysis to estimate the magnitude of response of soil N2O emissions, nitrifying enzyme activity (NEA), denitrifying enzyme activity (DEA), and net and gross nitrification across experiments. We found no significant overall effect of elevated CO2 on N2O fluxes. DEA and NEA significantly decreased at elevated CO2; however, gross nitrification was not modified by elevated CO2, and net nitrification increased. The negative overall response of DEA to elevated CO2 was associated with decreased soil [NO3-], suggesting that reduced availability of electron acceptors may dominate the responses of denitrification to elevated CO2. N addition significantly increased field and laboratory N2O emissions, together with gross and net nitrification, but the effect of N addition on field N2O efflux was not correlated to the amount of N added. The effects of elevated temperature on DEA, NEA, and net nitrification were not significant: The small number of studies available stress the need for more warming experiments in the field. While N addition had large effects on measurements of nitrification and denitrification, the effects of elevated CO2 were less pronounced and more variable, suggesting that increased N deposition is likely to affect belowground N cycling with a magnitude of change that is much larger than that caused by elevated CO2.

  3. Hydrologic connectivity increases denitrification in the hyporheic zone and restored floodplains of an agricultural stream

    NASA Astrophysics Data System (ADS)

    Roley, Sarah S.; Tank, Jennifer L.; Williams, Maureen A.

    2012-09-01

    Stream ecotones, specifically the lateral floodplain and subsurface hyporheic zone, can be important sites for nitrogen (N) removal via denitrification, but their role in streams with constructed floodplains has not been examined. We studied denitrification in the hyporheic zone and floodplains of an agriculturally influenced headwater stream in Indiana, USA, that had floodplains added as part of a "two-stage ditch" restoration project. To examine the potential for N removal in the hyporheic zone, we seasonally measured denitrification rates and nitrate concentrations by depth into the stream sediments. We found that nitrate concentration and denitrification rates declined with depth into the hyporheic zone, but denitrification was still measureable to a depth of at least 20 cm. We also measured denitrification rates on the restored floodplains over the course of a flood (pre, during, and post-inundation), and also compared denitrification rates between vegetated and non-vegetated areas of the floodplain. We found that floodplain denitrification rates increased over the course of a floodplain inundation event, and that the presence of surface water increased denitrification rates when vegetation was present. Stream ecotones in midwestern, agriculturally influenced streams have substantial potential for N removal via denitrification, particularly when they are hydrologically connected with high-nitrate surface water.

  4. Denitrification, leaching, and river nitrogen export in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Nevison, Cynthia; Hess, Peter; Riddick, Stuart; Ward, Dan

    2016-03-01

    River nitrogen export is simulated within the Community Earth System Model (CESM) by coupling nitrogen leaching and runoff fluxes from the Community Land Model (CLM) to the River Transport Model (RTM). The coupled CLM-RTM prognostically simulates the downstream impact of human N cycle perturbation on coastal areas. It also provides a framework for estimating denitrification fluxes of N2 and associated trace gases like N2O in soils and river sediments. An important limitation of the current model is that it only simulates dissolved inorganic nitrogen (DIN) river export, due to the lack of dissolved organic nitrogen (DON) and particulate nitrogen (PN) leaching fluxes in CLM. In addition, the partitioning of soil N loss in CLM between the primary loss pathways of denitrification and N leaching/runoff appears heavily skewed toward denitrification compared to other literature estimates, especially in nonagricultural regions, and also varies considerably among the four model configurations presented here. River N export is generally well predicted in the model configurations that include midlatitude crops, but tends to be underpredicted in rivers that are less perturbed by human agriculture. This is especially true in the tropics, where CLM likely underestimates leaching and runoff of all forms of nitrogen. River export of DIN is overpredicted in some relatively unperturbed Arctic rivers, which may result from excessive N inputs to those regions in CLM. Better representation of N loss in CLM can improve confidence in model results with respect to the core model objective of simulating nitrogen limitation of the carbon cycle.

  5. A Comparative Study of Distribution System Parameter Estimation Methods

    SciTech Connect

    Sun, Yannan; Williams, Tess L.; Gourisetti, Sri Nikhil Gup

    2016-07-17

    In this paper, we compare two parameter estimation methods for distribution systems: residual sensitivity analysis and state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems. Therefore, estimating parameters is much more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time), so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of both methods are discussed. The results of this paper show that state-vector augmentation is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.

  6. Comparing estimates of genetic variance across different relationship models.

    PubMed

    Legarra, Andres

    2016-02-01

    Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities".

  7. Comparing interval estimates for small sample ordinal CFA models

    PubMed Central

    Natesan, Prathiba

    2015-01-01

    Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading

  8. Simultaneous measurement at multiple depths of in situ rates of denitrification in the bed of a groundwater-fed river

    NASA Astrophysics Data System (ADS)

    Lansdown, Katrina; Trimmer, Mark; Heppell, Kate

    2010-05-01

    Typically characterised by steep chemical gradients and variable redox conditions, the hyporheic zone is considered a 'hotpot' or site of enhanced biogeochemical activity in the aquatic environment. As such the importance of the hyporheic zone for the attenuation of nutrients such as nitrate in a fluvial network has long been recognised. Controls on nitrogen transformations, however, especially at depths greater than 10cm below the sediment-water interface, remain comparatively less understood. Most work aimed at quantifying denitrification in the hyporheic zone has involved laboratory incubation of recovered sediments which is likely to affect the estimate of the true in situ rate. Results of such studies are usually cited as 'potential' rates of denitrification and have undoubtedly improved the understanding of nitrogen cycling in the aquatic environment. There is, however, a need for in situ measurement to improve our knowledge of nitrogen cycling in the river bed. Here, rates of denitrification in the hyporheic zone have been measured at multiple depths, simultaneously using 'push-pull' methodology (e.g. Snodgrass and Kitanidis 1998). The 'push-pull' technique involves injection of a solution containing reactant(s) (e.g. nitrate) and a conservative tracer (e.g. chloride) into the sediment and extraction of pore water samples over time. Recovered samples are screened for the removal of reactant(s) and/or the accumulation of products(s). Temporal changes in the conservative tracer are used to correct the concentration of the reactant(s) and product(s) for dispersion and advection. The disadvantage of the 'traditional' 'push-pull' methodology is that rates of nitrate removal are measured rather than rates of denitrification. In this research, comparison of measured and 'corrected' nitrate concentrations allowed the rate of nitrate removal (or production) to be quantified. In order to determine in situ rates of denitrification we used 15N-enriched nitrate as the

  9. Reaction chain modeling of denitrification reactions during a push-pull test.

    PubMed

    Boisson, A; de Anna, P; Bour, O; Le Borgne, T; Labasque, T; Aquilina, L

    2013-05-01

    Field quantitative estimation of reaction kinetics is required to enhance our understanding of biogeochemical reactions in aquifers. We extended the analytical solution developed by Haggerty et al. (1998) to model an entire 1st order reaction chain and estimate the kinetic parameters for each reaction step of the denitrification process. We then assessed the ability of this reaction chain to model biogeochemical reactions by comparing it with experimental results from a push-pull test in a fractured crystalline aquifer (Ploemeur, French Brittany). Nitrates were used as the reactive tracer, since denitrification involves the sequential reduction of nitrates to nitrogen gas through a chain reaction (NO3(-)→NO2(-)→NO→N2O→N2) under anaerobic conditions. The kinetics of nitrate consumption and by-product formation (NO2(-), N2O) during autotrophic denitrification were quantified by using a reactive tracer (NO3(-)) and a non-reactive tracer (Br(-)). The formation of reaction by-products (NO2(-), N2O, N2) has not been previously considered using a reaction chain approach. Comparison of Br(-) and NO3(-) breakthrough curves showed that 10% of the injected NO3(-) molar mass was transformed during the 12 h experiment (2% into NO2(-), 1% into N2O and the rest into N2 and NO). Similar results, but with slower kinetics, were obtained from laboratory experiments in reactors. The good agreement between the model and the field data shows that the complete denitrification process can be efficiently modeled as a sequence of first order reactions. The 1st order kinetics coefficients obtained through modeling were as follows: k1=0.023 h(-1), k2=0.59 h(-1), k3=16 h(-1), and k4=5.5 h(-1). A next step will be to assess the variability of field reactivity using the methodology developed for modeling push-pull tracer tests.

  10. Subsoil Denitrification experiment at KBS MSU

    NASA Astrophysics Data System (ADS)

    Shcherbak, I.; Robertson, G. P.

    2010-12-01

    Denitrification plays two important roles in the global nitrogen cycle: returning active nitrogen to inert dinitrogen form and producing potent greenhouse gas nitrous oxide as a byproduct. Effects of denitrification in the deeper layers of soil on total soil denitrification are poorly understood. The experiment will be conducted at KBS to gain a better understanding dependency of rate of subsoil denitrification and molar ratio of denitrified N2O to N2 on depth in the profile and management practice applied. Experimental setup consists of 4 soil profiles (2 tilled and 2 no-till) enclosed in stainless steel boxes with open tops providing access to the soil profile for nondestructive measurements of soil temperature, soil moisture, soil atmosphere, and soil water (6 levels of measurements). Water discharged at the bottom of the profile (~2 m) is sampled as well as gas flux from the surface of the soil to the atmosphere. Inert tracer (hexafluoride) is introduced in the profile to estimate the diffusion rates. Profiles are planted to corn fertilized at 11.1 g/m2 with 50% 15N-Ammonium Nitrate to improve accuracy of measurement and calculate a complete nitrogen balance. Preliminary results show high concentrations of nitrous oxide in the subsoil layers (up to 6 ppm) which suggest high potential contribution of subsoil denitrification to total soil flux of nitrous oxide. Simplified setup consists of gas measurements at two depths in the soil profile (7 and 70 cm) and static chamber at the top. It will be installed in duplicates at conventional tillage, no-till, reduced input, organic, and early successional treatments of Long-Term Ecological Research Site at KBS to expand the scope of findings made with more complex system. Further validation and scaling of the results is possible in terms of integrated semi-empirical models. Predictive equations developed in the study will be used together with other parts of SALUS (System Approach to Land Use Sustainability) model. This

  11. Aquatic concentrations of chemical analytes compared to ecotoxicity estimates

    EPA Science Inventory

    We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concent...

  12. Inhibition of existing denitrification enzyme activity by chloramphenicol

    USGS Publications Warehouse

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  13. Herbicide and antibiotic removal by woodchip denitrification filters: Sorption processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Batch sorption and desorption experiments to evaluate the retention of the agrichemicals onto wood chips from an in situ wood chip denitrification wall were conducted for atrazine, enrofloxacin, monensin and sulfamethazine. Estimated Freundlich distribution coefficients (Kf) showed that the order of...

  14. Herbicide and antibiotic removal by woodchip denitrification filters: Sorption processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Batch sorption and desorption experiments to evaluate the retention of the agrichemicals onto wood chips from an in situ wood chip denitrification wall were conducted for atrazine, enrofloxacin, monensin, and sulfamethazine. Estimated Freundlich distribution coefficients (Kf) showed that the order o...

  15. Spatial Distribution of Hydrologic Ecosystem Service Estimates: Comparing Two Models

    NASA Astrophysics Data System (ADS)

    Dennedy-Frank, P. J.; Ghile, Y.; Gorelick, S.; Logsdon, R. A.; Chaubey, I.; Ziv, G.

    2014-12-01

    We compare estimates of the spatial distribution of water quantity provided (annual water yield) from two ecohydrologic models: the widely-used Soil and Water Assessment Tool (SWAT) and the much simpler water models from the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) toolbox. These two models differ significantly in terms of complexity, timescale of operation, effort, and data required for calibration, and so are often used in different management contexts. We compare two study sites in the US: the Wildcat Creek Watershed (2083 km2) in Indiana, a largely agricultural watershed in a cold aseasonal climate, and the Upper Upatoi Creek Watershed (876 km2) in Georgia, a mostly forested watershed in a temperate aseasonal climate. We evaluate (1) quantitative estimates of water yield to explore how well each model represents this process, and (2) ranked estimates of water yield to indicate how useful the models are for management purposes where other social and financial factors may play significant roles. The SWAT and InVEST models provide very similar estimates of the water yield of individual subbasins in the Wildcat Creek Watershed (Pearson r = 0.92, slope = 0.89), and a similar ranking of the relative water yield of those subbasins (Spearman r = 0.86). However, the two models provide relatively different estimates of the water yield of individual subbasins in the Upper Upatoi Watershed (Pearson r = 0.25, slope = 0.14), and very different ranking of the relative water yield of those subbasins (Spearman r = -0.10). The Upper Upatoi watershed has a significant baseflow contribution due to its sandy, well-drained soils. InVEST's simple seasonality terms, which assume no change in storage over the time of the model run, may not accurately estimate water yield processes when baseflow provides such a strong contribution. Our results suggest that InVEST users take care in situations where storage changes are significant.

  16. Denitrification in cypress swamp within the Atchafalaya River Basin, Louisiana.

    PubMed

    Lindau, C W; Delaune, R D; Scaroni, A E; Nyman, J A

    2008-01-01

    Nitrogen has been implicated as a major cause of hypoxia in shallow water along the Louisiana/Texas, USA coasts. Excess nitrogen (mainly nitrate) from Mississippi and Atchafalaya River drainage basins may drive the onset and duration of hypoxia in the northern Gulf of Mexico. Restoring and enhancing denitrification have been proposed to reduce and control coastal hypoxia and improve water quality in the Mississippi River Basin. Sediments were collected from six baldcypress restoration sites within the Atchafalaya River Basin, Louisiana, USA. The acetylene blockage technique was used to measure background and potential sediment denitrification rates. Denitrification fluxes were measured before nitrate addition (background rates) and after nitrate addition of 100mgNl(-1) (potential denitrification) at three seasonal temperatures. Background denitrification was low across all cypress swamp sites ranging from 0.9 to 8.8, 0.6 to 28.5 and 8.8 to 47.5g N evolved ha(-1)d(-1) at water/sediment column temperatures of 8, 22 and 30 degrees C, respectively. After nitrate addition, temperature had a significant effect on sediment denitrification potential. Maximum rates measured at 8, 22 and 30 degrees C were approximately 250-260, 550 and 970gNha(-1)d(-1), respectively. Most of the added nitrate in water columns, incubated at 8 degrees C, was removed after 65d compared to 32d and 17d at 22 and 30 degrees C, respectively. These results indicate cypress swamps have the potential to assimilate and process elevated levels of floodwater nitrate with denitrification being a major removal mechanism.

  17. Methods for measuring denitrification: Diverse approaches to a difficult problem

    USGS Publications Warehouse

    Groffman, Peter M; Altabet, Mary A.; Böhlke, J.K.; Butterbach-Bahl, Klaus; David, Mary B.; Firestone, Mary K.; Giblin, Anne E.; Kana, Todd M.; Nielsen , Lars Peter; Voytek, Mary A.

    2006-01-01

    Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO3−) and nitrite (NO2−), to the gases nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2), is important to primary production, water quality, and the chemistry and physics of the atmosphere at ecosystem, landscape, regional, and global scales. Unfortunately, this process is very difficult to measure, and existing methods are problematic for different reasons in different places at different times. In this paper, we review the major approaches that have been taken to measure denitrification in terrestrial and aquatic environments and discuss the strengths, weaknesses, and future prospects for the different methods. Methodological approaches covered include (1) acetylene-based methods, (2) 15N tracers, (3) direct N2 quantification, (4) N2:Ar ratio quantification, (5) mass balance approaches, (6) stoichiometric approaches, (7) methods based on stable isotopes, (8) in situ gradients with atmospheric environmental tracers, and (9) molecular approaches. Our review makes it clear that the prospects for improved quantification of denitrification vary greatly in different environments and at different scales. While current methodology allows for the production of accurate estimates of denitrification at scales relevant to water and air quality and ecosystem fertility questions in some systems (e.g., aquatic sediments, well-defined aquifers), methodology for other systems, especially upland terrestrial areas, still needs development. Comparison of mass balance and stoichiometric approaches that constrain estimates of denitrification at large scales with point measurements (made using multiple methods), in multiple systems, is likely to propel more improvement in denitrification methods over the next few years.

  18. Temperature dependence of denitrification in phototrophic river biofilms.

    PubMed

    Boulêtreau, S; Salvo, E; Lyautey, E; Mastrorillo, S; Garabetian, F

    2012-02-01

    Denitrification is an ecosystem service of nitrogen load regulation along the terrestrial-freshwater-marine continuum. The present study documents the short-term temperature sensitivity of denitrification enzyme activity in phototrophic river biofilms as a typical microbial assemblage of this continuum. Denitrification measurements were performed using the acetylene inhibition method at four incubation temperatures: 1.1, 12.1, 21.2 and 30.9°C. For this range of temperature, N(2)O production could be fitted to an exponential function of incubation temperature, yielding mean (±standard error) activation energy of 1.42 (±0.24) eV and Q(10) of 7.0 (±1.4). This first quantification of denitrification enzyme activity temperature dependence in phototrophic river biofilms compares with previous studies performed in soils and sediments. This demonstrates the high temperature dependence of denitrification as compared to other community-level metabolisms such as respiration or photosynthesis. This result suggests that global warming can unbalance natural community metabolisms in phototrophic river biofilms and affect their biogeochemical budget.

  19. Effect of organic loading on nitrification and denitrification in a marine sediment microcosm

    USGS Publications Warehouse

    Caffrey, J.M.; Sloth, N.P.; Kaspar, H.F.; Blackburn, T.H.

    1993-01-01

    The effects of organic additions on nitrification and denitrification were examined in sediment microcosms. The organic material, heat killed yeast, had a C/N ratio of 7.5 and was added to sieved, homogenized sediments. Four treatments were compared: no addition (control, 30 g dry weight (dw) m-2 mixed throughout the 10 cm sediment column (30 M), 100 g dw m-2 mixed throughout sediments (100M), and 100 g dw m-2 mixed into top 1 cm (100S). After the microcosms had been established for 7-11 days, depth of O2 penetration, sediment-water fluxes and nitrification rates were measured. Nitrification rates were measured using three different techniques: N-serve and acetylene inhibition in intact cores, and nitrification potentials in slurries. Increased organic additions decreased O2 penetration from 2.7 to 0.2 mm while increasing both O2 consumption, from 30 to 70 mmol O2 m-2 d-1, and NO3- flux into sediments. Nitrification rates in intact cores were similar for the two methods. Highest rates occurred in the 30 M treatment, while the lowest rate was measured in the 100S treatment. Total denitrification rates (estimated from nitrification and nitrate fluxes) increased with increased organic addition, because of the high concentrations of NO3- (40 ??M) in the overlying water. The ratio of nitrification: denitrification was used as an indication of the importance of nitrification as the NO3- supply for denitrification. This ratio decreased from 1.55 to 0.05 with increased organic addition.

  20. Comparing Estimators of Microbiological Attributes by Random Subsamples

    NASA Astrophysics Data System (ADS)

    Li, M.; Adriaens, P.

    2005-12-01

    validation approach called bootstrapping, which randomly take a designed number of data points out of the data set, and examine the reproduction of their estimate by the rest of the data. The repeated random selection will be used to compare the M-scale model to the ordinary kriging, visualized quantitatively by quantile-quantile (Q-Q) plots and scatter plots. Estimates and uncertainties evaluated by the M-scale model will be compared using the random subsets, to examine the unbiasedness of the estimate as well as the appropriateness of the uncertainty evaluated. An additional comparison, using the dataset collected in Anacostia River, Washington D.C., can further be used to inform further applicability under sparsely sampled site. For a conclusive test, artificial datasets based on different scenario will then be generated, in order to examine the general performance and restriction of the models under different data distribution and spatial structures.

  1. beta- and gamma-Comparative dose estimates on Enewetak Atoll.

    PubMed

    Crase, K W; Gudiksen, P H; Robison, W L

    1982-05-01

    Enewetak Atoll is one of the Pacific atolls used for atmospheric testing of U.S. nuclear weapons. Beta dose and gamma-ray exposure measurements were made on two islands of the Enewetak Atoll during July-August 1976 to determine the beta and low energy gamma-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a beta-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to beta- or low energy gamma-contribution. The contribution at any particular site, however, is somewhat dependent on ground cover, since a minimal amount of vegetation will reduce it significantly from that over bare soil, but thick stands of vegetation have little effect on any further reductions. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey (En73). Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the beta's or low energy gamma's, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.

  2. Significance of dredging on sediment denitrification in Meiliang Bay, China: A year long simulation study

    USGS Publications Warehouse

    Zhong, Jicheng; Fan, Chengxin; Zhang, Lu; Edward, Hall; Ding, Shiming; Li, Bao; Liu, Guofeng

    2010-01-01

    An experiment for studying the effects of sediment dredging on denitrification in sediments was carried out through a one-year incubation of undredged (control) and dredged cores in laboratory. Dredging the upper 30 cm of sediment can significantly affect physico-chemical characteristics of sediments. Less degradation of organic matter in the dredged sediments was found during the experiment. Denitrification rates in the sediments were estimated by the acetylene blockage technique, and ranged from 21.6 to 102.7 nmol N2/(g dry weight (dw) x hr) for the undredged sediment and from 6.9 to 26.9 nmol N2/(g dw x hr) for dredged sediments. The denitrification rates in the undredged sediments were markedly higher (p < 0.05) than those in the dredged sediments throughout the incubation, with the exception of February 2006. The importance of various environmental factors on denitrification was assessed, which indicated that denitrification was regulated by temperature. Nitrate was probably the key factor limiting denitrification in both undredged and dredged sediments. Organic carbon played some role in determining the denitrification rates in the dredged sediments, but not in the undredged sediments. Sediment dredging influenced the mineralization of organic matter and denitrification in the sediment; and therefore changed the pattern of inherent cycling of nitrogen.

  3. Denitrification in the Upper Mississippi River: Rates, controls, and contribution to nitrate flux

    USGS Publications Warehouse

    Richardson, W.B.; Strauss, E.A.; Bartsch, L.A.; Monroe, E.M.; Cavanaugh, J.C.; Vingum, L.; Soballe, D.M.

    2004-01-01

    We evaluated patterns of denitrification and factors effecting denitrification in the upper Mississippi River. Measurements were taken over 2 years, during which river discharge ranged from record flooding to base flow conditions. Over the period of study, average denitrification enzyme activity was highest in backwater lakes and lowest in the main channel. Throughout the study reach, highest denitrification enzyme activity occurred during fall and lowest occurred in winter. Rates during spring floods (2001) were only slightly higher than during the preceding winter. Mean unamended denitrification rates ranged from 0.02 (fall 2001 in backwaters) to 0.40 ??g N??cm -2??h-1 (spring 2001 in backwaters). Laboratory experiments showed that denitrification rates increased significantly with addition of NO3- regardless of sediment C content, while rates increased little with addition of labile C (glucose). Denitrification in this reach of the upper Mississippi River appears to be NO3- limited throughout the growing season and the delivery of NO 3- is strongly controlled by river discharge and hydrologie connectivity across the floodplain. We estimate that denitrification removes 6939 t N??year-1 or 6.9% of the total annual NO 3- input to the reach. Hydrologic connectivity and resultant NO3- delivery to high-C sediments is a critical determinant of reach-scale processing of N in this floodplain system.

  4. Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics.

    PubMed

    Zheng, Jianqiu; Doskey, Paul V

    2015-02-17

    An enzyme-explicit denitrification model with representations for pre- and de novo synthesized enzymes was developed to improve predictions of nitrous oxide (N2O) accumulations in soil and emissions from the surface. The metabolic model of denitrification is based on dual-substrate utilization and Monod growth kinetics. Enzyme synthesis/activation was incorporated into each sequential reduction step of denitrification to regulate dynamics of the denitrifier population and the active enzyme pool, which controlled the rate function. Parameterizations were developed from observations of the dynamics of N2O production and reduction in soil incubation experiments. The model successfully reproduced the dynamics of N2O and N2 accumulation in the incubations and revealed an important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Pre-synthesized denitrification enzymes contributed 20, 13, 43, and 62% of N2O that accumulated in 48 h incubations of soil collected from depths of 0-5, 5-10, 10-15, and 15-25 cm, respectively. An enzyme activity function (E) was defined to estimate the relative concentration of active enzymes and variation in response to environmental conditions. The value of E allows for activities of pre-synthesized denitrification enzymes to be differentiated from de novo synthesized enzymes. Incorporating explicit representations of denitrification enzyme kinetics into biogeochemical models is a promising approach for accurately simulating dynamics of the production and reduction of N2O in soils.

  5. Enzyme diversity and mosaic gene organization in denitrification.

    PubMed

    Zumft, W G; Körner, H

    1997-02-01

    Denitrification is a main branch of the global nitrogen cycle. In the past ten years unravelling the underlying biochemistry and genetics has proceeded at an increasing pace. Fungal denitrification has become a new field. The biochemical investigation of denitrification has culminated in the description of the crystal structures of the two types of nitrite reductases. The N2O reductase shares with cytochrome c oxidase the CuA center as a structurally novel metal site. The cytochrome b subunit of NO reductase has a striking conservation of heme-binding transmembrane segments versus the subunit I of cytochrome c oxidase. Another putative denitrification gene product shows structural relation to the subunit III of the oxidase. N2O reductase and NO reductase may be ancestors of energy-conserving enzymes of the heme-copper oxidase superfamily. More than 30 genes for denitrification are located in a > 30-kb cluster in Pseudomonas stutzeri, and comparable gene clusters have been identified in Pseudomonas aeruginosa and Paracoccus denitrificans. Genes necessary for nitrite reduction and NO reduction have a mosaic arrangement with very few conserved locations within these clusters and relative to each other.

  6. Microbial community structure and denitrification in a wetland mitigation bank.

    PubMed

    Peralta, Ariane L; Matthews, Jeffrey W; Kent, Angela D

    2010-07-01

    Wetland mitigation is implemented to replace ecosystem functions provided by wetlands; however, restoration efforts frequently fail to establish equivalent levels of ecosystem services. Delivery of microbially mediated ecosystem functions, such as denitrification, is influenced by both the structure and activity of the microbial community. The objective of this study was to compare the relationship between soil and vegetation factors and microbial community structure and function in restored and reference wetlands within a mitigation bank. Microbial community composition was assessed using terminal restriction fragment length polymorphism targeting the 16S rRNA gene (total bacteria) and the nosZ gene (denitrifiers). Comparisons of microbial function were based on potential denitrification rates. Bacterial community structures differed significantly between restored and reference wetlands; denitrifier community assemblages were similar among reference sites but highly variable among restored sites throughout the mitigation bank. Potential denitrification was highest in the reference wetland sites. These data demonstrate that wetland restoration efforts in this mitigation bank have not successfully restored denitrification and that differences in potential denitrification rates may be due to distinct microbial assemblages observed in restored and reference (natural) wetlands. Further, we have identified gradients in soil moisture and soil fertility that were associated with differences in microbial community structure. Microbial function was influenced by bacterial community composition and soil fertility. Identifying soil factors that are primary ecological drivers of soil bacterial communities, especially denitrifying populations, can potentially aid the development of predictive models for restoration of biogeochemical transformations and enhance the success of wetland restoration efforts.

  7. Nitrate removal with lateral flow sulphur autotrophic denitrification reactor.

    PubMed

    Lv, Xiaomei; Shao, Mingfei; Li, Ji; Xie, Chuanbo

    2014-01-01

    An innovative lateral flow sulphur autotrophic denitrification (LFSAD) reactor was developed in this study; the treatment performance was evaluated and compared with traditional sulphur/limestone autotrophic denitrification (SLAD) reactor. Results showed that nitrite accumulation in the LFSAD reactor was less than 1.0 mg/L during the whole operation. Denitrification rate increased with the increased initial alkalinity and was approaching saturation when initial alkalinity exceeded 2.5 times the theoretical value. Higher influent nitrate concentration could facilitate nitrate removal capacity. In addition, denitrification efficiency could be promoted under an appropriate reflux ratio, and the highest nitrate removal percentage was achieved under reflux ratio of 200%, increased by 23.8% than that without reflux. Running resistance was only about 1/9 of that in SLAD reactor with equal amount of nitrate removed, which was the prominent excellence of the new reactor. In short, this study indicated that the developed reactor was feasible for nitrate removal from waters with lower concentrations, including contaminated surface water, groundwater or secondary effluent of municipal wastewater treatment with fairly low running resistance. The innovation in reactor design in this study may bring forth new ideas of reactor development of sulphur autotrophic denitrification for nitrate-contaminated water treatment.

  8. Analysis of denitrification process in the groundwater of floodplains using a modelling approach

    NASA Astrophysics Data System (ADS)

    Bernard-Jannin, Léonard; Brito, David; Sun, Xiaoling; Teissier, Samuel; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José-Miguel

    2016-04-01

    Nitrate contamination of freshwater systems is a global concern. In alluvial floodplains, highly vulnerable to nitrate pollution due to widespread agricultural activities, riparian areas have been proven to be efficient in nitrate removal through denitrification. However, denitrification presents complex spatio-temporal patterns and is controlled by many factors. Hence, modelling can provide useful knowledge about this biogeochemical process, by helping to identify key factors involved in denitrification process and its spatio-temporal variability. In this study, a modelling approach combining i) a distributed hydrodynamic model, coupling surface and subsurface flow (MOHID Land), with ii) a simplified denitrification calculation module including dissolved organic carbon (DOC borned by the river) and particulate organic carbon (POC present in soil) have been applied to a monitored meander area of the Garonne river (6.6 km²). The dataset include hydrological data and nitrates concentrations collected in a network of 25 piezometers during 12 monthly campaigns allowing the set up and the validation of the model application. The average denitrification rate was estimated to 28 kg N/ha/yr representing 38% of the lateral nitrate input from the agricultural area. Denitrification was the highest in the low elevation riparian area in relation with inundated soils releasing topsoil organic carbon fueling denitrification. In addition high denitrification rates were simulated in downstream part of the meander in relation with the high nitrates flux coming from the agricultural area. Geomorphological settings and groundwater flows in the area play a major role in controlling denitrification in floodplain area. Flood events lead to high denitrification periods by increasing topsoil layer POC availability with higher water level in the aquifer. However, the role of DOC borne by the river seems restricted. The model can be applied to estimate nitrate removal capacity of riparian

  9. Denitrification Walls: Successes and Limitations.

    NASA Astrophysics Data System (ADS)

    Schipper, L. A.; Barkle, G. F.; Burgess, C. P.; Vojvodic-Vukovic, M.

    2001-05-01

    There is a need to develop practical and inexpensive approaches for removing nitrate from ground water because of its potential adverse effect on receiving aquatic environments. Denitrification walls may be one such approach for removing nitrate from shallow groundwater. In January 1996, we constructed a denitrification wall by digging a trench that intercepted groundwater and mixed the excavated soil with sawdust before the mix was returned to the trench. Sawdust provides a source of energy for denitrifying bacteria, which convert nitrate in groundwater entering the wall to nitrogen gas. For the past 5 years, nitrate concentrations in groundwater entering this wall have ranged from 5 to 16 mg N L-1 but have always been reduced to less than 2 mg N L-1 in the wall indicating nearly complete removal of nitrate from the groundwater. We showed that this nitrate removal could be accounted for by denitrification rates which ranged from 0.6 to 18.1 mg N m-3 h-1. More recently we have encountered problems with denitrification walls constructed into coarsely textured soils (such as sands) where the addition of sawdust decreased hydraulic conductivity. As a consequence groundwater flowed under rather than through the wall. We are attempting to circumvent this problem using coarser grades of carbon amendments. Particulate carbon (such as sawdust) is likely to support lower rates of nitrate removal, but for longer, than soluble carbon sources because solid carbon sources degrade more slowly.

  10. The enzymes associated with denitrification

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1988-01-01

    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  11. Impact of chloride on denitrification potential in roadside wetlands.

    PubMed

    Lancaster, Nakita A; Bushey, Joseph T; Tobias, Craig R; Song, Bongkeun; Vadas, Timothy M

    2016-05-01

    Developed landscapes are exposed to changes in hydrology and water chemistry that limit their ability to mitigate detrimental impacts to coastal water bodies, particularly those that result from stormwater runoff. The elevated level of impervious cover increases not only runoff but also contaminant loading of nutrients, metals, and road salt used for deicing to water bodies. Here we investigate the impact that road salt has on denitrification in roadside environments. Sediments were collected from a series of forested and roadside wetlands and acclimated with a range of Cl(-) concentrations from 0 to 5000 mg L(-1) for 96 h. Denitrification rates were measured by the isotope pairing technique using (15)N-NO3(-), while denitrifying community structures were compared using terminal restriction fragment length polymorphism (T-RFLP) of nitrous oxide reductase genes (nosZ). Chloride significantly (p < 0.05) inhibited denitrification in forested wetlands at a Cl(-) dosage of 2500 or 5000 mg L(-1), but the decrease in denitrification rates was less and not significant for the roadside wetlands historically exposed to elevated concentrations of Cl(-). The difference could not be attributed to other significant changes in conditions, such as DOC concentrations, N species concentrations, or pH levels. Denitrifying communities, as measured by T-RFs of the nosZ gene, in the roadside wetlands with elevated concentration of Cl(-) were distinctly different and more diverse compared to forested wetlands, and also different in roadside wetlands after 96 h exposures to Cl(-). The shifts in denitrifying communities seem to minimize the decrease in denitrification rates in the wetlands previously exposed to Cl. As development results in more Cl(-) use and exposure to a broad range of natural or manmade wetland structures, an understanding of the seasonal effect of Cl on denitrification processes in these systems would aid in design or mitigation of the effects on N removal

  12. Nitrate removal and denitrification affected by soil characteristics in nitrate treatment wetlands.

    PubMed

    Lin, Ying-Feng; Jing, Shuh-Ren; Lee, Der-Yuan; Chang, Yih-Feng; Shih, Kai-Chung

    2007-03-01

    Several small-scale surface flow constructed wetlands unplanted and planted (monoculture) with various macrophytes (Phragmites australis, Typha orientalis, Pennisetum purpureum, Ipomoea aquatica, and Pistia stratiotes) were established to continuously receive nitrate-contaminated groundwater. Soil characteristics and their effects on nitrate removal and soil denitrification were investigated. The results showed that planted wetland cells exhibited significantly higher (P < 0.05) nitrate removal efficiencies (70-99%) and soil denitrification rates (3.78-15.02 microg N2O-N/g dry soil/h) than an unplanted covered wetland cell (1%, 0.11 microg N2O-N/g/h). However, the unplanted uncovered wetland cell showed a nitrate removal efficiency (55%) lower than but a soil denitrification rate (9.12 microg N2O-N/g/h) comparable to the planted cells. The nitrate removal rate correlated closely and positively with the soil denitrification rate for the planted cells, indicating that soil denitrification is an important process for removing nitrate in constructed wetlands. The results of nitrogen budget revealed that around 68.9-90.7% of the overall nitrogen removal could be attributed to the total denitrification. The soil denitrification rate was found to correlate significantly (P < 0.01) with the extractable organic carbon, organic matter, and in situ-measured redox potential of wetland soil, which accordingly were concluded as suitable indicators of soil denitrification rate and nitrate removal rate in nitrate treatment wetlands.

  13. Sediment nitrification and denitrification rates in a Lake Superior estuary

    EPA Science Inventory

    Microbially-mediated nitrogen (N) cycling in aquatic sediments has been recognized as an ecosystem service due to mitigation of N-transport to receiving waters. In 2011 and 2012, we compared nitrification (NIT), unamended (DeNIT) and amended (DEA) denitrification rates among spat...

  14. The coefficient of error of optical fractionator population size estimates: a computer simulation comparing three estimators.

    PubMed

    Glaser, E M; Wilson, P D

    1998-11-01

    sampled disectors. There were 1000 independently simulated cell populations for each test condition, and a 'trial' was conducted for each of these cell populations. In each trial we calculated the (unique) true CE of the population size estimate and the three CE estimates obtained by applying the Scheaffer-Mendenhall-Ott (SMO) and both Gundersen-Jensen (GJ) estimators. We compared the estimated CEs with the true CEs for each population distribution. We found that the CE estimates obtained by the SMO estimator were closer to the true CEs and had less scatter than those of the nugget-modified GJ estimator. Both had small positive bias. The CE estimates obtained by the unmodified GJ estimator exhibited widely varying bias and large scatter. In all the population distributions we tested, the average true CE was very nearly proportional to 1/square root of QT, where QT is the average number of cells counted in the two-stage systematic sample.

  15. Denitrification in the Antarctic stratosphere

    NASA Technical Reports Server (NTRS)

    Salawitch, R. J.; Gobbi, G. P.; Wofsy, S. C.; Mcelroy, M. B.

    1989-01-01

    Rapid loss of ozone over Antarctica in spring requires that the abundance of gaseous nitric acid be very low. Precipitation of particulate nitric acid has been assumed to occur in association with large ice crystals, requiring significant removal of H2O and temperatures well below the frost point. However, stratospheric clouds exhibit a bimodal size distribution in the Antarctic atmosphere, with most of the nitrate concentrated in particles with radii of 1 micron or greater. It is argued here that the bimodal size distribution sets the stage for efficient denitrification, with nitrate particles either falling on their own or serving as nuclei for the condensation of ice. Denitrification can therefore occur without significant dehydration, and it is unnecessary for temperatures to drop significantly below the frost point.

  16. Sediment, water column, and open-channel denitrification in rivers measured using membrane-inlet mass spectrometry

    NASA Astrophysics Data System (ADS)

    Reisinger, Alexander J.; Tank, Jennifer L.; Hoellein, Timothy J.; Hall, Robert O.

    2016-05-01

    Riverine biogeochemical processes are understudied relative to headwaters, and reach-scale processes in rivers reflect both the water column and sediment. Denitrification in streams is difficult to measure, and is often assumed to occur only in sediment, but the water column is potentially important in rivers. Dissolved nitrogen (N) gas flux (as dinitrogen (N2)) and open-channel N2 exchange methods avoid many of the artificial conditions and expenses of common denitrification methods like acetylene block and 15N-tracer techniques. We used membrane-inlet mass spectrometry and microcosm incubations to quantify net N2 and oxygen flux from the sediment and water column of five Midwestern rivers spanning a land use gradient. Sediment and water column denitrification ranged from below detection to 1.8 mg N m-2 h-1 and from below detection to 4.9 mg N m-2 h-1, respectively. Water column activity was variable across rivers, accounting for 0-85% of combined microcosm denitrification and 39-85% of combined microcosm respiration. Finally, we estimated reach-scale denitrification at one Midwestern river using a diel, open-channel N2 exchange approach based on reach-scale metabolism methods, providing an integrative estimate of riverine denitrification. Reach-scale denitrification was 8.8 mg N m-2 h-1 (95% credible interval: 7.8-9.7 mg N m-2 h-1), higher than combined sediment and water column microcosm estimates from the same river (4.3 mg N m-2 h-1) and other estimates of reach-scale denitrification from streams. Our denitrification estimates, which span habitats and spatial scales, suggest that rivers can remove N via denitrification at equivalent or higher rates than headwater streams.

  17. N₂O accumulation from denitrification under different temperatures.

    PubMed

    Poh, Leong Soon; Jiang, Xie; Zhang, Zhongbo; Liu, Yu; Ng, Wun Jern; Zhou, Yan

    2015-11-01

    The effects of temperature on nitrous oxide (N2O) accumulation during denitrification and denitritation were investigated. Batch experiments were performed to measure N2O accumulation at 25 and 35 °C. More N2O accumulation was observed during denitritation at the higher temperature as compared with full denitrification and low temperature tests. The highest nitrite concentration tested in this study (25 mg/L NO2 (-)N and pH 8.0) did not show inhibitory effect on N2O reduction. It was found that the major cause of more N2O accumulation during denitrification at higher temperature was due to higher N2O production rate and lower N2O solubility. Specific nitrate, nitrite, and N2O reduction rates increased 62, 61, and 41 %, respectively, when temperature rose from 25 to 35 °C. The decrease of N2O solubility in mixed liquor at 35 °C (when compared to 25 °C) resulted in faster diffusing rate of N2O from liquid to gas phase. It was also more difficult for gas phase N2O to be re-dissolved. The diffused N2O was then accumulated in the headspace, which was not available for denitrification by denitrifiers. The results of this study suggest higher temperature may worsen N2O emission from wastewater treatment plants (WWTPs).

  18. Topographic effects on denitrification in drained agricultural fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification is affected by soil moisture, while soil moisture can be affected by topography. Therefore, denitrification can be spatially correlated to topographic gradients. Three prior converted fields on the Delmarva Peninsula were sampled spatially for denitrification enzyme activity. The up...

  19. Predicting the denitrification capacity of sandy aquifers from shorter-term incubation experiments and sediment properties

    NASA Astrophysics Data System (ADS)

    Eschenbach, W.; Well, R.

    2013-02-01

    Knowledge about the spatial variability of denitrification rates and the lifetime of denitrification in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, regression models were derived to estimate the measured cumulative denitrification of aquifer sediments after one year of incubation from initial denitrification rates and several sediment parameters, namely total sulphur, total organic carbon, extractable sulphate, extractable dissolved organic carbon, hot water soluble organic carbon and potassium permanganate labile organic carbon. For this purpose, we incubated aquifer material from two sandy Pleistocene aquifers in Northern Germany under anaerobic conditions in the laboratory using the 15N tracer technique. The measured amount of denitrification ranged from 0.19 to 56.2 mg N kg-1 yr-1. The laboratory incubations exhibited high differences between non-sulphidic and sulphidic aquifer material in both aquifers with respect to all investigated sediment parameters. Denitrification rates and the estimated lifetime of denitrification were higher in the sulphidic samples. For these samples, the cumulative denitrification measured during one year of incubation (Dcum(365)) exhibited distinct linear regressions with the stock of reduced compounds in the investigated aquifer samples. Dcum(365) was predictable from sediment variables within a range of uncertainty of 0.5 to 2 (calculated Dcum(365)/measured Dcum(365)) for aquifer material with a Dcum(365) > 20 mg N kg-1 yr-1. Predictions were poor for samples with lower Dcum(365), such as samples from the NO3- bearing groundwater zone, which includes the non-sulphidic samples, from the upper part of both aquifers where denitrification is not sufficient to protect groundwater from anthropogenic NO3- input. Calculation of Dcum(365) from initial denitrification rates was only successful for samples from the NO3--bearing zone, whereas a lag-phase of denitrification in samples

  20. Influence of biochar on soil pore structure and denitrification

    NASA Astrophysics Data System (ADS)

    Maenhout, Peter; Sleutel, Steven; Ameloot, Nele; De Neve, Stefaan

    2014-05-01

    Incorporation of biochar into soils has frequently been found to reduce soil emission of the greenhouse gas N2O, formed as an intermediate during microbial denitrification. The exact mechanism that regulates N2O emission reduction after biochar incorporation is still unknown and diverse hypotheses on either chemical, physical or biological controls over soil denitrification exist. The porous structure of biochar may directly and indirectly influence the soil pore structure upon its incorporation. Firstly biochar may increase soil aeration and thereby reduce denitrification which requires an anaerobic atmosphere to continue. In order to investigate this hypothesis we incorporated 4 biochar types in a sandy loam soil and collected undisturbed soil cores after 8 months of field incorporation. We then crushed half of the soil cores and replaced them. We followed N2O emissions from undisturbed and disturbed biochar amended soil cores by GC headspace analysis. From the disturbed soil cores no emission reduction was expected because soil pore structure was severely disrupted. However, both disturbed and undisturbed soil cores showed emission reductions when compared to the soil cores without biochar amendment. This allowed us to reject the hypothesis that biochar would affect soil denitrification through increased soil aeration. We moved to investigate a second hypothesis, viz. 'Through the retention of water in its finer pores, biochar could create local anaerobic 'denitrification hot spots' in soils. It could be hypothesized that the final further reduction of N2O into N2 is stimulated. We tested this hypothesis by comparing N2+N2O (acetylene inhibition) and N2O emissions from undisturbed soil cores with or without biochar amended, at 70 and 90 % WFPS. At 70% WFPS we expected higher N2 emissions in biochar amended soils compared to the unamended control cores, through the action of anaerobic hot spots in biochar. In contrast, at 90% WFPS anaerobicity would be general in

  1. Comparative study on parameter estimation methods for attenuation relationships

    NASA Astrophysics Data System (ADS)

    Sedaghati, Farhad; Pezeshk, Shahram

    2016-12-01

    In this paper, the performance and advantages and disadvantages of various regression methods to derive coefficients of an attenuation relationship have been investigated. A database containing 350 records out of 85 earthquakes with moment magnitudes of 5-7.6 and Joyner-Boore distances up to 100 km in Europe and the Middle East has been considered. The functional form proposed by Ambraseys et al (2005 Bull. Earthq. Eng. 3 1-53) is selected to compare chosen regression methods. Statistical tests reveal that although the estimated parameters are different for each method, the overall results are very similar. In essence, the weighted least squares method and one-stage maximum likelihood perform better than the other considered regression methods. Moreover, using a blind weighting matrix or a weighting matrix related to the number of records would not yield in improving the performance of the results. Further, to obtain the true standard deviation, the pure error analysis is necessary. Assuming that the correlation between different records of a specific earthquake exists, the one-stage maximum likelihood considering the true variance acquired by the pure error analysis is the most preferred method to compute the coefficients of a ground motion predication equation.

  2. Nitrous oxide emission from denitrification in stream and river networks

    USGS Publications Warehouse

    Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Poole, G.C.; Maurice, Valett H.; Arango, C.P.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N 2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3-) concentrations, but that <1% of denitrified N is converted to N2O. Unlike some previous studies, we found no relationship between the N2O yield and stream water NO3-. We suggest that increased stream NO3- loading stimulates denitrification and concomitant N2O production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg??y -1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

  3. Nitrous oxide emission from denitrification in stream and river networks

    PubMed Central

    Beaulieu, Jake J.; Tank, Jennifer L.; Hamilton, Stephen K.; Wollheim, Wilfred M.; Hall, Robert O.; Mulholland, Patrick J.; Peterson, Bruce J.; Ashkenas, Linda R.; Cooper, Lee W.; Dahm, Clifford N.; Dodds, Walter K.; Grimm, Nancy B.; Johnson, Sherri L.; McDowell, William H.; Poole, Geoffrey C.; Valett, H. Maurice; Arango, Clay P.; Bernot, Melody J.; Burgin, Amy J.; Crenshaw, Chelsea L.; Helton, Ashley M.; Johnson, Laura T.; O'Brien, Jonathan M.; Potter, Jody D.; Sheibley, Richard W.; Sobota, Daniel J.; Thomas, Suzanne M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3−) concentrations, but that <1% of denitrified N is converted to N2O. Unlike some previous studies, we found no relationship between the N2O yield and stream water NO3−. We suggest that increased stream NO3− loading stimulates denitrification and concomitant N2O production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg·y−1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change. PMID:21173258

  4. Excess cell mass as an internal carbon source for biological denitrification.

    PubMed

    Biradar, Prashant M; Roy, S B; D'Souza, S F; Pandit, A B

    2010-03-01

    Aim of the present work was to examine whether the SCOD (soluble chemical oxygen demand) released after the physical disruption of excess activated sludge can be used as an alternative carbon source for biological denitrification. In the first stage of research, we investigated the potential use of energy efficient hydrodynamic cavitation (HC) technique for the disruption of activated sludge. In a comparative study between ultrasonic cavitation (UC) and HC, it was observed that UC needs five times more energy than that of HC to release the same amount of SCOD. In the second stage of the experimental study, SCOD was successfully used as an alternative carbon source (alternative to sodium acetate) for biological denitrification. The critical weight ratio (SCOD/NO(3)-N) of seven ensured 100% removal of nitrate. Nitrate removal kinetics indicated that denitrification with SCOD as a carbon source gives higher specific denitrification rate (by approximately 200%) as compared to conventional carbon source (sodium acetate).

  5. Determining material damping type by comparing modal frequency estimators.

    PubMed

    Anthony, D K; Simón, F; Juan, Jesús

    2009-09-01

    The accuracy of modal frequency and damping estimators for non-lightly damped single degree of freedom systems depend on the response parameter used as well as the damping mechanism. Therefore, in order to make accurate modal parameter measurements, the damping mechanism at play must be known to be either viscous or hysteretic a priori. Here, comparisons between the evaluated frequency values are used to glean this information. The damping mechanism of an experimental system (consisting of resilient layer and mass plate) is then determined using two simple modal parameter estimators and applying statistical methods.

  6. Evapotranspiration: Mass balance measurements compared with flux estimation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...

  7. Natural Denitrification in the Saturated Zone: A Review

    NASA Astrophysics Data System (ADS)

    Korom, Scott F.

    1992-06-01

    Denitrification is increasingly recognized for its ability to eliminate or reduce nitrate concentrations in groundwater. With this awareness comes a desire to predict the rate and extent of denitrification in aquifers. The limiting factor in making predictive models, however, is our limited knowledge of the physical characteristics of this process. This review synthesizes the published literature on natural aquifer denitrification. A background section discusses denitrification requirements and dissimilatory nitrate reduction to ammonium, which occurs in environments similar to those where denitrification occurs, and gives a historical perspective on denitrification. Other sections discuss denitrification with organic carbon serving as the electron donor (heterotrophic denitrification) and with reduced inorganic compounds serving as the electron donor (autotrophic denitrification). The section on heterotrophic denitrification is structured around two tables that summarize natural aquifer denitrification rates reported by laboratory studies and natural aquifer denitrification rates reported by field studies. The section on autotrophic denitrification discusses denitrification with reduced iron and reduced sulfur. Thus far, most studies only consider a single electron donor or donor type, whether heterotrophic or autotrophic. This review demonstrates, however, that multiple electron donors may be present in a given aquifer. Future research efforts are recommended to determine the factors affecting the availability of electron donors and their denitrification rates. Additional research is also suggested on how dissolved oxygen affects denitrification rates and on the factors influencing the partitioning of nitrate reduction products to nitrous oxide, a potential contributor to the destruction of the ozone layer, and to ammonium.

  8. Comparative evaluation of workload estimation techniques in piloting tasks

    NASA Technical Reports Server (NTRS)

    Wierwille, W. W.

    1983-01-01

    Techniques to measure operator workload in a wide range of situations and tasks were examined. The sensitivity and intrusion of a wide variety of workload assessment techniques in simulated piloting tasks were investigated. Four different piloting tasks, psychomotor, perceptual, mediational, and communication aspects of piloting behavior were selected. Techniques to determine relative sensitivity and intrusion were applied. Sensitivity is the relative ability of a workload estimation technique to discriminate statistically significant differences in operator loading. High sensitivity requires discriminable changes in score means as a function of load level and low variation of the scores about the means. Intrusion is an undesirable change in the task for which workload is measured, resulting from the introduction of the workload estimation technique or apparatus.

  9. Study on enhanced denitrification using particulate organic matter in membrane bioreactor by mechanism modeling.

    PubMed

    Zheng, Min; Liu, Yan-Chen; Wang, Cheng-Wen; Xu, Kang-Ning

    2013-11-01

    Particulate organic matter (POM) in wastewater is a potential denitrification carbon source, while the optimal operational mode using denitrification mechanism with POM is still unclear in wastewater treatment plants. In this work, we investigated the denitrification rates (DNRs) in a full-scale membrane bioreactor (MBR) coupled with two-stage pre-anoxic (pre-AN), and then evaluated the POM denitrification efficiency using mechanism modeling. The results indicate that POM related fraction accounted for the majority of the obtained specific DNR of 1.39±0.46mgNg(-1) MLVSS h(-1) in the second pre-AN without available soluble carbon source. The modeling approaches with calibration and validation procedures estimated a high residual POM concentration of 0.17g COD g(-1) MLVSS in the activated sludge, which provided specific DNR of 1.14mgNg(-1) MLVSS h(-1). High POM retention time in the reactor was the result of high solid retention time used in the MBR. In particular, post-AN of high biomass concentration could provide the highest POM denitrification efficiency in MBR. The MBR process combined with additional sludge reduction technology could further enhance denitrification by POM.

  10. Denitrification in marine shales in northeastern Colorado

    USGS Publications Warehouse

    McMahon, P.B.; Böhlke, J.K.; Bruce, B.W.

    1999-01-01

    Parts of the South Platte River alluvial aquifer in northeastern Colorado are underlain by the Pierre Shale, a marine deposit of Late Cretaceous age that is <1000 m thick. Ground water in the aquifer is contaminated with NO3/-, and the shale contains abundant potential electron donors for denitrification in the forms of organic carbon and sulfide minerals. Nested piezometers were sampled, pore water was squeezed from cores of shale, and an injection test was conducted to determine if denitrification in the shale was a sink for alluvial NO3/- and to measure denitrification rates in the shale. Measured values of NO3/-, N2, NH4/+, ??15[NO3/-], ??15N[N2], and ??15N[NH4/+] in the alluvial and shale pore water indicated that denitrification in the shale was a sink for alluvial NO3/-. Chemical gradients, reaction rate constants, and hydraulic head data indicated that denitrification in the shale was limited by the slow rate of NO3/- transport (possibly by diffusion) into the shale. The apparent in situ first-order rate constant for denitrification in the shale based on diffusion calculations was of the order of 0.04-0.4 yr-1, whereas the potential rate constant in the shale based on injection tests was of the order of 60 yr-1. Chemical data and mass balance calculations indicate that organic carbon was the primary electron donor for denitrification in the shale during the injection test, and ferrous iron was a minor electron donor in the process. Flux calculations for the conditions encountered at the site indicate that denitrification in the shale could remove only a small fraction of the annual agricultural NO3/- input to the alluvial aquifer. However, the relatively large potential first-order rate constant for denitrification in the shale indicated that the percentage of NO3/- uptake by the shale could be considerably larger in areas where NO3/- is transported more rapidly into the shale by advection.

  11. Free nitrous acid pretreatment of wasted activated sludge to exploit internal carbon source for enhanced denitrification.

    PubMed

    Ma, Bin; Peng, Yongzhen; Wei, Yan; Li, Baikun; Bao, Peng; Wang, Yayi

    2015-03-01

    Using internal carbon source contained in waste activated sludge (WAS) is beneficial for nitrogen removal from wastewater with low carbon/nitrogen ratio, but it is usually limited by sludge disintegration. This study presented a novel strategy based on free nitrous acid (FNA) pretreatment to intensify the release of organic matters from WAS for enhanced denitrification. During FNA pretreatment, soluble chemical oxygen demand (SCOD) production kept increasing when FNA increased from 0 to 2.04 mg HNO2-N/L. Compared with untreated WAS, the internal carbon source production increased by 50% in a simultaneous fermentation and denitrification reactor fed with WAS pretreated by FNA for 24 h at 2.04 mg HNO2-N/L. This also increased denitrification efficiency by 76% and sludge reduction by 87.5%. More importantly, greenhouse gas nitrous oxide production in denitrification was alleviated since more electrons could be provided by FNA pretreated WAS.

  12. Behavior of solid carbon sources for biological denitrification in groundwater remediation.

    PubMed

    Zhang, Jianmei; Feng, Chuanping; Hong, Siqi; Hao, Huiling; Yang, Yingnan

    2012-01-01

    The present study was conducted to compare the behavior of wheat straw, sawdust and biodegradable plastic (BP) as potential carbon sources for denitrification in groundwater remediation. The results showed that a greater amount of nitrogen compounds were released from wheat straw and sawdust than from BP in leaching experiments. In batch experiments, BP showed higher nitrate removal efficiency and longer service life than wheat straw and sawdust, which illustrated that BP is the most appropriate carbon source for stimulation of denitrification activity. In column experiments, BP was able to support complete denitrification at influent nitrate concentrations of 50, 60, 70, 80, and 90 mg NO(3)(-)-N/L, showing corresponding denitrification rates of 0.12, 0.14, 0.17, 0.19, and 0.22 mg NO(3)(-)-N.L(-1).d(-1).g(-1), respectively. These findings indicate that BP is applicable for use as a carbon source for nitrate-polluted groundwater remediation.

  13. Expansion of denitrification and anoxia in the eastern tropical North Pacific from 1972 to 2012

    NASA Astrophysics Data System (ADS)

    Horak, Rachel E. A.; Ruef, Wendi; Ward, Bess B.; Devol, Allan H.

    2016-05-01

    The eastern tropical North Pacific (ETNP) is a large region of anoxic water that hosts widespread water column N loss (denitrification). There is some disagreement about the long-term trends of denitrification and anoxia and long-term studies of water column denitrification within the anoxic zone are lacking. In this study, we compared ETNP water column nitrite, N*, and O2 data along the same transect for four studies ranging from 1972 to 2012. Anoxic water volume increased, and low-oxygen conditions expanded into shallower isopycnals from 1972 to 2012. A geochemical marker for cumulative N loss indicates that denitrification was highest in 2012 and the upper oxygen-deficient zone (ODZ) experienced the most change. Oxygen and N loss changes in the world's largest ODZ for 2012 could not be explained by the Pacific Decadal Oscillation, and decreased O2 in supply currents and increased wind-driven upwelling are likely mechanisms contributing to increased N loss and anoxia.

  14. Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Chun; Slomp, Caroline P.; Broers, Hans Peter; Passier, Hilde F.; Cappellen, Philippe Van

    2009-11-01

    This study focuses on denitrification in a sandy aquifer using geochemical analyses of both sediment and groundwater, combined with groundwater age dating ( 3H/ 3He). The study sites are located underneath cultivated fields and an adjacent forested area at Oostrum, The Netherlands. Shallow groundwater in the region has high nitrate concentrations (up to 8 mM) due to intense fertilizer application. Nitrate removal from the groundwater below cultivated fields correlates with sulfate production, and the release of dissolved Fe 2+ and pyrite-associated trace metals (e.g. As, Ni, Co and Zn). These results, and the presence of pyrite in the sediment matrix within the nitrate removal zone, indicate that denitrification coupled to pyrite oxidation is a major process in the aquifer. Significant nitrate loss coupled to sulfate production is further confirmed by comparing historical estimates of regional sulfate and nitrate loadings to age-dated groundwater sulfate and nitrate concentrations, for the period 1950-2000. However, the observed increases in sulfate concentration are about 50% lower than would be expected from complete oxidation of pyrite to sulfate, possibly due to the accumulation of intermediate oxidation state sulfur compounds, such as elemental sulfur. Pollutant concentrations (NO 3, Cl, As, Co and Ni) measured in the groundwater beneath the agricultural areas in 1996 and 2006 show systematic decreases most likely due to declining fertilizer use.

  15. Complexity of images: experimental and computational estimates compared.

    PubMed

    Chikhman, Valeriy; Bondarko, Valeriya; Danilova, Marina; Goluzina, Anna; Shelepin, Yuri

    2012-01-01

    We tested whether visual complexity can be modeled through the use of parameters relevant to known mechanisms of visual processing. In psychophysical experiments observers ranked the complexity of two groups of stimuli: 15 unfamiliar Chinese hieroglyphs and 24 outline images of well-known common objects. To predict image complexity, we considered: (i) spatial characteristics of the images, (ii) spatial-frequency characteristics, (iii) a combination of spatial and Fourier properties, and (iv) the size of the image encoded as a JPEG file. For hieroglyphs the highest correlation was obtained when complexity was calculated as the product of the squared spatial-frequency median and the image area. This measure accounts for the larger number of lines, strokes, and local periodic patterns in the hieroglyphs. For outline objects the best predictor of the experimental data was complexity estimated as the number of turns in the image, as Attneave (1957 Journal of Experimental Psychology 53 221-227) obtained for his abstract outlined images. Other predictors of complexity gave significant but lower correlations with the experimental ranking. We conclude that our modeling measures can be used to estimate the complexity of visual images but for different classes of images different measures of complexity may be required.

  16. Software Effort Estimation Accuracy: A Comparative Study of Estimations Based on Software Sizing and Development Methods

    ERIC Educational Resources Information Center

    Lafferty, Mark T.

    2010-01-01

    The number of project failures and those projects completed over cost and over schedule has been a significant issue for software project managers. Among the many reasons for failure, inaccuracy in software estimation--the basis for project bidding, budgeting, planning, and probability estimates--has been identified as a root cause of a high…

  17. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    NASA Astrophysics Data System (ADS)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    compared to inflow water, and calculated denitrification was statistically higher in the floating vegetation treatments compared to the other treatments. Greenhouse gas production, measured in CO2 equivalents for N2O and CH4, was highly variable and not statistically different between the treatments. Denitrification in the tarp covered mesocosms was similar to the no-cover treatment, indicating that biotic effects in the floating vegetation treatment may be important in lowering water column oxygen levels and increasing denitrification. Understanding how floating vegetation affects total nitrogen loss, denitrification, and greenhouse gas production can be used to weigh ecological costs and benefits of different vegetation types, especially in constructed and managed wetlands.

  18. Isotopologue fractionation during N(2)O production by fungal denitrification.

    PubMed

    Sutka, Robin L; Adams, Gerard C; Ostrom, Nathaniel E; Ostrom, Peggy H

    2008-12-01

    Identifying the importance of fungi to nitrous oxide (N2O) production requires a non-intrusive method for differentiating between fungal and bacterial N2O production such as natural abundance stable isotopes. We compare the isotopologue composition of N2O produced during nitrite reduction by the fungal denitrifiers Fusarium oxysporum and Cylindrocarpon tonkinense with published data for N2O production during bacterial nitrification and denitrification. The fractionation factors for bulk nitrogen isotope values for fungal denitrification were in the range -74.7 to -6.6 per thousand. There was an inverse relationship between the absolute value of the fractionation factors and the reaction rate constant. We interpret this in terms of variation in the relative importance of the rate constants for diffusion and enzymatic reduction in controlling the net isotope effect for N2O production during fungal denitrification. Over the course of nitrite reduction, the delta(18)O values for N2O remained constant and did not exhibit a relationship with the concentration characteristic of an isotope effect. This probably reflects isotopic exchange with water. Similar to the delta(18)O data, the site preference (SP; the difference in delta(15)N between the central and outer N atoms in N2O) was unrelated to concentration during nitrite reduction and, therefore, has the potential to act as a conservative tracer of production from fungal denitrification. The SP values of N2O produced by F. oxysporum and C. tonkinense were 37.1 +/- 2.5 per thousand and 36.9 +/- 2.8 per thousand, respectively. These SP values are similar to those obtained in pure culture studies of bacterial nitrification but quite distinct from SP values for bacterial denitrification. The large magnitude of the bulk nitrogen isotope fractionation and the delta(18)O values associated with fungal denitrification are distinct from bacterial production pathways; thus multiple isotopologue data holds much promise for

  19. Biological denitrification of high concentration nitrate waste

    DOEpatents

    Francis, Chester W.; Brinkley, Frank S.

    1977-01-01

    Biological denitrification of nitrate solutions at concentrations of greater than one kilogram nitrate per cubic meter is accomplished anaerobically in an upflow column having as a packing material a support for denitrifying bacteria.

  20. Meiofauna increases bacterial denitrification in marine sediments

    PubMed Central

    Bonaglia, S.; Nascimento, F. J. A; Bartoli, M.; Klawonn, I.; Brüchert, V.

    2014-01-01

    Denitrification is a critical process that can alleviate the effects of excessive nitrogen availability in aquatic ecosystems subject to eutrophication. An important part of denitrification occurs in benthic systems where bioturbation by meiofauna (invertebrates <1 mm) and its effect on element cycling are still not well understood. Here we study the quantitative impact of meiofauna populations of different abundance and diversity, in the presence and absence of macrofauna, on nitrate reduction, carbon mineralization and methane fluxes. In sediments with abundant and diverse meiofauna, denitrification is double that in sediments with low meiofauna, suggesting that meiofauna bioturbation has a stimulating effect on nitrifying and denitrifying bacteria. However, high meiofauna densities in the presence of bivalves do not stimulate denitrification, while dissimilatory nitrate reduction to ammonium rate and methane efflux are significantly enhanced. We demonstrate that the ecological interactions between meio-, macrofauna and bacteria are important in regulating nitrogen cycling in soft-sediment ecosystems. PMID:25318852

  1. Comparability Of Slosson And S-B Estimates Of Intelligence

    ERIC Educational Resources Information Center

    Ritter, David; And Others

    1973-01-01

    The Slosson Intelligence Test and the Stanford-Binet Intelligence Scale (Form L-M) were administered to 44 children. A comparison of measured IQs indicated that the Slosson overestimated IQ when compared with the Stanford-Binet, for 39 of the 44 children. The results also suggest that although a high degree of correlation was attained with the…

  2. A comparative study of clock rate and drift estimation

    NASA Technical Reports Server (NTRS)

    Breakiron, Lee A.

    1994-01-01

    Five different methods of drift determination and four different methods of rate determination were compared using months of hourly phase and frequency data from a sample of cesium clocks and active hydrogen masers. Linear least squares on frequency is selected as the optimal method of determining both drift and rate, more on the basis of parameter parsimony and confidence measures than on random and systematic errors.

  3. Comparative estimate of volcanism intensity on continents and in oceans

    SciTech Connect

    Ronov, A.B.; Khain, V.E.; Balukhovskii, A.N.

    1980-12-01

    A quantitative estimate of the volume of volcanogenic rocks and the volcanism intensity during different stages in the Earth's development indicates that the total volume of the tholeiitic basalts of Layer II of the oceans exceeds by 20 times that of the synchronous late Mesozoic-Cenozoic volcanics of the continents and is almost 5 times greater than the volume of the volcanogenic rocks of the entire Phanerozoic sequence of the continents. The absolute maxima of volcanism, determined on the basis of the area and volume of the corresponding volcanics, belong to the Late Cretaceous and Miocene intervals. Changes in the volcanic eruption areas took place synchronously in the Pacific, Atlantic, and Indian Oceans. The volcanism intensity, expressed in the volume of its products in km/sup 3/ per m.y., increases in the oceans from Late Jurassic to Pliocene time. During the Riphean and Vendian intervals, the volcanism intensity on the continents remained at an extremely low level, then increased during early Paleozoic time, and underwent a marked jump, beginning in the Devonian Period. Since Late Jurassic time, the intensity of global volcanism increased unusually sharply and reached its culmination during Neogene time.

  4. Hyporheic zone denitrification: controls on effective reaction depth and contribution to whole-stream mass balance

    USGS Publications Warehouse

    Harvey, Judson W.; Böhlke, John Karl; Voytek, Mary A.; Scott, Durelle; Tobias, Craig R.

    2013-01-01

    Stream denitrification is thought to be enhanced by hyporheic transport but there is little direct evidence from the field. To demonstrate at a field site, we injected 15NO3−, Br (conservative tracer), and SF6 (gas exchange tracer) and compared measured whole-stream denitrification with in situ hyporheic denitrification in shallow and deeper flow paths of contrasting geomorphic units. Hyporheic denitrification accounted for between 1 and 200% of whole-stream denitrification. The reaction rate constant was positively related to hyporheic exchange rate (greater substrate delivery), concentrations of substrates DOC and nitrate, microbial denitrifier abundance (nirS), and measures of granular surface area and presence of anoxic microzones. The dimensionless product of the reaction rate constant and hyporheic residence time, λhzτhz define a Damköhler number, Daden-hz that was optimal in the subset of hyporheic flow paths where Daden-hz ≈ 1. Optimal conditions exclude inefficient deep pathways transport where substrates are used up and also exclude inefficient shallow pathways that require repeated hyporheic entries and exits to complete the reaction. The whole-stream reaction significance, Rs (dimensionless), was quantified by multiplying Daden-hz by the proportion of stream discharge passing through the hyporheic zone. Together these two dimensionless metrics, one flow-path scale and the other reach-scale, quantify the whole-stream significance of hyporheic denitrification. One consequence is that the effective zone of significant denitrification often differs from the full depth of the hyporheic zone, which is one reason why whole-stream denitrification rates have not previously been explained based on total hyporheic-zone metrics such as hyporheic-zone size or residence time.

  5. Monitoring induced denitrification in an artificial aquifer recharge system.

    NASA Astrophysics Data System (ADS)

    Grau-Martinez, Alba; Torrentó, Clara; Folch, Albert; Domènech, Cristina; Otero, Neus; Soler, Albert

    2014-05-01

    literature ɛN values of -4o and -22o respectively (Aravena and Robertson, 1998; Pauwels et al., 2000). Ongoing denitrification batch experiments will allow us to determine the specific nitrogen and oxygen isotopic fractionation induced by the organic reactive layer, in order to estimate more precisely the extent of denitrification during artificial aquifer recharge. These results confirmed that the reactive layer induces denitrification in the recharge ponds area, proving the usefulness of an isotopic approach to characterize water quality improvement occurring during artificial aquifer recharge. References 1. Aravena, R., Robertson, W.D., 1998. Use of multiple isotope tracers to evaluate denitrification in ground water: Study of nitrate from a large-flux septic system plume. Ground Water, 36(6): 975-982. 2. Pauwels, H., J.C., Kloppmann, W., 2000. Denitrification and mixing in a schist aquifer: Influence on water chemistry and isotopes. Chemical Geology, 168(3-4): 307-324. Acknowledgment This study was supported by the projects CGL2011-29975-C04-01 from the Spanish Government, 2009SGR-00103 from the Catalan Government and ENPI/2011/280-008 from the European Commission. Please fill in your abstract text.

  6. Modeling nitrate removal in a denitrification bed.

    PubMed

    Ghane, Ehsan; Fausey, Norman R; Brown, Larry C

    2015-03-15

    Denitrification beds are promoted to reduce nitrate load in agricultural subsurface drainage water to alleviate the adverse environmental effects associated with nitrate pollution of surface water. In this system, drainage water flows through a trench filled with a carbon media where nitrate is transformed into nitrogen gas under anaerobic conditions. The main objectives of this study were to model a denitrification bed treating drainage water and evaluate its adverse greenhouse gas emissions. Field experiments were conducted at an existing denitrification bed. Evaluations showed very low greenhouse gas emissions (mean N2O emission of 0.12 μg N m(-2) min(-1)) from the denitrification bed surface. Field experiments indicated that nitrate removal rate was described by Michaelis-Menten kinetics with the Michaelis-Menten constant of 7.2 mg N L(-1). We developed a novel denitrification bed model based on the governing equations for water flow and nitrate removal kinetics. The model evaluation statistics showed satisfactory prediction of bed outflow nitrate concentration during subsurface drainage flow. The model can be used to design denitrification beds with efficient nitrate removal which in turn leads to enhanced drainage water quality.

  7. The use of crab-shell chitin for biological denitrification: batch and column tests.

    PubMed

    Robinson-Lora, Mary Ann; Brennan, Rachel A

    2009-01-01

    Crab-shell chitin (SC-20) was evaluated for its ability to enhance biological denitrification in bench-scale tests. In the presence of SC-20, highly reducing conditions were generated, supporting both denitrification and sulfate reduction of aerated water. Rapid degradation of protein in SC-20 was observed to cause an initial high release of ammonium and carbon, while a slower, continuous release of calcium carbonate from the crab shell maintained the pH near 9 throughout the tests. In batch tests, denitrification rates of 2.4+/-0.2 mg N/L-d were obtained. Columns receiving a continuous nitrate load of 24.5 mg N/L-d sustained complete denitrification for an average of 149 d (250 pore volumes). The denitrification rates and longevity of SC-20 chitin are comparable to, or better than, those previously reported for other polymeric substrates. This, in addition to its particle size, non-swelling nature, and ease of delivery in slurry form make SC-20 an attractive electron donor source for groundwater bio-denitrification.

  8. [Feasibility and Economic Analysis of Denitrification of Photovoltaic Wastewater Containing High Fluorine].

    PubMed

    Li, Xiang; Zhu, Liang; Huang, Yong; Yang, Peng-bing; Cui, Jian-hong; Ma, Hang

    2016-04-15

    In order to reduce acid and alkali dosing in wastewater treatment process of polycrystalline silicon by using denitrification after fluoride removal. This experiment studied the feasibility of first removing nitrogen using the denitrification process by start-up denitrifying reactor before fluoride removal. The results showed that the F⁻ concentration in the waste water to had a certain influence on the denitrification. When the concentration of F⁻ was controlled to about 750 mg · L⁻¹, the activity of denitrifying bacteria was not significantly influenced; when the concentration of F⁻ continued to increase, the denitrification efficiency of denitrifying sludge gradually reduced. In wastewater treatment of polycrystalline silicon, if the concentration of F⁻ was kept below 800 mg · L⁻¹, the denitrification performance of denitrifying sludge was not obviously affected. After 93 d operation, the total nitrogen in effluent was stabilized below 50 mg · L⁻¹, the total nitrogen removal efficiency reached 90%, and the removal rate reached 5 kg · (m³ · d)⁻¹. The calculation result showed, compared with the conventional denitrification process after fluoride removal, the proposed process could save about 70% of acid and 100% of alkali dosing, greatly reducing the cost of wastewater treatment.

  9. Aquifer Denitrification: Is it a Zero-Order or First-Order Reaction?

    NASA Astrophysics Data System (ADS)

    Korom, S. F.

    2007-12-01

    Results from a network of 16 in situ mesocosms (ISMs) used to study aquifer denitrification at 5 sites in North Dakota and 4 sites in Minnesota (with 2 more installations planned for Iowa) are considered. At the Elk Valley aquifer (EVA) site in northeastern North Dakota, denitrification rates from six denitrification experiments were all better modeled as zero-order (0.16 +/- 0.05 mg nitrate-N/L/day), as determined by squared values of the linear correlation coefficient. Denitrification experiments at the other sites showed that denitrification was either below detection (< 0.01 mg nitrate-N/L/day) or was better modeled as a first-order reaction (0.00021/day to 0.0020/day), although squared values of the linear correlation coefficients for both rate models were nearly equal for some of the experiments. Not only were denitrification rates at the EVA site highest compared to the other sites in the ISM network, but sediment concentrations of electron donors at the EVA site were also greatest [ferrous iron about 0.3%, inorganic S (as pyrite) about 0.4%, organic C about 0.4%, weight basis]. These observations support the Michaelis- Menten model for reaction rates, which indicates that reaction rates will be zero-order when the substrate (electron donor) is abundant and first-order when the substrate availability is limited.

  10. Confirmation of co-denitrification in grazed grassland

    PubMed Central

    Selbie, Diana R.; Lanigan, Gary J.; Laughlin, Ronald J.; Di, Hong J.; Moir, James L.; Cameron, Keith C.; Clough, Tim J.; Watson, Catherine J.; Grant, James; Somers, Cathal; Richards, Karl G.

    2015-01-01

    Pasture-based livestock systems are often associated with losses of reactive forms of nitrogen (N) to the environment. Research has focused on losses to air and water due to the health, economic and environmental impacts of reactive N. Di-nitrogen (N2) emissions are still poorly characterized, both in terms of the processes involved and their magnitude, due to financial and methodological constraints. Relatively few studies have focused on quantifying N2 losses in vivo and fewer still have examined the relative contribution of the different N2 emission processes, particularly in grazed pastures. We used a combination of a high 15N isotopic enrichment of applied N with a high precision of determination of 15N isotopic enrichment by isotope-ratio mass spectrometry to measure N2 emissions in the field. We report that 55.8 g N m−2 (95%, CI 38 to 77 g m−2) was emitted as N2 by the process of co-denitrification in pastoral soils over 123 days following urine deposition (100 g N m−2), compared to only 1.1 g N m−2 (0.4 to 2.8 g m−2) from denitrification. This study provides strong evidence for co-denitrification as a major N2 production pathway, which has significant implications for understanding the N budgets of pastoral ecosystems. PMID:26615911

  11. Denitrification and availability of carbon and nitrogen in a well-drained pasture soil amended with particulate organic carbon.

    PubMed

    Stevenson, Bryan A; Schipper, Louis A; McGill, Alexandra; Clark, Dave

    2011-01-01

    A well-drained soil in N-fertilized dairy pasture was amended with particulate organic carbon (POC), either sawdust or coarse woody mulch, and sampled every 4 wk for a year to test the hypothesis that the addition of POC would increase denitrification activity by increasing the number of microsites where denitrification occurred. Overall mean denitrifying enzyme activity (DEA), on a gravimetric basis, was 100% greater for the woody mulch treatment and 50% greater for the sawdust treatment compared with controls, indicating the denitrifying potential of the soil was enhanced. Despite differences in DEA, no difference in denitrification rate, as measured by the acetylene block technique, was detected among treatments, with an average annual N loss of ∼22 kg N ha yr Soil water content overall was driving denitrification in this well-drained soil as regression of the natural log of volumetric soil water content (VWC) against denitrification rate was highly significant ( = 0.74, < 0.001). Addition of the amendments, however, had significant effects on the availability of both C and N. An additional 20 to 40 kg N ha was stored in POC-amended treatments as a result of increases in the microbial biomass. Basal respiration, as a measure of available C, was 400% greater than controls in the sawdust treatment and 250% greater than controls in the mulch. Net N mineralization, however, was significantly lower in the sawdust treatment, resulting in significantly lower nitrate N levels than in the control. We attribute the lack of measured response in denitrification rate to the high temporal variability in denitrification and suggest that diffusion of nitrate may ultimately have limited denitrification in the amended treatments. Our data indicate that manipulation of denitrification by addition of POC may be possible, particularly when nitrate levels are high, but quantifying differences in the rate of denitrification is difficult because of the temporal nature of the process

  12. Comparison of denitrification activity measurements in groundwater using cores and natural-gradient tracer tests

    USGS Publications Warehouse

    Smith, R.L.; Garabedian, S.P.; Brooks, M.H.

    1996-01-01

    The transport of many solutes in groundwater is dependent upon the relative rates of physical flow and microbial metabolism. Quantifying rates of microbial processes under subsurface conditions is difficult and is most commonly approximated using laboratory studies with aquifer materials. In this study, we measured in situ rates of denitrification in a nitrate- contaminated aquifer using small-scale, natural-gradient tracer tests and compared the results with rates obtained from laboratory incubations with aquifer core material. Activity was measured using the acetylene block technique. For the tracer tests, co-injection of acetylene and bromide into the aquifer produced a 30 ??M increase in nitrous oxide after 10 m of transport (23-30 days). An advection-dispersion transport model was modified to include an acetylene-dependent nitrous oxide production term and used to simulate the tracer breakthrough curves. The model required a 4-day lag period and a relatively low sensitivity to acetylene to match the narrow nitrous oxide breakthrough curves. Estimates of in situ denitrification rates were 0.60 and 1.51 nmol of N2O produced cm-3 aquifer day-1 for two successive tests. Aquifer core material collected from the tracer test site and incubated as mixed slurries in flasks and as intact cores yielded rates that were 1.2-26 times higher than the tracer test rate estimates. Results with the coring-dependent techniques were variable and subject to the small- scale heterogeneity within the aquifer, while the tracer tests integrated the heterogeneity along a flow path, giving a rate estimate that is more applicable to transport at the scale of the aquifer.

  13. Denitrification in the shallow ground water of a tile-drained, agricultural watershed

    USGS Publications Warehouse

    Mehnert, E.; Hwang, H.-H.; Johnson, T.M.; Sanford, R.A.; Beaumont, W.C.; Holm, T.R.

    2007-01-01

    Nonpoint-source pollution of surface water by N is considered a major cause of hypoxia. Because Corn Belt watersheds have been identified as major sources of N in the Mississippi River basin, the fate and transport of N from midwestern agricultural watersheds have received considerable interest. The fate and transport of N in the shallow ground water of these watersheds still needs additional research. Our purpose was to estimate denitrification in the shallow ground water of a tile-drained, Corn Belt watershed with fine-grained soils. Over a 3-yr period, N was monitored in the surface and ground water of an agricultural watershed in central Illinois. A significant amount of N was transported past the tile drains and into shallow ground water. The ground water nitrate was isotopically heavier than tile drain nitrate, which can be explained by denitrification in the subsurface. Denitrifying bacteria were found at depths to 10 m throughout the watershed. Laboratory and push-pull tests showed that a significant fraction of nitrate could be denitrified rapidly. We estimated that the N denitrified in shallow ground water was equivalent to 0.3 to 6.4% of the applied N or 9 to 27% of N exported via surface water. These estimates varied by water year and peaked in a year of normal precipitation after 2 yr of below average precipitation. Three years of monitoring data indicate that shallow ground water in watersheds with fine-grained soils may be a significant N sink compared with N exported via surface water. ?? ASA, CSSA, SSSA.

  14. Seasonal variability of denitrification efficiency in northern salt marshes: an example from the St. Lawrence Estuary.

    PubMed

    Poulin, Patrick; Pelletier, Emilien; Saint-Louis, Richard

    2007-06-01

    In coastal ecosystems, denitrification is a key process in removing excess dissolved nitrogen oxides and participating in the control of eutrophication process. Little is known about the role of salt marshes on nitrogen budgets in cold weather coastal areas. Although coastal salt marshes are important sites for organic matter degradation and nutrient regeneration, bacterial-mediated nitrogen cycling processes, such as denitrification, remain unknown in northern and sub-arctic regions, especially under winter conditions. Using labelled nitrogen (15N), denitrification rates were measured in an eastern Canadian salt marsh in August, October and December 2005. Freshly sampled undisturbed sediment cores were incubated over 8h and maintained at their sampling temperatures to evaluate the influence of low temperatures on the denitrification rate. From 2 to 12 degrees C, average denitrification rate and dissolved oxygen consumption increased from 9.6 to 25.5 micromol N2 m-2 h-1 and from 1.3 to 1.8 mmol O2 m-2 h-1, respectively, with no statistical dependence of temperature (p>0.05). Nitrification has been identified as the major nitrate source for denitrification, supplying more than 80% of the nitrate demand. Because no more than 31% of the nitrate removed by sediment is estimated to be denitrified, the presence of a major nitrate sink in sediment is suspected. Among possible nitrate consumption mechanisms, dissimilatory reduction of nitrate to ammonium, metal and organic matter oxidation processes are discussed. Providing the first measurements of denitrification rate in a St. Lawrence Estuary salt marsh, this study evidences the necessity of preserving and restoring marshes. They constitute an efficient geochemical filter against an excess of nitrate dispersion to coastal waters even under cold northern conditions.

  15. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths

    USGS Publications Warehouse

    Tesoriero, A.J.; Liebscher, H.; Cox, S.E.

    2000-01-01

    The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive agricultural activity in this area has resulted in nitrate concentrations in groundwater often exceeding drinking water standards. Both the extent and rate of denitrification varied depending on the groundwater flow path. While little or no denitrification occurred in much of the upland portions of the aquifer, a gradual redox gradient is observed as aerobic upland groundwater moves deeper in the aquifer. In contrast, a sharp shallow redox gradient is observed adjacent to a third-order stream as aerobic groundwater enters reduced sediments. An essentially complete loss of nitrate concurrent with increases in excess N2 provide evidence that denitrification occurs as groundwater enters this zone. Electron and mass balance calculations suggest that iron sulfide (e.g., pyrite) oxidation is the primary source of electrons for denitrification. Denitrification rate estimates were based on mass balance calculations using nitrate and excess N2 coupled with groundwater travel times. Travel times were determined using a groundwater flow model and were constrained by chlorofluorocarbon-based age dates. Denitrification rates were found to vary considerably between the two areas where denitrification occurs. Denitrification rates in the deep, upland portions of the aquifer were found to range from < 0.01 to 0.14 mM of N per year; rates at the redoxcline along the shallow flow path range from 1.0 to 2.7 mM of N per year. Potential denitrification rates in groundwater adjacent to the stream may be much faster, with rates up to 140 mM per year based on an in situ experiment conducted in this zone.The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive

  16. Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometry analysis.

    PubMed

    An, S; Gardner, W S; Kana, T

    2001-03-01

    A method for estimating denitrification and nitrogen fixation simultaneously in coastal sediments was developed. An isotope-pairing technique was applied to dissolved gas measurements with a membrane inlet mass spectrometer (MIMS). The relative fluxes of three N(2) gas species ((28)N(2), (29)N(2), and (30)N(2)) were monitored during incubation experiments after the addition of (15)NO(3)(-). Formulas were developed to estimate the production (denitrification) and consumption (N(2) fixation) of N(2) gas from the fluxes of the different isotopic forms of N(2). Proportions of the three isotopic forms produced from (15)NO(3)(-) and (14)NO(3)(-) agreed with expectations in a sediment slurry incubation experiment designed to optimize conditions for denitrification. Nitrogen fixation rates from an algal mat measured with intact sediment cores ranged from 32 to 390 microg-atoms of N m(-2) h(-1). They were enhanced by light and organic matter enrichment. In this environment of high nitrogen fixation, low N(2) production rates due to denitrification could be separated from high N(2) consumption rates due to nitrogen fixation. Denitrification and nitrogen fixation rates were estimated in April 2000 on sediments from a Texas sea grass bed (Laguna Madre). Denitrification rates (average, 20 microg-atoms of N m(-2) h(-1)) were lower than nitrogen fixation rates (average, 60 microg-atoms of N m(-2) h(-1)). The developed method benefits from simple and accurate dissolved-gas measurement by the MIMS system. By adding the N(2) isotope capability, it was possible to do isotope-pairing experiments with the MIMS system.

  17. Method to identify potential phosphorus rate-limiting conditions in post-denitrification biofilm reactors within systems designed for simultaneous low-level effluent nitrogen and phosphorus concentrations.

    PubMed

    Boltz, Joshua P; Morgenroth, Eberhard; Daigger, Glen T; deBarbadillo, Christine; Murthy, Sudhir; Sørensen, Kim H; Stinson, Beverly

    2012-12-01

    Water-quality standards requiring simultaneous low level effluent N and P concentrations are increasingly common in Europe and the United States of America. Moving bed biofilm reactors (MBBRs) and biologically active filters (BAFs) have been used as post-denitrification biofilm reactors in processes designed and operated for this purpose (Boltz et al., 2010a). There is a paucity of information describing systematic design and operational protocols that will minimize the potential for phosphorus rate-limited conditions as well as a lack of information describing the interaction between these post-denitrification biofilm reactors and unit processes that substantially alter phosphorus speciation (e.g., chemically enhanced clarification). In this paper, a simple mathematical model for estimating the threshold below which P becomes rate-limiting, and the model is presented and evaluated by comparing its predictions with operational data from post-denitrification MBBRs and BAFs. Ortho-phosphorus (PO(4)-P), which is the dissolved reactive component of total phosphorus, was a primary indicator of P rate-limiting conditions in the evaluated post-denitrification biofilm reactors. The threshold below which PO(4)-P becomes the rate-limiting substrate is defined: S(PO4-P):S(NOx-N) = 0.0086 g P/g N and S(PO4-P):S(M) = 0.0013 g P/g COD. Additional analyses indicate J(NOx-N)(avg) =0.48 g/m2/d when S(PO4-P):S(NOx-N) > 0.0086, and J(NOx-N)(avg) = 0.06 g/m2/d when S(PO4-P):S(NOx-N) < 0.0086. Effluent nitrate-nitrogen plus nitrite-nitrogen concentration (S(NOx-N)) from the evaluated post-denitrification biofilm reactors began to rapidly increase when S(PO4-P):S(NOx-N) was 0.01, approximately (consistent with the rate-limitation threshold of S(PO4-P):S(NOx-N) < 0.0086 predicted by the mathematical model described in this paper). Depending on the processes used at a given WWTP, optimizing chemically enhanced clarification to increase the amount of PO(4)-P that remains in the clarifiers

  18. Nitrous oxide emission from denitrification in stream and river networks

    SciTech Connect

    Beaulieu, Jake; Tank, Jennifer; Hamilton, Stephen; Wollheim, Wilfred; Hall, Robert; Mulholland, Patrick J; Peterson, Bruce; Ashkenas, Linda; Cooper, Lee W; Dahm, Cliff; Dodds, Walter; Grimm, Nancy; Johnson, Sherri; McDowell, William; Poole, Geoffrey C.; Valett, H. Maurice; Arango, Clay; Bernot, Melody; Burgin, Amy; Crenshaw, Chelsea; Helton, Ashley; Johnson, Laura; O'Brien, Jon; Potter, Jody; Sheibley, Rich; Sobota, Daniel; Thomas, Suzanne

    2011-01-01

    Nitrous oxide (N{sub 2}O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N{sub 2}O via microbial denitrification that converts N to N{sub 2}O and dinitrogen (N{sub 2}). The fraction of denitrified N that escapes as N{sub 2}O rather than N{sub 2} (i.e., the N{sub 2}O yield) is an important determinant of how much N{sub 2}O is produced by river networks, but little is known about the N{sub 2}O yield in flowing waters. Here, we present the results of whole-stream {sup 15}N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N{sub 2}O at rates that increase with stream water nitrate (NO{sub 3}{sup -}) concentrations, but that <1% of denitrified N is converted to N{sub 2}O. Unlike some previous studies, we found no relationship between the N{sub 2}O yield and stream water NO{sub 3}{sup -}. We suggest that increased stream NO{sub 3}{sup -} loading stimulates denitrification and concomitant N{sub 2}O production, but does not increase the N{sub 2}O yield. In our study, most streams were sources of N{sub 2}O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg {center_dot} y{sup -1} of anthropogenic N inputs to N{sub 2}O in river networks, equivalent to 10% of the global anthropogenic N{sub 2}O emission rate. This estimate of stream and river N{sub 2}O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

  19. Using soil isotopes as an indicator of denitrification in weetlands

    EPA Science Inventory

    Denitrification is an important ecosystem service provided by wetlands, which results in removal of excess nitrogen that can threaten aquatic systems. Unfortunately, direct measurement of denitrification has traditionally been expensive, time intensive, and difficult. However, ...

  20. Incorporating spatial variation of nitrification and denitrification rates into whole-lake nitrogen dynamics

    NASA Astrophysics Data System (ADS)

    Bruesewitz, Denise A.; Tank, Jennifer L.; Hamilton, Stephen K.

    2012-09-01

    Despite dramatic increases in nitrogen (N) loading to fresh waters and growing scientific attention on the changing N cycle, measurements of nitrification and denitrification rates in lakes are lacking. In particular, we know little about how these processes vary spatially within a lake, and how this potential spatial variation contributes to a lake's N dynamics. We measured sediment nitrification and denitrification rates at 40 sites in Gull Lake, Michigan (USA), and found that the shallow edge sediments (<2 m deep) of the lake were hot spots of N transformation. Nitrification rates were comparable in sediments at all depths, while sediment denitrification rates were highest in the shallow edge habitat, and lowest in the profundal sediments (<2 m and >10 m deep, respectively). We scaled-up our sediment transformation rates across the lake to illustrate spatial variability in nitrification and denitrification. For whole-lake nitrification, the contribution of shallow edge, littoral, and profundal sediments followed in proportion to lake surface area of each habitat. In contrast, the contribution of each of these areas to whole-lake denitrification was not proportional to their respective surface areas, and instead was equal across the 3 habitat types, with each area contributing roughly 30% of the total N loss via denitrification. Spatially representative characterization of nitrification and denitrification in lentic ecosystems requires incorporation of the spatial variation in these transformations with a particular focus on littoral sediments, and this is often overlooked in studies of lentic N cycling. Furthermore, anthropogenic changes to lake shorelines that influence N cycling in littoral sediments may have a disproportionate effect on whole-lake ecosystem function.

  1. Stratospheric Polar Freezing Belt Causes Denitrification

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Jensen, E. J.; Toon, O. B.; Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Trajectory cloud model calculations are presented to show that homogeneous freezing of nitric acid hydrates can produce a polar freezing belt in both hemispheres that can cause denitrification. While hydrate cloud microphysical properties are similar over both poles, the shorter persistence of clouds in the Arctic prevents the depth of the denitrified layers from growing beyond a few kilometers. The 1999-2000 Arctic winter is unique in showing a distinct denitrification profile with a depth of approx. 4.5 km that is nearly half as deep as that computed for a typical Antarctic winter.

  2. Cell biology and molecular basis of denitrification.

    PubMed Central

    Zumft, W G

    1997-01-01

    Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary

  3. Global trends in terrestrial denitrification and N2O emissions for the period 1900-2050

    NASA Astrophysics Data System (ADS)

    Bouwman, L.; Beusen, A.; Griffioen, J.; Van Groenigen, J.; Hefting, M.; Oenema, O.; Van Puijenbroek, P.; Seitzinger, S.; Slomp, C. P.; Stehfest, E.

    2012-12-01

    Estimates of global terrestrial denitrification and nitrous oxide (N2O) emission are presented for the period 1900 to 2000 and scenarios for the period 2000-2050 based on the Millennium Ecosystem Assessment. Soil nitrogen (N) budgets are used in a global distributed flow-path model with 0.5 by 0.5 degree resolution, representing denitrification and N2O emissions from soils, groundwater and riparian zones. Total agricultural and natural N inputs from N fertilizers, animal manure, biological N fixation and N deposition increased from ~155 to ~345 Tg of N yr-1 (Tg = teragram; 1 Tg = 1012 g) between 1900 and 2000; depending on the scenario, inputs will further increase to ~408 to ~510 Tg of N yr-1 in 2050. In the period 1900-2000, the soil N budget surplus (inputs minus withdrawal by plants) increased from 118 to 202 Tg yr-1, and this may remain stable or further increase to 275 Tg per year in 2050, depending on the scenario. Estimates indicate that N2 production from denitrification increased from 52 to 96 Tg yr-1 between 1900 and 2000, and N2O-N emissions from 10 to 12 Tg of N yr-1. The major part (70%) of global N2 and N2O-N (92%) production occurred in soils in 2000. A further increase of denitrification is foreseen to 142 Tg N2-N and 16 Tg of N2O-N yr-1 in 2050. Our results indicate that riparian buffer zones are an important source of N2O. Soils are key sites for denitrification and are much more important than groundwater and riparian zones in controlling the N flow to rivers and the oceans. The total (temporary) storage in deep groundwater between 1900 and 2000 amounts to around 376 Tg of N. Despite the removal of N through denitrification, the N flow from diffuse sources on land to rivers increased from 38 to 65 Tg of N yr-1 between 1900 and 2000, with a further increase of up to 84 Tg of N yr-1 in 2050. The major causes of uncertainty in our estimates are the difficulties associated with measurements and models of denitrification. With the projected increase

  4. Isotopic evidence of nitrate sources and denitrification in the Mississippi River, Illinois

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Kelly, W.R.; Hwang, H.-H.

    2006-01-01

    Anthropogenic nitrate (NO3-) within the Mississippi-Atchafalaya River basin and discharge to the Gulf of Mexico has been linked to serious environmental problems. The sources of this NO 3- have been estimated by others using mass balance methods; however, there is considerable uncertainty in these estimates. Part of the uncertainty is the degree of denitrification that the NO3- has undergone. The isotopic composition of NO3- in the Mississippi River adjacent to Illinois and tile drain (subsurface drain) discharge in agricultural areas of east-central Illinois was examined using N and O isotopes to help identify the major sources of NO 3- and assess the degree of denitrification in the samples. The isotopic evidence suggests that most of the NO3- in the river is primarily derived from synthetic fertilizers and soil organic N, which is consistent with published estimates of N inputs to the Mississippi River. The 1:2 relationship between ??18O and ??15N also indicate that, depending on sample location and season, NO3- in the river and tile drains lias undergone significant denitrification, ranging from about 0 to 55%. The majority of the denitrification appears to have occurred before discharge into the Mississippi River. ?? ASA, CSSA, SSSA.

  5. Isotopic evidence of nitrate sources and denitrification in the Mississippi River, Illinois.

    PubMed

    Panno, Samuel V; Hackley, Keith C; Kelly, Walton R; Hwang, Hue-Hwa

    2006-01-01

    Anthropogenic nitrate (NO3-) within the Mississippi-Atchafalaya River basin and discharge to the Gulf of Mexico has been linked to serious environmental problems. The sources of this NO3- have been estimated by others using mass balance methods; however, there is considerable uncertainty in these estimates. Part of the uncertainty is the degree of denitrification that the NO3- has undergone. The isotopic composition of NO3- in the Mississippi River adjacent to Illinois and tile drain (subsurface drain) discharge in agricultural areas of east-central Illinois was examined using N and O isotopes to help identify the major sources of NO3- and assess the degree of denitrification in the samples. The isotopic evidence suggests that most of the NO3- in the river is primarily derived from synthetic fertilizers and soil organic N, which is consistent with published estimates of N inputs to the Mississippi River. The 1:2 relationship between delta18O and delta15N also indicate that, depending on sample location and season, NO3- in the river and tile drains has undergone significant denitrification, ranging from about 0 to 55%. The majority of the denitrification appears to have occurred before discharge into the Mississippi River.

  6. Achieving comparable uncertainty estimates with Kalman filters or linear smoothers for bathymetry data

    NASA Astrophysics Data System (ADS)

    Bourgeois, Brian S.; Elmore, Paul A.; Avera, William E.; Zambo, Samantha J.

    2016-07-01

    This paper examines and contrasts two estimation methods, Kalman filtering and linear smoothing, for creating interpolated data products from bathymetry measurements. Using targeted examples, we demonstrate previously obscured behavior showing the dependence of linear smoothers on the spatial arrangement of the measurements, yielding markedly different estimation results than the Kalman filter. For bathymetry data, we have modified the variance estimates from both the Kalman filter and linear smoothers to obtain comparable estimators for dense data. These comparable estimators produce uncertainty estimates that have statistically insignificant differences via hypothesis testing. Achieving comparable estimation is accomplished by applying the "propagated uncertainty" concept and a numerical realization of Tobler's principle to the measurement data prior to the computation of the estimate. We show new mathematical derivations for these modifications. In addition, we show test results with (a) synthetic data and (b) gridded bathymetry in the area of the Scripps and La Jolla Canyons. Our tenfold cross-validation for case (b) shows that the modified equations create comparable uncertainty for both gridding algorithms with null hypothesis acceptance rates of greater than 99.95% of the data points. In contrast, bilinear interpolation has 10 times the amount of rejection. We then discuss how the uncertainty estimators are, in principle, applicable to interpolate geophysical data other than bathymetry.

  7. Physicochemical properties influencing denitrification rate and microbial activity in denitrification bioreactors

    NASA Astrophysics Data System (ADS)

    Schmidt, C. A.

    2012-12-01

    The use of N-based fertilizer will need to increase to meet future demands, yet existing applications have been implicated as the main source of coastal eutrophication and hypoxic zones. Producing sufficient crops to feed a growing planet will require efficient production in combination with sustainable treatment solutions. The long-term success of denitrification bioreactors to effectively remove nitrate (NO¬3), indicates this technology is a feasible treatment option. Assessing and quantifying the media properties that affect NO¬3 removal rate and microbial activity can improve predictions on bioreactor performance. It was hypothesized that denitrification rates and microbial biomass would be correlated with total C, NO¬3 concentration, metrics of organic matter quality, media surface area and laboratory measures of potential denitrification rate. NO¬3 removal rates and microbial biomass were evaluated in mesocosms filled with different wood treatments and the unique influence of these predictor variables was determined using a multiple linear regression analysis. NO3 reduction rates were independent of NO¬3 concentration indicating zero order reaction kinetics. Temperature was strongly correlated with denitrification rate (r2=0.87; Q10=4.7), indicating the variability of bioreactor performance in differing climates. Fiber quality, and media surface area were strong (R>0.50), unique predictors of rates and microbial biomass, although C:N ratio and potential denitrification rate did not predict actual denitrification rate or microbial biomass. Utilizing a stepwise multiple linear regression, indicates that the denitrification rate can be effectively (r2=0.56;p<0.0001) predicted if the groundwater temperature, neutral detergent fiber and surface area alone are quantified. These results will assist with the widespread implementation of denitrification bioreactors to achieve significant N load reductions in large watersheds. The nitrate reduction rate as a

  8. Modeling nitrate removal in a denitrification bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification beds are being promoted to reduce nitrate concentrations in agricultural drainage water to alleviate the adverse environmental effects associated with nitrate pollution in surface water. In this system, water flows through a trench filled with a carbon media where nitrate is transfor...

  9. Nitrite inhibition of denitrification by Pseudomonas fluorescens

    SciTech Connect

    Almeida, J.S.; Julio, S.M.; Reis, M.A.M. |

    1995-05-05

    Using a pure culture of Pseudomonas fluorescens as a model system nitrite inhibition of denitrification was studied. A mineral media with acetate and nitrate as sole electron donor and acceptor, respectively, was used. Results obtained in continuous stirred-tank reactors (CSTR) operated at pH values between 6.6 and 7.8 showed that growth inhibition depended only on the nitrite undissociated fraction concentration (nitrous acid). A mathematical model to describe this dependence is put forward. The maximum nitrous acid concentration compatible with cell growth and denitrification activity was found to be 66 {mu}g N/L. Denitrification activity was partially associated with growth, as described by the Luedeking-Piret equation. However, when the freshly inoculated reactor was operated discontinuously, nitrite accumulation caused growth uncoupling from denitrification activity. The authors suggest that these results can be interpreted considering that (a) nitrous acid acts as a proton uncoupler; and (b) cultures continuously exposed to nitrous acid prevent the uncoupling effect but not the growth inhibition. Examination of the growth dependence on nitrite concentration at pH 7.0 showed that adapted cultures (growth on CSTR) are less sensitive to nitrous acid inhibition than the ones cultivated in batch.

  10. Denitrification in a Sand and Gravel Aquifer

    PubMed Central

    Smith, Richard L.; Duff, John H.

    1988-01-01

    Denitrification was assayed by the acetylene blockage technique in slurried core material obtained from a freshwater sand and gravel aquifer. The aquifer, which has been contaminated with treated sewage for more than 50 years, had a contaminant plume greater than 3.5-km long. Near the contaminant source, groundwater nitrate concentrations were greater than 1 mM, whereas 0.25 km downgradient the central portion of the contaminant plume was anoxic and contained no detectable nitrate. Samples were obtained along the longitudinal axis of the plume (0 to 0.25 km) at several depths from four sites. Denitrification was evident at in situ nitrate concentrations at all sites tested; rates ranged from 2.3 to 260 pmol of N2O produced (g of wet sediment)−1 h−1. Rates were highest nearest the contaminant source and decreased with increasing distance downgradient. Denitrification was the predominant nitrate-reducing activity; no evidence was found for nitrate reduction to ammonium at any site. Denitrifying activity was carbon limited and not nitrate limited, except when the ambient nitrate level was less than the detection limit, in which case, even when amended with high concentrations of glucose and nitrate, the capacity to denitrify on a short-term basis was lacking. These results demonstrate that denitrification can occur in groundwater systems and, thereby, serve as a mechanism for nitrate removal from groundwater. PMID:16347621

  11. Beyond Self-Report: Tools to Compare Estimated and Real-World Smartphone Use.

    PubMed

    Andrews, Sally; Ellis, David A; Shaw, Heather; Piwek, Lukasz

    2015-01-01

    Psychologists typically rely on self-report data when quantifying mobile phone usage, despite little evidence of its validity. In this paper we explore the accuracy of using self-reported estimates when compared with actual smartphone use. We also include source code to process and visualise these data. We compared 23 participants' actual smartphone use over a two-week period with self-reported estimates and the Mobile Phone Problem Use Scale. Our results indicate that estimated time spent using a smartphone may be an adequate measure of use, unless a greater resolution of data are required. Estimates concerning the number of times an individual used their phone across a typical day did not correlate with actual smartphone use. Neither estimated duration nor number of uses correlated with the Mobile Phone Problem Use Scale. We conclude that estimated smartphone use should be interpreted with caution in psychological research.

  12. Nitric oxide in denitrification - an elusive signal molecule emitted from soil

    NASA Astrophysics Data System (ADS)

    Bakken, L. R.; Frostegard, A.

    2010-12-01

    Soils emit variable amounts of NO and N2O, with environmental consequences (atmosphere chemistry and global warming). Nitrification was for some time considered the main source of NO emission, but several investigations have indicated that denitrification may be a potent source as well. However, strong emission of NO from denitrifying organisms is in some conflict with common understanding of the role of NO in the regulation of denitrification, as based on paradigm model strains. NO appears to be an important signal molecule for denitrifying organisms by exerting a positive feedback on the expression of the genes coding for denitrification. On the other hand, a careful control of the NO concentrations at nanomolar concentrations has long been considered an essential fitness character for denitrifying organisms, since micromolar concentrations of NO is toxic to many organisms. For the same reason, organisms lacking genes encoding NO reductase (NOR) have been considered unfit for denitrification. This view is challenged by isolation of organisms whose primary product of denitrification is NO, either because they lack the genes for NO reductase, or because their synthesis of the denitrification proteome is extremely unbalanced, resulting in transient NO accumulation to micromolar concentrations when grown in pure culture. Such paralyzing NO concentrations are probably never reached in natural environments, however, due to diffusion and NO-absorption by adjacent organisms, be it by NOR or other NO scavenging enzymes. Hypothetically, the production of NO by denitrifying organisms may be an advantage by fending off nearby competitors. We have embarked on a comparative study of denitrification phenotypes regarding their denitrification gene expression and control of NO and N2O concentrations in response to anoxic spells. This includes model strains (Paracoccus denitrificans and Agrobacterium tumefaciens) and recently isolated strains within several genera. Some are found

  13. Mustard catch crop enhances denitrification in shallow groundwater beneath a spring barley field.

    PubMed

    Jahangir, M M R; Minet, E P; Johnston, P; Premrov, A; Coxon, C E; Hackett, R; Richards, K G

    2014-05-01

    Over-winter green cover crops have been reported to increase dissolved organic carbon (DOC) concentrations in groundwater, which can be used as an energy source for denitrifiers. This study investigates the impact of a mustard catch crop on in situ denitrification and nitrous oxide (N2O) emissions from an aquifer overlain by arable land. Denitrification rates and N2O-N/(N2O-N+N2-N) mole fractions were measured in situ with a push-pull method in shallow groundwater under a spring barley system in experimental plots with and without a mustard cover crop. The results suggest that a mustard cover crop could substantially enhance reduction of groundwater nitrate NO3--N via denitrification without significantly increasing N2O emissions. Mean total denitrification (TDN) rates below mustard cover crop and no cover crop were 7.61 and 0.002 μg kg(-1) d(-1), respectively. Estimated N2O-N/(N2O-N+N2-N) ratios, being 0.001 and 1.0 below mustard cover crop and no cover crop respectively, indicate that denitrification below mustard cover crop reduces N2O to N2, unlike the plot with no cover crop. The observed enhanced denitrification under the mustard cover crop may result from the higher groundwater DOC under mustard cover crop (1.53 mg L(-1)) than no cover crop (0.90 mg L(-1)) being added by the root exudates and root masses of mustard. This study gives insights into the missing piece in agricultural nitrogen (N) balance and groundwater derived N2O emissions under arable land and thus helps minimise the uncertainty in agricultural N and N2O-N balances.

  14. Denitrification in the Arabian Sea: A 3D ecosystem modelling study

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas R.; Ryabchenko, Vladimir A.; Fasham, Michael J. R.; Gorchakov, Victor A.

    2007-12-01

    A three-dimensional hydrodynamic-ecosystem model was used to examine the factors determining the spatio-temporal distribution of denitrification in the Arabian Sea. The ecosystem model includes carbon and nitrogen as currencies, cycling of organic matter via detritus and dissolved organic matter, and both remineralization and denitrification as sinks for material exported below the euphotic zone. Model results captured the marked seasonality in plankton dynamics of the region, with characteristic blooms of chlorophyll in the coastal upwelling regions and central Arabian Sea during the southwest monsoon, and also in the northern Arabian Sea during the northeast monsoon as the mixed layer shoals. Predicted denitrification was 26.2 Tg N yr -1,the greatest seasonal contribution being during the northeast monsoon when primary production is co-located with the zone of anoxia. Detritus was the primary organic substrate consumed in denitrification (97%), with a small (3%) contribution by dissolved organic matter. Denitrification in the oxygen minimum zone was predicted to be fuelled almost entirely by organic matter supplied by particles sinking vertically from the euphotic zone above (0.73 mmol N m -2 d -1) rather than from lateral transport of organic matter from elsewhere in the Arabian Sea (less than 0.01 mmol N m -2 d -1). Analysis of the carbon budget in the zone of denitrification (north of 10°N and east of 55°E) indicates that the modelled vertical export flux of detritus, which is similar in magnitude to estimates from field data based on the 234Th method, is sufficient to account for measured bacterial production below the euphotic zone in the Arabian Sea.

  15. Experiments in In-Situ Aquifer Denitrification

    NASA Astrophysics Data System (ADS)

    Khan, I. A.; Spalding, R. F.

    2001-05-01

    During the past five years, denitrification experiments have been conducted in sand and gravel aquifers. Successive experiments have provided data showing both pitfalls and successes in designing sustainable injection/extraction systems for ground water denitrification. Testing has evolved from simple one-well to eight-well injection systems, commonly referred as Daisy systems. Aquifer profiles of the performance of denitrification were determined by multilevel sampling in two-foot intervals within the denitrification zone. Continuous and pulsed injection of organic carbon were tested, and in both cases the 40 mg NO3-N L-1 was reduced to below the detection limit (< 0.1 mg NO3-N L-1). Under continuous injection, accumulation of bacterial material in the vicinity of the injection well resulted in injection well clogging within 10 days. Using a dipole tool developed in the Water Sciences Laboratory, periodic cleaning was accomplished by circulating a cleaning solution (5% H2O2 and 0.02% NaOCl) in the injection well and adjacent ground water. Pulse injections, in which the carbon is separated from the nitrate, successfully alleviated the proliferation of bacterial accumulations without adversely affecting the performance of the denitrification process. Given that ethanol favored enhanced bacterial growth and increased the potential for biofouling of the equipment, acetate became the preferred carbon amendment. About 45% of the nitrate was denitrified before interception in the production well during a three-month pulsed injection experiment using the full eight-well Daisy design. Draw down of nondenitrified water from the upper two-thirds of the aquifer supplied nitrate to the production well and thus limited system performance.

  16. Body Density Estimates from Upper-Body Skinfold Thicknesses Compared to Air-Displacement Plethysmography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Summary Objectives: Determine the effect of body mass index (BMI) on the accuracy of body density (Db) estimated with skinfold thickness (SFT) measurements compared to air displacement plethysmography (ADP) in adults. Subjects/Methods: We estimated Db with SFT and ADP in 131 healthy men an...

  17. Factor Analysis with Ordinal Indicators: A Monte Carlo Study Comparing DWLS and ULS Estimation

    ERIC Educational Resources Information Center

    Forero, Carlos G.; Maydeu-Olivares, Alberto; Gallardo-Pujol, David

    2009-01-01

    Factor analysis models with ordinal indicators are often estimated using a 3-stage procedure where the last stage involves obtaining parameter estimates by least squares from the sample polychoric correlations. A simulation study involving 324 conditions (1,000 replications per condition) was performed to compare the performance of diagonally…

  18. Denitrification in nitrate-rich streams: Application of N2:Ar and 15N-tracer methods in intact cores

    USGS Publications Warehouse

    Smith, L.K.; Voytek, M.A.; Böhlke, J.K.; Harvey, J.W.

    2006-01-01

    Rates of benthic denitrification were measured using two techniques, membrane inlet mass spectrometry (MIMS) and isotope ratio mass spectrometry (IRMS), applied to sediment cores from two NO3--rich streams draining agricultural land in the upper Mississippi River Basin. Denitrification was estimated simultaneously from measurements of N 2:Ar (MIMS) and 15N[N2] (IRMS) after the addition of low-level 15NO3- tracer ( 15N:N = 0.03-0.08) in stream water overlying intact sediment cores. Denitrification rates ranged from about 0 to 4400 lmol N??m -2??h-1 in Sugar Creek and from 0 to 1300 ??mol N??m-2??h-1 in Iroquois River, the latter of which possesses greater streamflow discharge and a more homogeneous streambed and water column. Within the uncertainties of the two techniques, there is good agreement between the MIMS and IRMS results, which indicates that the production of N2 by the coupled process of nitrification/denitrification was relatively unimportant and surface-water NO3- was the dominant source of NO3- for benthic denitrification in these streams. Variation in stream NO3- concentration (from about 20 ??mol/L during low discharge to 1000 ??mol/L during high discharge) was a significant control of benthic denitrification rates, judging from the more abundant MIMS data. The interpretation that NO3- concentration directly affects denitrification rate was corroborated by increased rates of denitrification in cores amended with NO 3-. Denitrification in Sugar Creek removed ???11% per day of the instream NO3- in late spring and removed roughly 15-20% in late summer. The fraction of NO3- removed in Iroquois River was less than that of Sugar Creek. Although benthic denitrification rates were relatively high during periods of high stream flow, when NO3 concentrations were also high, the increase in benthic denitrification could not compensate for the much larger increase in stream NO3- fluxes during high flow. Consequently, fractional NO3- losses were relatively low

  19. The mechanism of oxygen isotopic fractionation during fungal denitrification - A pure culture study

    NASA Astrophysics Data System (ADS)

    Wrage-Moennig, Nicole; Rohe, Lena; Anderson, Traute-Heidi; Braker, Gesche; Flessa, Heinz; Giesemann, Annette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2014-05-01

    Nitrous oxide (N2O) from soil denitrification originates from bacteria and - to an unknown extent - also from fungi. During fungal denitrification, oxygen (O) exchange takes place between H2O and intermediates of the denitrification process as in bacterial exchange[1,2]. However, information about enzymes involved in fungal O exchanges and the associated fractionation effects is lacking. The objectives of this study were to estimate the O fractionation and O exchange during the fungal denitrifying steps using a conceptual model[2] adapted from concepts for bacterial denitrification[3], implementing controls of O exchange proposed by Aerssens, et al.[4] and using fractionation models by Snider et al.[5] Six different pure fungal cultures (five Hypocreales, one Sordariales) known to be capable of denitrification were incubated under anaerobic conditions, either with nitrite or nitrate. Gas samples were analyzed for N2O concentration and its isotopic signatures (SP, average δ15N, δ18O). To investigate O exchange, both treatments were also established with 18O-labelled water as a tracer in the medium. The Hypocreales strains showed O exchange mainly at NO2- reductase (Nir) with NO2- as electron acceptor and no additional O exchange at NO3- reductase (Nar) with NO3- as electron acceptor. The only Hypocreales species having higher O exchange with NO3- than with NO2- also showed O exchange at Nar. The Sordariales species tested seems capable of O exchange at NO reductase (Nor) additionally to O exchange at Nir with NO2-. The data will help to better interpret stable isotope values of N2O from soils. .[1] D. M. Kool, N. Wrage, O. Oenema, J. Dolfing, J. W. Van Groenigen. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO?3- and N2O: a review. Rapid Commun. Mass Spec. 2007, 21, 3569. [2] L. Rohe, T.-H. Anderson, B. Braker, H. Flessa, A. Giesemann, N. Wrage-Mönnig, R. Well. Fungal Oxygen Exchange between

  20. Comparing the estimation of postpartum hemorrhage using the weighting method and National Guideline with the postpartum hemorrhage estimation by midwives

    PubMed Central

    Golmakani, Nahid; Khaleghinezhad, Khosheh; Dadgar, Selmeh; Hashempor, Majid; Baharian, Nosrat

    2015-01-01

    Introduction: In developing countries, hemorrhage accounts for 30% of the maternal deaths. Postpartum hemorrhage has been defined as blood loss of around 500 ml or more, after completing the third phase of labor. Most cases of postpartum hemorrhage occur during the first hour after birth. The most common reason for bleeding in the early hours after childbirth is uterine atony. Bleeding during delivery is usually a visual estimate that is measured by the midwife. It has a high error rate. However, studies have shown that the use of a standard can improve the estimation. The aim of the research is to compare the estimation of postpartum hemorrhage using the weighting method and the National Guideline for postpartum hemorrhage estimation. Materials and Methods: This descriptive study was conducted on 112 females in the Omolbanin Maternity Department of Mashhad, for a six-month period, from November 2012 to May 2013. The accessible method was used for sampling. The data collection tools were case selection, observation and interview forms. For postpartum hemorrhage estimation, after the third section of labor was complete, the quantity of bleeding was estimated in the first and second hours after delivery, by the midwife in charge, using the National Guideline for vaginal delivery, provided by the Maternal Health Office. Also, after visual estimation by using the National Guideline, the sheets under parturient in first and second hours after delivery were exchanged and weighted. The data were analyzed using descriptive statistics and the t-test. Results: According to the results, a significant difference was found between the estimated blood loss based on the weighting methods and that using the National Guideline (weighting method 62.68 ± 16.858 cc vs. National Guideline 45.31 ± 13.484 cc in the first hour after delivery) (P = 0.000) and (weighting method 41.26 ± 10.518 vs. National Guideline 30.24 ± 8.439 in second hour after delivery) (P = 0.000). Conclusions

  1. Genetic basis for denitrification in Ensifer meliloti

    PubMed Central

    2014-01-01

    Background Denitrification is defined as the dissimilatory reduction of nitrate or nitrite to nitric oxide (NO), nitrous oxide (N2O), or dinitrogen gas (N2). N2O is a powerful atmospheric greenhouse gas and cause of ozone layer depletion. Legume crops might contribute to N2O production by providing nitrogen-rich residues for decomposition or by associating with rhizobia that are able to denitrify under free-living and symbiotic conditions. However, there are limited direct empirical data concerning N2O production by endosymbiotic bacteria associated with legume crops. Analysis of the Ensifer meliloti 1021 genome sequence revealed the presence of the napEFDABC, nirK, norECBQD and nosRZDFYLX denitrification genes. It was recently reported that this bacterium is able to grow using nitrate respiration when cells are incubated with an initial O2 concentration of 2%; however, these cells were unable to use nitrate respiration when initially incubated anoxically. The involvement of the nap, nirK, nor and nos genes in E. meliloti denitrification has not been reported. Results E. meliloti nap, nirK and norC mutant strains exhibited defects in their ability to grow using nitrate as a respiratory substrate. However, E meliloti nosZ was not essential for growth under these conditions. The E. meliloti napA, nirK, norC and nosZ genes encode corresponding nitrate, nitrite, nitric oxide and nitrous oxide reductases, respectively. The NorC component of the E. meliloti nitric oxide reductase has been identified as a c-type cytochrome that is 16 kDa in size. Herein, we also show that maximal expression of the E. meliloti napA, nirK, norC and nosZ genes occurred when cells were initially incubated anoxically with nitrate. Conclusion The E. meliloti napA, nirK, norC and nosZ genes are involved in nitrate respiration and in the expression of denitrification enzymes in this bacterium. Our findings expand the short list of rhizobia for which denitrification gene function has been

  2. Body mass estimates of an exceptionally complete Stegosaurus (Ornithischia: Thyreophora): comparing volumetric and linear bivariate mass estimation methods.

    PubMed

    Brassey, Charlotte A; Maidment, Susannah C R; Barrett, Paul M

    2015-03-01

    Body mass is a key biological variable, but difficult to assess from fossils. Various techniques exist for estimating body mass from skeletal parameters, but few studies have compared outputs from different methods. Here, we apply several mass estimation methods to an exceptionally complete skeleton of the dinosaur Stegosaurus. Applying a volumetric convex-hulling technique to a digital model of Stegosaurus, we estimate a mass of 1560 kg (95% prediction interval 1082-2256 kg) for this individual. By contrast, bivariate equations based on limb dimensions predict values between 2355 and 3751 kg and require implausible amounts of soft tissue and/or high body densities. When corrected for ontogenetic scaling, however, volumetric and linear equations are brought into close agreement. Our results raise concerns regarding the application of predictive equations to extinct taxa with no living analogues in terms of overall morphology and highlight the sensitivity of bivariate predictive equations to the ontogenetic status of the specimen. We emphasize the significance of rare, complete fossil skeletons in validating widely applied mass estimation equations based on incomplete skeletal material and stress the importance of accurately determining specimen age prior to further analyses.

  3. Body mass estimates of an exceptionally complete Stegosaurus (Ornithischia: Thyreophora): comparing volumetric and linear bivariate mass estimation methods

    PubMed Central

    Brassey, Charlotte A.; Maidment, Susannah C. R.; Barrett, Paul M.

    2015-01-01

    Body mass is a key biological variable, but difficult to assess from fossils. Various techniques exist for estimating body mass from skeletal parameters, but few studies have compared outputs from different methods. Here, we apply several mass estimation methods to an exceptionally complete skeleton of the dinosaur Stegosaurus. Applying a volumetric convex-hulling technique to a digital model of Stegosaurus, we estimate a mass of 1560 kg (95% prediction interval 1082–2256 kg) for this individual. By contrast, bivariate equations based on limb dimensions predict values between 2355 and 3751 kg and require implausible amounts of soft tissue and/or high body densities. When corrected for ontogenetic scaling, however, volumetric and linear equations are brought into close agreement. Our results raise concerns regarding the application of predictive equations to extinct taxa with no living analogues in terms of overall morphology and highlight the sensitivity of bivariate predictive equations to the ontogenetic status of the specimen. We emphasize the significance of rare, complete fossil skeletons in validating widely applied mass estimation equations based on incomplete skeletal material and stress the importance of accurately determining specimen age prior to further analyses. PMID:25740841

  4. Biological denitrification of brines from membrane treatment processes using an upflow sludge blanket (USB) reactor.

    PubMed

    Beliavski, M; Meerovich, I; Tarre, S; Green, M

    2010-01-01

    This paper investigates denitrification of brines originating from membrane treatment of groundwater in an upflow sludge blanket (USB) reactor, a biofilm reactor without carrier. A simulated brine wastewater was prepared from tap water and contained a nitrate concentration of 125 mg/l as N and a total salt concentration of about 1%. In order to select for a suitable energy source for denitrification, two electron donors were compared: one promoting precipitation of calcium compounds (ethanol), while the other (acetic acid), no precipitation was expected. After extended operation to reach steady state, the sludge from the two reactors showed very different mineral contents. The VSS/TSS ratio in the ethanol fed reactor was 0.2, i.e., 80% mineral content, while the VSS/TSS ratio in the acetic acid fed reactor was 0.9, i.e., 10% mineral content. In spite of the low mineral content, the sludge from the acetic acid fed reactor showed remarkably excellent granulation and settling characteristics. Although the denitrification performance of the acetic acid fed reactor was similar to that of the ethanol fed reactor, there was a huge difference in the sludge production due to mineral precipitation, with the corresponding negative aspects including increased costs of sludge treatment and disposal and moreover, instability and difficulties in reactor operation (channeling). These arguments make acetic acid a much more suitable candidate for brine denitrification, despite previous findings observed in groundwater denitrification regarding the essential role of a relatively high sludge mineral fraction for stable and effective USB reactor operation. Based on a comparison between two denitrification reactors with and without salt addition and using acetic acid as the electron donor, it was concluded that the reason for the excellent sludge settling characteristics found in the acetic acid fed reactor is the positive effects of higher salinity on granular sludge formation.

  5. Potential sediment denitrification rates in estuaries of northern Gulf of Mexico

    SciTech Connect

    Flemer, D.A.; Lores, E.M.; Bundrick, C.M.

    1998-07-01

    The three-season average of sediment potential denitrification rates (PDRs) (i.e., NO{sub 3}{sup {minus}} saturated; acetylene blockage method) for five study areas within urban bayous and bays in the Pensacola Bay area, Florida, ranged between 43 and 223 nmol of N g{sup {minus}1} h{sup {minus}1}. Average PDRs extrapolated to a unit area basis approximated 500 to 1000 {micro}mol of N m{sup {minus}2} h{sup {minus}1} that are relatively high values but comparable to those where conditions for denitrification are favorable. A regression model, based on a larger number of measured environmental factors for the spring than fall and winter indicated that NO{sub 2}{sup {minus}} + NO{sub 3}{sup {minus}} concentrations explained most of the total variability (R{sup 2}:27%; P < 0.003) in PDRs. The NO{sub 2}{sup {minus}} + NO{sub 3}{sup {minus}} concentrations were also predictive of PDRs (R{sup 2} ranged from 0.56--0.98; all P-values <0.05) on four separate occasions for comparisons made within five study areas and three seasons. Sediment trace metal concentrations (e.g., Ni), based on published values, were high enough to cause reduction in PDRs through direct toxicity to denitrifiers at several stations. Sediment metals toxicities, based on published sediment quality guidelines, could occasionally cause a reduction in macrobenthic infaunal bioturbation and irrigation. Such a reduction could attenuate the flux of dissolved oxygen into sediments and cause a reduction in denitrification rates by limiting the coupled processes of nitrification and denitrification. Also, a reduction in the flux of NO{sub 2}{sup {minus}} or NO{sub 3}{sup {minus}}, a substrate for denitrification, into sediments can directly limit denitrification rates.

  6. Comparing Neonatal Morbidity and Mortality Estimates across Specialty in Periviable Counseling

    PubMed Central

    Edmonds, Brownsyne Tucker; McKenzie, Fatima; Panoch, Janet; Frankel, Richard M.

    2015-01-01

    Objective To describe and compare estimates of neonatal morbidity and mortality communicated by neonatologists and obstetricians in simulated periviable counseling encounters. Methods A simulation-based study of 16 obstetricians (OBs) and 15 neonatologists counseling standardized patients portraying pregnant women with ruptured membranes at 23 weeks gestation. Two investigators tabulated all instances of numerically-described risk estimates across individuals and by specialty. Results Overall, 12/15 (80%) neonatologists utilized numeric estimates of survival; 6/16 (38%) OBs did. OBs frequently deferred the discussion of “exact numbers” to neonatologists. The twelve neonatologists provided 13 unique numeric estimates, ranging from 3% to 50% survival. Half of those neonatologists provided 2-3 different estimates in a single encounter. By comparison, six OBs provided 4 unique survival estimates (“50%”, “30-40%”, “1/3-1/2”, “<10%”). Only 2/15 (13%) neonatologists provided numeric estimates of survival without impairment. None of the neonatologists used the term ‘intact’ survival, while 5 OBs did. Three neonatologists gave numeric estimates of long-term disability and one OB did. Conclusion We found substantial variation in estimates and noteworthy omissions of discussions related to long-term morbidity. Across specialties, we noted inconsistencies in the use and meaning of terms like ‘intact survival.’ More tools and training are needed to improve the quality and consistency of periviable risk-communication. PMID:25354284

  7. Estimating and comparing microbial diversity in the presence of sequencing errors

    PubMed Central

    Chiu, Chun-Huo

    2016-01-01

    Estimating and comparing microbial diversity are statistically challenging due to limited sampling and possible sequencing errors for low-frequency counts, producing spurious singletons. The inflated singleton count seriously affects statistical analysis and inferences about microbial diversity. Previous statistical approaches to tackle the sequencing errors generally require different parametric assumptions about the sampling model or about the functional form of frequency counts. Different parametric assumptions may lead to drastically different diversity estimates. We focus on nonparametric methods which are universally valid for all parametric assumptions and can be used to compare diversity across communities. We develop here a nonparametric estimator of the true singleton count to replace the spurious singleton count in all methods/approaches. Our estimator of the true singleton count is in terms of the frequency counts of doubletons, tripletons and quadrupletons, provided these three frequency counts are reliable. To quantify microbial alpha diversity for an individual community, we adopt the measure of Hill numbers (effective number of taxa) under a nonparametric framework. Hill numbers, parameterized by an order q that determines the measures’ emphasis on rare or common species, include taxa richness (q = 0), Shannon diversity (q = 1, the exponential of Shannon entropy), and Simpson diversity (q = 2, the inverse of Simpson index). A diversity profile which depicts the Hill number as a function of order q conveys all information contained in a taxa abundance distribution. Based on the estimated singleton count and the original non-singleton frequency counts, two statistical approaches (non-asymptotic and asymptotic) are developed to compare microbial diversity for multiple communities. (1) A non-asymptotic approach refers to the comparison of estimated diversities of standardized samples with a common finite sample size or sample completeness. This

  8. Estimating and comparing microbial diversity in the presence of sequencing errors.

    PubMed

    Chiu, Chun-Huo; Chao, Anne

    2016-01-01

    Estimating and comparing microbial diversity are statistically challenging due to limited sampling and possible sequencing errors for low-frequency counts, producing spurious singletons. The inflated singleton count seriously affects statistical analysis and inferences about microbial diversity. Previous statistical approaches to tackle the sequencing errors generally require different parametric assumptions about the sampling model or about the functional form of frequency counts. Different parametric assumptions may lead to drastically different diversity estimates. We focus on nonparametric methods which are universally valid for all parametric assumptions and can be used to compare diversity across communities. We develop here a nonparametric estimator of the true singleton count to replace the spurious singleton count in all methods/approaches. Our estimator of the true singleton count is in terms of the frequency counts of doubletons, tripletons and quadrupletons, provided these three frequency counts are reliable. To quantify microbial alpha diversity for an individual community, we adopt the measure of Hill numbers (effective number of taxa) under a nonparametric framework. Hill numbers, parameterized by an order q that determines the measures' emphasis on rare or common species, include taxa richness (q = 0), Shannon diversity (q = 1, the exponential of Shannon entropy), and Simpson diversity (q = 2, the inverse of Simpson index). A diversity profile which depicts the Hill number as a function of order q conveys all information contained in a taxa abundance distribution. Based on the estimated singleton count and the original non-singleton frequency counts, two statistical approaches (non-asymptotic and asymptotic) are developed to compare microbial diversity for multiple communities. (1) A non-asymptotic approach refers to the comparison of estimated diversities of standardized samples with a common finite sample size or sample completeness. This approach

  9. Numerical modeling of coupled nitrification-denitrification in sediment perfusion cores from the hyporheic zone of the Shingobee River, MN

    USGS Publications Warehouse

    Sheibley, R.W.; Jackman, A.P.; Duff, J.H.; Triska, F.J.

    2003-01-01

    Nitrification and denitrification kinetics in sediment perfusion cores were numerically modeled and compared to experiments on cores from the Shingobee River MN, USA. The experimental design incorporated mixing groundwater discharge with stream water penetration into the cores, which provided a well-defined, one-dimensional simulation of in situ hydrologic conditions. Ammonium (NH+4) and nitrate (NO-3) concentration gradients suggested the upper region of the cores supported coupled nitrification-denitrification, where groundwater-derived NH+4 was first oxidized to NO-3 then subsequently reduced via denitrification to N2. Nitrification and denitrification were modeled using a Crank-Nicolson finite difference approximation to a one-dimensional advection-dispersion equation. Both processes were modeled using first-order reaction kinetics because substrate concentrations (NH+4 and NO-3) were much smaller than published Michaelis constants. Rate coefficients for nitrification and denitrification ranged from 0.2 to 15.8 h-1 and 0.02 to 8.0 h-1, respectively. The rate constants followed an Arrhenius relationship between 7.5 and 22 ??C. Activation energies for nitrification and denitrification were 162 and 97.3 kJ/mol, respectively. Seasonal NH+4 concentration patterns in the Shingobee River were accurately simulated from the relationship between perfusion core temperature and NH+4 flux to the overlying water. The simulations suggest that NH+4 in groundwater discharge is controlled by sediment nitrification that, consistent with its activation energy, is strongly temperature dependent. ?? 2003 Elsevier Ltd. All rights reserved.

  10. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement.

    PubMed

    Sahinkaya, Erkan; Dursun, Nesrin

    2012-09-01

    This study evaluated the elimination of alkalinity need and excess sulfate generation of sulfur-based autotrophic denitrification process by stimulating simultaneous autotrophic and heterotrophic (mixotrophic) denitrification process in a column bioreactor by methanol supplementation. Also, denitrification performances of sulfur-based autotrophic and mixotrophic processes were compared. In autotrophic process, acidity produced by denitrifying sulfur-oxidizing bacteria was neutralized by the external NaHCO(3) supplementation. After stimulating mixotrophic denitrification process, the alkalinity need of the autotrophic process was satisfied by the alkalinity produced by heterotrophic denitrifiers. Decreasing and lastly eliminating the external alkalinity supplementation did not adversely affect the process performance. Complete denitrification of 75 mg L(-1) NO(3)-N under mixotrophic conditions at 4 h hydraulic retention time was achieved without external alkalinity supplementation and with effluent sulfate concentration lower than the drinking water guideline value of 250 mg L(-1). The denitrification rate of mixotrophic process (0.45 g NO(3)-N L(-1) d(-1)) was higher than that of autotrophic one (0.3 g NO(3)-N L(-1) d(-1)). Batch studies showed that the sulfur-based autotrophic nitrate reduction rate increased with increasing initial nitrate concentration and transient accumulation of nitrite was observed.

  11. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent.

    PubMed

    Sahinkaya, Erkan; Kilic, Adem; Duygulu, Bahadir

    2014-09-01

    Sulfur-based autotrophic denitrification of nitrified activated sludge process effluent was studied in pilot and full scale column bioreactors. Three identical pilot scale column bioreactors packed with varying sulfur/lime-stone ratios (1/1-3/1) were setup in a local wastewater treatment plant and the performances were compared under varying loading conditions for long-term operation. Complete denitrification was obtained in all pilot bioreactors even at nitrate loading of 10 mg NO3(-)-N/(L.h). When the temperature decreased to 10 °C during the winter time at loading of 18 mg NO3(-)-N/(L.h), denitrification efficiency decreased to 60-70% and the bioreactor with S/L ratio of 1/1 gave slightly better performance. A full scale sulfur-based autotrophic denitrification process with a S/L ratio of 1/1 was set up for the denitrification of an activated sludge process effluent with a flow rate of 40 m(3)/d. Almost complete denitrification was attained with a nitrate loading rate of 6.25 mg NO3(-)-N/(L.h).

  12. Comparison of combined and separated biological aerated filter (BAF) performance for pre-denitrification/nitrification of municipal wastewater.

    PubMed

    Rother, E; Cornel, P; Ante, A; Kleinert, P; Brambach, R

    2002-01-01

    The performance of two systems of semi-industrial up-flow biological aerated filters (BAF) with pre-denitrification followed by nitrification was studied and compared under various operating and loading conditions. The first system consisted of two separate reactors for the denitrification and the nitrification step, whereas in the second system the aerobic nitrification zone was packed on top of the anoxic denitrification zone in one reactor. The second system potentially offers substantial savings in investment costs and space requirements for a large scale treatment plant. Regarding the elimination of carbonaceous pollution and denitrification the systems did not show significant differences. However, nitrification in the combined system suffered from the mixing of different biocenosis by daily backwashing and was reduced to 50-70% of the separated system's performance. Factors such as oxygen concentration, raw water composition and loading rates affected both systems' nitrification rates in similar ways. Since it is impossible to optimise the nitrification and denitrification processes separately, the combined system should only be considered for large scale applications if space is very scarce and if a stable raw water composition can be expected. If strict limit values for nitrate have to be met in the effluent, a combination of pre- and post-denitrification is advantageous and advisable.

  13. Biological denitrification in a fluidized bed.

    PubMed

    Narjari, N K; Khilar, K C; Mahajan, S P

    1984-12-01

    A fluidized bed biofilm reactor using sand as the carrier particle was employed to study the effects of superficial velocity on the removal of nitrates as well as on the growth of the biofilm. Velocity was found to affect significantly both nitrate removal and biofilm growth. An analysis based on heterogenous catalysis was used to describe the denitrification process. There is good agreement between analysis and experimental measurements for startup and steady-state operating conditions.

  14. Saturated Zone Denitrification at California Dairies

    SciTech Connect

    Singleton, M J; Esser, B K; Moran, J E; McNab, W W; Beller, H R

    2006-02-27

    Denitrification can effectively mitigate the problem of high nitrate concentrations in groundwater under dairy operations by reducing nitrate to N{sub 2} gas, at sites where biogeochemical conditions are favorable. We present results from field studies at central California dairies that document the occurrence of saturated-zone denitrification in shallow groundwater using biomolecular indicators, stable isotope compositions of nitrate, and measurements of dissolved excess N{sub 2} gas. Excess N{sub 2} concentrations provide a measure of the extent to which nitrate in groundwater has been partially or completely denitrified. Abundant excess N{sub 2} and young {sup 3}H/{sup 3}He apparent groundwater ages indicate high denitrification rates near manure lagoons where multiple lines of evidence indicate seepage of lagoon water into the groundwater system. Natural tracers of lagoon water include high chloride and dissolved organic carbon concentrations, distinctive trace organic compounds, and high groundwater {delta}{sup 18}O values (relative to other recharge sources). Proximal to the lagoons, NH{sub 4}{sup +} may be present in groundwater, but is strongly adsorbed on to sediment particles. Bubble formation in the lagoons causes the exsolution of other gases (N{sub 2}, Ar, Ne, He, etc.), which partition into the gas phase and strip the lagoon water of its dissolved gas load, providing a unique tracer of lagoon seepage in groundwater.

  15. Comparing NASA and ESA Cost Estimating Methods for Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Hunt, Charles D.; vanPelt, Michel O.

    2004-01-01

    To compare working methodologies between the cost engineering functions in NASA Marshall Space Flight Center (MSFC) and ESA European Space Research and Technology Centre (ESTEC), as well as to set-up cost engineering capabilities for future manned Mars projects and other studies which involve similar subsystem technologies in MSFC and ESTEC, a demonstration cost estimate exercise was organized. This exercise was a direct way of enhancing not only cooperation between agencies but also both agencies commitment to credible cost analyses. Cost engineers in MSFC and ESTEC independently prepared life-cycle cost estimates for a reference human Mars project and subsequently compared the results and estimate methods in detail. As a non-sensitive, public domain reference case for human Mars projects, the Mars Direct concept was chosen. In this paper the results of the exercise are shown; the differences and similarities in estimate methodologies, philosophies, and databases between MSFC and ESTEC, as well as the estimate results for the Mars Direct concept. The most significant differences are explained and possible estimate improvements identified. In addition, the Mars Direct plan and the extensive cost breakdown structure jointly set-up by MSFC and ESTEC for this concept are presented. It was found that NASA applied estimate models mainly based on historic Apollo and Space Shuttle cost data, taking into account the changes in technology since then. ESA used models mostly based on European satellite and launcher cost data, taking into account the higher equipment and testing standards for human space flight. Most of NASA's and ESA s estimates for the Mars Direct case are comparable, but there are some important, consistent differences in the estimates for: 1) Large Structures and Thermal Control subsystems; 2) System Level Management, Engineering, Product Assurance and Assembly, Integration and Test/Verification activities; 3) Mission Control; 4) Space Agency Program Level

  16. Quantifying denitrification losses from a sub-tropical pasture in Queensland/Australia - use of the 15N gas flux method

    NASA Astrophysics Data System (ADS)

    Friedl, Johannes; Scheer, Clemens; Warner, Daniel; Grace, Peter

    2014-05-01

    The microbial mediated production of nitrous oxide (N2O) and its reduction to dinitrogen (N2) via denitrification represents a loss of nitrogen (N) from fertilised agro ecosystems to the atmosphere. Although denitrification remains a major uncertainty in estimating N losses from soils, the magnitude of N2 losses and related N2:N2O ratios from soils are largely unknown due to difficulties measuring N2 against a high atmospheric background. In order to address this lack of data, this study investigated the influence of different soil moisture contents on N2 and N2O emissions from a sub-tropical pasture in Queensland/Australia using the 15N gas flux method. Intact soil cores were incubated over 14 days at 80% and 100% water filled pore space (WFPS). Gas samples were taken up to six times per day after application of 15N labelled nitrate, equivalent to 50 kg N ha-1 and analysed for N2 and N2O by isotope ratio mass spectrometry. Fluxes were calculated assuming non-random 15N distribution in the headspace according to Mulvaney and Kurtz (1984) using the labelled pool of nitrate estimated from N2O measurements (Stevens and Laughlin 2001). The main product of denitrification in both treatments was N2. N2 emissions exceeded N2O emissions by a factor of 1.3 ± 0.3 at 80% WFPS and a factor of 3 ± 0.8 at 100% WFPS. The total amount of N-N2 lost over the incubation period was 13.5±1.0 kg N ha-1 at 80% WFPS and 21.8±1.8 kg ha-1 at 100% WFPS respectively. Over the entire incubation period, N2 emissions remained elevated at 100% WFPS, showing high variation between soil cores, while related N2O emissions decreased. At 80% WFPS, N2 emissions increased constantly over time showing significantly higher values after day five. At the same time, N2O fluxes declined. Consequently, N2:N2O ratios rose over the incubation period in both treatments. Overall denitrification rates and related N2:N2O ratios were higher at 100% WFPS compared to 80% WFPS, confirming WFPS as a major driver of

  17. Comparative performance of heterogeneity variance estimators in meta-analysis: a review of simulation studies.

    PubMed

    Langan, Dean; Higgins, Julian P T; Simmonds, Mark

    2016-04-06

    Random-effects meta-analysis methods include an estimate of between-study heterogeneity variance. We present a systematic review of simulation studies comparing the performance of different estimation methods for this parameter. We summarise the performance of methods in relation to estimation of heterogeneity and of the overall effect estimate, and of confidence intervals for the latter. Among the twelve included simulation studies, the DerSimonian and Laird method was most commonly evaluated. This estimate is negatively biased when heterogeneity is moderate to high and therefore most studies recommended alternatives. The Paule-Mandel method was recommended by three studies: it is simple to implement, is less biased than DerSimonian and Laird and performs well in meta-analyses with dichotomous and continuous outcomes. In many of the included simulation studies, results were based on data that do not represent meta-analyses observed in practice, and only small selections of methods were compared. Furthermore, potential conflicts of interest were present when authors of novel methods interpreted their results. On the basis of current evidence, we provisionally recommend the Paule-Mandel method for estimating the heterogeneity variance, and using this estimate to calculate the mean effect and its 95% confidence interval. However, further simulation studies are required to draw firm conclusions. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Dynamic interplay between microbial denitrification and antibiotic resistance under enhanced anoxic denitrification condition in soil.

    PubMed

    Sun, Mingming; Ye, Mao; Liu, Kuan; Schwab, Arthur P; Liu, Manqiang; Jiao, Jiaguo; Feng, Yanfang; Wan, Jinzhong; Tian, Da; Wu, Jun; Li, Huixin; Hu, Feng; Jiang, Xin

    2017-03-01

    Mixed contamination of nitrate and antibiotics/antibiotic-resistant genes (ARGs) is an emerging environmental risk to farmland soil. This is the first study to explore the role of excessive anthropogenic nitrate input in the anoxic dissipation of soil antibiotic/ARGs. During the initial 10 days of incubation, the presence of soil antibiotics significantly inhibited NO3(-) dissipation, N2O production rate, and denitrifying genes (DNGs) abundance in soil (p < 0.05). Between days 10 and 30, by contrast, enhanced denitrification clearly prompted the decline in antibiotic contents and ARG abundance. Significantly negative correlations were detected between DNGs and ARGs, suggesting that the higher the DNG activity, the more dramatic is the denitrification and the greater are the antibiotic dissipation and ARG abundance. This study provides crucial knowledge for understanding the mutual interaction between soil DNGs and ARGs in the enhanced anoxic denitrification condition.

  19. Soil physicochemical conditions, denitrification rates, and abundance in north Carolina coastal plain restored wetlands.

    PubMed

    Ducey, T F; Miller, J O; Lang, M W; Szogi, A A; Hunt, P G; Fenstermacher, D E; Rabenhorst, M C; McCarty, G W

    2015-05-01

    Over the last century, North Carolina has seen a severe reduction in the percentage of wetlands and a rise in negative environmental impacts related to this loss. To counter these effects, efforts have been enacted to mitigate wetland loss and create new wetland areas. The objective of this study was to assess the impact of hydrological restoration at several sites in the North Carolina coastal plain. Nine sites were selected for study. Hydrologically restored wetlands were compared with natural wetlands and prior converted (PC) croplands (i.e., historic wetlands under agricultural production). Each site was analyzed along a relative wetness gradient, and physicochemical properties, denitrification enzyme activity, and NO reductase gene () abundances using real-time PCR were measured. Physicochemically, restoration resulted in significantly increased levels of total C as compared with PC cropland sites. Restored wetland sites also saw pH, soil moisture, P, and NO+NO approximate levels similar to those of natural wetlands. Denitrification enzyme activity rates varied based on relative wetness within individual sites, generally increasing with increasing soil moisture. However, denitrification tended to be lower in restored wetland sites relative to natural wetlands. Gene abundances of saw statistically significant decreases in restored wetland soils. In conclusion, although analysis of restored wetlands reveals clear changes in several physicochemical characteristics and significant decreases in gene abundances, restoration efforts appear to have not significantly affected the denitrification component of the N cycle.

  20. Progress in quantifying rates and product ratios of microbial denitrification using stable isotope approaches

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Giesemann, Anette; Lewicka-Szczebak, Dominika; Rohe, Lena; Flessa, Heinz

    2015-04-01

    Although it is known since long that microbial denitrification plays a central role in N cycling in soils due to loss of nutrient N, emissions of N2O and lowering of N leaching, few data at the field scale are available due to the difficulty in measurement. In recent years, stable isotope signatures of N2O such as δ18O, average δ15N (δ15Nbulk) and 15N site preference (SP = difference in δ15N between the central and peripheral N positions of the asymmetric N2O molecule) have been used to constrain the atmospheric N2O budget and to characterize N2O turnover processes including N2O production and reduction by microbial denitrification. However, the use of this approach to study N2O dynamics in soils requires knowledge of isotope fractionation factors for the various partial processes involved, e.g. N2O production by nitrification or fungal/bacterial denitrification, and N2O reduction by bacterial denitrification. Here we present recent progress on the principles of isotope fractionation modeling to estimate N2O reduction and on the role of microbial groups and their specific impact on isotope values. Moreover, we report and discuss approaches to determine isotope values of produced N2O prior to its reduction as well as enrichment factors of N2O reduction. Finally, a variety of results from lab and field studies will be shown were N2O reduction estimates by isotope fractionation modeling are validated by independent measurements using 15N tracing or He/O2 incubations. Methodical improvements to increase sensitivity of the 15N tracing approach will be briefly addressed. We conclude that up to now SP of soil-emitted N2O proved to be suitable to constrain the product ratio of denitrification if N2O fluxes are dominated by bacterial denitrification. Although this approach is not yet precise enough for robust quantification of N2 fluxes, improved precision can be obtained in future, if further progress in understanding the control of fractionation factors of production

  1. Comparative assessment of techniques for initial pose estimation using monocular vision

    NASA Astrophysics Data System (ADS)

    Sharma, Sumant; D`Amico, Simone

    2016-06-01

    This work addresses the comparative assessment of initial pose estimation techniques for monocular navigation to enable formation-flying and on-orbit servicing missions. Monocular navigation relies on finding an initial pose, i.e., a coarse estimate of the attitude and position of the space resident object with respect to the camera, based on a minimum number of features from a three dimensional computer model and a single two dimensional image. The initial pose is estimated without the use of fiducial markers, without any range measurements or any apriori relative motion information. Prior work has been done to compare different pose estimators for terrestrial applications, but there is a lack of functional and performance characterization of such algorithms in the context of missions involving rendezvous operations in the space environment. Use of state-of-the-art pose estimation algorithms designed for terrestrial applications is challenging in space due to factors such as limited on-board processing power, low carrier to noise ratio, and high image contrasts. This paper focuses on performance characterization of three initial pose estimation algorithms in the context of such missions and suggests improvements.

  2. Analysis of Antarctic Denitrification in 2003 Winter Observed by ILAS-II Onboard the ADEOS-II Satellite

    NASA Astrophysics Data System (ADS)

    Nakajima, H.; Saeki, K.; Sugita, T.

    2005-12-01

    Polar Stratospheric Clouds (PSC) play an important role in ozone destruction in both Arctic and Antarctic stratosphere in winter. They take up gas-phase nitric acid (HNO3) and grow up when temperature is below nitric acid saturation temperature (TNAT). When PSC becomes large, it starts to descend and nitric acid is removed from the air mass, resulting in denitrification. The Improved Limb Atmospheric Spectrometer-II (ILAS-II) onboard the Advanced Earth Observing Satellite-II (ADEOS-II) successfully made measurements for the whole Antarctic winter in 2003. ILAS-II measured vertical profiles of O3, HNO3, NO2, H2O, N2O, CH4, ClONO2, N2O5, etc. in addition to the aerosol extinction coefficients at 780 nm. In this study, we analyzed denitrification from ILAS-II HNO3 and N2O data in regard to temperature history on the trajectory. The quantity of denitrification was estimated from the difference between measured HNO3 and HNO3* assumed from HNO3-- N2O correlation. In this analysis, it was found that denitrification was observed only for those airmass that experienced temperature below TICE (ice saturation temperature) in late June, 2003. In late July, it was found that most airmass inside the polar vortex was denitrified regardless of temperature history. This suggests that permanent denitrification has occurred in June-July period. The transition of relationship between denitrification and airmass temperature history was discovered from the ILAS-II data. Also, major types of PSC have found to be changed from nitric acid trihydrate (NAT) in June to ice in July, from the ILAS-II data. This is considered to be due to the lack of nitric acid in the airmass due to the denitrification in July.

  3. Comparing Denitrification Rates and Carbon Sources in Commercial Scale Upflow Denitrification Biological Filters in Aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic biological filtration systems employing nitrifying bacteria to remediate excess ammonia and nitrite concentrations are common components of recirculating aquaculture systems (RAS). However, significant water exchange may still be necessary to reduce nitrate concentrations to acceptable leve...

  4. Estimating, Testing, and Comparing Specific Effects in Structural Equation Models: The Phantom Model Approach

    ERIC Educational Resources Information Center

    Macho, Siegfried; Ledermann, Thomas

    2011-01-01

    The phantom model approach for estimating, testing, and comparing specific effects within structural equation models (SEMs) is presented. The rationale underlying this novel method consists in representing the specific effect to be assessed as a total effect within a separate latent variable model, the phantom model that is added to the main…

  5. Soil Texture Estimates: A Tool to Compare Texture-by-Feel and Lab Data

    ERIC Educational Resources Information Center

    Franzmeier, D.P.; Owens, P.R.

    2008-01-01

    Soil texture is a fundamental soil property that impacts agricultural and engineering land-use. Comparing texture estimates-by-feel to laboratory-known values to calibrate fingers is a common practice. As educators, it is difficult to assess this field skill consistently and fairly. The instructor may give full credit for the correct texture class…

  6. Estimating Item Difficulty with Comparative Judgments. Research Report. ETS RR-14-39

    ERIC Educational Resources Information Center

    Attali, Yigal; Saldivia, Luis; Jackson, Carol; Schuppan, Fred; Wanamaker, Wilbur

    2014-01-01

    Previous investigations of the ability of content experts and test developers to estimate item difficulty have, for themost part, produced disappointing results. These investigations were based on a noncomparative method of independently rating the difficulty of items. In this article, we argue that, by eliciting comparative judgments of…

  7. Comparing self-perceived and estimated fracture risk by FRAX® of women with osteoporosis.

    PubMed

    Baji, Petra; Gulácsi, László; Horváth, Csaba; Brodszky, Valentin; Rencz, Fanni; Péntek, Márta

    2017-12-01

    In this study, we compared subjective fracture risks of Hungarian women with osteoporosis to FRAX®-based estimates. Patients with a previous fracture, parental hip fracture, low femoral T-score, higher age, and higher BMI were more likely to underestimate their risks. Patients also failed to associate risk factors with an increased risk of fractures.

  8. Comparative estimate of the effectiveness of different algorithms for the radar classification of thunderstorms and showers

    NASA Technical Reports Server (NTRS)

    Linev, A. G.; Oprishko, V. S.; Popova, N. D.; Salman, Y. M.

    1975-01-01

    Several schemes for discriminating severe weather phenomena with the aid of different algorithms are examined. The schemes were tested on the same sample. A comparative estimate of the effectiveness of the different algorithms for classifying thunderstorms and showers is carried out.

  9. Mechanism of charged pollutants removal in an ion exchange membrane bioreactor: drinking water denitrification.

    PubMed

    Velizarov, S; Rodrigues, C M; Reis, M A; Crespo, J G

    The mechanism of anionic pollutant removal in an ion exchange membrane bioreactor (IEMB) was studied for drinking water denitrification. This hybrid process combines continuous ion exchange transport (Donnan dialysis) of nitrate and its simultaneous bioreduction to gaseous nitrogen. A nonporous mono-anion permselective membrane precludes direct contact between the polluted water and the denitrifying culture and prevents secondary pollution of the treated water with dissolved nutrients and metabolic products. Complete denitrification may be achieved without accumulation of NO3(-) and NO2(-) ions in the biocompartment. Focus was given to the effect of the concentration of co-ions, counterions, and ethanol on the IEMB performance. The nitrate overall mass transfer coefficient in this hybrid process was found to be 2.8 times higher compared to that in a pure Donnan dialysis process without denitrification. Furthermore, by adjusting the ratio of co-ions between the biocompartment and the polluted water compartment, the magnitude and direction of each individual anion flux can be easily regulated, allowing for flexible process operation and control. Synthetic groundwater containing 135-350 mg NO3(-) L(-1) was treated in the IEMB system. A surface denitrification rate of 33 g NO3(-) per square meter of membrane per day was obtained at a nitrate loading rate of 360 g NO3(-) m(-3)d(-1), resulting in a nitrate removal efficiency of 85%.

  10. Denitrification and Nitrate-Dependent Fe(II) Oxidation in Various Pseudogulbenkiania Strains

    PubMed Central

    Ishii, Satoshi; Joikai, Kazuki; Otsuka, Shigeto; Senoo, Keishi; Okabe, Satoshi

    2016-01-01

    Pseudogulbenkiania is a relatively recently characterized genus within the order Neisseriales, class Betaproteobacteria. This genus contains several strains that are capable of anaerobic, nitrate-dependent Fe(II) oxidation (NDFO), a geochemically important reaction for nitrogen and iron cycles. In the present study, we examined denitrification functional gene diversities within this genus, and clarified whether other Pseudogulbenkiania sp. strains perform denitrification and NDFO. Seventy strains were analyzed, including two type strains, a well-characterized NDFO strain, and 67 denitrifying strains isolated from various rice paddy fields and rice-soybean rotation fields in Japan. We also attempted to identify the genes responsible for NDFO by mutagenesis. Our comprehensive analysis showed that all Pseudogulbenkiania strains tested performed denitrification and NDFO; however, we were unable to obtain NDFO-deficient denitrifying mutants in our mutagenesis experiment. This result suggests that Fe(II) oxidation in these strains is not enzymatic, but is caused by reactive N-species that are formed during nitrate reduction. Based on the results of the comparative genome analysis among Pseudogulbenkiania sp. strains, we identified low sequence similarity within the nos gene as well as different gene arrangements within the nos gene cluster, suggesting that nos genes were horizontally transferred. Since Pseudogulbenkiania sp. strains have been isolated from various locations around the world, their denitrification and NDFO abilities may contribute significantly to nitrogen and iron biogeochemical cycles. PMID:27431373

  11. Estimation of retired mobile phones generation in China: A comparative study on methodology

    SciTech Connect

    Li, Bo; Yang, Jianxin; Lu, Bin; Song, Xiaolong

    2015-01-15

    Highlights: • The sales data of mobile phones in China was revised by considering the amount of smuggled and counterfeit mobile phones. • The estimation of retired mobile phones in China was made by comparing some relevant methods. • The advanced result of estimation can help improve the policy-making. • The method suggested in this paper can be also used in other countries. • Some discussions on methodology are also conducted in order for the improvement. - Abstract: Due to the rapid development of economy and technology, China has the biggest production and possession of mobile phones around the world. In general, mobile phones have relatively short life time because the majority of users replace their mobile phones frequently. Retired mobile phones represent the most valuable electrical and electronic equipment (EEE) in the main waste stream because of such characteristics as large quantity, high reuse/recovery value and fast replacement frequency. Consequently, the huge amount of retired mobile phones in China calls for a sustainable management system. The generation estimation can provide fundamental information to construct the sustainable management system of retired mobile phones and other waste electrical and electronic equipment (WEEE). However, the reliable estimation result is difficult to get and verify. The priority aim of this paper is to provide proper estimation approach for the generation of retired mobile phones in China, by comparing some relevant methods. The results show that the sales and new method is in the highest priority in estimation of the retired mobile phones. The result of sales and new method shows that there are 47.92 million mobile phones retired in 2002, and it reached to 739.98 million in China in 2012. It presents an increasing tendency with some fluctuations clearly. Furthermore, some discussions on methodology, such as the selection of improper approach and error in the input data, are also conducted in order to

  12. Comparative estimation of vibrational entropy changes in proteins through normal modes analysis.

    PubMed

    Carrington, Benjamin J; Mancera, Ricardo L

    2004-10-01

    We compare the vibrational entropy changes of proteins calculated using a full and a number of approximate normal modes analysis methods. The vibrational entropy differences for three conformational changes and three protein binding interactions were computed. In general, the approximate methods yield good estimates of the vibrational entropy change in a fraction of the time required by full normal modes analysis. The absolute entropies are either overestimated or greatly underestimated, but the difference is sufficiently accurate for some methods. This indicates that some of the approximate methods can give reasonable estimates of the associated vibrational entropy changes, making them suitable for inclusion in free energy calculations.

  13. Comparative analysis of methods for estimating arm segment parameters and joint torques from inverse dynamics.

    PubMed

    Piovesan, Davide; Pierobon, Alberto; Dizio, Paul; Lackner, James R

    2011-03-01

    A common problem in the analyses of upper limb unfettered reaching movements is the estimation of joint torques using inverse dynamics. The inaccuracy in the estimation of joint torques can be caused by the inaccuracy in the acquisition of kinematic variables, body segment parameters (BSPs), and approximation in the biomechanical models. The effect of uncertainty in the estimation of body segment parameters can be especially important in the analysis of movements with high acceleration. A sensitivity analysis was performed to assess the relevance of different sources of inaccuracy in inverse dynamics analysis of a planar arm movement. Eight regression models and one water immersion method for the estimation of BSPs were used to quantify the influence of inertial models on the calculation of joint torques during numerical analysis of unfettered forward arm reaching movements. Thirteen subjects performed 72 forward planar reaches between two targets located on the horizontal plane and aligned with the median plane. Using a planar, double link model for the arm with a floating shoulder, we calculated the normalized joint torque peak and a normalized root mean square (rms) of torque at the shoulder and elbow joints. Statistical analyses quantified the influence of different BSP models on the kinetic variable variance for given uncertainty on the estimation of joint kinematics and biomechanical modeling errors. Our analysis revealed that the choice of BSP estimation method had a particular influence on the normalized rms of joint torques. Moreover, the normalization of kinetic variables to BSPs for a comparison among subjects showed that the interaction between the BSP estimation method and the subject specific somatotype and movement kinematics was a significant source of variance in the kinetic variables. The normalized joint torque peak and the normalized root mean square of joint torque represented valuable parameters to compare the effect of BSP estimation methods

  14. Probe Region Expression Estimation for RNA-Seq Data for Improved Microarray Comparability.

    PubMed

    Uziela, Karolis; Honkela, Antti

    2015-01-01

    Rapidly growing public gene expression databases contain a wealth of data for building an unprecedentedly detailed picture of human biology and disease. This data comes from many diverse measurement platforms that make integrating it all difficult. Although RNA-sequencing (RNA-seq) is attracting the most attention, at present, the rate of new microarray studies submitted to public databases far exceeds the rate of new RNA-seq studies. There is clearly a need for methods that make it easier to combine data from different technologies. In this paper, we propose a new method for processing RNA-seq data that yields gene expression estimates that are much more similar to corresponding estimates from microarray data, hence greatly improving cross-platform comparability. The method we call PREBS is based on estimating the expression from RNA-seq reads overlapping the microarray probe regions, and processing these estimates with standard microarray summarisation algorithms. Using paired microarray and RNA-seq samples from TCGA LAML data set we show that PREBS expression estimates derived from RNA-seq are more similar to microarray-based expression estimates than those from other RNA-seq processing methods. In an experiment to retrieve paired microarray samples from a database using an RNA-seq query sample, gene signatures defined based on PREBS expression estimates were found to be much more accurate than those from other methods. PREBS also allows new ways of using RNA-seq data, such as expression estimation for microarray probe sets. An implementation of the proposed method is available in the Bioconductor package "prebs."

  15. Comparative Study of Clinical and Sonographic Estimation of Foetal Weight at Term.

    PubMed

    Bakshi, L; Begum, H A; Khan, I; Dey, S K; Bhattacharjee, M; Bakshi, M K; Dey, S; Habib, A; Barman, K K

    2015-07-01

    A cross sectional comparative study was conducted at Dhaka National Medical College, Dhaka from January to June 2012, to observe the accuracy of clinical and ultrasonographic estimation of foetal weight at term in our environment. Seventy five pregnant women who fulfilled the inclusion criteria had their foetal weight estimated independently using clinical and ultrasonographic methods. Accuracy was determined by percentage error, absolute percentage error and proportion of estimates within 10% of actual birth weight (birth weight fetus of +10%). Statistical analysis was done using the paired t-test, the Wilcoxon signed-rank test, and the chi-square test. The study sample had an actual average birth weight of 2989.60 ± 408.76 (range 2310-4000 gm). Overall, the clinical method overestimated birth-weight, while ultrasound underestimated it. The mean absolute percentage error of the clinical method was more than that of the sonographic method, and the number of estimates within 10% of actual birth weight for the clinical method (41.3%) was less than for the sonographic method (57.3%); the difference was not statistically significant. In the low birth-weight (<2,500 gm) group, the mean absolute percentage error of sonographic estimates were significantly smaller. Significantly more sonographic estimates (75%) were within 10% of actual birth-weight than those of the clinical method (0%). No statistically significant difference was observed in all the measures of accuracy for the normal birth-weight range of 2,500-<4,000 gm and in the macrosomic group (≥ 4,000 gm). Clinical estimation of birth-weight is as accurate as routine ultrasonographic estimation, except in low-birth-weight babies.

  16. Toward Reliable Estimates of Abundance: Comparing Index Methods to Assess the Abundance of a Mammalian Predator

    PubMed Central

    Güthlin, Denise; Storch, Ilse; Küchenhoff, Helmut

    2014-01-01

    Due to time and financial constraints indices are often used to obtain landscape-scale estimates of relative species abundance. Using two different field methods and comparing the results can help to detect possible bias or a non monotonic relationship between the index and the true abundance, providing more reliable results. We used data obtained from camera traps and feces counts to independently estimate relative abundance of red foxes in the Black Forest, a forested landscape in southern Germany. Applying negative binomial regression models, we identified landscape parameters that influence red fox abundance, which we then used to predict relative red fox abundance. We compared the estimated regression coefficients of the landscape parameters and the predicted abundance of the two methods. Further, we compared the costs and the precision of the two field methods. The predicted relative abundances were similar between the two methods, suggesting that the two indices were closely related to the true abundance of red foxes. For both methods, landscape diversity and edge density best described differences in the indices and had positive estimated effects on the relative fox abundance. In our study the costs of each method were of similar magnitude, but the sample size obtained from the feces counts (262 transects) was larger than the camera trap sample size (88 camera locations). The precision of the camera traps was lower than the precision of the feces counts. The approach we applied can be used as a framework to compare and combine the results of two or more different field methods to estimate abundance and by this enhance the reliability of the result. PMID:24743565

  17. Toward reliable estimates of abundance: comparing index methods to assess the abundance of a Mammalian predator.

    PubMed

    Güthlin, Denise; Storch, Ilse; Küchenhoff, Helmut

    2014-01-01

    Due to time and financial constraints indices are often used to obtain landscape-scale estimates of relative species abundance. Using two different field methods and comparing the results can help to detect possible bias or a non monotonic relationship between the index and the true abundance, providing more reliable results. We used data obtained from camera traps and feces counts to independently estimate relative abundance of red foxes in the Black Forest, a forested landscape in southern Germany. Applying negative binomial regression models, we identified landscape parameters that influence red fox abundance, which we then used to predict relative red fox abundance. We compared the estimated regression coefficients of the landscape parameters and the predicted abundance of the two methods. Further, we compared the costs and the precision of the two field methods. The predicted relative abundances were similar between the two methods, suggesting that the two indices were closely related to the true abundance of red foxes. For both methods, landscape diversity and edge density best described differences in the indices and had positive estimated effects on the relative fox abundance. In our study the costs of each method were of similar magnitude, but the sample size obtained from the feces counts (262 transects) was larger than the camera trap sample size (88 camera locations). The precision of the camera traps was lower than the precision of the feces counts. The approach we applied can be used as a framework to compare and combine the results of two or more different field methods to estimate abundance and by this enhance the reliability of the result.

  18. Short-term enhancement and long-term suppression of denitrification in estuarine sediments receiving primary- and secondary-treated paper and pulp mill discharge.

    PubMed

    Oakes, Joanne M; Eyre, Bradley D; Ross, Donald J

    2011-04-15

    To determine the role of sediment denitrification in removing inputs of primary- (PE) and secondary-treated effluent (SE) from a pulp and paper mill (PPM), organic matter (OM) associated with PE (residual wood fiber) and SE (activated sludge biomass and phytoplankton) was added to estuarine intertidal sediments and denitrification rates were measured over 27 days. Labile sludge biomass and phytoplankton initially stimulated denitrification, including for pre-existing sediment N. After 2.5 d, however, denitrification was suppressed apparently due to microbial competition for N to process the refractory (high C:N) material remaining. Wood fiber suppressed denitrification throughout the experiment due to competition for N to process the refractory OM. Ultimate long-term denitrification suppression by phytoplankton is offset by initial enhanced denitrification rates. Although nutrient release during degradation of sludge biomass and wood fiber may stimulate phytoplankton production, N equivalent to 127% of the expected daily phytoplankton load was denitrified within 24 h, allowing for permanent removal of PPM-derived N. Compared to primary treatment, secondary treatment of PPM effluent has greater potential for N removal.

  19. Warming Can Boost Denitrification Disproportionately Due to Altered Oxygen Dynamics

    PubMed Central

    Veraart, Annelies J.; de Klein, Jeroen J. M.; Scheffer, Marten

    2011-01-01

    Background Global warming and the alteration of the global nitrogen cycle are major anthropogenic threats to the environment. Denitrification, the biological conversion of nitrate to gaseous nitrogen, removes a substantial fraction of the nitrogen from aquatic ecosystems, and can therefore help to reduce eutrophication effects. However, potential responses of denitrification to warming are poorly understood. Although several studies have reported increased denitrification rates with rising temperature, the impact of temperature on denitrification seems to vary widely between systems. Methodology/Principal Findings We explored the effects of warming on denitrification rates using microcosm experiments, field measurements and a simple model approach. Our results suggest that a three degree temperature rise will double denitrification rates. By performing experiments at fixed oxygen concentrations as well as with oxygen concentrations varying freely with temperature, we demonstrate that this strong temperature dependence of denitrification can be explained by a systematic decrease of oxygen concentrations with rising temperature. Warming decreases oxygen concentrations due to reduced solubility, and more importantly, because respiration rates rise more steeply with temperature than photosynthesis. Conclusions/Significance Our results show that denitrification rates in aquatic ecosystems are strongly temperature dependent, and that this is amplified by the temperature dependencies of photosynthesis and respiration. Our results illustrate the broader phenomenon that coupling of temperature dependent reactions may in some situations strongly alter overall effects of temperature on ecological processes. PMID:21483809

  20. Optimization and evaluation of a bottom substrate denitrification tank for nitrate removal from a recirculating aquaculture system.

    PubMed

    Pungrasmi, Wiboonluk; Playchoom, Cholticha; Powtongsook, Sorawit

    2013-08-01

    A bottom substrate denitrification tank for a recirculating aquaculture system was developed. The laboratory scale denitrification tank was an 8 L tank (0.04 m2 tank surface area), packed to a depth of 5 cm with a bottom substrate for natural denitrifying bacteria. An aquarium pump was used for gentle water mixing in the tank; the dissolved oxygen in the water was maintained in aerobic conditions (e.g. > 2 mg/L) while anoxic conditions predominated only at the bottom substrate layer. The results showed that, among the four substrates tested (soil, sand, pumice stone and vermiculite), pumice was the most preferable material. Comparing carbon supplementation using methanol and molasses, methanol was chosen as the carbon source because it provided a higher denitrification rate than molasses. When methanol was applied at the optimal COD:N ratio of 5:1, a nitrate removal rate of 4591 +/- 133 mg-N/m2 tank bottom area/day was achieved. Finally, nitrate removal using an 80 L denitrification tank was evaluated with a 610 L recirculating tilapia culture system. Nitrate treatment was performed by batch transferring high nitrate water from the nitrification tank into the denitrification tank and mixing with methanol at a COD:N ratio of 5:1. The results from five batches of nitrate treatment revealed that nitrate was successfully removed from water without the accumulation of nitrite and ammonia. The average nitrate removal efficiency was 85.17% and the average denitrification rate of the denitrification tank was 6311 +/- 945 mg-N/m2 tank bottom area/day or 126 +/- 18 mg-N/L of pumice packing volume/day.

  1. A comparative study of iron abundance estimation methods: Application to the western nearside of the Moon

    NASA Astrophysics Data System (ADS)

    Bhatt, Megha; Mall, Urs; Wöhler, Christian; Grumpe, Arne; Bugiolacchi, Roberto

    2015-03-01

    The FeO weight percentage (wt.%) abundance of the Moon's western nearside (55°S-55°N and 5°E-40°W) is estimated using data from the InfraRed Spectrometer-2 (SIR-2) and the Moon Mineralogy Mapper (M3). In this study, we modified an FeO abundance estimation algorithm (Bhatt, M., Mall, U., Bugiolacchi, R., McKenna-Lawlor, S., Banaszkiewicz, M., Nathues, A., Ullaland, K. [2012]. Icarus 220, 51-64) which relies exclusively on the 2-μm absorption band parameters. The modified FeO abundance estimation algorithm and the regression-based elemental abundance estimation algorithm (Wöhler, C., Grumpe, A., Berezhnoy, A., Bhatt, M.U., Mall, U. [2014]. Icarus 235, 86-122) which is based on the 1-μm and 2-μm absorption band parameters is applied to the M3 data. We have compared results obtained from these two modified algorithms with a previously published Clementine's FeO wt.% map (Lucey, P.G., Blewett, D.T., Jolliff, B.L. [2000]. J. Geophys. Res. 105, 20297-20306). The effects of topography and space weathering on FeO wt.% estimates have been successfully minimized using the modified algorithm based on the 2-μm absorption band parameters. Thus, this algorithm can be successfully applied at middle to high latitudes. Furthermore, a correction for TiO2 is applied to the FeO abundance estimation algorithm based on the 2-μm absorption band parameters using the M3 data. Our comparative study shows a good correspondence between the three algorithms discussed. There are two locations: the crater Tycho and the region around Rima Bode which show major discrepancies. Our modified algorithm based on the 2-μm absorption parameters predicts 3-4 wt.% less FeO for the ray system of Tycho than for the surrounding region. The average iron abundance for the lunar highlands is about 6 wt.% and for the mare regions is about 16 wt.% using the regression-based elemental abundance estimation algorithm and the algorithm based on the 2-μm absorption parameters. This result is consistent with

  2. A PRELIMINARY EXPERIMENT ON DENITRIFICATION OF WASTE LANDFILL LEACHATE

    NASA Astrophysics Data System (ADS)

    Wada, Nariaki; Nakamichi, Tamihiro; Yagi, Masahiro; Matsumoto, Toshihide; Kugimiya, Akikazu; Michioku, Kohji

    A laboratory experiment on denitrification was carried out in order to reduce nitrogen load from municipal landfill leachate. Nitrogen was efficiently removed by feeding sludge of the leachate pond into the tanks, which could activate denitrification bacteria. Although inorganic reducing agent such as iron powder was not able to make the whole water mass anoxic, denitrification took place by supplying organic matters such as methanol, hydrogen feeding agent, etc.. It is considered that small amount of anoxic water film produced on surfaces of container and carriers might contribute to denitrification, although the bulk water is kept aerobic. It is found that organic matters contained in the leachate is so insufficient that nitrification liquid circulation does not work well for denitrification.

  3. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications.

    PubMed

    Shao, Ming-Fei; Zhang, Tong; Fang, Herbert Han-Ping

    2010-11-01

    Sulfur-driven autotrophic denitrification refers to the chemolithotrophic process coupling denitrification with the oxidation of reduced inorganic sulfur compounds. Ever since 1904, when Thiobacillus denitrificans was isolated, autotrophic denitrifiers and their uncultured close relatives have been continuously identified from highly diverse ecosystems including hydrothermal vents, deep sea redox transition zones, sediments, soils, inland soda lakes, etc. Currently, 14 valid described species within α-, β-, γ-, and ε-Proteobacteria have been identified as capable of autotrophic denitrification. Autotrophic denitrification is also widely applied in environmental engineering for the removal of sulfide and nitrate from different water environments. This review summarizes recent researches on autotrophic denitrification, highlighting its diversity, metabolic traits, and engineering applications.

  4. Evapotranspiration Measurement and Estimation: Weighing Lysimeter and Neutron Probe Based Methods Compared with Eddy Covariance

    NASA Astrophysics Data System (ADS)

    Evett, S. R.; Gowda, P. H.; Marek, G. W.; Alfieri, J. G.; Kustas, W. P.; Brauer, D. K.

    2014-12-01

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP) and soil core sampling techniques), and can be biased with respect to ET from the surrounding area. The area represented by flux sensing methods such as eddy covariance (EC) is typically estimated with a flux footprint/source area model. The dimension, position of, and relative contribution of upwind areas within the source area are mainly influenced by sensor height, wind speed, atmospheric stability and wind direction. Footprints for EC sensors positioned several meters above the canopy are often larger than can be economically covered by mass balance methods. Moreover, footprints move with atmospheric conditions and wind direction to cover different field areas over time while mass balance methods are static in space. Thus, EC systems typically sample a much greater field area over time compared with mass balance methods. Spatial variability of surface cover can thus complicate interpretation of flux estimates from EC systems. The most commonly used flux estimation method is EC; and EC estimates of latent heat energy (representing ET) and sensible heat fluxes combined are typically smaller than the available energy from net radiation and soil heat flux (commonly referred to as lack of energy balance closure). Reasons for this are the subject of ongoing research. We compare ET from LYS, NP and EC methods applied to field crops for three years at Bushland, Texas (35° 11' N, 102° 06' W, 1170 m elevation above MSL) to illustrate the potential problems with and comparative advantages of all three methods. In particular, we examine how networks of neutron probe access tubes can be representative of field areas large enough to be equivalent in size to EC footprints, and

  5. Estimation of brood and nest survival: Comparative methods in the presence of heterogeneity

    USGS Publications Warehouse

    Manly, Bryan F.J.; Schmutz, Joel A.

    2001-01-01

    The Mayfield method has been widely used for estimating survival of nests and young animals, especially when data are collected at irregular observation intervals. However, this method assumes survival is constant throughout the study period, which often ignores biologically relevant variation and may lead to biased survival estimates. We examined the bias and accuracy of 1 modification to the Mayfield method that allows for temporal variation in survival, and we developed and similarly tested 2 additional methods. One of these 2 new methods is simply an iterative extension of Klett and Johnson's method, which we refer to as the Iterative Mayfield method and bears similarity to Kaplan-Meier methods. The other method uses maximum likelihood techniques for estimation and is best applied to survival of animals in groups or families, rather than as independent individuals. We also examined how robust these estimators are to heterogeneity in the data, which can arise from such sources as dependent survival probabilities among siblings, inherent differences among families, and adoption. Testing of estimator performance with respect to bias, accuracy, and heterogeneity was done using simulations that mimicked a study of survival of emperor goose (Chen canagica) goslings. Assuming constant survival for inappropriately long periods of time or use of Klett and Johnson's methods resulted in large bias or poor accuracy (often >5% bias or root mean square error) compared to our Iterative Mayfield or maximum likelihood methods. Overall, estimator performance was slightly better with our Iterative Mayfield than our maximum likelihood method, but the maximum likelihood method provides a more rigorous framework for testing covariates and explicity models a heterogeneity factor. We demonstrated use of all estimators with data from emperor goose goslings. We advocate that future studies use the new methods outlined here rather than the traditional Mayfield method or its previous

  6. Estimation of retired mobile phones generation in China: A comparative study on methodology.

    PubMed

    Li, Bo; Yang, Jianxin; Lu, Bin; Song, Xiaolong

    2015-01-01

    Due to the rapid development of economy and technology, China has the biggest production and possession of mobile phones around the world. In general, mobile phones have relatively short life time because the majority of users replace their mobile phones frequently. Retired mobile phones represent the most valuable electrical and electronic equipment (EEE) in the main waste stream because of such characteristics as large quantity, high reuse/recovery value and fast replacement frequency. Consequently, the huge amount of retired mobile phones in China calls for a sustainable management system. The generation estimation can provide fundamental information to construct the sustainable management system of retired mobile phones and other waste electrical and electronic equipment (WEEE). However, the reliable estimation result is difficult to get and verify. The priority aim of this paper is to provide proper estimation approach for the generation of retired mobile phones in China, by comparing some relevant methods. The results show that the sales&new method is in the highest priority in estimation of the retired mobile phones. The result of sales&new method shows that there are 47.92 million mobile phones retired in 2002, and it reached to 739.98 million in China in 2012. It presents an increasing tendency with some fluctuations clearly. Furthermore, some discussions on methodology, such as the selection of improper approach and error in the input data, are also conducted in order to improve generation estimation of retired mobile phones and other WEEE.

  7. Comparing geophysical measurements to theoretical estimates for soil mixtures at low pressures

    SciTech Connect

    Wildenschild, D; Berge, P A; Berryman, K G; Bonner, B P; Roberts, J J

    1999-01-15

    The authors obtained good estimates of measured velocities of sand-peat samples at low pressures by using a theoretical method, the self-consistent theory of Berryman (1980), using sand and porous peat to represent the microstructure of the mixture. They were unable to obtain useful estimates with several other theoretical approaches, because the properties of the quartz, air and peat components of the samples vary over several orders of magnitude. Methods that are useful for consolidated rock cannot be applied directly to unconsolidated materials. Instead, careful consideration of microstructure is necessary to adapt the methods successfully. Future work includes comparison of the measured velocity values to additional theoretical estimates, investigation of Vp/Vs ratios and wave amplitudes, as well as modeling of dry and saturated sand-clay mixtures (e.g., Bonner et al., 1997, 1998). The results suggest that field data can be interpreted by comparing laboratory measurements of soil velocities to theoretical estimates of velocities in order to establish a systematic method for predicting velocities for a full range of sand-organic material mixtures at various pressures. Once the theoretical relationship is obtained, it can be used to estimate the soil composition at various depths from field measurements of seismic velocities. Additional refining of the method for relating velocities to soil characteristics is useful for development inversion algorithms.

  8. Comparing and combining SWE estimates from the SNOW-17 model using PRISM and SWE reconstruction

    NASA Astrophysics Data System (ADS)

    Raleigh, Mark S.; Lundquist, Jessica D.

    2012-01-01

    Snow models such as SNOW-17 may estimate past snow water equivalent (SWE) using either a forward configuration based on spatial extrapolation of measured precipitation, such as with the parameter-elevation regressions on independent slopes model (PRISM), or a reconstruction configuration based on snow disappearance timing and back-calculated snowmelt. However, little guidance exists as to which configuration is preferable. Because the two approaches theoretically have opposite sensitivities to model forcing, combining (averaging) their SWE estimates may be advantageous. Using 154 snow pillow sites located in maritime mountains of the western United States, we compared forward, reconstruction, and combined configurations of a simplified SNOW-17. We evaluated model errors in annual precipitation, peak SWE, and SWE errors during the accumulation and ablation seasons. We also conducted a separate analysis to assess the sensitivity of peak SWE to biased forcing data and model parameters. The forward model had the greatest precipitation accuracy, while the combined model had the greatest accuracy in peak SWE and SWE during the accumulation and ablation seasons. In determining peak SWE, the forward and reconstruction models demonstrated opposite sensitivities to errors in air temperature and model parameters, and the combined model minimized errors due to temperature bias and parameter uncertainty. In basins with precipitation gages, we recommend PRISM for precipitation estimation and the combined model for SWE estimation. In areas with high precipitation uncertainty, reconstruction is more viable. Accurate model parameters dramatically improved reconstruction, so more work is needed to advance parameter estimation techniques in complex terrain.

  9. Comparing potential recharge estimates from three Land Surface Models across the western US

    NASA Astrophysics Data System (ADS)

    Niraula, Rewati; Meixner, Thomas; Ajami, Hoori; Rodell, Matthew; Gochis, David; Castro, Christopher L.

    2017-02-01

    Groundwater is a major source of water in the western US. However, there are limited recharge estimates in this region due to the complexity of recharge processes and the challenge of direct observations. Land surface Models (LSMs) could be a valuable tool for estimating current recharge and projecting changes due to future climate change. In this study, simulations of three LSMs (Noah, Mosaic and VIC) obtained from the North American Land Data Assimilation System (NLDAS-2) are used to estimate potential recharge in the western US. Modeled recharge was compared with published recharge estimates for several aquifers in the region. Annual recharge to precipitation ratios across the study basins varied from 0.01% to 15% for Mosaic, 3.2% to 42% for Noah, and 6.7% to 31.8% for VIC simulations. Mosaic consistently underestimates recharge across all basins. Noah captures recharge reasonably well in wetter basins, but overestimates it in drier basins. VIC slightly overestimates recharge in drier basins and slightly underestimates it for wetter basins. While the average annual recharge values vary among the models, the models were consistent in identifying high and low recharge areas in the region. Models agree in seasonality of recharge occurring dominantly during the spring across the region. Overall, our results highlight that LSMs have the potential to capture the spatial and temporal patterns as well as seasonality of recharge at large scales. Therefore, LSMs (specifically VIC and Noah) can be used as a tool for estimating future recharge in data limited regions.

  10. Barometric process separation: New method for quantifying nitrification, denitrification, and nitrous oxide sources in soils

    SciTech Connect

    Ingwersen, J.; Butterbach-Bahl, K.; Gasche, R.; Papen, H.; Richter, O.

    1999-01-01

    A method, Barometric Process Separation (BaPS), was developed for the quantification of gross nitrification rates and denitrification rates in oxic soil using intact soil cores incubated in an isothermal gas tight system. Gross nitrification rates and denitrification rates are derived from measurements of changes (i) in air pressure within the closed system, which are primarily the result of the activities of nitrification, denitrification, and respiration, and (2) of O{sub 2} and CO{sub 2} concentrations in the system. Besides these biological processes, the contribution of physicochemical dissolution of produced CO{sub 2} in soil water to the pressure changes observed is to be considered. The method allows collection of additional information about the contribution of nitrification and denitrification to N{sub 2}O emission from soil, provided simultaneous measurements of N{sub 2}O emission are performed. Furthermore, BaPS can be used to quantify the percentage of N{sub 2}O lost from nitrification. The advantage of BaPS is that disturbance of the soil system is minimized compared with other methods such as the use of gaseous inhibitors (e.g., acetylene) or application of {sup 15}N compounds to the soil. The authors present the theoretical considerations of BaPS, results for nitrification rates, denitrification rates, and identification of soil N{sub 2}O sources in a well-aerated coniferous forest soil using BaPS. The suitability of BaPS as a method for determination of gross nitrification is demonstrated by validation experiments using the {sup 15}N-pool dilution technique.

  11. Use of microbial analysis to evaluate denitrification in the karstic aquifer of Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Yasumoto, J.

    2014-12-01

    Denitrification, a microbial process in the nitrogen cycle, is a facultative respiratory pathway in which nitrate (NO3-), nitrite (NO2-), nitric oxide (NO), and nitrous oxide (N2O), successively, are reduced to nitrogen gas (N2). This study explores the use of microbial analysis to evaluate the processes involved in nitrate attenuation in groundwater. Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) is used to identify denitrifiers based only on their 16SrRNA gene sequences, and Real-Time PCR analysis is used to quantify nitrite reducing genes (nirK and nirS), this suggest that a new methods for detecting denitrification activity by comparing the gene dosage that has been detected by RT-PCR and the value of the δ15NNO3- and δ18ONO3-. This study focuses on a zone of significant NO3- attenuation occurring at underground dam catchment area in the karstic Ryukyu limestone aquifer, which is located southern part of Okinawa, Japan. As a result of microbial analysis, the bacteria were detected at all observation points which have been reported to have denitrification ability. And it has been confirmed that the bacteria has a gene nirS which is related to denitrification. In addition, many bacteria related to denitrification have been extracted from suspended solids more than from groundwater in the aquifer. And, the correlation was high between nirK /nirS gene dosage that has been detected by RT-PCR and the value of the δ15N and δ18O; therefore, this study demonstrates the effectiveness of using Real-Time PCR analysis for providing insights into the processes affecting nitrate attenuation in ground water.

  12. Denitrification as a Model Chemical Process

    NASA Astrophysics Data System (ADS)

    Grguric, Gordan

    2002-02-01

    Bacterial denitrification in seawater facilities such as aquaria and mariculture systems is a process particularly well suited for illustrating important concepts in chemistry to undergraduates. Students can gain firsthand experience related to these concepts, for example by (i) analyzing and quantifying chemical reactions based on empirical data, (ii) employing stoichiometry and mass balance to determine the amounts of reactants required and products produced in a chemical reaction, and (iii) using acid-base speciation diagrams and other information to quantify the changes in pH and carbonic acid speciation in an aqueous medium. At the Richard Stockton College of New Jersey, we have utilized actual data from several seawater systems to discuss topics such as stoichiometry, mass and charge balance, and limiting reagents. This paper describes denitrification in closed seawater systems and how the process can be used to enhance undergraduate chemistry education. A number of possible student exercises are described that can be used as practical tools to enhance the students' quantitative understanding of chemical reactions.

  13. Denitrification in USB reactor with granulated biomass.

    PubMed

    Pagácová, P; Galbová, K; Drtil, M; Jonatová, I

    2010-01-01

    Denitrification of low concentrations of NO(3)-N (20 mg L(-1)), with methanol as an organic carbon source (COD:NO(3)-N=6) in laboratory upflow sludge bed reactor (USB), was tested as a possibility for wastewater post-treatment. By gradual increase of volumetric loading (Bv) and hydraulic loading (gamma), anoxic biomass spontaneously granulated out even from flocculate activated sludge and from anaerobic granulated sludge as well. Anaerobic granulated biomass derived from high-rate anaerobic IC reactor was a far better inoculum for anoxic granulation and for denitrification in the USB reactor. The maximum level of Bv and gamma was remarkably higher with the use of anaerobic granulated inoculum, (19-22 kg COD m(-3)d(-1); 3.2-3.7 kg NO(3)-Nm(-3)d(-1); 2.8-3.2m(3)m(-2)h(-1); SVI=15 mL g(-1)) in comparison to inoculum from flocculate activated sludge (4.2-8.1 kg CO Dm(-3)d(-1); 0.7-1.4 kg NO(3)-Nm(-3)d(-1); 0.7-1.15m(3)m(-2)h(-1); SVI=40-95 mL g(-1)).

  14. A comparative study of shear wave speed estimation techniques in optical coherence elastography applications

    NASA Astrophysics Data System (ADS)

    Zvietcovich, Fernando; Yao, Jianing; Chu, Ying-Ju; Meemon, Panomsak; Rolland, Jannick P.; Parker, Kevin J.

    2016-03-01

    Optical Coherence Elastography (OCE) is a widely investigated noninvasive technique for estimating the mechanical properties of tissue. In particular, vibrational OCE methods aim to estimate the shear wave velocity generated by an external stimulus in order to calculate the elastic modulus of tissue. In this study, we compare the performance of five acquisition and processing techniques for estimating the shear wave speed in simulations and experiments using tissue-mimicking phantoms. Accuracy, contrast-to-noise ratio, and resolution are measured for all cases. The first two techniques make the use of one piezoelectric actuator for generating a continuous shear wave propagation (SWP) and a tone-burst propagation (TBP) of 400 Hz over the gelatin phantom. The other techniques make use of one additional actuator located on the opposite side of the region of interest in order to create an interference pattern. When both actuators have the same frequency, a standing wave (SW) pattern is generated. Otherwise, when there is a frequency difference df between both actuators, a crawling wave (CrW) pattern is generated and propagates with less speed than a shear wave, which makes it suitable for being detected by the 2D cross-sectional OCE imaging. If df is not small compared to the operational frequency, the CrW travels faster and a sampled version of it (SCrW) is acquired by the system. Preliminary results suggest that TBP (error < 4.1%) and SWP (error < 6%) techniques are more accurate when compared to mechanical measurement test results.

  15. Nitrification and denitrification in high-strength ammonium by Alcaligenes faecalis.

    PubMed

    Joo, Hung-Soo; Hirai, Mitsuyo; Shoda, Makoto

    2005-06-01

    Alcaligenes faecalis sp. No. 4, that has the ability of heterotrophic nitrification and aerobic denitrification in high-strength ammonium at about 1200 mg-N/l, converted about one-half of removed NH4+-N to intracellular nitrogen and nitrified only 3% of the removed NH4+. From the nitrogen balance, 40-50% of removed NH4+-N was estimated to be denitrified. Production of N2 was confirmed by GC-MS and 90% of denitrified products was N2. The maximum ammonium removal rate, 29 mg-N/l h and its denitrification rate in aerated batch experiments, were 5-40 times higher than those of other bacteria with the same ability.

  16. Comparative soil CO2 flux measurements and geostatistical estimation methods on Masaya volcano, Nicaragua

    USGS Publications Warehouse

    Lewicki, J.L.; Bergfeld, D.; Cardellini, C.; Chiodini, G.; Granieri, D.; Varley, N.; Werner, C.

    2005-01-01

    We present a comparative study of soil CO2 flux (FCO2) measured by five groups (Groups 1-5) at the IAVCEI-CCVG Eighth Workshop on Volcanic Gases on Masaya volcano, Nicaragua. Groups 1-5 measured (FCO2) using the accumulation chamber method at 5-m spacing within a 900 m2 grid during a morning (AM) period. These measurements were repeated by Groups 1-3 during an afternoon (PM) period. Measured (FCO2 ranged from 218 to 14,719 g m-2 day-1. The variability of the five measurements made at each grid point ranged from ??5 to 167%. However, the arithmetic means of fluxes measured over the entire grid and associated total CO2 emission rate estimates varied between groups by only ??22%. All three groups that made PM measurements reported an 8-19% increase in total emissions over the AM results. Based on a comparison of measurements made during AM and PM times, we argue that this change is due in large part to natural temporal variability of gas flow, rather than to measurement error. In order to estimate the mean and associated CO2 emission rate of one data set and to map the spatial FCO2 distribution, we compared six geostatistical methods: Arithmetic and minimum variance unbiased estimator means of uninterpolated data, and arithmetic means of data interpolated by the multiquadric radial basis function, ordinary kriging, multi-Gaussian kriging, and sequential Gaussian simulation methods. While the total CO2 emission rates estimated using the different techniques only varied by ??4.4%, the FCO2 maps showed important differences. We suggest that the sequential Gaussian simulation method yields the most realistic representation of the spatial distribution of FCO2, but a variety of geostatistical methods are appropriate to estimate the total CO2 emission rate from a study area, which is a primary goal in volcano monitoring research. ?? Springer-Verlag 2005.

  17. Nitrification and denitrification gene abundances in swine wastewater anaerobic lagoons.

    PubMed

    Ducey, Thomas F; Shriner, Anthony D; Hunt, Patrick G

    2011-01-01

    Although anaerobic lagoons are used globally for livestock waste treatment, their detailed microbial cycling ofN is only beginning to become understood. Within this cycling, nitrification can be performed by organisms that produce the enzyme ammonia monooxygenase. For denitrification, the reduction of nitrite to nitric oxide can be catalyzed by two forms of nitrite reductases, and N,O can be reduced by nitrous oxide reductase encoded by the gene nosZ The objectives of this investigation were to (i) quantify the abundance of the amoA, nirK, nirS, and nosZ genes; (ii) evaluate the influence of environmental conditions on their abundances; and (iii) evaluate their abundance relative to denitrification enzyme activity (DEA). Samples were analyzed via real-time quantitative polymerase chain reaction and collected from eight typical, commercial anaerobic, swine wastewater lagoons located in the Carolinas. The four genes assayed in this study were present in all eight lagoons. Their abundances relative to total bacterial populations were 0.04% (amoA), 1.33% (nirS), 5.29% (nirK), and 0.27% (nosZ). When compared with lagoon chemical characteristics, amoA and nirK correlated with several measured variables. Neither nirS nor nosZ correlated with any measured environmental variables. Although no gene measured in this study correlated with actual or potential DEA, nosZ copy numbers did correlate with the disparity between actual and potential DEA. Phylogenetic analysis ofnosZdid not reveal any correlations to DEA rates. As with other investigations, analyses of these genes provide useful insight while revealing the underlying greater complexity of N cycling within swine waste lagoons.

  18. Sediment nitrification and denitrification rates in a Lake ...

    EPA Pesticide Factsheets

    Microbially-mediated nitrogen (N) cycling in aquatic sediments has been recognized as an ecosystem service due to mitigation of N-transport to receiving waters. In 2011 and 2012, we compared nitrification (NIT), unamended (DeNIT) and amended (DEA) denitrification rates among spatial and depths zones and in relation to site physicochemical characteristics in the St. Louis River Estuary (SLRE) of western Lake Superior. Among vegetated habitats in 2011, NIT rates were highest in deep (>2 m) waters (249 mgN m-2 d-1) and in the upper estuary (>126). DeNIT rates were highest in deep waters and the harbor (2,111 and 274, respectively). DEA rates were similar among habitats. In 2012, we observed highest NIT (223 and 287) and DeNIT (77 and 64) rates in the harbor and from deep waters, respectively. Highest rates for NIT, DeNIT, and DEA were in July, May, and June, respectively. Individual site characteristics were weakly related to N-cycling rates, but water and sediment N-concentrations were identified as significant predictors in multiple linear regression models. NO3- was most limiting to sediment denitrification rates. The SLRE acted as a net source of NO3- to the water column, but had the potential to act as a sink. Average N2O production in 2011 was half that of 2012, with production during DEA (23-54%) being higher than DeNIT (0-41%). SLRE N-cycling rates were spatially and temporally variable, but our results give an indication of how alterations of water depth a

  19. High-Resolution Denitrification Kinetics in Pasture Soils Link N2O Emissions to pH, and Denitrification to C Mineralization

    PubMed Central

    Samad, Md Sainur; Bakken, Lars R.; Nadeem, Shahid; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-01-01

    Denitrification in pasture soils is mediated by microbial and physicochemical processes leading to nitrogen loss through the emission of N2O and N2. It is known that N2O reduction to N2 is impaired by low soil pH yet controversy remains as inconsistent use of soil pH measurement methods by researchers, and differences in analytical methods between studies, undermine direct comparison of results. In addition, the link between denitrification and N2O emissions in response to carbon (C) mineralization and pH in different pasture soils is still not well described. We hypothesized that potential denitrification rate and aerobic respiration rate would be positively associated with soils. This relationship was predicted to be more robust when a high resolution analysis is performed as opposed to a single time point comparison. We tested this by characterizing 13 different temperate pasture soils from northern and southern hemispheres sites (Ireland and New Zealand) using a fully automated-high-resolution GC detection system that allowed us to detect a wide range of gas emissions simultaneously. We also compared the impact of using different extractants for determining pH on our conclusions. In all pH measurements, soil pH was strongly and negatively associated with both N2O production index (IN2O) and N2O/(N2O+N2) product ratio. Furthermore, emission kinetics across all soils revealed that the denitrification rates under anoxic conditions (NO+N2O+N2 μmol N/h/vial) were significantly associated with C mineralization (CO2 μmol/h/vial) measured both under oxic (r2 = 0.62, p = 0.0015) and anoxic (r2 = 0.89, p<0.0001) conditions. PMID:26990862

  20. Stimulating in situ denitrification in an aerobic, highly permeable municipal drinking water aquifer.

    PubMed

    Critchley, K; Rudolph, D L; Devlin, J F; Schillig, P C

    2014-12-15

    A preliminary trial of a cross-injection system (CIS) was designed to stimulate in situ denitrification in an aquifer servicing an urban community in southern Ontario. It was hypothesized that this remedial strategy could be used to reduce groundwater nitrate in the aquifer such that it could remain in use as a municipal supply until the beneficial effects of local reduced nutrient loadings lead to long-term water quality improvement at the wellfield. The CIS application involved injecting a carbon source (acetate) into the subsurface using an injection-extraction well pair positioned perpendicular to the regional flow direction, up-gradient of the water supply wells, with the objective of stimulating native denitrifying bacteria. The pilot remedial strategy was targeted in a high nitrate flux zone within an aerobic and heterogeneous section of the glacial sand and gravel aquifer. Acetate injections were performed at intervals ranging from daily to bi-daily. The carbon additions led to general declines in dissolved oxygen concentrations; decreases in nitrate concentration were localized in aquifer layers where velocities were estimated to be less than 0.5m/day. NO3-(15)N and NO3-(18)O isotope data indicated the nitrate losses were due to denitrification. Relatively little nitrate was removed from groundwater in the more permeable strata, where velocities were estimated to be on the order of 18 m/day or greater. Overall, about 11 percent of the nitrate mass passing through the treatment zone was removed. This work demonstrates that stimulating in situ denitrification in an aerobic, highly conductive aquifer is challenging but achievable. Further work is needed to increase rates of denitrification in the most permeable units of the aquifer.

  1. Differential effects of crude oil on denitrification and anammox, and the impact on N2O production.

    PubMed

    Ribeiro, Hugo; Mucha, Ana P; Azevedo, Isabel; Salgado, Paula; Teixeira, Catarina; Almeida, C Marisa R; Joye, Samantha B; Magalhães, Catarina

    2016-09-01

    Denitrification and anammox are key processes for reducing the external nitrogen loads delivered to coastal ecosystems, and these processes can be affected by pollutants. In this study, we investigated the effect of crude oil on denitrification and anammox. Controlled laboratory experiments were performed using sediment slurries from the Lima Estuary (NW Portugal). Anammox and denitrification rates were measured using (15)N-labeled NO3(-), and the production of (29)N2 and (30)N2 quantified by membrane inlet mass spectrometry. Results revealed that while denitrification rates were stimulated between 10 and 25 000 times after crude oil amendment, anammox activity was partially (between 2 and 5 times) or completely inhibited by the addition of crude oil when comparing to rates in unamended controls. Similar results were observed across four estuarine sediment types, despite their different physical-chemical characteristics. Moreover, N2O production was reduced by 2-36 times following crude oil addition. Further work is required to fully understand the mechanism(s) of the observed reduction in N2O production. This study represents one of the first contributions to the understanding of the impact of crude oil pollution on denitrification and anammox, with profound implications for the management of aquatic ecosystems regarding eutrophication (N-removal).

  2. Age estimation in Indian children and adolescents in the NCR region of Haryana: A comparative study

    PubMed Central

    Gupta, Swati; Mehendiratta, Monica; Rehani, Shweta; Kumra, Madhumani; Nagpal, Ruchi; Gupta, Ramakant

    2015-01-01

    Introduction: Age estimation is a preliminary step in the identification of an individual. It is a crucial and often most critical step for forensic experts. The assessment has been standardized utilizing common dental diagnostic x-rays, but most such age-estimating systems are European population-based and their applicability has not been determined in the context of the Indian population. Aims and Objectives: To assess the applicability and to compare the methods of dental age estimation by Demirjian's method and the same method as modified by Willems (i.e. the Willems method) in Indian children of the National Capital Region (NCR). Also, to find a correlation among skeletal maturity using the Cervical vertebrae maturation index (CVMI), dental maturity, and chronological age in the same population. Materials and Methods: This cross-sectional study was conducted using dental radiographs of 70 orthodontic patients (37 males, 33 females) in the age range 9-16 years selected by simple random sampling. pantomogram were used to estimate dental age by Demirjian's method and the Willems method using their scoring tables. Lateral cephalograms were used to estimate skeletal maturity using CVMI. The latter was compared with Demirjian's stage for mandibular left second molar. Results: Overestimation of age among males by 0.856 years and 0.496 years was found by Demirjian's and the Willems methods, respectively. Among females, both the methods underestimated the age by 0.31 years and 0.45 years, respectively. Demirjian's stage G corresponded to CVMI stage 3 in males and stage 2 in females. Conclusion: In our study, the Willems method has proved to be more accurate for age estimation among Indian males, and Demirjian's method for Indian females. A statistically significant association appeared between Demirjian's stages and CVMI among both males and females. Our study recommends the derivation of a regression formula by studying a larger section of the Indian population

  3. Effort estimation for enterprise resource planning implementation projects using social choice - a comparative study

    NASA Astrophysics Data System (ADS)

    Koch, Stefan; Mitlöhner, Johann

    2010-08-01

    ERP implementation projects have received enormous attention in the last years, due to their importance for organisations, as well as the costs and risks involved. The estimation of effort and costs associated with new projects therefore is an important topic. Unfortunately, there is still a lack of models that can cope with the special characteristics of these projects. As the main focus lies in adapting and customising a complex system, and even changing the organisation, traditional models like COCOMO can not easily be applied. In this article, we will apply effort estimation based on social choice in this context. Social choice deals with aggregating the preferences of a number of voters into a collective preference, and we will apply this idea by substituting the voters by project attributes. Therefore, instead of supplying numeric values for various project attributes, a new project only needs to be placed into rankings per attribute, necessitating only ordinal values, and the resulting aggregate ranking can be used to derive an estimation. We will describe the estimation process using a data set of 39 projects, and compare the results to other approaches proposed in the literature.

  4. Early-Stage Capital Cost Estimation of Biorefinery Processes: A Comparative Study of Heuristic Techniques.

    PubMed

    Tsagkari, Mirela; Couturier, Jean-Luc; Kokossis, Antonis; Dubois, Jean-Luc

    2016-09-08

    Biorefineries offer a promising alternative to fossil-based processing industries and have undergone rapid development in recent years. Limited financial resources and stringent company budgets necessitate quick capital estimation of pioneering biorefinery projects at the early stages of their conception to screen process alternatives, decide on project viability, and allocate resources to the most promising cases. Biorefineries are capital-intensive projects that involve state-of-the-art technologies for which there is no prior experience or sufficient historical data. This work reviews existing rapid cost estimation practices, which can be used by researchers with no previous cost estimating experience. It also comprises a comparative study of six cost methods on three well-documented biorefinery processes to evaluate their accuracy and precision. The results illustrate discrepancies among the methods because their extrapolation on biorefinery data often violates inherent assumptions. This study recommends the most appropriate rapid cost methods and urges the development of an improved early-stage capital cost estimation tool suitable for biorefinery processes.

  5. Comparing three methods for variance estimation with duplicated high density oligonucleotide arrays.

    PubMed

    Huang, Xiaohong; Pan, Wei

    2002-08-01

    Microarray experiments are being increasingly used in molecular biology. A common task is to detect genes with differential expression across two experimental conditions, such as two different tissues or the same tissue at two time points of biological development. To take proper account of statistical variability, some statistical approaches based on the t-statistic have been proposed. In constructing the t-statistic, one needs to estimate the variance of gene expression levels. With a small number of replicated array experiments, the variance estimation can be challenging. For instance, although the sample variance is unbiased, it may have large variability, leading to a large mean squared error. For duplicated array experiments, a new approach based on simple averaging has recently been proposed in the literature. Here we consider two more general approaches based on nonparametric smoothing. Our goal is to assess the performance of each method empirically. The three methods are applied to a colon cancer data set containing 2,000 genes. Using two arrays, we compare the variance estimates obtained from the three methods. We also consider their impact on the t-statistics. Our results indicate that the three methods give variance estimates close to each other. Due to its simplicity and generality, we recommend the use of the smoothed sample variance for data with a small number of replicates.

  6. Early‐Stage Capital Cost Estimation of Biorefinery Processes: A Comparative Study of Heuristic Techniques

    PubMed Central

    Couturier, Jean‐Luc; Kokossis, Antonis; Dubois, Jean‐Luc

    2016-01-01

    Abstract Biorefineries offer a promising alternative to fossil‐based processing industries and have undergone rapid development in recent years. Limited financial resources and stringent company budgets necessitate quick capital estimation of pioneering biorefinery projects at the early stages of their conception to screen process alternatives, decide on project viability, and allocate resources to the most promising cases. Biorefineries are capital‐intensive projects that involve state‐of‐the‐art technologies for which there is no prior experience or sufficient historical data. This work reviews existing rapid cost estimation practices, which can be used by researchers with no previous cost estimating experience. It also comprises a comparative study of six cost methods on three well‐documented biorefinery processes to evaluate their accuracy and precision. The results illustrate discrepancies among the methods because their extrapolation on biorefinery data often violates inherent assumptions. This study recommends the most appropriate rapid cost methods and urges the development of an improved early‐stage capital cost estimation tool suitable for biorefinery processes. PMID:27484398

  7. Optimal Scales for Comparing Satellite and Rain-Gauge Rainfall Estimates for Verification Purposes

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.

    1999-01-01

    In spite of all their problems, rain gauges measure rainfall in such a direct way when compared with other methods of estimating rainfall that comparing their totals to satellite estimates remains an essential tool in the validation of satellite products. Some disagreement between averages of satellite data and rain-gauge data is expected because of the very different sampling patterns of the two systems--the satellite provides only occasional snapshots of large areas, whereas rain gauges provide continuous measurements over very small areas. The comparison of the two requires that some quantitative measure be supplied for the amount of disagreement that can be tolerated due to the differences in sampling. As part of an effort to determine the sampling error of satellite averages, a space-time model for rainfall statistics was developed and its parameters fit to radar data from a field experiment conducted near the Inter-Tropical Convergence Zone (ITCZ) in the eastern Atlantic (GATE). Although the model was intended to represent the statistics of relatively large scale fluctuations of rain, it is surprisingly consistent with the very different scales on which rain gauges observe. It can therefore be used to study some of the issues involved with comparing rain-gauge averages to satellite averages. Its implications for the best time and space scales for comparing the two will be discussed.

  8. Comparative Study on the Estimation of Estrous Cycle in Mice by Visual and Vaginal Lavage Method

    PubMed Central

    Ekambaram, Gnanagurudasan; Joseph, Leena Dennis

    2017-01-01

    Introduction Evaluation of estrous cycle in laboratory animals can be a useful measure of the integrity of hypothalamic-pituitary-ovarian reproductive axis. Assessment of vaginal cytology is crucial to assess the milieu and compare the endocrine status of animals among the experimental groups. Aim The present study was attempted to compare the estimation of estrous cycle by visual method and non invasive vaginal lavage method. Materials and Methods Sixty healthy female swiss albino mice were used for the present study. The appearance of the vagina with respect to the opening of vagina, vaginal swellings were observed. Non-invasive method was used in vaginal lavage method in which nucleated epithelial cells, cornified squamous epithelial cells and leucocytes present in vaginal smears were used to identify the estrous stages. Results The estimation of estrous cycle by visual method coincides with the vaginal lavage method. In Vaginal lavage method, the accurate proportion of cells and the transition phases can be evaluated. Conclusion The non-invasive method reduces the risk of pseudo -pregnancy and mechanical trauma. Though, visual method is quick and reliable, for accurate estimation of the stage of the estrous, non-invasive vaginal lavage method is ideal. PMID:28273958

  9. Denitrification in alluvial wetlands in an urban landscape.

    PubMed

    Harrison, Melanie D; Groffman, Peter M; Mayer, Paul M; Kaushal, Sujay S; Newcomer, Tamara A

    2011-01-01

    Riparian wetlands have been shown to be effective "sinks" for nitrate N (NO3-), minimizing the downstream export of N to streams and coastal water bodies. However, the vast majority of riparian denitrification research has been in agricultural and forested watersheds, with relatively little work on riparian wetland function in urban watersheds. We investigated the variation and magnitude of denitrification in three constructed and two relict oxbow urban wetlands, and in two forested reference wetlands in the Baltimore metropolitan area. Denitrification rates in wetland sediments were measured with a 15N-enriched NO3- "push-pull" groundwater tracer method during the summer and winter of 2008. Mean denitrification rates did not differ among the wetland types and ranged from 147 +/- 29 microg N kg soil(-1) d(-1) in constructed stormwater wetlands to 100 +/- 11 microg N kg soil(-1) d(-1) in relict oxbows to 106 +/- 32 microg N kg soil(-1) d(-1) in forested reference wetlands. High denitrification rates were observed in both summer and winter, suggesting that these wetlands are sinks for NO3- year round. Comparison of denitrification rates with NO3- standing stocks in the wetland water column and stream NO3- loads indicated that mass removal of NO3- in urban wetland sediments by denitrification could be substantial. Our results suggest that urban wetlands have the potential to reduce NO3- in urban landscapes and should be considered as a means to manage N in urban watersheds.

  10. Estimating, testing, and comparing specific effects in structural equation models: the phantom model approach.

    PubMed

    Macho, Siegfried; Ledermann, Thomas

    2011-03-01

    The phantom model approach for estimating, testing, and comparing specific effects within structural equation models (SEMs) is presented. The rationale underlying this novel method consists in representing the specific effect to be assessed as a total effect within a separate latent variable model, the phantom model that is added to the main model. The following favorable features characterize the method: (a) It enables the estimation, testing, and comparison of arbitrary specific effects for recursive and nonrecursive models with latent and manifest variables; (b) it enables the bootstrapping of confidence intervals; and (c) it can be applied with all standard SEM programs permitting latent variables, the specification of equality constraints, and the bootstrapping of total effects. These features along with the fact that no manipulation of matrices and formulas is required make the approach particularly suitable for applied researchers. The method is illustrated by means of 3 examples with real data sets.

  11. Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems.

    PubMed

    Fraser, Dylan J; Hansen, Michael M; Ostergaard, Siri; Tessier, Nathalie; Legault, Michel; Bernatchez, Louis

    2007-09-01

    Estimation of effective population sizes (N(e)) and temporal gene flow (N(e)m, m) has many implications for understanding population structure in evolutionary and conservation biology. However, comparative studies that gauge the relative performance of N(e), N(e)m or m methods are few. Using temporal genetic data from two salmonid fish population systems with disparate population structure, we (i) evaluated the congruence in estimates and precision of long- and short-term N(e), N(e)m and m from six methods; (ii) explored the effects of metapopulation structure on N(e) estimation in one system with spatiotemporally linked subpopulations, using three approaches; and (iii) determined to what degree interpopulation gene flow was asymmetric over time. We found that long-term N(e) estimates exceeded short-term N(e) within populations by 2-10 times; the two were correlated in the system with temporally stable structure (Atlantic salmon, Salmo salar) but not in the highly dynamic system (brown trout, Salmo trutta). Four temporal methods yielded short-term N(e) estimates within populations that were strongly correlated, and these were higher but more variable within salmon populations than within trout populations. In trout populations, however, these short-term N(e) estimates were always lower when assuming gene flow than when assuming no gene flow. Linkage disequilibrium data generally yielded short-term N(e) estimates of the same magnitude as temporal methods in both systems, but the two were uncorrelated. Correlations between long- and short-term geneflow estimates were inconsistent between methods, and their relative size varied up to eightfold within systems. While asymmetries in gene flow were common in both systems (58-63% of population-pair comparisons), they were only temporally stable in direction within certain salmon population pairs, suggesting that gene flow between particular populations is often intermittent and/or variable. Exploratory metapopulation N

  12. Prophylactic radiotherapy against heterotopic ossification following internal fixation of acetabular fractures: a comparative estimate of risk

    PubMed Central

    Nasr, P; Yip, G; Scaife, J E; House, T; Thomas, S J; Harris, F; Owen, P J; Hull, P

    2014-01-01

    Objective: Radiotherapy (RT) is effective in preventing heterotopic ossification (HO) around acetabular fractures requiring surgical reconstruction. We audited outcomes and estimated risks from RT prophylaxis, and alternatives of indometacin or no prophylaxis. Methods: 34 patients underwent reconstruction of acetabular fractures through a posterior approach, followed by a 8-Gy single fraction. The mean age was 44 years. The mean time from surgery to RT was 1.1 days. The major RT risk is radiation-induced fatal cancer. The International Commission on Radiological Protection (ICRP) method was used to estimate risk, and compared with a method (Trott and Kemprad) specifically for estimating RT risk for benign disease. These were compared with risks associated with indometacin and no prophylaxis. Results: 28 patients (82%) developed no HO; 6 developed Brooker Class I; and none developed Class II–IV HO. The ICRP method suggests a risk of fatal cancer in the range of 1 in 1000 to 1 in 10,000; the Trott and Kemprad method suggests 1 in 3000. For younger patients, this may rise to 1 in 2000; and for elderly patients, it may fall to 1 in 6000. The risk of death from gastric bleeding or perforation from indometacin is 1 in 180 to 1 in 900 in older patients. Without prophylaxis risk of death from reoperation to remove HO is 1 in 4000 to 1 in 30,000. Conclusion: These results are encouraging, consistent with much larger series and endorse our multidisciplinary management. Risk estimates can be used in discussion with patients. Advances in knowledge: The risk from RT prophylaxis is small, it is safer than indometacin and substantially overlaps with the range for no prophylaxis. PMID:25089852

  13. Comparing estimates of climate change impacts from process-based and statistical crop models

    NASA Astrophysics Data System (ADS)

    Lobell, David B.; Asseng, Senthold

    2017-01-01

    The potential impacts of climate change on crop productivity are of widespread interest to those concerned with addressing climate change and improving global food security. Two common approaches to assess these impacts are process-based simulation models, which attempt to represent key dynamic processes affecting crop yields, and statistical models, which estimate functional relationships between historical observations of weather and yields. Examples of both approaches are increasingly found in the scientific literature, although often published in different disciplinary journals. Here we compare published sensitivities to changes in temperature, precipitation, carbon dioxide (CO2), and ozone from each approach for the subset of crops, locations, and climate scenarios for which both have been applied. Despite a common perception that statistical models are more pessimistic, we find no systematic differences between the predicted sensitivities to warming from process-based and statistical models up to +2 °C, with limited evidence at higher levels of warming. For precipitation, there are many reasons why estimates could be expected to differ, but few estimates exist to develop robust comparisons, and precipitation changes are rarely the dominant factor for predicting impacts given the prominent role of temperature, CO2, and ozone changes. A common difference between process-based and statistical studies is that the former tend to include the effects of CO2 increases that accompany warming, whereas statistical models typically do not. Major needs moving forward include incorporating CO2 effects into statistical studies, improving both approaches’ treatment of ozone, and increasing the use of both methods within the same study. At the same time, those who fund or use crop model projections should understand that in the short-term, both approaches when done well are likely to provide similar estimates of warming impacts, with statistical models generally

  14. Oxygen isotopic signature of N2O for distinguishing between bacterial and fungal denitrification

    NASA Astrophysics Data System (ADS)

    Rohe, L.; Well, R.; Lewicka-Szczebak, D.; Anderson, T. H.; Giesemann, A.

    2015-12-01

    The isotopic composition of the greenhouse gas N2O (δ15Nbulk, δ18O and 15N site preference (SP) of N2O) can be used to distinguish N2O production pathways. So far, controls of δ18O values are not sufficiently explored due to complex fractionation processes and varying extent of O-exchange with soil water. However, it can potentially serve as another isotopic parameter, beside SP values, enabling to differentiate between bacterial and fungal N2O production. In the study presented here, natural isotopic signature of N2O and O-exchange between denitrification intermediates and water for the first time was analyzed simultaneously from three bacterial and three fungal pure cultures. Anaerobic incubations with nitrite for fungi and nitrate for bacteria as electron acceptors were conducted. Treatments with three waters differing in 18O signature were used to determine O-exchange. 15N labeled electron acceptors served to determine the ongoing production pathway. After an incubation time of five, ten and 14 days gas samples were taken and analyzed with GC-IRMS. Aside from one fungus all others produced N2O by denitrification only. As expected, SP values of N2O produced by fungi were much higher compared to bacterial N2O. During fungal denitrification O-exchange was high (78 to 93%) and O isotope effects were stable over time and species and depended on O signature of water (42 to 48‰). In contrast, bacteria showed a much larger range of O-exchange (15 to 86%) with varying O isotope effects (14 to 39‰). Modelling O fractionation during denitrification revealed that O-exchange occurring by different enzymatic steps (nitrite reductase or nitric oxide reductase) could be responsible for the observed inconsistent O fractionation effects of bacteria compared to fungi. Thus, O fractionation of bacteria seems to be very complex and needs further investigation. Generally, fungal denitrification seems to be characterized by higher O fractionation effect than bacterial

  15. A comparative study of the performance of different spectral estimation methods for classification of mental tasks.

    PubMed

    Diez, Pablo F; Laciar, Eric; Mut, Vicente; Avila, Enrique; Torres, Abel

    2008-01-01

    In this paper we compare three different spectral estimation techniques for the classification of mental tasks. These techniques are the standard periodogram, the Welch periodogram and the Burg method, applied to electroencephalographic (EEG) signals. For each one of these methods we compute two parameters: the mean power and the root mean square (RMS), in various frequency bands. The classification of the mental tasks was conducted with a linear discriminate analysis. The Welch periodogram and the Burg method performed better than the standard periodogram. The use of the RMS allows better classification accuracy than the obtained with the power of EEG signals.

  16. Comparative analysis of monetary estimates of external environmental costs associated with combustion of fossil fuels

    SciTech Connect

    Koomey, J.

    1990-07-01

    Public utility commissions in a number of states have begun to explicitly treat costs of environmental externalities in the resource planning and acquisition process (Cohen et al. 1990). This paper compares ten different estimates and regulatory determinations of external environmental costs associated with fossil fuel combustion, using consistent assumptions about combustion efficiency, emissions factors, and resource costs. This consistent comparison is useful because it makes explicit the effects of various assumptions. This paper uses the results of the comparison to illustrate pitfalls in calculation of external environmental costs, and to derive lessons for design of policies to incorporate these externalities into resource planning. 38 refs., 2 figs., 10 tabs.

  17. IQ estimate smackdown: comparing IQ proxy measures to the WAIS-III.

    PubMed

    Spinks, Ruth; McKirgan, Lowell W; Arndt, Stephan; Caspers, Kristin; Yucuis, Rebecca; Pfalzgraf, Christopher J

    2009-07-01

    Brief assessments of general cognitive ability are frequently needed by neuropsychologists, and many methods of estimating intelligence quotient (IQ) have been published. While these measures typically present overall correlations with the Wechsler Adult Intelligence Scale (WAIS) Full Scale IQ, it is tacitly acknowledged that these estimates are most accurate within 1 standard deviation of the mean and that accuracy diminishes moving toward the tails of the IQ distribution. However, little work has been done to systematically characterize proxy measures at the tails of the IQ distribution. Additionally, while these measures are all correlated with the WAIS, multiple proxy measures are rarely presented in one manuscript. The current article has two goals: (1) Examine various IQ proxies against Wechsler Adult Intelligence Scale (Third Version) scores, showing the overall accuracy of each measure against the gold standard IQ measure. This comparison will assist in selecting the best proxy measure for particular clinical constraints. (2) The sample is then divided into three groups (below, average, and above-average ability), and each group is analyzed separately to characterize proxy performance at the tails of the IQ distribution. Repeated measures multivariate analysis of variance compares the different proxy measures across ability levels. All IQ estimates are represented in tables so that they can be examined side by side.

  18. Estimation of respiratory rate from photoplethysmographic imaging videos compared to pulse oximetry.

    PubMed

    Karlen, Walter; Garde, Ainara; Myers, Dorothy; Scheffer, Cornie; Ansermino, J Mark; Dumont, Guy A

    2015-07-01

    We present a study evaluating two respiratory rate estimation algorithms using videos obtained from placing a finger on the camera lens of a mobile phone. The two algorithms, based on Smart Fusion and empirical mode decomposition (EMD), consist of previously developed signal processing methods to detect features and extract respiratory induced variations in photoplethysmographic signals to estimate respiratory rate. With custom-built software on an Android phone, photoplethysmographic imaging videos were recorded from 19 healthy adults while breathing spontaneously at respiratory rates between 6 to 32 breaths/min. Signals from two pulse oximeters were simultaneously recorded to compare the algorithms' performance using mobile phone data and clinical data. Capnometry was recorded to obtain reference respiratory rates. Two hundred seventy-two recordings were analyzed. The Smart Fusion algorithm reported 39 recordings with insufficient respiratory information from the photoplethysmographic imaging data. Of the 232 remaining recordings, a root mean square error (RMSE) of 6 breaths/min was obtained. The RMSE for the pulse oximeter data was lower at 2.3 breaths/min. RMSE for the EMD method was higher throughout all data sources as, unlike the Smart Fusion, the EMD method did not screen for inconsistent results. The study showed that it is feasible to estimate respiratory rates by placing a finger on a mobile phone camera, but that it becomes increasingly challenging at respiratory rates greater than 20 breaths/min, independent of data source or algorithm tested.

  19. Effect of nitrate and acetylene on nirS, cnorB, and nosZ expression and denitrification activity in Pseudomonas mandelii.

    PubMed

    Saleh-Lakha, Saleema; Shannon, Kelly E; Henderson, Sherri L; Zebarth, Bernie J; Burton, David L; Goyer, Claudia; Trevors, Jack T

    2009-08-01

    Nitrate acts as an electron acceptor in the denitrification process. The effect of nitrate in the range of 0 to 1,000 mg/liter on Pseudomonas mandelii nirS, cnorB, and nosZ gene expression was studied, using quantitative reverse transcription-quantitative PCR. Denitrification activity was measured by using the acetylene blockage method and gas chromatography. The effect of acetylene on gene expression was assessed by comparing denitrification gene expression in P. mandelii culture grown in the presence or absence of acetylene. The higher the amount of NO(3)(-) present, the greater the induction and the longer the denitrification genes remained expressed. nirS gene expression reached a maximum at 2, 4, 4, and 6 h in cultures grown in the presence of 0, 10, 100, and 1,000 mg of KNO(3)/liter, respectively, while induction of nirS gene ranged from 12- to 225-fold compared to time zero. cnorB gene expression also followed a similar trend. nosZ gene expression did not respond to NO(3)(-) treatment under the conditions tested. Acetylene decreased nosZ gene expression but did not affect nirS or cnorB gene expression. These results showed that nirS and cnorB responded to nitrate concentrations; however, significant denitrification activity was only observed in culture with 1,000 mg of KNO(3)/liter, indicating that there was no relationship between gene expression and denitrification activity under the conditions tested.

  20. AN EVALUATION OF TWO GROUND-BASED CROWN CLOSURE ESTIMATION TECHNIQUES COMPARED TO CROWN CLOSURE ESTIMATES DERIVED FROM HIGH RESOLUTION IMAGERY

    EPA Science Inventory

    Two ground-based canopy closure estimation techniques, the Spherical Densitometer (SD) and the Vertical Tube (VT), were compared for the effect of deciduous understory on dominant/co-dominant crown closure estimates in even-aged loblolly (Pinus taeda) pine stands located in the N...

  1. Estimate of safe human exposure levels for lunar dust based on comparative benchmark dose modeling.

    PubMed

    James, John T; Lam, Chiu-Wing; Santana, Patricia A; Scully, Robert R

    2013-04-01

    Brief exposures of Apollo astronauts to lunar dust occasionally elicited upper respiratory irritation; however, no limits were ever set for prolonged exposure to lunar dust. The United States and other space faring nations intend to return to the moon for extensive exploration within a few decades. In the meantime, habitats for that exploration, whether mobile or fixed, must be designed to limit human exposure to lunar dust to safe levels. Herein we estimate safe exposure limits for lunar dust collected during the Apollo 14 mission. We instilled three respirable-sized (∼2 μ mass median diameter) lunar dusts (two ground and one unground) and two standard dusts of widely different toxicities (quartz and TiO₂) into the respiratory system of rats. Rats in groups of six were given 0, 1, 2.5 or 7.5 mg of the test dust in a saline-Survanta® vehicle, and biochemical and cellular biomarkers of toxicity in lung lavage fluid were assayed 1 week and one month after instillation. By comparing the dose--response curves of sensitive biomarkers, we estimated safe exposure levels for astronauts and concluded that unground lunar dust and dust ground by two different methods were not toxicologically distinguishable. The safe exposure estimates were 1.3 ± 0.4 mg/m³ (jet-milled dust), 1.0 ± 0.5 mg/m³ (ball-milled dust) and 0.9 ± 0.3 mg/m³ (unground, natural dust). We estimate that 0.5-1 mg/m³ of lunar dust is safe for periodic human exposures during long stays in habitats on the lunar surface.

  2. Comparing paleointensity methods: Importance of the cooling-rate effect on microwave estimates

    NASA Astrophysics Data System (ADS)

    Poletti, W.; Hartmann, G. A.; Hill, M. J.; Biggin, A. J.; Trindade, R. I.

    2013-12-01

    The strength of the past Earth's magnetic field can be inferred from the fossil magnetism of rocks and baked archeological materials. Nowadays, three techniques are used which take advantage of the proportionality between the magnetization intensity in these material and the intensity of the ambient field in which they cooled down from high temperatures - the classical Thellier-Thellier method (TT), the Triaxe method (TR) and the Microwave method (MW). In order to compare these methods, we present new MW that are compared to TT and TR paleointensity data previously obtained on well-characterized archeological bricks from Northeast Brazil, and reevaluate MW and TT paleointensity data from Southwestern Pacific islands. We note that the MW paleointensity data on both collections presented a bias towards higher fields when compared to the other double-heating paleointensity estimates. A simple theoretical approach suggests that the MW bias in NE Brazil and SW Pacific is due to a cooling-rate effect on MW estimates. We then corrected theoretically and experimentally the MW cooling-rate effects, increasing dramatically the degree of consistency between the previous and new results (reducing maximum discrepancies in NE Brazil from 25% to 8%, and in SW Pacific from 12% to 5%). Our results demonstrate the equivalence of microwave and thermal procedures despite the different ways in which the energy is transferred into the spin system (electromagnetic and lattice vibrations). Finally, our results on bricks and ceramics indicate very fast cooling-times after MW steps of less than 1 minute when compared to the several hours cooling in the oven during manufacture, highlighting the need for systematic cooling-rate corrections to be applied in MW paleointensity studies in the future.

  3. Estimating Dungeness crab (Cancer magister) abundance: Crab pots and dive transects compared

    USGS Publications Warehouse

    Taggart, S. James; O'Clair, Charles E.; Shirley, Thomas C.; Mondragon, Jennifer

    2004-01-01

    Dungeness crabs (Cancer magister) were sampled with commercial pots and counted by scuba divers on benthic transects at eight sites near Glacier Bay, Alaska. Catch per unit of effort (CPUE) from pots was compared to the density estimates from dives to evaluate the bias and power of the two techniques. Yearly sampling was conducted in two seasons: April and September, from 1992 to 2000. Male CPUE estimates from pots were significantly lower in April than in the following September; a step-wise regression demonstrated that season accounted for more of the variation in male CPUE than did temperature. In both April and September, pot sampling was significantly biased against females. When females were categorized as ovigerous and nonovigerous, it was clear that ovigerous females accounted for the majority of the bias because pots were not biased against nonovigerous females. We compared the power of pots and dive transects in detecting trends in populations and found that pots had much higher power than dive transects. Despite their low power, the dive transects were very useful for detecting bias in our pot sampling and in identifying the optimal times of year to sample so that pot bias could be avoided.

  4. Comparing the accuracy of experimental estimates to guessing: a new perspective on replication and the "Crisis of Confidence" in psychology.

    PubMed

    Davis-Stober, Clintin P; Dana, Jason

    2014-03-01

    We develop a general measure of estimation accuracy for fundamental research designs, called v. The v measure compares the estimation accuracy of the ubiquitous ordinary least squares (OLS) estimator, which includes sample means as a special case, with a benchmark estimator that randomizes the direction of treatment effects. For sample and effect sizes common to experimental psychology, v suggests that OLS produces estimates that are insufficiently accurate for the type of hypotheses being tested. We demonstrate how v can be used to determine sample sizes to obtain minimum acceptable estimation accuracy. Software for calculating v is included as online supplemental material (R Core Team, 2012).

  5. Co-denitrification an important process in urine amended grassland soil

    NASA Astrophysics Data System (ADS)

    Selbie, Diana R.; Lanigan, Gary J.; Laughlin, Ronald J.; Di, Hong J.; Moir, James L.; Cameron, Keith C.; Clough, Tim J.; Watson, Catherine J.; Grant, James; Somers, Cathal; Richards, Karl G.

    2016-04-01

    Grazed grassland livestock systems are often associated with considerable losses of reactive forms of nitrogen (N) to the environment such as nitrate leaching, ammonia and nitrous oxide (N2O) emissions. Previous research has focused on losses to air and water due to the health, economic and environmental impacts of reactive N. Di-nitrogen (N2) emissions from soils are still poorly characterized, both in terms of the processes involved and their magnitude, due to methodological constraints. There have been relatively few studies on N2 losses in vivo and even fewer have examined the relative contribution of the different N2 emission pathways. Cow urine was amended with 98 atom% 15N-labelled urea resulting in a urine N concentration of 10 g N L-1 and a 15N enrichment of 45 atom% excess. Two litres of urine was applied to replicated monolith lysimeters at a rate of 100 g N m-2 and N2 and N2O emissions were measured over 123 days using the static chamber technique. Headspace N2 and N2O samples were analyzed for 15N by isotope ratio mass spectrometry in the UC Davis Stable Isotope Facility. Contributions of true denitrification and co-denitrification to N2 emissions were calculated using the 15N flux method. The study found that N2 emissions accounted for 95% of gaseous N loss, with 55.8 g N m-2 emitted as N2 by the process of co-denitrification, compared to only 1.1 g N m-2 from conventional denitrification. This study highlights the large N2 fluxes and the importance of co-denitrification in contributing to N dynamics in urine amended grassland soil. Reference Selbie D.R., Lanigan G.J., Laughlin R.J., Di H.J., Moir J.L., Cameron K.C., Clough T.J., Watson C.J., Grant J., Sommers C. & Richards K.G. (2015) Confirmation of co-denitrification in grazed grassland, Scientific Reports 5:17361 1-5

  6. Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Baogang; Liu, Ye; Tong, Shuang; Zheng, Maosheng; Zhao, Yinxin; Tian, Caixing; Liu, Hengyuan; Feng, Chuanping

    2014-12-01

    Electricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly as electrical stimulation means for enhancement of bacterial denitrification to remove nitrate effectively from groundwater. With maximum power density of 502.5 mW m-2 and voltage outputs ranging from 500 mV to 700 mV, the nitrate removal is accelerated, with less intermediates accumulation, compared with control sets without electrical stimulation. Denitrification bacteria proliferations and activities are promoted as its number and Adenosine-5'-triphosphate (ATP) concentration increased one order of magnitude (3.5 × 107 in per milliliter biofilm solution) and about 1.5 folds, respectively. Effects of electricity from MFCs on enhancement of bacterial behaviors are demonstrated for the first time. These results indicate that MFCs can be applied in the in-situ bioremediation of nitrate polluted groundwater for efficiency improvement.

  7. Dynamics of methane production, sulfate reduction, and denitrification in a permanently waterlogged alder swamp

    SciTech Connect

    Westermann, P.; Ahring, B.K.

    1987-10-01

    The dynamics of sulfate reduction, methane production, and denitrification were investigated in a permanently waterlogged alder swamp. Molybdate, an inhibitor of sulfate reduction, stimulated methane production in soil slurries, thus suggesting competition for common substrates between sulfate-reducing and methane-producing bacteria. Acetate, hydrogen, and methanol were found to stimulate both sulfate reduction and methane production, while trimethylamine mainly stimulated methane production. Nitrate addition reduced both methane production and sulfate reduction, either as a consequence of competition of poisoning of the bacteria. Sulfate-reducing bacteria were only slightly limited by the availability of electron acceptors, while denitrifying bacteria were seriously limited by low nitrate concentrations. Arrhenius plots of the three processes revealed different responses to temperature changes in the slurries. Methane production was most sensitive to temperature changes, followed by denitrification and sulfate reduction. No significant differences between slope patterns were observed when comparing summer and winter measurements, indicating similar populations regarding temperature responses.

  8. Denitrification of groundwater with methane as sole hydrogen donor.

    PubMed

    Eisentraeger, A; Klag, P; Vansbotter, B; Heymann, E; Dott, W

    2001-06-01

    It was examined, whether methane can be used as hydrogen donor for an in situ denitrification of groundwater. It is demonstrated, that groundwater can serve as liquid medium and that the denitrification can occur at 10 degrees C. Efforts to enrich methanotrophic bacteria under anoxic conditions have not been successful. No methane oxidation occurred in the absence of oxygen. For this reason, the denitrification with methane must be performed in a two-stage process with aerobic methanotrophic bacteria producing metabolites, that are used as hydrogen donor by non-methanotrophic bacteria in anoxic areas. This kind of indirect denitrification was proved by quantifying nitrogen and nitrous oxide in enrichment cultures that were not stirred or shaken. Large numbers of non-methanotrophic bacteria being able to denitrify with methanol, acetate or proteins as sole hydrogen donor were enriched besides the methanotrophic bacteria under these conditions.

  9. Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification techn...

  10. Denitrification and a nitrogen budget of created riparian wetlands.

    PubMed

    Batson, Jacqulyn A; Mander, Ulo; Mitsch, William J

    2012-01-01

    Riparian wetland creation and restoration have been proposed to mediate nitrate-nitrogen (NO-N) pollution from nonpoint agricultural runoff. Denitrification by anaerobic microbial communities in wetland soils is believed to be one of the main sinks for NO-N as it flows through wetlands. Denitrification rates were quantified using an in situ acetylene inhibition technique at 12 locations in three wetland/riverine sites at the Olentangy River Wetland Research Park, Columbus, Ohio for 1 yr. Sites included two created flow-through experimental wetlands and one bottomland forest/river-edge site. Points were spatially distributed at inflows, center, and outflows of the two wetlands to include permanently flooded open water, intermittently flooded transitions, and upland. Annual denitrification rates (median [mean]) were significantly higher ( < 0.001) in permanently flooded zones of the wetlands (266 [415] μg NO-N m h) than in shallower transition zones (58 [37.5] μg NO-N m h). Median wetland transition zone denitrification rates did not differ significantly ( ≥ 0.05) from riverside or upland sites. Denitrification rates peaked in spring; for the months of April through June, median denitrification rates ranged from 240 to 1010 μg NO-N m h in the permanently flooded zones. A N mass balance analysis showed that surface water flux of N was reduced by 57% as water flowed through the wetland, but only about 3.5% of the N inflow was permanently removed through denitrification. Most N was probably lost through groundwater seepage. Comparison with denitrification rates measured previously in these wetlands suggests that these rates have remained steady over the past 4 to 5 yr.

  11. Oxygen isotope fractionation during N2O production by soil denitrification

    NASA Astrophysics Data System (ADS)

    Lewicka-Szczebak, Dominika; Dyckmans, Jens; Kaiser, Jan; Marca, Alina; Augustin, Jürgen; Well, Reinhard

    2016-02-01

    The isotopic composition of soil-derived N2O can help differentiate between N2O production pathways and estimate the fraction of N2O reduced to N2. Until now, δ18O of N2O has been rarely used in the interpretation of N2O isotopic signatures because of the rather complex oxygen isotope fractionations during N2O production by denitrification. The latter process involves nitrate reduction mediated through the following three enzymes: nitrate reductase (NAR), nitrite reductase (NIR) and nitric oxide reductase (NOR). Each step removes one oxygen atom as water (H2O), which gives rise to a branching isotope effect. Moreover, denitrification intermediates may partially or fully exchange oxygen isotopes with ambient water, which is associated with an exchange isotope effect. The main objective of this study was to decipher the mechanism of oxygen isotope fractionation during N2O production by soil denitrification and, in particular, to investigate the relationship between the extent of oxygen isotope exchange with soil water and the δ18O values of the produced N2O. In our soil incubation experiments Δ17O isotope tracing was applied for the first time to simultaneously determine the extent of oxygen isotope exchange and any associated oxygen isotope effect. We found that N2O formation in static anoxic incubation experiments was typically associated with oxygen isotope exchange close to 100 % and a stable difference between the 18O / 16O ratio of soil water and the N2O product of δ18O(N2O / H2O) = (17.5 ± 1.2) ‰. However, flow-through experiments gave lower oxygen isotope exchange down to 56 % and a higher δ18O(N2O / H2O) of up to 37 ‰. The extent of isotope exchange and δ18O(N2O / H2O) showed a significant correlation (R2 = 0.70, p < 0.00001). We hypothesize that this observation was due to the contribution of N2O from another production process, most probably fungal denitrification. An oxygen isotope fractionation model was used to test various scenarios with

  12. A network biology approach to denitrification in Pseudomonas aeruginosa

    DOE PAGES

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less

  13. Denitrification likely catalyzed by endobionts in an allogromiid foraminifer

    PubMed Central

    Bernhard, Joan M; Edgcomb, Virginia P; Casciotti, Karen L; McIlvin, Matthew R; Beaudoin, David J

    2012-01-01

    Nitrogen can be a limiting macronutrient for carbon uptake by the marine biosphere. The process of denitrification (conversion of nitrate to gaseous compounds, including N2 (nitrogen gas)) removes bioavailable nitrogen, particularly in marine sediments, making it a key factor in the marine nitrogen budget. Benthic foraminifera reportedly perform complete denitrification, a process previously considered nearly exclusively performed by bacteria and archaea. If the ability to denitrify is widespread among these diverse and abundant protists, a paradigm shift is required for biogeochemistry and marine microbial ecology. However, to date, the mechanisms of foraminiferal denitrification are unclear, and it is possible that the ability to perform complete denitrification is because of the symbiont metabolism in some foraminiferal species. Using sequence analysis and GeneFISH, we show that for a symbiont-bearing foraminifer, the potential for denitrification resides in the endobionts. Results also identify the endobionts as denitrifying pseudomonads and show that the allogromiid accumulates nitrate intracellularly, presumably for use in denitrification. Endobionts have been observed within many foraminiferal species, and in the case of associations with denitrifying bacteria, may provide fitness for survival in anoxic conditions. These associations may have been a driving force for early foraminiferal diversification, which is thought to have occurred in the Neoproterozoic era when anoxia was widespread. PMID:22134648

  14. Linking denitrification and infiltration rates during managed groundwater recharge.

    PubMed

    Schmidt, Calla M; Fisher, Andrew T; Racz, Andrew J; Lockwood, Brian S; Huertos, Marc Los

    2011-11-15

    We quantify relations between rates of in situ denitrification and saturated infiltration through shallow, sandy soils during managed groundwater recharge. We used thermal methods to determine time series of point-specific flow rates, and chemical and isotopic methods to assess denitrification progress. Zero order denitrification rates between 3 and 300 μmol L(-1) d(-1) were measured during infiltration. Denitrification was not detected at times and locations where the infiltration rate exceeded a threshold of 0.7 ± 0.2 m d(-1). Pore water profiles of oxygen and nitrate concentration indicated a deepening of the redoxocline at high flow rates, which reduced the thickness of the zone favorable for denitrification. Denitrification rates were positively correlated with infiltration rates below the infiltration threshold, suggesting that for a given set of sediment characteristics, there is an optimal infiltration rate for achieving maximum nitrate load reduction and improvements to water supply during managed groundwater recharge. The extent to which results from this study may be extended to other managed and natural hydrologic settings remains to be determined, but the approach taken in this study should be broadly applicable, and provides a quantitative link between shallow hydrologic and biogeochemical processes.

  15. Using measured soil water contents to estimate evapotranspiration and root water uptake profiles - a comparative study

    NASA Astrophysics Data System (ADS)

    Guderle, M.; Hildebrandt, A.

    2015-01-01

    Understanding the role of plants in soil water relations, and thus ecosystem functioning, requires information about root water uptake. We evaluated four different complex water balance methods to estimate sink term patterns and evapotranspiration directly from soil moisture measurements. We tested four methods. The first two take the difference between two measurement intervals as evapotranspiration, thus neglecting vertical flow. The third uses regression on the soil water content time series and differences between day and night to account for vertical flow. The fourth accounts for vertical flow using a numerical model and iteratively solves for the sink term. None of these methods requires any a priori information of root distribution parameters or evapotranspiration, which is an advantage compared to common root water uptake models. To test the methods, a synthetic experiment with numerical simulations for a grassland ecosystem was conducted. Additionally, the time series were perturbed to simulate common sensor errors, like those due to measurement precision and inaccurate sensor calibration. We tested each method for a range of measurement frequencies and applied performance criteria to evaluate the suitability of each method. In general, we show that methods accounting for vertical flow predict evapotranspiration and the sink term distribution more accurately than the simpler approaches. Under consideration of possible measurement uncertainties, the method based on regression and differentiating between day and night cycles leads to the best and most robust estimation of sink term patterns. It is thus an alternative to more complex inverse numerical methods. This study demonstrates that highly resolved (temporally and spatially) soil water content measurements may be used to estimate the sink term profiles when the appropriate approach is used.

  16. Comparing Three Estimation Methods for the Three-Parameter Logistic IRT Model

    ERIC Educational Resources Information Center

    Lamsal, Sunil

    2015-01-01

    Different estimation procedures have been developed for the unidimensional three-parameter item response theory (IRT) model. These techniques include the marginal maximum likelihood estimation, the fully Bayesian estimation using Markov chain Monte Carlo simulation techniques, and the Metropolis-Hastings Robbin-Monro estimation. With each…

  17. Comparing population exposure to multiple Washington earthquake scenarios for prioritizing loss estimation studies

    USGS Publications Warehouse

    Wood, Nathan J.; Ratliff, Jamie L.; Schelling, John; Weaver, Craig S.

    2014-01-01

    Scenario-based, loss-estimation studies are useful for gauging potential societal impacts from earthquakes but can be challenging to undertake in areas with multiple scenarios and jurisdictions. We present a geospatial approach using various population data for comparing earthquake scenarios and jurisdictions to help emergency managers prioritize where to focus limited resources on data development and loss-estimation studies. Using 20 earthquake scenarios developed for the State of Washington (USA), we demonstrate how a population-exposure analysis across multiple jurisdictions based on Modified Mercalli Intensity (MMI) classes helps emergency managers understand and communicate where potential loss of life may be concentrated and where impacts may be more related to quality of life. Results indicate that certain well-known scenarios may directly impact the greatest number of people, whereas other, potentially lesser-known, scenarios impact fewer people but consequences could be more severe. The use of economic data to profile each jurisdiction’s workforce in earthquake hazard zones also provides additional insight on at-risk populations. This approach can serve as a first step in understanding societal impacts of earthquakes and helping practitioners to efficiently use their limited risk-reduction resources.

  18. Comparative analysis of UVB exposure between Nimbus 7/TOMS satellite estimates and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; Gao, Wei

    2010-08-01

    This study describes the patterns of variation in ultraviolet (UV) exposure across time and space using two continental scale data sets on UV radiation and conducts a comparative analysis of two sources of noontime UV-B exposure data across the continental US. One dataset was collected from 37 ground-based stations equipped with broadband UV-B-1 Pyranometers across North America whereas the other dataset was of synchronous satellite data collected from the Nimbus-7/TOMS sensor. Comparisons of these datasets confirmed agreement between the ground-based measurements and the TOMS satellite estimates with correlation coefficients of 0.87 and 0.95 for daily and monthly UV Index time series (i.e., a common metric of UV radiation exposure), respectively.

  19. Comparative biomass structure and estimated carbon flow in food webs in the deep Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Rowe, Gilbert T.; Wei, Chihlin; Nunnally, Clifton; Haedrich, Richard; Montagna, Paul; Baguley, Jeffrey G.; Bernhard, Joan M.; Wicksten, Mary; Ammons, Archie; Briones, Elva Escobar; Soliman, Yousra; Deming, Jody W.

    2008-12-01

    A budget of the standing stocks and cycling of organic carbon associated with the sea floor has been generated for seven sites across a 3-km depth gradient in the NE Gulf of Mexico, based on a series of reports by co-authors on specific biotic groups or processes. The standing stocks measured at each site were bacteria, Foraminifera, metazoan meiofauna, macrofauna, invertebrate megafauna, and demersal fishes. Sediment community oxygen consumption (SCOC) by the sediment-dwelling organisms was measured at each site using a remotely deployed benthic lander, profiles of oxygen concentration in the sediment pore water of recovered cores and ship-board core incubations. The long-term incorporation and burial of organic carbon into the sediments has been estimated using profiles of a combination of stable and radiocarbon isotopes. The total stock estimates, carbon burial, and the SCOC allowed estimates of living and detrital carbon residence time within the sediments, illustrating that the total biota turns over on time scales of months on the upper continental slope but this is extended to years on the abyssal plain at 3.6 km depth. The detrital carbon turnover is many times longer, however, over the same depths. A composite carbon budget illustrates that total carbon biomass and associated fluxes declined precipitously with increasing depth. Imbalances in the carbon budgets suggest that organic detritus is exported from the upper continental slope to greater depths offshore. The respiration of each individual "size" or functional group within the community has been estimated from allometric models, supplemented by direct measurements in the laboratory. The respiration and standing stocks were incorporated into budgets of carbon flow through and between the different size groups in hypothetical food webs. The decline in stocks and respiration with depth were more abrupt in the larger forms (fishes and megafauna), resulting in an increase in the relative predominance of

  20. QED Estimates of the 1990-91 Schools and Staffing Survey: Deriving and Comparing QED School Estimates with CCD Estimates. Working Paper Series.

    ERIC Educational Resources Information Center

    Holt, Albert; Scanlon, Brian R.

    This study examines the magnitude of the difference between estimates from the 1990-91 Schools and Staffing Survey (SASS) using a Common Core of Data (CCD) definition of a school and a Quality Education Data (QED) definition of a school. The 1990-91 SASS sample design allows for the development of school and administrator estimates using either…

  1. Large-scale controls on potential respiration and denitrification in riverine floodplains.

    PubMed

    Welti, Nina; Bondar-Kunze, Elisabeth; Singer, Gabriel; Tritthart, Michael; Zechmeister-Boltenstern, Sophie; Hein, Thomas; Pinay, Gilles

    2012-05-01

    Restoration measures of deteriorated river ecosystems generally aim at increasing the spatial heterogeneity and connectivity of these systems in order to increase biodiversity and ecosystem stability. While this is believed to benefit overall ecological integrity, consequences of such restoration projects on biogeochemical processes per se (i.e. ecosystem functioning) in fluvial systems are rarely considered. We address these issues by evaluating the characteristics of surface water connection between side arms and the main river channel in a former braided river section and the role and degree of connectivity (i.e. duration of surface water connection) on the sediment biogeochemistry. We hypothesized that potential respiration and denitrification would be controlled by the degree of hydrological connectivity, which was increased after floodplain restoration. We measured potential microbial respiration (SIR) and denitrification (DEA) and compared a degraded floodplain section of the Danube River with a reconnected and restored floodplain in the same river section. Re-establishing surface water connection altered the controls on sediment microbial respiration and denitrification ultimately impacting potential microbial activities. Meta-variables were created to characterize the effects of hydrology, morphology, and the available carbon and nutrient pools on potential microbial processing. Mantel statistics and path analysis were performed and demonstrate a hierarchy where the effects of hydrology on the available substrates and microbial processing are mediated by the morphology of the floodplain. In addition, these processes are highest in the least connected sites. Surface water connection, mediated by morphology regulates the potential denitrification rate and the ratio of N2O to N2 emissions, demonstrating the effects of restoration in floodplain systems.

  2. Large-scale controls on potential respiration and denitrification in riverine floodplains

    PubMed Central

    Welti, Nina; Bondar-Kunze, Elisabeth; Singer, Gabriel; Tritthart, Michael; Zechmeister-Boltenstern, Sophie; Hein, Thomas; Pinay, Gilles

    2012-01-01

    Restoration measures of deteriorated river ecosystems generally aim at increasing the spatial heterogeneity and connectivity of these systems in order to increase biodiversity and ecosystem stability. While this is believed to benefit overall ecological integrity, consequences of such restoration projects on biogeochemical processes per se (i.e. ecosystem functioning) in fluvial systems are rarely considered. We address these issues by evaluating the characteristics of surface water connection between side arms and the main river channel in a former braided river section and the role and degree of connectivity (i.e. duration of surface water connection) on the sediment biogeochemistry. We hypothesized that potential respiration and denitrification would be controlled by the degree of hydrological connectivity, which was increased after floodplain restoration. We measured potential microbial respiration (SIR) and denitrification (DEA) and compared a degraded floodplain section of the Danube River with a reconnected and restored floodplain in the same river section. Re-establishing surface water connection altered the controls on sediment microbial respiration and denitrification ultimately impacting potential microbial activities. Meta-variables were created to characterize the effects of hydrology, morphology, and the available carbon and nutrient pools on potential microbial processing. Mantel statistics and path analysis were performed and demonstrate a hierarchy where the effects of hydrology on the available substrates and microbial processing are mediated by the morphology of the floodplain. In addition, these processes are highest in the least connected sites. Surface water connection, mediated by morphology regulates the potential denitrification rate and the ratio of N2O to N2 emissions, demonstrating the effects of restoration in floodplain systems. PMID:23565037

  3. Syringe test screening of microbial gas production activity: Cases denitrification and biogas formation.

    PubMed

    Østgaard, Kjetill; Kowarz, Viktoria; Shuai, Wang; Henry, Ingrid A; Sposob, Michal; Haugen, Hildegunn Hegna; Bakke, Rune

    2017-01-01

    Mass produced plastic syringes may be applied as vessels for cheap, simple and large scale batch culture testing. As illustrated for the cases of denitrification and of biogas formation, metabolic activity was monitored by direct reading of the piston movement due to the gas volume formed. Pressure buildup due to friction was shown to be moderate. A piston pull and slide back routine can be applied before recording gas volume to minimize experimental errors due to friction. Inoculum handling and activity may be conveniently standardized as illustrated by applying biofilm carriers. A robust set of positive as well as negative controls ("blanks") should be included to ensure quality of the actual testing. The denitrification test showed saturation response at increasing amounts of inoculum in the form of adapted moving bed biofilm reactor (MBBR) carriers, with well correlated nitrate consumption vs. gas volume formed. As shown, the denitrification test efficiently screened different inocula at standardized substrates. Also, different substrates were successfully screened and compared at standardized inocula. The biogas potential test showed efficient screening of different substrates with effects of relative amounts of carbohydrate, protein, fat. A second case with CO2 capture reclaimer waste as substrate demonstrated successful use of co-feeding to support waste treatment and how temperature effects on kinetics and stoichiometry can be observed. In total, syringe test screening of microbial gas production seems highly efficient at a low cost when properly applied.

  4. Enhanced heterotrophic denitrification: effect of dairy industry sludge acclimatization and operating conditions.

    PubMed

    Akbari Shahabi, Zeinab; Naeimpoor, Fereshteh

    2014-06-01

    Heterotrophic denitrification of drinking water was enhanced by selection of an anoxic sludge taken from a dairy industry among the sludges taken from various industries, and the effect of carbon sources was examined. Acclimatization to high nitrate concentration was then carried out in a five-stage process. Considering removals of both nitrate and nitrite, the sludge taken from anoxic unit of Tehran Pegah dairy industry was shown to be the superior microbial culture, with ethanol as carbon source as compared to acetate. To enhance the rate of denitrification, acclimatization to nitrate (at 100, 200, 400, 800, and 1,600 mg N-NO3/L) was carried out in sequencing batch reactors over a 3-month period under anoxic condition, and comparisons were made between the performances of acclimated and non-acclimated sludges at each stage. It was found that acclimatization up to the fourth stage enhanced the specific denitrification rate to a high value of 29.6 mg N-NO3/h/g mixed liquor suspended solids (MLSS), with no significant nitrite accumulation. Additionally, the effect of initial pH (6, 6.5, 7, and 7.5) and carbon-to-nitrogen (C/N) ratio (1, 1.5, 2, and 3) on the performance of this final acclimated sludge was assessed, where initial pH of 7 and C/N ratio of 1.5 resulted in the best performances considering both nitrate and nitrite removal.

  5. The Impact of Fe(II) on NO2- Isotopic Composition During Denitrification by Natural Sediment

    NASA Astrophysics Data System (ADS)

    Diaz-Etchevehere, D.; Wankel, S. D.

    2015-12-01

    The role of Fe(II) on Nitrite (NO2-) isotopic composition during denitrification was investigated in anaerobic, closed-system batch incubations of tidal marsh sediments. Fe(II) is often found in similar redox conditions and can rapidly reduce NO2- to N2 and/or nitrous oxide (N2O), a potent greenhouse gas, through a process called chemodenitrification. Microbial communities can also reduce nitrate (NO3-) to NO2- and eventually to N2O through the anaerobic process of biological denitrification. This study compared the impact on NO2- accumulation when Fe(III)-containing minerals ferrihydrite and goethite were added to natural sediments. The presence of dissolved Fe(II), presumably produced by microbial iron reduction, significantly limited the amount of NO2- accumulation, suggesting that Fe(II) may have chemically reduced NO2-. Changes in the δ15N of the intermediate NO2- pool in each bottle was measured, but the apparent isotope effects of NO2- reduction were indistinguishable among treatments, suggesting that the reaction of Fe(II) and NO2- imparts an isotope effect on the NO2- pool of a similar magnitude to that of biological NO2- reduction. The isotopic composition of N2O and its 15N site preference will be measured to determine if chemodenitrification truly occurred, and if so, the relative contributions to N2O production from biological denitrification and chemodenitrification will be determined.

  6. Sulfur-based autotrophic denitrification with eggshell for nitrate-contaminated synthetic groundwater treatment.

    PubMed

    Xu, Yaxian; Chen, Nan; Feng, Chuanping; Hao, Chunbo; Peng, Tong

    2016-12-01

    Eggshell is considered to be a waste and a significant quantity of eggshell waste is generated from food processing, baking and hatching industries. In this study, the effect of different sulfur/eggshell (w/w) ratios and temperatures was investigated to evaluate the feasibility of the sulfur-based autotrophic denitrification with eggshell (SADE) process for nitrate removal. The results showed eggshell can maintain a neutral condition in a range of pH 7.05-7.74 in the SADE process, and remove 97% of nitrate in synthetic groundwater. Compared with oyster shell and limestone, eggshell was found to be a desirable alkaline material for sulfur-based autotrophic denitrification (SAD) with no nitrite accumulation and insignificant sulfate production. Denitrification reaction was found to follow the first-order kinetic models (R(2) > .9) having nitrate removal rate constants of 0.85 and 0.93 d(-1) for raw eggshell and boiled eggshell, respectively. Sulfur/eggshell ratio of 2:3 provided the best efficiency on nitrate removal. Nitrate was removed completely by the SADE process at a low temperature of 15°C. Eggshell could be used for the SAD process due to its good effect for nitrate removal from groundwater.

  7. Ion exchange membrane textile bioreactor as a new alternative for drinking water denitrification.

    PubMed

    Berdous, Dalila; Akretche, Djamal-Eddine; Abderahmani, Ahmed; Berdous, Sakina; Meknaci, Rima

    2014-06-01

    This work enters in the optics of the denitrification of a polluted water by two membrane techniques, the Donnan dialysis (DD) and the ion exchange membrane bioreactor (IEMB), using a conventional barrier, composed by an anion exchange membrane (AEM), and a hybrid barrier, where the AEM is combined to an anion exchange textile (AET). The effects of the hydrodynamic factor and the nature of the carbon source on the transfer and the reduction of nitrate ions were studied. The study results obtained through the DD showed the effectiveness of the hybrid barrier in the recovery and concentration of nitrate ions. This was also recorded during denitrification by the hybrid process, called the ion exchange membrane textile bioreactor (IEMTB), with a significant reduction of nitrates, compared to IEMB, due to the efficiency of the Pseudomonas aeruginosa biofilm formed at the surface of the AET. Here, the permselectivity of the membrane and the good bioreduction of the pollutants are no longer major conditions to the better performance of the process. The application of IEMTB in the denitrification of groundwater, having a nitrate concentration of 96.67 ppm, shows a total reduction of nitrate ions without changing the quality of the water. Indeed, the analysis of the recovered water, or yet the treated water, shows the absence of the bacterium by-products and concentrations in the nitrates and nitrites which are, respectively, equal to 0.02±0.01 ppm, and inferiors to the detection limit (<0.02 ppm).

  8. Aerobic respiration along isopycnals leads to overestimation of the isotope effect of denitrification in the ocean water column

    NASA Astrophysics Data System (ADS)

    Marconi, Dario; Kopf, Sebastian; Rafter, Patrick A.; Sigman, Daniel M.

    2017-01-01

    The nitrogen (N) isotopes provide an integrative geochemical tool for constraining the fixed N budget of the ocean. However, N isotope budgeting requires a robust estimate for the organism-scale nitrogen isotope effect of denitrification, in particular as it occurs in water column denitrification zones (εwcd). Ocean field data interpreted with the Rayleigh model have typically yielded estimates for εwcd of between 20 and 30‰. However, recent findings have raised questions about this value. In particular, culture experiments can produce a substantially lower isotope effect (∼13‰) under conditions mimicking those of ocean suboxic zones. In an effort to better understand prior field estimates of εwcd, we use a geochemical multi-box model to investigate the combined effects of denitrification, aerobic respiration, and isopycnal exchange on the δ15N of nitrate. In the context of this admittedly simplistic model, we consider three isopycnals extending from the Southern Ocean to the Eastern Tropical North Pacific (ETNP). We show that the data from the ETNP suboxic zone can be reproduced with an εwcd of 13‰, given a rate of aerobic respiration consistent with the nutrient data on these isopycnals and a plausible range in the δ15N of the sinking flux being remineralized. We discuss the limitations of our analysis, additional considerations, as well as possible data-based tests for the proposal of a lower εwcd than previously estimated. All else held constant, a lower εwcd would imply a lower global ocean rate of denitrification that is more similar to the estimated rate of N input to the global ocean, providing a major impetus for further investigation.

  9. Predicting the denitrification capacity of sandy aquifers from in situ measurements using push-pull 15N tracer tests

    NASA Astrophysics Data System (ADS)

    Eschenbach, W.; Well, R.; Walther, W.

    2015-04-01

    Knowledge about the spatial variability of in situ denitrification rates (Dr(in situ)) and their relation to the denitrification capacity in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, 28 push-pull 15N tracer tests for the measurement of in situ denitrification rates were conducted in two sandy Pleistocene aquifers in northern Germany. The 15N analysis of denitrification-derived 15N-labelled N2 and N2O dissolved in water samples collected during the push-pull 15N tracer tests was performed using isotope ratio mass spectrometry (IRMS) in the lab and additionally for some tracer tests online in the field with a quadrupole membrane inlet mass spectrometer (MIMS) in order to test the feasibility of on-site real-time 15N analysis. Aquifer material from the same locations and depths as the push-pull injection points was incubated, and the initial and cumulative denitrification after 1 year of incubation (Dcum(365)) as well as the stock of reduced compounds (SRC) was compared with in situ measurements of denitrification. This was done to derive transfer functions suitable to predict Dcum(365) and SRC from Dr(in situ). Dr(in situ) ranged from 0 to 51.5 μg N kg-1 d-1. Denitrification rates derived from on-site isotope analysis using MIMS satisfactorily coincided with laboratory analysis by conventional IRMS, thus proving the feasibility of in situ analysis. Dr(in situ) was significantly higher in the sulfidic zone of both aquifers compared to the zone of non-sulfidic aquifer material. Overall, regressions between the Dcum(365) and SRC of the tested aquifer material with Dr(in situ) exhibited only a modest linear correlation for the full data set. However, the predictability of Dcum(365) and SRC from Dr(in situ) data clearly increased for aquifer samples from the zone of NO3--bearing groundwater. In the NO3--free aquifer zone, a lag phase of denitrification after NO3- injections was observed, which confounded the

  10. Predicting the denitrification capacity of sandy aquifers from in situ measurements using push-pull 15N tracer tests

    NASA Astrophysics Data System (ADS)

    Eschenbach, W.; Well, R.; Walther, W.

    2014-12-01

    Knowledge about the spatial variability of in situ denitrification rates (Dr(in situ)) and their relation to the denitrification capacity in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, 28 push-pull 15N tracer tests for the measurement of in situ denitrification rates were conducted in two sandy Pleistocene aquifers in Northern Germany. The 15N analysis of denitrification derived 15N labelled N2 and N2O dissolved in water samples collected during the push-pull 15N tracer tests was performed by isotope ratio mass spectrometry (IRMS) in the lab and additionally for some tracer tests online in the field with a quadrupole membrane inlet mass spectrometer (MIMS), in order to test the feasibility of on-site real-time 15N analysis. Aquifer material from the same locations and depths as the push-pull injection points was incubated and the initial and cumulative denitrification after one year of incubation (Dcum(365)) as well as the stock of reduced compounds (SRC) was compared with in situ measurements of denitrification. This was done to derive transfer functions suitable to predict Dcum(365) and SRC from Dr(in situ). Dr(in situ) ranged from 0 to 51.5 μg N kg-1 d-1. Denitrification rates derived from on-site isotope analysis using membrane-inlet mass spectrometry satisfactorily coincided with laboratory analysis by conventional isotope ratio mass spectrometry, thus proving the feasibility of in situ analysis. Dr(in situ) was significantly higher in the sulphidic zone of both aquifers compared to the zone of non-sulphidic aquifer material. Overall, regressions between the Dcum(365) and SRC of the tested aquifer material with Dr(in situ) exhibited only a modest linear correlation for the full data set. But the predictability of Dcum(365) and SRC from Dr(in situ) data clearly increased for aquifer samples from the zone of NO3--bearing groundwater. In the NO3--free aquifer zone a lag phase of denitrification after NO3

  11. Urbanization and agricultural land loss in India: comparing satellite estimates with census data.

    PubMed

    Pandey, Bhartendu; Seto, Karen C

    2015-01-15

    We examine the impacts of urbanization on agricultural land loss in India from 2001 to 2010. We combined a hierarchical classification approach with econometric time series analysis to reconstruct land-cover change histories using time series MODIS 250 m VI images composited at 16-day intervals and night time lights (NTL) data. We compared estimates of agricultural land loss using satellite data with agricultural census data. Our analysis highlights six key results. First, agricultural land loss is occurring around smaller cities more than around bigger cities. Second, from 2001 to 2010, each state lost less than 1% of its total geographical area due to agriculture to urban expansion. Third, the northeastern states experienced the least amount of agricultural land loss. Fourth, agricultural land loss is largely in states and districts which have a larger number of operational or approved SEZs. Fifth, urban conversion of agricultural land is concentrated in a few districts and states with high rates of economic growth. Sixth, agricultural land loss is predominantly in states with higher agricultural land suitability compared to other states. Although the total area of agricultural land lost to urban expansion has been relatively low, our results show that since 2006, the amount of agricultural land converted has been increasing steadily. Given that the preponderance of India's urban population growth has yet to occur, the results suggest an increase in the conversion of agricultural land going into the future.

  12. Comparing GOSAT observations of localized CO2 enhancements by large emitters with inventory-based estimates

    NASA Astrophysics Data System (ADS)

    Janardanan, Rajesh; Maksyutov, Shamil; Oda, Tomohiro; Saito, Makoto; Kaiser, Johannes W.; Ganshin, Alexander; Stohl, Andreas; Matsunaga, Tsuneo; Yoshida, Yukio; Yokota, Tatsuya

    2016-04-01

    We employed an atmospheric transport model to attribute column-averaged CO2 mixing ratios (XCO2) observed by Greenhouse gases Observing SATellite (GOSAT) to emissions due to large sources such as megacities and power plants. XCO2 enhancements estimated from observations were compared to model simulations implemented at the spatial resolution of the satellite observation footprint (0.1° × 0.1°). We found that the simulated XCO2 enhancements agree with the observed over several continental regions across the globe, for example, for North America with an observation to simulation ratio of 1.05 ± 0.38 (p < 0.1), but with a larger ratio over East Asia (1.22 ± 0.32; p < 0.05). The obtained observation-model discrepancy (22%) for East Asia is comparable to the uncertainties in Chinese emission inventories (~15%) suggested by recent reports. Our results suggest that by increasing the number of observations around emission sources, satellite instruments like GOSAT can provide a tool for detecting biases in reported emission inventories.

  13. Comparing GOSAT Observations of Localized CO2 Enhancements by Large Emitters with Inventory-Based Estimates

    NASA Technical Reports Server (NTRS)

    Janardanan, Rajesh; Maksyutov, Shamil; Oda, Tomohiro; Saito, Makoto; Kaiser, Johannes W.; Ganshin, Alexander; Stohl, Andreas; Matsunaga, Tsuneo; Yoshida, Yukio; Yokota, Tatsuya

    2016-01-01

    We employed an atmospheric transport model to attribute column-averaged CO2 mixing ratios (XCO2) observed by Greenhouse gases Observing SATellite (GOSAT) to emissions due to large sources such as megacities and power plants. XCO2 enhancements estimated from observations were compared to model simulations implemented at the spatial resolution of the satellite observation footprint (0.1deg × 0.1deg). We found that the simulated XCO2 enhancements agree with the observed over several continental regions across the globe, for example, for North America with an observation to simulation ratio of 1.05 +/- 0.38 (p<0.1), but with a larger ratio over East Asia (1.22 +/- 0.32; p<0.05). The obtained observation-model discrepancy (22%) for East Asia is comparable to the uncertainties in Chinese emission inventories (approx.15%) suggested by recent reports. Our results suggest that by increasing the number of observations around emission sources, satellite instruments like GOSAT can provide a tool for detecting biases in reported emission inventories.

  14. Comparing estimation approaches for the illness-death model under left truncation and right censoring.

    PubMed

    Vakulenko-Lagun, Bella; Mandel, Micha

    2016-04-30

    Left-truncated data arise when lifetimes are observed only if they are larger than independent truncation times. For example, in a cross-sectional sampling, only individuals who live long enough to be present on the sampling day are observed. There are several ways to perform statistical inference under this setting. One can do the following: (i) use an unconditional approach, (ii) condition on the value of the truncation variable, or (iii) condition on all the history up to the time of truncation. The latter two approaches are equivalent when analyzing univariate survival outcomes but differ under the multi-state framework. In this paper, we consider the illness-death model and compare between the three estimation approaches in a parametric regression framework. We show that approach (ii) is more efficient than the standard approach (iii), although it requires more computational effort. Approach (i) is the most efficient approach, but it requires knowledge on the distribution of the truncation variable and hence is less robust. The methods are compared using a theoretical example and simulations and are applied to intensive care units data collected in a cross-sectional design, where the illness state corresponds to a bloodstream infection.

  15. Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction.

    PubMed

    Sahinkaya, Erkan; Kilic, Adem

    2014-03-01

    Nitrate and chromate can be present together in water resources as nitrate is a common co-contaminant in surface and ground waters. This study aims at comparatively evaluating simultaneous chromate and nitrate reduction in heterotrophic and sulfur-based autotrophic denitrifying column bioreactors. In sulfur-based autotrophic denitrification process, elemental sulfur and nitrate act as an electron donor and an acceptor, respectively, without requirement of organic supplementation. Autotrophic denitrification was complete and not adversely affected by chromate up to 0.5 mg/L. Effluent chromate concentration was <50 μg/L provided that influent chromate concentration was ≤0.5 mg/L. Heterotrophic denitrification performance was not adversely affected even at 20 mg/L chromate and complete chromate reduction was attained up to 10 mg/L. Although autotrophic denitrification rate was much lower compared with heterotrophic one, it may be preferred in drinking water treatment due to the elimination of organic supplementation and the risk of treated effluent contamination.

  16. Comparison between a moving bed bioreactor and a fixed bed bioreactor for biological phosphate removal and denitrification.

    PubMed

    Choi, H J; Lee, A H; Lee, S M

    2012-01-01

    Moving bed bioreactors (MBBR) and fixed bed bioreactors (FBBR) were compared for biological phosphorus removal and denitrification. The sorption denitrification P-elimination (S-DN-P) process was selected for this study. Results indicated that all nutrients were removed by the FBBR process compared with the MBBR process: 19.8% (total COD), 35.5% (filtered COD), 27.6% (BOD(5)), 62.2% (acetate), 78.5% (PO(4)-P), and 54.2% (NO(3)-N) in MBBR; 49.7% (total COD), 54.0% (filtered COD), 63.2% (BOD(5)), 99.6% (acetate), 98.6% (PO(4)-P), and 75.9% (NO(3)-N) in FBBR. The phosphate uptake and NO(3)-N decomposition in the FBBR process during the denitrification phase were much higher than for the MBBR process despite being of shorter duration. Results obtained from this study are helpful in elucidating the practical implications of using MBBR and FBBR for the removal of bio-P and denitrification from wastewater.

  17. Comparing acid steatocrit and faecal elastase estimations for use in M-ANNHEIM staging for pancreatitis

    PubMed Central

    Kamath, M Ganesh; Pai, C Ganesh; Kamath, Asha; Kurien, Annamma

    2017-01-01

    AIM To compare two tests for exocrine pancreatic function (EPF) for use in M-ANNHEIM staging for pancreatitis. METHODS One hundred and ninety four consecutive patients with acute pancreatitis (AP; n = 13), recurrent acute pancreatitis (RAP; n = 65) and chronic pancreatitis (CP; n = 116) were enrolled. EPF was assessed by faecal elastase-1 (FE-1) estimation and stool fat excretion by the acid steatocrit method. Patients were classified as per M-ANNHEIM stages separately based on the results of the two tests for comparison. Independent Student’s t-test, χ2 test, Kruskal-Wallis test, Mann-Whitney U test and McNemar’s test were used as appropriate. RESULTS Sixty-one (52.5%) patients with CP had steatorrhoea when assessed by the acid steatocrit method; 79 (68.1%) with CP had exocrine insufficiency by the FE-1 test (χ2 test, P < 0.001). The results of acid steatocrit and FE-1 showed a significant negative correlation (Spearman’s rho = -0.376, P < 0.001). A statistically significant difference was seen between the M-ANNHEIM stages as classified separately by acid steatocrit and the FE-1. Thirteen (6.7%), 87 (44.8%), 89 (45.8%) and 5 (2.5%) patients were placed in M-ANNHEIM stages 0, I, II, and III respectively, with the use of acid steatocrit as against 13 (6.7%), 85 (43.8%), 75 (38.6%), and 21 (10.8%) respectively by FE-1 in stages 0, I, II, and III thereby altering the stage in 28 (14.4%) patients (P < 0.001, McNemar’s test). CONCLUSION FE-1 estimation performed better than the acid steatocrit test for use in the staging of pancreatitis by the M-ANNHEIM classification since it diagnosed a higher proportion of patients with exocrine insufficiency.

  18. Disease severity estimates - effects of rater accuracy and assessments methods for comparing treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of disease is fundamental to the discipline of plant pathology, and estimates of severity are often made visually. However, it is established that visual estimates can be inaccurate and unreliable. In this study estimates of Septoria leaf blotch on leaves of winter wheat from non-treated ...

  19. A comparative experimental evaluation of uncertainty estimation methods for two-component PIV

    NASA Astrophysics Data System (ADS)

    Boomsma, Aaron; Bhattacharya, Sayantan; Troolin, Dan; Pothos, Stamatios; Vlachos, Pavlos

    2016-09-01

    Uncertainty quantification in planar particle image velocimetry (PIV) measurement is critical for proper assessment of the quality and significance of reported results. New uncertainty estimation methods have been recently introduced generating interest about their applicability and utility. The present study compares and contrasts current methods, across two separate experiments and three software packages in order to provide a diversified assessment of the methods. We evaluated the performance of four uncertainty estimation methods, primary peak ratio (PPR), mutual information (MI), image matching (IM) and correlation statistics (CS). The PPR method was implemented and tested in two processing codes, using in-house open source PIV processing software (PRANA, Purdue University) and Insight4G (TSI, Inc.). The MI method was evaluated in PRANA, as was the IM method. The CS method was evaluated using DaVis (LaVision, GmbH). Utilizing two PIV systems for high and low-resolution measurements and a laser doppler velocimetry (LDV) system, data were acquired in a total of three cases: a jet flow and a cylinder in cross flow at two Reynolds numbers. LDV measurements were used to establish a point validation against which the high-resolution PIV measurements were validated. Subsequently, the high-resolution PIV measurements were used as a reference against which the low-resolution PIV data were assessed for error and uncertainty. We compared error and uncertainty distributions, spatially varying RMS error and RMS uncertainty, and standard uncertainty coverages. We observed that qualitatively, each method responded to spatially varying error (i.e. higher error regions resulted in higher uncertainty predictions in that region). However, the PPR and MI methods demonstrated reduced uncertainty dynamic range response. In contrast, the IM and CS methods showed better response, but under-predicted the uncertainty ranges. The standard coverages (68% confidence interval) ranged from

  20. Reduced models of atmospheric low-frequency variability: Parameter estimation and comparative performance

    NASA Astrophysics Data System (ADS)

    Strounine, K.; Kravtsov, S.; Kondrashov, D.; Ghil, M.

    2010-02-01

    Low-frequency variability (LFV) of the atmosphere refers to its behavior on time scales of 10-100 days, longer than the life cycle of a mid-latitude cyclone but shorter than a season. This behavior is still poorly understood and hard to predict. The present study compares various model reduction strategies that help in deriving simplified models of LFV. Three distinct strategies are applied here to reduce a fairly realistic, high-dimensional, quasi-geostrophic, 3-level (QG3) atmospheric model to lower dimensions: (i) an empirical-dynamical method, which retains only a few components in the projection of the full QG3 model equations onto a specified basis, and finds the linear deterministic and the stochastic corrections empirically as in Selten (1995) [5]; (ii) a purely dynamics-based technique, employing the stochastic mode reduction strategy of Majda et al. (2001) [62]; and (iii) a purely empirical, multi-level regression procedure, which specifies the functional form of the reduced model and finds the model coefficients by multiple polynomial regression as in Kravtsov et al. (2005) [3]. The empirical-dynamical and dynamical reduced models were further improved by sequential parameter estimation and benchmarked against multi-level regression models; the extended Kalman filter was used for the parameter estimation. Overall, the reduced models perform better when more statistical information is used in the model construction. Thus, the purely empirical stochastic models with quadratic nonlinearity and additive noise reproduce very well the linear properties of the full QG3 model’s LFV, i.e. its autocorrelations and spectra, as well as the nonlinear properties, i.e. the persistent flow regimes that induce non-Gaussian features in the model’s probability density function. The empirical-dynamical models capture the basic statistical properties of the full model’s LFV, such as the variance and integral correlation time scales of the leading LFV modes, as well as

  1. Estimation of Salivary and Serum Biomarkers in Diabetic and Non Diabetic Patients - A Comparative Study

    PubMed Central

    Ladgotra, Amit; Raj, Seetharamaiah Sunder

    2016-01-01

    Introduction Blood is the gold standard body fluid for diagnosis of Diabetes Mellitus (DM) but saliva offers an alternative to serum as a biological fluid for diagnostic purposes because it contains serum constituents. Aim The study was conducted to estimate and compare serum and salivary glucose, amylase, proteins, calcium and phosphorus levels in DM and healthy subjects and to evaluate whether saliva can be used as a diagnostic fluid in DM patients. Materials and Methods Study consisted of 120 subjects from OPD of Surendera Dental College, Sriganganagar, Rajasthan, India. The study groups were divided into Group I-60 DM patients (Type I & II) and Group II-60 healthy subjects. The saliva and serum samples were collected from each subject and levels of different biochemical parameters were estimated. Results Mean serum level of glucose (211.50 ± 43.82), amylase (79.86 ± 16.23), total proteins (6.65 ± 0.84), calcium (7.17 ± 0.91) and phosphorus (3.68±0.65) as observed in Group I while in Group II, glucose (88.81±11.29), amylase (77.67±14.88), total proteins (6.35±0.76), calcium (7.52±0.97) and phosphorus (3.96 ± 0.91) were noted. Mean salivary level of glucose (14.10±6.99), amylase (1671.42±569.86), total proteins (1.33±1.11), calcium (10.06±2.76) and phosphorus (13.75±4.45) as observed in Group I while in Group II, glucose (5.87± 2.42), amylase (1397.59 ±415.97), total proteins (1.36±0.81), calcium (7.73±2.78) and phosphorus (8.39 ± 1.95) were noted. On comparing values in saliva and serum, among two groups, an insignificant difference (p>0.005) was found between few of them. Conclusion Values regarding blood and salivary biochemical parameters were distinctly different between two groups suggesting salivary parameters can be used as a diagnostic alternative to blood parameters for diabetes mellitus. PMID:27504412

  2. Importance of denitrification to the efficiency of waste-water treatment in forested wetlands. Project completion report

    SciTech Connect

    Twilley, R.R.; Boustany, R.G.

    1990-09-01

    Wastewater, even after secondary treatment, typically contains high concentrations of nutrients that can cause eutrophication of receiving waters and deterioration of water quality. Therefore, there has been much interest in the use of natural wetlands as a simple and energy-efficient means of removing nutrients from wastewater and improving water quality. The utilization of a wetland for tertiary treatment of wastewater is based on the ability of the wetland to act as a nutrient sink. One of the most important processes in wetland ecosystems that influences their capacity as a nitrogen sink is the gaseous exchange of nitrogen with the atmosphere known as denitrification. Since denitrification represents a loss of nitrogen to the atmosphere, the mechanism tends to be most favorable for the removal of nitrogen. The objectives of the research project were to (1) determine the temporal and spatial ambient rates of denitrification and compare these rates to those of sediments amended with increased concentrations of nitrate comparable to concentrations of total nitrogen in the sewage effluent to be discharged; and (2) determine the proportion of total denitrification that can be attributed to direct utilization of nitrate loaded into the wetland, as compared to nitrate produced via nitrification within the wetland. Although nitrate is readily denitrified, short-term incubation rates are relatively low which is attributed to the presently low nitrate concentrations and subsequent reduced denitrifying microbial population in the wetland sediments. Nitrate concentrations varied seasonally associated with increased flooding during spring. Rates of nitrification coupled with denitrification were investigated with nitrogen-15 isotopes. Nitrification is limited in the wetland sedments; therefore, controls the rate of total nitrogen loss from the system.

  3. Using Pure Cultures to Define the Site Preference of Nitrous Oxide Produced by Microbial Nitrification and Denitrification

    NASA Astrophysics Data System (ADS)

    Sutka, R. L.; Breznak, J. A.; Ostrom, N. E.; Ostrom, P. H.; Gandhi, H.

    2004-12-01

    Defining the site preference of nitrous oxide (N2O) produced in pure culture studies is crucial to interpreting field data. We have previously demonstrated that the intramolecular distribution of nitrogen isotopes (isotopomers) can be used to differentiate N2O produced by nitrifier denitrification and nitrification in cultures of Nitrosomonas europaea. Here, we have expanded on our initial results and evaluated the isotopomeric composition of N2O produced during nitrification and nitrifier denitrification with cultures of Nitrosospira multiformis. In addition, we have analyzed N2O produced during methanotrophic nitrification, denitrification, and fungal denitrification. To evaluate N2O production during nitrification and nitrifier denitrification, we compared the site preference of N2O formed as a result of nitrite reduction and hydroxylamine oxidation with Nitrosomonas europaea and Nitrosospira multiformis. The average site preference of N2O produced by hydroxylamine oxidation was similar for Nitrosomonas europaea (33.0 ± 3.5 ‰ ) and Nitrosospira multiformis (33.1 ± 4.2 ‰ ). Nitrous oxide produced by nitrifier-denitrification by Nitrosomonas europaea and Nitrosospira multiformis had a similar site preference of - 1.4 ± 4.4 ‰ and - 1.1 ± 2.6 ‰ respectively. The results indicate that it is possible to differentiate between N2O produced by nitrite reduction and hydroxylamine oxidation by ammonia oxidizing bacteria. Methanotrophic nitrification was evaluated by analyzing the N2O produced during hydroxylamine oxidation in concentrated cell suspensions of two methane oxidizing bacteria. The site preference of N2O produced by the two methane oxidizers, Methylococcus capsulatus Bath and Methylosinus trichosporium was 31.8 ± 4.7 ‰ and 33.0 ± 4.5 ‰ respectively. The results indicate that a site preference of 33 ‰ is applicable for nitrification regardless of whether a methane oxidizer or ammonia oxidizer is involved in the reaction. To determine the site

  4. Direct contribution of clams (Ruditapes philippinarum) to benthic fluxes, nitrification, denitrification and nitrous oxide emission in a farmed sediment

    NASA Astrophysics Data System (ADS)

    Welsh, David T.; Nizzoli, Daniele; Fano, Elisa A.; Viaroli, Pierluigi

    2015-03-01

    The influence of the manila clam (Ruditapes philippinarum) on N-cycle processes, and oxygen and nutrient fluxes in a farmed sediment was investigated using a multiple core incubation approach and parallel incubations of individual clams. Clam population/biomass density varied ∼8-fold between cores and all sediment-water column solute (O2. N2, N2O, NH4+, NOX and DIN) fluxes and benthic process (N-regeneration, nitrification and denitrification) rates were strongly and significantly correlated with clam density/biomass. Isolated clams exhibited high rates of respiration, N-excretion, nitrification and denitrification of 2050 ± 70, 395 ± 49, 201 ± 42 and 235 ± 40 nmol individual-1 h-1, respectively. The direct contribution of the clams and their associated microbiota to benthic processes was estimated by multiplying the per individual rates by the number of clams in each incubated core. The clams on average directly accounted for 64-133% of total rates of sediment oxygen demand, N-regeneration, nitrification and denitrification, indicating that they regulated processes primarily through their own metabolic activity and that of bacteria that colonise them. Clams and the farmed sediments were significant sources of the greenhouse gas N2O, but this was primarily due to their high nitrification and denitrification rates, rather than high specific N2O yields, as N2O emissions represented <1% of total N2O + N2 production. The clam-farmed sediments had a high denitrification efficiency of 67 ± 10%, but this ecosystem service came at the environmental cost of increased N-regeneration and N2O emission rates. The measured N2O emissions indicate that bivalve aquaculture may be a significant source of N2O. It is therefore recommended that N2O emissions should be included in the impact assessments of current and future bivalve-farming projects.

  5. The Denitrification Characteristics and Microbial Community in the Cathode of an MFC with Aerobic Denitrification at High Temperatures

    PubMed Central

    Zhao, Jianqiang; Wu, Jinna; Li, Xiaoling; Wang, Sha; Hu, Bo; Ding, Xiaoqian

    2017-01-01

    Microbial fuel cells (MFCs) have attracted much attention due to their ability to generate electricity while treating wastewater. The performance of a double-chamber MFC with simultaneous nitrification and denitrification (SND) in the cathode for treating synthetic high concentration ammonia wastewater was investigated at different dissolved oxygen (DO) concentrations and high temperatures. The results showed that electrode denitrification and traditional heterotrophic denitrification co-existed in the cathode chamber. Electrode denitrification by aerobic denitrification bacterium (ADB) is beneficial for achieving a higher voltage of the MFC at high DO concentrations (3.0–4.2 mg/L), while traditional heterotrophic denitrification is conducive to higher total nitrogen (TN) removal at low DO (0.5–1.0 mg/L) concentrations. Under high DO conditions, the nitrous oxide production and TN removal efficiency were higher with a 50 Ω external resistance than with a 100 Ω resistance, which demonstrated that electrode denitrification by ADB occurred in the cathode of the MFC. Sufficient electrons were inferred to be provided by the electrode to allow ADB survival at low carbon:nitrogen ratios (≤0.3). Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) results showed that increasing the DO resulted in a change of the predominant species from thermophilic autotrophic nitrifiers and facultative heterotrophic denitrifiers at low DO concentrations to thermophilic ADB at high DO concentrations. The predominant phylum changed from Firmicutes to Proteobacteria, and the predominant class changed from Bacilli to Alpha, Beta, and Gamma Proteobacteria. PMID:28154554

  6. Comparing and evaluating model estimates of background ozone in surface air over North America

    NASA Astrophysics Data System (ADS)

    Oberman, J.; Fiore, A. M.; Lin, M.; Zhang, L.; Jacob, D. J.; Naik, V.; Horowitz, L. W.

    2011-12-01

    Tropospheric ozone adversely affects human health and vegetation, and is thus a criteria pollutant regulated by the U.S. Environmental Protection Agency (EPA) under the National Ambient Air Quality Standard (NAAQS). Ozone is produced in the atmosphere via photo-oxidation of volatile organic compounds (VOCs) and carbon monoxide (CO) in the presence of nitrogen oxides (NOx). The present EPA approach considers health risks associated with exposure to ozone enhancement above the policy-relevant background (PRB), which is currently defined as the surface concentration of ozone that would exist without North American anthropogenic emissions. PRB thus includes production by natural precursors, production by precursors emitted on foreign continents, and transport of stratospheric ozone into surface air. As PRB is not an observable quantity, it must be estimated using numerical models. We compare PRB estimates for the year 2006 from the GFDL Atmospheric Model 3 (AM3) chemistry-climate model (CCM) and the GEOS-Chem (GC) chemical transport model (CTM). We evaluate the skill of the models in reproducing total surface ozone observed at the U.S. Clean Air Status and Trends Network (CASTNet), dividing the stations into low-elevation (< 1.5 km in altitude, primarily eastern) and high-elevation (> 1.5 km in altitude, all western) subgroups. At the low-elevation sites AM3 estimates of PRB (38±9 ppbv in spring, 27±9 ppbv in summer) are higher than GC (27±7 ppbv in spring, 21±8 ppbv in summer) in both seasons. Analysis at these sites is complicated by a positive bias in AM3 total ozone with respect to the observed total ozone, the source of which is yet unclear. At high-elevation sites, AM3 PRB is higher in the spring (47±8 ppbv) than in the summer (33±8 ppbv). In contrast, GC simulates little seasonal variation at high elevation sites (39±5 ppbv in spring vs. 38±7 ppbv in summer). Seasonal average total ozone at these sites was within 4 ppbv of the observations for both

  7. Autoxidation and acetylene-accelerated oxidation of NO in a 2-phase system; implications for the expression of denitrification in ex situ experiments

    NASA Astrophysics Data System (ADS)

    Nadeem, Shahid; Dörsch, Peter; Bakken, Lars

    2013-04-01

    flasks (with and without C2H2), and monitored for O2, NO, N2O and N2 production while depleting the oxygen and switching to anoxic respiration. Acetylene effectively scavenged NO from the cultures until oxygen concentration reached below ~0.19 mL L-1, and the estimated rate of acetylene-accelerated NO oxidation was more than sufficient to explain an observed reduction of the N2O production induced by acetylene. When [O2] reached below 0.19 mL L-1, the NO concentrations increased and stabilized at the same level as in the treatments without acetylene, but the rate of denitrification was much lower than without acetylene. The results indicate that the early accumulation of 10-20 nM NO during oxygen depletion has a significant effect on the expression of denitrification in soil communities. This warrants a greater interest in NO as a regulator of denitrification in soils and shows that the acetylene inhibition method may be problematic even for intentionally anoxic incubations, unless precautions are taken to secure initial O2-concentrations below 0.19 mL O2 L-1.

  8. Emerging complexity in the denitrification regulatory network of Bradyrhizobium japonicum.

    PubMed

    Torres, María J; Bueno, Emilio; Mesa, Socorro; Bedmar, Eulogio J; Delgado, María J

    2011-01-01

    Bradyrhizobium japonicum is a Gram-negative soil bacterium symbiotically associated with soya bean plants, which is also able to denitrify under free-living and symbiotic conditions. In B. japonicum, the napEDABC, nirK, norCBQD and nosRZDYFLX genes which encode reductases for nitrate, nitrite, nitric oxide and nitrous oxide respectively are required for denitrification. Similar to many other denitrifiers, expression of denitrification genes in B. japonicum requires both oxygen limitation and the presence of nitrate or a derived nitrogen oxide. In B. japonicum, a sophisticated regulatory network consisting of two linked regulatory cascades co-ordinates the expression of genes required for microaerobic respiration (the FixLJ/FixK2 cascade) and for nitrogen fixation (the RegSR/NifA cascade). The involvement of the FixLJ/FixK2 regulatory cascade in the microaerobic induction of the denitrification genes is well established. In addition, the FNR (fumarase and nitrate reduction regulator)/CRP(cAMP receptor protein)-type regulator NnrR expands the FixLJ/FixK2 regulatory cascade by an additional control level. A role for NifA is suggested in this process by recent experiments which have shown that it is required for full expression of denitrification genes in B. japonicum. The present review summarizes the current understanding of the regulatory network of denitrification in B. japonicum.

  9. Evidence for biological denitrification inhibition (BDI) by plant secondary metabolites.

    PubMed

    Bardon, Clément; Piola, Florence; Bellvert, Floriant; Haichar, Feth el Zahar; Comte, Gilles; Meiffren, Guillaume; Pommier, Thomas; Puijalon, Sara; Tsafack, Noelline; Poly, Franck

    2014-11-01

    Previous studies on the effect of secondary metabolites on the functioning of rhizosphere microbial communities have often focused on aspects of the nitrogen (N) cycle but have overlooked biological denitrification inhibition (BDI), which can affect plant N-nutrition. Here, we investigated the BDI by the compounds of Fallopia spp., an invasive weed shown to be associated with a low potential denitrification of the soil. Fallopia spp. extracts were characterized by chromatographic analysis and were used to test the BDI effects on the metabolic and respiratory activities of denitrifying bacteria, under aerobic and anaerobic (denitrification) conditions. The BDI of Fallopia spp. extracts was tested on a complex soil community by measuring denitrification enzyme activity (DEA), substrate induced respiration (SIR), as well as abundances of denitrifiers and total bacteria. In 15 strains of denitrifying bacteria, extracts led to a greater BDI (92%) than respiration inhibition (50%). Anaerobic metabolic activity reduction was correlated with catechin concentrations and the BDI was dose dependent. In soil, extracts reduced the DEA/SIR ratio without affecting the denitrifiers: total bacteria ratio. We show that secondary metabolite(s) from Fallopia spp. inhibit denitrification. This provides new insight into plant-soil interactions and improves our understanding of a plant's ability to shape microbial soil functioning.

  10. Nitrogen removal from the saline sludge liquor by electrochemical denitrification.

    PubMed

    Xie, Z M; Li, X Y; Chan, K Y

    2006-01-01

    Sludge liquor from the sludge dewatering process has a high ammonia content. In the present study, a lab-scale electrochemical (EC) system with a pair of Ti electrode plates was used for treating the sludge centrate liquor of digested wastewater sludge with a NH4(+) - N content of around 500 mg/L. The sludge liquor had a high salinity due to seawater being used for toilet flushing in Hong Kong. The results show that the EC process is highly effective for denitrification of the saline sludge liquor. Complete nitrogen removal could be achieved within 1 hr or so. The rate of EC denitrification increased with the current intensity applied. The best current efficiency for nitrogen removal was obtained for a gap distance between the electrodes at 8 mm. Electro-chlorination was considered to be the major mechanism of EC denitrification. The formation of chlorination by-products (CBPs) appeared to be minimal with the total trihalomethanes (THM) detected at a level of 300 microg/L or lower. The power consumption for EC denitrification was around 23 kWh/kg N. Additional electro-flocculation with a pair of iron needle electrodes could enhance the flocculation and subsequent sedimentation of colloidal organics in the sludge liquor, increasing the organic removal from less than 30% to more than 70%. Therefore, the EC process including both electro-denitrification and electro-flocculation can be developed as the most cost-effective method for treatment of the saline sludge liquor.

  11. Global trends and uncertainties in terrestrial denitrification and N2O emissions

    PubMed Central

    Bouwman, A. F.; Beusen, A. H. W.; Griffioen, J.; Van Groenigen, J. W.; Hefting, M. M.; Oenema, O.; Van Puijenbroek, P. J. T. M.; Seitzinger, S.; Slomp, C. P.; Stehfest, E.

    2013-01-01

    Soil nitrogen (N) budgets are used in a global, distributed flow-path model with 0.5° × 0.5° resolution, representing denitrification and N2O emissions from soils, groundwater and riparian zones for the period 1900–2000 and scenarios for the period 2000–2050 based on the Millennium Ecosystem Assessment. Total agricultural and natural N inputs from N fertilizers, animal manure, biological N2 fixation and atmospheric N deposition increased from 155 to 345 Tg N yr−1 (Tg = teragram; 1 Tg = 1012 g) between 1900 and 2000. Depending on the scenario, inputs are estimated to further increase to 408–510 Tg N yr−1 by 2050. In the period 1900–2000, the soil N budget surplus (inputs minus withdrawal by plants) increased from 118 to 202 Tg yr−1, and this may remain stable or further increase to 275 Tg yr−1 by 2050, depending on the scenario. N2 production from denitrification increased from 52 to 96 Tg yr−1 between 1900 and 2000, and N2O–N emissions from 10 to 12 Tg N yr−1. The scenarios foresee a further increase to 142 Tg N2–N and 16 Tg N2O–N yr−1 by 2050. Our results indicate that riparian buffer zones are an important source of N2O contributing an estimated 0.9 Tg N2O–N yr−1 in 2000. Soils are key sites for denitrification and are much more important than groundwater and riparian zones in controlling the N flow to rivers and the oceans. PMID:23713114

  12. Estimation of AM fungal colonization - Comparability and reliability of classical methods.

    PubMed

    Füzy, Anna; Biró, Ibolya; Kovács, Ramóna; Takács, Tünde

    2015-12-01

    The characterization of mycorrhizal status in hosts can be a good indicator of symbiotic associations in inoculation experiments or in ecological research. The most common microscopic-based observation methods, such as (i) the gridline intersect method, (ii) the magnified intersections method and (iii) the five-class system of Trouvelot were tested to find the most simple, easily executable, effective and objective ones and their appropriate parameters for characterization of mycorrhizal status. In a pot experiment, white clover (Trifolium repens L.) host plant was inoculated with 6 (BEG144; syn. Rhizophagus intradices) in pumice substrate to monitor the AMF colonization properties during host growth. Eleven (seven classical and four new) colonization parameters were estimated by three researchers in twelve sampling times during plant growth. Variations among methods, observers, parallels, or individual plants were determined and analysed to select the most appropriate parameters and sampling times for monitoring. The comparability of the parameters of the three methods was also tested. As a result of the experiment classical parameters were selected for hyphal colonization: colonization frequency in the first stage or colonization density in the later period, and arbuscular richness of roots. A new parameter was recommended to determine vesicule and spore content of colonized roots at later stages of symbiosis.

  13. Fate and impact of organics in an immersed membrane bioreactor applied to brine denitrification and ion exchange regeneration.

    PubMed

    McAdam, Ewan J; Pawlett, Mark; Judd, Simon J

    2010-01-01

    The application of membrane bioreactors (MBRs) to brine denitrification for ion exchange regeneration has been studied. The developed culture was capable of complete brine denitrification at 50 gNaCl.l(-1). Denitrification reduced to c.60% and c.70% when salinity was respectively increased to 75 and 100g.l(-1), presumed to be due to reduced growth rate and the low imposed solids retention time (10 days). Polysaccharide secretion was not induced by stressed cells following salt shocking, implying that cell lysis did not occur. Fouling propensity, monitored by critical flux, was steady at 12-15l.m(-2).h(-1) during salinity shocking and after brine recirculation, indicating that the system was stable following perturbation. Low molecular weight polysaccharide physically adsorbed onto the nitrate selective anion exchange resin during regeneration reducing exchange capacity by c.6.5% when operating up to complete exhaustion. However, based on a breakthrough threshold of 10 mgNO(3)(-)-N.l(-1) the exchange capacity was comparative to that determined when using freshly produced brine for regeneration. It was concluded that a denitrification MBR was an appropriate technology for IEX spent brine recovery and reuse.

  14. Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment.

    PubMed

    Zhang, Yongmei; Wang, Xiaochang C; Cheng, Zhe; Li, Yuyou; Tang, Jialing

    2016-02-01

    Food wastes were used for anaerobic fermentation to prepare carbon sources for enhancing nitrogen removal in wastewater treatment. Under anaerobic conditions without pH adjustment, the fermentation liquid from food wastes (FLFW) with a high organic acid content was produced at room temperature (25 °C) and initial solid concentration of 13%. Using FLFW as the sole carbon source of artificial wastewater for biological treatment by sequence batch operation, maximized denitrification (with a denitrification rate of V(DN) = 12.89 mg/gVSS h and a denitrification potential of P(DN) = 0.174 gN/gCOD) could be achieved at a COD/TN ratio of 6. The readily biodegradable fraction in the FLFW was evaluated as 58.35%. By comparing FLFW with glucose and sodium acetate, two commonly used chemical carbon sources, FLFW showed a denitrification result similar to sodium acetate but much better than glucose in terms of total nitrogen removal, V(DN), P(DN), organic matter consumption rate (V(COD)) and heterotrophy anoxic yield coefficient (Y(H)).

  15. Denitrification rates in marsh soils and hydrologic and water quality data for Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2011-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in estuaries. Water-quality degradation has been observed at the park's Bass Harbor Marsh estuary but minimal degradation is observed in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential nutrient source. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in situ denitrification rates in marsh soils in Northeast Creek and Bass Harbor Marsh watersheds during the summer seasons of 2008 and 2009. Denitrification was measured under ambient conditions and following inorganic nitrogen and glucose additions. Laboratory incubations of marsh soils with and without acetylene were conducted to determine average ratios of nitrous oxide (N2O) to nitrogen (N2) produced during denitrification. Surface water and groundwater samples were analyzed for nutrients, specific conductance, temperature, and dissolved oxygen. Water level was recorded continuously during the growing season in Fresh Meadow Marsh in the Northeast Creek Watershed.

  16. Effects of N and C Distribution on N-Emissions during Denitrification

    NASA Astrophysics Data System (ADS)

    Loick, Nadine; Dixon, Liz; Abalos, Diego; Vallejo, Antonio; Watson, Catherine; McGeough, Karen; Matthews, Peter; Cardenas, Laura

    2015-04-01

    Agricultural soils are a major source of nitric- (NO) and nitrous oxide (N2O) which are produced and consumed by biotic and abiotic soil processes. The dominant sources of NO and N2O are microbial nitrification and denitrification. Which process dominates depends on environmental conditions such as pH and water filled pore space (WFPS) as well as substrate availability which is seldom homogeneous across the whole field. N2O emissions have been attributed to both processes whereas NO emissions are thought to predominantly derive from nitrification. Recent findings challenge the latter assumption indicating denitrification to be a significant source of NO. The present study investigated the impact that N and C application hot spots have on emissions of NO and N2O as well as the significance of denitrification as a source of NO emissions. This study used the gas-flow-soil-core technique (Cardenas et al 2003) to simultaneously measure three nitrogen-gases (NO, N2O, N2) and CO2. This was combined with 15N labelled isotopic techniques to determine the source of N-emissions. A nutrient solution containing KNO3 with 15N at 5 atom% and glucose was applied at a rate of 75 kg N ha-1 and 400 kg C ha-1 to vessels containing three repacked grassland soil cores, where the amendment was either split and applied equally to the three cores or the full rate was applied to only one of the cores, mimicking heterogeneous fertiliser application. Under field conditions nutrient/fertiliser application is seldom homogeneous across the whole field and our results show a clear effect of the heterogeneous application of nutrients. NO emissions were significantly lower when a high concentration of nutrients was applied to a single core compared to an even distribution over multiple cores. Total emissions of N2O, N2 and CO2, however, were not affected by application heterogeneity but showed a delay in the occurrence of the peak of all three gases when the nutrients were applied to only one core

  17. Assessment of the denitrification process in alluvial wetlands at floodplain scale using the SWAT model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As alluvial plains support intensive agricultural activities, they often suffer from groundwater nitrate pollution. Denitrification is recognized as an important process in nitrate pollution control in riparian zones. In shallow aquifer zones influenced by recharged surface water, denitrification ...

  18. Determining the nitrogen and oxygen isotope effects of microbial denitrification

    NASA Astrophysics Data System (ADS)

    Philp, C.; Martin, T. S.; Casciotti, K. L.

    2013-12-01

    The nitrogen cycle describes how nitrogen, a critical nutrient for life, moves throughout the ground, oceans, and atmosphere. An essential component of the nitrogen cycle is denitrification, in which bioavailable nitrogen is transformed into nitrous oxide and nitrogen gas and can no longer be harnessed by most organisms. We can further understand the importance of this nitrogen cycle process by examining the N and O isotope effects of microbial denitrification. We have cultured four denitrifying bacteria: P. stutzeri, P. putida, P. aureofaciens, and P. aeruginosa. After providing them with an initial amount of nitrite we tracked the rate at which each type of bacteria consumed the nitrite through a time series experiment. We then measured the N and O isotope ratios of the nitrite at each time point using a gas-source isotope ratio mass spectrometer. The subsequent isotope effects calculated using the Rayleigh equation provide an important tool for modeling denitrification in the environment.

  19. Comparing Four Estimates of the Criterion-Referenced Standard for a Written Test.

    ERIC Educational Resources Information Center

    Hughes, Francis P.

    Four procedures were used to estimate a criterion-referenced standard for a multiple-choice examination developed by the National Board of Medical Examiners (NBME). Two experimental procedures, the NBME method and a modification of the Guerin method, and the Angoff and Ebel procedures were evaluated on the consistency of the estimates they…

  20. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  1. Effect of atrazine on potential denitrification in aquifer sediments

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Jagucki, M.L.; McMahon, P.B.

    1994-01-01

    Agriculturaf use of fertilizers and herbicides has often resulted in nitrate and atrazine contamination of the shallow aquifers that underlay cultivated fields. In several cases, the concentrations of atrazine and nitrate dissolved in ground water are positively correlated (Spalding ef al., 1979; Chen and Druliner, 1987; Spalding et al., 1989). Because simultaneous application of nitrate fertilizers and the herbicide, atrazine, is common, the co-occurrence of these contaminants in ground water is not entirely unexpected. However, the possibility also exists that this co-occurrence may ret&t interactions of atrazine with nitrate in the subsurface environment. R&ton and Cervelh (1980), McElhannon ei al. (1984) and Mills (1984) have reported that atrazine inhibits denitrification in‘soil’lf this i‘s indeed the case, atrazine contamination may contribute to nitrate preservation and accumulation in anaerobic aquifers by inhibiting denitrification, the principal mechanism for nitrate removal in anaerobic systems. Huwever, the effect of atrazine on the rate of denit~ficat~on in soils remains controversial, because atrazine has been reported variously to enhance denitrification (Cervelli and Ralston, 1983) or to have no effect on denitrification in soils (Bollag and Henninger, 1976; Yeomans and Bremner, IQ85, 1987). Moreover, the effect of dissolved atrazine concentrations on the rate of denitrification in aquifer sediments has not been reported. Our purpose was to determine the elects of dissolved atrazine concentrations on potential rates ofdenitri~~t~on in aquifer sediments from two different agricultural areas to evaluate the hypothesis that, by inhibiting denitrification, atrazine contributes to nitrate preservation in anaerobic aquifer systems.

  2. Comparing Parameter Estimation Techniques for an Electrical Power Transformer Oil Temperature Prediction Model

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1999-01-01

    This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.

  3. Comparing new and conventional methods to estimate benthic algal biomass and composition in freshwaters.

    PubMed

    Kahlert, Maria; McKie, Brendan G

    2014-11-01

    We compared conventional microscope-based methods for quantifying biomass and community composition of stream benthic algae with output obtained for these parameters from a new instrument (the BenthoTorch), which measures fluorescence of algal pigments in situ. Benthic algae were studied in 24 subarctic oligotrophic (1.7-26.9, median 7.2 μg total phosphorus L(-1)) streams in Northern Sweden. Readings for biomass of the total algal mat, quantified as chlorophyll a, did not differ significantly between the BenthoTorch (median 0.52 μg chlorophyll a cm(-2)) and the conventional method (median 0.53 μg chlorophyll a cm(-2)). However, quantification of community composition of the benthic algal mat obtained using the BenthoTorch did not match those obtained from conventional methods. The BenthoTorch indicated a dominance of diatoms, whereas microscope observations showed a fairly even distribution between diatoms, blue-green algae (mostly nitrogen-fixing) and green algae (mostly large filamentous), and also detected substantial biovolumes of red algae in some streams. These results most likely reflect differences in the exact parameters quantified by the two methods, as the BenthoTorch does not account for variability in cell size and the presence of non-chlorophyll bearing biomass in estimating the proportion of different algal groups, and does not distinguish red algal chlorophyll from that of other algal groups. Our findings suggest that the BenthoTorch has utility in quantifying biomass expressed as μg chlorophyll a cm(-2), but its output for the relative contribution of different algal groups to benthic algal biomass should be used with caution.

  4. Observations of denitrification and dehydration in the winter polar stratospheres

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Kelly, K. K.; Kawa, S. R.; Tuck, A. F.; Loewenstein, M.

    1990-01-01

    It is argued that denitrification of the Arctic stratosphere can be explained by the selective growth and sedimentation of aerosol particles rich in nitric acid. Because reactive nitrogen species moderate the destruction of ozone by chlorine-catalyzed reactions by sequestering chlorine in reservoir species such as ClONO2, the possibility of the removal of reactive nitrogen without dehydration should be allowed for in attempts to model ozone depletion in the Arctic. Indeed, denitrification along with elevated concentrations of reactive chlorine observed in 1989 indicate that the Arctic was chemically primed for ozone destruction without an extended period of temperatures below the frost point, as is characteristic of the Antarctic.

  5. Robust estimates of divergence times and selection with a poisson random field model: a case study of comparative phylogeographic data.

    PubMed

    Amei, Amei; Smith, Brian Tilston

    2014-01-01

    Mutation frequencies can be modeled as a Poisson random field (PRF) to estimate speciation times and the degree of selection on newly arisen mutations. This approach provides a quantitative theory for comparing intraspecific polymorphism with interspecific divergence in the presence of selection and can be used to estimate population genetic parameters. Although the original PRF model has been extended to more general biological settings to make statistical inference about selection and divergence among model organisms, it has not been incorporated into phylogeographic studies that focus on estimating population genetic parameters for nonmodel organisms. Here, we modified a recently developed time-dependent PRF model to independently estimate genetic parameters from a nuclear and mitochondrial DNA data set of 22 sister pairs of birds that have diverged across a biogeographic barrier. We found that species that inhabit humid habitats had more recent divergence times and larger effective population sizes than those that inhabit drier habitats, and divergence time estimated from the PRF model were similar to estimates from a coalescent species-tree approach. Selection coefficients were higher in sister pairs that inhabited drier habitats than in those in humid habitats, but overall the mitochondrial DNA was under weak selection. Our study indicates that PRF models are useful for estimating various population genetic parameters and serve as a framework for incorporating estimates of selection into comparative phylogeographic studies.

  6. Effect of electromagnetic fields on the denitrification activity of Paracoccus denitrificans.

    PubMed

    Fojt, Lukás; Strasák, Ludek; Vetterl, Vladimír

    2007-01-01

    Enzymatic activity (denitrification) of Paracoccus denitrificans was estimated electrochemically by reduction of duroquinone (DQ). Graphite electrodes covered with whole bacterial cells behind a dialysis membrane were used for measurement. P. denitrificans reduce nitrate and/or nitrite under anaerobic conditions to nitrogen gas. DQ acts as an electron mediator. After donation of the electrons to the respiratory system of the bacteria, produced DQ is reduced to durohydroquinone on the electrode surface electrocatalytically. P. denitrificans were exposed to low-frequency magnetic field (10 mT, 50 Hz) for 24 min. In comparison with the control samples, the reduction peak of I-E curves that represent denitrification activity of the cells decreased significantly after magnetic field exposure. The decrease of the peak current was about 20%. The CFU-colony forming units-method was used to estimate the number of surviving bacteria. After 24 min exposure of 10 mT magnetic field P. denitrificans culture on electrode indicates 21% bacterial death.

  7. Accuracy of age estimation methods from orthopantomograph in forensic odontology: a comparative study.

    PubMed

    Khorate, Manisha M; Dinkar, A D; Ahmed, Junaid

    2014-01-01

    Changes related to chronological age are seen in both hard and soft tissue. A number of methods for age estimation have been proposed which can be classified in four categories, namely, clinical, radiological, histological and chemical analysis. In forensic odontology, age estimation based on tooth development is universally accepted method. The panoramic radiographs of 500 healthy Goan, Indian children (250 boys and 250 girls) aged between 4 and 22.1 years were selected. Modified Demirjian's method (1973/2004), Acharya AB formula (2011), Dr Ajit D. Dinkar (1984) regression equation, Foti and coworkers (2003) formula (clinical and radiological) were applied for estimation of age. The result of our study has shown that Dr Ajit D. Dinkar method is more accurate followed by Acharya Indian-specific formula. Furthermore, in this study by applying all these methods to one regional population, we have attempted to present dental age estimation methodology best suited for the Goan Indian population.

  8. Cross-national comparability of burden of disease estimates: the European Disability Weights Project.

    PubMed Central

    Essink-Bot, Marie-Louise; Pereira, Joaquin; Packer, Claire; Schwarzinger, Michael; Burstrom, Kristina

    2002-01-01

    OBJECTIVE: To investigate the sources of cross-national variation in disability-adjusted life-years (DALYs) in the European Disability Weights Project. METHODS: Disability weights for 15 disease stages were derived empirically in five countries by means of a standardized procedure and the cross-national differences in visual analogue scale (VAS) scores were analysed. For each country the burden of dementia in women, used as an illustrative example, was estimated in DALYs. An analysis was performed of the relative effects of cross-national variations in demography, epidemiology and disability weights on DALY estimates. FINDINGS: Cross-national comparison of VAS scores showed almost identical ranking orders. After standardization for population size and age structure of the populations, the DALY rates per 100000 women ranged from 1050 in France to 1404 in the Netherlands. Because of uncertainties in the epidemiological data, the extent to which these differences reflected true variation between countries was difficult to estimate. The use of European rather than country-specific disability weights did not lead to a significant change in the burden of disease estimates for dementia. CONCLUSIONS: Sound epidemiological data are the first requirement for burden of disease estimation and relevant between-countries comparisons. DALY estimates for dementia were relatively insensitive to differences in disability weights between European countries. PMID:12219156

  9. Soil denitrification fluxes from three northeastern North American forests across a range of nitrogen deposition.

    PubMed

    Morse, Jennifer L; Durán, Jorge; Beall, Fred; Enanga, Eric M; Creed, Irena F; Fernandez, Ivan; Groffman, Peter M

    2015-01-01

    In northern forests, large amounts of missing N that dominate N balances at scales ranging from small watersheds to large regional drainage basins may be related to N-gas production by soil microbes. We measured denitrification rates in forest soils in northeastern North America along a N deposition gradient to determine whether N-gas fluxes were a significant fate for atmospheric N inputs and whether denitrification rates were correlated with N availability, soil O2 status, or forest type. We quantified N2 and N2O fluxes in the laboratory with an intact-core method and monitored soil O2, temperature and moisture in three forests differing in natural and anthropogenic N enrichment: Turkey Lakes Watershed, Ontario; Hubbard Brook Experimental Forest, New Hampshire; and Bear Brook Watershed, Maine (fertilized and reference plots in hardwood and softwood stands). Total N-gas flux estimates ranged from <1 in fertilized hardwood uplands at Bear Brook to >100 kg N ha(-1) year(-1) in hardwood wetlands at Turkey Lakes. N-gas flux increased systematically with natural N enrichment from soils with high nitrification rates (Bear Brook < Hubbard Brook < Turkey Lakes) but did not increase in the site where N fertilizer has been added since 1989 (Bear Brook). Our results show that denitrification is an important and underestimated term (1-24% of atmospheric N inputs) in N budgets of upland forests in northeastern North America, but it does not appear to be an important sink for elevated anthropogenic atmospheric N deposition in this region.

  10. Comparative estimation of the reproduction number for pandemic influenza from daily case notification data.

    PubMed

    Chowell, Gerardo; Nishiura, Hiroshi; Bettencourt, Luís M A

    2007-02-22

    The reproduction number, R, defined as the average number of secondary cases generated by a primary case, is a crucial quantity for identifying the intensity of interventions required to control an epidemic. Current estimates of the reproduction number for seasonal influenza show wide variation and, in particular, uncertainty bounds for R for the pandemic strain from 1918 to 1919 have been obtained only in a few recent studies and are yet to be fully clarified. Here, we estimate R using daily case notifications during the autumn wave of the influenza pandemic (Spanish flu) in the city of San Francisco, California, from 1918 to 1919. In order to elucidate the effects from adopting different estimation approaches, four different methods are used: estimation of R using the early exponential-growth rate (Method 1), a simple susceptible-exposed-infectious-recovered (SEIR) model (Method 2), a more complex SEIR-type model that accounts for asymptomatic and hospitalized cases (Method 3), and a stochastic susceptible-infectious-removed (SIR) with Bayesian estimation (Method 4) that determines the effective reproduction number Rt at a given time t. The first three methods fit the initial exponential-growth phase of the epidemic, which was explicitly determined by the goodness-of-fit test. Moreover, Method 3 was also fitted to the whole epidemic curve. Whereas the values of R obtained using the first three methods based on the initial growth phase were estimated to be 2.98 (95% confidence interval (CI): 2.73, 3.25), 2.38 (2.16, 2.60) and 2.20 (1.55, 2.84), the third method with the entire epidemic curve yielded a value of 3.53 (3.45, 3.62). This larger value could be an overestimate since the goodness-of-fit to the initial exponential phase worsened when we fitted the model to the entire epidemic curve, and because the model is established as an autonomous system without time-varying assumptions. These estimates were shown to be robust to parameter uncertainties, but the

  11. How deep, how hot: comparing pressure and temperature estimates from amphibole and rhyolite-MELTS thermobarometry

    NASA Astrophysics Data System (ADS)

    Pamukcu, A. S.; Gualda, G. A.

    2013-12-01

    Accurately constraining the pressure and temperature of magma residence is problematic, but it is key to understanding the structure and evolution of magmatic systems. Various thermometers exist (Fe-Ti oxides, Ti-in-zircon, Zr-in-sphene, etc.), but there are fewer barometers that can be applied to volcanic rocks. Most barometers capitalize on amphibole, a relatively common mineral whose composition is sensitive to pressure and temperature changes. Glass composition is a function of pressure for magmas saturated in quartz and feldspar, and a new thermobarometer based on rhyolite-MELTS simulations using glass (matrix glass and crystal-hosted glass inclusions) compositions has been recently proposed. We compare results from amphibole and matrix glass thermobarometry. We focus on outflow high-silica rhyolite pumice from the Peach Spring Tuff (CA-NV-AZ, USA), which are characterized by sanidine+plagioclase×quartz+amphibole+sphene in a high-silica rhyolite glass matrix. Compositional variations in amphibole are slight and described by edenite and Ti-Tschermak substitution, with little Al-Tschermak substitution, suggesting small changes in temperature but not in pressure. Plagioclase compositions are also nearly homogeneous. Thus, we expect thermobarometry results to cluster around a single pressure and temperature, making these samples excellent candidates for comparing thermobarometers. Amphibole×plagioclase thermobarometry reveals: - Amphibole-plagioclase: results vary widely depending on the calibration (e.g. 150-420 MPa, 520-730 °C); combined Anderson & Smith (1995) barometer with Holland & Blundy (1990) thermometer is most consistent, suggesting crystallization at 230 MPa, 680 °C. - Amphibole-only: calibrations give significantly different results (75-115 MPa, 770-960 °C [Ridolfi et al. 2010]; 400-950 MPa, 800-950°C [Ridolfi & Renzulli 2012]). Results suggest the recent re-calibration is particularly unreliable for these rocks, and the earlier calibration is

  12. Comparing C- and L-band SAR images for sea ice motion estimation

    NASA Astrophysics Data System (ADS)

    Lehtiranta, J.; Siiriä, S.; Karvonen, J.

    2015-02-01

    Pairs of consecutive C-band synthetic-aperture radar (SAR) images are routinely used for sea ice motion estimation. The L-band radar has a fundamentally different character, as its longer wavelength penetrates deeper into sea ice. L-band SAR provides information on the seasonal sea ice inner structure in addition to the surface roughness that dominates C-band images. This is especially useful in the Baltic Sea, which lacks multiyear ice and icebergs, known to be confusing targets for L-band sea ice classification. In this work, L-band SAR images are investigated for sea ice motion estimation using the well-established maximal cross-correlation (MCC) approach. This work provides the first comparison of L-band and C-band SAR images for the purpose of motion estimation. The cross-correlation calculations are hardware accelerated using new OpenCL-based source code, which is made available through the author's web site. It is found that L-band images are preferable for motion estimation over C-band images. It is also shown that motion estimation is possible between a C-band and an L-band image using the maximal cross-correlation technique.

  13. Comparing adaptive procedures for estimating the psychometric function for an auditory gap detection task.

    PubMed

    Shen, Yi

    2013-05-01

    A subject's sensitivity to a stimulus variation can be studied by estimating the psychometric function. Generally speaking, three parameters of the psychometric function are of interest: the performance threshold, the slope of the function, and the rate at which attention lapses occur. In the present study, three psychophysical procedures were used to estimate the three-parameter psychometric function for an auditory gap detection task. These were an up-down staircase (up-down) procedure, an entropy-based Bayesian (entropy) procedure, and an updated maximum-likelihood (UML) procedure. Data collected from four young, normal-hearing listeners showed that while all three procedures provided similar estimates of the threshold parameter, the up-down procedure performed slightly better in estimating the slope and lapse rate for 200 trials of data collection. When the lapse rate was increased by mixing in random responses for the three adaptive procedures, the larger lapse rate was especially detrimental to the efficiency of the up-down procedure, and the UML procedure provided better estimates of the threshold and slope than did the other two procedures.

  14. Summer nitrate uptake and denitrification in an upper Mississippi River backwater lake: The role of rooted aquatic vegetation

    USGS Publications Warehouse

    Kreiling, Rebecca M.; Richardson, W.B.; Cavanaugh, J.C.; Bartsch, L.A.

    2011-01-01

    In-stream nitrogen processing in the Mississippi River has been suggested as one mechanism to reduce coastal eutrophication in the Gulf of Mexico. Aquatic macrophytes in river channels and flood plain lakes have the potential to temporarily remove large quantities of nitrogen through assimilation both by themselves and by the attached epiphyton. In addition, rooted macrophytes act as oxygen pumps, creating aerobic microsites around their roots where coupled nitrification-denitrification can occur. We used in situ 15N-NO3- tracer mesocosm experiments to measure nitrate assimilation rates for macrophytes, epiphyton, and microbial fauna in the sediment in Third Lake, a backwater lake of the upper Mississippi River during June and July 2005. We measured assimilation over a range of nitrate concentrations and estimated a nitrate mass balance for Third Lake. Macrophytes assimilated the most nitrate (29.5 mg N m-2 d-1) followed by sediment microbes (14.4 mg N m-2 d-1) and epiphytes (5.7 mg N m-2d-1. Assimilation accounted for 6.8% in June and 18.6% in July of total nitrate loss in the control chambers. However, denitrification (292.4 mg N m-2 d-1) is estimated to account for the majority (82%) of the nitrate loss. Assimilation and denitrification rates generally increased with increasing nitrate concentration but denitrification rates plateaued at about 5 mg N L-1. This suggests that backwaters have the potential to remove a relatively high amount of nitrate but will likely become saturated if the load becomes too large. ?? 2010 US Government.

  15. Satellite-Based Estimates of Evapotranspiration Compared with Estimates from Land Surface Models and Flux Towers: Drivers of Discrepancies and their Spatial and Temporal Patterns

    NASA Astrophysics Data System (ADS)

    Lipton, A.; Liang, P.; Galantowicz, J. F.; Moncet, J.; Jimenez, C.; Prigent, C.; Aires, F.; Unmin, G.

    2013-12-01

    Monthly-average estimates of latent heat flux and evapotranspiration have been derived from a combination of satellite-derived microwave emissivities, day-night differences in land surface temperature (from microwave AMSR-E), downward solar and infrared fluxes from ISCCP cloud analysis, and MODIS visible and near-infrared surface reflectances. The estimates are produced by a neural network. These estimates have been compared with data from the NOAH land surface model, as produced for GLDAS-2, and we have analyzed areas with persistent, substantial discrepancies between the satellite and model products. Some of these discrepancies persist year-to-year, while others relate to different responses of the satellite/NN product and the model to anomalous conditions. Data from flux towers have been used to identify model and data deficiencies responsible for these discrepancies. The satellite-derived products are compared also with latent heat flux estimates derived by Jung et al., who used model tree ensembles to upscale Fluxnet tower data to the global scale.

  16. Critiquing blind dating: the dangers of over-confident date estimates in comparative genomics.

    PubMed

    Wheat, Christopher W; Wahlberg, Niklas

    2013-11-01

    Phylogenomic advances provide more rigorous estimates for the timing of evolutionary divergences than previously available (e.g., Bayesian relaxed-clock estimates with soft fossil constraints). However, because many family-level clades and higher, as well as model species within those clades, have not been included in phylogenomic studies, the literature presents temporal estimates likely harboring substantial errors. Blindly using such dates can substantially retard scientific advancement. We suggest a way forward by conducting analyses that minimize prior assumptions and use large datasets, and demonstrate how using such a phylogenomic approach can lead to significantly more parsimonious conclusions without a good fossil record. We suggest that such an approach calls for research into the biological causes of conflict between molecular and fossil signatures.

  17. Denitrification in Alluvial Wetlands in an Urban Landscape

    EPA Science Inventory

    Riparian wetlands have been shown to be particularly effective “sinks” for nitrate-N (NO3-), minimizing the downstream export of nitrogen (N) to streams and coastal water bodies. However, the vast majority of riparian denitrification research has been in agricultural and forested...

  18. Internal hydraulics of an agricultural drainage denitrification bioreactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification bioreactors to reduce the amount of nitrate-nitrogen in agricultural drainage are now being deployed across the U.S. Midwest. However, there are still many unknowns regarding internal hydraulic-driven processes in these "black box" engineered treatment systems. To improve this unders...

  19. Denitrification Rates in a Lake Superior Coastal Wetland

    EPA Science Inventory

    In recent years, nitrogen has increased substantially in the Nation’s aquatic ecosystems mainly due to the increased use of fertilizers and land use practices. Denitrification is a process that can potentially mitigate this increased influx of fixed nitrate. Coastal wetlands are ...

  20. Nitrous oxide emission from denitrification in stream and river networks

    EPA Science Inventory

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N2O via microbial denitrification which converts N to N2O and dinitrog...

  1. Denitrification in Wood Chip Bioreactors at Different Water Flows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drainage in agricultural watersheds exports a large quantity of nitrate-nitrogen (NO3-N) and concentrations frequently exceed 10 mg L-1. A laboratory column study was conducted to investigate the ability of a wood chip biofilter to promote denitrification under mean water flow rates of 2....

  2. Denitrification in anaerobic digesters: A review of recent studies

    SciTech Connect

    Akunna, J.C.

    1996-11-01

    Wastewaters from food processing industries (and domestic activities) are usually treated principally for organic carbon removal. But recent standards have generated interests in nitrogen and phosphorus removal. This has led to the addition of nitrification, denitrification and phosphorus removal units in the existing treatment plants, thus increasing the cost of treatment operations. The need to reduce treatment costs has led to research on ways to carry out many treatment processes in a single system. One of these systems consists of anaerobic and aerobic units in series with effluent recycle. In the anaerobic unit, anaerobic digestion and denitrification take place simultaneously producing methane and nitrogen gas while in the aerobic unit, ammonia oxidation to nitrate (nitrification) takes place. This process configuration appears to give lesser problems associated with operations such as the addition of raw wastewater or external organic carbon to ensure complete denitrification. In this paper a review of the results of recent studies are presented, with special emphasis on the factors affecting treatment efficiencies (i.e., denitrification, ammonia production from nitrate, and methane production efficiencies).

  3. Prostate volume estimations using magnetic resonance imaging and transrectal ultrasound compared to radical prostatectomy specimens

    PubMed Central

    Paterson, Nicholas R.; Lavallée, Luke T.; Nguyen, Laura N.; Witiuk, Kelsey; Ross, James; Mallick, Ranjeeta; Shabana, Wael; MacDonald, Blair; Scheida, Nicola; Fergusson, Dean; Momoli, Franco; Cnossen, Sonya; Morash, Christopher; Cagiannos, Ilias; Breau, Rodney H.

    2016-01-01

    Introduction: We sought to evaluate the accuracy of prostate volume estimates in patients who received both a preoperative transrectal ultrasound (TRUS) and magnetic resonance imaging (MRI) in relation to the referent pathological specimen post-radical prostatectomy. Methods: Patients receiving both TRUS and MRI prior to radical prostatectomy at one academic institution were retrospectively analyzed. TRUS and MRI volumes were estimated using the prolate ellipsoid formula. TRUS volumes were collected from sonography reports. MRI volumes were estimated by two blinded raters and the mean of the two was used for analyses. Pathological volume was calculated using a standard fluid displacement method. Results: Three hundred and eighteen (318) patients were included in the analysis. MRI was slightly more accurate than TRUS based on interclass correlation (0.83 vs. 0.74) and absolute risk bias (higher proportion of estimates within 5, 10, and 20 cc of pathological volume). For TRUS, 87 of 298 (29.2%) prostates without median lobes differed by >10 cc of specimen volume and 22 of 298 (7.4%) differed by >20 cc. For MRI, 68 of 298 (22.8%) prostates without median lobes differed by >10 cc of specimen volume, while only 4 of 298 (1.3%) differed by >20 cc. Conclusions: MRI and TRUS prostate volume estimates are consistent with pathological volumes along the prostate size spectrum. MRI demonstrated better correlation with prostatectomy specimen volume in most patients and may be better suited in cases where TRUS and MRI estimates are disparate. Validation of these findings with prospective, standardized ultrasound techniques would be helpful. PMID:27878049

  4. Comparing Metabolic Energy Expenditure Estimation Using Wearable Multi-Sensor Network and Single Accelerometer

    PubMed Central

    Dong, Bo; Biswas, Subir; Montoye, Alexander; Pfeiffer, Karin

    2014-01-01

    This paper presents the implementation details, system architecture and performance of a wearable sensor network that was designed for human activity recognition and energy expenditure estimation. We also included ActiGraph GT3X+ as a popular single sensor solution for detailed comparison with the proposed wearable sensor network. Linear regression and Artificial Neural Network are implemented and tested. Through a rigorous system study and experiment, it is shown that the wearable multi-sensor network outperforms the single sensor solution in terms of energy expenditure estimation. PMID:24110325

  5. Elucidation of denitrification mechanism in karstic Ryukyu limestone aquifer

    NASA Astrophysics Data System (ADS)

    Hijikawa, K.

    2014-12-01

    Nitrate (NO3-) concentrations in public water supplies have risen above acceptable levels in many areas of the world including Japan, largely as a result of contamination by human and animal waste and overuse of fertilizers. A previous study has characterized nitrate concentrations in groundwater in this area is a higher than the upper value (44mgL-1) of environmental quality criteria on one hands. On the other hand, there exists points where the concentration of nitric acid is not detected, which suggests the possibility of denitrification. During early 2000, a new analytical procedure for nitrate isotopic measurement, termed the "denitrifier method", was established. With the development of the nitrate isotope tracer method, much research has been reported detailing sources of groundwater nitrate and denitrification mechanisms. This study presents a pilot case study (in the southern part of Okinawa Main Island, Japan, where Ryukyu limestone is extensively distributed) using the combined stable isotope ratios of major elements (C, N and S) as net recorders of the biogeochemical reactions with the aim of elucidation of denitrification mechanism in Ryukyu limestone aquifer. As a result, significant decreases in nitrate concentrations due to denitrification were observed in groundwater at some locations, which induced increases in isotope ratios up to 59.7‰ for δ15NNO3. These points of groundwater were located above the cutoff wall of the underground dam and near the fault. It is considered that the residence time of the groundwater is longer than the other points at these denitrification points, and that reduction condition tends to be formed in the groundwater. However, the rapid rise of the groundwater level due to rainfall is likely to occur in the Ryukyu limestone aquifer, where the ground water was found to have changed dynamically from the reduction condition to the oxidation condition which a denitrification (has not occured)does not occur. Moreover, the

  6. Isotopic and Reporter Techniques to Verify Links Between Plant C Flow and Denitrification

    NASA Astrophysics Data System (ADS)

    Killham, K.; Prendergast, M.; Baggs, E.

    2007-12-01

    The availability of organic C is considered paramount for the production and reduction of the greenhouse gas nitrous oxide (N2O) during denitrification in the rhizosphere. Despite this, the role of organic C in the regulation of N2O- and N2-genic enzymes is poorly understood. Stable isotopes are fundamental in resolving this. Here we will present selected results from experiments in which we have applied isotopic and reporter techniques to verify the effect of plant C in driving denitrification, and the potential feedbacks of this on climate change. Changes in C input to soil, such as under elevated atmospheric CO2, is significant for N2O production and reduction. Following application of 15N-labelled fertiliser to Lolium perenne swards we showed increased denitrifier-N2O and N2 production under elevated pCO2 (60 Pa) in the Swiss FACE experiment. This was attributed to greater below ground C allocation providing the energy for denitrification, and emissions were strongly positively correlated with TOC. By converting all rhizosphere soil to Redox conditions conducive to denitrification, rhizosphere C flow was quantified via N2O flux, and estimates agreed with measurements using 13C and 14C approaches. Little is known about the effect of different C substrates in regulating N2O and N2 production nor their effects on community structure, activity or species selection of denitrifying bacteria in the rhizosphere. We provide the first evidence for differences in N2O and N2 production with different C compounds typically present in root exudate, which suggest differences in regulation of the NO and N2O reductases, or preference for different C compounds in the rhizosphere denitrifier community. Such differences in gaseous N production are being related to the function and activity of the denitrifier community associated with this root C flow, with the link between C flow and denitrifier activity being verified by stable isotope probing and NanoSIMS imaging. Further

  7. Nitrogen speciation and trends, and prediction of denitrification extent, in shallow US groundwater

    USGS Publications Warehouse

    Hinkle, Stephen R.; Tesoriero, Anthony J.

    2014-01-01

    Uncertainties surrounding nitrogen cycling complicate assessments of the environmental effects of nitrogen use and our understanding of the global carbon–nitrogen cycle. In this paper, we synthesize data from 877 ambient-monitoring wells across the US to frame broad patterns of nitrogen speciation and trends. At these sites, groundwater frequently contains substantial co-occurring NO3− and XSN2 (N2 from denitrification), reflecting active/ongoing denitrification and/or a mixture of undenitrified and denitrified groundwater. NO3− and NH4+ essentially do not co-occur, indicating that the dominant source of NH4+ at these sites likely is not dissimilatory reduction of NO3− to NH4+. Positive correlations of NH4+ with apparent age, CH4, dissolved organic carbon, and indicators of reduced conditions are consistent with NH4+ mobilization from degradation of aquifer organic matter and contraindicate an anthropogenic source of NH4+ for most sites. Glacial aquifers and eastern sand and gravel aquifers generally have lower proportions of NO3− and greater proportions of XSN2 than do fractured rock and karst aquifers and western sand and gravel aquifers. NO3− dominates in the youngest groundwater, but XSN2 increases as residence time increases. Temporal patterns of nitrogen speciation and concentration reflect (1) changing NO3− loads over time, (2) groundwater residence-time controls on NH4+ mobilization from solid phases, and (3) groundwater residence-time controls on denitrification. A simple classification tree using readily available variables (a national coverage of soil water depth, generalized geology) or variables reasonably estimated in many aquifers (residence time) identifies categorical denitrification extent (<10%, 10–50%, and >50%) with 79% accuracy in an independent testing set, demonstrating a predictive application based on the interconnected effects of redox, geology, and residence time.

  8. Modeling Groundwater-Quality Data from In-Situ Mesocosms Using PHREEQC to Provide Insights into the Electron Donors Involved in Denitrification in the Karlsruhe Aquifer, ND

    NASA Astrophysics Data System (ADS)

    Korom, S. F.; Tesfay, T.

    2009-12-01

    results were compared to actual results to determine which reactions with nitrate best explained the natural evolution of the water quality in the ISMs. Denitrification in the KG ISM was < 0.5 mM after two years; denitrification by pyrite was evident - explaining 16 to 88% of the denitrification, depending on the sampling date, but the denitrification rate was apparently too low for the modeling methodology to provide information on how much ferrous iron and OC were involved. Two tracer tests were done at the KS ISM. The modeling results suggest that during the first test pyrite accounted for 14 to 30% of the denitrification measured, with OC causing the majority of the denitrification remaining. For the second test OC accounted for nearly all of the denitrification.

  9. Comparing LAI estimates of corn and soybean from vegetation indices of multi-resolution satellite images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf area index (LAI) is important in explaining the ability of the crop to intercept solar energy for biomass production and in understanding the impact of crop management practices. This paper describes a procedure for estimating LAI as a function of image-derived vegetation indices from temporal ...

  10. COMPARING METHODS FOR ESTIMATING {ITAL CRYPTOSPORIDIUM} SPP. OOCYST CONCENTRATIONS IN WATER

    EPA Science Inventory

    {ital Cryptosporidium parvum} in drinking water is a threat to public health. Estimating the parasite burden of {ital C. parvum} in water to be treated for use as drinking water constitutes an integral element to developing strategies for protecting public health in a cost effec...

  11. Comparing ∆Tmax Determination Approaches for Granier-Based Sapflow Estimations

    PubMed Central

    Rabbel, Inken; Diekkrüger, Bernd; Voigt, Holm; Neuwirth, Burkhard

    2016-01-01

    Granier-type thermal dissipation probes are common instruments for quantifying tree water use in forest hydrological studies. Estimating sapflow using Granier-type sapflow sensors requires determining the maximum temperature gradient (∆Tmax) between the heated probe and the reference probe below. ∆Tmax represents a state of zero sap flux, which was originally assumed to occur each night leading to a ∆Tmax determination on a daily basis. However, researchers have proven that, under certain conditions, sapflow may continue throughout the night. Therefore alternative approaches to determining ∆Tmax have been developed. Multiple ∆Tmax approaches are now in use; however, sapflow estimates remain imprecise because the empirical equation that transfers the raw temperature signal (∆T) to sap flux density (Fd) is strongly sensitive to ∆Tmax. In this study, we analyze the effects of different ∆Tmax determination approaches on sub-daily, daily and (intra-)seasonal Fd estimations. On this basis, we quantify the uncertainty of sapflow calculations, which is related to the raw signal processing. We show that the ∆Tmax determination procedure has a major influence on absolute ∆Tmax values and the respective sap flux density computations. Consequently, the choice of the ∆Tmax determination approach may be a significant source of uncertainty in sapflow estimations. PMID:27916949

  12. Comparing Accuracy of Parameter Estimation Using IRT Models in the Presence of Guessing

    ERIC Educational Resources Information Center

    Fu, Qiong

    2010-01-01

    This research investigated how the accuracy of person ability and item difficulty parameter estimation varied across five IRT models with respect to the presence of guessing, targeting, and varied combinations of sample sizes and test lengths. The data were simulated with 50 replications under each of the 18 combined conditions. Five IRT models…

  13. Comparative Evaluation of Two Methods to Estimate Natural Gas Production in Texas

    EIA Publications

    2003-01-01

    This report describes an evaluation conducted by the Energy Information Administration (EIA) in August 2003 of two methods that estimate natural gas production in Texas. The first method (parametric method) was used by EIA from February through August 2003 and the second method (multinomial method) replaced it starting in September 2003, based on the results of this evaluation.

  14. A comparative study of frequency offset estimations in real and complex OFDM systems using different algorithms

    NASA Astrophysics Data System (ADS)

    Sahu, Swagatika; Mohanty, Saumendra; Srivastav, Richa

    2013-01-01

    Orthogonal Frequency Division Multiplexing (OFDM) is an emerging multi-carrier modulation scheme, which has been adopted for several wireless standards such as IEEE 802.11a and HiperLAN2, etc. A well-known problem of OFDM is its sensitivity to frequency offset between the transmitted and received carrier frequencies. In (OFDM) system Carrier frequency offsets (CFOs) between the transmitter and the receiver destroy the orthogonality between carriers and degrade the system performance significantly. The main problem with frequency offset is that it introduces interference among the multiplicity of carriers in the OFDM signal.The conventional algorithms given by P. Moose and Schmidl describes how carrier frequency offset of an OFDM system can be estimated using training sequences. Simulation results show that the improved carrier frequency offset estimation algorithm which uses a complex training sequence for frequency offset estimation, performs better than conventional P. Moose and Schmidl algorithm, which can effectively improve the frequency estimation accuracy and provides a wide acquisition range for the carrier frequency offset with low complexity. This paper introduces the BER comparisons of different algorithms with the Improved Algorithms for different Real and Complex modulations schemes, considering random carrier offsets . This paper also introduces the BER performances with different CFOs for different Real and Complex modulation schemes for the Improved algorithm.

  15. Denitrification in anaerobic lagoons used to treat swine wastewater.

    PubMed

    Hunt, P G; Matheny, T A; Ro, K S; Vanotti, M B; Ducey, T F

    2010-01-01

    Anaerobic lagoons are commonly used for the treatment of swine wastewater. Although these lagoons were once thought to be relatively simple, their physical, chemical, and biological processes are very complex. This study of anaerobic lagoons had two objectives: (i) to quantify denitrification enzyme activity (DEA) and (ii) to evaluate the influence of lagoon characteristics on the DEA. The DEA was measured by the acetylene inhibition method. Wastewater samples and physical and chemical measurements were taken from the wastewater column of nine anaerobic swine lagoons from May 2006 to May 2009. These lagoons were typical for anaerobic swine lagoons in the Carolinas relative to their size, operation, and chemical and physical characteristics. Their mean value for DEA was 87 mg N2O-N m(-3) d(-1). In a lagoon with 2-m depth, this rate of DEA would be compatible with 1.74 kg N ha(-1) d(-1) When nonlimiting nitrate was added, the highest DEA was compatible with 4.38 kg N ha(-1) d(-1) loss. Using stepwise regression for this treatment, the lagoon characteristics (i.e., soluble organic carbon, total nitrogen, temperature, and NO3-N) provided a final step model R2 of 0.69. Nitrous oxide from incomplete denitrification was not a significant part of the system nitrogen balance. Although alternate pathways of denitrification may exist within or beneath the wastewater column, this paper documents the lack of sufficient denitrification enzyme activity within the wastewater column of these anaerobic lagoons to support large N2 gas losses via classical nitrification and denitrification.

  16. Denitrification gene expression in clay-soil bacterial community

    NASA Astrophysics Data System (ADS)

    Pastorelli, R.; Landi, S.

    2009-04-01

    Our contribution in the Italian research project SOILSINK was focused on microbial denitrification gene expression in Mediterranean agricultural soils. In ecosystems with high inputs of nitrogen, such as agricultural soils, denitrification causes a net loss of nitrogen since nitrate is reduced to gaseous forms, which are released into the atmosphere. Moreover, incomplete denitrification can lead to emission of nitrous oxide, a potent greenhouse gas which contributes to global warming and destruction of ozone layer. A critical role in denitrification is played by microorganisms and the ability to denitrify is widespread among a variety of phylogenetically unrelated organisms. Data reported here are referred to wheat cultivation in a clay-rich soil under different environmental impact management (Agugliano, AN, Italy). We analysed the RNA directly extracted from soil to provide information on in situ activities of specific populations. The expression of genes coding for two nitrate reductases (narG and napA), two nitrite reductases (nirS and nirK), two nitric oxide reductases (cnorB and qnorB) and nitrous oxide reductase (nosZ) was analyzed by reverse transcription (RT)-nested PCR. Only napA, nirS, nirK, qnorB and nosZ were detected and fragments sequenced showed high similarity with the corresponding gene sequences deposited in GenBank database. These results suggest the suitability of the method for the qualitative detection of denitrifying bacteria in environmental samples and they offered us the possibility to perform the denaturing gradient gel electrophoresis (DGGE) analyzes for denitrification genes.. Earlier conclusions showed nirK gene is more widely distributed in soil environment than nirS gene. The results concerning the nosZ expression indicated that microbial activity was clearly present only in no-tilled and no-fertilized soils.

  17. O 2 reduction and denitrification rates in shallow aquifers

    USGS Publications Warehouse

    Tesoriero, A.J.; Puckett, L.J.

    2011-01-01

    O 2 reduction and denitrification rates were determined in shallow aquifers of 12 study areas representing a wide range in sedimentary environments and climatic conditions. Zero-and first-order rates were determined by relating reactant or product concentrations to apparent groundwater age. O 2 reduction rates varied widely within and between sites, with zero-order rates ranging from <3 ??mol L -1 yr -1 to more than 140 ??mol L -1 yr -1 and first-order rates ranging from 0.02 to 0.27 yr -1. Moderate denitrification rates (10-100 ??mol N L -1 yr -1; 0.06-0.30 yr -1) were observed in most areas with O 2 concentrations below 60 mol L -1, while higher rates (>100 mol N L -1 yr -1; >0.36 yr -1) occur when changes in lithology result in a sharp increase in the supply of electron donors. Denitrification lag times (i.e., groundwater travel times prior to the onset of denitrification) ranged from <20 yr to >80 yr. The availability of electron donors is indicated as the primary factor affecting O 2 reduction rates. Concentrations of dissolved organic carbon (DOC) and/or sulfate (an indicator of sulfide oxidation) were positively correlated with groundwater age at sites with high O 2 reduction rates and negatively correlated at sites with lower rates. Furthermore, electron donors from recharging DOC are not sufficient to account for appreciable O 2 and nitrate reduction. These relations suggest that lithologic sources of DOC and sulfides are important sources of electrons at these sites but surface-derived sources of DOC are not. A review of published rates suggests that denitrification tends to occur more quickly when linked with sulfide oxidation than with carbon oxidation. copyright 2011 by the American Geophysical Union.

  18. O2 reduction and denitrification rates in shallow aquifers

    NASA Astrophysics Data System (ADS)

    Tesoriero, Anthony J.; Puckett, Larry J.

    2011-12-01

    O2 reduction and denitrification rates were determined in shallow aquifers of 12 study areas representing a wide range in sedimentary environments and climatic conditions. Zero- and first-order rates were determined by relating reactant or product concentrations to apparent groundwater age. O2 reduction rates varied widely within and between sites, with zero-order rates ranging from <3 μmol L-1 yr-1 to more than 140 μmol L-1 yr-1 and first-order rates ranging from 0.02 to 0.27 yr-1. Moderate denitrification rates (10-100 μmol N L-1 yr-1; 0.06-0.30 yr-1) were observed in most areas with O2 concentrations below 60 μmol L-1, while higher rates (>100 μmol N L-1 yr-1; >0.36 yr-1) occur when changes in lithology result in a sharp increase in the supply of electron donors. Denitrification lag times (i.e., groundwater travel times prior to the onset of denitrification) ranged from <20 yr to >80 yr. The availability of electron donors is indicated as the primary factor affecting O2 reduction rates. Concentrations of dissolved organic carbon (DOC) and/or sulfate (an indicator of sulfide oxidation) were positively correlated with groundwater age at sites with high O2 reduction rates and negatively correlated at sites with lower rates. Furthermore, electron donors from recharging DOC are not sufficient to account for appreciable O2 and nitrate reduction. These relations suggest that lithologic sources of DOC and sulfides are important sources of electrons at these sites but surface-derived sources of DOC are not. A review of published rates suggests that denitrification tends to occur more quickly when linked with sulfide oxidation than with carbon oxidation.

  19. Combining simultaneous nitrification-endogenous denitrification and phosphorus removal with post-denitrification for low carbon/nitrogen wastewater treatment.

    PubMed

    Wang, Xiaoxia; Wang, Shuying; Zhao, Ji; Dai, Xian; Peng, Yongzhen

    2016-11-01

    Due to the limited nutrient removal from low carbon/nitrogen (⩽4) wastewater, a process combined simultaneous nitrification-endogenous denitrification and phosphorus removal (SNDPR) with post-denitrification (PD) in a SBR was proposed for deep-level nutrient removal without external carbon addition. SNDPR driven by PAOs and GAOs reduced PO4(3-)-P (98.3%) and partial TN (59.0%) at low DO conditions (0.5±0.1mg/L), and post-dentrification achieved further NOX(-) (produced by SNDPR) removal (24.0%) anoxically by utilizing the residual intracellular polymers in GAOs. Combined control of anaerobic/aerobic/anoxic durations and low DO inhibition to aerobic GAOs and NOB conducted partial nitrification-endogenous denitrification (PNED) (66%), which saved 44.3% intracellular polymers to further reduce 64% TN in effluent. After 115-day operation, the average effluent PO4(3-)-P and TN concentrations were 0.4 and 3.9mg/L, respectively, with 92.1% of TN removal. Highly enriched PAOs (36%±2%), GAOs (22%±2%) and AOB (15%±3%) over NOB (3%±1%) facilitated P uptake, PNED and post-denitrification in the SNDPR-PD system.

  20. Evidence of parallel denitrification and nitrite oxidation in the ODZ of the Arabian Sea from paired stable isotopes of nitrate and nitrite

    NASA Astrophysics Data System (ADS)

    Gaye, Birgit; Nagel, Birgit; Dähnke, Kirstin; Rixen, Tim; Emeis, Kay-Christian

    2013-12-01

    The Arabian Sea is a major oceanic nitrogen sink, and its oxygen-deficient zone (ODZ) extends from 150 m to 1200 m water depth. To identify the dominant transformation processes of reactive nitrogen and to quantify the amounts of nitrogen turned over in the different reactions of the nitrogen cycle, we use paired data on stable isotope ratios of nitrogen and oxygen in nitrate and nitrite measured at four near-coastal and five open ocean stations in the Arabian Sea. We find significant nitrate reduction and denitrification between 100 m and 400 m in the open Arabian Sea, which are most intense in the eastern and northern part of the basin, and estimate that about 50% of initial nitrate is being reduced either to dinitrogen gas (denitrification) or to nitrite (nitrate reduction) in the core zone of denitrification. Nitrite accumulates in concentrations above 4 µM in the water column of the eastern and northern Arabian Sea. Large differences in isotopic ratios of nitrate and nitrite and a decoupling of their stable nitrogen and oxygen isotopes can be explained by the reoxidation of nitrite. The observed decoupling of the paired isotopes may be due to the exchange of oxygen of nitrite with oxygen from ambient water. In agreement with model estimates from the literature, about 25% of the nitrate initially reduced to nitrite is returned to the nitrate pool by nitrification in the upper and lower denitrification layer while 40% is denitrified.

  1. Nitrous oxide emissions and denitrification rates: A blueprint for smart management and remediation of agricultural landscapes.

    NASA Astrophysics Data System (ADS)

    Tomasek, A.; Hondzo, M.; Kozarek, J. L.

    2015-12-01

    Anthropogenic activities have greatly altered the global nitrogen cycle, especially in the agriculturally dominated Midwest, with severe consequences on human and aquatic health. Complete microbial denitrification can be viewed as a nitrogen sink, converting soluble nitrate into inert nitrogen gas. This research aims to quantify and correlate the driving parameters in microbial denitrification and explore the relationship to the abundance of denitrifying genes and the microbial communities at these sites. Denitrifying genes for each step in the denitrification process have been quantified. Data from a field site in Southern Minnesota has been collected throughout the season for two years enabling investigation into the temporal variability of denitrification. Data was collected at two cross-sections across the channel to determine the effect of bank location and moisture content on denitrification. Data were collected in an experimental basin in the summer of 2015 to determine the effect of flooding and benthic organic matter content and quality on microbial denitrification and nitrous oxide production. Four sediment types were investigated in three different flood regimes. After each raising or lowering of the water level, soil cores were taken to determine soil characteristics, the potential denitrification using the denitrification enzyme activity method, nitrous oxide production using a static core method, and the denitrifying gene abundance. Chambers were also deployed over each soil amendment in each flood regime to determine the nitrous oxide production over time. Results from these studies will convey a more complete explanation of denitrification and nitrous oxide production under varying environmental conditions. By determining the driving parameters for microbial denitrification, denitrification hot spots and hot moments can be created and enhanced. One potential consequence of increased denitrification is the possibility of incomplete denitrification

  2. Comparing distance metrics for rotation using the k-nearest neighbors algorithm for entropy estimation.

    PubMed

    Huggins, David J

    2014-02-15

    Distance metrics facilitate a number of methods for statistical analysis. For statistical mechanical applications, it is useful to be able to compute the distance between two different orientations of a molecule. However, a number of distance metrics for rotation have been employed, and in this study, we consider different distance metrics and their utility in entropy estimation using the k-nearest neighbors (KNN) algorithm. This approach shows a number of advantages over entropy estimation using a histogram method, and the different approaches are assessed using uniform randomly generated data, biased randomly generated data, and data from a molecular dynamics (MD) simulation of bulk water. The results identify quaternion metrics as superior to a metric based on the Euler angles. However, it is demonstrated that samples from MD simulation must be independent for effective use of the KNN algorithm and this finding impacts any application to time series data.

  3. Comparing distance metrics for rotation using the k-nearest neighbors algorithm for entropy estimation

    PubMed Central

    Huggins, David J

    2014-01-01

    Distance metrics facilitate a number of methods for statistical analysis. For statistical mechanical applications, it is useful to be able to compute the distance between two different orientations of a molecule. However, a number of distance metrics for rotation have been employed, and in this study, we consider different distance metrics and their utility in entropy estimation using the k-nearest neighbors (KNN) algorithm. This approach shows a number of advantages over entropy estimation using a histogram method, and the different approaches are assessed using uniform randomly generated data, biased randomly generated data, and data from a molecular dynamics (MD) simulation of bulk water. The results identify quaternion metrics as superior to a metric based on the Euler angles. However, it is demonstrated that samples from MD simulation must be independent for effective use of the KNN algorithm and this finding impacts any application to time series data. PMID:24311273

  4. Probability estimates of seismic event occurrence compared to health hazards - Forecasting Taipei's Earthquakes

    NASA Astrophysics Data System (ADS)

    Fung, D. C. N.; Wang, J. P.; Chang, S. H.; Chang, S. C.

    2014-12-01

    Using a revised statistical model built on past seismic probability models, the probability of different magnitude earthquakes occurring within variable timespans can be estimated. The revised model is based on Poisson distribution and includes the use of best-estimate values of the probability distribution of different magnitude earthquakes recurring from a fault from literature sources. Our study aims to apply this model to the Taipei metropolitan area with a population of 7 million, which lies in the Taipei Basin and is bounded by two normal faults: the Sanchaio and Taipei faults. The Sanchaio fault is suggested to be responsible for previous large magnitude earthquakes, such as the 1694 magnitude 7 earthquake in northwestern Taipei (Cheng et. al., 2010). Based on a magnitude 7 earthquake return period of 543 years, the model predicts the occurrence of a magnitude 7 earthquake within 20 years at 1.81%, within 79 years at 6.77% and within 300 years at 21.22%. These estimates increase significantly when considering a magnitude 6 earthquake; the chance of one occurring within the next 20 years is estimated to be 3.61%, 79 years at 13.54% and 300 years at 42.45%. The 79 year period represents the average lifespan of the Taiwan population. In contrast, based on data from 2013, the probability of Taiwan residents experiencing heart disease or malignant neoplasm is 11.5% and 29%. The inference of this study is that the calculated risk that the Taipei population is at from a potentially damaging magnitude 6 or greater earthquake occurring within their lifetime is just as great as of suffering from a heart attack or other health ailments.

  5. Comparing methods for estimating R0 from the size distribution of subcritical transmission chains.

    PubMed

    Blumberg, S; Lloyd-Smith, J O

    2013-09-01

    Many diseases exhibit subcritical transmission (i.e. 0estimation methods. Simulation studies show that the degree of transmission heterogeneity, when improperly modeled, can significantly impact the bias of R0 estimation methods designed for imperfect observation. These studies also highlight the importance of isolated cases in assessing whether an estimation technique is consistent with observed data. Analysis of data from measles outbreaks shows that likelihood scores are highest for models that allow a flexible degree of transmission heterogeneity. Aggregating intermediate sized chains often has similar performance to analyzing a complete chain size distribution. However, truncating isolated cases is beneficial only when surveillance systems clearly favor full observation of large chains but not small chains. Meanwhile, if data on the type and proportion of cases that are unobserved were known, we demonstrate that maximum likelihood inference of R0 could be adjusted accordingly. This motivates the need for future empirical and theoretical work to quantify observation error and incorporate relevant mechanisms into stuttering chain models used

  6. A Sediment Budget Case Study: Comparing Watershed Scale Erosion Estimates to Modeled and Empirical Sediment Loads

    NASA Astrophysics Data System (ADS)

    McDavitt, B.; O'Connor, M.

    2003-12-01

    The Pacific Lumber Company Habitat Conservation Plan requires watershed analyses to be conducted on their property. This paper summarizes a portion of that analysis focusing on erosion and sedimentation processes and rates coupled with downstream sediment routing in the Freshwater Creek watershed in northwest California. Watershed scale erosion sources from hillslopes, roads, and channel banks were quantified using field surveys, aerial photo interpretation, and empirical modeling approaches for different elements of the study. Sediment transport rates for bedload were modeled, and sediment transport rates for suspended sediment were estimated based on size distribution of sediment inputs in relation to sizes transported in suspension. Recent short-term, high-quality estimates of suspended sediment yield that a community watershed group collected with technical assistance from the US Forest Service were used to validate the resulting sediment budget. Bedload yield data from an adjacent watershed, Jacoby Creek, provided another check on the sediment budget. The sediment budget techniques and bedload routing models used for this study generated sediment yield estimates that are in good agreement with available data. These results suggest that sediment budget techniques that require moderate levels of fieldwork can be used to provide relatively accurate technical assessments. Ongoing monitoring of sediment sources coupled with sediment routing models and reach scale field data allows for predictions to be made regarding in-channel sediment storage.

  7. Comparing Satellite Rainfall Estimates with Rain-Gauge Data: Optimal Strategies Suggested by a Spectral Model

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Validation of satellite remote-sensing methods for estimating rainfall against rain-gauge data is attractive because of the direct nature of the rain-gauge measurements. Comparisons of satellite estimates to rain-gauge data are difficult, however, because of the extreme variability of rain and the fact that satellites view large areas over a short time while rain gauges monitor small areas continuously. In this paper, a statistical model of rainfall variability developed for studies of sampling error in averages of satellite data is used to examine the impact of spatial and temporal averaging of satellite and gauge data on intercomparison results. The model parameters were derived from radar observations of rain, but the model appears to capture many of the characteristics of rain-gauge data as well. The model predicts that many months of data from areas containing a few gauges are required to validate satellite estimates over the areas, and that the areas should be of the order of several hundred km in diameter. Over gauge arrays of sufficiently high density, the optimal areas and averaging times are reduced. The possibility of using time-weighted averages of gauge data is explored.

  8. Effects of heavy metals on aerobic denitrification by strain Pseudomonas stutzeri PCN-1.

    PubMed

    Gui, Mengyao; Chen, Qian; Ma, Tao; Zheng, Maosheng; Ni, Jinren

    2017-02-01

    Effects of heavy metals on aerobic denitrification have been poorly understood compared with their impacts on anaerobic denitrification. This paper presented effects of four heavy metals (Cd(II), Cu(II), Ni(II), and Zn(II)) on aerobic denitrification by a novel aerobic denitrifying strain Pseudomonas stutzeri PCN-1. Results indicated that aerobic denitrifying activity decreased with increasing heavy metal concentrations due to their corresponding inhibition on the denitrifying gene expression characterized by a time lapse between the expression of the nosZ gene and that of the cnorB gene by PCN-1, which led to lower nitrate removal rate (1.67∼6.67 mg L(-1) h(-1)), higher nitrite accumulation (47.3∼99.8 mg L(-1)), and higher N2O emission ratios (5∼283 mg L(-1)/mg L(-1)). Specially, promotion of the nosZ gene expression by increasing Cu(II) concentrations (0∼0.05 mg L(-1)) was found, and the absence of Cu resulted in massive N2O emission due to poor synthesis of N2O reductase. The inhibition effect for both aerobic denitrifying activity and denitrifying gene expression was as follows from strongest to least: Cd(II) (0.5∼2.5 mg L(-1)) > Cu(II) (0.5∼5 mg L(-1)) > Ni(II) (2∼10 mg L(-1)) > Zn(II) (25∼50 mg L(-1)). Furthermore, sensitivity of denitrifying gene to heavy metals was similar in order of nosZ > nirS ≈ cnorB > napA. This study is of significance in understanding the potential application of aerobic denitrifying bacteria in practical wastewater treatment.

  9. Rate of denitrification and the accumulation of intermediates in a denitrifying bioreactor

    NASA Astrophysics Data System (ADS)

    Parsignault, D. R.; Gursky, H.; Kellogg, E. M.; Matilsky, T.; Murray, S.; Schreier, E.; Tananbaum, H.; Giacconi, R.; Brinkman, A. C.

    2012-12-01

    Denitrifying bioreactors (DNBRs) are an emerging mechanism to mitigate the impact of excess reactive nitrogen by harnessing the activity of ubiquitous denitrifying soil microbes. DNBRs fundamentally consist of an organic carbon energy source sufficiently saturated to develop anaerobic conditions and support heterotrophic reduction of nitrate to dinitrogen. Although recent research has well established achievable nitrate removal in DNBRs upwards of 90%, few studies experimentally determine the fate of nitrogen in these systems. This study differentiates between denitrification to inert nitrogen gas, which permanently removes reactive nitrogen from an enriched ecosystem, and transformation of nitrate to another bioavailable form (such as N2O or NOX, powerful greenhouse gases). Previous research has failed to make this distinction and as both are perceived as a reduction in nitrate concentration at the outlet, the utility of DNBRs in reducing downstream reactive nitrogen has not been sufficiently established. In order to quantify the rate of nitrate removal and the products produced, dissolved gas samples are collected from the DNBR with passive diffusion gas samplers while the influent and effluent nitrate concentration and chemical oxygen demand are monitored in real time with spectrometer probes. Nitrate removal is compared with the denitrification rate and the ratio of dinitrogen to nitrous oxide is reported. Denitrification is quantified from the proportion of nitrogen gas products produced from the nitrate pool, indicated by the negative congruence of the regression of 15N enrichment in the nitrate pool and temporal depletion in the gaseous products. The proportion of nitrous oxide to dinitrogen is examined with respect to saturation and redox potential. This research informs the interpretation of previous studies as well as advises the focus of long-term system level monitoring that will provide further information on the design and application of DNBRs to

  10. Denitrification potential of different land-use types in an agricultural watershed, lower Mississippi valley

    USGS Publications Warehouse

    Ullah, S.; Faulkner, S.P.

    2006-01-01

    Expansion of agricultural land and excessive nitrogen (N) fertilizer use in the Mississippi River watershed has resulted in a three-fold increase in the nitrate load of the river since the early 1950s. One way to reduce this nitrate load is to restore wetlands at suitable locations between croplands and receiving waters to remove run-off nitrate through denitrification. This research investigated denitrification potential (DP) of different land uses and its controlling factors in an agricultural watershed in the lower Mississippi valley (LMV) to help identify sites with high DP for reducing run-off nitrate. Soil samples collected from seven land-use types of an agricultural watershed during spring, summer, fall and winter were incubated in the laboratory for DP determination. Low-elevation clay soils in wetlands exhibited 6.3 and 2.5 times greater DP compared to high-elevation silt loam and low-elevation clay soils in croplands, respectively. DP of vegetated-ditches was 1.3 and 4.2 times that of un-vegetated ditches and cultivated soils, respectively. Soil carbon and nitrogen availability, bulk density, and soil moisture significantly affected DP. These factors were significantly influenced in turn by landscape position and land-use type of the watershed. It is evident from these results that low-elevation, fine-textured soils under natural wetlands are the best locations for mediating nitrate loss from agricultural watersheds in the LMV. Landscape position and land-use types can be used as indices for the assessment/modeling of denitrification potential and identification of sites for restoration for nitrate removal in agricultural watersheds. ?? 2006 Elsevier B.V. All rights reserved.

  11. COMPARING A NEW ALGORITHM WITH THE CLASSIC METHODS FOR ESTIMATING THE NUMBER OF FACTORS. (R825173)

    EPA Science Inventory

    Abstract

    This paper presents and compares a new algorithm for finding the number of factors in a data analytic model. After we describe the new method, called NUMFACT, we compare it with standard methods for finding the number of factors to use in a model. The standard...

  12. COMPARING A NEW ALGORITHM WITH THE CLASSIC METHODS FOR ESTIMATING THE NUMBER OF FACTORS. (R826238)

    EPA Science Inventory

    This paper presents and compares a new algorithm for finding the number of factors in a data analytic model. After we describe the new method, called NUMFACT, we compare it with standard methods for finding the number of factors to use in a model. The standard methods that we ...

  13. A Unified Framework for Estimating Minimum Detectable Effects for Comparative Short Interrupted Time Series Designs

    ERIC Educational Resources Information Center

    Price, Cristofer; Unlu, Fatih

    2014-01-01

    The Comparative Short Interrupted Time Series (C-SITS) design is a frequently employed quasi-experimental method, in which the pre- and post-intervention changes observed in the outcome levels of a treatment group is compared with those of a comparison group where the difference between the former and the latter is attributed to the treatment. The…

  14. Toxicity of fungicides to natural bacterial communities in wetland water and sediment measured using leucine incorporation and potential denitrification.

    PubMed

    Milenkovski, Susann; Bååth, Erland; Lindgren, Per-Eric; Berglund, Olof

    2010-02-01

    We assessed potential toxicity of fungicides to natural bacterial communities from a constructed wetland, located in southern Sweden, and compared the sensitivity of two endpoints indicating bacterial activity, leucine incorporation, and potential denitrification, in detecting toxicity. The effects of eight fungicides (benomyl, carbendazim, carboxin, captan, cycloheximide, fenpropimorph, propiconazole, and thiram), two bactericides (bronopol and chlortetracycline) as controls, and one reference compound (3,5-dichlorophenol), were tested in a water-sediment microcosm set-up. Leucine incorporation was measured in both the water and sediment column, while potential denitrification was measured for the entire microcosm. The bactericides and the reference compound gave sigmoid concentration-response curves for both endpoints in all but one case. The fungicides thiram, captan, and benomyl, and to a lesser extent fenpropimorph and propiconazole had quantifiable toxic effects on leucine incorporation, with EC(50) values ranging from 3 to 70 mg l(-1), while carbendazim, carboxin, and cycloheximide had little effect at the investigated concentrations. Only thiram and captan inhibited potential denitrification; the other fungicides showed no quantifiable effect. A greater toxic effect on leucine incorporation was recorded for bacterial communities associated with the water column, compared to the sediment column, for all tested compounds. Leucine incorporation was the more sensitive method for toxicity assessment of bacterial communities, and also allowed for a rapid and simple way of comparing exposure in the sediment and water column, making it an attractive standard method for community based toxicological assays in aquatic environments.

  15. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  16. The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate

    USGS Publications Warehouse

    Hoenig, John M; Then, Amy Y.-H.; Babcock, Elizabeth A.; Hall, Norman G.; Hewitt, David A.; Hesp, Sybrand A.

    2016-01-01

    There are a number of key parameters in population dynamics that are difficult to estimate, such as natural mortality rate, intrinsic rate of population growth, and stock-recruitment relationships. Often, these parameters of a stock are, or can be, estimated indirectly on the basis of comparative life history studies. That is, the relationship between a difficult to estimate parameter and life history correlates is examined over a wide variety of species in order to develop predictive equations. The form of these equations may be derived from life history theory or simply be suggested by exploratory data analysis. Similarly, population characteristics such as potential yield can be estimated by making use of a relationship between the population parameter and bio-chemico–physical characteristics of the ecosystem. Surprisingly, little work has been done to evaluate how well these indirect estimators work and, in fact, there is little guidance on how to conduct comparative life history studies and how to evaluate them. We consider five issues arising in such studies: (i) the parameters of interest may be ill-defined idealizations of the real world, (ii) true values of the parameters are not known for any species, (iii) selecting data based on the quality of the estimates can introduce a host of problems, (iv) the estimates that are available for comparison constitute a non-random sample of species from an ill-defined population of species of interest, and (v) the hierarchical nature of the data (e.g. stocks within species within genera within families, etc., with multiple observations at each level) warrants consideration. We discuss how these issues can be handled and how they shape the kinds of questions that can be asked of a database of life history studies.

  17. InterVA versus Spectrum: how comparable are they in estimating AIDS mortality patterns in Nairobi's informal settlements?

    PubMed Central

    Oti, Samuel Oji; Wamukoya, Marilyn; Mahy, Mary; Kyobutungi, Catherine

    2013-01-01

    Background The Spectrum computer package is used to generate national AIDS mortality estimates in settings where vital registration systems are lacking. Similarly, InterVA-4 (the latest version of the InterVA programme) is used to estimate cause-of-mortality data in countries where cause-specific mortality data are not available. Objective This study aims to compare trends in adult AIDS-related mortality estimated by Spectrum with trends from the InterVA-4 programme applied to data from a Health and Demographic Surveillance System (HDSS) in Nairobi, Kenya. Design A Spectrum model was generated for the city of Nairobi based on HIV prevalence data for Nairobi and national antiretroviral therapy coverage, underlying mortality, and migration assumptions. We then used data, generated through verbal autopsies, on 1,799 deaths that occurred in the HDSS area from 2003 to 2010 among adults aged 15–59. These data were then entered into InterVA-4 to estimate causes of death using probabilistic modelling. Estimates of AIDS-related mortality rates and all-cause mortality rates from Spectrum and InterVA-4 were compared and presented as annualised trends. Results Spectrum estimated that HIV prevalence in Nairobi was 7%, while the HDSS site measured 12% in 2010. Despite this difference, Spectrum estimated higher levels of AIDS-related mortality. Between 2003 and 2010, the proportion of AIDS-related mortality in Nairobi decreased from 63 to 40% according to Spectrum and from 25 to 16% according to InterVA. The net AIDS-related mortality in Spectrum was closer to the combined mortality rates when AIDS and tuberculosis (TB) deaths were included for InterVA-4. Conclusion Overall trends in AIDS-related deaths from both methods were similar, although the values were closer when TB deaths were included in InterVA. InterVA-4 might not accurately differentiate between TB and AIDS deaths. PMID:24160914

  18. Technical Note: Alternative in-stream denitrification equation for the INCA-N model

    NASA Astrophysics Data System (ADS)

    Etheridge, J. R.; Birgand, F.; Burchell, M. R., II; Lepistö, A.; Rankinen, K.; Granlund, K.

    2014-04-01

    The Integrated Catchment model for Nitrogen (INCA-N) is a semi-distributed, process based model that has been used to model the impacts of land use, climate, and land management changes on hydrology and nitrogen loading. An observed problem with the INCA-N model is reproducing low nitrate-nitrogen concentrations during the summer growing season in some catchments. In this study, the current equation used to simulate the rate of in-stream denitrification was replaced with an alternate equation that uses a mass transfer coefficient and the stream bottom area. The results of simulating in-stream denitrification using the two different methods were compared for a one year simulation period of the Yläneenjoki catchment in Finland. The alternate equation (Nash-Sutcliffe efficiency = 0.61) simulated concentrations during the periods of the growing season with the lowest flow that were closer to the observed concentrations than the current equation (Nash-Sutcliffe efficiency = 0.60), but the results were mixed during other portions of the year. The results of the calibration and validation of the model using the two equations show that the alternate equation will simulate lower nitrate-nitrogen concentrations during the growing season when compared to the current equation, but promote investigation into other errors in the model that may be causing inaccuracies in the modeled concentrations.

  19. Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus

    PubMed Central

    Borrero-de Acuña, José Manuel; Rohde, Manfred; Wissing, Josef; Jänsch, Lothar; Schobert, Max; Molinari, Gabriella; Timmis, Kenneth N.

    2016-01-01

    ABSTRACT Oxidative phosphorylation using multiple-component, membrane-associated protein complexes is the most effective way for a cell to generate energy. Here, we systematically investigated the multiple protein-protein interactions of the denitrification apparatus of the pathogenic bacterium Pseudomonas aeruginosa. During denitrification, nitrate (Nar), nitrite (Nir), nitric oxide (Nor), and nitrous oxide (Nos) reductases catalyze the reaction cascade of NO3− → NO2− → NO → N2O → N2. Genetic experiments suggested that the nitric oxide reductase NorBC and the regulatory protein NosR are the nucleus of the denitrification protein network. We utilized membrane interactomics in combination with electron microscopy colocalization studies to elucidate the corresponding protein-protein interactions. The integral membrane proteins NorC, NorB, and NosR form the core assembly platform that binds the nitrate reductase NarGHI and the periplasmic nitrite reductase NirS via its maturation factor NirF. The periplasmic nitrous oxide reductase NosZ is linked via NosR. The nitrate transporter NarK2, the nitrate regulatory system NarXL, various nitrite reductase maturation proteins, NirEJMNQ, and the Nos assembly lipoproteins NosFL were also found to be attached. A number of proteins associated with energy generation, including electron-donating dehydrogenases, the complete ATP synthase, almost all enzymes of the tricarboxylic acid (TCA) cycle, and the Sec system of protein transport, among many other proteins, were found to interact with the denitrification proteins. This deduced nitrate respirasome is presumably only one part of an extensive cytoplasmic membrane-anchored protein network connecting cytoplasmic, inner membrane, and periplasmic proteins to mediate key activities occurring at the barrier/interface between the cytoplasm and the external environment. IMPORTANCE The processes of cellular energy generation are catalyzed by large multiprotein enzyme complexes

  20. Effect of Solids Retention Time on the Denitrification Potential of Anaerobically Digested Swine Waste

    NASA Astrophysics Data System (ADS)

    Kinyua, Maureen Njoki

    Three continuously stirred tank reactors (CSTR) were operated in semi continuous mode treating swine waste using anaerobic digestion. The reactors were used to test the effect of solid retention time (SRT) on CH4 yield, total ammonia nitrogen (TAN) concentrations, % volatile solids (VS), chemical oxygen demand (COD) and volatile fatty acids (VFA) removal, readily biodegradable COD concentration and the denitrification potential for the effluent in a biological nutrient removal (BNR) system. During Phase I of the study, the three reactors were operated at the same 28 day SRT for 16 weeks. SRTs were then changed during the 12 week Phase II period. The SRTs studied were 14, 21 and 28 days, with the same organic loading rate (OLR) of 1.88 ± 0.2 kg VS/ m3-day. The reactor with the lowest SRT (14 days) had the highest VS and VFA removal at 73.6 and 67.6% and lowest TAN concentration at 0.78 g NH4+-N/L, followed by the 21 day and 28 day reactors. This was likely due to the fast microbial growth rates and substrate utilization rates in this reactor compared with the other two. The 14 day reactor had the highest CH4 yield at 0.33 m3CH 4/kg VS added and readily biodegradable COD concentration at 0.93 COD/L. The variations in CH4 yield and readily biodegradable COD concentrations between the three reactors were not statistically significant. Denitrification potential for the reactors was 1.20, 0.73 and 0.56 g COD/g N for 14, 21 and 28 day reactors, respectively, and the differences were statistically significant. None of the reactors achieved a denitrification potential of 5 g COD/g N, the amount required to use effluent of anaerobically digested swine waste as an internal carbon source in a BNR. This was attributed to operating conditions such as freezing and thawing of the raw swine waste that maximized CH4 yield and lowered the readily biodegradable COD concentration. In addition the 14 day reactor had low TAN concentrations thus increasing the denitrification potential

  1. Denitrification and nitrogen transport in a coastal aquifer receiving wastewater discharge

    USGS Publications Warehouse

    DeSimone, L.A.; Howes, B.L.

    1996-01-01

    Denitrification and nitrogen transport were quantified in a sandy glacial aquifer receiving wastewater from a septage-treatment facility on Cape Cod, MA. The resulting groundwater plume contained high concentrations of NO3- (32 mg of NL-1), total dissolved nitrogen (40.5 mg of N L-1), and dissolved organic carbon (1.9 mg of C L-1) and developed a central anoxic zone after 17 months of effluent discharge. Denitrifying activity was measured using four approaches throughout the major biogeochemical zones of the plume. Three approaches that maintained the structure of aquifer materials yielded comparable rates: acetylene block in intact sediment cores, 9.6 ng of N cm-3 d-1 (n = 61); in situ N2 production, 3.0 ng of N cm-3 d-1 (n = 11); and in situ NO3- depletion, 7.1 ng of N cm-3 d-1 (n = 3). In contrast, the mixing of aquifer materials using a standard slurry method yielded rates that were more than 15-fold higher (150 ng of N cm-3 d-1, n = 16) than other methods. Concentrations and ??15N of groundwater and effluent N2, NO3-, and NH4+ were consistent with the lower rates of denitrification determined by the intact-core or in situ methods. These methods and a plumewide survey of excess N2 indicate that 2-9% of the total mass of fixed nitrogen recharged to the anoxic zone of the plume was denitrified during the 34-month study period. Denitrification was limited by organic carbon (not NO3-) concentrations, as evidenced by a nitrate and carbon addition experiment, the correlation of denitrifying activity with in situ concentrations of dissolved organic carbon, and the assessments of available organic carbon in plume sediments. Carbon limitation is consistent with the observed conservative transport of 85-96% of the nitrate in the anoxic zone. Although denitrifying activity removed a significant amount (46250 kg) of fixed nitrogen during transport, the effects of aquifer denitrification on the nitrogen load to receiving ecosystems are likely to be small (<10%).

  2. Estimation of staff lens doses during interventional procedures. Comparing cardiology, neuroradiology and interventional radiology.

    PubMed

    Vano, E; Sanchez, R M; Fernandez, J M

    2015-07-01

    The purpose of this article is to estimate lens doses using over apron active personal dosemeters in interventional catheterisation laboratories (cardiology IC, neuroradiology IN and radiology IR) and to investigate correlations between occupational lens doses and patient doses. Active electronic personal dosemeters placed over the lead apron were used on a sample of 204 IC procedures, 274 IN and 220 IR (all performed at the same university hospital). Patient dose values (kerma area product) were also recorded to evaluate correlations with occupational doses. Operators used the ceiling-suspended screen in most cases. The median and third quartile values of equivalent dose Hp(10) per procedure measured over the apron for IC, IN and IR resulted, respectively, in 21/67, 19/44 and 24/54 µSv. Patient dose values (median/third quartile) were 75/128, 83/176 and 61/159 Gy cm(2), respectively. The median ratios for dosemeters worn over the apron by operators (protected by the ceiling-suspended screen) and patient doses were 0.36; 0.21 and 0.46 µSv Gy(-1) cm(-2), respectively. With the conservative approach used (lens doses estimated from the over apron chest dosemeter) we came to the conclusion that more than 800 procedures y(-1) and per operator were necessary to reach the new lens dose limit for the three interventional specialties.

  3. Microphytobenthic potential productivity estimated in three tidal embayments of the San Francisco Bay: A comparative study

    USGS Publications Warehouse

    Guarini, J.-M.; Cloern, James E.; Edmunds, J.

    2002-01-01

    In this paper we describe a three-step procedure to infer the spatial heterogeneity in microphytobenthos primary productivity at the scale of tidal estuaries and embayments. The first step involves local measurement of the carbon assimilation rate of benthic microalgae to determine the parameters of the photosynthesis-irradiance (P-E) curves (using non-linear optimization methods). In the next step, a resampling technique is used to rebuild pseudo-sampling distributions of the local productivity estimates; these provide error estimates for determining the significance level of differences between sites. The third step combines the previous results with deterministic models of tidal elevation and solar irradiance to compute mean and variance of the daily areal primary productivity over an entire intertidal mudflat area within each embayment. This scheme was applied on three different intertidal mudflat regions of the San Francisco Bay estuary during autumn 1998. Microphytobenthos productivity exhibits strong (ca. 3-fold) significant differences among the major sub-basins of San Francisco Bay. This spatial heterogeneity is attributed to two main causes: significant differences in the photosynthetic competence (P-E parameters) of the microphytobenthos in the different sub-basins, and spatial differences in the phase shifts between the tidal and solar cycles controlling the exposure of intertidal areas to sunlight. The procedure is general and can be used in other estuaries to assess the magnitude and patterns of spatial variability of microphytobenthos productivity at the level of the ecosystems.

  4. Full Bayes Poisson gamma, Poisson lognormal, and zero inflated random effects models: Comparing the precision of crash frequency estimates.

    PubMed

    Aguero-Valverde, Jonathan

    2013-01-01

    In recent years, complex statistical modeling approaches have being proposed to handle the unobserved heterogeneity and the excess of zeros frequently found in crash data, including random effects and zero inflated models. This research compares random effects, zero inflated, and zero inflated random effects models using a full Bayes hierarchical approach. The models are compared not just in terms of goodness-of-fit measures but also in terms of precision of posterior crash frequency estimates since the precision of these estimates is vital for ranking of sites for engineering improvement. Fixed-over-time random effects models are also compared to independent-over-time random effects models. For the crash dataset being analyzed, it was found that once the random effects are included in the zero inflated models, the probability of being in the zero state is drastically reduced, and the zero inflated models degenerate to their non zero inflated counterparts. Also by fixing the random effects over time the fit of the models and the precision of the crash frequency estimates are significantly increased. It was found that the rankings of the fixed-over-time random effects models are very consistent among them. In addition, the results show that by fixing the random effects over time, the standard errors of the crash frequency estimates are significantly reduced for the majority of the segments on the top of the ranking.

  5. A Method for Making Cross-Comparable Estimates of the Benefits of Decision Support Technologies for Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Lee, David; Long, Dou; Etheridge, Mel; Plugge, Joana; Johnson, Jesse; Kostiuk, Peter

    1998-01-01

    We present a general method for making cross comparable estimates of the benefits of NASA-developed decision support technologies for air traffic management, and we apply a specific implementation of the method to estimate benefits of three decision support tools (DSTs) under development in NASA's advanced Air Transportation Technologies Program: Active Final Approach Spacing Tool (A-FAST), Expedite Departure Path (EDP), and Conflict Probe and Trial Planning Tool (CPTP). The report also reviews data about the present operation of the national airspace system (NAS) to identify opportunities for DST's to reduce delays and inefficiencies.

  6. Reduced isotope fractionation by denitrification under conditions relevant to the ocean

    NASA Astrophysics Data System (ADS)

    Kritee, K.; Sigman, Daniel M.; Granger, Julie; Ward, Bess B.; Jayakumar, Amal; Deutsch, Curtis

    2012-09-01

    Experiments with two well-studied denitrifiers and one recently isolated marine suboxic zone denitrifier show that the cellular-level denitrification N isotope effect (15ɛ) is typically lower than the canonical value of ˜25‰ under many conditions prevalent in the ocean. Across all three strains, 15ɛ is 10-15‰ at cellular nitrate reduction rates that are more representative of the environment than the very high rates under which we and previous investigators measure 15ɛ to be 20-30‰. A sharp decrease in 15ɛ is also observed in individual nitrate drawdown assays as the extracellular nitrate concentrations approach 2-35 μM and nitrate uptake becomes the rate-limiting step. On an apparently strain-specific basis, lower values of 15ɛ are observed under diverse conditions common in the natural environment: less reduced carbon sources, small inputs of oxygen, nutrient availability, agitation, and age of starter culture (i.e., initiation of assays with cells that had recently depleted a large previous nitrate amendment or were more recently in the exponential growth ("bloom") phase). A conserved oxygen-to-nitrogen isotope relationship across the experiments for all three denitrifiers (18ɛ/15ɛ = 0.93 ± 0.06 (1SD)) supports the interpretation that fractionation is imparted solely by the internal respiratory nitrate reductase, with the amplitude of 15ɛ varying with the proportional importance of cellular nitrate efflux relative to uptake. Aspects of the 15ɛ variation are unexpected; nevertheless, the occurrence of lower 15ɛ is robust. It is uncertain if our lower 15ɛ estimates apply to oceanic water column denitrification because field studies have generally yielded 15ɛwc between 20-30‰, more similar to previous culture estimates and our estimates at high cell specific nitrate reduction rates. If denitrification in the ocean's major suboxic zones does have an 15ɛ of ˜10-15‰, it would remove an apparent imbalance between global ocean N inputs and

  7. Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites

    USGS Publications Warehouse

    Lavigne, M.B.; Ryan, M.G.; Anderson, D.E.; Baldocchi, D.D.; Crill, P.M.; Fitzjarrald, D.R.; Goulden, M.L.; Gower, S.T.; Massheder, J.M.; McCaughey, J.H.; Rayment, M.; Striegl, R. G.

    1997-01-01

    During the growing season, nighttime ecosystem respiration emits 30–100% of the daytime net photosynthetic uptake of carbon, and therefore measurements of rates and understanding of its control by the environment are important for understanding net ecosystem exchange. Ecosystem respiration can be measured at night by eddy covariance methods, but the data may not be reliable because of low turbulence or other methodological problems. We used relationships between woody tissue, foliage, and soil respiration rates and temperature, with temperature records collected on site to estimate ecosystem respiration rates at six coniferous BOREAS sites at half-hour or 1-hour intervals, and then compared these estimates to nocturnal measurements of CO2 exchange by eddy covariance. Soil surface respiration was the largest source of CO2 at all sites (48–71%), and foliar respiration made a large contribution to ecosystem respiration at all sites (25–43%). Woody tissue respiration contributed only 5–15% to ecosystem respiration. We estimated error for the scaled chamber predictions of ecosystem respiration by using the uncertainty associated with each respiration parameter and respiring biomass value. There was substantial uncertainty in estimates of foliar and soil respiration because of the spatial variability of specific respiration rates. In addition, more attention needs to be paid to estimating foliar respiration during the early part of the growing season, when new foliage is growing, and to determining seasonal trends of soil surface respiration. Nocturnal eddy covariance measurements were poorly correlated to scaled chamber estimates of ecosystem respiration (r2=0.06–0.27) and were consistently lower than scaled chamber predictions (by 27% on average for the six sites). The bias in eddy covariance estimates of ecosystem respiration will alter estimates of gross assimilation in the light and of net ecosystem exchange rates over extended periods.

  8. Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH.

    PubMed

    Liu, Binbin; Mørkved, Pål Tore; Frostegård, Asa; Bakken, Lars Reier

    2010-06-01

    The N(2)O : N(2) product ratio of denitrification is negatively correlated with soil pH, but the mechanisms involved are not clear. We compared soils from field experiments where the pH had been maintained at different levels (pH 4.0-8.0) by liming (> or = 20 years), and quantified functional gene pools (nirS, nirK and nosZ), their transcription and gas kinetics (NO, N(2)O and N(2)) of denitrification as induced by anoxic incubation with and without a carbon substrate (glutamate). Denitrification in unamended soil appeared to be based largely on the activation of a pre-existing denitrification proteome, because constant rates of N(2) and N(2)O production were observed, and the transcription of functional genes was below the detection level. In contrast, glutamate-amended soils showed sharp peaks in the transcripts of nirS and nosZ, increasing the rates of denitrification and pH-dependent transient accumulation of N(2)O. The results indicate that the high N(2)O : N(2) product ratio at low pH is a post-transcriptional phenomenon, because the transcription rate of nosZ relative to that of nirS was higher at pH 6.1 than at pH 8.0. The most plausible explanation is that the translation/assembly of N(2)O reductase is more sensitive to low pH than that of the other reductases involved in denitrification.

  9. Estimation of Economic Impacts of Cellulosic Biofuel Production: A Comparative Analysis of Three Biofuel Pathways

    SciTech Connect

    Zhang, Yimin; Goldberg, Marshall; Tan, Eric; Meyer, Pimphan Aye

    2016-05-01

    The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: (i) cellulosic ethanol via biochemical conversion in Iowa, (ii) renewable diesel blendstock via biological conversion in Georgia, and (iii) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect (revenue- and supply-chain-related), and induced effects, capital investment associated with the construction of a biorefinery processing 2000 dry metric tons of biomass per day (DMT/day) could yield between 5960 and 8470 full-time equivalent (FTE) jobs during the construction period, depending on the biofuel pathways. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized on the scale of $1 million of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter higher numbers of jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. Unlike construction jobs, these operation-related jobs are necessary over the entire life of the biorefineries. Our results show that indirect effects stimulated by the operation of biorefineries are the primary contributor to job growth. The agriculture/forest, services, and

  10. Estimation of economic impacts of cellulosic biofuel production: a comparative analysis of three biofuel pathways

    SciTech Connect

    Zhang, Yimin; Goldberg, Marshall; Tan, Eric; Meyer, Pimphan Aye

    2016-03-07

    The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: (i) cellulosic ethanol via biochemical conversion in Iowa, (ii) renewable diesel blendstock via biological conversion in Georgia, and (iii) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect (revenue- and supply-chain-related), and induced effects, capital investment associated with the construction of a biorefinery processing 2000 dry metric tons of biomass per day (DMT/day) could yield between 5960 and 8470 full-time equivalent (FTE) jobs during the construction period, depending on the biofuel pathways. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized on the scale of $1 million of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter higher numbers of jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. Unlike construction jobs, these operation-related jobs are necessary over the entire life of the biorefineries. In conclusion, our results show that indirect effects stimulated by the operation of biorefineries are the primary contributor to job growth. The agriculture

  11. Estimation of economic impacts of cellulosic biofuel production: a comparative analysis of three biofuel pathways

    DOE PAGES

    Zhang, Yimin; Goldberg, Marshall; Tan, Eric; ...

    2016-03-07

    The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: (i) cellulosic ethanol via biochemical conversion in Iowa, (ii) renewable diesel blendstock via biological conversion in Georgia, and (iii) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect (revenue- and supply-chain-related), and induced effects, capital investment associated with the constructionmore » of a biorefinery processing 2000 dry metric tons of biomass per day (DMT/day) could yield between 5960 and 8470 full-time equivalent (FTE) jobs during the construction period, depending on the biofuel pathways. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized on the scale of $1 million of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter higher numbers of jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. Unlike construction jobs, these operation-related jobs are necessary over the entire life of the biorefineries. In conclusion, our results show that indirect effects stimulated by the operation of biorefineries are the primary contributor to job growth. The agriculture

  12. Comparing Regression Coefficients between Nested Linear Models for Clustered Data with Generalized Estimating Equations

    ERIC Educational Resources Information Center

    Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer

    2013-01-01

    Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…

  13. GPS-Based Time Error Estimates Provided by Smoothing, Wiener, and Kalman Filters: A Comparative Study

    DTIC Science & Technology

    2000-11-01

    FILTERS: A COMPARATIVE STUDY Y. S. Shmaliy*, A. V. Marienko**, M. Torres-Cisneros*, and 0. Ibarra-Mamano* *Electronics Dept., Guanajuato University... Guanajuato University,Electronics Dept.,Salamanca, 36730, Mexico, 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND

  14. Comparative analysis of forest lands cadastral appraisal estimated with regards to wood and food resources

    NASA Astrophysics Data System (ADS)

    Kovyazin, V.; Romanchikov, A.; Pasko, O.

    2015-11-01

    Cadastral appraisal of forest fund is one of the topical challenges of modern natural resource management. The paper delivers comparison of different approaches to cadastral appraisal of forest lands. The authors suggest a uniformed model to compare objectively and choose the most effective use of parcels.

  15. Estimation of VO2 Max: A Comparative Analysis of Five Exercise Tests.

    ERIC Educational Resources Information Center

    Zwiren, Linda D.; And Others

    1991-01-01

    Thirty-eight healthy females measured maximal oxygen uptake (VO2max) on the cycle ergometer and treadmill to compare five exercise tests (run, walk, step, and two tests using heart-rate response on the bicycle ergometer) in predicting VO2max. Results indicate that walk and run tests are satisfactory predictors of VO2max in 30- to 39-year-old…

  16. Achievement of high nitrite accumulation via endogenous partial denitrification (EPD).

    PubMed

    Ji, Jiantao; Peng, Yongzhen; Wang, Bo; Wang, Shuying

    2017-01-01

    This study proposed a novel strategy for achievement of partial denitrification driven by endogenous carbon sources in an anaerobic/anoxic/aerobic activated sludge system. Results showed that in the steady-stage, the nitrate-to-nitrite transformation ratio (NTR) was kept at around 87% without nitrate in the effluent. During the anaerobic period, exogenous carbon sources was completely taken up, accompanied by the consumption of glycogen and production of polyhydroxyalkanoates (PHAs). During the anoxic period, nitrate was reduced to nitrite by using PHAs as carbon sources, followed by the replenishment of glycogen. Thus, the phenotype of denitrifying GAOs was clearly observed and endogenous partial denitrification (EPD) occurred. Furthermore, results showed the nitrate reduction was prior to the nitrite reduction in the presence of nitrate, which led to the high nitrite accumulation.

  17. Numerical Modeling of Natural and Enhanced Denitrification Processes in Aquifers

    NASA Astrophysics Data System (ADS)

    Kinzelbach, Wolfgang; SchäFer, Wolfgang; Herzer, JöRg

    1991-06-01

    Nitrate modeling in the groundwater environment must incorporate microbial denitrification as the major process of nitrate elimination. A multispecies transport model is presented which describes the interaction of oxygen, nitrate, organic carbon, and bacteria. Three phases (mobile pore water, biophase, and aquifer material) are taken into account. The model is applied to a natural aquifer situation as well as to an in situ remediation case where nitrate is employed as an oxidant. In the natural aquifer it is shown that the release of organic carbon from the matrix is the controlling factor for denitrification. In the remediation case, on the other hand, the data suggest that diffusion limitation of the nutrient supply to the biophase controls bacterial growth.

  18. Comparing near-earth and satellite remote sensing based phenophase estimates: an analysis using multiple webcams and MODIS (Invited)

    NASA Astrophysics Data System (ADS)

    Hufkens, K.; Richardson, A. D.; Migliavacca, M.; Frolking, S. E.; Braswell, B. H.; Milliman, T.; Friedl, M. A.

    2010-12-01

    In recent years several studies have used digital cameras and webcams to monitor green leaf phenology. Such "near-surface" remote sensing has been shown to be a cost effective means of accurately capturing phenology. Specifically, it allows for accurate tracking of intra- and inter-annual phenological dynamics at high temporal frequency and over broad spatial scales compared to visual observations or tower-based fAPAR and broadband NDVI measurements. Near surface remote sensing measurements therefore show promise for bridging the gap between traditional in-situ measurements of phenology and satellite remote sensing data. For this work, we examined the relationship between phenophase estimates derived from satellite remote sensing (MODIS) and near-earth remote sensing derived from webcams for a select set of sites with high-quality webcam data. A logistic model was used to characterize phenophases for both the webcam and MODIS data. We documented model fit accuracy, phenophase estimates, and model biases for both data sources. Our results show that different vegetation indices (VI's) derived from MODIS produce significantly different phenophase estimates compared to corresponding estimates derived from webcam data. Different VI's showed markedly different radiometric properties, and as a result, influenced phenophase estimates. The study shows that phenophase estimates are not only highly dependent on the algorithm used but also depend on the VI used by the phenology retrieval algorithm. These results highlight the need for a better understanding of how near-earth and satellite remote data relate to eco-physiological and canopy changes during different parts of the growing season.

  19. Comparative estimates of transpiration of ash and beech forest at a chalk site in southern Britain

    NASA Astrophysics Data System (ADS)

    Roberts, John; Rosier, Paul T. W.

    1994-11-01

    (1) During the dry summer of 1989 stomatal conductance ( gs), boundary-layer conductance ( ga), leaf water and osmotic potentials ( ψ1, ψπ) and leaf area index ( L∗) measurements were made in mature ash and beech stands growing on shallow soil over chalk near Winchester, Hampshire, UK. In addition measurements of gs and L∗ were made in the understorey layer in the ash stand, comprised mainly of dog's mercury, hazel and bramble. Automatic weather stations located (i) above the beech stand and (ii) at the understorey level (within the ash stand) provided hourly averages of weather variables. Changes in soil moisture deficit in both stands were determined from regular measurements made with a neutron probe. (2) Maximum values of gs (up to 0.3 mol m -2 s -1) were found at the top of the ash and beech canopies at the start of the day, while at the canopy base gs was about half of these values. At all canopy levels the value of gs was more closely associated with specific humidity deficit (at the time of measurement) than with any other weather variable, and there was no relationship between gs and soil mositure deficit or leaf water status, described by ψ1 and ψπ on the day of measurement. (3) Values of gs of the understorey plants were only half those of the tree species and changed less during the day. However, seasonal changes in gs of dog's mercury did seem to be associated with increased soil moisture deficit. (4) Estimates of L∗ in the ash and beech stands were made from leaf litter collections and partitioned into canopy layers using ratios determined by destructive sampling. L∗ of the beech stand was 5.3 and for the ash stand 2.7. L∗ of the understorey varied seasonally and rose to a peak of 3 in June falling gradually for the remainder of the summer period. (5) Hourly values of gs and ga in each stand for each canopy layer were scaled up to the canopy by using L∗ of the individual canopy layers (including the understorey level in the ash stand

  20. Measuring nitrification, denitrification, and related biomarkers in terrestrial geothermal ecosystems.

    PubMed

    Dodsworth, Jeremy A; Hungate, Bruce; de la Torre, José R; Jiang, Hongchen; Hedlund, Brian P

    2011-01-01

    Research on the nitrogen biogeochemical cycle in terrestrial geothermal ecosystems has recently been energized by the discovery of thermophilic ammonia-oxidizing archaea (AOA). This chapter describes methods that have been used for measuring nitrification and denitrification in hot spring environments, including isotope pool dilution and tracer approaches, and the acetylene block approach. The chapter also summarizes qualitative and quantitative methods for measurement of functional and phylogenetic biomarkers of thermophiles potentially involved in these processes.

  1. Patch-scale controls on denitrification in stream bed sediments

    NASA Astrophysics Data System (ADS)

    Voytek, M. A.; Harvey, J. W.; Smith, L. K.; Smith, R. L.; Bohlke, J. K.

    2001-12-01

    Denitrification is usually considered one of the most important processes controlling nitrogen loads in streams and rivers because it has the capability of permanently removing fixed nitrogen. Denitrification requires an electron donor, i.e. DOC and nitrate which is often abundant in agriculturally impacted systems. However, it is inhibited by oxygen and therefore occurs primarily in sediments where the supply and delivery of these substrates might be more limited. The goal of this study was to assess the interaction of chemical, biological and physical controls on in-stream denitrification. The influence of stream velocities, sediment grain size, carbon content and reactivity, hyporheic exchange, benthic algal coverage and microbial community distribution and activity were evaluated on sediments collected from two small streams located in the Upper Illinois River watershed, where elevated loads of nitrogen species are commonly observed. In general, sediment microbial community structure and activity reflected the observed differences in channel characteristics. Denitrifiers tended to be more abundant and active in sediment with coarser grain size distributions and greater periphyton coverage. Coarser grain size distributions were associated with deeper penetration of surface water nitrate into the sediments and periphyton coverage appeared to be correlated with higher sediment carbon concentrations and a higher C/N ratios, indicating a greater availability of labile carbon. Conversely, finer grained sediment with little or no periphyton exhibited poorly developed and less active denitrifying communities at depth. This study suggests that in-situ denitrification rates are controlled by a balance of physical mechanisms of substrate delivery and biologically controlled processes that alter porewater concentrations of essential and inhibitory substrates, which are controlled in turn by both physical and biological properties of the sediment.

  2. A comparative analysis of methods to represent uncertainty in estimating the cost of constructing wastewater treatment plants.

    PubMed

    Chen, Ho-Wen; Chang, Ni-Bin

    2002-08-01

    Prediction of construction cost of wastewater treatment facilities could be influential for the economic feasibility of various levels of water pollution control programs. However, construction cost estimation is difficult to precisely evaluate in an uncertain environment and measured quantities are always burdened with different types of cost structures. Therefore, an understanding of the previous development of wastewater treatment plants and of the related construction cost structures of those facilities becomes essential for dealing with an effective regional water pollution control program. But deviations between the observed values and the estimated values are supposed to be due to measurement errors only in the conventional regression models. The inherent uncertainties of the underlying cost structure, where the human estimation is influential, are rarely explored. This paper is designed to recast a well-known problem of construction cost estimation for both domestic and industrial wastewater treatment plants via a comparative framework. Comparisons were made for three technologies of regression analyses, including the conventional least squares regression method, the fuzzy linear regression method, and the newly derived fuzzy goal regression method. The case study, incorporating a complete database with 48 domestic wastewater treatment plants and 29 industrial wastewater treatment plants being collected in Taiwan, implements such a cost estimation procedure in an uncertain environment. Given that the fuzzy structure in regression estimation may account for the inherent human complexity in cost estimation, the fuzzy goal regression method does exhibit more robust results in terms of some criteria. Moderate economy of scale exists in constructing both the domestic and industrial wastewater treatment plants. Findings indicate that the optimal size of a domestic wastewater treatment plant is approximately equivalent to 15,000 m3/day (CMD) and higher in Taiwan

  3. Walking speed estimation using foot-mounted inertial sensors: comparing machine learning and strap-down integration methods.

    PubMed

    Mannini, Andrea; Sabatini, Angelo Maria

    2014-10-01

    In this paper we implemented machine learning (ML) and strap-down integration (SDI) methods and analyzed them for their capability of estimating stride-by-stride walking speed. Walking speed was computed by dividing estimated stride length by stride time using data from a foot mounted inertial measurement unit. In SDI methods stride-by-stride walking speed estimation was driven by detecting gait events using a hidden Markov model (HMM) based method (HMM-based SDI); alternatively, a threshold-based gait event detector was investigated (threshold-based SDI). In the ML method a linear regression model was developed for stride length estimation. Whereas the gait event detectors were a priori fixed without training, the regression model was validated with leave-one-subject-out cross-validation. A subject-specific regression model calibration was also implemented to personalize the ML method. Healthy adults performed over-ground walking trials at natural, slower-than-natural and faster-than-natural speeds. The ML method achieved a root mean square estimation error of 2.0% and 4.2%, with and without personalization, against 2.0% and 3.1% by HMM-based SDI and threshold-based SDI. In spite that the results achieved by the two approaches were similar, the ML method, as compared with SDI methods, presented lower intra-subject variability and higher inter-subject variability, which was reduced by personalization.

  4. From Models to Measurements: Comparing Downed Dead Wood Carbon Stock Estimates in the U.S. Forest Inventory

    PubMed Central

    Domke, Grant M.; Woodall, Christopher W.; Walters, Brian F.; Smith, James E.

    2013-01-01

    The inventory and monitoring of coarse woody debris (CWD) carbon (C) stocks is an essential component of any comprehensive National Greenhouse Gas Inventory (NGHGI). Due to the expense and difficulty associated with conducting field inventories of CWD pools, CWD C stocks are often modeled as a function of more commonly measured stand attributes such as live tree C density. In order to assess potential benefits of adopting a field-based inventory of CWD C stocks in lieu of the current model-based approach, a national inventory of downed dead wood C across the U.S. was compared to estimates calculated from models associated with the U.S.’s NGHGI and used in the USDA Forest Service, Forest Inventory and Analysis program. The model-based population estimate of C stocks for CWD (i.e., pieces and slash piles) in the conterminous U.S. was 9 percent (145.1 Tg) greater than the field-based estimate. The relatively small absolute difference was driven by contrasting results for each CWD component. The model-based population estimate of C stocks from CWD pieces was 17 percent (230.3 Tg) greater than the field-based estimate, while the model-based estimate of C stocks from CWD slash piles was 27 percent (85.2 Tg) smaller than the field-based estimate. In general, models overestimated the C density per-unit-area from slash piles early in stand development and underestimated the C density from CWD pieces in young stands. This resulted in significant differences in CWD C stocks by region and ownership. The disparity in estimates across spatial scales illustrates the complexity in estimating CWD C in a NGHGI. Based on the results of this study, it is suggested that the U.S. adopt field-based estimates of CWD C stocks as a component of its NGHGI to both reduce the uncertainty within the inventory and improve the sensitivity to potential management and climate change events. PMID:23544112

  5. Comparing two independent groups: a test based on a one-step M-estimator and bootstrap-t.

    PubMed

    Özdemir, A Fırat

    2013-05-01

    A new test is proposed for the problem of comparing two independent groups in terms of some measure of location. The proposed test () uses a one-step M-estimator and a bootstrap-t method with the procedure proposed by Özdemir and Kurt (2006). Eight methods were compared in terms of actual Type I error and power when the underlying distributions differ in skewness and kurtosis under heterogeneity of variances. For the 21 theoretical distributions, the Yuen test with the bootstrap-t method was the most favourable, followed by test. For the five real data sets, the proposed test and percentile bootstrap method with the one-step M-estimator performed best.

  6. Effect of tourmaline on denitrification characteristics of hydrogenotrophic bacteria.

    PubMed

    Wang, Wei; Jiang, Hongyan; Zhu, Guangquan; Song, Xueying; Liu, Xingyu; Qiao, Ya

    2016-03-01

    To improve the denitrification characteristics of anaerobic denitrifying bacteria and obviate the disadvantage of use of explosive hydrogen gas, tourmaline, a polar mineral, was added to the hydrogenotrophic denitrification system in this study. Microbial reduction of nitrate in the presence of tourmaline was evaluated to assess the promotion effect of tourmaline on nitrate biodegradation. The experiment results demonstrated that tourmaline speeded up the cultivation process of bacteria from 65 to 36 days. After domestication of the bacteria, nitrate (50 mg NO3 (-)-N L(-1)) was completely removed within 3 days in the combined tourmaline-bacteria system, and the generated nitrite was also removed within 8 days. The reduction rate in this system is higher relative to that in the bacteria system alone. Efficient removal of nitrate by tourmaline-supported anaerobic bacteria (without external hydrogen input) indicated that tourmaline might act as the sole hydrogen donor to sustain autotrophic denitrification. Besides the production of hydrogen, the promoted activity of anaerobic denitrifying bacteria might be caused by the change of water properties, e.g., the pH of aqueous solutions was altered to about 8.0 and the oxidation-reduction potential decreased by 62 % in the tourmaline system. The distinctive effects of tourmaline on bacteria were related to its electric properties.

  7. Pressurized hydrogenotrophic denitrification reactor for small water systems.

    PubMed

    Epsztein, Razi; Beliavski, Michael; Tarre, Sheldon; Green, Michal

    2017-03-15

    The implementation of hydrogenotrophic denitrification is limited due to safety concerns, poor H2 utilization and low solubility of H2 gas with the resulting low transfer rate. The current paper presents the main research work conducted on a pressurized hydrogenotrophic reactor for denitrification that was recently developed. The reactor is based on a new concept suggesting that a gas-liquid equilibrium is achieved in the closed headspace of denitrifying reactor, further produced N2 gas is carried out by the effluent and gas purging is not required. The feasibility of the proposed reactor was shown for two effluent concentrations of 10 and 1 mg NO3(-)-N/L. Hydrogen gas utilization efficiencies of 92.8% and 96.9% were measured for the two effluent concentrations, respectively. Reactor modeling predicted high denitrification rates above 4 g NO3(-)-N/(Lreactor·d) at reasonable operational conditions. Hydrogen utilization efficiency was improved up to almost 100% by combining the pressurized reactor with a following open-to-atmosphere polishing unit. Also, the potential of the reactor to remove ClO4(-) was shown.

  8. Simulation of three-phase fluidized bioreactors for denitrification

    SciTech Connect

    Hamza, A.V.; Dolan, J.F.; Wong, E.W.

    1981-03-01

    Fluidized-bed bioreactors were developed and operated at three scales (diameters of 0.1, 0.2, and 0.5 m) by the Chemical Technology Division. The performance of these reactors in denitrification was simulated using the following modified form of Monod kinetics to describe the reaction kinetics: rate = V/sub max/ (NO/sub 3//sup -//K/sub s/ + NO/sub 3//sup -/) (% biomass). In the fluids-movement portion of the simulation the tanks-in-series approximation to backmixing was used. This approach yielded a V/sub max/ of 3.5 g/m/sup 3/-min (% biomass) and a K/sub s/ of 163 g/m/sup 3/ for the 0.5-m bioreactor. Values of V/sub max/ and K/sub s/ were also determined for data derived from the 0.1-m bioreactor, but inadequate RTD data reduced the confidence level in these results. A complication in denitrification is the multi-step nature of the reduction from nitrate to nitrite to hyponitrite and finally to nitrogen. An experimental study of the effect of biomass loading upon denitrification was begun. It is recommended that the experimental work be continued.

  9. Alcaligenes faecalis kw-a biofilm for denitrification of nitrate-rich effluent.

    PubMed

    Jadhav, T S; Faldu, N J; Patel, P; Narolkar, S N; Nerurkar, A S

    2005-06-01

    Alcaligenes faecalis kw-A selected for possessing good denitrification efficiency was used for biofilm development. The biofilm could be developed on a glass surface within 12 hr when 5%, Ix 10(8) cells/ml was used as inoculum. The microcolonies were seen in 6 hr and glycocalyx in 9 hr stage. At 24 hr the biofilm was developed fully and hence was visualised as dense mass. The biofilm protein content showed 48.5% increase in shake flask than in static condition. The exopoplymer is produced in larger amounts in biofilm as compared to the suspended cells. Also, its amount was more by 43% in the biofilm produced in shake flask condition than in static condition. The biofilm could remove 95% nitrate from nitrate-rich effluent in a bench-scale process in 36 hr. The attached growth technique demonstrated here can be utilised to study the effect of favourable as well as adverse conditions on the denitrification efficiency of a culture. The ultimate application of a denitrifying biofilm would be in attached growth or biofilm reactor.

  10. Use of cotton gin trash to enhance denitrification in restored forested wetlands

    USGS Publications Warehouse

    Ullah, S.; Faulkner, S.P.

    2006-01-01

    Lower Mississippi Valley (LMV) has lost about 80% bottomland hardwood forests, mainly to agriculture. This landscape scale alteration of the LMV resulted in the loss of nitrate (NO3) removal capacity of the valley, contributing to nitrogen (N)-enhanced eutrophication and potentially hypoxia in the northern Gulf of Mexico. Restoration of hardwood forests in the LMV is a highly recommended practice to reduce NO3 load of the Mississippi River. However, restored bottomland forests take decades to develop characteristic ecological functions including denitrifier activity. One way to enhance denitrifier activity in restored wetland forests is to amend the soils with an available carbon (C) source. This research investigated the effects of cotton gin trash (CGT) amendment on denitrification rate and N2O:N2 emission ratio from a restored bottomland forest soils and compared it to those from an adjacent unamended natural forest soils. CGT amendment increased denitrification rates in the restored forest soils to the level of the natural forest soils. N2O:N2 emission ratios from the restored and natural forest soils were highly variable and were not significantly different from each other. These findings suggest that restoration of bottomland hardwood forests in the LMV will require organic carbon amendment to achieve enhanced denitrifier activity for NO3 removal while the restored forest is developing into a mature state over time. ?? 2006 Elsevier B.V. All rights reserved.

  11. Stratospheric denitrification due to polar aerosol formation: Implications for a future atmosphere with increased CO2

    NASA Astrophysics Data System (ADS)

    Pitari, Giovanni; Ricciardulli, Lucrezia

    The amount of stratospheric denitrification produced by NAT aerosol formation is studied with a photochemical two-dimensional model which includes the effects of zonal asymmetries of the temperature field. The model photochemistry is coupled with a microphysical code for aerosol formation and growth, so that the permanent loss of stratospheric nitric acid and water vapor may be taken into account. The model results for nitric acid relative to the atmospheric chemical composition of 1980 are compared with LIMS data. We show that the level of denitrification may rise substantially if the polar vortex cools down, as it could be the case in a future atmosphere richer in carbon dioxide. A three-dimensional model is used to calculate the temperature perturbation due to an increase of CO2 from 335 ppmv of 1980 (baseline) up to 500 ppmv (predicted for 2050). The photochemical model adopting these new temperatures predicts an average 20% HNO3 column decrease poleward of 45N with respect to baseline. One consequence is that the relative weight of the NOx catalytic cycle for O3 destruction decreases with respect to the present atmosphere.

  12. Soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification for domestic wastewater treatment.

    PubMed

    Kong, Zhe; Li, Lu; Feng, Chuanping; Chen, Nan; Dong, Shanshan; Hu, Weiwu

    2015-01-01

    In this study, an integrated two-stage soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification (SIBPD) was designed for domestic wastewater treatment. Benefited from excellent adsorption ability and water-permeability, soil infiltration could avoid clogging, shorten operating time and lower maintenance cost. Respiration and nitrification were mostly engaged in aerobic stage (AES), while nitrate was majorly removed by pyrite-based mixotrophic denitrification mainly occurred in anaerobic stage (ANS). Fed with synthetic and real wastewater for 120days at 1.5h HRT, SIBPD demonstrated good removal performance showing 87.14% for COD, 92.84% for NH4(+)-N and 82.58% for TP along with 80.72% of nitrate removed by ANS. TN removal efficiency was 83.74% when conducting real wastewater. Compared with sulfur-based process, the effluent pH of SIBPD was maintained at 6.99-7.34 and the highest SO4(2-) concentration was only 64.63mgL(-1). This study revealed a promising and feasible application prospect for on-site domestic wastewater treatment.

  13. Comparative Benchmark Dose Modeling as a Tool to Make the First Estimate of Safe Human Exposure Levels to Lunar Dust

    NASA Technical Reports Server (NTRS)

    James, John T.; Lam, Chiu-wing; Scully, Robert R.

    2013-01-01

    Brief exposures of Apollo Astronauts to lunar dust occasionally elicited upper respiratory irritation; however, no limits were ever set for prolonged exposure ot lunar dust. Habitats for exploration, whether mobile of fixed must be designed to limit human exposure to lunar dust to safe levels. We have used a new technique we call Comparative Benchmark Dose Modeling to estimate safe exposure limits for lunar dust collected during the Apollo 14 mission.

  14. Comparing writing style feature-based classification methods for estimating user reputations in social media.

    PubMed

    Suh, Jong Hwan

    2016-01-01

    In recent years, the anonymous nature of the Internet has made it difficult to detect manipulated user reputations in social media, as well as to ensure the qualities of users and their posts. To deal with this, this study designs and examines an automatic approach that adopts writing style features to estimate user reputations in social media. Under varying ways of defining Good and Bad classes of user reputations based on the collected data, it evaluates the classification performance of the state-of-art methods: four writing style features, i.e. lexical, syntactic, structural, and content-specific, and eight classification techniques, i.e. four base learners-C4.5, Neural Network (NN), Support Vector Machine (SVM), and Naïve Bayes (NB)-and four Random Subspace (RS) ensemble methods based on the four base learners. When South Korea's Web forum, Daum Agora, was selected as a test bed, the experimental results show that the configuration of the full feature set containing content-specific features and RS-SVM combining RS and SVM gives the best accuracy for classification if the test bed poster reputations are segmented strictly into Good and Bad classes by portfolio approach. Pairwise t tests on accuracy confirm two expectations coming from the literature reviews: first, the feature set adding content-specific features outperform the others; second, ensemble learning methods are more viable than base learners. Moreover, among the four ways on defining the classes of user reputations, i.e. like, dislike, sum, and portfolio, the results show that the portfolio approach gives the highest accuracy.

  15. Comparing the impact of time displaced and biased precipitation estimates for online updated urban runoff models.

    PubMed

    Borup, Morten; Grum, Morten; Mikkelsen, Peter Steen

    2013-01-01

    When an online runoff model is updated from system measurements, the requirements of the precipitation input change. Using rain gauge data as precipitation input there will be a displacement between the time when the rain hits the gauge and the time where the rain hits the actual catchment, due to the time it takes for the rain cell to travel from the rain gauge to the catchment. Since this time displacement is not present for system measurements the data assimilation scheme might already have updated the model to include the impact from the particular rain cell when the rain data is forced upon the model, which therefore will end up including the same rain twice in the model run. This paper compares forecast accuracy of updated models when using time displaced rain input to that of rain input with constant biases. This is done using a simple time-area model and historic rain series that are either displaced in time or affected with a bias. The results show that for a 10 minute forecast, time displacements of 5 and 10 minutes compare to biases of 60 and 100%, respectively, independent of the catchments time of concentration.

  16. Denitrification in a BTEX Contaminated Aquifer Containing Reduced Sulfur

    NASA Astrophysics Data System (ADS)

    Eckert, P.; Appelo, C.; Wisotzky, F.; Obermann, P.

    2001-05-01

    At a former gasworks plant in Duesseldorf (Germany) a massive soil and groundwater contamination with BTEX (up to 100 mg/l) and to a minor extent with PAH (up to 10 mg/l) were detected. Mainly due to sulfate and iron-(III) reduction, a natural biodegradation has occurred and restricted the length of the contaminant plume in the direction of groundwater flow to only 600 m. The active remediation strategy at this site includes nitrate-enhanced in-situ bioremediation of the remaining contaminants in the plume. Nitrate was infiltrated in the contaminated aquifer during a field test to study the efficacy of enhanced natural attenuation. Degradation of hydrocarbons under denitrifying has been proved by numerous laboratory and field studies. However, at this site the competing reaction of nitrate with hydrocarbons and reduced sulfur components has to be considered. The oxidation of pyrite by nitrate in pristine aquifers is well known. The Duesseldorf aquifer contains FeS, pyrite and Fe-calcite precipitated during over 50 years of natural attenuation. The hydrogeochemical transport model PHREEQC-2 is used to simulate the distribution of chemical species and reaction rates along the flow path between the infiltration well and two multilevel wells . The complicated suite of reactions caused by the reduction of nitrate is evaluated by the comparison of modeled and measured data. At the Duesseldorf site the concomitant presence of nitrate, Fe(II) and BTEX/PAHs showed that the reactions did not evolve to thermodynamic equilibrium and were controlled by kinetics. The very good fit of observed and model calculations illustrates that the inorganic chemical reactions during the field test are generally well understood. The kinetic reactions could be modelled with rate equations from the literature based on oxygen, and which were extended with nitrate. Denitrification rates with BTEX compounds and with FeS were found to be comparable, but the oxidation of Fe(II) and FeS occurred

  17. Polar Stratospheric Cloud formation and denitrification during the Arctic winter 2009/2010 and 2010/2011

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Joachim; Pitts, Michael C.; Kirner, Oliver; Braesicke, Peter; Santee, Michelle L.; Manney, Gloria L.; Murtagh, Donal

    2015-04-01

    The sedimentation of HNO3 containing polar stratospheric cloud particles leads to a permanent removal of HNO3 from the stratosphere. The so-called denitrification is an effect that plays an important role in stratospheric ozone depletion. The Arctic winter 2009/2010 and 2010/2011 were both quite unique. The Arctic winter 2010/2011 was one of the coldest winters on record leading to the strongest depletion of ozone measured in the Arctic. Though the Arctic winter 2009/2010 was rather warm in the climatological sense it was distinguished by an exceptionally cold stratosphere from mid December 2009 to mid January 2010 leading to prolonged PSC formation and significant denitrification. Model simulations and space-borne observations are used to investigate PSC formation and denitrification during these two winters. Model simulations were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) and compared to observations by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations Satellite (CALIPSO) and the Odin Sub-Millimetre Radiometer (Odin/SMR) as well as with observations from the Microwave Limb Sounder on Aura (Aura/MLS). While PSCs were present during the Arctic winter 2010/2011 over nearly four months, from mid December to end of March, they were not as persistent as the ones that occurred during the shorter (one month) cold period during the Arctic winter 2009/2010. Although the PSC season during the Arctic winter 2009/2010 was much shorter than in 2010/2011, denitrification during the Arctic winter 2009/2010 was similar in magnitude than during 2010/2011.

  18. Stimulation of soil nitrification and denitrification by grazing in grasslands: do changes in plant species composition matter?

    PubMed

    Le Roux, X; Bardy, M; Loiseau, P; Louault, F

    2003-11-01

    Stimulation of nitrification and denitrification by long term (from years to decades) grazing has commonly been reported in different grassland ecosystems. However, grazing generally induces important changes in plant species composition, and whether changes in nitrification and denitrification are primarily due to changes in vegetation composition has never been tested. We compared soil nitrification- and denitrification-enzyme activities (NEA and DEA, respectively) between semi-natural grassland sites experiencing intensive (IG) and light (LG) grazing/mowing regimes for 13 years. Mean NEA and DEA (i.e. observed from random soil sampling) were higher in IG than LG sites. The NEA/DEA ratio was higher in IG than LG sites, indicating a higher stimulation of nitrification. Marked changes in plant species composition were observed in response to the grazing/mowing regime. In particular, the specific phytomass volume of Elymus repens was lower in IG than LG sites, whereas the specific volume of Lolium perenne was higher in IG than LG sites. In contrast, the specific volume of Holcus lanatus, Poa trivialis and Arrhenatherum elatius were not significantly different between treatments. Soils sampled beneath grass tussocks of the last three species exhibited higher DEA, NEA and NEA/DEA ratio in IG than LG sites. For a given grazing regime, plant species did not affect significantly soil DEA, NEA and NEA/DEA ratio. The modification of plant species composition is thus not the primary factor driving changes in nitrification and denitrification in semi-natural grassland ecosystems experiencing long term intensive grazing. Factors such as trampling, N returned in animal excreta, and/or modification of N uptake and C exudation by frequently defoliated plants could be responsible for the enhanced microbial activities.

  19. Influence of mixed liquor recycle ratio and dissolved oxygen on performance of pre-denitrification submerged membrane bioreactors.

    PubMed

    Tan, Teck Wee; Ng, How Yong

    2008-02-01

    The conflicting influence of mixed liquor recycle ratio and dissolved oxygen on nitrogen removal and membrane fouling of a pre-denitrification submerged MBR was investigated in this study. It was found that a high aeration rate of 10 L air/min was able to minimize membrane fouling as compared with lower aeration rates of 5 and 2.5L air/min in this study. Faster fouling at lower aeration rate was due to the decrease in cross-flow velocity across the membrane surface. However, high DO concentration (average of 5.1+/-0.5mg O2/L) present in the recycle mixed liquor at an aeration rate of 10 L air/min deteriorated the TN removal efficiency when operating at a recycle ratio of more than 3. A lower aeration rate of 5L air/min, resulting in an average DO concentration of 3.4+/-0.7 mg O2/L in the recycle mixed liquor, led to an improvement in TN removal efficiency: 63%, 80%, 84% and 89% for mixed liquor recycle ratio of 1, 3, 5 and 10, respectively. Further decrease in aeration rate to 2.5L air/min, resulting in an average DO concentration of 1.9+/-0.8 mg O2/L, did not improve the TN removal efficiency. Using a newly developed simplified nitrification-denitrification model, it was calculated that the COD/NO3(-)-N required for denitrification at 10 L air/min aeration rate was higher than those associated with 5 and 2.5L air/min aeration rates. The model also revealed that denitrification at an aeration rate of 10 L air/min was limited by COD concentration present in the wastewater when operating at a mixed liquor recycle ratio of 3 and higher.

  20. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants.

    PubMed

    Schmidt, Ingo; van Spanning, Rob J M; Jetten, Mike S M

    2004-12-01

    The phenotypes of three different Nitrosomonas europaea strains--wild-type, nitrite reductase (NirK)-deficient and nitric oxide reductase (NorB)-deficient strains--were characterized in chemostat cell cultures, and the effect of nitric oxide (NO) on metabolic activities was evaluated. All strains revealed similar aerobic ammonia oxidation activities, but the growth rates and yields of the knock-out mutants were significantly reduced. Dinitrogen (N2) was the main gaseous product of the wild-type, produced via its denitrification activity. The mutants were unable to reduce nitrite to N2, but excreted more hydroxylamine leading to the formation of almost equal amounts of NO, nitrous oxide (N2O) and N2 by chemical auto-oxidation and chemodenitrification of hydroxylamine. Under anoxic conditions Nsm. europaea wild-type gains energy for growth via nitrogen dioxide (NO2)-dependent ammonia oxidation or hydrogen-dependent denitrification using nitrite as electron acceptor. The mutant strains were restricted to NO and/or N2O as electron acceptor and consequently their growth rates and yields were much lower compared with the wild-type. When cells were transferred from anoxic (denitrification) to oxic conditions, the wild-type strain endogenously produced NO and recovered ammonia oxidation within 8 h. In contrast, the mutant strains remained inactive. For recovery of ammonia oxidation activity the NO concentration had to be adjusted to about 10 p.p.m. in the aeration gas.

  1. Simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in a full-scale water reclamation plant located in warm climate.

    PubMed

    Yang, Qin; Shen, Nan; Lee, Zarraz M-P; Xu, Guangjing; Cao, Yeshi; Kwok, Beehong; Lay, Winson; Liu, Yu; Zhou, Yan

    The combination of simultaneous nitrification-denitrification (SND) with enhanced biological phosphorus removal (EBPR) provides a more efficient and economically viable option for nutrient removal from municipal wastewater compared to conventional two-step nitrification-denitrification. This study analyzed the nutrients (N and P) profiles in a full-scale municipal wastewater reclamation plant (WRP) located in the tropical region, in which more than 90% of nitrogen was removed. Interestingly, average SND efficiency in aerobic zones was found to be up to 50%, whereas phosphorus profile displayed a clear cyclic release and uptake pattern with a phosphorus removal efficiency of up to 76%. The capability of sludge to perform SND and EBPR was further confirmed through a series of batch experiments. Microbial analysis revealed the presence of Accumulibacter and Tetrasphaera phosphate accumulating organisms in the plant, while few glycogen accumulating organisms (GAO) was observed. This study showed the significant occurrence of combined SND and EBPR, known as simultaneous nitrification, denitrification and phosphorus removal (SNDPR), in the studied WRP under warm climate. The possible causes behind the observed SNDPR were also discussed.

  2. Integrating pretreatment and denitrification in constructed wetland systems.

    PubMed

    Gonzalo, O G; Ruiz, I; Soto, M

    2017-02-08

    The aim of this work was to study the operational characteristics and the efficiency of a compact constructed wetland system for municipal wastewater treatment that integrates denitrification in the pre-treatment unit. The proposed system was simulated by two units in series with effluent recirculation, the first one being an anoxic digester, conceived as a hydrolytic up flow sludge bed for solids hydrolysis and denitrification, and the second one a sand column that simulated the operation of a vertical flow constructed wetland. The hybrid system consisted of two small columns of 4 and 10.2cm in diameter (anoxic digester and vertical flow unit, respectively). The unplanted system was operated successively with synthetic and real municipal wastewater over a period of 136days. Hydraulic loading rate ranged from 212 to 318mm/day and surface loading rate from 122 to 145g/m(2)·day of chemical oxygen demand and 10-15g/m(2)·day of total nitrogen for the overall system. The overall system reached removals of 91% to 99% for total suspended solids, chemical oxygen demand and biochemical oxygen demand whilst total nitrogen removal ranged from 43% to 61%. In addition to suspended solids removal (up to 78%), the anoxic digester provided high denitrification rates (3-12gN/m(2)·day) whilst the vertical flow unit provided high nitrification rates (8-15gN/m(2)·day). Organic matter was mainly removed in the anoxic digester (63-82% chemical oxygen demand) and used for denitrification. Final effluent concentration was lower for ammonia (7.4±2.4mgN/L on average) than for nitrate (19.8±4.4mgN/L), denitrification appearing as the limiting step in nitrogen removal in the system. CH4 or N2O emissions were not detected in any of the units of the system indicating very low greenhouse gas emissions.

  3. Comparing GFR Estimating Equations Using Cystatin C and Creatinine in Elderly Individuals.

    PubMed

    Fan, Li; Levey, Andrew S; Gudnason, Vilmundur; Eiriksdottir, Gudny; Andresdottir, Margret B; Gudmundsdottir, Hrefna; Indridason, Olafur S; Palsson, Runolfur; Mitchell, Gary; Inker, Lesley A

    2015-08-01

    Current guidelines recommend reporting eGFR using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations unless other equations are more accurate, and recommend the combination of creatinine and cystatin C (eGFRcr-cys) as more accurate than either eGFRcr or eGFRcys alone. However, preferred equations and filtration markers in elderly individuals are debated. In 805 adults enrolled in the community-based Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study, we measured GFR (mGFR) using plasma clearance of iohexol, standardized creatinine and cystatin C, and eGFR using the CKD-EPI, Japanese, Berlin Initiative Study (BIS), and Caucasian and Asian pediatric and adult subjects (CAPA) equations. We evaluated equation performance using bias, precision, and two measures of accuracy. We first compared the Japanese, BIS, and CAPA equations with the CKD-EPI equations to determine the preferred equations, and then compared eGFRcr and eGFRcys with eGFRcr-cys using the preferred equations. Mean (SD) age was 80.3 (4.0) years. Median (25th, 75th) mGFR was 64 (52, 73) ml/min per 1.73 m(2), and the prevalence of decreased GFR was 39% (95% confidence interval, 35.8 to 42.5). Among 24 comparisons with the other equations, CKD-EPI equations performed better in 9, similar in 13, and worse in 2. Using the CKD-EPI equations, eGFRcr-cys performed better than eGFRcr in four metrics, better than eGFRcys in two metrics, and similar to eGFRcys in two metrics. In conclusion, neither the Japanese, BIS, nor CAPA equations were superior to the CKD-EPI equations in this cohort of community-dwelling elderly individuals. Using the CKD-EPI equations, eGFRcr-cys performed better than eGFRcr or eGFRcys.

  4. A Comparative Analysis of the Cost Estimating Error Risk Associated with Flyaway Costs Versus Individual Components of Aircraft

    DTIC Science & Technology

    2003-03-01

    18 Parametric Estimation .......................................................................19...prevalent in many different cost estimation techniques. They are the cornerstones of the parametric estimation technique developed by the RAND Corporation...estimation technique spectrum are parametric estimation and grass roots estimation. The parametric estimation technique can be 19 considered a macro

  5. Comparative estimation of coverage between national immunization program vaccines and non-NIP vaccines in Korea.

    PubMed

    Choe, Young June; Yang, Jae Jeong; Park, Sue K; Choi, Eun Hwa; Lee, Hoan Jong

    2013-09-01

    This study aimed to describe the differences in vaccination coverage between National Immunization Program (NIP) vaccines and non-NIP vaccines in Korea and to identify factors affecting the difference. Nationwide face-to-face interview-based questionnaire survey among randomly selected 4,374 participants aged 7-83 months was conducted. Vaccination coverage analyzed according to the birth cohorts, geographic areas, and socio-demographic characteristics. We found that NIP vaccines recorded higher primary vaccination coverage compared to non-NIP vaccines (95.9%-100% vs 30.7%-85.4%). The highest rate was Haemophilus influenzae type b (Hib) vaccine (85.4%), which was introduced in 1996, and the lowest rate was rotavirus vaccine (30.7%), which was introduced recently. On multivariate analysis, having a sibling were significantly associated with lower uptake of Hib vaccine, pneumococcal conjugate vaccine (PCV), and rotavirus vaccine; while, older mother's age and attendance to daycare center were significantly associated with lower uptake of PCV and rotavirus vaccine (P < 0.001). We found differences in the vaccine coverage rate between NIP vaccines and non-NIP vaccines; and the data suggests potential disparity in accessing non-NIP vaccines in Korea. Expansion of NIP to include non-NIP vaccines can provide better protection against the diseases through increased coverage.

  6. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise

    PubMed Central

    Brown, Patrick T.; Li, Wenhong; Cordero, Eugene C.; Mauget, Steven A.

    2015-01-01

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20th century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal. PMID:25898351

  7. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise.

    PubMed

    Brown, Patrick T; Li, Wenhong; Cordero, Eugene C; Mauget, Steven A

    2015-04-21

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.

  8. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions

    NASA Astrophysics Data System (ADS)

    Hosono, Takahiro; Alvarez, Kelly; Lin, In-Tian; Shimada, Jun

    2015-12-01

    In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ15NNO3), carbon in dissolved inorganic carbon (δ13CDIC), and sulfur in sulfate (δ34SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ13CDIC (from - 7.7‰ to - 12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was - 4.7‰), suggesting the contribution of C of trisodium citrate (δ13C = - 12.4‰). No SO42 - and δ34SSO4 changes were observed. In the AD experiment, clear fractionation of δ13CDIC during DIC consumption (εC = - 7.8‰) and δ34SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN = - 12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field.

  9. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions.

    PubMed

    Hosono, Takahiro; Alvarez, Kelly; Lin, In-Tian; Shimada, Jun

    2015-12-01

    In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ(15)NNO3), carbon in dissolved inorganic carbon (δ(13)CDIC), and sulfur in sulfate (δ(34)SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ(13)CDIC (from -7.7‰ to -12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was -4.7‰), suggesting the contribution of C of trisodium citrate (δ(13)C=-12.4‰). No SO4(2-) and δ(34)SSO4 changes were observed. In the AD experiment, clear fractionation of δ(13)CDIC during DIC consumption (εC=-7.8‰) and δ(34)SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN=-12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field.

  10. Importance of Stream Denitrification in the Nitrogen Mass Balance of a Midwestern Agricultural Region

    NASA Astrophysics Data System (ADS)

    David, M. B.; Royer, T. V.; Opdyke, M. R.; Tank, J. L.

    2005-05-01

    Agricultural regions of the Midwestern US have large N fluxes as a result of inputs from fertilizer and biological fixation, and outputs through rivers and grain harvest. These inputs and outputs are not balanced, however, and denitrification has been suggested to be an important loss mechanism. We examined the role of in-stream denitrification in the N mass balance of Illinois, a predominantly agricultural region. Nitrate concentrations in streams were often >10 mg nitrate-N L-1, suggesting denitrification was not N-limited throughout most of the year. Denitrification rates were measured at many headwater stream sites throughout the year, in both sediments and primary producer habitat, under different geomorphic conditions. Although in-stream denitrification rates were generally high, hydraulic retention time limited the importance of denitrification in terms of export on an annual basis. Geomorphology was important in explaining rates, but extensive channelization has eliminated most in-stream structures, which could have more effectively reduced stream export of N. Therefore, stream denitrification was only minor sink for N and most nitrate in these headwater sites was exported downstream. In the overall mass balance of N, reservoir and in-field denitrification are thought to be much more important than in-stream denitrification.

  11. Estimating and comparing the reliability of a suite of workplace-based assessments: an obstetrics and gynaecology setting.

    PubMed

    Homer, Matt; Setna, Zeryab; Jha, Vikram; Higham, Jenny; Roberts, Trudie; Boursicot, Katherine

    2013-08-01

    This paper reports on a study that compares estimates of the reliability of a suite of workplace based assessment forms as employed to formatively assess the progress of trainee obstetricians and gynaecologists. The use of such forms of assessment is growing nationally and internationally in many specialties, but there is little research evidence on comparisons by procedure/competency and form-type across an entire specialty. Generalisability theory combined with a multilevel modelling approach is used to estimate variance components, G-coefficients and standard errors of measurement across 13 procedures and three form-types (mini-CEX, OSATS and CbD). The main finding is that there are wide variations in the estimates of reliability across the forms, and that therefore the guidance on assessment within the specialty does not always allow for enough forms per trainee to ensure that the levels of reliability of the process is adequate. There is, however, little evidence that reliability varies systematically by form-type. Methodologically, the problems of accurately estimating reliability in these contexts through the calculation of variance components and, crucially, their associated standard errors are considered. The importance of the use of appropriate methods in such calculations is emphasised, and the unavoidable limitations of research in naturalistic settings are discussed.

  12. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies.

    PubMed

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1-98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting.

  13. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies

    PubMed Central

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting. PMID:26262681

  14. Managing the risk of comparing estimated breeding values across flocks or herds through connectedness: a review and application

    PubMed Central

    Kuehn, Larry A; Lewis, Ronald M; Notter, David R

    2007-01-01

    Comparing predicted breeding values (BV) among animals in different management units (e.g. flocks, herds) is challenging if units have different genetic means. Unbiased estimates of differences in BV may be obtained by assigning base animals to genetic groups according to their unit of origin, but units must be connected to estimate group effects. If many small groups exist, error of BV prediction may be increased. Alternatively, genetic groups can be excluded from the statistical model, which may bias BV predictions. If adequate genetic connections exist among units, bias is reduced. Several measures of connectedness have been proposed, but their relationships to potential bias in BV predictions are not well defined. This study compares alternative strategies to connect small units and assesses the ability of different connectedness statistics to quantify potential bias in BV prediction. Connections established using common sires across units were most effective in reducing bias. The coefficient of determination of the mean difference in predicted BV was a perfect indicator of potential bias remaining when comparing individuals in separate units. However, this measure is difficult to calculate; correlated measures such as prediction errors of differences in unit means and correlations among prediction errors are suggested as practical alternatives. PMID:17433239

  15. Individual (N-of-1) trials can be combined to give population comparative treatment effect estimates: Methodologic considerations

    PubMed Central

    Zucker, Deborah R.; Ruthazer, Robin; Schmid, Christopher H.

    2010-01-01

    Abstract/Summary Objective To compare different statistical models for combining N-of-1 trials to estimate a population treatment effect. Study Design and Setting Data from a published series of N-of-1 trials comparing amitriptyline therapy and combination treatment (amitriptyline + fluoxetine ) were analyzed to compare summary and individual participant data meta-analysis, repeated measures models, Bayesian hierarchical models, single-period, single-pair and averaged outcome crossover models. Results The best fitting model included a random intercept (response on amitriptyline) and fixed treatment effect (added fluoxetine). Results supported a common, uncorrelated within-patient covariance structure that is equal between-treatments and across patients. Assuming unequal within-patient variances, a random effects model was favored. Bayesian hierarchical models improved precision and were highly sensitive to within-patient variance priors. Conclusion Optimal models for combining N-of-1 trials need to consider goals, data sources, and relative within and between patient variances. Without sufficient patients, between-patient variation will be hard to explain with covariates. N-of-1 data with few observations per patients may not support models with heterogeneous within-patient variation. With common variances, models appear robust. Bayesian models may improve parameter estimation but are sensitive to prior assumptions about variance components. With limited resources, improving within-patient precision must be balanced by increased participants to explain population variation. PMID:20863658

  16. Quantitative importance of denitrification and N2O emission in an N-saturated subtropical forest catchment, southwest China

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Dörsch, P.; Mulder, J.

    2009-04-01

    Anthropogenic emission of nitrogen in the environment has increased rapidly, due to fast economic growth. This has resulted in increased deposition rates of reactive nitrogen, primarily as NOx (from fossil fuel combustion) and NH3 (from fertilizer production and animal husbandry). In response, temperate and boreal forests may develop nitrogen saturation, characterized by increased leaching of nitrate. In addition, elevated emission of N2 and N2O, due to nitrification and denitrification, may occur. To date, few studies exist quantifying the nitrogen balance, including N2 and N2O production, in nitrogen-saturated, monsoonal, sub-tropical forest ecosystems in south-west China. Since nitrate contributes to the eutrophication of stream water, and N2O is a potent greenhouse gas, it is important to quantitatively understand the role of nitrification and denitrification in the nitrogen cycle. Several subtropical forests in southwest China, receiving elevated nitrogen deposition (30-73 kg N ha-1 a-1; Zhang. et al., 2008), are characterized by high temperature and soil moisture content in much of the growing season. This may cause a much stronger intensity of denitrification compared with that in temperate and boreal forests. In turn this may lead to decreased nitrate leaching and a higher potential of N2O emission. In my PhD project, I will investigate the nitrogen cycle in a forest catchment (TieShanPing; TSP), which is near one of the biggest cities, Chongqing, in southwest China. Previous research suggests high nitrogen deposition (3.52 gN m-2 a-1), but low nitrogen flux (0.57 gN m-2 a-1) in runoff (Chen & Mulder, 2007). Tree growth, and thus plant N uptake, is limited and nitrate fluxes below the root zone are relatively large, suggesting ‘N-saturation'. Based on this, we hypothesize that significant amounts of nitrogen are emitted as gases, with denitrification playing an important role, and N2 and N2O (especially N2) being major components of the emitted gases

  17. Long-term Effects of Ethanol Addition on Denitrification At The Uranium Mill Tailing Site In Monument Valley, Arizona

    NASA Astrophysics Data System (ADS)

    McMillan, A. L.; Borden, A. K.; Brusseau, M. L.; Carroll, K. C.; Akyol, N. H.; Berkompas, J. L.; Miao, Z.; Jordan, F.; Tick, G. R.; Waugh, J.; Glenn, E. P.

    2011-12-01

    Due to mining and processing of uranium at a site near Monument Valley, AZ, an extensive nitrate plume was produced in a shallow alluvial aquifer. Two pilot tests were conducted to evaluate the addition of ethanol as a carbon substrate to enhance natural denitrification. Aqueous geochemistry was characterized based upon groundwater samples collected before and after the addition of ethanol. Compound specific stable isotope analysis was also conducted. The results of the field tests showed that the concentration of nitrate decreased, while the concentration of nitrous oxide (a product of denitrification) increased. In addition, changes in aqueous concentrations of sulfate, iron, and manganese indicated that the ethanol amendment caused a change in prevailing redox conditions. The results of compound-specific stable isotope analysis for nitrate-nitrogen indicated that the nitrate concentration reductions were biologically mediated. Denitrification rate coefficients estimated for the pilot tests were approximately 50 times larger than resident-condition (non-enhanced) values obtained from prior characterization studies conducted at the site. Using the time at which nitrate concentrations began to decline for downgradient monitoring wells, and the associated inter-well distances, rough estimates of approximately 0.1-0.17 m/day were obtained for the effective reactive-front velocity. These values are within the range of mean pore-water velocities expected for the measured hydraulic conductivities and gradient. The nitrate concentrations in the injection zone have remained at levels three orders of magnitude below the initial values for many months, indicating that the ethanol amendments had a long-term impact on the local subsurface environment.

  18. The use of fermentation liquid of wastewater primary sedimentation sludge as supplemental carbon source for denitrification based on enhanced anaerobic fermentation.

    PubMed

    Liu, Feng; Tian, Yu; Ding, Yi; Li, Zhipeng

    2016-11-01

    Wastewater primary sedimentation sludge was prepared into fermentation liquid as denitrification carbon source, and the main components of fermentation liquid was short-chain volatile fatty acids. Meanwhile, the acetic acid and propionic acid respectively accounted for about 29.36% and 26.56% in short-chain volatile fatty acids. The performance of fermentation liquid, methanol, acetic acid, propionic acid and glucose used as sole carbon source were compared. It was found that the denitrification rate with fermentation liquid as carbon source was 0.17mgNO3(-)-N/mg mixed liquor suspended solid d, faster than that with methanol, acetic acid, and propionic acid as sole carbon source, and lower than that with glucose as sole carbon source. For the fermentation liquid as carbon source, the transient accumulation of nitrite was insignificantly under different initial total nitrogen concentration. Therefore, the use of fermentation liquid for nitrogen removal could improve denitrification rate, and reduce nitrite accumulation in denitrification process.

  19. Influence of wastewater composition on denitrification and biological P-removal in the S-DN-P-process: effects of different substrates (a).

    PubMed

    Choi, Hee-Jeong; Choi, Chul-Ho; Lee, Seung-Mok

    2007-01-01

    The influence of the wastewater composition on the denitrification and biological P-elimination in the Sorption Denitrification P-eliminations Process (S-DN-P-process) was examined. Batch type experiments were performed to examine the influence of various substrates. Among the three different substrates prepared, only 11% COD(filt) was taken up from starch containing wastewater (starch preparation). Acetate is an easily degradable substrate for the biological P-elimination, and showed ca. 30% more acetate was taken up compared to the raw wastewater (wastewater preparation). Starch is a barely degradable substance, because it must be hydrolysed before digestion. Starch initially sorbs slowly (approximately 30 min), and may be hydrolysed during this time. During the investigations, the biological P-elimination and the denitrification were found to be dependent on the wastewater composition. The P-elimination rate was determined to be 38% with the acetate preparation, while a P-elimination of 6% was obtained with the starch preparation. The wastewater preparation showed a P-elimination of 56%, the value of which was almost 18% more than the acetate preparation. The biological P-elimination and denitrification depend not only on the dissolved parts in the wastewater, but also on the undissolved content.

  20. Extended Kalman filter-based methods for pose estimation using visual, inertial and magnetic sensors: comparative analysis and performance evaluation.

    PubMed

    Ligorio, Gabriele; Sabatini, Angelo Maria

    2013-02-04

    In this paper measurements from a monocular vision system are fused with inertial/magnetic measurements from an Inertial Measurement Unit (IMU) rigidly connected to the camera. Two Extended Kalman filters (EKFs) were developed to estimate the pose of the IMU/camera sensor moving relative to a rigid scene (ego-motion), based on a set of fiducials. The two filters were identical as for the state equation and the measurement equations of the inertial/magnetic sensors. The DLT-based EKF exploited visual estimates of the ego-motion using a variant of the Direct Linear Transformation (DLT) method; the error-driven EKF exploited pseudo-measurements based on the projection errors from measured two-dimensional point features to the corresponding three-dimensional fiducials. The two filters were off-line analyzed in different experimental conditions and compared to a purely IMU-based EKF used for estimating the orientation of the IMU/camera sensor. The DLT-based EKF was more accurate than the error-driven EKF, less robust against loss of visual features, and equivalent in terms of computational complexity. Orientation root mean square errors (RMSEs) of 1° (1.5°), and position RMSEs of 3.5 mm (10 mm) were achieved in our experiments by the DLT-based EKF (error-driven EKF); by contrast, orientation RMSEs of 1.6° were achieved by the purely IMU-based EKF.

  1. A simple smoother based on continuous wavelet transform: Comparative evaluation based on the fidelity, smoothness and efficiency in phenological estimation

    NASA Astrophysics Data System (ADS)

    Qiu, Bingwen; Feng, Min; Tang, Zhenghong

    2016-05-01

    This study proposed a simple Smoother without any local adjustments based on Continuous Wavelet Transform (SCWT). And then it evaluated its performance together with other commonly applied techniques in phenological estimation. These noise reduction methods included Savitzky-Golay filter (SG), Double Logistic function (DL), Asymmetric Gaussian function (AG), Whittaker Smoother (WS) and Harmonic Analysis of Time-Series (HANTS). They were evaluated based on fidelity and smoothness, and their efficiencies in deriving phenological parameters through the inflexion point-based method with the 8-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) 2-band Enhanced Vegetation Index (EVI2) in 2013 in China. The following conclusions were drawn: (1) The SG method exhibited strong fidelity, but weak smoothness and spatial continuity. (2) The HANTS method had very robust smoothness but weak fidelity. (3) The AG and DL methods performed weakly for vegetation with more than one growth cycle (i.e., multiple crops). (4) The WS and SCWT smoothers outperformed others with combined considerations of fidelity and smoothness, and consistent phenological patterns (correlation coefficients greater than 0.8 except evergreen broadleaf forests (0.68)). (5) Compared with WS methods, the SCWT smoother was capable in preservation of real local minima and maxima with fewer inflexions. (6) Large discrepancy was examined from the estimated phenological dates with SG and HANTS methods, particularly in evergreen forests and multiple cropping regions (the absolute mean deviation rates were 6.2-17.5 days and correlation coefficients less than 0.34 for estimated start dates).

  2. A comparative study of graph-based, eikonal, and monodomain simulations for the estimation of cardiac activation times.

    PubMed

    Wallman, Mikael; Smith, Nicolas P; Rodriguez, Blanca

    2012-06-01

    The bidomain and monodomain equations are well established as the standard set of equations for the simulation of cardiac electrophysiological behavior. However, the computational cost of detailed bidomain/monodomain simulations limits their applicability in scenarios where a large number of simulations needs to be performed (e.g., parameter estimation). In this study, we present a graph-based method, which relies on point-to-point path finding to estimate activation times for single points in cardiac tissue with minimal computational costs. To validate our approach, activation times are compared to monodomain simulation results for an anatomically based rabbit ventricular model, incorporating realistic fiber orientation and conduction heterogeneities. Differences in activation times between the graph-based method and monodomain results are less than 10% of the total activation time, and computational performance is orders of magnitude faster with the proposed method when calculating activation times at single points. These results suggest that the graph-based method is well suited for estimating activation times when the need for fast performance justifies a limited loss of accuracy.

  3. Extended Kalman Filter-Based Methods for Pose Estimation Using Visual, Inertial and Magnetic Sensors: Comparative Analysis and Performance Evaluation

    PubMed Central

    Ligorio, Gabriele; Sabatini, Angelo Maria

    2013-01-01

    In this paper measurements from a monocular vision system are fused with inertial/magnetic measurements from an Inertial Measurement Unit (IMU) rigidly connected to the camera. Two Extended Kalman filters (EKFs) were developed to estimate the pose of the IMU/camera sensor moving relative to a rigid scene (ego-motion), based on a set of fiducials. The two filters were identical as for the state equation and the measurement equations of the inertial/magnetic sensors. The DLT-based EKF exploited visual estimates of the ego-motion using a variant of the Direct Linear Transformation (DLT) method; the error-driven EKF exploited pseudo-measurements based on the projection errors from measured two-dimensional point features to the corresponding three-dimensional fiducials. The two filters were off-line analyzed in different experimental conditions and compared to a purely IMU-based EKF used for estimating the orientation of the IMU/camera sensor. The DLT-based EKF was more accurate than the error-driven EKF, less robust against loss of visual features, and equivalent in terms of computational complexity. Orientation root mean square errors (RMSEs) of 1° (1.5°), and position RMSEs of 3.5 mm (10 mm) were achieved in our experiments by the DLT-based EKF (error-driven EKF); by contrast, orientation RMSEs of 1.6° were achieved by the purely IMU-based EKF. PMID:23385409

  4. Comparative evaluation of different satellite rainfall estimation products and bias correction in the Upper Blue Nile (UBN) basin

    NASA Astrophysics Data System (ADS)

    Abera, Wuletawu; Brocca, Luca; Rigon, Riccardo

    2016-09-01

    In a region where ground-based gauge data are scarce, satellite rainfall estimates (SREs) are a viable option for proper space-time rainfall characterization. However, their accuracy and performances vary from region to region, and must be assessed. In this study, five high resolution satellite products (3B42V7, CMORPH, TAMSAT, SM2R-CCI, and CFSR) are compared and analyzed using the available rain gauge data in one of the most topographically and climatologically complex basin of Africa, the Upper Blue Nile basin (UBN). The basin rainfall is investigated systematically, and it is found that, at some locations, the difference in mean annual rainfall estimates between these SREs could be as much as about 2700 mm. Considering three goodness-of-fit indexes, correlation, bias and root mean square error (RMSE) between the SREs and ground-based gauge rainfall, CMORPH, TAMSAT and SM2R-CCI outperform the other two. Furthermore, a confusion matrix is used to investigate the detection ability of satellite rainfall products for different rainfall intensities. TAMSAT has the highest (91%) detection skill for dry days, followed by CFSR (77%). On the contrary, SM2R-CCI has the highest accuracy index for medium rainfall ranges (10-20 mm). The empirical cumulative distribution (ecdf) mapping technique is used to correct the intensities distribution givenby the SREs. This method provides a means to improve the rainfall estimation of all SREs, and the highest improvement is obtained for CMORPH (bias reduction from - 72% to - 1%).

  5. Comparative evaluation of features and techniques for identifying activity type and estimating energy cost from accelerometer data.

    PubMed

    Kate, Rohit J; Swartz, Ann M; Welch, Whitney A; Strath, Scott J

    2016-03-01

    Wearable accelerometers can be used to objectively assess physical activity. However, the accuracy of this assessment depends on the underlying method used to process the time series data obtained from accelerometers. Several methods have been proposed that use this data to identify the type of physical activity and estimate its energy cost. Most of the newer methods employ some machine learning technique along with suitable features to represent the time series data. This paper experimentally compares several of these techniques and features on a large dataset of 146 subjects doing eight different physical activities wearing an accelerometer on the hip. Besides features based on statistics, distance based features and simple discrete features straight from the time series were also evaluated. On the physical activity type identification task, the results show that using more features significantly improve results. Choice of machine learning technique was also found to be important. However, on the energy cost estimation task, choice of features and machine learning technique were found to be less influential. On that task, separate energy cost estimation models trained specifically for each type of physical activity were found to be more accurate than a single model trained for all types of physical activities.

  6. The influence of N-fertilization regimes on N2O emissions and denitrification in rain-fed cropland during the rainy season.

    PubMed

    Dong, Zhixin; Zhu, Bo; Zeng, Zebin

    2014-11-01

    The effects of nitrogen fertilization regimes on N2O emissions and denitrification rates were evaluated by in situ field incubation experiments with intact soil cores and the acetylene block technique. Intact soil cores were collected from long-term field experiments involving several N fertilization regimes, including single synthetic N fertilizer (N), organic manure (OM), synthetic N, P, K fertilizer (NPK), organic manure with synthetic fertilizer (OMNPK), crop straw residue with synthetic fertilizer (SRNPK) and no nitrogen fertilizer (NF). N2O was sampled from the head space of the cylinders to determine the daily N2O emission and denitrification rate. The results showed that the N2O emissions were greatly influenced by the specific fertilization regime even when the same nitrogen rate was applied. The mean N2O emissions and denitrification rates from the N, OM, NPK, OMNPK and SRNPK treatment were 2.22, 2.66, 1.94, 2.53, 1.67 and 4.63, 5.96, 4.15, 5.41, 3.65 mg per m(2) per day, respectively. The application of OM significantly increased the N2O emission and denitrification compared to the application of NPK because of the high soil organic carbon (SOC) content of OM. However, SRNPK increased the SOC content and decreased the N2O emissions significantly compared to the OM and OMNPK treatments because the addition of crop straw with a high C/N ratio to soil with a low inorganic N content induced N immobilization. The contents of soil nitrate and ammonium were the main limiting factors for N2O emissions in a positive regression as follows: Ln (N2O) = 2.511 + 1.258 × Ln ([NH4(+)] + [NO3(-)]). Crop straw residue combined with synthetic fertilizer is recommended as an optimal strategy for mitigating N2O emissions and denitrification-induced N loss in rain-fed croplands.

  7. Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems.

    PubMed Central

    Mihelcic, J R; Luthy, R G

    1988-01-01

    This study examined the microbial degradation of acenaphthene and naphthalene under denitrification conditions at soil-to-water ratios of 1:25 and 1:50 with soil containing approximately 10(5) denitrifying organisms per g of soil. Under nitrate-excess conditions, both acenaphthene and naphthalene were degraded from initial aqueous-phase concentrations of about 1 and several mg/liter respectively, to nondetectable levels (less than 0.01 mg/liter) in less than 9 weeks. Acclimation periods of 12 to 36 days were observed prior to the onset of microbial degradation in tests with soil not previously exposed to polycyclic aromatic hydrocarbon (PAH) compounds, whereas acclimation periods were absent in tests with soil reserved from prior PAH degradation tests. It was judged that the apparent acclimation period resulted from the time required for a small population of organisms capable of PAH degradation to attain sufficient densities to exhibit detectable PAH reduction, rather than being a result of enzyme induction, mutation, or use of preferential substrate. About 0.9% of the naturally occurring soil organic carbon could be mineralized under denitrification conditions, and this accounted for the greater proportion of the nitrate depletion. Mineralization of the labile fraction of the soil organic carbon via microbial denitrification occurred without an observed acclimation period and was rapid compared with PAH degradation. Under nitrate-limiting conditions the PAH compounds were stable owing to the depletion of nitrate via the more rapid process of soil organic carbon mineralization. Soil sorption tests showed at the initiation of a test that the total mass of PAH compound was divided in comparable proportions between solute in the aqueous phase and solute sorbed on the solid phase. The microbial degradation of the PAH compound depends on the interrelationships between (i) the desorption kinetics and the reversibility of desorption of sorbed compound from the soil, (ii

  8. The occurrence of denitrification in extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; Hochstein, L. I.

    1986-01-01

    The ability of Halobacterium vallismortis, Halobacterium mediterranei and Halobacterium marismortui (Ginzburg strain) to grow anaerobically and denitrify was determined. Each organism grew anaerobically only in the presence of nitrate. H. marismortui produced nitrite and dinitrogen from nitrate during exponential growth. However, as the culture entered stationary phase, dinitrogen production ceased and nitrous oxide was detected. H. vallismortis produced nitrous oxide and dinitrogen during exponential growth, with dinitrogen production ceasing at the onset of stationary phase. H. mediterranei produced dinitrogen during exponential growth and did not produce nitrous oxide. These results confirm the occurrence of denitrification in the halobacteria.

  9. Methods to Estimate the Comparative Effectiveness of Clinical Strategies that Administer the Same Intervention at Different Times

    PubMed Central

    Kalager, Mette; Robins, James M.; Hoff, Geir; Hernán, Miguel A.

    2015-01-01

    Clinical guidelines that rely on observational data due to the absence of data from randomized trials benefit when the observational data or its analysis emulates trial data or its analysis. In this paper, we review a methodology for emulating trials that compare the effects of different timing strategies, that is, strategies that vary the frequency of delivery of a medical intervention or procedure. We review trial emulation for comparing (i) single applications of the procedure at different times, (ii) fixed schedules of application, and (iii) schedules adapted to the evolving clinical characteristics of the patients. For illustration, we describe an application in which we estimate the effect of surveillance colonoscopies in patients who had an adenoma detected during the Norwegian Colorectal Cancer Prevention (NORCCAP) trial. PMID:26587368

  10. A comparative evaluation of piezoelectric sensors for acoustic emission-based impact location estimation and damage classification in composite structures

    NASA Astrophysics Data System (ADS)

    Uprety, Bibhisha; Kim, Sungwon; Mathews, V. John; Adams, Daniel O.

    2015-03-01

    Acoustic Emission (AE) based Structural Health Monitoring (SHM) is of great interest for detecting impact damage in composite structures. Within the aerospace industry the need to detect and locate these events, even when no visible damage is present, is important both from the maintenance and design perspectives. In this investigation, four commercially available piezoelectric sensors were evaluated for usage in an AE-based SHM system. Of particular interest was comparing the acoustic response of the candidate piezoelectric sensors for impact location estimations as well as damage classification resulting from the impact in fiber-reinforced composite structures. Sensor assessment was performed based on response signal characterization and performance for active testing at 300 kHz and steel-ball drop testing using both aluminum and carbon/epoxy composite plates. Wave mode velocities calculated from the measured arrival times were found to be in good agreement with predictions obtained using both the Disperse code and finite element analysis. Differences in the relative strength of the received wave modes, the overall signal strengths and signal-to-noise ratios were observed through the use of both active testing as well as passive steel-ball drop testing. Further comparative is focusing on assessing AE sensor performance for use in impact location estimation algorithms as well as detecting and classifying damage produced in composite structures due to impact events.

  11. A Comparative Study of the Applied Methods for Estimating Deflection of the Vertical in Terrestrial Geodetic Measurements

    PubMed Central

    Vittuari, Luca; Tini, Maria Alessandra; Sarti, Pierguido; Serantoni, Eugenio; Borghi, Alessandra; Negusini, Monia; Guillaume, Sébastien

    2016-01-01

    This paper compares three different methods capable of estimating the deflection of the vertical (DoV): one is based on the joint use of high precision spirit leveling and Global Navigation Satellite Systems (GNSS), a second uses astro-geodetic measurements and the third gravimetric geoid models. The working data sets refer to the geodetic International Terrestrial Reference Frame (ITRF) co-location sites of Medicina (Northern, Italy) and Noto (Sicily), these latter being excellent test beds for our investigations. The measurements were planned and realized to estimate the DoV with a level of precision comparable to the angular accuracy achievable in high precision network measured by modern high-end total stations. The three methods are in excellent agreement, with an operational supremacy of the astro-geodetic method, being faster and more precise than the others. The method that combines leveling and GNSS has slightly larger standard deviations; although well within the 1 arcsec level, which was assumed as threshold. Finally, the geoid model based method, whose 2.5 arcsec standard deviations exceed this threshold, is also statistically consistent with the others and should be used to determine the DoV components where local ad hoc measurements are lacking. PMID:27104544

  12. Denitrification at pH 4 by a soil-derived Rhodanobacter-dominated community.

    PubMed

    van den Heuvel, R N; van der Biezen, E; Jetten, M S M; Hefting, M M; Kartal, B

    2010-12-01

    Soil denitrification is a major source of nitrous oxide emission that causes ozone depletion and global warming. Low soil pH influences the relative amount of N₂O produced and consumed by denitrification. Furthermore, denitrification is strongly inhibited in pure cultures of denitrifying microorganisms below pH 5. Soils, however, have been shown to denitrify at pH values as low as pH 3. Here we used a continuous bioreactor to investigate the possibility of significant denitrification at low pH under controlled conditions with soil microorganisms and naturally available electron donors. Significant NO₃⁻ and N₂O reduction were observed for 3 months without the addition of any external electron donor. Batch incubations with the enriched biomass showed that low pH as well as low electron donor availability promoted the relative abundance of N₂O as denitrification end-product. Molecular analysis of the enriched biomass revealed that a Rhodanobacter-like bacterium dominated the community in 16S rRNA gene libraries as well as in FISH microscopy during the highest denitrification activity in the reactor. We conclude that denitrification at pH 4 with natural electron donors is possible and that a Rhodanobacter species may be one of the microorganisms involved in acidic denitrification in soils.

  13. Linkages between denitrification and dissolved organicmatter quality, Boulder Creek watershed, Colorado

    USGS Publications Warehouse

    Barnes, Rebecca T.; Smith, Richard L.; Aiken, George R.

    2012-01-01

    Dissolved organic matter (DOM) fuels the majority of in-stream microbial processes, including the removal of nitrate via denitrification. However, little is known about how the chemical composition of DOM influences denitrification rates. Water and sediment samples were collected across an ecosystem gradient, spanning the alpine to plains, in central Colorado to determine whether the chemical composition of DOM was related to denitrification rates. Laboratory bioassays measured denitrification potentials using the acetylene block technique and carbon mineralization via aerobic bioassays, while organic matter characteristics were evaluated using spectroscopic and fractionation methods. Denitrification potentials under ambient and elevated nitrate concentrations were strongly correlated with aerobic respiration rates and the percent mineralized carbon, suggesting that information about the aerobic metabolism of a system can provide valuable insight regarding the ability of the system to additionally reduce nitrate. Multiple linear regressions (MLR) revealed that under elevated nitrate concentrations denitrification potentials were positively related to the presence of protein-like fluorophores and negatively related to more aromatic and oxidized fractions of the DOM pool. Using MLR, the chemical composition of DOM, carbon, and nitrate concentrations explained 70% and 78% of the observed variability in denitrification potential under elevated and ambient nitrate conditions, respectively. Thus, it seems likely that DOM optical properties could help to improve predictions of nitrate removal in the environment. Finally, fluorescence measurements revealed that bacteria used both protein and humic-like organic molecules during denitrification providing further evidence that larger, more aromatic molecules are not necessarily recalcitrant in the environment.

  14. Hydraulic properties of four-year old woodchips from a denitrification bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification beds are being used to reduce the transport of water-soluble nitrate via subsurface drainage systems to surface water. Only recently has the non-linearity of water flow through woodchips been ascertained. To successfully design and model denitrification beds for optimum nitrate remov...

  15. Large differences in potential denitrification and sediment microbial communities across the Laurentian great lakes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lakes can be important sites for removal of reactive nitrogen (N) through denitrification, but spatial heterogeneity in denitrification rates can be high, and our understanding of factors controlling the capacity of lakes to remove excess N is incomplete. In oligotrophic Lake Superior, a century-lon...

  16. Denitrification and N20 emissions from Carolina Bays receiving poultry runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On the southeastern Coastal Plain, there are depressional wetlands known as Carolina Bays that may receive runoff from agricultural land. Little is known about denitrification and gas emission within these isolated wetlands. Three forested Carolina Bays were selected to observe denitrification enzym...

  17. Bone Mineral Density Estimations From Routine Multidetector Computed Tomography: A Comparative Study of Contrast and Calibration Effects

    PubMed Central

    Kaesmacher, Johannes; Liebl, Hans; Baum, Thomas; Kirschke, Jan Stefan

    2017-01-01

    Introduction Phantom-based (synchronous and asynchronous) and phantomless (internal tissue calibration based) assessment of bone mineral density (BMD) in routine MDCT (multidetector computed tomography) examinations potentially allows for diagnosis of osteoporosis. Although recent studies investigated the effects of contrast-medium application on phantom-calibrated BMD measurements, it remains uncertain to what extent internal tissue-calibrated BMD measurements are also susceptible to contrast-medium associated density variation. The present study is the first to systemically evaluate BMD variations related to contrast application comparing different calibration techniques. Purpose To compare predicative performance of different calibration techniques for BMD measurements obtained from triphasic contrast-enhanced MDCT. Materials and Methods Bone mineral density was measured on nonenhanced (NE), arterial (AR) and portal-venous (PV) contrast phase MDCT images of 46 patients using synchronous (SYNC) and asynchronous (ASYNC) phantom calibration as well as internal calibration (IC). Quantitative computed tomography (QCT) served as criterion standard. Density variations were analyzed for each contrast phase and calibration technique, and respective linear fitting was performed. Results Both asynchronous calibration-derived BMD values (NE-ASYNC) and values estimated using IC (NE-IC) on NE MDCT images did reasonably well in predicting QCT BMD (root-mean-square deviation, 8.0% and 7.8%, respectively). Average NE-IC BMD was 2.7% lower when compared with QCT (P = 0.017), whereas no difference could be found for NE-ASYNC (P = 0.957). All average BMD estimates derived from contrast-enhanced scans differed significantly from QCT BMD (all P < 0.005) and led to notable systemic BMD biases (mean difference at least > 6.0 mg/mL). All regression fits revealed a consistent linear dependency (R2 range, 0.861–0.963). Overall accuracy and goodness of fit tended to decrease from AR to

  18. Enhanced Alcaligenes faecalis Denitrification Rate with Electrodes as the Electron Donor.

    PubMed

    Wang, Xin; Yu, Ping; Zeng, Cuiping; Ding, Hongrui; Li, Yan; Wang, Changqiu; Lu, Anhuai

    2015-08-15

    The utilization by Alcaligenes faecalis of electrodes as the electron donor for denitrification was investigated in this study. The denitrification rate of A. faecalis with a poised potential was greatly enhanced compared with that of the controls without poised potentials. For nitrate reduction, although A. faecalis could not reduce nitrate, at three poised potentials of +0.06, -0.06, and -0.15 V (versus normal hydrogen electrode [NHE]), the nitrate was partially reduced with -0.15- and -0.06-V potentials at rates of 17.3 and 28.5 mg/liter/day, respectively. The percentages of reduction for -0.15 and -0.06 V were 52.4 and 30.4%, respectively. Meanwhile, for nitrite reduction, the poised potentials greatly enhanced the nitrite reduction. The nitrite reduction rates for three poised potentials (-0.06, -0.15, and -0.30 V) were 1.98, 4.37, and 3.91 mg/liter/h, respectively. When the potentials were cut off, the nitrite reduction rate was maintained for 1.5 h (from 2.3 to 2.25 mg/liter/h) and then greatly decreased, and the reduction rate (0.38 mg/liter/h) was about 1/6 compared with the rate (2.3 mg/liter/h) when potential was on. Then the potentials resumed, but the reduction rate did not resume and was only 2 times higher than the rate when the potential was off.

  19. Enhanced Alcaligenes faecalis Denitrification Rate with Electrodes as the Electron Donor

    PubMed Central

    Wang, Xin; Yu, Ping; Zeng, Cuiping; Ding, Hongrui; Wang, Changqiu

    2015-01-01

    The utilization by Alcaligenes faecalis of electrodes as the electron donor for denitrification was investigated in this study. The denitrification rate of A. faecalis with a poised potential was greatly enhanced compared with that of the controls without poised potentials. For nitrate reduction, although A. faecalis could not reduce nitrate, at three poised potentials of +0.06, −0.06, and −0.15 V (versus normal hydrogen electrode [NHE]), the nitrate was partially reduced with −0.15- and −0.06-V potentials at rates of 17.3 and 28.5 mg/liter/day, respectively. The percentages of reduction for −0.15 and −0.06 V were 52.4 and 30.4%, respectively. Meanwhile, for nitrite reduction, the poised potentials greatly enhanced the nitrite reduction. The nitrite reduction rates for three poised potentials (−0.06, −0.15, and −0.30 V) were 1.98, 4.37, and 3.91 mg/liter/h, respectively. When the potentials were cut off, the nitrite reduction rate was maintained for 1.5 h (from 2.3 to 2.25 mg/liter/h) and then greatly decreased, and the reduction rate (0.38 mg/liter/h) was about 1/6 compared with the rate (2.3 mg/liter/h) when potential was on. Then the potentials resumed, but the reduction rate did not resume and was only 2 times higher than the rate when the potential was off. PMID:26048940

  20. [Potential of nitrification and denitrification in water purification system with hydroponic bio-filter method].

    PubMed

    Li, Xian-ing; Lu, Xi-wu; Song, Hai-liang; Osamu, Nishimura; Yuhei, Inamori

    2005-03-01

    The potential of nitrification and denitrification of sediment and the density of ammonium-oxidizing bacteria and nitrite-oxidizing bacteria in sediment in water quality purifying system with hydroponic bio-filter method (HBFM) were measured. The variation of nitrification and denitrification potential of the sediment along the stream way was quantitatively studied. The results show that among the sediments from front, middle and retral part of the stream way, the sediment from middle part reached a maximum nitrification potential . nitrification potential of 4.76 x 10(-6) g/(g x h), while the sediment from front part reached a maximum denitrification potential of 8 .1 x 10(-7) g/(g x h). The distribution of nitrification potential accords with the ammonium-oxidizing bacteria density. The key for improving nitrogen removal efficiency of HBFM system consists in changing nitrification & denitrification region distributing and accordingly enhances denitrification process.

  1. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (<0.45mm) resulted in a favorable nitrate removal. The nitrate removal rate increased from 0.26 to 0.34 mg L-1h-1 and then to 0.86 mg L-1h-1, approaching that of the sulfur oxidizing denitrification (SOD) rate of 1.19 mg L-1h-1. Based on Box-Behnken design (BBD) and response surface methodology (RSM), the optimal amount of biomass concentration, pyrite dose, and pyrite particle size were 1,250 mg VSS L-1, 125 g L-1, and 0.815-1.015 mm, respectively. PPAD exhibited substantial nitrate removal rate, lower sulfate accumulation (5.46 mg SO42-/mg NO3--N) and lower alkalinity consumption (1.70 mg CaCO3/mg NO3--N) when compared to SOD (7.54 mg SO42-/mg NO3--N, 4.57 mg CaCO3/mg NO3--N based on stoichiometric calculation). This research revealed that the PPAD process is a promising technique for nitrate-contaminated groundwater treatment and promoted the utilization of pyrite in the field of environmental remediation.

  2. Continuous fermentation of food waste leachate for the production of volatile fatty acids and potential as a denitrification carbon source.

    PubMed

    Kim, Hakchan; Kim, Jaai; Shin, Seung Gu; Hwang, Seokhwan; Lee, Changsoo

    2016-05-01

    This study investigated the simultaneous effects of hydraulic retention time (HRT) and pH on the continuous production of VFAs from food waste leachate using response surface analysis. The response surface approximations (R(2)=0.895, p<0.05) revealed that pH has a dominant effect on the specific VFA production (PTVFA) within the explored space (1-4-day HRT, pH 4.5-6.5). The estimated maximum PTVFA was 0.26g total VFAs/g CODf at 2.14-day HRT and pH 6.44, and the approximation was experimentally validated by running triplicate reactors under the estimated optimum conditions. The mixture of the filtrates recovered from these reactors was tested as a denitrification carbon source and demonstrated superior performance in terms of reaction rate and lag length relative to other chemicals, including acetate and methanol. The overall results provide helpful information for better design and control of continuous fermentation for producing waste-derived VFAs, an alternative carbon source for denitrification.

  3. Denitrification of high nitrate concentration wastewater using alternative carbon sources.

    PubMed

    Fernández-Nava, Y; Marañón, E; Soons, J; Castrillón, L

    2010-01-15

    The use of different organic carbon sources in the denitrification of wastewater containing 2500 mg nitrates/L in a SBR was studied. Three alternative sources of carbon were tested: wastewater from a sweet factory, a residue from a soft drinks factory and a residue from a dairy plant. The first two are sugar-rich, whereas the third presents a high content in lactic acid. Maximum specific denitrification rates of between 42 and 48 mg NO(3)-N/g VSS h were obtained. The effluents were nitrate-free and very low COD concentrations were obtained in 4-6h reaction time, especially with the sugar-rich carbon sources. The values of the denitrifier net yield coefficient were higher than when using methanol (0.93-1.75 g VSS(formed)/g NO(x)-N(reduced)). The lowest value was obtained using the lactic acid-rich residue. The optimum COD/N ratios varied between 4.6 for the lactic acid-rich carbon source and 5.5-6.5 for the sugar-rich carbon sources.

  4. Examining thiosulfate-driven autotrophic denitrification through respirometry.

    PubMed

    Mora, Mabel; Guisasola, Albert; Gamisans, Xavier; Gabriel, David

    2014-10-01

    Anoxic respirometry was applied to characterize a sulfide-oxidizing nitrate-reducing (SO-NR) culture obtained from an anoxic biogas desulfurizing biotrickling filter treating high loads of H2S. Immobilized biomass extracted from the biotrickling filter was grown in a suspended culture with thiosulfate as electron donor to obtain the biomass growth yield and the S2O3(2)(-)/NO3(-) consumed ratio. Afterward, respirometry was applied to describe thiosulfate oxidation under anoxic conditions. A pure culture of Thiobacillus denitrificans was also used as a control culture in order to validate the procedure proposed in this work to characterize the SO-NR biomass. Respirometric profiles obtained with this microbial culture showed that nitrite was formed as intermediate during nitrate reduction and revealed that no competitive inhibition appeared when both electron acceptors were present in the medium. Although final bioreaction products depended on the initial S2O3(2)(-)/NO3(-) ratio, such ratio did not affect thiosulfate oxidation or denitrification rates. Moreover, respirometric profiles showed that the specific nitrite uptake rate depended on the biomass characteristics being that of a SO-NR mixed culture (39.8mgNg(-1) VSSh(-1)) higher than that obtained from a pure culture of T. denitrificans (19.7mgNg(-1) VSSh(-1)). For the first time, the stoichiometry of the two-step denitrification mechanism with thiosulfate oxidation and biomass growth associated was solved for both reactions.

  5. Long term performance of the Waterloo denitrification barrier

    SciTech Connect

    Robertson, W.D.; Cherry, J.A.

    1997-12-31

    Beginning in 1991 a series of laboratory tests and small scale field trials were initiated to test the performance of an innovative permeable reactive barrier for treatment of nitrate from septic systems. The barrier promotes denitrification by providing an energy source in the form of solid organic carbon mixed into the porous media material. Advantages of the system for nitrate treatment are that the reaction is passive and in situ and it is possible to incorporate sufficient carbon mass in conveniently sized barriers to potentially provide treatment for long periods (decades) without the necessity for maintenance. However, longevity can only be demonstrated by careful long term monitoring of field installations. This paper documents four years of operating history at three small scale field trials; two where the denitrification barrier is installed as a horizontal layer positioned in the unsaturated zone below conventional septic system infiltration beds and one where the barrier is installed as a vertical wall intercepting a septic system plume at a downgradient location. The barriers have successfully attenuated 50-100% of NO{sup -}{sub 3}-N levels of up to 170 mg/L and treatment has remained consistent over the four year period in each case, thus considerable longevity is indicated. Other field trials have demonstrated this technology to be equally effective in treating nitrogen contamination from other sources such as landfill leachate and farm field runoff.

  6. Removal of Nitrate by Photocatalytic Denitrification Using Nonlinear Optical Material.

    PubMed

    Liu, Guoshuai; You, Shijie; Ma, Ming; Huang, Hong; Ren, Nanqi

    2016-10-18

    Removal of nitrate from water has been receiving growing attention in water treatment. In this study, we report the photocatalytic denitrification (PCDN) by nonlinear optical (NLO) material, i.e. lithium niobate (LiNbO3). The hydrothermally synthesized LiNbO3 powder could achieve efficient denitrification in water, evidenced by 98.4% nitrate removal and 95.8% nitrogen selectivity at reaction time of 120 min and pH-neutral condition. Based on the first-order kinetics of PCDN, the kinetic constant for LiNbO3 is almost three times as that of conventional TiO2 (P25) under the same conditions. As suggested by the hole scavenger experiments, the LiNbO3 should proceed with photocatalytic reduction of nitrate through direct heterogeneous interaction with electrons at the conduction band of LiNbO3. This may represent a different mechanism from P25, where nitrate is mainly reduced by CO2(•-) radicals generated by the holes at the valence band. The unique second harmonic generation (SHG) effects of NLO materials enable them to produce more electrons and minimize the electron-hole recombination, which improves the efficiency and stability of the PCDN process. The current study provides a proof-of-concept demonstration of NLO photocatalytic material for more effective nitrate removal in water treatment.

  7. Citric acid application for denitrification process support in biofilm reactor.

    PubMed

    Mielcarek, Artur; Rodziewicz, Joanna; Janczukowicz, Wojciech; Dabrowska, Dorota; Ciesielski, Slawomir; Thornton, Arthur; Struk-Sokołowska, Joanna

    2017-03-01

    The study demonstrated that citric acid, as an organic carbon source, can improve denitrification in Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR). The consumption rate of the organic substrate and the denitrification rate were lower during the period of the reactor's acclimatization (cycles 1-60; 71.5 mgCOD L(-1) h(-1) and 17.81 mgN L(-1) h(-1), respectively) than under the steady state conditions (cycles 61-180; 143.8 mgCOD L(-1) h(-1) and 24.38 mgN L(-1) h(-1)). The biomass yield coefficient reached 0.04 ± 0.02 mgTSS· mgCODre(-1) (0.22 ± 0.09 mgTSS mgNre(-1)). Observations revealed the diversified microbiological ecology of the denitrifying bacteria. Citric acid was used mainly by bacteria representing the Trichoccocus genus, which represented above 40% of the sample during the first phase of the process (cycles 1-60). In the second phase (cycles 61-180) the microorganisms the genera that consumed the acetate and formate, as the result of citric acid decomposition were Propionibacterium (5.74%), Agrobacterium (5.23%), Flavobacterium (1.32%), Sphaerotilus (1.35%), Erysipelothrix (1.08%).

  8. Cocurrent biological nitrification and denitrification in wastewater treatment

    SciTech Connect

    Spector, M.

    1998-11-01

    Repetitive conditioning of recycle activated sludge (RAS) under strict anaerobic conditions gradually changes the products of ammonia oxidation from nitrite and nitrate to nitrous oxide (N{sub 2}O) and nitrogen (N{sub 2}). Nitrite inhibits oxygen respiration of anaerobically conditioned sludge; biochemical oxygen demand (BOD) is then oxidized by nitrite, which is reduce to N{sub 2}O and N{sub 2}. When anaerobic RAS conditioning is initially imposed on a nitrifying system, Nitrobacter species continue to oxidize nitrite to nitrate and thus reduce the nitrite available to oxidize BOD. However, Nitrobacter in the mixed liquor gradually tend to wash out because the sole source of Nictrobacter energy, the oxidation of nitrite to nitrate, is diminished to the extent that nitrite is reduced. Incorporation of an RAS conditioning zone to the activate-sludge process results in evolution of a nonfilamentous biomass, which affects both cocurrent biological nitrification and denitrification (CBND) and biological phosphorus removal (BPR). The initial feed zone may be either aerobic or anaerobic. A final anoxic denitrification zone is desirable for removal of residual nitrite plus nitrate (NO{sub x}) from aeration effluent. Nitrous oxide, the main reaction product of CBND, promotes both global warming and destruction of the stratospheric ozone layer.

  9. Simultaneous nitrification-denitrification in slow sand filters.

    PubMed

    Nakhla, George; Farooq, Shaukat

    2003-01-31

    While the ability of slow sand filters to remove total suspended solids (SS), turbidity, and organics from wastewaters is well known, this study has demonstrated that they can also achieve simultaneous nitrification-denitrification, producing effluent total Kjedahl nitrogen (TKN) and total nitrogen (TN) concentrations as low as 0.6 and 1.5mg/l, respectively, utilizing particulate and slowly biodegradable COD in the process. The impact of filtration rates in the range of 0.15-0.38m/h, filter depth of 0.5-1.5m, and sand size 0.3-0.5mm on nitrogen removal processes at temperatures of 10-39 degrees C was assessed. Nitrification efficiency, denitrification efficiency, and total nitrogen removal efficiency correlated well with filtration rate and sand size only, with all three parameters inversely proportional to the square root of the aforementioned two process variables. Nitrification exhibited the most sensitivity to filtration rate and sand size. The filters produced effluent with turbidities of 0.1-0.5 NTU, SS concentrations of 3-6mg/l in the fine sand and 6-9mg/l in the coarse sand. Effluent BOD(5) and COD concentrations were mostly in the 0.8-2.6 and 15-34mg/l range, respectively.

  10. Autotrophic denitrification using hydrogen generated from metallic iron corrosion.

    PubMed

    Sunger, Neha; Bose, Purnendu

    2009-09-01

    Hydrogenotrophic denitrification was demonstrated using hydrogen generated from anoxic corrosion of metallic iron. For this purpose, a mixture of hydrogenated water and nitrate solution was used as reactor feed. A semi-batch reactor with nitrate loading of 2000 mg m(-3) d(-1) and hydraulic retention time (HRT) of 50 days produced effluent with nitrate concentration of 0.27 mg N L(-1) (99% nitrate removal). A continuous flow reactor with nitrate loading of 28.9 mg m(-3) d(-1) and HRT of 15.6 days produced effluent with nitrate concentration of approximately 0.025 mg N L(-1) (95% nitrate removal). In both cases, the concentration of nitrate degradation by-products, viz., ammonia and nitrite, were below detection limits. The rate of denitrification in the reactors was controlled by hydrogen availability, and hence to operate such reactors at higher nitrate loading rates and/or lower HRT than reported in the present study, hydrogen concentration in the hydrogenated water must be significantly increased.

  11. Carbohydrate Estimation by a Mobile Phone-Based System Versus Self-Estimations of Individuals With Type 1 Diabetes Mellitus: A Comparative Study

    PubMed Central

    Dehais, Joachim; Anthimopoulos, Marios; Shevchik, Sergey; Botwey, Ransford Henry; Duke, David; Stettler, Christoph; Diem, Peter

    2016-01-01

    Background Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with Go

  12. A comparative pharmacokinetic estimate of mercury in U.S. Infants following yearly exposures to inactivated influenza vaccines containing thimerosal.

    PubMed

    Mitkus, Robert J; King, David B; Walderhaug, Mark O; Forshee, Richard A

    2014-04-01

    The use of thimerosal preservative in childhood vaccines has been largely eliminated over the past decade in the United States because vaccines have been reformulated in single-dose vials that do not require preservative. An exception is the inactivated influenza vaccines, which are formulated in both multidose vials requiring preservative and preservative-free single-dose vials. As part of an ongoing evaluation by USFDA of the safety of biologics throughout their lifecycle, the infant body burden of mercury following scheduled exposures to thimerosal preservative in inactivated influenza vaccines in the United States was estimated and compared to the infant body burden of mercury following daily exposures to dietary methylmercury at the reference dose established by the USEPA. Body burdens were estimated using kinetic parameters derived from experiments conducted in infant monkeys that were exposed episodically to thimerosal or MeHg at identical doses. We found that the body burden of mercury (AUC) in infants (including low birth weight) over the first 4.5 years of life following yearly exposures to thimerosal was two orders of magnitude lower than that estimated for exposures to the lowest regulatory threshold for MeHg over the same time period. In addition, peak body burdens of mercury following episodic exposures to thimerosal in this worst-case analysis did not exceed the corresponding safe body burden of mercury from methylmercury at any time, even for low-birth-weight infants. Our pharmacokinetic analysis supports the acknowledged safety of thimerosal when used as a preservative at current levels in certain multidose infant vaccines in the United States.

  13. Registration-based estimates of local lung tissue expansion compared to xenon-CT measures of specific ventilation

    PubMed Central

    Reinhardt, Joseph M.; Ding, Kai; Cao, Kunlin; Christensen, Gary E.; Hoffman, Eric A.; Bodas, Shalmali V.

    2008-01-01

    The main function of the respiratory system is gas exchange. Since many disease or injury conditions can cause biomechanical or material property changes that can alter lung function, there is a great interest in measuring regional lung ventilation and regional specific volume change. We describe a registration-based technique for estimating local lung expansion from multiple respiratory-gated CT images of the thorax. The degree of regional lung expansion is measured using the Jacobian (a function of local partial derivatives) of the registration displacement field, which we show is directly related to specific volume change. We compare the ventral-dorsal patterns of lung expansion estimated across five pressure changes to a xenon CT based measure of specific ventilation in five anesthetized sheep studied in the supine orientation. Using 3D image registration to match images acquired at 10 cm H2O and 15 H2O airway pressures gave the best match between the average Jacobian and the xenon CT specific ventilation (linear regression, average r2 = 0.73). PMID:18501665

  14. Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation.

    PubMed

    Reinhardt, Joseph M; Ding, Kai; Cao, Kunlin; Christensen, Gary E; Hoffman, Eric A; Bodas, Shalmali V

    2008-12-01

    The main function of the respiratory system is gas exchange. Since many disease or injury conditions can cause biomechanical or material property changes that can alter lung function, there is a great interest in measuring regional lung ventilation and regional specific volume change. We describe a registration-based technique for estimating local lung expansion from multiple respiratory-gated CT images of the thorax. The degree of regional lung expansion is measured using the Jacobian (a function of local partial derivatives) of the registration displacement field, which we show is directly related to specific volume change. We compare the ventral-dorsal patterns of lung expansion estimated across five pressure changes to a xenon CT based measure of specific ventilation in five anesthetized sheep studied in the supine orientation. Using 3D image registration to match images acquired at 10 cm H(2)O and 15 cm H(2)O airway pressures gave the best match between the average Jacobian and the xenon CT specific ventilation (linear regression, average r(2)=0.73).

  15. Implication of Land Use and Belowground Weather on Nitrous Oxide Soil Depth Profiles and Denitrification Potential

    NASA Astrophysics Data System (ADS)

    Phillips, R. L.; Song, B.; Saliendra, N.; Liebig, M. A.

    2013-12-01

    Agricultural soils are the largest single source of anthropogenic nitrous oxide (N2O) to the atmosphere, which is largely attributed to the expansion in the use of synthetic fertilizer nitrogen (N). Alfalfa crops often do not require synthetic N addition because N is fixed symbiotically belowground. Some biologically fixed N leaks into soil, which could affect production and consumption of N2O. While many studies have reported net fluxes of N2O at the soil surface, few have quantified variation in N2O concentration at multiple soil depths under variable climatic conditions without synthetic N inputs. A no-till crop field, seeded to alfalfa (Medicago sativa) in 2009, was compared to neighboring native prairie in North Dakota, U.S.A. to determine if N2O, CO2 and CH4 concentrations varied with depth between fields for 4 years. Both fields (> 15 ha) were harvested for hay without N-fertilizer inputs between 2009 and 2013. Soils and instrumentation were similar. Sensors and soil gas well collection chambers were buried at near-surface (15 and 30 cm) and sub-surface (60 and 90 cm) soil depths. Temperature, moisture, oxygen, relative humidity, and pressure data were collected every 30 minutes, and gas well concentration data were collected twice weekly until spring 2013. Cores were collected for each depth increment in 2012, and potential rates of denitrification and anammox were measured for the 0-15 cm depth using soil slurry incubation experiments with 15N tracer treatments. We evaluated temporal variability in N2O concentration with depth and found N2O spikes beneath alfalfa tended to be an order of magnitude higher and more persistent than N2O peaks beneath prairie. Median N2O concentrations at sub-surface depths were greater than near-surface depths. Alfalfa median N2O concentrations for near-surface (24 nmols N2O L-1) and sub-soils (30 nmols N2O L-1) were higher than N2O concentrations beneath prairie (15 nmols N2O L-1 and 17 nmols N2O L-1, respectively). Soil

  16. Validity of Electronic Diet Recording Nutrient Estimates Compared to Dietitian Analysis of Diet Records: Randomized Controlled Trial

    PubMed Central

    Scheett, Angela J; Johnson, LuAnn K; Jahns, Lisa

    2015-01-01

    Background Dietary intake assessment with diet records (DR) is a standard research and practice tool in nutrition. Manual entry and analysis of DR is time-consuming and expensive. New electronic tools for diet entry by clients and research participants may reduce the cost and effort of nutrient intake estimation. Objective To determine the validity of electronic diet recording, we compared responses to 3-day DR kept by Tap & Track software for the Apple iPod Touch and records kept on the Nutrihand website to DR coded and analyzed by a research dietitian into a customized US Department of Agriculture (USDA) nutrient analysis program, entitled GRAND (Grand Forks Research Analysis of Nutrient Data). Methods Adult participants (n=19) enrolled in a crossover-designed clinical trial. During each of two washout periods, participants kept a written 3-day DR. In addition, they were randomly assigned to enter their DR in a Web-based dietary analysis program (Nutrihand) or a handheld electronic device (Tap & Track). They completed an additional 3-day DR and the alternate electronic diet recording methods during the second washout. Entries resulted in 228 daily diet records or 12 for each of 19 participants. Means of nutrient intake were calculated for each method. Concordance of the intake estimates were determined by Bland-Altman plots. Coefficients of determination (R 2) were calculated for each comparison to assess the strength of the linear relationship between methods. Results No significant differences were observed between the mean nutrient values for energy, carbohydrate, protein, fat, saturated fatty acids, total fiber, or sodium between the recorded DR analyzed in GRAND and either Nutrihand or Tap & Track, or for total sugars comparing GRAND and Tap & Track. Reported values for total sugars were significantly reduced (P<.05) comparing Nutrihand to GRAND. Coefficients of determination (R 2) for Nutrihand and Tap & Track compared to DR entries into GRAND, respectively

  17. A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modelling approaches

    NASA Astrophysics Data System (ADS)

    Bilgehan, Mahmut

    2011-03-01

    In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) model have been successfully used for the evaluation of relationships between concrete compressive strength and ultrasonic pulse velocity (UPV) values using the experimental data obtained from many cores taken from different reinforced concrete structures having different ages and unknown ratios of concrete mixtures. A comparative study is made using the neural nets and neuro-fuzzy (NF) techniques. Statistic measures were used to evaluate the performance of the models. Comparing of the results, it is found that the proposed ANFIS architecture with Gaussian membership function is found to perform better than the multilayer feed-forward ANN learning by backpropagation algorithm. The final results show that especially the ANFIS modelling may constitute an efficient tool for prediction of the concrete compressive strength. Architectures of the ANFIS and neural network established in the current study perform sufficiently in the estimation of concrete compressive strength, and particularly ANFIS model estimates closely follow the desired values. Both ANFIS and ANN techniques can be used in conditions where too many structures are to be examined in a restricted time. The presented approaches enable to practically find concrete strengths in the existing reinforced concrete structures, whose records of concrete mixture ratios are not available or present. Thus, researchers can easily evaluate the compressive strength of concrete specimens using UPV and density values. These methods also contribute to a remarkable reduction in the computational time without any significant loss of accuracy. A comparison of the results clearly shows that particularly the NF approach can be used effectively to predict the compressive strength of concrete using UPV and density values. In addition, these model architectures can be used as a nondestructive procedure for health monitoring of

  18. Denitrification mitigates N flux through the stream-floodplain complex of a desert city.

    PubMed

    Roach, W John; Grimm, Nancy B

    2011-10-01

    The Indian Bend Wash (IBW) flood-control project relies on a greenbelt to carry floods through Scottsdale, Arizona, USA. The greenbelt is characterized by a chain of shallow artificial lakes in a larger floodplain of irrigated turf, which has been protected from encroaching urban development. As such, this urban stream-floodplain complex can be divided into three subsystems: artificial lakes, channelized stream segments, and floodplain. We conducted experiments to evaluate which, if any, of these subsystems were important sites of denitrification, and to explore factors controlling denitrification rates. Denitrification enzyme activity (DEA) bioassays were conducted on sediments from eight lake and six stream segments as well as soil samples from eight floodplain transects. Mass-specific potential denitrification rates were significantly higher in lakes than in streams or floodplains. Nutrient limitation bioassays revealed that nitrate (NO3-) limited denitrification in lake sediments, a surprising finding given that NO3(-)-rich groundwater additions frequently raised lake NO3(-) concentration above 1 mg N/L. Experiments on intact lake cores suggested that denitrification was limited by the rate NO3(-) diffused into sediments, rather than its availability in overlying water. Floodplain denitrification was limited by water content, not NO3(-) or C, and irrigation of soils stimulated denitrification. We constructed a N budget for the IBW stream-floodplain complex based on our experimental results. We found that both lakes and floodplains removed large quantities of N, with denitrification removing 261 and 133 kg N ha(-1) yr(-1) from lake sediments and floodplain soils, respectively, indicating that lakes are hotspots for denitrification. Nevertheless, because floodplain area was >4.5 times that of lakes, floodplain soils removed nearly 2.5 times as much N as lake sediments. Given the desert's low annual precipitation, a finding that floodplain soils are active sites

  19. Preparation and Physicochemical Evaluation of Controlled-release Carbon Source Tablet for Groundwater in situ Denitrification

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kang, J. H.; Yeum, Y.; Han, K. J.; Kim, D. W.; Park, C. W.

    2015-12-01

    Nitric nitrogen could be the one of typical pollution source such asNO3-through domestic sewage, livestock and agricultural wastewater. Resident microflorain aquifer has known to remove the nitric nitrogen spontaneously following the denitration process with the carbon source (CS) as reactant. However, it could be reacted very slowly with the rack of CS and there have been some studies for controlled addition of CS (Ref #1-3). The aim of this study was to prepare the controlled-release carbon source (CR-CS) tablet and to evaluate in vitro release profile for groundwater in situ denitrification. CR-CS tablet could be manufactured by direct compression method using hydraulic laboratory press (Caver® 3850) with 8 mm rounded concave punch/ die.Seven kinds of CR-CS tablet were prepared to determine the nature of the additives and their ratio such as sodium silicate, dicalcium phosphate, bentonite and sand#8.For each formulation, the LOD% and flowability of pre-mixed powders and the hardness of compressed tablets were analyzed. In vitro release study was performed to confirm the dissolution profiles following the USP Apparatus 2 method with Distilled water of 900mL, 20 °C. As a result, for each lubricated powders, they were compared in terms of ability to give an acceptable dry pre-mixed powder for tableting process. The hardness of the compressed tablets is acceptable whatever the formulations tested. After in vitro release study, it could confirm that the different formulations of CR-CS tablet have a various release rate patterns, which could release 100% at 3 hrs, 6 hrs and 12 hrs. The in vitro dissolution profiles were in good correlation of Higuchi release kinetic model. In conclusion, this study could be used as a background for development and evaluation of the controlled-release carbon source (CR-CS) tablet for the purification of groundwater following the in situ denitrification.

  20. Biochemical and genomic analysis of the denitrification pathway within the genus Neisseria

    PubMed Central

    Barth, Kenneth R.; Isabella, Vincent M.; Clark, Virginia L.

    2009-01-01

    Since Neisseria gonorrhoeae and Neisseria meningitidis are obligate human pathogens, a comparison with commensal species of the same genus could reveal differences important in pathogenesis. The recent completion of commensal Neisseria genome draft assemblies allowed us to perform a comparison of the genes involved in the catalysis, assembly and regulation of the denitrification pathway, which has been implicated in the virulence of several bacteria. All species contained a highly conserved nitric oxide reductase (NorB) and a nitrite reductase (AniA or NirK) that was highly conserved in the catalytic but divergent in the N-terminal lipid modification and C-terminal glycosylation domains. Only Neisseria mucosa contained a nitrate reductase (Nar), and only Neisseria lactamica, Neisseria cinerea, Neisseria subflava, Neisseria flavescens and Neisseria sicca contained a nitrous oxide reductase (Nos) complex. The regulators of the denitrification genes, FNR, NarQP and NsrR, were highly conserved, except for the GAF domain of NarQ. Biochemical examination of laboratory strains revealed that all of the neisserial species tested except N. mucosa had a two- to fourfold lower nitrite reductase activity than N. gonorrhoeae, while N. meningitidis and most of the commensal Neisseria species had a two- to fourfold higher nitric oxide (NO) reductase activity. For N. meningitidis and most of the commensal Neisseria, there was a greater than fourfold reduction in the NO steady-state level in the presence of nitrite as compared with N. gonorrhoeae. All of the species tested generated an NO steady-state level in the presence of an NO donor that was similar to that of N. gonorrhoeae. The greatest difference between the Neisseria species was the lack of a functional Nos system in the pathogenic species N. gonorrhoeae and N. meningitidis. PMID:19762442

  1. Biochemical and genomic analysis of the denitrification pathway within the genus Neisseria.

    PubMed

    Barth, Kenneth R; Isabella, Vincent M; Clark, Virginia L

    2009-12-01

    Since Neisseria gonorrhoeae and Neisseria meningitidis are obligate human pathogens, a comparison with commensal species of the same genus could reveal differences important in pathogenesis. The recent completion of commensal Neisseria genome draft assemblies allowed us to perform a comparison of the genes involved in the catalysis, assembly and regulation of the denitrification pathway, which has been implicated in the virulence of several bacteria. All species contained a highly conserved nitric oxide reductase (NorB) and a nitrite reductase (AniA or NirK) that was highly conserved in the catalytic but divergent in the N-terminal lipid modification and C-terminal glycosylation domains. Only Neisseria mucosa contained a nitrate reductase (Nar), and only Neisseria lactamica, Neisseria cinerea, Neisseria subflava, Neisseria flavescens and Neisseria sicca contained a nitrous oxide reductase (Nos) complex. The regulators of the denitrification genes, FNR, NarQP and NsrR, were highly conserved, except for the GAF domain of NarQ. Biochemical examination of laboratory strains revealed that all of the neisserial species tested except N. mucosa had a two- to fourfold lower nitrite reductase activity than N. gonorrhoeae, while N. meningitidis and most of the commensal Neisseria species had a two- to fourfold higher nitric oxide (NO) reductase activity. For N. meningitidis and most of the commensal Neisseria, there was a greater than fourfold reduction in the NO steady-state level in the presence of nitrite as compared with N. gonorrhoeae. All of the species tested generated an NO steady-state level in the presence of an NO donor that was similar to that of N. gonorrhoeae. The greatest difference between the Neisseria species was the lack of a functional Nos system in the pathogenic species N. gonorrhoeae and N. meningitidis.

  2. Particulate organic matter quality influences nitrate retention and denitrification in stream sediments: evidence from a carbon burial experiment

    USGS Publications Warehouse

    Stelzer, Robert S.; Scott, J. Thad; Bartsch, Lynn; Parr, Thomas B.

    2014-01-01

    Organic carbon supply is linked to nitrogen transformation in ecosystems. However, the role of organic carbon quality in nitrogen processing is not as well understood. We determined how the quality of particulate organic carbon (POC) influenced nitrogen transformation in stream sediments by burying identical quantities of varying quality POC (northern red oak (Quercus rubra) leaves, red maple (Acer rubrum) leaves, red maple wood) in stream mesocosms and measuring the effects on nitrogen retention and denitrification compared to a control of combusted sand. We also determined how POC quality affected the quantity and quality of dissolved organic carbon (DOC) and dissolved oxygen concentration in groundwater. Nitrate and total dissolved nitrogen (TDN) retention were assessed by comparing solute concentrations and fluxes along groundwater flow paths in the mesocosms. Denitrification was measured by in situ changes in N2 concentrations (using MIMS) and by acetylene block incubations. POC quality was measured by C:N and lignin:N ratios and DOC quality was assessed by fluorescence excitation emission matrix spectroscopy. POC quality had strong effects on nitrogen processing. Leaf treatments had much higher nitrate retention, TDN retention and denitrification rates than the wood and control treatments and red maple leaf burial resulted in higher nitrate and TDN retention rates than burial of red oak leaves. Leaf, but not wood, burial drove pore water to severe hypoxia and leaf treatments had higher DOC production and different DOC chemical composition than the wood and control treatments. We think that POC quality affected nitrogen processing in the sediments by influencing the quantity and quality of DOC and redox conditions. Our results suggest that the type of organic carbon inputs can affect the rates of nitrogen transformation in stream ecosystems.

  3. Multi-scale measurements and modeling of denitrification in streams with varying flow and nitrate concentration in the upper Mississippi River basin, USA

    USGS Publications Warehouse

    Böhlke, J.K.; Antweiler, R.C.; Harvey, J.W.; Laursen, A.E.; Smith, L.K.; Smith, R.L.; Voytek, M.A.

    2009-01-01

    - concentration. Hypothetical models based on our results illustrate: (1) U denit was inversely related to denitrification rate constant (k1denit, in day-1) and vertical transfer velocity (vf,denit, in m day-1) at seasonal and possibly event time scales; (2) although k1denit was relatively large at low flow (low NO3-), its impact on annual loads was relatively small because higher concentrations and loads at high flow were not fully compensated by increases in Udenit; and (3) although NO3- assimilation and denitrification were linked through production of organic reactants, rates of NO3- loss by these processes may have been partially decoupled by changes in flow and sediment transport. Whereas k1denit and vf,denit are linked implicitly with stream depth, NO3- concentration, and(or) NO3- load, estimates of Udenit may be related more directly to field factors (including NO3- concentration) affecting denitrification rates in benthic sediments. Regional regressions and simulations of benthic denitrification in stream networks might be improved by including a non-linear relation between Udenit and stream NO3- concentration and accounting for temporal variation. ?? 2009 The Author(s).

  4. Multi-scale measurements and modeling of denitrification in streams with varying flow and nitrate concentration in the upper Mississippi River basin, USA

    USGS Publications Warehouse

    Bohlke, Johnkarl F.; Antweiler, Ronald C.; Harvey, Judson W.; Smith, Richard L.; Voytek, Mary A.; Laursen, A.; Smith, L.K.

    2009-01-01

    in NO3 - concentration. Hypothetical models based on our results illustrate: (1) U denit was inversely related to denitrification rate constant (k1denit, in day-1) and vertical transfer velocity (v f,denit, in m day-1) at seasonal and possibly event time scales; (2) although k1denit was relatively large at low flow (low NO3 -), its impact on annual loads was relatively small because higher concentrations and loads at high flow were not fully compensated by increases in U denit; and (3) although NO3 - assimilation and denitrification were linked through production of organic reactants, rates of NO3 - loss by these processes may have been partially decoupled by changes in flow and sediment transport. Whereas k1denit and v f,denit are linked implicitly with stream depth, NO3 - concentration, and(or) NO3 - load, estimates of U denit may be related more directly to field factors (including NO3 - concentration) affecting denitrification rates in benthic sediments. Regional regressions and simulations of benthic denitrification in stream networks might be improved by including a non-linear relation between U denit and stream NO3 - concentration and accounting for temporal variation.

  5. A comparative study of six data sources' ability for estimating interstate motor carrier VMT (vehicle miles of travel)

    SciTech Connect

    Hu, P.S.; Wright, T.; Miaou, Shaw-Pin.

    1989-01-01

    Several Federal Government agencies require estimates of vehicle miles of travel (VMT) by interstate commercial trucks. These estimates are essential in determining accident exposure and accident rates for these trucks, and in determining highway investment needs and the allocation of highway costs. VMT estimates are currently based on various nationwide transportation surveys and/or data sources using various estimation procedures do not provide consistent estimates. A summary of evaluation results of these data sources and estimation procedures is presented in this paper. 4 refs., 1 tab.

  6. Denitrification as a Source of NO Emissions using Isotope Techniques

    NASA Astrophysics Data System (ADS)

    Cardenas, Laura; Loick, Nadine; Abalos, Diego; Dixon, Liz; Vallejo, Antonio; Watson, Catherine; McGeough, Karen; Well, Reinhard; Matthews, Peter

    2015-04-01

    Agricultural soils are a major source of nitric- (NO) and nitrous oxide (N2O) which are produced and consumed by biotic and abiotic soil processes. The dominant sources of NO and N2O are microbial nitrification and denitrification. Depending on the environmental conditions such as substrate availability, pH and water filled pore space (WFPS) N2O emissions have been attributed to both processes, whereas NO emissions are thought to predominantly derive from nitrification. This is due to the fact that the environmental factors which promote denitrifying conditions also restrict gaseous diffusivity causing consumption of the highly reactive NO. Recent findings however challenge this assumption indicating that denitrification can be a significant source of NO. Attributing gaseous emissions to specific soil processes is still difficult; however, advanced isotopic methods show great potential. Labelling methods rely on the use of 15N enriched substrates, whereas isotopomer analyses rely on differences in the utilisation of heavy vs light N and O isotopes at natural abundance. The present study analysed the effect of different enrichment levels on gaseous emissions using the gas-flow-soil-core technique (Cardenas et al 2003). This system provides continuous measurements of NO, N2O as well as N2 fluxes by exchanging the normal atmosphere with a mixture of He:O2 (80:20). This was combined with 15N labelled isotopic techniques and isotopomer measurements to determine the source and processes responsible for the measured N-emissions. Nutrient solutions were applied containing KNO3 with 15N at natural abundance, 5 atom% and 20 atom% enrichment at a rate of 75 kg N ha-1 together with glucose at a rate of 400 kg C ha-1. Results showed that at the higher level of enrichment gaseous emissions were affected by showing an increase in emissions of NO and N2O. Additionally, under denitrifying conditions (high WFPS and NO3- availability) denitrification played a key role in NO emissions

  7. Nitrification and denitrification in a midwestern stream containing high nitrate: In situ assessment using tracers in dome-shaped incubation chambers

    USGS Publications Warehouse

    Smith, R.L.; Böhlke, J.K.; Repert, D.A.; Hart, C.P.

    2009-01-01

    The extent to which in-stream processes alter or remove nutrient loads in agriculturally impacted streams is critically important to watershed function and the delivery of those loads to coastal waters. In this study, patch-scale rates of in-stream benthic processes were determined using large volume, open-bottom benthic incubation chambers in a nitrate-rich, first to third order stream draining an area dominated by tile-drained row-crop fields. The chambers were fitted with sampling/mixing ports, a volume compensation bladder, and porewater samplers. Incubations were conducted with added tracers (NaBr and either 15N[NO3-], 15N[NO2-], or 15N[NH4+]) for 24-44 h intervals and reaction rates were determined from changes in concentrations and isotopic compositions of nitrate, nitrite, ammonium and nitrogen gas. Overall, nitrate loss rates (220-3,560 ??mol N m-2 h-1) greatly exceeded corresponding denitrification rates (34-212 ??mol N m-2 h-1) and both of these rates were correlated with nitrate concentrations (90-1,330 ??M), which could be readily manipulated with addition experiments. Chamber estimates closely matched whole-stream rates of denitrification and nitrate loss using 15N. Chamber incubations with acetylene indicated that coupled nitrification/denitrification was not a major source of N2 production at ambient nitrate concentrations (175 ??M), but acetylene was not effective for assessing denitrification at higher nitrate concentrations (1,330 ??M). Ammonium uptake rates greatly exceeded nitrification rates, which were relatively low even with added ammonium (3.5 ??mol N m-2 h-1), though incubations with nitrite demonstrated that oxidation to nitrate exceeded reduction to nitrogen gas in the surface sediments by fivefold to tenfold. The chamber results confirmed earlier studies that denitrification was a substantial nitrate sink in this stream, but they also indicated that dissolved inorganic nitrogen (DIN) turnover rates greatly exceeded the rates of

  8. Denitrification of soil nitrogen in coastal and inland salt marshes with different flooding frequencies

    NASA Astrophysics Data System (ADS)

    Bai, Junhong; Wang, Xin; Jia, Jia; Zhang, Guangliang; Wang, Yuying; Zhang, Shuai

    2017-02-01

    Denitrification is an important process for removing nitrogen in wetlands, and it is influenced by many environmental factors. However, little information is available on the relationship between hydrologic conditions and denitrification. In this study three typical sampling sites with different flooding frequencies, including short-term flooding wetlands (STFW), seasonal-flooding wetlands (SFW) and tidal flooding wetlands (TFW) were chosen as the study sites in the Yellow River Delta. In contrast, five typical sampling sites with different flooding frequencies, including 100-year floodplain (H), 10-year floodplain (T), 5-year floodplain (F), 1-year floodplain (O) and permanently flooded floodplain (B) were chosen as the study sites in Xianghai wetlands. This study reflected that the denitrification rates decreased with depth along soil profiles in both inland and coastal salt marsh soils. Flooding periods, soil depth and their interaction showed significant effects on the denitrification processes. Generally, higher flooding frequencies will cause higher denitrification rates in salt marshes. Moreover, the denitrification rates were significantly positively correlated with soil moisture content in both wetlands. Additionally, the denitrification rates were significantly positively correlated with organic matter and NO3-_N content while negatively correlated with soil pH and salinity in inland salt marshes. Therefore, the changes in soil properties (e.g. SOM, TN, pH and salinity) can become an important way to control NO3- levels in inland salt marshes.

  9. Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification.

    PubMed

    Pan, Yuting; Ni, Bing-Jie; Yuan, Zhiguo

    2013-10-01

    Competition for electrons among different steps of denitrification has previously been shown to occur, and to play an important role in the accumulation and emission of N2O in wastewater treatment. However, this electron competition is not recognized in the current denitrification models, limiting their ability to predict N2O accumulation during denitrification. In this work, a new denitrification model is developed for wastewater treatment processes. It describes electron competition among the four steps of denitrification, through modeling the carbon oxidation and nitrogen reduction processes separately, in contrast to the existing models that directly couple these two types of processes. Electron carriers are introduced to link carbon oxidation, which donates electrons to carriers, and nitrogen oxides reduction, which receives electrons from these carriers. The relative ability of each denitrification step to compete for electrons is modeled through the use of different affinity constants with reduced carriers. Model calibration and validation results demonstrate that the developed model is able to reasonably describe the nitrate, nitrite, and N2O reduction rates of a methanol-utilizing denitrifying culture under various carbon and nitrogen oxides supplying conditions. The model proposed, while subject to further validation, is expected to enhance our ability to predict N2O accumulation in denitrification.

  10. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    SciTech Connect

    Mainardi, Enrico; Donahue, Richard J.; Blakely, Eleanor A.

    2002-09-11

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions of a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior.

  11. Denitrification as the dominant nitrogen loss process in the Arabian Sea.

    PubMed

    Ward, B B; Devol, A H; Rich, J J; Chang, B X; Bulow, S E; Naik, Hema; Pratihary, Anil; Jayakumar, A

    2009-09-03

    Primary production in over half of the world's oceans is limited by fixed nitrogen availability. The main loss term from the fixed nitrogen inventory is the production of dinitrogen gas (N(2)) by heterotrophic denitrification or the more recently discovered autotrophic process, anaerobic ammonia oxidation (anammox). Oceanic oxygen minimum zones (OMZ) are responsible for about 35% of oceanic N(2) production and up to half of that occurs in the Arabian Sea. Although denitrification was long thought to be the only loss term, it has recently been argued that anammox alone is responsible for fixed nitrogen loss in the OMZs. Here we measure denitrification and anammox rates and quantify the abundance of denitrifying and anammox bacteria in the OMZ regions of the Eastern Tropical South Pacific and the Arabian Sea. We find that denitrification rather than anammox dominates the N(2) loss term in the Arabian Sea, the largest and most intense OMZ in the world ocean. In seven of eight experiments in the Arabian Sea denitrification is responsible for 87-99% of the total N(2) production. The dominance of denitrification is reproducible using two independent isotope incubation methods. In contrast, anammox is dominant in the Eastern Tropical South Pacific OMZ, as detected using one of the isotope incubation methods, as previously reported. The abundance of denitrifying bacteria always exceeded that of anammox bacteria by up to 7- and 19-fold in the Eastern Tropical South Pacific and Arabian Sea, respectively. Geographic and temporal variability in carbon supply may be responsible for the different contributions of denitrification and anammox in these two OMZs. The large contribution of denitrification to N(2) loss in the Arabian Sea indicates the global significance of denitrification to the oceanic nitrogen budget.

  12. Biological nitrate removal from water and wastewater by solid-phase denitrification process.

    PubMed

    Wang, Jianlong; Chu, Libing

    2016-11-01

    Nitrate pollution in receiving waters has become a serious issue worldwide. Solid-phase denitrification process is an emerging technology, which has received increasing attention in recent years. It uses biodegradable polymers as both the carbon source and biofilm carrier for denitrifying microorganisms. A vast array of natural and synthetic biopolymers, including woodchips, sawdust, straw, cotton, maize cobs, seaweed, bark, polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS) and polylactic acid (PLA), have been widely used for denitrification due to their good performance, low cost and large available quantities. This paper presents an overview on the application of solid-phase denitrification in nitrate removal from drinking water, groundwater, aquaculture wastewater, the secondary effluent and wastewater with low C/N ratio. The types of solid carbon source, the influencing factors, the microbial community of biofilm attached on the biodegradable carriers, the potential adverse effect, and the cost of denitrification process are introduced and evaluated. Woodchips and polycaprolactone are the popular and competitive natural plant-like and synthetic biodegradable polymers used for denitrification, respectively. Most of the denitrifiers reported in solid-phase denitrification affiliated to the family Comamonadaceae in the class Betaproteobacteria. The members of genera Diaphorobacter, Acidovorax and Simplicispira were mostly reported. In future study, more attention should be paid to the simultaneous removal of nitrate and toxic organic contaminants such as pesticide and PPCPs by solid-phase denitrification, to the elucidation of the metabolic and regulatory relationship between decomposition of solid carbon source and denitrification, and to the post-treatment of the municipal secondary effluent. Solid-phase denitrification process is a promising technology for the removal of nitrate from water and wastewater.

  13. Comparing forward and inverse models to estimate the seasonal variation of hemisphere-integrated fluxes of carbonyl sulfide

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.; Kuhn, U.; von Hobe, M.; Kesselmeier, J.; Liss, P. S.; Andreae, M. O.

    2002-06-01

    A simple inverse model is proposed to deduce hemisphere-integrated COS flux based on published time series of total column COS. The global atmosphere is divided into two boxes representing the Northern and Southern Hemispheres, and the total column COS data from several stations are used to deduce hemispheric COS loadings. The integrated flux within each hemisphere is calculated as a linear combination of a steady-state solution and time-varying perturbation. The nature of the time-varying perturbation is deduced using two different approaches: an analytic solution based on a cosine function that was fitted to the original total column COS measurement time series and a Simplex optimization with no underlying assumption about the functional form of the total column time series. The results suggest that there is a steady-state COS flux from the Northern to the Southern Hemisphere. There is a seasonal variation superimposed on this flux that in the Southern Hemisphere has a maximum rate of COS input into the atmosphere around January and a maximum rate of COS removal from the atmosphere around August--September. In the Northern Hemisphere, the maximum rate of COS input into the atmosphere is around May--June, and the maximum rate of COS removal is either August or January, depending on which station in the Northern Hemisphere is considered. The results of the inverse model are compared with the outcome of a forward approach on the temporal and spatial variation of the dominant global sources and sinks published earlier. In general, the deduced hemisphere-integrated flux estimates showed good agreement with the database estimates, though it remains uncertain whether COS removal from the atmosphere in the Northern Hemisphere is dominated by plant and soil uptake in the boreal summer or by oceanic uptake in boreal winter.

  14. Comparing forward and inverse models to estimate the seasonal variation of hemisphere-integrated fluxes of carbonyl sulfide

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.; Kuhn, U.; von Hobe, M.; Kesselmeier, J.; Liss, P. S.; Andreae, M. O.

    2002-11-01

    A simple inverse model is proposed to deduce hemisphere-integrated COS flux based on published time series of total column COS. The global atmosphere is divided into two boxes representing the Northern and Southern Hemispheres, and the total column COS data from several stations are used to calculate hemispheric COS loadings. The integrated flux within each hemisphere is calculated as a linear combination of a steady-state solution and time-varying perturbation. The nature of the time-varying perturbation is deduced using two different approaches: an analytic solution based on a cosine function that was fitted to the original total column COS measurement time series and a Simplex optimization with no underlying assumption about the functional form of the total column time series. The results suggest that there is a steady-state COS flux from the Northern to the Southern Hemisphere. There is a seasonal variation superimposed on this flux that in the Southern Hemisphere has a maximum rate of COS input into the atmosphere around January and a maximum rate of COS removal from the atmosphere around August--September. In the Northern Hemisphere, the maximum rate of COS input into the atmosphere is around May--June, and the maximum rate of COS removal is either August or January, depending on which station in the Northern Hemisphere is considered. The results of the inverse model are compared with the outcome of a forward approach on the temporal and spatial variation of the dominant global sources and sinks published earlier. In general, the deduced hemisphere-integrated flux estimates showed good agreement with the database estimates, though it remains uncertain whether COS removal from the atmosphere in the Northern Hemisphere is dominated by plant and soil uptake in the boreal summer or by oceanic uptake in boreal winter.

  15. Denitrification capacity and greenhouse gas emissions of soils in channelized and restored reaches along an Alpine river corridor

    NASA Astrophysics Data System (ADS)

    Shrestha, Juna; Niklaus, Pascal; Samaritani, Emanuela; Frossard, Emmanuel; Tockner, Klement; Luster, Jörg

    2010-05-01

    In order to assess the effects of river restoration on water and air quality, the biogeochemical functions of channelized and restored river reaches have to be quantified. The objective of this study was to compare denitrification potential and greenhouse gas emissions of functional processing zones (FPZ) in a channelized and a recently restored reach of the alpine river Thur in north-eastern Switzerland. The study was part of the project cluster RECORD of the ETH domain, Switzerland, which was initiated to increase the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The denitrification potential represents an important aspect of the soil filter function related to water quality. Besides, it also contributes to the emission of greenhouse gases. Extensively used pasture growing on a sandy loam is the characteristic FPZ of the channelized section. The restored section encompasses five FPZ: (i) bare gravel bars sparsely colonized by plants, (ii) gravel bars densely colonized by grass (mainly canary reed grass with up to 80 cm sandy deposits), (iii) mixed forest dominated by ash and maple, (iv) riparian forest dominated by willow (Salix alba), (v) older overbank sediments stabilized during restoration with young willows separating the forests from the river-gravel bar system (willow bush). The FPZ were sampled in January, April, August and October 2009. In addition, in June and July 2009 two flood events were monitored in the restored section with more frequent samplings. At each date, topsoil samples were collected in each FPZ (four replicates per samples) and analyzed for denitrifier enzyme activity (DEA). In addition, gas samples were taken in-situ using the closed chamber technique to measure soil respiration as well as N2O and CH4 fluxes. In all FPZ, the denitrification potential was mainly governed by soil moisture. It was highest in the willow forest exhibiting low spatial variability. The DEA in pasture, grass zone

  16. Denitrification kinetics in anoxic/aerobic activated sludge systems

    SciTech Connect

    Horne, G.M.

    1998-12-11

    Nitrogen removal needs at municipal wastewater treatment plants (WWTPs) have increased due to greater concerns about eutrophication and increased interest in reuse of treated municipal effluents. Biological processes are the most cost-effective method for nitrogen removal. Biological nitrogen removal is accomplished in two distinctly different processes by the conversion of nitrogen in the wastewater from organic nitrogen and ammonia to nitrate, followed by reduction of the nitrate to nitrogen gas. Nitrate production occurs in an aerobic activated sludge treatment zone during a process called nitrification. The nitrate is then converted through a series of intermediate steps to nitrogen gas in an anoxic zone (an anaerobic condition with nitrate present) during a process called denitrification, effectively removing the nitrogen from the wastewater. Many different WWTP designs have been developed to incorporate these two conditions for nitrogen removal.

  17. Eddies reduce denitrification and compress habitats in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Lachkar, Zouhair; Smith, Shafer; Lévy, Marina; Pauluis, Olivier

    2016-09-01

    The combination of high biological production and weak oceanic ventilation in regions, such as the northern Indian Ocean and the eastern Pacific and Atlantic, cause large-scale oxygen minimum zones (OMZs) that profoundly affect marine habitats and alter key biogeochemical cycles. Here we investigate the effects of eddies on the Arabian Sea OMZ—the world's thickest—using a suite of regional model simulations with increasing horizontal resolution. We find that isopycnal eddy transport of oxygen to the OMZ region limits the extent of suboxia so reducing denitrification, increasing the supply of nitrate to the surface, and thereby enhancing biological production. That same enhanced production generates more organic matter in the water column, amplifying oxygen consumption below the euphotic zone, thus increasing the extent of hypoxia. Eddy-driven ventilation likely plays a similar role in other low-oxygen regions and thus may be crucial in shaping marine habitats and modulating the large-scale marine nitrogen cycle.

  18. Anaerobic Metabolism in Haloferax Genus: Denitrification as Case of Study.

    PubMed

    Torregrosa-Crespo, J; Martínez-Espinosa, R M; Esclapez, J; Bautista, V; Pire, C; Camacho, M; Richardson, D J; Bonete, M J

    2016-01-01

    A number of species of Haloferax genus (halophilic archaea) are able to grow microaerobically or even anaerobically using different alternative electron acceptors such as fumarate, nitrate, chlorate, dimethyl sulphoxide, sulphide and/or trimethylamine. This metabolic capability is also shown by other species of the Halobacteriaceae and Haloferacaceae families (Archaea domain) and it has been mainly tested by physiological studies where cell growth is observed under anaerobic conditions in the presence of the mentioned compounds. This work summarises the main reported features on anaerobic metabolism in the Haloferax, one of the better described haloarchaeal genus with significant potential uses in biotechnology and bioremediation. Special attention has been paid to denitrification, also called nitrate respiration. This pathway has been studied so far from Haloferax mediterranei and Haloferax denitrificans mainly from biochemical point of view (purification and characterisation of the enzymes catalysing the two first reactions). However, gene expression and gene regulation is far from known at the time of writing this chapter.

  19. Combined nitrification/denitrification in a membrane reactor.

    PubMed

    Walter, B; Haase, C; Räbiger, N

    2005-08-01

    An ever stricter legislation regulating wastewater leads to an increasing demand for biological treatment plants which are able to selectively eliminate nitrogen from wastewaters with a high influent concentration, even when operating in partial influent mode. A membrane-tube-module (MSM) reactor (Membran-Schlauch-Modul-Reaktor) was constructed and realized in the IUV at the University of Bremen. The present approach makes use of all the various layers of the whole biofilm, enabling nitrification and denitrification processes to run simultaneously in one and the same biofilm under optimized conditions. The biological degradation capacity of the system was first successfully tested with synthetic wastewater, and subsequently in a real application with effluents from a recycling of animal carcasses plant and from a coke-oven plant. A mathematical model was devised which describes this biofilm system. The resulting equations were solved by means of the simulation software AQUASIM.

  20. Soil pH management by calcareous and siliceous minerals: effect on N2O yield in nitrification and denitrification

    NASA Astrophysics Data System (ADS)

    Nadeem, Shahid; Bakken, Lars; Dörsch, Peter

    2016-04-01

    Amelioration of soil pH by liming is necessary and common practice in vast areas of crop production. It is well known that pH is one of the most pervasive factors controlling rates and product stoichiometries in microbially mediated N transformations, including N2O emissions. While liming of acid soils appears to increase N2O reductase activity in denitrification (resulting in less N2O relative to N2), sudden pH raise may boost nitrification and hence N2O emission from ammonia oxidation. Thus, the net effect of liming on N2O emissions is not straightforward, which probably explains why soil pH management has not been embraced as a strategy for mitigating N2O emissions so far. Here we report laboratory incubations in which we determined potential rates and N2O yields in soils from an ongoing field experiment, comparing traditional calcareous limes (calcite, dolomite) with mafic minerals (olivine, different types of plagioclase). The experiment is in its second year, and shows strong pH increase (0.7-1.5, units) in plots with calcareous limes, a weak pH increase (~ 0.2 unit) in the olivine treatment and no measurable pH increase with the plagioclases. Potential nitrification rates correlated positively with effective soil pH as did the N2O yield, measured as N2O accumulation rate over NO2- + NO3- accumulation rate. The N2O yield increased in the order, control < plagioclase < olivine < dolomite < calcite and was significant for calcite and dolomite treated soils. Overall, the N2O yield from nitrification was quite low (0.09 - 0.17%). Potential denitrifications rates showed little response to pH increase (no C source added) but significantly lower N2O product ratios (N2O/(N2O + N2) with increasing pH in the order, calcite < dolomite < olivine < plagioclase < control. Given the overall low N2O yield of nitrification as compared to that of denitrification (10 - 100%), the observed increases in N2O yields of nitrification are unlikely to override a significant reduction

  1. Denitrification constitutes an import N sink in subtropical N-saturated forests - a nitrate dual isotope study

    NASA Astrophysics Data System (ADS)

    Yu, Lonfei; Zhu, Jing; Mulder, Jan; Dörsch, Peter

    2016-04-01

    Forests in China receive variable but increasing amounts of nitrogen from the atmosphere causing N saturation and nitrate runoff. Surprisingly high N-retention has been reported from subtropical forests, suggesting active mechanisms of N removal. Here we report a multi-site study of 15N and 18O abundances in soil nitrate (NO3-) across seven forested catchments spanning from temperate to subtropical China. In each catchment, samples were taken on one date during one or two summer along the hydrological continuum comprising hillslope positions and riparian zones. We had found previously in an intensive multi-year study at one of the sites, that the spatial pattern of summertime 15N and 18O in soil nitrate was remarkably stable across climatically distinct years, suggesting persistent N removal by denitrification at the foot of hill slopes and in groundwater discharge zones (Yu et al., submitted). In the present study, we extended the scope to five subtropical Chinese catchments and compared them with two temperate forests. Our data confirm the general pattern of efficient nitrification on hillslopes and strong denitrification in riparian zones in the subtropical catchments but not in the temperate ones. This is likely because high summer rainfalls at the monsoonal sites connect N mineralization and oxidation in upland positions with NO3- reduction in ground water discharge zones via NO3- runoff, rendering subtropical forests an efficient sink for reactive N with implications for regional N budgets. The impact of N deposition level, hydrology and edaphic factors on the predictive power of nitrate isotope signatures for N removal processes will be discussed. Yu L, Zhu J, Mulder J, Dörsch P: Spatiotemporal patterns in dual nitrate isotopes reveal efficient N transformation and denitrification along a hydrological continuum in N-saturated, subtropical forest. Submitted

  2. Characterizing Denitrification Hot Spots and Hot Moments to Improve Understanding in a Mass Balance Approach to the Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Morris, C. K.; Barclay, J. R.; Anderson, T. R.; Walter, M. T.

    2013-12-01

    Several transformation processes of the nitrogen cycle control the availability of this primary nutrient to living organisms. Understanding the multiple processes that take place in the vadose zone is critical to developing management strategies, predicting air and aquatic impacts, and maximizing functionality of landscapes. The mass balance approach to studying the nitrogen cycle is useful in quantifying rates of these processes. In combination with field measurements, hypotheses about the rates of difficult-to-measure processes such as denitrification (DN), can be tested. In this study we extend the mass balance approach to investigate the significance of DN hot spots and hot moments on aggregate DN. Often in nitrogen balance approaches, DN is treated as the residual difference of the outputs and inputs derived from field measurements and farm management records. However, this provides little information about when and where DN occurs and assumes the remainder nitrogen is associated with this process. In this project we compare two methods of calculating DN as part of a farm nitrogen balance study. Method one uses an empirical relationship derived from in-situ DN measurements related to a soil topographic index. Method two characterizes the process with a model that tracks temperature, carbon availability, and soil moisture and is calibrated with in-situ DN measurements. When the nitrogen output by DN was calculated, both methods were successful in coming closer to closing the farm nitrogen balance. Results from method one identify annual hot spots of denitrification, while method two improves characterization of the daily hot moments of denitrification.

  3. Microbial degradation of acenapthene and napthalene under denitrification conditions in soil--water systems: Annual report, October 1987

    SciTech Connect

    Mihelcic, J.R.; Luthy, R.G.

    1987-10-01

    This study examined the microbial degradation of acenaphthene and naphthalene under denitrification conditions at soil-to-water ratios of 1:25 and 1:50 with soil containing approximately 10/sup 5/ denitrifying organisms per gram of soil. Under nitrate-excess conditions, both acenaphthene and naphthalene were degraded microbially from initial aqueous-phase concentrations of about one and several mg/l, respectively, to nondetectable levels (<0.01 mg/l) in time periods less than 9 weeks. Acclimation periods of 12 to 36 days were observed prior to the onset of microbial degradation in tests with soil not previously exposed to PAH, while acclimation periods were absent in tests with soil reserved from prior PAH degradation tests. It was judged that the apparent acclimation period resulted from the time for a small population of organisms capable of PAH degradation to attain sufficient densities to exhibit detectable PAH reduction. About 0.9 percent of the naturally occurring soil organic carbon could be mineralized under denitrification conditions, and this accounted for the greater proportion of the nitrate depletion. The mineralization of the labile fraction of the soil organic carbon via microbial denitrification occurred without an observed acclimation period, and was rapid compared to PAH degradation. Under nitrate-limiting conditions the PAH compounds were stable owing to the depletion of nitrate via the more rapid process of soil organic carbon mineralization. The microbial degradation of the PAH compound depends on the interrelationships between: the desorption kinetics and the reversibility of desorption of sorbed compound from the soil, the concentration of PAH-degrading microorganisms, and the competing reaction for nitrate utilization via mineralization of the labile fraction of naturally occurring soil organic carbon. 44 refs., 10 figs.

  4. Chronic kidney disease and obesity bias surrogate estimates of insulin sensitivity compared with the hyperinsulinemic euglycemic clamp.

    PubMed

    Ahmad, Iram; Zelnick, Leila R; Robinson, Nicole R; Hung, Adriana M; Kestenbaum, Bryan; Utzschneider, Kristina M; Kahn, Steven E; de Boer, Ian H

    2017-03-01

    Insulin sensitivity can be measured by procedures such as the hyperinsulinemic euglycemic clamp or by using surrogate indices. Chronic kidney disease (CKD) and obesity may differentially affect these measurements because of changes in insulin kinetics and organ-specific effects on insulin sensitivity. In a cross-sectional study of 59 subjects with nondiabetic CKD [estimated glomerular filtration rate: (GFR) <60 ml·min(-1)·1.73 m(2)] and 39 matched healthy controls, we quantified insulin sensitivity by clamp (SIclamp), oral glucose tolerance test, and fasting glucose and insulin. We compared surrogate insulin sensitivity indices to SIclamp using descriptive statistics, graphical analyses, correlation coefficients, and linear regression. Mean age was 62.6 yr; 48% of the participants were female, and 77% were Caucasian. Insulin sensitivity indices were 8-38% lower in participants with vs. without CKD and 13-59% lower in obese compared with nonobese participants. Correlations of surrogate indices with SIclamp did not differ significantly by CKD or obesity status. Adjusting for SIclamp in addition to demographic factors, Matsuda index was 15% lower in participants with vs. without CKD (P = 0.09) and 36% lower in participants with vs. without obesity (P = 0.0001), whereas 1/HOMA-IR was 23% lower in participants with vs. without CKD (P = 0.02) and 46% lower in participants with vs. without obesity (P < 0.0001). We conclude that CKD and obesity do not significantly alter correlations of surrogate insulin sensitivity indices with SIclamp, but they do bias surrogate measurements of insulin sensitivity toward lower