Sample records for compensating inherent linear

  1. An inherent curvature-compensated voltage reference using non-linearity of gate coupling coefficient

    NASA Astrophysics Data System (ADS)

    Hande, Vinayak; Shojaei Baghini, Maryam

    2015-08-01

    A novel current-mode voltage reference circuit which is capable of generating sub-1 V output voltage is presented. The proposed architecture exhibits the inherent curvature compensation ability. The curvature compensation is achieved by utilizing the non-linear behavior of gate coupling coefficient to compensate non-linear temperature dependence of base-emitter voltage. We have also utilized the developments in CMOS process to reduce power and area consumption. The proposed voltage reference is analyzed theoretically and compared with other existing methods. The circuit is designed and simulated in 180 nm mixed-mode CMOS UMC technology which gives a reference level of 246 mV. The minimum required supply voltage is 1 V with maximum current drawn of 9.24 μA. A temperature coefficient of 9 ppm/°C is achieved over -25 to 125 °C temperature range. The reference voltage varies by ±11 mV across process corners. The reference circuit shows the line sensitivity of 0.9 mV/V with area consumption of 100 × 110 μm2

  2. Nonlinear compensation techniques for magnetic suspension systems. Ph.D. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Trumper, David L.

    1991-01-01

    In aerospace applications, magnetic suspension systems may be required to operate over large variations in air-gap. Thus the nonlinearities inherent in most types of suspensions have a significant effect. Specifically, large variations in operating point may make it difficult to design a linear controller which gives satisfactory stability and performance over a large range of operating points. One way to address this problem is through the use of nonlinear compensation techniques such as feedback linearization. Nonlinear compensators have received limited attention in the magnetic suspension literature. In recent years, progress has been made in the theory of nonlinear control systems, and in the sub-area of feedback linearization. The idea is demonstrated of feedback linearization using a second order suspension system. In the context of the second order suspension, sampling rate issues in the implementation of feedback linearization are examined through simulation.

  3. Acceleration and torque feedback for robotic control - Experimental results

    NASA Technical Reports Server (NTRS)

    Mclnroy, John E.; Saridis, George N.

    1990-01-01

    Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.

  4. Non-linear dynamic compensation system

    NASA Technical Reports Server (NTRS)

    Lin, Yu-Hwan (Inventor); Lurie, Boris J. (Inventor)

    1992-01-01

    A non-linear dynamic compensation subsystem is added in the feedback loop of a high precision optical mirror positioning control system to smoothly alter the control system response bandwidth from a relatively wide response bandwidth optimized for speed of control system response to a bandwidth sufficiently narrow to reduce position errors resulting from the quantization noise inherent in the inductosyn used to measure mirror position. The non-linear dynamic compensation system includes a limiter for limiting the error signal within preselected limits, a compensator for modifying the limiter output to achieve the reduced bandwidth response, and an adder for combining the modified error signal with the difference between the limited and unlimited error signals. The adder output is applied to control system motor so that the system response is optimized for accuracy when the error signal is within the preselected limits, optimized for speed of response when the error signal is substantially beyond the preselected limits and smoothly varied therebetween as the error signal approaches the preselected limits.

  5. Amplitude effects on the dynamic performance of hydrostatic gas thrust bearings

    NASA Technical Reports Server (NTRS)

    Stiffler, A. K.; Tapia, R. R.

    1979-01-01

    A strip gas film bearing with inherently compensated inlets is analyzed to determine the effect of disturbance amplitude on its dynamic performance. The governing Reynolds' equation is solved using finite-difference techniques. The time dependent load capacity is represented by a Fourier series up to and including the third harmonics. For the range of amplitudes investigated the linear stiffness was independent of the amplitude, and the linear damping was inversely proportional to (1 - epsilon-squared) to the 1.5 power where epsilon is the amplitude relative to the film thickness.

  6. A comprehensive inversion approach for feedforward compensation of piezoactuator system at high frequency

    NASA Astrophysics Data System (ADS)

    Tian, Lizhi; Xiong, Zhenhua; Wu, Jianhua; Ding, Han

    2016-09-01

    Motion control of the piezoactuator system over broadband frequencies is limited due to its inherent hysteresis and system dynamics. One of the suggested ways is to use feedforward controller to linearize the input-output relationship of the piezoactuator system. Although there have been many feedforward approaches, it is still a challenge to develop feedforward controller for the piezoactuator system at high frequency. Hence, this paper presents a comprehensive inversion approach in consideration of the coupling of hysteresis and dynamics. In this work, the influence of dynamics compensation on the input-output relationship of the piezoactuator system is investigated first. With system dynamics compensation, the input-output relationship of the piezoactuator system will be further represented as rate-dependent nonlinearity due to the inevitable dynamics compensation error, especially at high frequency. Base on this result, the feedforward controller composed by a cascade of linear dynamics inversion and rate-dependent nonlinearity inversion is developed. Then, the system identification of the comprehensive inversion approach is proposed. Finally, experimental results show that the proposed approach can improve the performance on tracking of both periodic and non-periodic trajectories at medium and high frequency compared with the conventional feedforward approaches.

  7. Dynamic Nonreciprocity in Loss-Compensated Piezophononic Media

    NASA Astrophysics Data System (ADS)

    Merkel, Aurélien; Willatzen, Morten; Christensen, Johan

    2018-03-01

    Violating time-reversal symmetry enables one to engineer nonreciprocal structures for isolating and rectifying sound and mechanical vibrations. Rectifying sound is commonly achieved in nonlinear media, but the operation is inherently linked to weak and distorted signals. Here, we show how a pronounced electron-phonon coupling in linear piezophononic media under electrical bias can generate full mechanical rectification of broad spectral width, which permits the isolation of pulsed vibrations while keeping the wave-front shape fully intact. In this context, we deliberately show how the acoustoelectric effect can provide active loss compensation against lattice anharmonicity and thermoelastic damping. Further, our predictions confirm tunable nonreciprocity at an ultralarge contrast ratio, which should open the doors for future mechanical diodes and compact ultrasonic transducers for sensing and imaging.

  8. A case for inherent geometric and geodetic accuracy in remotely sensed VNIR and SWIR imaging products

    NASA Technical Reports Server (NTRS)

    Driver, J. M.

    1982-01-01

    Significant aberrations can occur in acquired images which, unless compensated on board the spacecraft, can seriously impair throughput and timeliness for typical Earth observation missions. Conceptual compensations options are advanced to enable acquisition of images with inherent geometric and geodetic accuracy. Research needs are identified which, when implemented, can provide inherently accurate images. Agressive pursuit of these research needs is recommended.

  9. The detrimental effect of friction on space microgravity robotics

    NASA Technical Reports Server (NTRS)

    Newman, Wyatt S.; Glosser, Gregory D.; Miller, Jeffrey H.; Rohn, Douglas

    1992-01-01

    The authors present an analysis of why control systems are ineffective in compensating for acceleration disturbances due to Coulomb friction. Linear arguments indicate that the effects of Coulomb friction on a body are most difficult to reject when the control actuator is separated from the body of compliance. The linear arguments were illustrated in a nonlinear simulation of optimal linear tracking control in the presence of nonlinear friction. The results of endpoint acceleration measurements for four robot designs are presented and are compared with simulation and to equivalent measurements on a human. It is concluded that Coulomb friction in common bearings and transmission induces unacceptable levels of endpoint acceleration, that these accelerations cannot be adequately attenuated by control, and that robots for microgravity work will require special design considerations for inherently low friction.

  10. A Mathematical Formulation of the SCOLE Control Problem. Part 2: Optimal Compensator Design

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1988-01-01

    The study initiated in Part 1 of this report is concluded and optimal feedback control (compensator) design for stability augmentation is considered, following the mathematical formulation developed in Part 1. Co-located (rate) sensors and (force and moment) actuators are assumed, and allowing for both sensor and actuator noise, stabilization is formulated as a stochastic regulator problem. Specializing the general theory developed by the author, a complete, closed form solution (believed to be new with this report) is obtained, taking advantage of the fact that the inherent structural damping is light. In particular, it is possible to solve in closed form the associated infinite-dimensional steady-state Riccati equations. The SCOLE model involves associated partial differential equations in a single space variable, but the compensator design theory developed is far more general since it is given in the abstract wave equation formulation. The results thus hold for any multibody system so long as the basic model is linear.

  11. Theoretical and experimental research on machine tool servo system for ultra-precision position compensation on CNC lathe

    NASA Astrophysics Data System (ADS)

    Ma, Zhichao; Hu, Leilei; Zhao, Hongwei; Wu, Boda; Peng, Zhenxing; Zhou, Xiaoqin; Zhang, Hongguo; Zhu, Shuai; Xing, Lifeng; Hu, Huang

    2010-08-01

    The theories and techniques for improving machining accuracy via position control of diamond tool's tip and raising resolution of cutting depth on precise CNC lathes have been extremely focused on. A new piezo-driven ultra-precision machine tool servo system is designed and tested to improve manufacturing accuracy of workpiece. The mathematical model of machine tool servo system is established and the finite element analysis is carried out on parallel plate flexure hinges. The output position of diamond tool's tip driven by the machine tool servo system is tested via a contact capacitive displacement sensor. Proportional, integral, derivative (PID) feedback is also implemented to accommodate and compensate dynamical change owing cutting forces as well as the inherent non-linearity factors of the piezoelectric stack during cutting process. By closed loop feedback controlling strategy, the tracking error is limited to 0.8 μm. Experimental results have shown the proposed machine tool servo system could provide a tool positioning resolution of 12 nm, which is much accurate than the inherent CNC resolution magnitude. The stepped shaft of aluminum specimen with a step increment of cutting depth of 1 μm is tested, and the obtained contour illustrates the displacement command output from controller is accurately and real-time reflected on the machined part.

  12. A Reconfiguration Scheme for Accommodating Actuator Failures in Multi-Input, Multi-Output Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Siwakosit, W.; Hess, R. A.; Bacon, Bart (Technical Monitor); Burken, John (Technical Monitor)

    2000-01-01

    A multi-input, multi-output reconfigurable flight control system design utilizing a robust controller and an adaptive filter is presented. The robust control design consists of a reduced-order, linear dynamic inversion controller with an outer-loop compensation matrix derived from Quantitative Feedback Theory (QFT). A principle feature of the scheme is placement of the adaptive filter in series with the QFT compensator thus exploiting the inherent robustness of the nominal flight control system in the presence of plant uncertainties. An example of the scheme is presented in a pilot-in-the-loop computer simulation using a simplified model of the lateral-directional dynamics of the NASA F18 High Angle of Attack Research Vehicle (HARV) that included nonlinear anti-wind up logic and actuator limitations. Prediction of handling qualities and pilot-induced oscillation tendencies in the presence of these nonlinearities is included in the example.

  13. Aircraft Pitch Control With Fixed Order LQ Compensators

    NASA Technical Reports Server (NTRS)

    Green, James; Ashokkumar, C. R.; Homaifar, Abdollah

    1997-01-01

    This paper considers a given set of fixed order compensators for aircraft pitch control problem. By augmenting compensator variables to the original state equations of the aircraft, a new dynamic model is considered to seek a LQ controller. While the fixed order compensators can achieve a set of desired poles in a specified region, LQ formulation provides the inherent robustness properties. The time response for ride quality is significantly improved with a set of dynamic compensators.

  14. Aircraft Pitch Control with Fixed Order LQ Compensators

    NASA Technical Reports Server (NTRS)

    Green, James; Ashokkumar, Cr.; Homaifar, A.

    1997-01-01

    This paper considers a given set of fixed order compensators for aircraft pitch control problem. By augmenting compensator variables to the original state equations of the aircraft, a new dynamic model is considered to seek a LQ controller. While the fixed order compensators can achieve a set of desired poles in a specified region, LQ formulation provides the inherent robustness properties. The time response for ride quality is significantly improved with a set of dynamic compensators.

  15. Experimentally determined stiffness and damping of an inherently compensated air squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1975-01-01

    Values of damping and stiffness were determined experimentally for an externally pressurized, inherently compensated, compressible squeeze-film damper up to excitation frequencies of 36,000 cycles per minute. Experimental damping values were higher than theory predicted at low squeeze numbers and less than predicted at high squeeze numbers. Experimental values of air film stiffness were less than theory predicted at low squeeze numbers and much greater at higher squeeze numbers. Results also indicate sufficient damping to attenuate amplitudes and forces at the critical speed when using three dampers in the flexible support system of a small, lightweight turborotor.

  16. Compensating the intensity fall-off effect in cone-beam tomography by an empirical weight formula.

    PubMed

    Chen, Zikuan; Calhoun, Vince D; Chang, Shengjiang

    2008-11-10

    The Feldkamp-David-Kress (FDK) algorithm is widely adopted for cone-beam reconstruction due to its one-dimensional filtered backprojection structure and parallel implementation. In a reconstruction volume, the conspicuous cone-beam artifact manifests as intensity fall-off along the longitudinal direction (the gantry rotation axis). This effect is inherent to circular cone-beam tomography due to the fact that a cone-beam dataset acquired from circular scanning fails to meet the data sufficiency condition for volume reconstruction. Upon observations of the intensity fall-off phenomenon associated with the FDK reconstruction of a ball phantom, we propose an empirical weight formula to compensate for the fall-off degradation. Specifically, a reciprocal cosine can be used to compensate the voxel values along longitudinal direction during three-dimensional backprojection reconstruction, in particular for boosting the values of voxels at positions with large cone angles. The intensity degradation within the z plane, albeit insignificant, can also be compensated by using the same weight formula through a parameter for radial distance dependence. Computer simulations and phantom experiments are presented to demonstrate the compensation effectiveness of the fall-off effect inherent in circular cone-beam tomography.

  17. Fixed order dynamic compensation for multivariable linear systems

    NASA Technical Reports Server (NTRS)

    Kramer, F. S.; Calise, A. J.

    1986-01-01

    This paper considers the design of fixed order dynamic compensators for multivariable time invariant linear systems, minimizing a linear quadratic performance cost functional. Attention is given to robustness issues in terms of multivariable frequency domain specifications. An output feedback formulation is adopted by suitably augmenting the system description to include the compensator states. Either a controller or observer canonical form is imposed on the compensator description to reduce the number of free parameters to its minimal number. The internal structure of the compensator is prespecified by assigning a set of ascending feedback invariant indices, thus forming a Brunovsky structure for the nominal compensator.

  18. Improved method to fully compensate the spatial phase nonuniformity of LCoS devices with a Fizeau interferometer.

    PubMed

    Lu, Qiang; Sheng, Lei; Zeng, Fei; Gao, Shijie; Qiao, Yanfeng

    2016-10-01

    Liquid crystal on silicon (LCoS) devices usually show spatial phase nonuniformity (SPNU) in applications of phase modulation, which comprises the phase retardance nonuniformity (PRNU) as a function of the applied voltage and inherent wavefront distortion (WFD) introduced by the device itself. We propose a multipoint calibration method utilizing a Fizeau interferometer to compensate SPNU of the device. Calibration of PRNU is realized by defining a grid of 3×6 cells onto the aperture and then calculating phase retardance of each cell versus a gradient gray pattern. With designing an adjusted gray pattern calculated by the calibrated multipoint phase retardance function, compensation of inherent WFD is achieved. The peak-to-valley (PV) value of the residual WFD compensated by the multipoint calibration method is significantly reduced from 2.5λ to 0.140λ, while the PV value of the residual WFD after global calibration is reduced to 0.364λ. Experimental results of the generated finite-energy 2D Airy beams in Fourier space demonstrate the effectiveness of this multipoint calibration method.

  19. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  20. Development of a two-dimensional skin friction balance nulling circuit using multivariable control theory

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Patek, Stephen D.

    1988-01-01

    Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.

  1. Parameterized LMI Based Diagonal Dominance Compensator Study for Polynomial Linear Parameter Varying System

    NASA Astrophysics Data System (ADS)

    Han, Xiaobao; Li, Huacong; Jia, Qiusheng

    2017-12-01

    For dynamic decoupling of polynomial linear parameter varying(PLPV) system, a robust dominance pre-compensator design method is given. The parameterized precompensator design problem is converted into an optimal problem constrained with parameterized linear matrix inequalities(PLMI) by using the conception of parameterized Lyapunov function(PLF). To solve the PLMI constrained optimal problem, the precompensator design problem is reduced into a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a new constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator is achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation on a turbofan engine PLPV model.

  2. Issues in the digital implementation of control compensators. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Moroney, P.

    1979-01-01

    Techniques developed for the finite-precision implementation of digital filters were used, adapted, and extended for digital feedback compensators, with particular emphasis on steady state, linear-quadratic-Gaussian compensators. Topics covered include: (1) the linear-quadratic-Gaussian problem; (2) compensator structures; (3) architectural issues: serialism, parallelism, and pipelining; (4) finite wordlength effects: quantization noise, quantizing the coefficients, and limit cycles; and (5) the optimization of structures.

  3. Nutating subreflector for a millimeter wave telescope

    NASA Astrophysics Data System (ADS)

    Radford, Simon J. E.; Boynton, Paul; Melchiorri, Francesco

    1990-03-01

    Nutating a Cassegrain telescope's secondary mirror is a convenient method of steering the telescope beam through a small angle. This principle has been used to construct a high-performance beam switch for a millimeter wave telescope. A low mass, graphite-epoxy laminate secondary mirror is driven by linear electric motors operated in a frequency compensated control loop. By design, the nutator exerts little net oscillating torque on the telescope structure, resulting in virtually vibration free operation. The inherent versatility of beam switching by subreflector nutation permits a variety of switching waveforms to be tested without making any hardware changes. The nutator can shift the telescope beam by 10 arcminutes, a 1.25 deg rotation of the 75-cm-diam secondary mirror, in an interval of 8 ms and it can sustain a switching frequency of 10 Hz.

  4. Mechanical design of deformation compensated flexural pivots structured for linear nanopositioning stages

    DOEpatents

    Shu, Deming; Kearney, Steven P.; Preissner, Curt A.

    2015-02-17

    A method and deformation compensated flexural pivots structured for precision linear nanopositioning stages are provided. A deformation-compensated flexural linear guiding mechanism includes a basic parallel mechanism including a U-shaped member and a pair of parallel bars linked to respective pairs of I-link bars and each of the I-bars coupled by a respective pair of flexural pivots. The basic parallel mechanism includes substantially evenly distributed flexural pivots minimizing center shift dynamic errors.

  5. NO-FAULT COMPENSATION FOR MEDICAL INJURIES: TRENDS AND CHALLENGES.

    PubMed

    Kassim, Puteri Nemie

    2014-12-01

    As an alternative to the tort or fault-based system, a no-fault compensation system has been viewed as having the potential to overcome problems inherent in the tort system by providing fair, speedy and adequate compensation for medically injured victims. Proponents of the suggested no-fault compensation system have argued that this system is more efficient in terms of time and money, as well as in making the circumstances in which compensation is paid, much clearer. However, the arguments against no-fault compensation systems are mainly on issues of funding difficulties, accountability and deterrence, particularly, once fault is taken out of the equation. Nonetheless, the no-fault compensation system has been successfully implemented in various countries but, at the same time, rejected in some others, as not being implementable. In the present trend, the no-fault system seems to fit the needs of society by offering greater access to justice for medically injured victims and providing a clearer "road map" towards obtaining suitable redress. This paper aims at providing the readers with an overview of the characteristics of the no fault compensation system and some examples of countries that have implemented it. Qualitative Research-Content Analysis. Given the many problems and hurdles posed by the tort or fault-based system, it is questionable that it can efficiently play its role as a mechanism that affords fair and adequate compensation for victims of medical injuries. However, while a comprehensive no-fault compensation system offers a tempting alternative to the tort or fault-based system, to import such a change into our local scenario requires a great deal of consideration. There are major differences, mainly in terms of social standing, size of population, political ideology and financial commitment, between Malaysia and countries that have successfully implemented no-fault systems. Nevertheless, implementing a no-fault compensation system in Malaysia is not entirely impossible. A custom-made no-fault model tailored to suit our local scenario can be promising, provided that a thorough research is made, assessing the viability of a no-fault system in Malaysia, addressing the inherent problems and, consequently, designing a workable no-fault system in Malaysia.

  6. Compensating for estimation smoothing in kriging

    USGS Publications Warehouse

    Olea, R.A.; Pawlowsky, Vera

    1996-01-01

    Smoothing is a characteristic inherent to all minimum mean-square-error spatial estimators such as kriging. Cross-validation can be used to detect and model such smoothing. Inversion of the model produces a new estimator-compensated kriging. A numerical comparison based on an exhaustive permeability sampling of a 4-fr2 slab of Berea Sandstone shows that the estimation surface generated by compensated kriging has properties intermediate between those generated by ordinary kriging and stochastic realizations resulting from simulated annealing and sequential Gaussian simulation. The frequency distribution is well reproduced by the compensated kriging surface, which also approximates the experimental semivariogram well - better than ordinary kriging, but not as well as stochastic realizations. Compensated kriging produces surfaces that are more accurate than stochastic realizations, but not as accurate as ordinary kriging. ?? 1996 International Association for Mathematical Geology.

  7. Applying crash data to injury claims - an investigation of determinant factors in severe motor vehicle accidents.

    PubMed

    Shannon, Darren; Murphy, Finbarr; Mullins, Martin; Eggert, Julian

    2018-04-01

    An extensive number of research studies have attempted to capture the factors that influence the severity of vehicle impacts. The high number of risks facing all traffic participants has led to a gradual increase in sophisticated data collection schemes linking crash characteristics to subsequent severity measures. This study serves as a departure from previous research by relating injuries suffered in road traffic accidents to expected trauma compensation payouts and deriving a quantitative cost function. Data from the National Highway Traffic Safety Administration's (NHTSA) Crash Injury Research (CIREN) database for the years 2005-2014 is combined with the Book of Quantum, an Irish governmental document that offers guidelines on the appropriate compensation to be awarded for injuries sustained in accidents. A multiple linear regression is carried out to identify the crash factors that significantly influence expected compensation costs and compared to ordered and multinomial logit models. The model offers encouraging results given the inherent variation expected in vehicular incidents and the subjectivity influencing compensation payout judgments, attaining an adjusted-R 2 fit of 20.6% when uninfluential factors are removed. It is found that relative speed at time of impact and dark conditions increase the expected costs, while rear-end incidents, incident sustained in van-based trucks and incidents sustained while turning result in lower expected compensations. The number of airbags available in the vehicle is also a significant factor. The scalar-outcome approach used in this research offers an alternative methodology to the discrete-outcome models that dominate traffic safety analyses. The results also raise queries on the future development of claims reserving (capital allocations earmarked for future expected claims payments) as advanced driver assistant systems (ADASs) seek to eradicate the most frequent types of crash factors upon which insurance mathematics base their assumptions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Adaptive Failure Compensation for Aircraft Flight Control Using Engine Differentials: Regulation

    NASA Technical Reports Server (NTRS)

    Yu, Liu; Xidong, Tang; Gang, Tao; Joshi, Suresh M.

    2005-01-01

    The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.

  9. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    PubMed

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations.

  10. Theoretical description and design of nanomaterial slab waveguides: application to compensation of optical diffraction.

    PubMed

    Kivijärvi, Ville; Nyman, Markus; Shevchenko, Andriy; Kaivola, Matti

    2018-04-02

    Planar optical waveguides made of designable spatially dispersive nanomaterials can offer new capabilities for nanophotonic components. As an example, a thin slab waveguide can be designed to compensate for optical diffraction and provide divergence-free propagation for strongly focused optical beams. Optical signals in such waveguides can be transferred in narrow channels formed by the light itself. We introduce here a theoretical method for characterization and design of nanostructured waveguides taking into account their inherent spatial dispersion and anisotropy. Using the method, we design a diffraction-compensating slab waveguide that contains only a single layer of silver nanorods. The waveguide shows low propagation loss and broadband diffraction compensation, potentially allowing transfer of optical information at a THz rate.

  11. Telomerase Mechanism of Telomere Synthesis

    PubMed Central

    Wu, R. Alex; Upton, Heather E.; Vogan, Jacob M.; Collins, Kathleen

    2017-01-01

    Telomerase is the essential reverse transcriptase required for linear chromosome maintenance in most eukaryotes. Telomerase supplements the tandem array of simple-sequence repeats at chromosome ends to compensate for the DNA erosion inherent in genome replication. The template for telomerase reverse transcriptase is within the RNA subunit of the ribonucleoprotein complex, which in cells contains additional telomerase holoenzyme proteins that assemble the active ribonucleoprotein and promote its function at telomeres. Telomerase is distinct among polymerases in its reiterative reuse of an internal template. The template is precisely defined, processively copied, and regenerated by release of single-stranded product DNA. New specificities of nucleic acid handling that underlie the catalytic cycle of repeat synthesis derive from both active site specialization and new motif elaborations in protein and RNA subunits. Studies of telomerase provide unique insights into cellular requirements for genome stability, tissue renewal, and tumorigenesis as well as new perspectives on dynamic ribonucleoprotein machines. PMID:28141967

  12. Homotopy approach to optimal, linear quadratic, fixed architecture compensation

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1991-01-01

    Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.

  13. An experimental study on digital predistortion for radio-over-fiber links

    NASA Astrophysics Data System (ADS)

    Vieira, Luis C.; Gomes, Nathan J.; Nkansah, Anthony

    2010-12-01

    Radio-over-fiber (RoF) has been proposed as an enabling technology for broadband networks, such as WiMAX and WiFi. Besides the inherent high bandwidth and reliability of RoF systems, they also allow the reduction of installation and maintenance cost of the remote antenna units (RAUs) and improvement in the coverage area of the base station/access point. However, the nonlinear distortion of the optical link, which stems mainly from the laser diode, may impose serious limitations on the system performance, especially when high PAPR, wideband signals are used. Thus, distortion compensation is a key issue in order to facilitate the application of the RoF technology for broadband networks. In this work, digital predistortion for directly modulated RoF links is experimentally investigated. A memory-polynomial- based predistorter model is identified from measurements of the baseband OFDM input-output signals and through the use of an indirect learning architecture. Then, a predistorted signal is generated and fed to the RoF link for comparing its output with that of the non-predistorted one. As a result of this compensation technique, an improvement of the static link linearity and the output constellation diagram has been found, with an EVM reduction of 1.73 %.

  14. A Subband Coding Method for HDTV

    NASA Technical Reports Server (NTRS)

    Chung, Wilson; Kossentini, Faouzi; Smith, Mark J. T.

    1995-01-01

    This paper introduces a new HDTV coder based on motion compensation, subband coding, and high order conditional entropy coding. The proposed coder exploits the temporal and spatial statistical dependencies inherent in the HDTV signal by using intra- and inter-subband conditioning for coding both the motion coordinates and the residual signal. The new framework provides an easy way to control the system complexity and performance, and inherently supports multiresolution transmission. Experimental results show that the coder outperforms MPEG-2, while still maintaining relatively low complexity.

  15. Next Generation Robots for STEM Education andResearch at Huston Tillotson University

    DTIC Science & Technology

    2017-11-10

    dynamics through the following command: roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion : After...understood the system’s natural dynamics. roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion ...is created using the following command: roslaunch mtb_lab6_feedback_linearization gravity_inversion.launch Gravity inversion is just one

  16. Compensation for subjects of medical research: the moral rights of patients and the power of research ethics committees.

    PubMed Central

    Guest, S

    1997-01-01

    Awareness of the morally significant distinction between research and innovative therapy reveals serious gaps in the legal provision for compensation in the UK for injured subjects of medical research. Major problems are limitations inherent in negligence actions and a culture that emphasises indemnifying researchers before compensating victims. Medical research morally requires compensation on a no-fault basis even where there is proper consent on the part of the research subject. In particular, for drug research, there is insufficient provision in the current patient guidelines of the Association of the British Pharmaceutical Industry, since they make "no legal commitment" to paying compensation for injury to patient subjects. There is a need for the provision of both adequate insurance and contractual arrangements for making payments. The solution is for Local Research Ethics Committees (LRECs) to make use of their power to withhold approval of medical research where compensation is not legally enforceable. PMID:9220333

  17. Power Requirements for Bi-Harmonic Amplitude and Bias Modulation Control of a Flapping Wing Micro Air Vehicle

    DTIC Science & Technology

    2013-03-01

    acquisition DC Direct current DHPC Discrete harmonic plant compensation DLMs Dorsal longitudinal muscles DOE Design of experiments DOF Degrees of...nature, would have the inherent benefit of stealth through mimicry of insects. Such a MAV is referred to as a flapping wing micro air vehicle (FWMAV...and discrete harmonic plant compensation (DHPC) to manipulate the wings of the FWMAV. A clear understanding of what research has been done in all of

  18. Polynomial compensation, inversion, and approximation of discrete time linear systems

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1987-01-01

    The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.

  19. Fast, exact k-space sample density compensation for trajectories composed of rotationally symmetric segments, and the SNR-optimized image reconstruction from non-Cartesian samples.

    PubMed

    Mitsouras, Dimitris; Mulkern, Robert V; Rybicki, Frank J

    2008-08-01

    A recently developed method for exact density compensation of non uniformly arranged samples relies on the analytically known cross-correlations of Fourier basis functions corresponding to the traced k-space trajectory. This method produces a linear system whose solution represents compensated samples that normalize the contribution of each independent element of information that can be expressed by the underlying trajectory. Unfortunately, linear system-based density compensation approaches quickly become computationally demanding with increasing number of samples (i.e., image resolution). Here, it is shown that when a trajectory is composed of rotationally symmetric interleaves, such as spiral and PROPELLER trajectories, this cross-correlations method leads to a highly simplified system of equations. Specifically, it is shown that the system matrix is circulant block-Toeplitz so that the linear system is easily block-diagonalized. The method is described and demonstrated for 32-way interleaved spiral trajectories designed for 256 image matrices; samples are compensated non iteratively in a few seconds by solving the small independent block-diagonalized linear systems in parallel. Because the method is exact and considers all the interactions between all acquired samples, up to a 10% reduction in reconstruction error concurrently with an up to 30% increase in signal to noise ratio are achieved compared to standard density compensation methods. (c) 2008 Wiley-Liss, Inc.

  20. Investigation, development, and application of optimal output feedback theory. Volume 3: The relationship between dynamic compensators and observers and Kalman filters

    NASA Technical Reports Server (NTRS)

    Broussard, John R.

    1987-01-01

    Relationships between observers, Kalman Filters and dynamic compensators using feedforward control theory are investigated. In particular, the relationship, if any, between the dynamic compensator state and linear functions of a discrete plane state are investigated. It is shown that, in steady state, a dynamic compensator driven by the plant output can be expressed as the sum of two terms. The first term is a linear combination of the plant state. The second term depends on plant and measurement noise, and the plant control. Thus, the state of the dynamic compensator can be expressed as an estimator of the first term with additive error given by the second term. Conditions under which a dynamic compensator is a Kalman filter are presented, and reduced-order optimal estimaters are investigated.

  1. Cryogenic strain gage techniques used in force balance design for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Ferris, A. T.

    1986-01-01

    A force balance is a strain gage transducer used in wind tunnels to measure the forces and moments on aerodynamic models. Techniques have been established for temperature-compensation of force balances to allow their use over the operating temperature range of a cryogenic wind tunnel (-190C to 60C) without thermal control. This was accomplished by using a patented strain gage matching process to minimize inherent thermal differences, and a thermal compensation procedure to reduce the remaining thermally-induced outputs to acceptable levels. A method of compensating for mechanical movement of the axial force measuring beam caused by thermally-induced stresses under transient temperatures was also included.

  2. Polarization Compensation of Fresnel Aberrations in Telescopes

    NASA Technical Reports Server (NTRS)

    Clark, Natalie; Breckenridge, James B.

    2011-01-01

    Large aperture space telescopes are built with low F# s to accommodate the mechanical constraints of launch vehicles and to reduce resonance frequencies of the on-orbit system. Inherent with these low F# s is Fresnel polarization which affects image quality. We present the design and modeling of a nano-structure consisting of birefringent layers to control polarization and increase contrast. Analysis shows a device that functions across a 400nm bandwidth tunable from 300nm to 1200nm. This Fresnel compensator device has a cross leakage of less than 0.001 retardance.

  3. Medicolegal Implications of Nosocomial Infections: A Case Report of Aspergillus Contamination during Cardiac Surgery.

    PubMed

    Tuchtan, Lucile; Piercecchi-Marti, Marie-Dominique; Dumon, Henri; Métras, Dominique; Léonetti, Georges; Bartoli, Christophe

    2017-05-01

    Nosocomial infections have become a major issue of public health and lead to an increasing number of suits for damages. We present a rare case of Aspergillus contamination during cardiac surgery, describe the medicolegal investigation, and present the new system for compensation of bodily injury after nosocomial infection in France, based on the law of March 4, 2002 on patient rights and quality in the health system. This case demonstrates the limits of compensation for nosocomial infections on the grounds of national solidarity. The expert report requested by the regional commission for conciliation and compensation is of fundamental importance in enabling the commission to decide between fault and inherent risk of treatment. © 2016 American Academy of Forensic Sciences.

  4. A new methodology for vibration error compensation of optical encoders.

    PubMed

    Lopez, Jesus; Artes, Mariano

    2012-01-01

    Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement can be based on different techniques trying to compensate the error from measurement signals processing. In this work a new "ad hoc" methodology is presented to compensate the error of the encoder when is working under the influence of vibration. The methodology is based on fitting techniques to the Lissajous figure of the deteriorated measurement signals and the use of a look up table, giving as a result a compensation procedure in which a higher accuracy of the sensor is obtained.

  5. Odometry and Laser Scanner Fusion Based on a Discrete Extended Kalman Filter for Robotic Platooning Guidance

    PubMed Central

    Espinosa, Felipe; Santos, Carlos; Marrón-Romera, Marta; Pizarro, Daniel; Valdés, Fernando; Dongil, Javier

    2011-01-01

    This paper describes a relative localization system used to achieve the navigation of a convoy of robotic units in indoor environments. This positioning system is carried out fusing two sensorial sources: (a) an odometric system and (b) a laser scanner together with artificial landmarks located on top of the units. The laser source allows one to compensate the cumulative error inherent to dead-reckoning; whereas the odometry source provides less pose uncertainty in short trajectories. A discrete Extended Kalman Filter, customized for this application, is used in order to accomplish this aim under real time constraints. Different experimental results with a convoy of Pioneer P3-DX units tracking non-linear trajectories are shown. The paper shows that a simple setup based on low cost laser range systems and robot built-in odometry sensors is able to give a high degree of robustness and accuracy to the relative localization problem of convoy units for indoor applications. PMID:22164079

  6. Odometry and laser scanner fusion based on a discrete extended Kalman Filter for robotic platooning guidance.

    PubMed

    Espinosa, Felipe; Santos, Carlos; Marrón-Romera, Marta; Pizarro, Daniel; Valdés, Fernando; Dongil, Javier

    2011-01-01

    This paper describes a relative localization system used to achieve the navigation of a convoy of robotic units in indoor environments. This positioning system is carried out fusing two sensorial sources: (a) an odometric system and (b) a laser scanner together with artificial landmarks located on top of the units. The laser source allows one to compensate the cumulative error inherent to dead-reckoning; whereas the odometry source provides less pose uncertainty in short trajectories. A discrete Extended Kalman Filter, customized for this application, is used in order to accomplish this aim under real time constraints. Different experimental results with a convoy of Pioneer P3-DX units tracking non-linear trajectories are shown. The paper shows that a simple setup based on low cost laser range systems and robot built-in odometry sensors is able to give a high degree of robustness and accuracy to the relative localization problem of convoy units for indoor applications.

  7. Active vibration control of a single-stage spur gearbox

    NASA Astrophysics Data System (ADS)

    Dogruer, C. U.; Pirsoltan, Abbas K.

    2017-02-01

    The dynamic transmission error between driving and driven gears of a gear mechanism with torsional mode is induced by periodic time-varying mesh stiffness. In this study, to minimize the adverse effect of this time-varying mesh stiffness, a nonlinear controller which adjusts the torque acting on the driving gear is proposed. The basic approach is to modulate the input torque such that it compensates the periodic change in mesh stiffness. It is assumed that gears are assembled with high precision and gearbox is analyzed by a finite element software to calculate the mesh stiffness curve. Thus, change in the mesh stiffness, which is inherently nonlinear, can be predicted and canceled by a feed-forward loop. Then, remaining linear dynamics is controlled by pole placement techniques. Under these premises, it is claimed that any acceleration and velocity profile of the input shaft can be tracked accurately. Thereby, dynamic transmission error is kept to a minimum possible value and a spur gearbox, which does not emit much noise and vibration, is designed.

  8. Error compensation for hybrid-computer solution of linear differential equations

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.

    1970-01-01

    Z-transform technique compensates for digital transport delay and digital-to-analog hold. Method determines best values for compensation constants in multi-step and Taylor series projections. Technique also provides hybrid-calculation error compared to continuous exact solution, plus system stability properties.

  9. Linear positioning laser calibration setup of CNC machine tools

    NASA Astrophysics Data System (ADS)

    Sui, Xiulin; Yang, Congjing

    2002-10-01

    The linear positioning laser calibration setup of CNC machine tools is capable of executing machine tool laser calibraiotn and backlash compensation. Using this setup, hole locations on CNC machien tools will be correct and machien tool geometry will be evaluated and adjusted. Machien tool laser calibration and backlash compensation is a simple and straightforward process. First the setup is to 'find' the stroke limits of the axis. Then the laser head is then brought into correct alignment. Second is to move the machine axis to the other extreme, the laser head is now aligned, using rotation and elevation adjustments. Finally the machine is moved to the start position and final alignment is verified. The stroke of the machine, and the machine compensation interval dictate the amount of data required for each axis. These factors determine the amount of time required for a through compensation of the linear positioning accuracy. The Laser Calibrator System monitors the material temperature and the air density; this takes into consideration machine thermal growth and laser beam frequency. This linear positioning laser calibration setup can be used on CNC machine tools, CNC lathes, horizontal centers and vertical machining centers.

  10. High Velocity Linear Induction Launcher with Exit-Edge Compensation for Testing of Aerospace Components

    NASA Technical Reports Server (NTRS)

    Kuznetsov, Stephen; Marriott, Darin

    2008-01-01

    Advances in ultra high speed linear induction electromagnetic launchers over the past decade have focused on magnetic compensation of the exit and entry-edge transient flux wave to produce efficient and compact linear electric machinery. The paper discusses two approaches to edge compensation in long-stator induction catapults with typical end speeds of 150 to 1,500 m/s. In classical linear induction machines, the exit-edge effect is manifest as two auxiliary traveling waves that produce a magnetic drag on the projectile and a loss of magnetic flux over the main surface of the machine. In the new design for the Stator Compensated Induction Machine (SCIM) high velocity launcher, the exit-edge effect is nulled by a dual wavelength machine or alternately the airgap flux is peaked at a location prior to the exit edge. A four (4) stage LIM catapult is presently being constructed for 180 m/s end speed operation using double-sided longitudinal flux machines. Advanced exit and entry edge compensation is being used to maximize system efficiency, and minimize stray heating of the reaction armature. Each stage will output approximately 60 kN of force and produce over 500 G s of acceleration on the armature. The advantage of this design is there is no ablation to the projectile and no sliding contacts, allowing repeated firing of the launcher without maintenance of any sort. The paper shows results of a parametric study for 500 m/s and 1,500 m/s linear induction launchers incorporating two of the latest compensation techniques for an air-core stator primary and an iron-core primary winding. Typical thrust densities for these machines are in the range of 150 kN/sq.m. to 225 kN/sq.m. and these compete favorably with permanent magnet linear synchronous machines. The operational advantages of the high speed SCIM launcher are shown by eliminating the need for pole-angle position sensors as would be required by synchronous systems. The stator power factor is also improved.

  11. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI.

    PubMed

    Helms, Gunther; Dathe, Henning; Kallenberg, Kai; Dechent, Peter

    2008-12-01

    An empirical equation for the magnetization transfer (MT) FLASH signal is derived by analogy to dual-excitation FLASH, introducing a novel semiquantitative parameter for MT, the percentage saturation imposed by one MT pulse during TR. This parameter is obtained by a linear transformation of the inverse signal, using two reference experiments of proton density and T(1) weighting. The influence of sequence parameters on the MT saturation was studied. An 8.5-min protocol for brain imaging at 3 T was based on nonselective sagittal 3D-FLASH at 1.25 mm isotropic resolution using partial acquisition techniques (TR/TE/alpha = 25ms/4.9ms/5 degrees or 11ms/4.9ms/15 degrees for the T(1) reference). A 12.8 ms Gaussian MT pulse was applied 2.2 kHz off-resonance with 540 degrees flip angle. The MT saturation maps showed an excellent contrast in the brain due to clearly separated distributions for white and gray matter and cerebrospinal fluid. Within the limits of the approximation (excitation <15 degrees , TR/T(1) less sign 1) the MT term depends mainly on TR, the energy and offset of the MT pulse, but hardly on excitation and T(1) relaxation. It is inherently compensated for inhomogeneities of receive and transmit RF fields. The MT saturation appeared to be a sensitive parameter to depict MS lesions and alterations of normal-appearing white matter. (c) 2008 Wiley-Liss, Inc.

  12. A linearization time-domain CMOS smart temperature sensor using a curvature compensation oscillator.

    PubMed

    Chen, Chun-Chi; Chen, Hao-Wen

    2013-08-28

    This paper presents an area-efficient time-domain CMOS smart temperature sensor using a curvature compensation oscillator for linearity enhancement with a -40 to 120 °C temperature range operability. The inverter-based smart temperature sensors can substantially reduce the cost and circuit complexity of integrated temperature sensors. However, a large curvature exists on the temperature-to-time transfer curve of the inverter-based delay line and results in poor linearity of the sensor output. For cost reduction and error improvement, a temperature-to-pulse generator composed of a ring oscillator and a time amplifier was used to generate a thermal sensing pulse with a sufficient width proportional to the absolute temperature (PTAT). Then, a simple but effective on-chip curvature compensation oscillator is proposed to simultaneously count and compensate the PTAT pulse with curvature for linearization. With such a simple structure, the proposed sensor possesses an extremely small area of 0.07 mm2 in a TSMC 0.35-mm CMOS 2P4M digital process. By using an oscillator-based scheme design, the proposed sensor achieves a fine resolution of 0.045 °C without significantly increasing the circuit area. With the curvature compensation, the inaccuracy of -1.2 to 0.2 °C is achieved in an operation range of -40 to 120 °C after two-point calibration for 14 packaged chips. The power consumption is measured as 23 mW at a sample rate of 10 samples/s.

  13. The effect of robot dynamics on smoothness during wrist pointing.

    PubMed

    Erwin, Andrew; Pezent, Evan; Bradley, Joshua; O'Malley, Marcia K

    2017-07-01

    The improvement of movement smoothness over the course of therapy is one of the positive outcomes observed during robotic rehabilitation. Although movements are generally robust to disturbances, certain perturbations might disrupt an individual's ability to produce these smooth movements. In this paper, we explore how a rehabilitation robot's inherent dynamics impact movement smoothness during pointing tasks. Able-bodied participants made wrist pointing movements under four different operating conditions. Despite the relative transparency of the device, inherent dynamic characteristics negatively impacted movement smoothness. Active compensation for Coulomb friction effects failed to mitigate the degradation in smoothness. Assessment of movements that involved coupled motions of the robot's joints reduced the bias seen in single degree of freedom movements. When using robotic devices for assessment of movement quality, the impact of the inherent dynamics must be considered.

  14. On Appropriacy of Thanking: Dynamic Compensation and Adaptation

    ERIC Educational Resources Information Center

    Liao, Baiqiu

    2013-01-01

    Appropriacy is the paramount consideration of such an inherently polite speech act as thanking in its use. Traditional study of thanking focuses more on the quantitative investigation of its diverse forms and functions than on interpretation of the process in which it is used appropriately and adequately or not among English native or nonnative…

  15. The Stability Region for Feedback Control of the Wake Behind Twin Oscillating Cylinders

    NASA Astrophysics Data System (ADS)

    Borggaard, Jeff; Gugercin, Serkan; Zietsman, Lizette

    2016-11-01

    Linear feedback control has the ability to stabilize vortex shedding behind twin cylinders where cylinder rotation is the actuation mechanism. Complete elimination of the wake is only possible for certain Reynolds numbers and cylinder spacing. This is related to the presence of asymmetric unstable modes in the linearized system. We investigate this region of parameter space using a number of closed-loop simulations that bound this region. We then consider the practical issue of designing feedback controls based on limited state measurements by building a nonlinear compensator using linear robust control theory with and incorporating the nonlinear terms in the compensator (e.g., using the extended Kalman filter). Interpolatory model reduction methods are applied to the large discretized, linearized Navier-Stokes system and used for computing the control laws and compensators. Preliminary closed-loop simulations of a three-dimensional version of this problem will also be presented. Supported in part by the National Science Foundation.

  16. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.

    PubMed

    Chen, Benyong; Cheng, Liang; Yan, Liping; Zhang, Enzheng; Lou, Yingtian

    2017-03-01

    The laser beam drift seriously influences the accuracy of straightness or displacement measurement in laser interferometers, especially for the long travel measurement. To solve this problem, a heterodyne straightness and displacement measuring interferometer with laser beam drift compensation is proposed. In this interferometer, the simultaneous measurement of straightness error and displacement is realized by using heterodyne interferometry, and the laser beam drift is determined to compensate the measurement results of straightness error and displacement in real time. The optical configuration of the interferometer is designed. The principle of the simultaneous measurement of straightness, displacement, and laser beam drift is depicted and analyzed in detail. And the compensation of the laser beam drift for the straightness error and displacement is presented. Several experiments were performed to verify the feasibility of the interferometer and the effectiveness of the laser beam drift compensation. The experiments of laser beam stability show that the position stability of the laser beam spot can be improved by more than 50% after compensation. The measurement and compensation experiments of straightness error and displacement by testing a linear stage at different distances show that the straightness and displacement obtained from the interferometer are in agreement with those obtained from a compared interferometer and the measured stage. These demonstrate that the merits of this interferometer are not only eliminating the influence of laser beam drift on the measurement accuracy but also having the abilities of simultaneous measurement of straightness error and displacement as well as being suitable for long-travel linear stage metrology.

  17. A New Methodology for Vibration Error Compensation of Optical Encoders

    PubMed Central

    Lopez, Jesus; Artes, Mariano

    2012-01-01

    Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement can be based on different techniques trying to compensate the error from measurement signals processing. In this work a new “ad hoc” methodology is presented to compensate the error of the encoder when is working under the influence of vibration. The methodology is based on fitting techniques to the Lissajous figure of the deteriorated measurement signals and the use of a look up table, giving as a result a compensation procedure in which a higher accuracy of the sensor is obtained. PMID:22666067

  18. Reaction wheel low-speed compensation using a dither signal

    NASA Astrophysics Data System (ADS)

    Stetson, John B., Jr.

    1993-08-01

    A method for improving low-speed reaction wheel performance on a three-axis controlled spacecraft is presented. The method combines a constant amplitude offset with an unbiased, oscillating dither to harmonically linearize rolling solid friction dynamics. The complete, nonlinear rolling solid friction dynamics using an analytic modification to the experimentally verified Dahl solid friction model were analyzed using the dual-input describing function method to assess the benefits of dither compensation. The modified analytic solid friction model was experimentally verified with a small dc servomotor actuated reaction wheel assembly. Using dither compensation abrupt static friction disturbances are eliminated and near linear behavior through zero rate can be achieved. Simulated vehicle response to a wheel rate reversal shows that when the dither and offset compensation is used, elastic modes are not significantly excited, and the uncompensated attitude error reduces by 34:1.

  19. Control optimization, stabilization and computer algorithms for aircraft applications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research related to reliable aircraft design is summarized. Topics discussed include systems reliability optimization, failure detection algorithms, analysis of nonlinear filters, design of compensators incorporating time delays, digital compensator design, estimation for systems with echoes, low-order compensator design, descent-phase controller for 4-D navigation, infinite dimensional mathematical programming problems and optimal control problems with constraints, robust compensator design, numerical methods for the Lyapunov equations, and perturbation methods in linear filtering and control.

  20. Passive athermalization of multimode interference devices for wavelength-locking applications.

    PubMed

    Ruiz-Perez, Victor I; May-Arrioja, Daniel A; Guzman-Sepulveda, Jose R

    2017-03-06

    In this paper we demonstrate the passive, material-based athermalization of all-fiber architectures by cascading multimode interference (MMI) devices. In-line thermal compensation is achieved by including a liquid-core multimode section of variable length that allows ensuring temperature-independent operation while preserving the inherent filter-like spectral response of the MMI devices. The design of the temperature compensation unit is straightforward and its fabrication is simple. The applicability of our approach is experimentally verified by fabricating a wavelength-locked MMI laser with sensitivity of only -0.1 pm/°C, which is at least one order of magnitude lower than that achieved with other fiber optics devices.

  1. Intergovernmental (Dis)incentives, Free-Riding, Teacher Salaries and Teacher Pensions. Upjohn Institute Working Paper No. 15-220

    ERIC Educational Resources Information Center

    Fitzpatrick, Maria D.

    2015-01-01

    In this paper, I document evidence that intergovernmental incentives inherent in public sector defined benefit pension systems distort the amount and timing of income for public school teachers. This intergovernmental incentive stems from the fact that, in many states, local school districts are responsible for setting the compensation that…

  2. Human-Centered Command and Control of Future Autonomous Systems

    DTIC Science & Technology

    2013-06-01

    introduce challenges with situation awareness, automation reliance, and accountability (Bainbridge, 1983). If not carefully designed and integrated...into users’ tasks, automation’s costs can quickly outweigh its benefits. A tempting solution to compensate for inherent human cognitive limitations is... Drury & Scott, 2008; Nehme, Scott, Cummings, & Furusho, 2006; Scott & Cummings, 2006). However, there have not been detailed prescriptive task

  3. [Vestibular compensation studies]. [Vestibular Compensation and Morphological Studies

    NASA Technical Reports Server (NTRS)

    Perachio, Adrian A. (Principal Investigator)

    1996-01-01

    The following topics are reported: neurophysiological studies on MVN neurons during vestibular compensation; effects of spinal cord lesions on VNC neurons during compensation; a closed-loop vestibular compensation model for horizontally canal-related MVN neurons; spatiotemporal convergence in VNC neurons; contributions of irregularly firing vestibular afferents to linear and angular VOR's; application to flight studies; metabolic measures in vestibular neurons; immediate early gene expression following vestibular stimulation; morphological studies on primary afferents, central vestibular pathways, vestibular efferent projection to the vestibular end organs, and three-dimensional morphometry and imaging.

  4. New requirements for digital radiographic testing of welds according to ISO standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zscherpel, U.; Ewert, U.; Jechow, M.

    Users of EN 14784-2 (general principles for computed radiography with phosphor imaging plates) reported about difficulties to achieve testing class B in weld testing with imaging plates. One of the reasons is the insufficient consideration of the inherent detector unsharpness (u{sub i}) in the minimum requirements. Digital detectors have a higher inherent unsharpness compared to film, which can even exceed the geometrical unsharpness (u{sub g}) of the typical contact technique. In EN 444 and ISO 5579 (general principles for film radiography) u{sub i} is neglected for the calculation of the minimum source-to-object distance (SOD), because it is small compared tomore » the geometric unsharpness (u{sub g}). Considering u{sub i} for digital detectors results in a new equation for SOD (see ISO/FDIS 17636-2). Therefore, the increase in total image unsharpness requires the compensation by a larger SOD to reduce u{sub g}. This contribution discusses the need for change of the SOD for different setups (detectors, focal spots, etc.) and explains the difference in image quality, achieved on basis of the extended equation of ISO/FDIS 17636-2. Furthermore, the detection of image quality indicators depends on the achieved Contrast-to-Noise ratio (CNR) and total image unsharpness. Both of them are essential parameters, which influence the contrast sensitivity. Additionally, new compensation principles (e.g. compensation of missing spatial resolution by enhanced contrast sensitivity) allow to widen the application range of digital detectors for radiographic weld testing.« less

  5. Delay compensation in integrated communication and control systems. II - Implementation and verification

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1990-01-01

    The implementation and verification of the delay-compensation algorithm are addressed. The delay compensator has been experimentally verified at an IEEE 802.4 network testbed for velocity control of a DC servomotor. The performance of the delay-compensation algorithm was also examined by combined discrete-event and continuous-time simulation of the flight control system of an advanced aircraft that uses the SAE (Society of Automotive Engineers) linear token passing bus for data communications.

  6. Behavioral modeling and digital compensation of nonlinearity in DFB lasers for multi-band directly modulated radio-over-fiber systems

    NASA Astrophysics Data System (ADS)

    Li, Jianqiang; Yin, Chunjing; Chen, Hao; Yin, Feifei; Dai, Yitang; Xu, Kun

    2014-11-01

    The envisioned C-RAN concept in wireless communication sector replies on distributed antenna systems (DAS) which consist of a central unit (CU), multiple remote antenna units (RAUs) and the fronthaul links between them. As the legacy and emerging wireless communication standards will coexist for a long time, the fronthaul links are preferred to carry multi-band multi-standard wireless signals. Directly-modulated radio-over-fiber (ROF) links can serve as a lowcost option to make fronthaul connections conveying multi-band wireless signals. However, directly-modulated radioover- fiber (ROF) systems often suffer from inherent nonlinearities from directly-modulated lasers. Unlike ROF systems working at the single-band mode, the modulation nonlinearities in multi-band ROF systems can result in both in-band and cross-band nonlinear distortions. In order to address this issue, we have recently investigated the multi-band nonlinear behavior of directly-modulated DFB lasers based on multi-dimensional memory polynomial model. Based on this model, an efficient multi-dimensional baseband digital predistortion technique was developed and experimentally demonstrated for linearization of multi-band directly-modulated ROF systems.

  7. Gauss-Seidel Iterative Method as a Real-Time Pile-Up Solver of Scintillation Pulses

    NASA Astrophysics Data System (ADS)

    Novak, Roman; Vencelj, Matja¿

    2009-12-01

    The pile-up rejection in nuclear spectroscopy has been confronted recently by several pile-up correction schemes that compensate for distortions of the signal and subsequent energy spectra artifacts as the counting rate increases. We study here a real-time capability of the event-by-event correction method, which at the core translates to solving many sets of linear equations. Tight time limits and constrained front-end electronics resources make well-known direct solvers inappropriate. We propose a novel approach based on the Gauss-Seidel iterative method, which turns out to be a stable and cost-efficient solution to improve spectroscopic resolution in the front-end electronics. We show the method convergence properties for a class of matrices that emerge in calorimetric processing of scintillation detector signals and demonstrate the ability of the method to support the relevant resolutions. The sole iteration-based error component can be brought below the sliding window induced errors in a reasonable number of iteration steps, thus allowing real-time operation. An area-efficient hardware implementation is proposed that fully utilizes the method's inherent parallelism.

  8. Advanced linear and nonlinear compensations for 16QAM SC-400G unrepeatered transmission system

    NASA Astrophysics Data System (ADS)

    Zhang, Junwen; Yu, Jianjun; Chien, Hung-Chang

    2018-02-01

    Digital signal processing (DSP) with both linear equalization and nonlinear compensations are studied in this paper for the single-carrier 400G system based on 65-GBaud 16-quadrature amplitude modulation (QAM) signals. The 16-QAM signals are generated and pre-processed with pre-equalization (Pre-EQ) and Look-up-Table (LUT) based pre-distortion (Pre-DT) at the transmitter (Tx)-side. The implementation principle of training-based equalization and pre-distortion are presented here in this paper with experimental studies. At the receiver (Rx)-side, fiber-nonlinearity compensation based on digital backward propagation (DBP) are also utilized to further improve the transmission performances. With joint LUT-based Pre-DT and DBP-based post-compensation to mitigate the opto-electronic components and fiber nonlinearity impairments, we demonstrate the unrepeatered transmission of 1.6Tb/s based on 4-lane 400G single-carrier PDM-16QAM over 205-km SSMF without distributed amplifier.

  9. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect.

    PubMed

    Fang, Jiancheng; Wang, Tao; Quan, Wei; Yuan, Heng; Zhang, Hong; Li, Yang; Zou, Sheng

    2014-06-01

    A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelength of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz(1/2), which was mainly dominated by the noise of the magnetic shield.

  10. Design of a 6 TeV muon collider

    DOE PAGES

    Wang, M-H.; Nosochkov, Y.; Cai, Y.; ...

    2016-09-09

    Here, a preliminary design of a muon collider ring with the center of mass (CM) energy of 6 TeV is presented. The ring circumference is 6.3 km, and themore » $$\\beta$$ functions at collision point are 1 cm in each plane. The ring linear optics, the non-linear chromaticity compensation in the Interaction Region (IR), and the additional non-linear orthogonal correcting knobs are described. Magnet specifications are based on the maximum pole-tip field of 20T in dipoles and 15T in quadrupoles. Careful compensation of the non-linear chromatic and amplitude dependent effects provide a sufficiently large dynamic aperture for the momentum range of up to $$\\pm$$0.5% without considering magnet errors.« less

  11. Design and comparative performance analysis of different chirping profiles of tanh apodized fiber Bragg grating and comparison with the dispersion compensation fiber for long-haul transmission system

    NASA Astrophysics Data System (ADS)

    Dar, Aasif Bashir; Jha, Rakesh Kumar

    2017-03-01

    Various dispersion compensation units are presented and evaluated in this paper. These dispersion compensation units include dispersion compensation fiber (DCF), DCF merged with fiber Bragg grating (FBG) (joint technique), and linear, square root, and cube root chirped tanh apodized FBG. For the performance evaluation 10 Gb/s NRZ transmission system over 100-km-long single-mode fiber is used. The three chirped FBGs are optimized individually to yield pulse width reduction percentage (PWRP) of 86.66, 79.96, 62.42% for linear, square root, and cube root, respectively. The DCF and Joint technique both provide a remarkable PWRP of 94.45 and 96.96%, respectively. The performance of optimized linear chirped tanh apodized FBG and DCF is compared for long-haul transmission system on the basis of quality factor of received signal. For both the systems maximum transmission distance is calculated such that quality factor is ≥ 6 at the receiver and result shows that performance of FBG is comparable to that of DCF with advantages of very low cost, small size and reduced nonlinear effects.

  12. Investigation into Model-Based Fuzzy Logic Control

    DTIC Science & Technology

    1993-12-01

    of the linearized plant as a function of r ................... 3-3 3.2. Model of Compensator G (s) with r externally defined .................... 3-4...and three zeros will be added to the compensator. 3-3 he Figure 3.2 Model of Compensator G (s) with r externally defined The form of the compensator...with disturbance rejection is: = (s2 + a + r )(8 + 45)f G (s) + + - (3.3) a(s + 4.5)(a + 200+ Notice that in order to achieve disturbance rejection yet

  13. Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band.

    PubMed

    Varshney, Shailendra; Fujisawa, Takeshi; Saitoh, Kunimasa; Koshiba, Masanori

    2005-11-14

    In this paper, we report, for the first time, an inherently gain-flattened discrete highly nonlinear photonic crystal fiber (HNPCF) Raman amplifier (HNPCF-RA) design which shows 13.7 dB of net gain (with +/-0.85-dB gain ripple) over 28-nm bandwidth. The wavelength dependent leakage loss property of HNPCF is used to flatten the Raman gain of the amplifier module. The PCF structural design is based on W-shaped refractive index profile where the fiber parameters are well optimized by homely developed genetic algorithm optimization tool integrated with an efficient vectorial finite element method (V-FEM). The proposed fiber design has a high Raman gain efficiency of 4.88 W(-1) . km(-1) at a frequency shift of 13.1 THz, which is precisely evaluated through V-FEM. Additionally, the designed module, which shows ultra-wide single mode operation, has a slowly varying negative dispersion coefficient (-107.5 ps/nm/km at 1550 nm) over the operating range of wavelengths. Therefore, our proposed HNPCF-RA module acts as a composite amplifier with dispersion compensator functionality in a single component using a single pump.

  14. Design and performance evaluation of a dispersion compensation unit using several chirping functions in a tanh apodized FBG and comparison with dispersion compensation fiber.

    PubMed

    Mohammed, Nazmi A; Solaiman, Mohammad; Aly, Moustafa H

    2014-10-10

    In this work, various dispersion compensation methods are designed and evaluated to search for a cost-effective technique with remarkable dispersion compensation and a good pulse shape. The techniques consist of different chirp functions applied to a tanh fiber Bragg grating (FBG), a dispersion compensation fiber (DCF), and a DCF merged with an optimized linearly chirped tanh FBG (joint technique). The techniques are evaluated using a standard 10 Gb/s optical link over a 100 km long haul. The linear chirp function is the most appropriate choice of chirping function, with a pulse width reduction percentage (PWRP) of 75.15%, lower price, and poor pulse shape. The DCF yields an enhanced PWRP of 93.34% with a better pulse quality; however, it is the most costly of the evaluated techniques. Finally, the joint technique achieved the optimum PWRP (96.36%) among all the evaluated techniques and exhibited a remarkable pulse shape; it is less costly than the DCF, but more expensive than the chirped tanh FBG.

  15. CLOVERLEAF CYCLOTRON

    DOEpatents

    McMillan, E.M.; Judd, D.L.

    1959-02-01

    A cyclotron is presented embodying a unique magnetic field configuration, which configuration increases in intensity with radius and therefore compensates for the reltivistic mass effect, the field having further convolutions productive of axial stability in the particle beam. By reconciling the seemingly opposed requirements of mass increase compensation on one hand and anial stability on the other, the production of extremely high current particle beams in the relativistie energy range is made feasible. Certain further advantages inhere in the invention, notably an increase in the usable magnet gap, simplified and more efficient extraction of the beam from the accelerator, and ready adaptation to the use of multiply phased excitation as contrasted with the single phased systems herstofore utilized. General

  16. Adaptive robust fault-tolerant control for linear MIMO systems with unmatched uncertainties

    NASA Astrophysics Data System (ADS)

    Zhang, Kangkang; Jiang, Bin; Yan, Xing-Gang; Mao, Zehui

    2017-10-01

    In this paper, two novel fault-tolerant control design approaches are proposed for linear MIMO systems with actuator additive faults, multiplicative faults and unmatched uncertainties. For time-varying multiplicative and additive faults, new adaptive laws and additive compensation functions are proposed. A set of conditions is developed such that the unmatched uncertainties are compensated by actuators in control. On the other hand, for unmatched uncertainties with their projection in unmatched space being not zero, based on a (vector) relative degree condition, additive functions are designed to compensate for the uncertainties from output channels in the presence of actuator faults. The developed fault-tolerant control schemes are applied to two aircraft systems to demonstrate the efficiency of the proposed approaches.

  17. Stochastic speckle noise compensation in optical coherence tomography using non-stationary spline-based speckle noise modelling.

    PubMed

    Cameron, Andrew; Lui, Dorothy; Boroomand, Ameneh; Glaister, Jeffrey; Wong, Alexander; Bizheva, Kostadinka

    2013-01-01

    Optical coherence tomography (OCT) allows for non-invasive 3D visualization of biological tissue at cellular level resolution. Often hindered by speckle noise, the visualization of important biological tissue details in OCT that can aid disease diagnosis can be improved by speckle noise compensation. A challenge with handling speckle noise is its inherent non-stationary nature, where the underlying noise characteristics vary with the spatial location. In this study, an innovative speckle noise compensation method is presented for handling the non-stationary traits of speckle noise in OCT imagery. The proposed approach centers on a non-stationary spline-based speckle noise modeling strategy to characterize the speckle noise. The novel method was applied to ultra high-resolution OCT (UHROCT) images of the human retina and corneo-scleral limbus acquired in-vivo that vary in tissue structure and optical properties. Test results showed improved performance of the proposed novel algorithm compared to a number of previously published speckle noise compensation approaches in terms of higher signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and better overall visual assessment.

  18. Stochastic speckle noise compensation in optical coherence tomography using non-stationary spline-based speckle noise modelling

    PubMed Central

    Cameron, Andrew; Lui, Dorothy; Boroomand, Ameneh; Glaister, Jeffrey; Wong, Alexander; Bizheva, Kostadinka

    2013-01-01

    Optical coherence tomography (OCT) allows for non-invasive 3D visualization of biological tissue at cellular level resolution. Often hindered by speckle noise, the visualization of important biological tissue details in OCT that can aid disease diagnosis can be improved by speckle noise compensation. A challenge with handling speckle noise is its inherent non-stationary nature, where the underlying noise characteristics vary with the spatial location. In this study, an innovative speckle noise compensation method is presented for handling the non-stationary traits of speckle noise in OCT imagery. The proposed approach centers on a non-stationary spline-based speckle noise modeling strategy to characterize the speckle noise. The novel method was applied to ultra high-resolution OCT (UHROCT) images of the human retina and corneo-scleral limbus acquired in-vivo that vary in tissue structure and optical properties. Test results showed improved performance of the proposed novel algorithm compared to a number of previously published speckle noise compensation approaches in terms of higher signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and better overall visual assessment. PMID:24049697

  19. Torque Compensator for Mirror Mountings

    NASA Technical Reports Server (NTRS)

    Howe, S. D.

    1983-01-01

    Device nulls flexural distributions of pivotal torques. Magnetic compensator for flexing pivot torque consists of opposing fixed and movable magnet bars. Magnetic torque varies nonlinearly as function of angle of tilt of movable bar. Positions of fixed magnets changed to improve magnetic torque linearity.

  20. Classical and quantum non-linear optical applications using the Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Prescod, Andru

    Mach Zehnder (MZ) modulators are widely employed in a variety of applications, such as optical communications, optical imaging, metrology and encryption. In this dissertation, we explore two non-linear MZ applications; one classified as classical and one as quantum, in which the Mach Zehnder interferometer is used. In the first application, a classical non-linear application, we introduce and study a new electro-optic highly linear (e.g., >130 dB) modulator configuration. This modulator makes use of a phase modulator (PM) in one arm of the MZ interferometer (MZI) and a ring resonator (RR) located on the other arm. The modulator performance is obtained through the control of a combination of internal and external parameters. These parameters include the RR-coupling ratio (internal parameter); the RF power split ratio and the RF phase bias (external parameters). Results show the unique and superior features, such as high linearity (SFDR˜133 dB), modulation bandwidth extension (as much as 70%) over the previously proposed and demonstrated Resonator-Assisted Mach Zehnder (RAMZ) design. Furthermore the proposed electro-optic modulator of this dissertation also provides an inherent SFDR compensation capability, even in cases where a significant waveguide optical loss exists. This design also shows potential for increased flexibility, practicality and ease of use. In the second application, a quantum non-linear application, we experimentally demonstrate quantum optical coherence tomography (QOCT) using a type II non-linear crystal (periodically-poled potassium titanyl phosphate (KTiOPO4) or PPKTP). There have been several publications discussing the merits and disadvantages of QOCT compared to OCT and other imaging techniques. First, we discuss the issues and solutions for increasing the efficiency of the quantum entangled photons. Second, we use a free space QOCT experiment to generate a high flux of these quantum entangled photons in two orthogonal polarizations, by parametric down-conversion. Third, by ensuring that these down-converted photons have the same frequency, spatial-temporal mode, and the same polarization when they interfere at a beam splitter, quantum interference should occur. Quantum interference of these entangled photons enables high resolution probing of dispersive samples.

  1. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jiancheng; Wang, Tao, E-mail: wangtaowt@aspe.buaa.edu.cn; Quan, Wei

    2014-06-15

    A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelengthmore » of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz{sup 1/2}, which was mainly dominated by the noise of the magnetic shield.« less

  2. The Use of Linear Instrumental Variables Methods in Health Services Research and Health Economics: A Cautionary Note

    PubMed Central

    Terza, Joseph V; Bradford, W David; Dismuke, Clara E

    2008-01-01

    Objective To investigate potential bias in the use of the conventional linear instrumental variables (IV) method for the estimation of causal effects in inherently nonlinear regression settings. Data Sources Smoking Supplement to the 1979 National Health Interview Survey, National Longitudinal Alcohol Epidemiologic Survey, and simulated data. Study Design Potential bias from the use of the linear IV method in nonlinear models is assessed via simulation studies and real world data analyses in two commonly encountered regression setting: (1) models with a nonnegative outcome (e.g., a count) and a continuous endogenous regressor; and (2) models with a binary outcome and a binary endogenous regressor. Principle Findings The simulation analyses show that substantial bias in the estimation of causal effects can result from applying the conventional IV method in inherently nonlinear regression settings. Moreover, the bias is not attenuated as the sample size increases. This point is further illustrated in the survey data analyses in which IV-based estimates of the relevant causal effects diverge substantially from those obtained with appropriate nonlinear estimation methods. Conclusions We offer this research as a cautionary note to those who would opt for the use of linear specifications in inherently nonlinear settings involving endogeneity. PMID:18546544

  3. The predictive consequences of parameterization

    NASA Astrophysics Data System (ADS)

    White, J.; Hughes, J. D.; Doherty, J. E.

    2013-12-01

    In numerical groundwater modeling, parameterization is the process of selecting the aspects of a computer model that will be allowed to vary during history matching. This selection process is dependent on professional judgment and is, therefore, inherently subjective. Ideally, a robust parameterization should be commensurate with the spatial and temporal resolution of the model and should include all uncertain aspects of the model. Limited computing resources typically require reducing the number of adjustable parameters so that only a subset of the uncertain model aspects are treated as estimable parameters; the remaining aspects are treated as fixed parameters during history matching. We use linear subspace theory to develop expressions for the predictive error incurred by fixing parameters. The predictive error is comprised of two terms. The first term arises directly from the sensitivity of a prediction to fixed parameters. The second term arises from prediction-sensitive adjustable parameters that are forced to compensate for fixed parameters during history matching. The compensation is accompanied by inappropriate adjustment of otherwise uninformed, null-space parameter components. Unwarranted adjustment of null-space components away from prior maximum likelihood values may produce bias if a prediction is sensitive to those components. The potential for subjective parameterization choices to corrupt predictions is examined using a synthetic model. Several strategies are evaluated, including use of piecewise constant zones, use of pilot points with Tikhonov regularization and use of the Karhunen-Loeve transformation. The best choice of parameterization (as defined by minimum error variance) is strongly dependent on the types of predictions to be made by the model.

  4. Method of assessing the state of a rolling bearing based on the relative compensation distance of multiple-domain features and locally linear embedding

    NASA Astrophysics Data System (ADS)

    Kang, Shouqiang; Ma, Danyang; Wang, Yujing; Lan, Chaofeng; Chen, Qingguo; Mikulovich, V. I.

    2017-03-01

    To effectively assess different fault locations and different degrees of performance degradation of a rolling bearing with a unified assessment index, a novel state assessment method based on the relative compensation distance of multiple-domain features and locally linear embedding is proposed. First, for a single-sample signal, time-domain and frequency-domain indexes can be calculated for the original vibration signal and each sensitive intrinsic mode function obtained by improved ensemble empirical mode decomposition, and the singular values of the sensitive intrinsic mode function matrix can be extracted by singular value decomposition to construct a high-dimensional hybrid-domain feature vector. Second, a feature matrix can be constructed by arranging each feature vector of multiple samples, the dimensions of each row vector of the feature matrix can be reduced by the locally linear embedding algorithm, and the compensation distance of each fault state of the rolling bearing can be calculated using the support vector machine. Finally, the relative distance between different fault locations and different degrees of performance degradation and the normal-state optimal classification surface can be compensated, and on the basis of the proposed relative compensation distance, the assessment model can be constructed and an assessment curve drawn. Experimental results show that the proposed method can effectively assess different fault locations and different degrees of performance degradation of the rolling bearing under certain conditions.

  5. Energy compensation after sprint- and high-intensity interval training.

    PubMed

    Schubert, Matthew M; Palumbo, Elyse; Seay, Rebekah F; Spain, Katie K; Clarke, Holly E

    2017-01-01

    Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE). This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI) and decreases in non-exercise physical activity (NEPA). We examined the degree of energy compensation in healthy young men and women in response to interval training. Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1) completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography) and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100%) and low (< 100%) levels of energy compensation were assessed. Linear regressions were utilized to determine associations between energy compensation and ΔVO2max, ΔEI, ΔNEPA, and Δresting metabolic rate. Very large individual differences in energy compensation were noted. In comparison to individuals with low levels of compensation, individuals with high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p < 0.001) and ΔNEPA (p < 0.001). Considerable variation exists in response to short-term, low dose interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  6. Temperature compensation via cooperative stability in protein degradation

    NASA Astrophysics Data System (ADS)

    Peng, Yuanyuan; Hasegawa, Yoshihiko; Noman, Nasimul; Iba, Hitoshi

    2015-08-01

    Temperature compensation is a notable property of circadian oscillators that indicates the insensitivity of the oscillator system's period to temperature changes; the underlying mechanism, however, is still unclear. We investigated the influence of protein dimerization and cooperative stability in protein degradation on the temperature compensation ability of two oscillators. Here, cooperative stability means that high-order oligomers are more stable than their monomeric counterparts. The period of an oscillator is affected by the parameters of the dynamic system, which in turn are influenced by temperature. We adopted the Repressilator and the Atkinson oscillator to analyze the temperature sensitivity of their periods. Phase sensitivity analysis was employed to evaluate the period variations of different models induced by perturbations to the parameters. Furthermore, we used experimental data provided by other studies to determine the reasonable range of parameter temperature sensitivity. We then applied the linear programming method to the oscillatory systems to analyze the effects of protein dimerization and cooperative stability on the temperature sensitivity of their periods, which reflects the ability of temperature compensation in circadian rhythms. Our study explains the temperature compensation mechanism for circadian clocks. Compared with the no-dimer mathematical model and linear model for protein degradation, our theoretical results show that the nonlinear protein degradation caused by cooperative stability is more beneficial for realizing temperature compensation of the circadian clock.

  7. Warped Linear Prediction of Physical Model Excitations with Applications in Audio Compression and Instrument Synthesis

    NASA Astrophysics Data System (ADS)

    Glass, Alexis; Fukudome, Kimitoshi

    2004-12-01

    A sound recording of a plucked string instrument is encoded and resynthesized using two stages of prediction. In the first stage of prediction, a simple physical model of a plucked string is estimated and the instrument excitation is obtained. The second stage of prediction compensates for the simplicity of the model in the first stage by encoding either the instrument excitation or the model error using warped linear prediction. These two methods of compensation are compared with each other, and to the case of single-stage warped linear prediction, adjustments are introduced, and their applications to instrument synthesis and MPEG4's audio compression within the structured audio format are discussed.

  8. An estimator-predictor approach to PLL loop filter design

    NASA Technical Reports Server (NTRS)

    Statman, Joseph I.; Hurd, William J.

    1990-01-01

    The design of digital phase locked loops (DPLL) using estimation theory concepts in the selection of a loop filter is presented. The key concept, that the DPLL closed-loop transfer function is decomposed into an estimator and a predictor, is discussed. The estimator provides recursive estimates of phase, frequency, and higher-order derivatives, and the predictor compensates for the transport lag inherent in the loop.

  9. Applied metrology in the production of superconducting model magnets for particle accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferradas Troitino, Jose; Bestmann, Patrick; Bourcey, Nicolas

    2017-12-22

    The production of superconducting magnets for particle accelerators involves high precision assemblies and tight tolerances, in order to achieve the requirements for their appropriate performance. It is therefore essential to have a strict control and traceability over the geometry of each component of the system, and also to be able to compensate possible inherent deviations coming from the production process.

  10. Signal Construction-Based Dispersion Compensation of Lamb Waves Considering Signal Waveform and Amplitude Spectrum Preservation

    PubMed Central

    Cai, Jian; Yuan, Shenfang; Wang, Tongguang

    2016-01-01

    The results of Lamb wave identification for the aerospace structures could be easily affected by the nonlinear-dispersion characteristics. In this paper, dispersion compensation of Lamb waves is of particular concern. Compared with the similar research works on the traditional signal domain transform methods, this study is based on signal construction from the viewpoint of nonlinear wavenumber linearization. Two compensation methods of linearly-dispersive signal construction (LDSC) and non-dispersive signal construction (NDSC) are proposed. Furthermore, to improve the compensation effect, the influence of the signal construction process on the other crucial signal properties, including the signal waveform and amplitude spectrum, is considered during the investigation. The linear-dispersion and non-dispersion effects are firstly analyzed. Then, after the basic signal construction principle is explored, the numerical realization of LDSC and NDSC is discussed, in which the signal waveform and amplitude spectrum preservation is especially regarded. Subsequently, associated with the delay-and-sum algorithm, LDSC or NDSC is employed for high spatial resolution damage imaging, so that the adjacent multi-damage or quantitative imaging capacity of Lamb waves can be strengthened. To verify the proposed signal construction and damage imaging methods, the experimental and numerical validation is finally arranged on the aluminum plates. PMID:28772366

  11. Signal Construction-Based Dispersion Compensation of Lamb Waves Considering Signal Waveform and Amplitude Spectrum Preservation.

    PubMed

    Cai, Jian; Yuan, Shenfang; Wang, Tongguang

    2016-12-23

    The results of Lamb wave identification for the aerospace structures could be easily affected by the nonlinear-dispersion characteristics. In this paper, dispersion compensation of Lamb waves is of particular concern. Compared with the similar research works on the traditional signal domain transform methods, this study is based on signal construction from the viewpoint of nonlinear wavenumber linearization. Two compensation methods of linearly-dispersive signal construction (LDSC) and non-dispersive signal construction (NDSC) are proposed. Furthermore, to improve the compensation effect, the influence of the signal construction process on the other crucial signal properties, including the signal waveform and amplitude spectrum, is considered during the investigation. The linear-dispersion and non-dispersion effects are firstly analyzed. Then, after the basic signal construction principle is explored, the numerical realization of LDSC and NDSC is discussed, in which the signal waveform and amplitude spectrum preservation is especially regarded. Subsequently, associated with the delay-and-sum algorithm, LDSC or NDSC is employed for high spatial resolution damage imaging, so that the adjacent multi-damage or quantitative imaging capacity of Lamb waves can be strengthened. To verify the proposed signal construction and damage imaging methods, the experimental and numerical validation is finally arranged on the aluminum plates.

  12. Fault-tolerant optimised tracking control for unknown discrete-time linear systems using a combined reinforcement learning and residual compensation methodology

    NASA Astrophysics Data System (ADS)

    Han, Ke-Zhen; Feng, Jian; Cui, Xiaohong

    2017-10-01

    This paper considers the fault-tolerant optimised tracking control (FTOTC) problem for unknown discrete-time linear system. A research scheme is proposed on the basis of data-based parity space identification, reinforcement learning and residual compensation techniques. The main characteristic of this research scheme lies in the parity-space-identification-based simultaneous tracking control and residual compensation. The specific technical line consists of four main contents: apply subspace aided method to design observer-based residual generator; use reinforcement Q-learning approach to solve optimised tracking control policy; rely on robust H∞ theory to achieve noise attenuation; adopt fault estimation triggered by residual generator to perform fault compensation. To clarify the design and implementation procedures, an integrated algorithm is further constructed to link up these four functional units. The detailed analysis and proof are subsequently given to explain the guaranteed FTOTC performance of the proposed conclusions. Finally, a case simulation is provided to verify its effectiveness.

  13. Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table.

    PubMed

    Kim, Seung-Cheol; Dong, Xiao-Bin; Kwon, Min-Woo; Kim, Eun-Soo

    2013-05-06

    A novel approach for fast generation of video holograms of three-dimensional (3-D) moving objects using a motion compensation-based novel-look-up-table (MC-N-LUT) method is proposed. Motion compensation has been widely employed in compression of conventional 2-D video data because of its ability to exploit high temporal correlation between successive video frames. Here, this concept of motion-compensation is firstly applied to the N-LUT based on its inherent property of shift-invariance. That is, motion vectors of 3-D moving objects are extracted between the two consecutive video frames, and with them motions of the 3-D objects at each frame are compensated. Then, through this process, 3-D object data to be calculated for its video holograms are massively reduced, which results in a dramatic increase of the computational speed of the proposed method. Experimental results with three kinds of 3-D video scenarios reveal that the average number of calculated object points and the average calculation time for one object point of the proposed method, have found to be reduced down to 86.95%, 86.53% and 34.99%, 32.30%, respectively compared to those of the conventional N-LUT and temporal redundancy-based N-LUT (TR-N-LUT) methods.

  14. High performance liquid level monitoring system based on polymer fiber Bragg gratings embedded in silicone rubber diaphragms

    NASA Astrophysics Data System (ADS)

    Marques, Carlos A. F.; Peng, Gang-Ding; Webb, David J.

    2015-05-01

    Liquid-level sensing technologies have attracted great prominence, because such measurements are essential to industrial applications, such as fuel storage, flood warning and in the biochemical industry. Traditional liquid level sensors are based on electromechanical techniques; however they suffer from intrinsic safety concerns in explosive environments. In recent years, given that optical fiber sensors have lots of well-established advantages such as high accuracy, costeffectiveness, compact size, and ease of multiplexing, several optical fiber liquid level sensors have been investigated which are based on different operating principles such as side-polishing the cladding and a portion of core, using a spiral side-emitting optical fiber or using silica fiber gratings. The present work proposes a novel and highly sensitive liquid level sensor making use of polymer optical fiber Bragg gratings (POFBGs). The key elements of the system are a set of POFBGs embedded in silicone rubber diaphragms. This is a new development building on the idea of determining liquid level by measuring the pressure at the bottom of a liquid container, however it has a number of critical advantages. The system features several FBG-based pressure sensors as described above placed at different depths. Any sensor above the surface of the liquid will read the same ambient pressure. Sensors below the surface of the liquid will read pressures that increase linearly with depth. The position of the liquid surface can therefore be approximately identified as lying between the first sensor to read an above-ambient pressure and the next higher sensor. This level of precision would not in general be sufficient for most liquid level monitoring applications; however a much more precise determination of liquid level can be made by linear regression to the pressure readings from the sub-surface sensors. There are numerous advantages to this multi-sensor approach. First, the use of linear regression using multiple sensors is inherently more accurate than using a single pressure reading to estimate depth. Second, common mode temperature induced wavelength shifts in the individual sensors are automatically compensated. Thirdly, temperature induced changes in the sensor pressure sensitivity are also compensated. Fourthly, the approach provides the possibility to detect and compensate for malfunctioning sensors. Finally, the system is immune to changes in the density of the monitored fluid and even to changes in the effective force of gravity, as might be obtained in an aerospace application. The performance of an individual sensor was characterized and displays a sensitivity (54 pm/cm), enhanced by more than a factor of 2 when compared to a sensor head configuration based on a silica FBG published in the literature, resulting from the much lower elastic modulus of POF. Furthermore, the temperature/humidity behavior and measurement resolution were also studied in detail. The proposed configuration also displays a highly linear response, high resolution and good repeatability. The results suggest the new configuration can be a useful tool in many different applications, such as aircraft fuel monitoring, and biochemical and environmental sensing, where accuracy and stability are fundamental.

  15. Compensation for the distortion in satellite laser range predictions due to varying pulse travel times

    NASA Technical Reports Server (NTRS)

    Paunonen, Matti

    1993-01-01

    A method for compensating for the effect of the varying travel time of a transmitted laser pulse to a satellite is described. The 'observed minus predicted' range differences then appear to be linear, which makes data screening or use in range gating more effective.

  16. Compensator improvement for multivariable control systems

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Mcdaniel, W. L., Jr.; Gresham, L. L.

    1977-01-01

    A theory and the associated numerical technique are developed for an iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the multiple input, multiple output Compensator Improvement Program (CIP). The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples.

  17. An attack aimed at active phase compensation in one-way phase-encoded QKD systems

    NASA Astrophysics Data System (ADS)

    Dong, Zhao-Yue; Yu, Ning-Na; Wei, Zheng-Jun; Wang, Jin-Dong; Zhang, Zhi-Ming

    2014-08-01

    Phase drift is an inherent problem in one-way phase-encoded quantum key distribution (QKD) systems. Although combining passive with active phase compensation (APC) processes can effectively compensate for the phase drift, the security problems brought about by these processes are rarely considered. In this paper, we point out a security hole in the APC process and put forward a corresponding attack scheme. Under our proposed attack, the quantum bit error rate (QBER) of the QKD can be close to zero for some conditions. However, under the same conditions the ratio r of the key "0" and the key "1" which Bob (the legal communicators Alice and Bob) gets is no longer 1:1 but 2:1, which may expose Eve (the eavesdropper). In order to solve this problem, we modify the resend strategy of the attack scheme, which can force r to reach 1 and the QBER to be lower than the tolerable QBER.

  18. CSI, optimal control, and accelerometers: Trials and tribulations

    NASA Technical Reports Server (NTRS)

    Benjamin, Brian J.; Sesak, John R.

    1994-01-01

    New results concerning optimal design with accelerometers are presented. These results show that the designer must be concerned with the stability properties of two Linear Quadratic Gaussian (LQG) compensators, one of which does not explicitly appear in the closed-loop system dynamics. The new concepts of virtual and implemented compensators are introduced to cope with these subtleties. The virtual compensator appears in the closed-loop system dynamics and the implemented compensator appears in control electronics. The stability of one compensator does not guarantee the stability of the other. For strongly stable (robust) systems, both compensators should be stable. The presence of controlled and uncontrolled modes in the system results in two additional forms of the compensator with corresponding terms that are of like form, but opposite sign, making simultaneous stabilization of both the virtual and implemented compensator difficult. A new design algorithm termed sensor augmentation is developed that aids stabilization of these compensator forms by incorporating a static augmentation term associated with the uncontrolled modes in the design process.

  19. Optimal feed-forward compensation for PWM dc/dc converters with 'linear' and 'quadratic' conversion ratio

    NASA Astrophysics Data System (ADS)

    Calderone, Luigi; Pinola, Licia; Varoli, Vincenzo

    1992-04-01

    The paper describes an analytical procedure to optimize the feed-forward compensation for any PWM dc/dc converters. The aims of achieving zero dc audiosusceptibility was found to be possible for the buck, buck-boost, Cuk, and SEPIC cells; for the boost converter, however, only nonoptimal compensation is feasible. Rules for the design of PWM controllers and procedures for the evaluation of the hardware-introduced errors are discussed. A PWM controller implementing the optimal feed-forward compensation for buck-boost, Cuk, and SEPIC cells is described and fully experimentally characterized.

  20. A computerized compensator design algorithm with launch vehicle applications

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Mcdaniel, W. L., Jr.

    1976-01-01

    This short paper presents a computerized algorithm for the design of compensators for large launch vehicles. The algorithm is applicable to the design of compensators for linear, time-invariant, control systems with a plant possessing a single control input and multioutputs. The achievement of frequency response specifications is cast into a strict constraint mathematical programming format. An improved solution algorithm for solving this type of problem is given, along with the mathematical necessities for application to systems of the above type. A computer program, compensator improvement program (CIP), has been developed and applied to a pragmatic space-industry-related example.

  1. Output Feedback Pole-Placement in the Design of Compensators for Suboptimal Linear Quadratic Regulators.

    DTIC Science & Technology

    1979-06-01

    also extended to the class of stabilizable systems and the required compensator shown to possess a separation property. Finally the design methodology...Page 1.1. Block diagram of transfer function given in (1.28) ........... 15 3.3.1. Compensator structure for controllable and stabilizable systems ...response will be stable. The implemented output feedback control law will stabilize the total closed loop system . n nn Let [uin and iJi= 1 be the

  2. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system.

    PubMed

    Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.

  3. Viability costs of reproduction and behavioral compensation in western mosquitofish (Gambusia affinis).

    PubMed

    Laidlaw, Clinton T; Condon, Jacob M; Belk, Mark C

    2014-01-01

    The cost of reproduction hypothesis suggests that current reproduction has inherent tradeoffs with future reproduction. These tradeoffs can be both in the form of energy allocated to current offspring as opposed to somatic maintenance and future reproduction (allocation costs), or as an increase in mortality as a result of morphological or physiological changes related to reproduction (viability costs). Individuals may be able to decrease viability costs by altering behavior. Female western mosquitofish, Gambusia affinis experience a reduction in swimming ability as a consequence of pregnancy. We test for a viability cost of reproduction, and for behavioral compensation in pregnant female G. affinis by measuring survival of females in early and later stages of pregnancy when exposed to predation. Late-stage pregnant females experience a 70% greater probability of mortality compared to early-stage pregnant females. The presence of a refuge roughly doubled the odds of survival of both early and late-stage pregnant females. However, there was no interaction between refuge availability and stage of pregnancy. These data do not provide evidence for behavioral compensation by female G. affinis for elevated viability costs incurred during later stages of pregnancy. Behavioral compensation may be constrained by other aspects of the cost of reproduction.

  4. Feasibility Analysis of DEM Differential Method on Tree Height Assessment wit Terra-SAR/TanDEM-X Data

    NASA Astrophysics Data System (ADS)

    Zhang, Wangfei; Chen, Erxue; Li, Zengyuan; Feng, Qi; Zhao, Lei

    2016-08-01

    DEM Differential Method is an effective and efficient way for forest tree height assessment with Polarimetric and interferometric technology, however, the assessment accuracy of it is based on the accuracy of interferometric results and DEM. Terra-SAR/TanDEM-X, which established the first spaceborne bistatic interferometer, can provide highly accurate cross-track interferometric images in the whole global without inherent accuracy limitations like temporal decorrelation and atmospheric disturbance. These characters of Terra-SAR/TandDEM-X give great potential for global or regional tree height assessment, which have been constraint by the temporal decorrelation in traditional repeat-pass interferometry. Currently, in China, it will be costly to collect high accurate DEM with Lidar. At the same time, it is also difficult to get truly representative ground survey samples to test and verify the assessment results. In this paper, we analyzed the feasibility of using TerraSAR/TanDEM-X data to assess forest tree height with current free DEM data like ASTER-GDEM and archived ground in-suit data like forest management inventory data (FMI). At first, the accuracy and of ASTER-GDEM and forest management inventory data had been assessment according to the DEM and canopy height model (CHM) extracted from Lidar data. The results show the average elevation RMSE between ASTER-GEDM and Lidar-DEM is about 13 meters, but they have high correlation with the correlation coefficient of 0.96. With a linear regression model, we can compensate ASTER-GDEM and improve its accuracy nearly to the Lidar-DEM with same scale. The correlation coefficient between FMI and CHM is 0.40. its accuracy is able to be improved by a linear regression model withinconfidence intervals of 95%. After compensation of ASTER-GDEM and FMI, we calculated the tree height in Mengla test site with DEM Differential Method. The results showed that the corrected ASTER-GDEM can effectively improve the assessment accuracy. The average assessment accuracy before and after corrected is 0.73 and 0.76, the RMSE is 5.5 and 4.4, respectively.

  5. Defining Compensable Injury in Biomedical Research.

    PubMed

    Larkin, Megan E

    2015-01-01

    Biomedical research provides a core social good by enabling medical progress. In the twenty-first century alone, this includes reducing transmission of HIV/AIDS, developing innovative therapies for cancer patients, and exploring the possibilities of personalized medicine. In order to continue to advance medical science, research relies on the voluntary participation of human subjects. Because research is inherently uncertain, unintended harm is an inevitable part of the research enterprise. Currently, injured research participants in the United States must turn to the “litigation lottery” of the tort system in search of compensation. This state of affairs fails research participants, who are too often left uncompensated for devastating losses, and makes the United States an outlier in the international community. In spite of forty years’ worth of Presidential Commissions and other respected voices calling for the development of a no-fault compensation system, no progress has been made to date. One of the reasons for this lack of progress is the failure to develop a coherent ethical basis for an obligation to provide compensation for research related injuries. This problem is exacerbated by the lack of a clear definition of “compensable injury” in the biomedical research context. This article makes a number of important contributions to the scholarship in this growing field. To begin, it examines compensation systems already in existence and concludes that there are four main definitional elements that must be used to define “compensable injury.” Next, it examines the justifications that have been put forth as the basis for an ethical obligation to provide compensation, and settles on retrospective nonmaleficence and distributive and compensatory justice as the most salient and persuasive. Finally, it uses the regulatory elements and the justifications discussed in the first two sections to develop a well-rounded definition of “compensable injury” that is tailored to the biomedical research context. Using this definition, it argues for the development of a first-of- its-kind no-fault compensation system in the United States.

  6. R-parametrization and its role in classification of linear multivariable feedback systems

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.

    1988-01-01

    A classification of all the compensators that stabilize a given general plant in a linear, time-invariant multi-input, multi-output feedback system is developed. This classification, along with the associated necessary and sufficient conditions for stability of the feedback system, is achieved through the introduction of a new parameterization, referred to as R-Parameterization, which is a dual of the familiar Q-Parameterization. The classification is made to the stability conditions of the compensators and the plant by themselves; and necessary and sufficient conditions are based on the stability of Q and R themselves.

  7. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, William M.

    1992-01-01

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  8. Network compensation for missing sensors

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Mulligan, Jeffrey B.

    1991-01-01

    A network learning translation invariance algorithm to compute interpolation functions is presented. This algorithm with one fixed receptive field can construct a linear transformation compensating for gain changes, sensor position jitter, and sensor loss when there are enough remaining sensors to adequately sample the input images. However, when the images are undersampled and complete compensation is not possible, the algorithm need to be modified. For moderate sensor losses, the algorithm works if the transformation weight adjustment is restricted to the weights to output units affected by the loss.

  9. Evaluation of a new breast-shaped compensation filter for a newly built breast imaging system

    NASA Astrophysics Data System (ADS)

    Cai, Weixing; Ning, Ruola; Zhang, Yan; Conover, David

    2007-03-01

    A new breast-shaped compensation filter has been designed and fabricated for breast imaging using our newly built breast imaging (CBCTBI) system, which is able to scan an uncompressed breast with pendant geometry. The shape of this compensation filter is designed based on an average-sized breast phantom. Unlike conventional bow-tie compensation filters, its cross-sectional profile varies along the chest wall-to-nipple direction for better compensation for the shape of a breast. Breast phantoms of three different sizes are used to evaluate the performance of this compensation filter. The reconstruction image quality was studied and compared to that obtained without the compensation filter in place. The uniformity of linear attenuation coefficient and the uniformity of noise distribution are significantly improved, and the contrast-to-noise ratios (CNR) of small lesions near the chest wall are increased as well. Multi-normal image method is used in the reconstruction process to correct compensation flood field and to reduce ring artifacts.

  10. Synthesis procedure for linear time-varying feedback systems with large parameter ignorance

    NASA Technical Reports Server (NTRS)

    Mcdonald, T. E., Jr.

    1972-01-01

    The development of synthesis procedures for linear time-varying feedback systems is considered. It is assumed that the plant can be described by linear differential equations with time-varying coefficients; however, ignorance is associated with the plant in that only the range of the time-variations are known instead of exact functional relationships. As a result of this plant ignorance the use of time-varying compensation is ineffective so that only time-invariant compensation is employed. In addition, there is a noise source at the plant output which feeds noise through the feedback elements to the plant input. Because of this noise source the gain of the feedback elements must be as small as possible. No attempt is made to develop a stability criterion for time-varying systems in this work.

  11. Compact Color Schlieren Optical System

    NASA Technical Reports Server (NTRS)

    Buchele, Donald R.; Griffin, Devon W.

    1996-01-01

    Compact, rugged optical system developed for use in rainbow schlieren deflectometry. Features unobscured telescope with focal-length/aperture-width ratio of 30. Made of carefully selected but relatively inexpensive parts. All of lenses stock items. By-product of design is optical system with loose tolerances on interlens spacing. One of resulting advantages, insensitivity to errors in fabrication of optomechanical mounts. Another advantage is ability to compensate for some of unit-to-unit variations inherent in stock lenses.

  12. An effective temperature compensation approach for ultrasonic hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Tan, Xiaolong; Li, Min; Arsad, Norhana; Wen, Xiaoyan; Lu, Haifei

    2018-03-01

    Hydrogen is a kind of promising clean energy resource with a wide application prospect, which will, however, cause a serious security issue upon the leakage of hydrogen gas. The measurement of its concentration is of great significance. In a traditional approach of ultrasonic hydrogen sensing, a temperature drift of 0.1 °C results in a concentration error of about 250 ppm, which is intolerable for trace amount of gas sensing. In order to eliminate the influence brought by temperature drift, we propose a feasible approach named as linear compensation algorithm, which utilizes the linear relationship between the pulse count and temperature to compensate for the pulse count error (ΔN) caused by temperature drift. Experimental results demonstrate that our proposed approach is capable of improving the measurement accuracy and can easily detect sub-100 ppm of hydrogen concentration under variable temperature conditions.

  13. Heterodyne interferometry method for calibration of a Soleil-Babinet compensator.

    PubMed

    Zhang, Wenjing; Zhang, Zhiwei

    2016-05-20

    A method based on the common-path heterodyne interferometer system is proposed for the calibration of a Soleil-Babinet compensator. In this heterodyne interferometer system, which consists of two acousto-optic modulators, the compensator being calibrated is inserted into the signal path. By using the reference beam as the benchmark and a lock-in amplifier (SR844) as the phase retardation collector, retardations of 0 and λ (one wavelength) can be located accurately, and an arbitrary retardation between 0 and λ can also be measured accurately and continuously. By fitting a straight line to the experimental data, we obtained a linear correlation coefficient (R) of 0.995, which indicates that this system is capable of linear phase detection. The experimental results demonstrate determination accuracies of 0.212° and 0.26° and measurement precisions of 0.054° and 0.608° for retardations of 0 and λ, respectively.

  14. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, W.M.

    1992-12-29

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  15. Linear time-invariant controller design for two-channel decentralized control systems

    NASA Technical Reports Server (NTRS)

    Desoer, Charles A.; Gundes, A. Nazli

    1987-01-01

    This paper analyzes a linear time-invariant two-channel decentralized control system with a 2 x 2 strictly proper plant. It presents an algorithm for the algebraic design of a class of decentralized compensators which stabilize the given plant.

  16. Computational methods for optimal linear-quadratic compensators for infinite dimensional discrete-time systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1986-01-01

    An abstract approximation theory and computational methods are developed for the determination of optimal linear-quadratic feedback control, observers and compensators for infinite dimensional discrete-time systems. Particular attention is paid to systems whose open-loop dynamics are described by semigroups of operators on Hilbert spaces. The approach taken is based on the finite dimensional approximation of the infinite dimensional operator Riccati equations which characterize the optimal feedback control and observer gains. Theoretical convergence results are presented and discussed. Numerical results for an example involving a heat equation with boundary control are presented and used to demonstrate the feasibility of the method.

  17. Optimal fixed-finite-dimensional compensator for Burgers' equation with unbounded input/output operators

    NASA Technical Reports Server (NTRS)

    Burns, John A.; Marrekchi, Hamadi

    1993-01-01

    The problem of using reduced order dynamic compensators to control a class of nonlinear parabolic distributed parameter systems was considered. Concentration was on a system with unbounded input and output operators governed by Burgers' equation. A linearized model was used to compute low-order-finite-dimensional control laws by minimizing certain energy functionals. Then these laws were applied to the nonlinear model. Standard approaches to this problem employ model/controller reduction techniques in conjunction with linear quadratic Gaussian (LQG) theory. The approach used is based on the finite dimensional Bernstein/Hyland optimal projection theory which yields a fixed-finite-order controller.

  18. Intelligent measurement and compensation of linear motor force ripple: a projection-based learning approach in the presence of noise

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Song, Fazhi; Yang, Xiaofeng; Dong, Yue; Tan, Jiubin

    2018-06-01

    Due to their structural simplicity, linear motors are increasingly receiving attention for use in high velocity and high precision applications. The force ripple, as a space-periodic disturbance, however, would deteriorate the achievable dynamic performance. Conventional force ripple measurement approaches are time-consuming and have high requirements on the experimental conditions. In this paper, a novel learning identification algorithm is proposed for force ripple intelligent measurement and compensation. Existing identification schemes always use all the error signals to update the parameters in the force ripple. However, the error induced by noise is non-effective for force ripple identification, and even deteriorates the identification process. In this paper only the most pertinent information in the error signal is utilized for force ripple identification. Firstly, the effective error signals caused by the reference trajectory and the force ripple are extracted by projecting the overall error signals onto a subspace spanned by the physical model of the linear motor as well as the sinusoidal model of the force ripple. The time delay in the linear motor is compensated in the basis functions. Then, a data-driven approach is proposed to design the learning gain. It balances the trade-off between convergence speed and robustness against noise. Simulation and experimental results validate the proposed method and confirm its effectiveness and superiority.

  19. Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Adamian, A.

    1988-01-01

    An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.

  20. Six different roles for crossover inhibition in the retina: correcting the nonlinearities of synaptic transmission.

    PubMed

    Werblin, Frank S

    2010-03-01

    Early retinal studies categorized ganglion cell behavior as either linear or nonlinear and rectifying as represented by the familiar X- and Y-type ganglion cells in cat. Nonlinear behavior is in large part a consequence of the rectifying nonlinearities inherent in synaptic transmission. These nonlinear signals underlie many special functions in retinal processing, including motion detection, motion in motion, and local edge detection. But linear behavior is also required for some visual processing tasks. For these tasks, the inherently nonlinear signals are "linearized" by "crossover inhibition." Linearization utilizes a circuitry whereby nonlinear ON inhibition adds with nonlinear OFF excitation or ON excitation adds with OFF inhibition to generate a more linear postsynaptic voltage response. Crossover inhibition has now been measured in most bipolar, amacrine, and ganglion cells. Functionally crossover inhibition enhances edge detection, allows ganglion cells to recognize luminance-neutral patterns with their receptive fields, permits ganglion cells to distinguish contrast from luminance, and maintains a more constant conductance during the light response. In some cases, crossover extends the operating range of cone-driven OFF ganglion cells into the scotopic levels. Crossover inhibition is also found in neurons of the lateral geniculate nucleus and V1.

  1. Finite-dimensional compensators for infinite-dimensional systems via Galerkin-type approximation

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi

    1990-01-01

    In this paper existence and construction of stabilizing compensators for linear time-invariant systems defined on Hilbert spaces are discussed. An existence result is established using Galkerin-type approximations in which independent basis elements are used instead of the complete set of eigenvectors. A design procedure based on approximate solutions of the optimal regulator and optimal observer via Galerkin-type approximation is given and the Schumacher approach is used to reduce the dimension of compensators. A detailed discussion for parabolic and hereditary differential systems is included.

  2. On-Line Syntax: Thoughts on the Temporality of Spoken Language

    ERIC Educational Resources Information Center

    Auer, Peter

    2009-01-01

    One fundamental difference between spoken and written language has to do with the "linearity" of speaking in time, in that the temporal structure of speaking is inherently the outcome of an interactive process between speaker and listener. But despite the status of "linearity" as one of Saussure's fundamental principles, in practice little more…

  3. True orbit simulation of piecewise linear and linear fractional maps of arbitrary dimension using algebraic numbers

    NASA Astrophysics Data System (ADS)

    Saito, Asaki; Yasutomi, Shin-ichi; Tamura, Jun-ichi; Ito, Shunji

    2015-06-01

    We introduce a true orbit generation method enabling exact simulations of dynamical systems defined by arbitrary-dimensional piecewise linear fractional maps, including piecewise linear maps, with rational coefficients. This method can generate sufficiently long true orbits which reproduce typical behaviors (inherent behaviors) of these systems, by properly selecting algebraic numbers in accordance with the dimension of the target system, and involving only integer arithmetic. By applying our method to three dynamical systems—that is, the baker's transformation, the map associated with a modified Jacobi-Perron algorithm, and an open flow system—we demonstrate that it can reproduce their typical behaviors that have been very difficult to reproduce with conventional simulation methods. In particular, for the first two maps, we show that we can generate true orbits displaying the same statistical properties as typical orbits, by estimating the marginal densities of their invariant measures. For the open flow system, we show that an obtained true orbit correctly converges to the stable period-1 orbit, which is inherently possessed by the system.

  4. Spatial curvilinear path following control of underactuated AUV with multiple uncertainties.

    PubMed

    Miao, Jianming; Wang, Shaoping; Zhao, Zhiping; Li, Yuan; Tomovic, Mileta M

    2017-03-01

    This paper investigates the problem of spatial curvilinear path following control of underactuated autonomous underwater vehicles (AUVs) with multiple uncertainties. Firstly, in order to design the appropriate controller, path following error dynamics model is constructed in a moving Serret-Frenet frame, and the five degrees of freedom (DOFs) dynamic model with multiple uncertainties is established. Secondly, the proposed control law is separated into kinematic controller and dynamic controller via back-stepping technique. In the case of kinematic controller, to overcome the drawback of dependence on the accurate vehicle model that are present in a number of path following control strategies described in the literature, the unknown side-slip angular velocity and attack angular velocity are treated as uncertainties. Whereas in the case of dynamic controller, the model parameters perturbations, unknown external environmental disturbances and the nonlinear hydrodynamic damping terms are treated as lumped uncertainties. Both kinematic and dynamic uncertainties are estimated and compensated by designed reduced-order linear extended state observes (LESOs). Thirdly, feedback linearization (FL) based control law is implemented for the control model using the estimates generated by reduced-order LESOs. For handling the problem of computational complexity inherent in the conventional back-stepping method, nonlinear tracking differentiators (NTDs) are applied to construct derivatives of the virtual control commands. Finally, the closed loop stability for the overall system is established. Simulation and comparative analysis demonstrate that the proposed controller exhibits enhanced performance in the presence of internal parameter variations, external unknown disturbances, unmodeled nonlinear damping terms, and measurement noises. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Compensation method for obtaining accurate, sub-micrometer displacement measurements of immersed specimens using electronic speckle interferometry.

    PubMed

    Fazio, Massimo A; Bruno, Luigi; Reynaud, Juan F; Poggialini, Andrea; Downs, J Crawford

    2012-03-01

    We proposed and validated a compensation method that accounts for the optical distortion inherent in measuring displacements on specimens immersed in aqueous solution. A spherically-shaped rubber specimen was mounted and pressurized on a custom apparatus, with the resulting surface displacements recorded using electronic speckle pattern interferometry (ESPI). Point-to-point light direction computation is achieved by a ray-tracing strategy coupled with customized B-spline-based analytical representation of the specimen shape. The compensation method reduced the mean magnitude of the displacement error induced by the optical distortion from 35% to 3%, and ESPI displacement measurement repeatability showed a mean variance of 16 nm at the 95% confidence level for immersed specimens. The ESPI interferometer and numerical data analysis procedure presented herein provide reliable, accurate, and repeatable measurement of sub-micrometer deformations obtained from pressurization tests of spherically-shaped specimens immersed in aqueous salt solution. This method can be used to quantify small deformations in biological tissue samples under load, while maintaining the hydration necessary to ensure accurate material property assessment.

  6. Modeling susceptibility difference artifacts produced by metallic implants in magnetic resonance imaging with point-based thin-plate spline image registration.

    PubMed

    Pauchard, Y; Smith, M; Mintchev, M

    2004-01-01

    Magnetic resonance imaging (MRI) suffers from geometric distortions arising from various sources. One such source are the non-linearities associated with the presence of metallic implants, which can profoundly distort the obtained images. These non-linearities result in pixel shifts and intensity changes in the vicinity of the implant, often precluding any meaningful assessment of the entire image. This paper presents a method for correcting these distortions based on non-rigid image registration techniques. Two images from a modelled three-dimensional (3D) grid phantom were subjected to point-based thin-plate spline registration. The reference image (without distortions) was obtained from a grid model including a spherical implant, and the corresponding test image containing the distortions was obtained using previously reported technique for spatial modelling of magnetic susceptibility artifacts. After identifying the nonrecoverable area in the distorted image, the calculated spline model was able to quantitatively account for the distortions, thus facilitating their compensation. Upon the completion of the compensation procedure, the non-recoverable area was removed from the reference image and the latter was compared to the compensated image. Quantitative assessment of the goodness of the proposed compensation technique is presented.

  7. Inverting Monotonic Nonlinearities by Entropy Maximization

    PubMed Central

    López-de-Ipiña Pena, Karmele; Caiafa, Cesar F.

    2016-01-01

    This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results. PMID:27780261

  8. Inverting Monotonic Nonlinearities by Entropy Maximization.

    PubMed

    Solé-Casals, Jordi; López-de-Ipiña Pena, Karmele; Caiafa, Cesar F

    2016-01-01

    This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results.

  9. The inherent dynamics of a molecular liquid: geodesic pathways through the potential energy landscape of a liquid of linear molecules.

    PubMed

    Jacobson, Daniel; Stratt, Richard M

    2014-05-07

    Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation-molecules largely thread their way through narrow channels available in the potential energy landscape.

  10. The inherent dynamics of a molecular liquid: Geodesic pathways through the potential energy landscape of a liquid of linear molecules

    NASA Astrophysics Data System (ADS)

    Jacobson, Daniel; Stratt, Richard M.

    2014-05-01

    Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation—molecules largely thread their way through narrow channels available in the potential energy landscape.

  11. Transfer Alignment Error Compensator Design Based on Robust State Estimation

    NASA Astrophysics Data System (ADS)

    Lyou, Joon; Lim, You-Chol

    This paper examines the transfer alignment problem of the StrapDown Inertial Navigation System (SDINS), which is subject to the ship’s roll and pitch. Major error sources for velocity and attitude matching are lever arm effect, measurement time delay and ship-body flexure. To reduce these alignment errors, an error compensation method based on state augmentation and robust state estimation is devised. A linearized error model for the velocity and attitude matching transfer alignment system is derived first by linearizing the nonlinear measurement equation with respect to its time delay and dominant Y-axis flexure, and by augmenting the delay state and flexure state into conventional linear state equations. Then an H∞ filter is introduced to account for modeling uncertainties of time delay and the ship-body flexure. The simulation results show that this method considerably decreases azimuth alignment errors considerably.

  12. Modeling and control of flexible structures

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Mingori, D. L.

    1988-01-01

    This monograph presents integrated modeling and controller design methods for flexible structures. The controllers, or compensators, developed are optimal in the linear-quadratic-Gaussian sense. The performance objectives, sensor and actuator locations and external disturbances influence both the construction of the model and the design of the finite dimensional compensator. The modeling and controller design procedures are carried out in parallel to ensure compatibility of these two aspects of the design problem. Model reduction techniques are introduced to keep both the model order and the controller order as small as possible. A linear distributed, or infinite dimensional, model is the theoretical basis for most of the text, but finite dimensional models arising from both lumped-mass and finite element approximations also play an important role. A central purpose of the approach here is to approximate an optimal infinite dimensional controller with an implementable finite dimensional compensator. Both convergence theory and numerical approximation methods are given. Simple examples are used to illustrate the theory.

  13. Comparison of digital signal-signal beat interference compensation techniques in direct-detection subcarrier modulation systems.

    PubMed

    Li, Zhe; Erkilinc, M Sezer; Galdino, Lidia; Shi, Kai; Thomsen, Benn C; Bayvel, Polina; Killey, Robert I

    2016-12-12

    Single-polarization direct-detection transceivers may offer advantages compared to digital coherent technology for some metro, back-haul, access and inter-data center applications since they offer low-cost and complexity solutions. However, a direct-detection receiver introduces nonlinearity upon photo detection, since it is a square-law device, which results in signal distortion due to signal-signal beat interference (SSBI). Consequently, it is desirable to develop effective and low-cost SSBI compensation techniques to improve the performance of such transceivers. In this paper, we compare the performance of a number of recently proposed digital signal processing-based SSBI compensation schemes, including the use of single- and two-stage linearization filters, an iterative linearization filter and a SSBI estimation and cancellation technique. Their performance is assessed experimentally using a 7 × 25 Gb/s wavelength division multiplexed (WDM) single-sideband 16-QAM Nyquist-subcarrier modulation system operating at a net information spectral density of 2.3 (b/s)/Hz.

  14. Temperature and neuronal circuit function: compensation, tuning and tolerance.

    PubMed

    Robertson, R Meldrum; Money, Tomas G A

    2012-08-01

    Temperature has widespread and diverse effects on different subcellular components of neuronal circuits making it difficult to predict precisely the overall influence on output. Increases in temperature generally increase the output rate in either an exponential or a linear manner. Circuits with a slow output tend to respond exponentially with relatively high Q(10)s, whereas those with faster outputs tend to respond in a linear fashion with relatively low temperature coefficients. Different attributes of the circuit output can be compensated by virtue of opposing processes with similar temperature coefficients. At the extremes of the temperature range, differences in the temperature coefficients of circuit mechanisms cannot be compensated and the circuit fails, often with a reversible loss of ion homeostasis. Prior experience of temperature extremes activates conserved processes of phenotypic plasticity that tune neuronal circuits to be better able to withstand the effects of temperature and to recover more rapidly from failure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Structural Evolution and Kinetics in Cu-Zr Metallic Liquids from Molecular Dynamics Simulations (Postprint)

    DTIC Science & Technology

    2013-10-23

    compensate for overcounting due to numerical issues inherent in the tessellation.16 The shape of the coordination polyhedron was determined by the shape...work by Yang et al.21 The total volume can be determined by finding the volume of the convex polyhedron whose vertices are given by the centers of...atoms in the nearest-neighbor shell. In order to determine the volume of the atoms inside the clusters, the convex hull polyhedron is first segmented

  16. Apollo experience report: Guidance and control systems - Digital autopilot design development

    NASA Technical Reports Server (NTRS)

    Peters, W. H.; Cox, K. J.

    1973-01-01

    The development of the Apollo digital autopilots (the primary attitude control systems that were used for all phases of the lunar landing mission) is summarized. This report includes design requirements, design constraints, and design philosophy. The development-process functions and the essential information flow paths are identified. Specific problem areas that existed during the development are included. A discussion is also presented on the benefits inherent in mechanizing attitude-controller logic and dynamic compensation in a digital computer.

  17. Dysphagia in the Elderly

    PubMed Central

    Aslam, Muhammad

    2013-01-01

    Elderly patients are inherently predisposed to dysphagia predominately because of comorbid health conditions. With the aging of the population in the United States, along with the increased prevalence of obesity and gastroesophageal reflux disease, healthcare providers will increasingly encounter older patients with either oropharyngeal or esophageal disease and complaints of dysphagia. Useful tests to evaluate dysphagia include the videofluoroscopic swallowing study and the fiberoptic endoscopic evaluation of swallowing. Swallow rehabilitation is useful to help patients compensate for swallowing difficulty and ultimately help strengthen the neuromusculature involved in swallowing. PMID:24772045

  18. An Analysis of Air Pollution Control Technologies for Shipyard Emitted Volatile Organic Compounds (VOCS)

    DTIC Science & Technology

    1993-03-01

    3.1.1 Incineration 3.1.2 Oxidation 3.2 Sorption Processes 3.2.1 Adsorption 3.2.2 Absorption 3.3 Condensation 3.4 Hybrid Systems 4.0 Examples of Recent...droplets are then collected onto a surface for removal. ● Hybrid systems use the strength of one technology to compensate for the weakness in another...technology has inherent advantages and disadvantages depending upon its application. Hybrid systems , or combinations of these technologies, are

  19. Approximation of discrete-time LQG compensators for distributed systems with boundary input and unbounded measurement

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1987-01-01

    The approximation of optimal discrete-time linear quadratic Gaussian (LQG) compensators for distributed parameter control systems with boundary input and unbounded measurement is considered. The approach applies to a wide range of problems that can be formulated in a state space on which both the discrete-time input and output operators are continuous. Approximating compensators are obtained via application of the LQG theory and associated approximation results for infinite dimensional discrete-time control systems with bounded input and output. Numerical results for spline and modal based approximation schemes used to compute optimal compensators for a one dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise measurement of temperature are presented and discussed.

  20. Hysteresis Compensation of Piezoresistive Carbon Nanotube/Polydimethylsiloxane Composite-Based Force Sensors

    PubMed Central

    Kim, Ji-Sik; Kim, Gi-Woo

    2017-01-01

    This paper provides a preliminary study on the hysteresis compensation of a piezoresistive silicon-based polymer composite, poly(dimethylsiloxane) dispersed with carbon nanotubes (CNTs), to demonstrate its feasibility as a conductive composite (i.e., a force-sensitive resistor) for force sensors. In this study, the potential use of the nanotube/polydimethylsiloxane (CNT/PDMS) as a force sensor is evaluated for the first time. The experimental results show that the electrical resistance of the CNT/PDMS composite changes in response to sinusoidal loading and static compressive load. The compensated output based on the Duhem hysteresis model shows a linear relationship. This simple hysteresis model can compensate for the nonlinear frequency-dependent hysteresis phenomenon when a dynamic sinusoidal force input is applied. PMID:28125046

  1. An optimal baseline selection methodology for data-driven damage detection and temperature compensation in acousto-ultrasonics

    NASA Astrophysics Data System (ADS)

    Torres-Arredondo, M.-A.; Sierra-Pérez, Julián; Cabanes, Guénaël

    2016-05-01

    The process of measuring and analysing the data from a distributed sensor network all over a structural system in order to quantify its condition is known as structural health monitoring (SHM). For the design of a trustworthy health monitoring system, a vast amount of information regarding the inherent physical characteristics of the sources and their propagation and interaction across the structure is crucial. Moreover, any SHM system which is expected to transition to field operation must take into account the influence of environmental and operational changes which cause modifications in the stiffness and damping of the structure and consequently modify its dynamic behaviour. On that account, special attention is paid in this paper to the development of an efficient SHM methodology where robust signal processing and pattern recognition techniques are integrated for the correct interpretation of complex ultrasonic waves within the context of damage detection and identification. The methodology is based on an acousto-ultrasonics technique where the discrete wavelet transform is evaluated for feature extraction and selection, linear principal component analysis for data-driven modelling and self-organising maps for a two-level clustering under the principle of local density. At the end, the methodology is experimentally demonstrated and results show that all the damages were detectable and identifiable.

  2. Delay compensation in integrated communication and control systems. I - Conceptual development and analysis

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1990-01-01

    A procedure for compensating for the effects of distributed network-induced delays in integrated communication and control systems (ICCS) is proposed. The problem of analyzing systems with time-varying and possibly stochastic delays could be circumvented by use of a deterministic observer which is designed to perform under certain restrictive but realistic assumptions. The proposed delay-compensation algorithm is based on a deterministic state estimator and a linear state-variable-feedback control law. The deterministic observer can be replaced by a stochastic observer without any structural modifications of the delay compensation algorithm. However, if a feedforward-feedback control law is chosen instead of the state-variable feedback control law, the observer must be modified as a conventional nondelayed system would be. Under these circumstances, the delay compensation algorithm would be accordingly changed. The separation principle of the classical Luenberger observer holds true for the proposed delay compensator. The algorithm is suitable for ICCS in advanced aircraft, spacecraft, manufacturing automation, and chemical process applications.

  3. Model based design of electronic throttle control

    NASA Astrophysics Data System (ADS)

    Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.

    2017-11-01

    With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more precise and accurate.

  4. A synchrotron-radiation-based variable angle ellipsometer for the visible to vacuum ultraviolet spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumann, M. D., E-mail: maciej.neumann@isas.de; Cobet, C.; Esser, N.

    2014-05-15

    A rotating analyzer spectroscopic polarimeter and ellipsometer with a wide-range θ-2θ goniometer installed at the Insertion Device Beamline of the Metrology Light Source in Berlin is presented. With a combination of transmission- and reflection-based polarizing elements and the inherent degree of polarization of the undulator radiation, this ellipsometer is able to cover photon energies from about 2 eV up to 40 eV. Additionally, a new compensator design based on a CaF{sub 2} Fresnel rhomb is presented. This compensator allows ellipsometric measurements with circular polarization in the vacuum ultraviolet spectral range and thus, for example, the characterization of depolarizing samples. The new instrumentmore » was initially used for the characterization of the polarization of the beamline. The technical capabilities of the ellipsometer are demonstrated by a cohesive wide-range measurement of the dielectric function of epitaxially grown ZnO.« less

  5. Noise-cancellation-based nonuniformity correction algorithm for infrared focal-plane arrays.

    PubMed

    Godoy, Sebastián E; Pezoa, Jorge E; Torres, Sergio N

    2008-10-10

    The spatial fixed-pattern noise (FPN) inherently generated in infrared (IR) imaging systems compromises severely the quality of the acquired imagery, even making such images inappropriate for some applications. The FPN refers to the inability of the photodetectors in the focal-plane array to render a uniform output image when a uniform-intensity scene is being imaged. We present a noise-cancellation-based algorithm that compensates for the additive component of the FPN. The proposed method relies on the assumption that a source of noise correlated to the additive FPN is available to the IR camera. An important feature of the algorithm is that all the calculations are reduced to a simple equation, which allows for the bias compensation of the raw imagery. The algorithm performance is tested using real IR image sequences and is compared to some classical methodologies. (c) 2008 Optical Society of America

  6. Concentration dependence of molal conductivity and dielectric constant of 1-alcohol electrolytes using the compensated arrhenius formalism.

    PubMed

    Fleshman, Allison M; Petrowsky, Matt; Frech, Roger

    2013-05-02

    The molal conductivity of liquid electrolytes with low static dielectric constants (ε(s) < 10) decreases to a minimum at low concentrations (region I) and increases to a maximum at higher concentrations (region II) when plotted against the square root of the concentration. This behavior is investigated by applying the compensated Arrhenius formalism (CAF) to the molal conductivity, Λ, of a family of 1-alcohol electrolytes over a broad concentration range. A scaling procedure is applied that results in an energy of activation (E(a)) and an exponential prefactor (Λ0) that are both concentration dependent. It is shown that the increasing molal conductivity in region II results from the combined effect of (1) a decrease in the energy of activation calculated from the CAF, and (2) an inherent concentration dependence in the exponential prefactor that is partly due to the dielectric constant.

  7. [Spatiotemporal changes of wetlands in Hangzhou Bay Industrial Belt].

    PubMed

    Lu, Zhang-Wei; Wu, Ci-Fang; Yue, Wen-Ze; Liu, Yong; Ren, Li-Yan

    2009-07-01

    By using RS and GIS techniques, the spatiotemporal changes of wetlands in Hangzhou Bay Industrial Belt, one of the most developed zones in Zhejiang Province, from 1990 to 2005 were studied. There was a frequent conversion between the wetlands and other land use types and between the wetlands themselves, mainly manifested in the conversion between wetland and farmland, and from wetland to construction land and from tidal flat to aquiculture area. The comparative advantage of other land use types and the policy of cultivated land's requisition-compensation balance decided the inherent mechanisms of these spatiotemporal changes. Driven by the aquaculture's comparative advantage to traditional agriculture, large areas of inland farmland and of the tidal flat along the coast of Hangzhou Bay were reclaimed into aquiculture area, and the rapid expansion of construction land, limited land resources, and the implement of cultivated land's requisition-compensation balance policy induced the wetlands being occupied.

  8. Vibration isolation and pressure compensation apparatus for sensitive instrumentation

    NASA Technical Reports Server (NTRS)

    Averill, R. D. (Inventor)

    1983-01-01

    A system for attenuating the inherent vibration associated with a mechanical refrigeration unit employed to cryogenically cool sensitive instruments used in measuring chemical constituents of the atmosphere is described. A modular system including an instrument housing and a reaction bracket with a refrigerator unit floated there between comprise the instrumentation system. A pair of evacuated bellows that "float' refrigerator unit and provide pressure compensation at all levels of pressure from seal level to the vacuum of space. Vibration isolators and when needed provide additional vibration damping for the refrigerator unit. A flexible thermal strap (20 K) serves to provide essentially vibration free thermal contact between cold tip of the refrigerator unit and the instrument component mounted on the IDL mount. Another flexible strap (77 K) serves to provide vibration free thermal contact between the TDL mount thermal shroud and a thermal shroud disposed about the thermal shaft.

  9. GOES I/M image navigation and registration

    NASA Technical Reports Server (NTRS)

    Fiorello, J. L., Jr.; Oh, I. H.; Kelly, K. A.; Ranne, L.

    1989-01-01

    Image Navigation and Registration (INR) is the system that will be used on future Geostationary Operational Environmental Satellite (GOES) missions to locate and register radiometric imagery data. It consists of a semiclosed loop system with a ground-based segment that generates coefficients to perform image motion compensation (IMC). The IMC coefficients are uplinked to the satellite-based segment, where they are used to adjust the displacement of the imagery data due to movement of the imaging instrument line-of-sight. The flight dynamics aspects of the INR system is discussed in terms of the attitude and orbit determination, attitude pointing, and attitude and orbit control needed to perform INR. The modeling used in the determination of orbit and attitude is discussed, along with the method of on-orbit control used in the INR system, and various factors that affect stability. Also discussed are potential error sources inherent in the INR system and the operational methods of compensating for these errors.

  10. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    PubMed

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  11. Identification and compensation of friction for a novel two-axis differential micro-feed system

    NASA Astrophysics Data System (ADS)

    Du, Fuxin; Zhang, Mingyang; Wang, Zhaoguo; Yu, Chen; Feng, Xianying; Li, Peigang

    2018-06-01

    Non-linear friction in a conventional drive feed system (CDFS) feeding at low speed is one of the main factors that lead to the complexity of the feed drive. The CDFS will inevitably enter or approach a non-linear creeping work area at extremely low speed. A novel two-axis differential micro-feed system (TDMS) is developed in this paper to overcome the accuracy limitation of CDFS. A dynamic model of TDMS is first established. Then, a novel all-component friction parameter identification method (ACFPIM) using a genetic algorithm (GA) to identify the friction parameters of a TDMS is introduced. The friction parameters of the ball screw and linear motion guides are identified independently using the method, assuring the accurate modelling of friction force at all components. A proportional-derivate feed drive position controller with an observer-based friction compensator is implemented to achieve an accurate trajectory tracking performance. Finally, comparative experiments demonstrate the effectiveness of the TDMS in inhibiting the disadvantageous influence of non-linear friction and the validity of the proposed identification method for TDMS.

  12. Design and application of quadrature compensation patterns in bulk silicon micro-gyroscopes.

    PubMed

    Ni, Yunfang; Li, Hongsheng; Huang, Libin

    2014-10-29

    This paper focuses on the detailed design issues of a peculiar quadrature reduction method named system stiffness matrix diagonalization, whose key technology is the design and application of quadrature compensation patterns. For bulk silicon micro-gyroscopes, a complete design and application case was presented. The compensation principle was described first. In the mechanical design, four types of basic structure units were presented to obtain the basic compensation function. A novel layout design was proposed to eliminate the additional disturbing static forces and torques. Parameter optimization was carried out to maximize the available compensation capability in a limited layout area. Two types of voltage loading methods were presented. Their influences on the sense mode dynamics were analyzed. The proposed design was applied on a dual-mass silicon micro-gyroscope developed in our laboratory. The theoretical compensation capability of a quadrature equivalent angular rate no more than 412 °/s was designed. In experiments, an actual quadrature equivalent angular rate of 357 °/s was compensated successfully. The actual compensation voltages were a little larger than the theoretical ones. The correctness of the design and the theoretical analyses was verified. They can be commonly used in planar linear vibratory silicon micro-gyroscopes for quadrature compensation purpose.

  13. Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting.

    PubMed

    Bagheri, Zahra S; Melancon, David; Liu, Lu; Johnston, R Burnett; Pasini, Damiano

    2017-06-01

    The accuracy of Additive Manufacturing processes in fabricating porous biomaterials is currently limited by their capacity to render pore morphology that precisely matches its design. In a porous biomaterial, a geometric mismatch can result in pore occlusion and strut thinning, drawbacks that can inherently compromise bone ingrowth and severely impact mechanical performance. This paper focuses on Selective Laser Melting of porous microarchitecture and proposes a compensation scheme that reduces the morphology mismatch between as-designed and as-manufactured geometry, in particular that of the pore. A spider web analog is introduced, built out of Ti-6Al-4V powder via SLM, and morphologically characterized. Results from error analysis of strut thickness are used to generate thickness compensation relations expressed as a function of the angle each strut formed with the build plane. The scheme is applied to fabricate a set of three-dimensional porous biomaterials, which are morphologically and mechanically characterized via micro Computed Tomography, mechanically tested and numerically analyzed. For strut thickness, the results show the largest mismatch (60% from the design) occurring for horizontal members, reduces to 3.1% upon application of the compensation. Similar improvement is observed also for the mechanical properties, a factor that further corroborates the merit of the design-oriented scheme here introduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. SEMICONDUCTOR TECHNOLOGY: An efficient dose-compensation method for proximity effect correction

    NASA Astrophysics Data System (ADS)

    Ying, Wang; Weihua, Han; Xiang, Yang; Renping, Zhang; Yang, Zhang; Fuhua, Yang

    2010-08-01

    A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography. The sizes of exposed patterns depend on dose factors while other exposure parameters (including accelerate voltage, resist thickness, exposing step size, substrate material, and so on) remain constant. This method is based on two reasonable assumptions in the evaluation of the compensated dose factor: one is that the relation between dose factors and circle-diameters is linear in the range under consideration; the other is that the compensated dose factor is only affected by the nearest neighbors for simplicity. Four-layer-hexagon photonic crystal structures were fabricated as test patterns to demonstrate this method. Compared to the uncorrected structures, the homogeneity of the corrected hole-size in photonic crystal structures was clearly improved.

  15. Strain-rate/temperature behavior of high density polyethylene in compression

    NASA Technical Reports Server (NTRS)

    Clements, L. L.; Sherby, O. D.

    1978-01-01

    The compressive strain rate/temperature behavior of highly linear, high density polyethylene was analyzed in terms of the predictive relations developed for metals and other crystalline materials. For strains of 5 percent and above, the relationship between applied strain rate, dotted epsilon, and resulting flow stress, sigma, was found to be: dotted epsilon exp times (Q sub f/RT) = k'(sigma/sigma sub c) to the nth power; the left-hand side is the activation-energy-compensated strain rate, where Q sub f is activation energy for flow, R is gas constant, and T is temperature; k is a constant, n is temperature-independent stress exponent, and sigma/sigma sub c is structure-compensated stress. A master curve resulted from a logarithmic plot of activation-energy-compensated strain rate versus structure-compensated stress.

  16. Motion compensation in digital subtraction angiography using graphics hardware.

    PubMed

    Deuerling-Zheng, Yu; Lell, Michael; Galant, Adam; Hornegger, Joachim

    2006-07-01

    An inherent disadvantage of digital subtraction angiography (DSA) is its sensitivity to patient motion which causes artifacts in the subtraction images. These artifacts could often reduce the diagnostic value of this technique. Automated, fast and accurate motion compensation is therefore required. To cope with this requirement, we first examine a method explicitly designed to detect local motions in DSA. Then, we implement a motion compensation algorithm by means of block matching on modern graphics hardware. Both methods search for maximal local similarity by evaluating a histogram-based measure. In this context, we are the first who have mapped an optimizing search strategy on graphics hardware while paralleling block matching. Moreover, we provide an innovative method for creating histograms on graphics hardware with vertex texturing and frame buffer blending. It turns out that both methods can effectively correct the artifacts in most case, as the hardware implementation of block matching performs much faster: the displacements of two 1024 x 1024 images can be calculated at 3 frames/s with integer precision or 2 frames/s with sub-pixel precision. Preliminary clinical evaluation indicates that the computation with integer precision could already be sufficient.

  17. Adaptive feedforward control of non-minimum phase structural systems

    NASA Astrophysics Data System (ADS)

    Vipperman, J. S.; Burdisso, R. A.

    1995-06-01

    Adaptive feedforward control algorithms have been effectively applied to stationary disturbance rejection. For structural systems, the ideal feedforward compensator is a recursive filter which is a function of the transfer functions between the disturbance and control inputs and the error sensor output. Unfortunately, most control configurations result in a non-minimum phase control path; even a collocated control actuator and error sensor will not necessarily produce a minimum phase control path in the discrete domain. Therefore, the common practice is to choose a suitable approximation of the ideal compensator. In particular, all-zero finite impulse response (FIR) filters are desirable because of their inherent stability for adaptive control approaches. However, for highly resonant systems, large order filters are required for broadband applications. In this work, a control configuration is investigated for controlling non-minimum phase lightly damped structural systems. The control approach uses low order FIR filters as feedforward compensators in a configuration that has one more control actuator than error sensors. The performance of the controller was experimentally evaluated on a simply supported plate under white noise excitation for a two-input, one-output (2I1O) system. The results show excellent error signal reduction, attesting to the effectiveness of the method.

  18. Age-related impairment in choroidal blood flow compensation for arterial blood pressure fluctuation in pigeons.

    PubMed

    Reiner, Anton; Del Mar, Nobel; Zagvazdin, Yuri; Li, Chunyan; Fitzgerald, Malinda E C

    2011-09-14

    Choroidal vessels compensate for changes in systemic blood pressure (BP) so that choroidal blood flow (ChBF) remains stable over a BP range of approximately 40 mm Hg above and below basal. Because of the presumed importance of ChBF regulation for maintenance of retinal health, we investigated if ChBF compensation for BP fluctuation in pigeons fails with age. Transcleral laser Doppler flowmetry was used to measure ChBF during spontaneous BP fluctuation in anesthetized pigeons ranging in age from 0.5 to 17 years (pigeons can live approximately 20 years in captivity). ChBF in <8-year-old pigeons remained near 100% of basal ChBF at BPs ranging 40 mm Hg above and below basal BP (95 mm Hg). Baroregulation failed below approximately 50 mm Hg BP. In ≥8-year-old pigeons, ChBF compensation was absent at >90 mm Hg BP, with ChBF linearly following BP. Over the 60 to 90 mm Hg range, ChBF in ≥8-year-old pigeons was maintained at 60-70% of young basal ChBF. Below approximately 55 mm Hg, baroregulation again followed BP linearly. Age-related ChBF baroregulatory impairment occurs in pigeons, with ChBF linear with above-basal BP, and ChBF failing to adequately maintain ChBF during below-basal BP. Defective autonomic sympathetic and parasympathetic neurogenic control, or defective myogenic control, may cause these baroregulatory defects. In either case, overperfusion during high BP may cause oxidative injury to the outer retina, whereas underperfusion during low BP may result in deficient nutrient supply and waste removal, with both abnormalities contributing to age-related retinal pathology and vision loss.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X; Sisniega, A; Zbijewski, W

    Purpose: Visualization and quantification of coronary artery calcification and atherosclerotic plaque benefits from coronary artery motion (CAM) artifact elimination. This work applies a rigid linear motion model to a Volume of Interest (VoI) for estimating motion estimation and compensation of image degradation in Coronary Computed Tomography Angiography (CCTA). Methods: In both simulation and testbench experiments, translational CAM was generated by displacement of the imaging object (i.e. simulated coronary artery and explanted human heart) by ∼8 mm, approximating the motion of a main coronary branch. Rotation was assumed to be negligible. A motion degraded region containing a calcification was selected asmore » the VoI. Local residual motion was assumed to be rigid and linear over the acquisition window, simulating motion observed during diastasis. The (negative) magnitude of the image gradient of the reconstructed VoI was chosen as the motion estimation objective and was minimized with Covariance Matrix Adaptation Evolution Strategy (CMAES). Results: Reconstruction incorporated the estimated CAM yielded signification recovery of fine calcification structures as well as reduced motion artifacts within the selected local region. The compensated reconstruction was further evaluated using two image similarity metrics, the structural similarity index (SSIM) and Root Mean Square Error (RMSE). At the calcification site, the compensated data achieved a 3% increase in SSIM and a 91.2% decrease in RMSE in comparison with the uncompensated reconstruction. Conclusion: Results demonstrate the feasibility of our image-based motion estimation method exploiting a local rigid linear model for CAM compensation. The method shows promising preliminary results for the application of such estimation in CCTA. Further work will involve motion estimation of complex motion corrupted patient data acquired from clinical CT scanner.« less

  20. Amplitude- and rise-time-compensated filters

    DOEpatents

    Nowlin, Charles H.

    1984-01-01

    An amplitude-compensated rise-time-compensated filter for a pulse time-of-occurrence (TOOC) measurement system is disclosed. The filter converts an input pulse, having the characteristics of random amplitudes and random, non-zero rise times, to a bipolar output pulse wherein the output pulse has a zero-crossing time that is independent of the rise time and amplitude of the input pulse. The filter differentiates the input pulse, along the linear leading edge of the input pulse, and subtracts therefrom a pulse fractionally proportional to the input pulse. The filter of the present invention can use discrete circuit components and avoids the use of delay lines.

  1. Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions

    NASA Astrophysics Data System (ADS)

    Fernholz, T.; Teichert, H.; Ebert, V.

    A new harmonic detection scheme for fully digital, fast-scanning wavelength-modulation spectroscopy (DFS-WMS) is presented. DFS-WMS is specially suited for in situ absorption measurements in combustion environments under fast fluctuating transmission conditions and is demonstrated for the first time by open-path monitoring of ambient oxygen using a distributed-feedback diode laser, which is doubly modulated with a fast linear 1 kHz-scan and a sinusoidal 300 kHz-modulation. After an analog high-pass filter, the detector signal is digitized with a 5 megasample/s 12-bit AD-converter card plugged into a PC and subsequently - unlike standard lock-ins - filtered further by co-adding 100 scans, to generate a narrowband comb filter. All further filtering and the demodulation are performed completely digitally on a PC with the help of discrete Fourier transforms (DFT). Both 1f- and 2f-signals, are simultaneously extracted from the detector signal using one ADC input channel. For the 2f-signal, a linearity of 2% and a minimum detectable absorption of 10-4 could be verified experimentally, with the sensitivity to date being limited only by insufficient gain on the 2f-frequency channel. Using the offset in the 1f signal as a transmission `probe', we could show that the 2f-signal can be transmission-corrected by a simple division by the 1f-background, proving that DFS-WMS provides the possibility of compensating for transmission fluctuations. With the inherent suppression of additive noise, DFS-WMS seems well suited for quantitative in situ absorption spectroscopy in large combustion systems. This assumption is supported by the first measurements of oxygen in a high-pressure combustor at 12 bar.

  2. PAM4 silicon photonic microring resonator-based transceiver circuits

    NASA Astrophysics Data System (ADS)

    Palermo, Samuel; Yu, Kunzhi; Roshan-Zamir, Ashkan; Wang, Binhao; Li, Cheng; Seyedi, M. Ashkan; Fiorentino, Marco; Beausoleil, Raymond

    2017-02-01

    Increased data rates have motivated the investigation of advanced modulation schemes, such as four-level pulseamplitude modulation (PAM4), in optical interconnect systems in order to enable longer transmission distances and operation with reduced circuit bandwidth relative to non-return-to-zero (NRZ) modulation. Employing this modulation scheme in interconnect architectures based on high-Q silicon photonic microring resonator devices, which occupy small area and allow for inherent wavelength-division multiplexing (WDM), offers a promising solution to address the dramatic increase in datacenter and high-performance computing system I/O bandwidth demands. Two ring modulator device structures are proposed for PAM4 modulation, including a single phase shifter segment device driven with a multi-level PAM4 transmitter and a two-segment device driven by two simple NRZ (MSB/LSB) transmitters. Transmitter circuits which utilize segmented pulsed-cascode high swing output stages are presented for both device structures. Output stage segmentation is utilized in the single-segment device design for PAM4 voltage level control, while in the two-segment design it is used for both independent MSB/LSB voltage levels and impedance control for output eye skew compensation. The 65nm CMOS transmitters supply a 4.4Vppd output swing for 40Gb/s operation when driving depletion-mode microring modulators implemented in a 130nm SOI process, with the single- and two-segment designs achieving 3.04 and 4.38mW/Gb/s, respectively. A PAM4 optical receiver front-end is also described which employs a large input-stage feedback resistor transimpedance amplifier (TIA) cascaded with an adaptively-tuned continuous-time linear equalizer (CTLE) for improved sensitivity. Receiver linearity, critical in PAM4 systems, is achieved with a peak-detector-based automatic gain control (AGC) loop.

  3. On relative distortion in fingerprint comparison.

    PubMed

    Kalka, Nathan D; Hicklin, R Austin

    2014-11-01

    When fingerprints are deposited, non-uniform pressure in conjunction with the inherent elasticity of friction ridge skin often causes linear and non-linear distortions in the ridge and valley structure. The effects of these distortions must be considered during analysis of fingerprint images. Even when individual prints are not notably distorted, relative distortion between two prints can have a serious impact on comparison. In this paper we discuss several metrics for quantifying and visualizing linear and non-linear fingerprint deformations, and software tools to assist examiners in accounting for distortion in fingerprint comparisons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. RF pulse shape control in the compact linear collider test facility

    NASA Astrophysics Data System (ADS)

    Kononenko, Oleksiy; Corsini, Roberto

    2018-07-01

    The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.

  5. Efficient nonlinear equalizer for intra-channel nonlinearity compensation for next generation agile and dynamically reconfigurable optical networks.

    PubMed

    Malekiha, Mahdi; Tselniker, Igor; Plant, David V

    2016-02-22

    In this work, we propose and experimentally demonstrate a novel low-complexity technique for fiber nonlinearity compensation. We achieved a transmission distance of 2818 km for a 32-GBaud dual-polarization 16QAM signal. For efficient implantation, and to facilitate integration with conventional digital signal processing (DSP) approaches, we independently compensate fiber nonlinearities after linear impairment equalization. Therefore this algorithm can be easily implemented in currently deployed transmission systems after using linear DSP. The proposed equalizer operates at one sample per symbol and requires only one computation step. The structure of the algorithm is based on a first-order perturbation model with quantized perturbation coefficients. Also, it does not require any prior calculation or detailed knowledge of the transmission system. We identified common symmetries between perturbation coefficients to avoid duplicate and unnecessary operations. In addition, we use only a few adaptive filter coefficients by grouping multiple nonlinear terms and dedicating only one adaptive nonlinear filter coefficient to each group. Finally, the complexity of the proposed algorithm is lower than previously studied nonlinear equalizers by more than one order of magnitude.

  6. Investigation and Development of Control Laws for the NASA Langley Research Center Cockpit Motion Facility

    NASA Technical Reports Server (NTRS)

    Coon, Craig R.; Cardullo, Frank M.; Zaychik, Kirill B.

    2014-01-01

    The ability to develop highly advanced simulators is a critical need that has the ability to significantly impact the aerospace industry. The aerospace industry is advancing at an ever increasing pace and flight simulators must match this development with ever increasing urgency. In order to address both current problems and potential advancements with flight simulator techniques, several aspects of current control law technology of the National Aeronautics and Space Administration (NASA) Langley Research Center's Cockpit Motion Facility (CMF) motion base simulator were examined. Preliminary investigation of linear models based upon hardware data were examined to ensure that the most accurate models are used. This research identified both system improvements in the bandwidth and more reliable linear models. Advancements in the compensator design were developed and verified through multiple techniques. The position error rate feedback, the acceleration feedback and the force feedback were all analyzed in the heave direction using the nonlinear model of the hardware. Improvements were made using the position error rate feedback technique. The acceleration feedback compensator also provided noteworthy improvement, while attempts at implementing a force feedback compensator proved unsuccessful.

  7. Vastly accelerated linear least-squares fitting with numerical optimization for dual-input delay-compensated quantitative liver perfusion mapping.

    PubMed

    Jafari, Ramin; Chhabra, Shalini; Prince, Martin R; Wang, Yi; Spincemaille, Pascal

    2018-04-01

    To propose an efficient algorithm to perform dual input compartment modeling for generating perfusion maps in the liver. We implemented whole field-of-view linear least squares (LLS) to fit a delay-compensated dual-input single-compartment model to very high temporal resolution (four frames per second) contrast-enhanced 3D liver data, to calculate kinetic parameter maps. Using simulated data and experimental data in healthy subjects and patients, whole-field LLS was compared with the conventional voxel-wise nonlinear least-squares (NLLS) approach in terms of accuracy, performance, and computation time. Simulations showed good agreement between LLS and NLLS for a range of kinetic parameters. The whole-field LLS method allowed generating liver perfusion maps approximately 160-fold faster than voxel-wise NLLS, while obtaining similar perfusion parameters. Delay-compensated dual-input liver perfusion analysis using whole-field LLS allows generating perfusion maps with a considerable speedup compared with conventional voxel-wise NLLS fitting. Magn Reson Med 79:2415-2421, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Linear phase conjugation for atmospheric aberration compensation

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Stappaerts, Eddy A.

    1998-01-01

    Atmospheric induced aberrations can seriously degrade laser performance, greatly affecting the beam that finally reaches the target. Lasers propagated over any distance in the atmosphere suffer from a significant decrease in fluence at the target due to these aberrations. This is especially so for propagation over long distances. It is due primarily to fluctuations in the atmosphere over the propagation path, and from platform motion relative to the intended aimpoint. Also, delivery of high fluence to the target typically requires low beam divergence, thus, atmospheric turbulence, platform motion, or both results in a lack of fine aimpoint control to keep the beam directed at the target. To improve both the beam quality and amount of laser energy delivered to the target, Northrop Grumman has developed the Active Tracking System (ATS); a novel linear phase conjugation aberration compensation technique. Utilizing a silicon spatial light modulator (SLM) as a dynamic wavefront reversing element, ATS undoes aberrations induced by the atmosphere, platform motion or both. ATS continually tracks the target as well as compensates for atmospheric and platform motion induced aberrations. This results in a high fidelity, near-diffraction limited beam delivered to the target.

  9. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control.

    PubMed

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-08-25

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.

  10. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control

    PubMed Central

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-01-01

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved. PMID:27571081

  11. Flexible Modes Control Using Sliding Mode Observers: Application to Ares I

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.; Hall, Charles E.; Baev, Simon; Orr, Jeb S.

    2010-01-01

    The launch vehicle dynamics affected by bending and sloshing modes are considered. Attitude measurement data that are corrupted by flexible modes could yield instability of the vehicle dynamics. Flexible body and sloshing modes are reconstructed by sliding mode observers. The resultant estimates are used to remove the undesirable dynamics from the measurements, and the direct effects of sloshing and bending modes on the launch vehicle are compensated by means of a controller that is designed without taking the bending and sloshing modes into account. A linearized mathematical model of Ares I launch vehicle was derived based on FRACTAL, a linear model developed by NASA/MSFC. The compensated vehicle dynamics with a simple PID controller were studied for the launch vehicle model that included two bending modes, two slosh modes and actuator dynamics. A simulation study demonstrated stable and accurate performance of the flight control system with the augmented simple PID controller without the use of traditional linear bending filters.

  12. Ultra-Low-Dropout Linear Regulator

    NASA Technical Reports Server (NTRS)

    Thornton, Trevor; Lepkowski, William; Wilk, Seth

    2011-01-01

    A radiation-tolerant, ultra-low-dropout linear regulator can operate between -150 and 150 C. Prototype components were demonstrated to be performing well after a total ionizing dose of 1 Mrad (Si). Unlike existing components, the linear regulator developed during this activity is unconditionally stable over all operating regimes without the need for an external compensation capacitor. The absence of an external capacitor reduces overall system mass/volume, increases reliability, and lowers cost. Linear regulators generate a precisely controlled voltage for electronic circuits regardless of fluctuations in the load current that the circuit draws from the regulator.

  13. Self-Balancing, Optical-Center-Pivot, Fast-Steering Mirror

    NASA Technical Reports Server (NTRS)

    Moore, James D.; Carson, Johnathan W.

    2011-01-01

    A complete, self-contained fast-steering- mirror (FSM) mechanism is reported consisting of a housing, a mirror and mirror-mounting cell, three PZT (piezoelectric) actuators, and a counterbalance mass. Basically, it is a comparatively stiff, two-axis (tip-tilt), self-balanced FSM. The present invention requires only three (or three pairs for flight redundancy) actuators. If a PZT actuator degrades, the inherent balance remains, and compensation for degraded stroke is made by simply increasing the voltage to the PZT. Prior designs typically do not pivot at the mirror optical center, creating unacceptable beam shear.

  14. Error Model and Compensation of Bell-Shaped Vibratory Gyro

    PubMed Central

    Su, Zhong; Liu, Ning; Li, Qing

    2015-01-01

    A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on a study of the BVG working mechanism. This equation is then used to evaluate the relationship between the angular rate output signal and bell-shaped resonator character, analyze the influence of the main error sources and set up an error model for the BVG. The error sources are classified from the error propagation characteristics, and the compensation method is presented based on the error model. Finally, using the error model and compensation method, the BVG is calibrated experimentally including rough compensation, temperature and bias compensation, scale factor compensation and noise filter. The experimentally obtained bias instability is from 20.5°/h to 4.7°/h, the random walk is from 2.8°/h1/2 to 0.7°/h1/2 and the nonlinearity is from 0.2% to 0.03%. Based on the error compensation, it is shown that there is a good linear relationship between the sensing signal and the angular velocity, suggesting that the BVG is a good candidate for the field of low and medium rotational speed measurement. PMID:26393593

  15. Reconstructing matter profiles of spherically compensated cosmic regions in ΛCDM cosmology

    NASA Astrophysics Data System (ADS)

    de Fromont, Paul; Alimi, Jean-Michel

    2018-02-01

    The absence of a physically motivated model for large-scale profiles of cosmic voids limits our ability to extract valuable cosmological information from their study. In this paper, we address this problem by introducing the spherically compensated cosmic regions, named CoSpheres. Such cosmic regions are identified around local extrema in the density field and admit a unique compensation radius R1 where the internal spherical mass is exactly compensated. Their origin is studied by extending the standard peak model and implementing the compensation condition. Since the compensation radius evolves as the Universe itself, R1(t) ∝ a(t), CoSpheres behave as bubble Universes with fixed comoving volume. Using the spherical collapse model, we reconstruct their profiles with a very high accuracy until z = 0 in N-body simulations. CoSpheres are symmetrically defined and reconstructed for both central maximum (seeding haloes and galaxies) and minimum (identified with cosmic voids). We show that the full non-linear dynamics can be solved analytically around this particular compensation radius, providing useful predictions for cosmology. This formalism highlights original correlations between local extremum and their large-scale cosmic environment. The statistical properties of these spherically compensated cosmic regions and the possibilities to constrain efficiently both cosmology and gravity will be investigated in companion papers.

  16. Volumetric error modeling, identification and compensation based on screw theory for a large multi-axis propeller-measuring machine

    NASA Astrophysics Data System (ADS)

    Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu

    2018-05-01

    Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.

  17. Illumination robust face recognition using spatial adaptive shadow compensation based on face intensity prior

    NASA Astrophysics Data System (ADS)

    Hsieh, Cheng-Ta; Huang, Kae-Horng; Lee, Chang-Hsing; Han, Chin-Chuan; Fan, Kuo-Chin

    2017-12-01

    Robust face recognition under illumination variations is an important and challenging task in a face recognition system, particularly for face recognition in the wild. In this paper, a face image preprocessing approach, called spatial adaptive shadow compensation (SASC), is proposed to eliminate shadows in the face image due to different lighting directions. First, spatial adaptive histogram equalization (SAHE), which uses face intensity prior model, is proposed to enhance the contrast of each local face region without generating visible noises in smooth face areas. Adaptive shadow compensation (ASC), which performs shadow compensation in each local image block, is then used to produce a wellcompensated face image appropriate for face feature extraction and recognition. Finally, null-space linear discriminant analysis (NLDA) is employed to extract discriminant features from SASC compensated images. Experiments performed on the Yale B, Yale B extended, and CMU PIE face databases have shown that the proposed SASC always yields the best face recognition accuracy. That is, SASC is more robust to face recognition under illumination variations than other shadow compensation approaches.

  18. Tunable compensation of GVD-induced FM-AM conversion in the front end of high-power lasers.

    PubMed

    Li, Rao; Fan, Wei; Jiang, Youen; Qiao, Zhi; Zhang, Peng; Lin, Zunqi

    2017-02-01

    Group velocity dispersion (GVD) is one of the main factors leading to frequency modulation (FM) to amplitude modulation (AM) conversion in the front end of high-power lasers. In order to compensate the FM-AM modulation, the influence of GVD, which is mainly induced by the phase filter effect, is theoretically investigated. Based on the theoretical analysis, a high-precision, high-stability, tunable GVD compensatory using gratings is designed and experimentally demonstrated. The results indicate that the compensator can be implemented in high-power laser facilities to compensate the GVD of fiber with a length between 200-500 m when the bandwidth of a phase-modulated laser is 0.34 nm or 0.58 nm and the central wavelength is in the range of 1052.3217-1053.6008 nm. Due to the linear relationship between the dispersion and the spacing distance of the gratings, the compensator can easily achieve closed-loop feedback controlling. The proposed GVD compensator promises significant applications in large laser facilities, especially in the future polarizing fiber front end of high-power lasers.

  19. Quasi-eccentricity error modeling and compensation in vision metrology

    NASA Astrophysics Data System (ADS)

    Shen, Yijun; Zhang, Xu; Cheng, Wei; Zhu, Limin

    2018-04-01

    Circular targets are commonly used in vision applications for its detection accuracy and robustness. The eccentricity error of the circular target caused by perspective projection is one of the main factors of measurement error which needs to be compensated in high-accuracy measurement. In this study, the impact of the lens distortion on the eccentricity error is comprehensively investigated. The traditional eccentricity error turns to a quasi-eccentricity error in the non-linear camera model. The quasi-eccentricity error model is established by comparing the quasi-center of the distorted ellipse with the true projection of the object circle center. Then, an eccentricity error compensation framework is proposed which compensates the error by iteratively refining the image point to the true projection of the circle center. Both simulation and real experiment confirm the effectiveness of the proposed method in several vision applications.

  20. Improved optical filter

    NASA Technical Reports Server (NTRS)

    Title, A. M.

    1978-01-01

    Filter includes partial polarizer between birefrigent elements. Plastic film on partial polarizer compensates for any polarization rotation by partial polarizer. Two quarter-wave plates change incident, linearly polarized light into elliptically polarized light.

  1. Linear nozzle with tailored gas plumes

    DOEpatents

    Leon, David D.; Kozarek, Robert L.; Mansour, Adel; Chigier, Norman

    2001-01-01

    There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.

  2. Linear nozzle with tailored gas plumes and method

    DOEpatents

    Leon, David D.; Kozarek, Robert L.; Mansour, Adel; Chigier, Norman

    1999-01-01

    There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.

  3. Theory and compensation method of axial magnetic error induced by axial magnetic field in a polarization-maintaining fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Zhou, Yanru; Zhao, Yuxiang; Tian, Hui; Zhang, Dengwei; Huang, Tengchao; Miao, Lijun; Shu, Xiaowu; Che, Shuangliang; Liu, Cheng

    2016-12-01

    In an axial magnetic field (AMF), which is vertical to the plane of the fiber coil, a polarization-maintaining fiber optic gyro (PM-FOG) appears as an axial magnetic error. This error is linearly related to the intensity of an AMF, the radius of the fiber coil, and the light wavelength, and also influenced by the distribution of fiber twist. When a PM-FOG is manufactured completely, this error only appears a linear correlation with the AMF. A real-time compensation model is established to eliminate the error, and the experimental results show that the axial magnetic error of the PM-FOG is decreased from 5.83 to 0.09 deg/h in 12G AMF with 18-dB suppression.

  4. Linear nozzle with tailored gas plumes

    DOEpatents

    Kozarek, Robert L.; Straub, William D.; Fischer, Joern E.; Leon, David D.

    2003-01-01

    There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.

  5. Multirate parallel distributed compensation of a cluster in wireless sensor and actor networks

    NASA Astrophysics Data System (ADS)

    Yang, Chun-xi; Huang, Ling-yun; Zhang, Hao; Hua, Wang

    2016-01-01

    The stabilisation problem for one of the clusters with bounded multiple random time delays and packet dropouts in wireless sensor and actor networks is investigated in this paper. A new multirate switching model is constructed to describe the feature of this single input multiple output linear system. According to the difficulty of controller design under multi-constraints in multirate switching model, this model can be converted to a Takagi-Sugeno fuzzy model. By designing a multirate parallel distributed compensation, a sufficient condition is established to ensure this closed-loop fuzzy control system to be globally exponentially stable. The solution of the multirate parallel distributed compensation gains can be obtained by solving an auxiliary convex optimisation problem. Finally, two numerical examples are given to show, compared with solving switching controller, multirate parallel distributed compensation can be obtained easily. Furthermore, it has stronger robust stability than arbitrary switching controller and single-rate parallel distributed compensation under the same conditions.

  6. Adaptive Fading Memory H∞ Filter Design for Compensation of Delayed Components in Self Powered Flux Detectors

    NASA Astrophysics Data System (ADS)

    Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol

    2015-08-01

    The paper deals with dynamic compensation of delayed Self Powered Flux Detectors (SPFDs) using discrete time H∞ filtering method for improving the response of SPFDs with significant delayed components such as Platinum and Vanadium SPFD. We also present a comparative study between the Linear Matrix Inequality (LMI) based H∞ filtering and Algebraic Riccati Equation (ARE) based Kalman filtering methods with respect to their delay compensation capabilities. Finally an improved recursive H∞ filter based on the adaptive fading memory technique is proposed which provides an improved performance over existing methods. The existing delay compensation algorithms do not account for the rate of change in the signal for determining the filter gain and therefore add significant noise during the delay compensation process. The proposed adaptive fading memory H∞ filter minimizes the overall noise very effectively at the same time keeps the response time at minimum values. The recursive algorithm is easy to implement in real time as compared to the LMI (or ARE) based solutions.

  7. Recursive inversion of externally defined linear systems

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1988-01-01

    The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problems of system identification and compensation.

  8. Electronic switching circuit uses complementary non-linear components

    NASA Technical Reports Server (NTRS)

    Zucker, O. S.

    1972-01-01

    Inherent switching properties of saturable inductors and storage diodes are combined to perform large variety of electronic functions, such as pulse shaping, gating, and multiplexing. Passive elements replace active switching devices in generation of complex waveforms.

  9. Extension to linear dynamics for hybrid stress finite element formulation based on additional displacements

    NASA Astrophysics Data System (ADS)

    Sumihara, K.

    Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.

  10. Analysis and compensation of an aircraft simulator control loading system with compliant linkage. [using hydraulic equipment

    NASA Technical Reports Server (NTRS)

    Johnson, P. R.; Bardusch, R. E.

    1974-01-01

    A hydraulic control loading system for aircraft simulation was analyzed to find the causes of undesirable low frequency oscillations and loading effects in the output. The hypothesis of mechanical compliance in the control linkage was substantiated by comparing the behavior of a mathematical model of the system with previously obtained experimental data. A compensation scheme based on the minimum integral of the squared difference between desired and actual output was shown to be effective in reducing the undesirable output effects. The structure of the proposed compensation was computed by use of a dynamic programing algorithm and a linear state space model of the fixed elements in the system.

  11. Motion compensation and noise tolerance in phase-shifting digital in-line holography.

    PubMed

    Stenner, Michael D; Neifeld, Mark A

    2006-05-15

    We present a technique for phase-shifting digital in-line holography which compensates for lateral object motion. By collecting two frames of interference between object and reference fields with identical reference phase, one can estimate the lateral motion that occurred between frames using the cross-correlation. We also describe a very general linear framework for phase-shifting holographic reconstruction which minimizes additive white Gaussian noise (AWGN) for an arbitrary set of reference field amplitudes and phases. We analyze the technique's sensitivity to noise (AWGN, quantization, and shot), errors in the reference fields, errors in motion estimation, resolution, and depth of field. We also present experimental motion-compensated images achieving the expected resolution.

  12. Temperature compensated liquid level sensor using FBGs and a Bourdon tube

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Shankar, M. Sai; Rao, P. Vengal; Reddy, P. Saidi; Sai Prasad, R. L. N.; Kishore, P.; Srimannarayana, K.

    2011-12-01

    A temperature compensated liquid level sensor using FBGs and a bourdon tube that works on hydrostatic pressure is presented. An FBG (FBG1) is fixed between free end and a fixed end of the bourdon tube. When hydrostatic pressure applied to the bourdon tube FBG1 experience an axial strain due to the movement of free end. Experimental result shows, a good linearity in shift in Bragg wavelength with the applied pressure. The performance of this arrangement is tested for 21metre water column pressure. Another FBG (FBG2) is included for temperature compensation. The design of the sensor head is simple and easy mountable external to any tank for liquid level measurements.

  13. Flexible, multi-measurement guided wave damage detection under varying temperatures

    NASA Astrophysics Data System (ADS)

    Douglass, Alexander C. S.; Harley, Joel B.

    2018-04-01

    Temperature compensation in structural health monitoring helps identify damage in a structure by removing data variations due to environmental conditions, such as temperature. Stretch-based methods are one of the most commonly used temperature compensation methods. To account for variations in temperature, stretch-based methods optimally stretch signals in time to optimally match a measurement to a baseline. All of the data is then compared with the single baseline to determine the presence of damage. Yet, for these methods to be effective, the measurement and the baseline must satisfy the inherent assumptions of the temperature compensation method. In many scenarios, these assumptions are wrong, the methods generate error, and damage detection fails. To improve damage detection, a multi-measurement damage detection method is introduced. By using each measurement in the dataset as a baseline, error caused by imperfect temperature compensation is reduced. The multi-measurement method increases the detection effectiveness of our damage metric, or damage indicator, over time and reduces the presence of additional peaks caused by temperature that could be mistaken for damage. By using many baselines, the variance of the damage indicator is reduced and the effects from damage are amplified. Notably, the multi-measurement improves damage detection over single-measurement methods. This is demonstrated through an increase in the maximum of our damage signature from 0.55 to 0.95 (where large values, up to a maximum of one, represent a statistically significant change in the data due to damage).

  14. Piezoelectric Non-Linear Nanomechanical Temperature and Acceleration Insensitive Clocks (PENNTAC) Phase 1 Evaluation and Plans for Phase 2

    DTIC Science & Technology

    2013-05-01

    95.2 dBc/Hz, (c) - 94.2 dBc/Hz. Fig. 4: Mechanically compensated AlN resonators. A thin oxide layer is used to completely cancel the linear...pumped is represented by a non-linear capacitor. This capacitor will be first implemented via a varactor and then substituted by a purely mechanical...demonstrate the advantages of a parametric oscillator: (i) we will first use an external electronic varactor to prove that a parametric oscillator

  15. Implementing a pilot work injury management program in Hong Kong.

    PubMed

    Lai, Hon-Sun; Chan, Chetwyn C H

    2007-12-01

    This paper reports the results of implementing a pilot case management system for work injuries in Hong Kong. The case management approach was characterized by use of a case manager who worked closely with each of the reported injury cases. The case manager undertook the roles of assessor, referral agent, counselor, work-site liaison, and return-to-work (RTW) expert. A quasi-experimental study design was used. The study compared the RTW and workers' compensation outcomes in injured workers in a cleaning company in a case management group (n = 296) and a conventional rehabilitation group (n = 137). Outcomes of the intervention were followed up at 6 months. The results indicated that the RTW rate was 97.0% and 94.2% for the case management and conventional rehabilitation groups respectively, with no significant differences between them. Participants in the case management group had significantly fewer days of sick leave (mean = 27.5 and 41.6 days, respectively) and lower compensation costs (mean = HK$7,212.2 and $20,617.3, respectively) than those in the comparison group. Age of the participants was found to influence the outcomes with those who were between 41 and 50 years old and received case management intervention had shorter sick leave and lower cost of compensation than their conventional rehabilitation counterpart. The majority of the participants who had returned to work in both the case management (95.8%) and the conventional rehabilitation (96.2%) groups were found to maintain their work status 6 months after the intervention. The findings suggested that applying the case management approach to the Hong Kong workers' compensation system was more effective overall. Nevertheless, the inherent problems associated with implementing such an approach within the existing system, which focuses on compensation and medical interventions, remained unresolved.

  16. System design of the annular suspension and pointing system /ASPS/

    NASA Technical Reports Server (NTRS)

    Cunningham, D. C.; Gismondi, T. P.; Wilson, G. W.

    1978-01-01

    This paper presents the control system design for the Annular Suspension and Pointing System. Actuator sizing and configuration of the system are explained, and the control laws developed for linearizing and compensating the magnetic bearings, roll induction motor and gimbal torquers are given. Decoupling, feedforward and error compensation for the vernier and gimbal controllers is developed. The algorithm for computing the strapdown attitude reference is derived, and the allowable sampling rates, time delays and quantization of control signals are specified.

  17. Tracking and disturbance rejection of MIMO nonlinear systems with PI controller

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Lin, C. A.

    1985-01-01

    The tracking and disturbance rejection of a class of MIMO nonlinear systems with a linear proportional plus integral (PI) compensator is studied. Roughly speaking, it is shown that if the given nonlinear plant is exponentially stable and has a strictly increasing dc steady-state I/O map, then a simple PI compensator can be used to yield a stable unity-feedback closed-loop system which asymptotically tracks reference inputs that tend to constant vectors and asymptotically rejects disturbances that tend to constant vectors.

  18. Tracking and disturbance rejection of MIMO nonlinear systems with PI controller

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Lin, C.-A.

    1985-01-01

    The tracking and disturbance rejection of a class of MIMO nonlinear systems with linear proportional plus integral (PI) compensator is studied. Roughly speaking, it is shown that if the given nonlinear plant is exponentially stable and has a strictly increasing dc steady-state I/O map, then a simple PI compensator can be used to yield a stable unity-feedback closed-loop system which asymptotically tracks reference inputs that tend to constant vectors and asymptotically rejects disturbances that tend to constant vectors.

  19. Power and spectrally efficient M-ARY QAM schemes for future mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Sreenath, K.; Feher, K.

    1990-01-01

    An effective method to compensate nonlinear phase distortion caused by the mobile amplifier is proposed. As a first step towards the future use of spectrally efficient modulation schemes for mobile satellite applications, we have investigated effects of nonlinearities and the phase compensation method on 16-QAM. The new method provides about 2 dB savings in power for 16-QAM operation with cost effective amplifiers near saturation and thereby promising use of spectrally efficient linear modulation schemes for future mobile satellite applications.

  20. Error compensation for thermally induced errors on a machine tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krulewich, D.A.

    1996-11-08

    Heat flow from internal and external sources and the environment create machine deformations, resulting in positioning errors between the tool and workpiece. There is no industrially accepted method for thermal error compensation. A simple model has been selected that linearly relates discrete temperature measurements to the deflection. The biggest problem is how to locate the temperature sensors and to determine the number of required temperature sensors. This research develops a method to determine the number and location of temperature measurements.

  1. A flexible and cost-effective compensation method for leveling using large-scale coordinate measuring machines and its application in aircraft digital assembly

    NASA Astrophysics Data System (ADS)

    Deng, Zhengping; Li, Shuanggao; Huang, Xiang

    2018-06-01

    In the assembly process of large-size aerospace products, the leveling and horizontal alignment of large components are essential prior to the installation of an inertial navigation system (INS) and the final quality inspection. In general, the inherent coordinate systems of large-scale coordinate measuring devices are not coincident with the geodetic horizontal system, and a dual-axis compensation system is commonly required for the measurement of difference in heights. These compensation systems are expensive and dedicated designs for different devices at present. Considering that a large-size assembly site usually needs more than one measuring device, a compensation approach which is versatile for different devices would be a more convenient and economic choice for manufacturers. In this paper, a flexible and cost-effective compensation method is proposed. Firstly, an auxiliary measuring device called a versatile compensation fixture (VCF) is designed, which mainly comprises reference points for coordinate transformation and a dual-axis inclinometer, and a kind of network tighten points (NTPs) are introduced and temporarily deployed in the large measuring space to further reduce transformation error. Secondly, the measuring principle of height difference is studied, based on coordinate transformation theory and trigonometry while considering the effects of earth curvature, and the coordinate transformation parameters are derived by least squares adjustment. Thirdly, the analytical solution of leveling uncertainty is analyzed, based on which the key parameters of the VCF and the proper deployment of NTPs are determined according to the leveling accuracy requirement. Furthermore, the proposed method is practically applied to the assembly of a large helicopter by developing an automatic leveling and alignment system. By measuring four NTPs, the leveling uncertainty (2σ) is reduced by 29.4% to about 0.12 mm, compared with that without NTPs.

  2. Temperature Effects and Compensation-Control Methods

    PubMed Central

    Xia, Dunzhu; Chen, Shuling; Wang, Shourong; Li, Hongsheng

    2009-01-01

    In the analysis of the effects of temperature on the performance of microgyroscopes, it is found that the resonant frequency of the microgyroscope decreases linearly as the temperature increases, and the quality factor changes drastically at low temperatures. Moreover, the zero bias changes greatly with temperature variations. To reduce the temperature effects on the microgyroscope, temperature compensation-control methods are proposed. In the first place, a BP (Back Propagation) neural network and polynomial fitting are utilized for building the temperature model of the microgyroscope. Considering the simplicity and real-time requirements, piecewise polynomial fitting is applied in the temperature compensation system. Then, an integral-separated PID (Proportion Integration Differentiation) control algorithm is adopted in the temperature control system, which can stabilize the temperature inside the microgyrocope in pursuing its optimal performance. Experimental results reveal that the combination of microgyroscope temperature compensation and control methods is both realizable and effective in a miniaturized microgyroscope prototype. PMID:22408509

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlovski, V. V.; Lebedev, A. A.; Bogdanova, E. V.

    The model of conductivity compensation in SiC under irradiation with high-energy electrons is presented. The following processes are considered to cause a decrease in the free carrier concentration: (i) formation of deep traps by intrinsic point defects, Frenkel pairs produced by irradiation; (ii) 'deactivation' of the dopant via formation of neutral complexes including a dopant atom and a radiation-induced point defect; and (iii) formation of deep compensating traps via generation of charged complexes constituted by a dopant atom and a radiation-induced point defect. To determine the compensation mechanism, dose dependences of the deep compensation of moderately doped SiC (CVD) undermore » electron irradiation have been experimentally studied. It is demonstrated that, in contrast to n-FZ-Si, moderately doped SiC (CVD) exhibits linear dependences (with a strongly nonlinear dependence observed for Si). Therefore, the conductivity compensation in silicon carbide under electron irradiation occurs due to deep traps formed by primary radiation defects (vacancies and interstitial atoms) in the silicon and carbon sublattices. It is known that the compensation in silicon is due to the formation of secondary radiation defects that include a dopant atom. It is shown that, in contrast to n-SiC (CVD), primary defects in only the carbon sublattice of moderately doped p-SiC (CVD) cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice or defects in both sublattices are responsible for the conductivity compensation.« less

  4. Coherent detection and digital signal processing for fiber optic communications

    NASA Astrophysics Data System (ADS)

    Ip, Ezra

    The drive towards higher spectral efficiency in optical fiber systems has generated renewed interest in coherent detection. We review different detection methods, including noncoherent, differentially coherent, and coherent detection, as well as hybrid detection methods. We compare the modulation methods that are enabled and their respective performances in a linear regime. An important system parameter is the number of degrees of freedom (DOF) utilized in transmission. Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency as it uses all four available DOF contained in the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Software based receivers benefit from the robustness of DSP, flexibility in design, and ease of adaptation to time-varying channels. Linear impairments, including chromatic dispersion (CD) and polarization-mode dispersion (PMD), can be compensated quasi-exactly using finite impulse response filters. In practical systems, sampling the received signal at 3/2 times the symbol rate is sufficient to enable an arbitrary amount of CD and PMD to be compensated for a sufficiently long equalizer whose tap length scales linearly with transmission distance. Depending on the transmitted constellation and the target bit error rate, the analog-to-digital converter (ADC) should have around 5 to 6 bits of resolution. Digital coherent receivers are naturally suited for the implementation of feedforward carrier recovery, which has superior linewidth tolerance than phase-locked loops, and does not suffer from feedback delay constraints. Differential bit encoding can be used to prevent catastrophic receiver failure due to cycle slips. In systems where nonlinear effects are concentrated mostly at fiber locations with small accumulated dispersion, nonlinear phase de-rotation is a low-complexity algorithm that can partially mitigate nonlinear effects. For systems with arbitrary dispersion maps, however, backpropagation is the only universal technique that can jointly compensate dispersion and fiber nonlinearity. Backpropagation requires solving the nonlinear Schrodinger equation at the receiver, and has high computational cost. Backpropagation is most effective when dispersion compensation fibers are removed, and when signal processing is performed at three times oversampling. Backpropagation can improve system performance and increase transmission distance. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gb/s should become practical in the near future.

  5. Compensation effect during the pyrolysis of tyres and bamboo.

    PubMed

    Mui, Edward L K; Cheung, W H; Lee, Vinci K C; McKay, Gordon

    2010-05-01

    Pyrolysis parameters (e.g. pre-exponential factor A, and activation energy E) of two waste materials, namely, tyre rubber and bamboo scaffolding, based on the Arrhenius equation were obtained from weight loss data via thermogravimetry at different heating rates. The compensation effect, which suggests that the linear variation in the pre-exponential factor and the activation energy, was observed for these materials. This can be attributed to the variety of active sites over the reactant surface in the course of decomposition. The calculated data from several revised, first-order models were compared with similar models in the literature. It has been shown that both literature and our calculated data exhibit high linearity in terms of lnA and E, revealing that the latter agree well with other researchers' work. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Influence of group-delay ripple on timing jitter induced by SPM and IXPM in systems with dispersion compensated by CFBG

    NASA Astrophysics Data System (ADS)

    Qin, Xi; Cao, Jihong; Chen, Yong; Zhang, Feng; Jian, Shuisheng

    2007-08-01

    An analytical expression was proposed to analyze the influence of group-delay ripple (GDR) on timing jitter induced by self-phase modulation (SPM) and intra-channel cross-phase modulation (IXPM) in pseudo-linear transmission systems when dispersion was compensated by chirped fiber Bragg grating (CFBG). Effects of ripple amplitude, period, and phase on timing jitter were discussed by theoretical and numerical analysis in detail. The results show that the influence of GDR on timing jitter changes linearly with the amplitude of GDR and whether it decreases or increases the timing jitter relies on the ripple period and ripple phase. Timing jitter induced by SPM and IXPM could be suppressed totally by adjusting the relative phase between the center frequency of the pulse and the ripples.

  7. A dual estimate method for aeromagnetic compensation

    NASA Astrophysics Data System (ADS)

    Ma, Ming; Zhou, Zhijian; Cheng, Defu

    2017-11-01

    Scalar aeromagnetic surveys have played a vital role in prospecting. However, before analysis of the surveys’ aeromagnetic data is possible, the aircraft’s magnetic interference should be removed. The extensively adopted linear model for aeromagnetic compensation is computationally efficient but faces an underfitting problem. On the other hand, the neural model proposed by Williams is more powerful at fitting but always suffers from an overfitting problem. This paper starts off with an analysis of these two models and then proposes a dual estimate method to combine them together to improve accuracy. This method is based on an unscented Kalman filter, but a gradient descent method is implemented over the iteration so that the parameters of the linear model are adjustable during flight. The noise caused by the neural model’s overfitting problem is suppressed by introducing an observation noise.

  8. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO(2) assimilation is restricted.

    PubMed

    Driever, Steven M; Baker, Neil R

    2011-05-01

    Electron flux from water via photosystem II (PSII) and PSI to oxygen (water-water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO(2) assimilation is restricted. Mass spectrometry was used to measure O(2) uptake and evolution together with CO(2) uptake in leaves of French bean and maize at CO(2) concentrations saturating for photosynthesis and the CO(2) compensation point. In French bean at high CO(2) and low O(2) concentrations no significant water-water cycle activity was observed. At the CO(2) compensation point and 3% O(2) a low rate of water-water cycle activity was observed, which accounted for 30% of the linear electron flux from water. In maize leaves negligible water-water cycle activity was detected at the compensation point. During induction of photosynthesis in maize linear electron flux was considerably greater than CO(2) assimilation, but no significant water-water cycle activity was detected. Miscanthus × giganteus grown at chilling temperature also exhibited rates of linear electron transport considerably in excess of CO(2) assimilation; however, no significant water-water cycle activity was detected. Clearly the water-water cycle can operate in leaves under some conditions, but it does not act as a major sink for excess excitation energy when CO(2) assimilation is restricted. © 2011 Blackwell Publishing Ltd.

  9. Linearly Polarized Single-Frequency Oscillations of Laser-Diode-Pumped Microchip Ceramic Nd:YAG Lasers with Forced Ince-Gaussian Mode Operations

    NASA Astrophysics Data System (ADS)

    Otsuka, Kenju; Nemoto, Kana; Kamikariya, Koji; Miyasaka, Yoshihiko; Chu, Shu-Chun

    2007-09-01

    Detailed oscillation spectra and polarization properties have been examined in laser-diode-pumped (LD-pumped) microchip ceramic (i.e., polycrystalline) Nd:YAG lasers and the inherent segregation of lasing patterns into local modes possessing different polarization states was observed. Single-frequency linearly-polarized stable oscillations were realized by forcing the laser to Ince-Gaussian mode operations by adjusting azimuthal cavity symmetry.

  10. On the equivalence of Gaussian elimination and Gauss-Jordan reduction in solving linear equations

    NASA Technical Reports Server (NTRS)

    Tsao, Nai-Kuan

    1989-01-01

    A novel general approach to round-off error analysis using the error complexity concepts is described. This is applied to the analysis of the Gaussian Elimination and Gauss-Jordan scheme for solving linear equations. The results show that the two algorithms are equivalent in terms of our error complexity measures. Thus the inherently parallel Gauss-Jordan scheme can be implemented with confidence if parallel computers are available.

  11. Recursive inversion of externally defined linear systems by FIR filters

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1989-01-01

    The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least-squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problem of system identification and compensation.

  12. From the 1930 International Johannesburg conference on silicosis, to "tables" of occupational diseases, France, 2000 onward: A comparative reading.

    PubMed

    Cavalin, Catherine

    2015-11-01

    Through the concept of "thought collectives" in particular, Ludwik Fleck was a pioneer in demonstrating how much scientific knowledge is inherently made up of social and historical material. In this article, I propose to follow a Fleckian path by comparing the proceedings of the 1930 International Labour Office Conference on silicosis in Johannesburg on the one hand, and on the other the content of the debates that took place in France in the 2000s to revise the "tables" of occupational diseases which define the compensation rules for salaried workers in the French general (as well as the farm) health insurance scheme. The text offers an analysis of the striking similarities between these two distant sources, pointing out particularly the repetitiveness of ignorance and knowledge, and the nature of what can be admitted as a body of "evidence" in medico-legal issues such as the definition and compensation of occupational diseases. © 2015 Wiley Periodicals, Inc.

  13. Wavelength-multiplexing surface plasmon holographic microscopy.

    PubMed

    Zhang, Jiwei; Dai, Siqing; Zhong, Jinzhan; Xi, Teli; Ma, Chaojie; Li, Ying; Di, Jianglei; Zhao, Jianlin

    2018-05-14

    Surface plasmon holographic microscopy (SPHM), which combines surface plasmon microscopy with digital holographic microscopy, can be applied for amplitude- and phase-contrast surface plasmon resonance (SPR) imaging. In this paper, we propose an improved SPHM with the wavelength multiplexing technique based on two laser sources and a common-path hologram recording configuration. Through recording and reconstructing the SPR images at two wavelengths simultaneously employing the improved SPHM, tiny variation of dielectric refractive index in near field is quantitatively monitored with an extended measurement range while maintaining the high sensitivity. Moreover, imaging onion tissues is performed to demonstrate that the detection sensitivities of two wavelengths can compensate for each other in SPR imaging. The proposed wavelength-multiplexing SPHM presents simple structure, high temporal stability and inherent capability of phase curvature compensation, as well as shows great potentials for further applications in monitoring diverse dynamic processes related with refractive index variations and imaging biological tissues with low-contrast refractive index distributions in the near field.

  14. Using animation quality metric to improve efficiency of global illumination computation for dynamic environments

    NASA Astrophysics Data System (ADS)

    Myszkowski, Karol; Tawara, Takehiro; Seidel, Hans-Peter

    2002-06-01

    In this paper, we consider applications of perception-based video quality metrics to improve the performance of global lighting computations for dynamic environments. For this purpose we extend the Visible Difference Predictor (VDP) developed by Daly to handle computer animations. We incorporate into the VDP the spatio-velocity CSF model developed by Kelly. The CSF model requires data on the velocity of moving patterns across the image plane. We use the 3D image warping technique to compensate for the camera motion, and we conservatively assume that the motion of animated objects (usually strong attractors of the visual attention) is fully compensated by the smooth pursuit eye motion. Our global illumination solution is based on stochastic photon tracing and takes advantage of temporal coherence of lighting distribution, by processing photons both in the spatial and temporal domains. The VDP is used to keep noise inherent in stochastic methods below the sensitivity level of the human observer. As a result a perceptually-consistent quality across all animation frames is obtained.

  15. Effect of irradiation with MeV protons and electrons on the conductivity compensation and photoluminescence of moderately doped p-4H-SiC (CVD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlovski, V. V.; Lebedev, A. A., E-mail: shura.lebe@mail.ioffe.ru; Bogdanova, E. V.

    The compensation of moderately doped p-4H-SiC samples grown by the chemical vapor deposition (CVD) method under irradiation with 0.9-MeV electrons and 15-MeV protons is studied. The experimentally measured carrier removal rates are 1.2–1.6 cm{sup –1} for electrons and 240–260 cm{sup –1} for protons. The dependence of the concentration of uncompensated acceptors and donors, measured in the study, demonstrates a linear decrease with increasing irradiation dose to the point of complete compensation. This run of the dependence shows that compensation of the samples is due to the transition of carriers to deep centers formed by primary radiation-induced defects. It is demonstratedmore » that, in contrast to n-SiC (CVD), primary defects in the carbon sublattice of moderately doped p-SiC (CVD) only cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice, or defects in both sublattices are responsible for conductivity compensation. Also, photoluminescence spectra are examined in relation to the irradiation dose.« less

  16. Design, characterization, and control of the NASA three degree of freedom reaction compensation platform

    NASA Technical Reports Server (NTRS)

    Birkhimer, Craig; Newman, Wyatt; Choi, Benjamin; Lawrence, Charles

    1994-01-01

    Increasing research is being done into industrial uses for the microgravity environment aboard orbiting space vehicles. However, there is some concern over the effects of reaction forces produced by moving objects, especially motors, robotic actuators, and astronauts. Reaction forces produced by the movement of these objects may manifest themselves as undesirable accelerations in the space vehicle making the vehicle unusable for microgravity applications. It is desirable to provide compensation for such forces using active means. This paper presents the design and experimental evaluation of the NASA three degree of freedom reaction compensation platform, a system designed to be a testbed for the feasibility of active attenuation of reaction forces caused by moving objects in a microgravity environment. Unique 'linear motors,' which convert electrical current directly into rectilinear force, are used in the platform design. The linear motors induce accelerations of the displacer inertias. These accelerations create reaction forces that may be controlled to counteract disturbance forces introduced to the platform. The stated project goal is to reduce reaction forces by 90 percent, or -20 dB. Description of the system hardware, characterization of the actuators and the composite system, and design of the software safety system and control software are included.

  17. Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

    NASA Astrophysics Data System (ADS)

    Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng

    2018-06-01

    Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.

  18. New Fusion Concept Using Coaxial Passing Through Each Other Self-focusing Colliding Beams (Invention)

    NASA Astrophysics Data System (ADS)

    Chikvashvili, Ioseb

    2011-10-01

    In proposed Concept it is offered to use two ion beams directed coaxially at the same direction but with different velocities (center-of-mass collision energy should be sufficient for fusion), to direct oppositely the relativistic electron beam for only partial compensation of positive space charge and for allowing the combined beam's pinch capability, to apply the longitudinal electric field for compensation of alignment of velocities of reacting particles and also for compensation of energy losses of electrons via Bremsstrahlung. On base of Concept different types of reactor designs can be realized: Linear and Cyclic designs. In the simplest embodiment the Cyclic Reactor (design) may include: betatron type device (circular store of externally injected particles - induction accelerator), pulse high-current relativistic electron injector, pulse high-current slower ion injector, pulse high-current faster ion injector and reaction products extractor. Using present day technologies and materials (or a reasonable extrapolation of those) it is possible to reach: for induction linear injectors (ions&electrons) - currents of thousands A, repeatability - up to 10Hz, the same for high-current betatrons (FFAG, Stellatron, etc.). And it is possible to build the fusion reactor using the proposed Method just today.

  19. Data analysis and calibration for a bulk-refractive-index-compensated surface plasmon resonance affinity sensor

    NASA Astrophysics Data System (ADS)

    Chinowsky, Timothy M.; Yee, Sinclair S.

    2002-02-01

    Surface plasmon resonance (SPR) affinity sensing, the problem of bulk refractive index (RI) interference in SPR sensing, and a sensor developed to overcome this problem are briefly reviewed. The sensor uses a design based on Texas Instruments' Spreeta SPR sensor to simultaneously measure both bulk and surface RI. The bulk RI measurement is then used to compensate the surface measurement and remove the effects of bulk RI interference. To achieve accurate compensation, robust data analysis and calibration techniques are necessary. Simple linear data analysis techniques derived from measurements of the sensor response were found to provide a versatile, low noise method for extracting measurements of bulk and surface refractive index from the raw sensor data. Automatic calibration using RI gradients was used to correct the linear estimates, enabling the sensor to produce accurate data even when the sensor has a complicated nonlinear response which varies with time. The calibration procedure is described, and the factors influencing calibration accuracy are discussed. Data analysis and calibration principles are illustrated with an experiment in which sucrose and detergent solutions are used to produce changes in bulk and surface RI, respectively.

  20. Robust fault tolerant control based on sliding mode method for uncertain linear systems with quantization.

    PubMed

    Hao, Li-Ying; Yang, Guang-Hong

    2013-09-01

    This paper is concerned with the problem of robust fault-tolerant compensation control problem for uncertain linear systems subject to both state and input signal quantization. By incorporating novel matrix full-rank factorization technique with sliding surface design successfully, the total failure of certain actuators can be coped with, under a special actuator redundancy assumption. In order to compensate for quantization errors, an adjustment range of quantization sensitivity for a dynamic uniform quantizer is given through the flexible choices of design parameters. Comparing with the existing results, the derived inequality condition leads to the fault tolerance ability stronger and much wider scope of applicability. With a static adjustment policy of quantization sensitivity, an adaptive sliding mode controller is then designed to maintain the sliding mode, where the gain of the nonlinear unit vector term is updated automatically to compensate for the effects of actuator faults, quantization errors, exogenous disturbances and parameter uncertainties without the need for a fault detection and isolation (FDI) mechanism. Finally, the effectiveness of the proposed design method is illustrated via a model of a rocket fairing structural-acoustic. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  1. The compensation of quadrupole errors and space charge effects by using trim quadrupoles

    NASA Astrophysics Data System (ADS)

    An, YuWen; Wang, Sheng

    2011-12-01

    The China Spallation Neutron Source (CSNS) accelerators consist of an H-linac and a proton Rapid Cycling Synchrotron (RCS). RCS is designed to accumulate and accelerate proton beam from 80 MeV to 1.6 GeV with a repetition rate of 25 Hz. The main dipole and quadruple magnet will operate in AC mode. Due to the adoption of the resonant power supplies, saturation errors of magnetic field cannot be compensated by power supplies. These saturation errors will disturb the linear optics parameters, such as tunes, beta function and dispersion function. The strong space charge effects will cause emittance growth. The compensation of these effects by using trim quadruples is studied, and the corresponding results are presented.

  2. Static inverter with synchronous output waveform synthesized by time-optimal-response feedback

    NASA Technical Reports Server (NTRS)

    Kernick, A.; Stechschulte, D. L.; Shireman, D. W.

    1976-01-01

    Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.

  3. H2, fixed architecture, control design for large scale systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1990-01-01

    The H2, fixed architecture, control problem is a classic linear quadratic Gaussian (LQG) problem whose solution is constrained to be a linear time invariant compensator with a decentralized processing structure. The compensator can be made of p independent subcontrollers, each of which has a fixed order and connects selected sensors to selected actuators. The H2, fixed architecture, control problem allows the design of simplified feedback systems needed to control large scale systems. Its solution becomes more complicated, however, as more constraints are introduced. This work derives the necessary conditions for optimality for the problem and studies their properties. It is found that the filter and control problems couple when the architecture constraints are introduced, and that the different subcontrollers must be coordinated in order to achieve global system performance. The problem requires the simultaneous solution of highly coupled matrix equations. The use of homotopy is investigated as a numerical tool, and its convergence properties studied. It is found that the general constrained problem may have multiple stabilizing solutions, and that these solutions may be local minima or saddle points for the quadratic cost. The nature of the solution is not invariant when the parameters of the system are changed. Bifurcations occur, and a solution may continuously transform into a nonstabilizing compensator. Using a modified homotopy procedure, fixed architecture compensators are derived for models of large flexible structures to help understand the properties of the constrained solutions and compare them to the corresponding unconstrained ones.

  4. A new "Logicle" display method avoids deceptive effects of logarithmic scaling for low signals and compensated data.

    PubMed

    Parks, David R; Roederer, Mario; Moore, Wayne A

    2006-06-01

    In immunofluorescence measurements and most other flow cytometry applications, fluorescence signals of interest can range down to essentially zero. After fluorescence compensation, some cell populations will have low means and include events with negative data values. Logarithmic presentation has been very useful in providing informative displays of wide-ranging flow cytometry data, but it fails to adequately display cell populations with low means and high variances and, in particular, offers no way to include negative data values. This has led to a great deal of difficulty in interpreting and understanding flow cytometry data, has often resulted in incorrect delineation of cell populations, and has led many people to question the correctness of compensation computations that were, in fact, correct. We identified a set of criteria for creating data visualization methods that accommodate the scaling difficulties presented by flow cytometry data. On the basis of these, we developed a new data visualization method that provides important advantages over linear or logarithmic scaling for display of flow cytometry data, a scaling we refer to as "Logicle" scaling. Logicle functions represent a particular generalization of the hyperbolic sine function with one more adjustable parameter than linear or logarithmic functions. Finally, we developed methods for objectively and automatically selecting an appropriate value for this parameter. The Logicle display method provides more complete, appropriate, and readily interpretable representations of data that includes populations with low-to-zero means, including distributions resulting from fluorescence compensation procedures, than can be produced using either logarithmic or linear displays. The method includes a specific algorithm for evaluating actual data distributions and deriving parameters of the Logicle scaling function appropriate for optimal display of that data. It is critical to note that Logicle visualization does not change the data values or the descriptive statistics computed from them. Copyright 2006 International Society for Analytical Cytology.

  5. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations

    NASA Technical Reports Server (NTRS)

    Stone, H. S.

    1971-01-01

    Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

  6. A prototype automatic phase compensation module

    NASA Technical Reports Server (NTRS)

    Terry, John D.

    1992-01-01

    The growing demands for high gain and accurate satellite communication systems will necessitate the utilization of large reflector systems. One area of concern of reflector based satellite communication is large scale surface deformations due to thermal effects. These distortions, when present, can degrade the performance of the reflector system appreciable. This performance degradation is manifested by a decrease in peak gain, and increase in sidelobe level, and pointing errors. It is essential to compensate for these distortion effects and to maintain the required system performance in the operating space environment. For this reason the development of a technique to offset the degradation effects is highly desirable. Currently, most research is direct at developing better material for the reflector. These materials have a lower coefficient of linear expansion thereby reducing the surface errors. Alternatively, one can minimize the distortion effects of these large scale errors by adaptive phased array compensation. Adaptive phased array techniques have been studied extensively at NASA and elsewhere. Presented in this paper is a prototype automatic phase compensation module designed and built at NASA Lewis Research Center which is the first stage of development for an adaptive array compensation module.

  7. The Integration of Social-Ecological Resilience and Law

    EPA Science Inventory

    Growing recognition of the inherent uncertainty associated with the dynamics of ecological systems and their often non-linear and surprising behavior, however, presents a set of problems outside the scope of classic environmental law, and has lead to a fundamental understanding a...

  8. Disequilibrium After Traumatic Brain Injury: Vestibular Mechanisms

    DTIC Science & Technology

    2011-09-01

    of otolith signal processing, including the integration of head acceleration26 and the disambiguation of linear ac- celeration signals related to tilt ...Foveal versus full-field visual stabilization strategies for translational and rotational head movements. J. Neurosci. 23: 1104–1108. 14. Walker, M.F., M...in the vestibular reflexes that compensate for linear movements of the head and body during standing and walking. The experimental protocol has two

  9. Robust gaze-steering of an active vision system against errors in the estimated parameters

    NASA Astrophysics Data System (ADS)

    Han, Youngmo

    2015-01-01

    Gaze-steering is often used to broaden the viewing range of an active vision system. Gaze-steering procedures are usually based on estimated parameters such as image position, image velocity, depth and camera calibration parameters. However, there may be uncertainties in these estimated parameters because of measurement noise and estimation errors. In this case, robust gaze-steering cannot be guaranteed. To compensate for such problems, this paper proposes a gaze-steering method based on a linear matrix inequality (LMI). In this method, we first propose a proportional derivative (PD) control scheme on the unit sphere that does not use depth parameters. This proposed PD control scheme can avoid uncertainties in the estimated depth and camera calibration parameters, as well as inconveniences in their estimation process, including the use of auxiliary feature points and highly non-linear computation. Furthermore, the control gain of the proposed PD control scheme on the unit sphere is designed using LMI such that the designed control is robust in the presence of uncertainties in the other estimated parameters, such as image position and velocity. Simulation results demonstrate that the proposed method provides a better compensation for uncertainties in the estimated parameters than the contemporary linear method and steers the gaze of the camera more steadily over time than the contemporary non-linear method.

  10. Effect of stride length on overarm throwing delivery: A linear momentum response.

    PubMed

    Ramsey, Dan K; Crotin, Ryan L; White, Scott

    2014-12-01

    Changing stride length during overhand throwing delivery is thought to alter total body and throwing arm linear momentums, thereby altering the proportion of throwing arm momentum relative to the total body. Using a randomized cross-over design, nineteen pitchers (15 collegiate and 4 high school) were assigned to pitch two simulated 80-pitch games at ±25% of their desired stride length. An 8-camera motion capture system (240Hz) integrated with two force plates (960Hz) and radar gun tracked each throw. Segmental linear momentums in each plane of motion were summed yielding throwing arm and total body momentums, from which compensation ratio's (relative contribution between the two) were derived. Pairwise comparisons at hallmark events and phases identified significantly different linear momentum profiles, in particular, anteriorly directed total body, throwing arm, and momentum compensation ratios (P⩽.05) as a result of manipulating stride length. Pitchers with shorter strides generated lower forward (anterior) momentum before stride foot contact, whereas greater upward and lateral momentum (toward third base) were evident during the acceleration phase. The evidence suggests insufficient total body momentum in the intended throwing direction may potentially influence performance (velocity and accuracy) and perhaps precipitate throwing arm injuries. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching LO

    1993-01-01

    This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.

  12. Application of Design Methodologies for Feedback Compensation Associated with Linear Systems

    NASA Technical Reports Server (NTRS)

    Smith, Monty J.

    1996-01-01

    The work that follows is concerned with the application of design methodologies for feedback compensation associated with linear systems. In general, the intent is to provide a well behaved closed loop system in terms of stability and robustness (internal signals remain bounded with a certain amount of uncertainty) and simultaneously achieve an acceptable level of performance. The approach here has been to convert the closed loop system and control synthesis problem into the interpolation setting. The interpolation formulation then serves as our mathematical representation of the design process. Lifting techniques have been used to solve the corresponding interpolation and control synthesis problems. Several applications using this multiobjective design methodology have been included to show the effectiveness of these techniques. In particular, the mixed H 2-H performance criteria with algorithm has been used on several examples including an F-18 HARV (High Angle of Attack Research Vehicle) for sensitivity performance.

  13. Is pictorial perception robust? The effect of the observer vantage point on the perceived depth structure of linear-perspective images.

    PubMed

    Todorović, Dejan

    2008-01-01

    Every image of a scene produced in accord with the rules of linear perspective has an associated projection centre. Only if observed from that position does the image provide the stimulus which is equivalent to the one provided by the original scene. According to the perspective-transformation hypothesis, observing the image from other vantage points should result in specific transformations of the structure of the conveyed scene, whereas according to the vantage-point compensation hypothesis it should have little effect. Geometrical analyses illustrating the transformation theory are presented. An experiment is reported to confront the two theories. The results provide little support for the compensation theory and are generally in accord with the transformation theory, but also show systematic deviations from it, possibly due to cue conflict and asymmetry of visual angles.

  14. Flux concentration and modulation based magnetoresistive sensor with integrated planar compensation coils

    NASA Astrophysics Data System (ADS)

    Tian, Wugang; Hu, Jiafei; Pan, Mengchun; Chen, Dixiang; Zhao, Jianqiang

    2013-03-01

    1/f noise is one of the main noise sources of magnetoresistive (MR) sensors, which can cause intrinsic detection limit at low frequency. To suppress this noise, the solution of flux concentration and vertical motion modulation (VMM) has been proposed. Magnetic hysteresis in MR sensors is another problem, which degrades their response linearity and detection ability. To reduce this impact, the method of pulse magnetization and magnetic compensation field with integrated planar coils has been introduced. A flux concentration and VMM based magnetoresistive prototype sensor with integrated planar coils was fabricated using microelectromechanical-system technology. The response linearity of the prototype sensors is improved from 0.8% to 0.12%. The noise level is reduced near to the thermal noise level, and the low-frequency detection ability of the prototype sensor is enhanced with a factor of more than 80.

  15. Neural-Based Compensation of Nonlinearities in an Airplane Longitudinal Model with Dynamic-Inversion Control

    PubMed Central

    Li, YuHui; Jin, FeiTeng

    2017-01-01

    The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller. PMID:29410680

  16. Single link flexible beam testbed project. Thesis

    NASA Technical Reports Server (NTRS)

    Hughes, Declan

    1992-01-01

    This thesis describes the single link flexible beam testbed at the CLaMS laboratory in terms of its hardware, software, and linear model, and presents two controllers, each including a hub angle proportional-derivative (PD) feedback compensator and one augmented by a second static gain full state feedback loop, based upon a synthesized strictly positive real (SPR) output, that increases specific flexible mode pole damping ratios w.r.t the PD only case and hence reduces unwanted residual oscillation effects. Restricting full state feedback gains so as to produce a SPR open loop transfer function ensures that the associated compensator has an infinite gain margin and a phase margin of at least (-90, 90) degrees. Both experimental and simulation data are evaluated in order to compare some different observer performance when applied to the real testbed and to the linear model when uncompensated flexible modes are included.

  17. Railway crossing risk area detection using linear regression and terrain drop compensation techniques.

    PubMed

    Chen, Wen-Yuan; Wang, Mei; Fu, Zhou-Xing

    2014-06-16

    Most railway accidents happen at railway crossings. Therefore, how to detect humans or objects present in the risk area of a railway crossing and thus prevent accidents are important tasks. In this paper, three strategies are used to detect the risk area of a railway crossing: (1) we use a terrain drop compensation (TDC) technique to solve the problem of the concavity of railway crossings; (2) we use a linear regression technique to predict the position and length of an object from image processing; (3) we have developed a novel strategy called calculating local maximum Y-coordinate object points (CLMYOP) to obtain the ground points of the object. In addition, image preprocessing is also applied to filter out the noise and successfully improve the object detection. From the experimental results, it is demonstrated that our scheme is an effective and corrective method for the detection of railway crossing risk areas.

  18. Railway Crossing Risk Area Detection Using Linear Regression and Terrain Drop Compensation Techniques

    PubMed Central

    Chen, Wen-Yuan; Wang, Mei; Fu, Zhou-Xing

    2014-01-01

    Most railway accidents happen at railway crossings. Therefore, how to detect humans or objects present in the risk area of a railway crossing and thus prevent accidents are important tasks. In this paper, three strategies are used to detect the risk area of a railway crossing: (1) we use a terrain drop compensation (TDC) technique to solve the problem of the concavity of railway crossings; (2) we use a linear regression technique to predict the position and length of an object from image processing; (3) we have developed a novel strategy called calculating local maximum Y-coordinate object points (CLMYOP) to obtain the ground points of the object. In addition, image preprocessing is also applied to filter out the noise and successfully improve the object detection. From the experimental results, it is demonstrated that our scheme is an effective and corrective method for the detection of railway crossing risk areas. PMID:24936948

  19. Microcomputer-based system for registration of oxygen tension in peripheral muscle.

    PubMed

    Odman, S; Bratt, H; Erlandsson, I; Sjögren, L

    1986-01-01

    For registration of oxygen tension fields in peripheral muscle a microcomputer based system was designed on the M6800 microprocessor. The system was designed to record the signals from a multiwire oxygen electrode, MDO, which is a multiwire electrode for measuring oxygen on the surface of an organ. The system contained patient safety isolation unit built on optocopplers and the upper frequency limit was 0.64 Hz. Collected data were corrected for drift and temperature changes during the measurement by using pre- and after calibrations and a linear compensation technique. Measure drift of the electrodes were proved to be linear and thus the drift could be compensated for. The system was tested in an experiment on pig. To study the distribution of oxygen statistically mean, standard deviation, skewness and curtosis were calculated. To see changes or differences between histograms a Kolmogorv-Smirnov test was used.

  20. Experimental verification of a two-dimensional respiratory motion compensation system with ultrasound tracking technique in radiation therapy.

    PubMed

    Ting, Lai-Lei; Chuang, Ho-Chiao; Liao, Ai-Ho; Kuo, Chia-Chun; Yu, Hsiao-Wei; Zhou, Yi-Liang; Tien, Der-Chi; Jeng, Shiu-Chen; Chiou, Jeng-Fong

    2018-05-01

    This study proposed respiratory motion compensation system (RMCS) combined with an ultrasound image tracking algorithm (UITA) to compensate for respiration-induced tumor motion during radiotherapy, and to address the problem of inaccurate radiation dose delivery caused by respiratory movement. This study used an ultrasound imaging system to monitor respiratory movements combined with the proposed UITA and RMCS for tracking and compensation of the respiratory motion. Respiratory motion compensation was performed using prerecorded human respiratory motion signals and also sinusoidal signals. A linear accelerator was used to deliver radiation doses to GAFchromic EBT3 dosimetry film, and the conformity index (CI), root-mean-square error, compensation rate (CR), and planning target volume (PTV) were used to evaluate the tracking and compensation performance of the proposed system. Human respiratory pattern signals were captured using the UITA and compensated by the RMCS, which yielded CR values of 34-78%. In addition, the maximum coronal area of the PTV ranged from 85.53 mm 2 to 351.11 mm 2 (uncompensated), which reduced to from 17.72 mm 2 to 66.17 mm 2 after compensation, with an area reduction ratio of up to 90%. In real-time monitoring of the respiration compensation state, the CI values for 85% and 90% isodose areas increased to 0.7 and 0.68, respectively. The proposed UITA and RMCS can reduce the movement of the tracked target relative to the LINAC in radiation therapy, thereby reducing the required size of the PTV margin and increasing the effect of the radiation dose received by the treatment target. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Theoretical proposal for determining angular momentum compensation in ferrimagnets

    NASA Astrophysics Data System (ADS)

    Zhu, Zhifeng; Fong, Xuanyao; Liang, Gengchiau

    2018-05-01

    This work demonstrates that the magnetization and angular momentum compensation temperatures (TMC and TAMC) in ferrimagnets can be unambiguously determined by performing two sets of temperature-dependent current switching, with the symmetry reversals at TMC and TAMC, respectively. A theoretical model based on the modified Landau-Lifshitz-Bloch equation is developed to systematically study the spin torque effect under different temperatures, and numerical simulations are performed to corroborate our proposal. Furthermore, we demonstrate that the recently reported linear relation between TAMC and TMC can be explained using the Curie-Weiss theory.

  2. The mathematical origins of the kinetic compensation effect: 2. The effect of systematic errors.

    PubMed

    Barrie, Patrick J

    2012-01-07

    The kinetic compensation effect states that there is a linear relationship between Arrhenius parameters ln A and E for a family of related processes. It is a widely observed phenomenon in many areas of science, notably heterogeneous catalysis. This paper explores mathematical, rather than physicochemical, explanations for the compensation effect in certain situations. Three different topics are covered theoretically and illustrated by examples. Firstly, the effect of systematic errors in experimental kinetic data is explored, and it is shown that these create apparent compensation effects. Secondly, analysis of kinetic data when the Arrhenius parameters depend on another parameter is examined. In the case of temperature programmed desorption (TPD) experiments when the activation energy depends on surface coverage, it is shown that a common analysis method induces a systematic error, causing an apparent compensation effect. Thirdly, the effect of analysing the temperature dependence of an overall rate of reaction, rather than a rate constant, is investigated. It is shown that this can create an apparent compensation effect, but only under some conditions. This result is illustrated by a case study for a unimolecular reaction on a catalyst surface. Overall, the work highlights the fact that, whenever a kinetic compensation effect is observed experimentally, the possibility of it having a mathematical origin should be carefully considered before any physicochemical conclusions are drawn.

  3. Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine

    PubMed Central

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir

    2017-01-01

    As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems. PMID:28422080

  4. Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine.

    PubMed

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2017-04-19

    As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.

  5. SU-G-BRB-14: Uncertainty of Radiochromic Film Based Relative Dose Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devic, S; Tomic, N; DeBlois, F

    2016-06-15

    Purpose: Due to inherently non-linear dose response, measurement of relative dose distribution with radiochromic film requires measurement of absolute dose using a calibration curve following previously established reference dosimetry protocol. On the other hand, a functional form that converts the inherently non-linear dose response curve of the radiochromic film dosimetry system into linear one has been proposed recently [Devic et al, Med. Phys. 39 4850–4857 (2012)]. However, there is a question what would be the uncertainty of such measured relative dose. Methods: If the relative dose distribution is determined going through the reference dosimetry system (conversion of the response bymore » using calibration curve into absolute dose) the total uncertainty of such determined relative dose will be calculated by summing in quadrature total uncertainties of doses measured at a given and at the reference point. On the other hand, if the relative dose is determined using linearization method, the new response variable is calculated as ζ=a(netOD)n/ln(netOD). In this case, the total uncertainty in relative dose will be calculated by summing in quadrature uncertainties for a new response function (σζ) for a given and the reference point. Results: Except at very low doses, where the measurement uncertainty dominates, the total relative dose uncertainty is less than 1% for the linear response method as compared to almost 2% uncertainty level for the reference dosimetry method. The result is not surprising having in mind that the total uncertainty of the reference dose method is dominated by the fitting uncertainty, which is mitigated in the case of linearization method. Conclusion: Linearization of the radiochromic film dose response provides a convenient and a more precise method for relative dose measurements as it does not require reference dosimetry and creation of calibration curve. However, the linearity of the newly introduced function must be verified. Dave Lewis is inventor and runs a consulting company for radiochromic films.« less

  6. Preserving Simplecticity in the Numerical Integration of Linear Beam Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Christopher K.

    2017-07-01

    Presented are mathematical tools and methods for the development of numerical integration techniques that preserve the symplectic condition inherent to mechanics. The intended audience is for beam physicists with backgrounds in numerical modeling and simulation with particular attention to beam optics applications. The paper focuses on Lie methods that are inherently symplectic regardless of the integration accuracy order. Section 2 provides the mathematically tools used in the sequel and necessary for the reader to extend the covered techniques. Section 3 places those tools in the context of charged-particle beam optics; in particular linear beam optics is presented in terms ofmore » a Lie algebraic matrix representation. Section 4 presents numerical stepping techniques with particular emphasis on a third-order leapfrog method. Section 5 discusses the modeling of field imperfections with particular attention to the fringe fields of quadrupole focusing magnets. The direct computation of a third order transfer matrix for a fringe field is shown.« less

  7. Design of a dual linear polarization antenna using split ring resonators at X-band

    NASA Astrophysics Data System (ADS)

    Ahmed, Sadiq; Chandra, Madhukar

    2017-11-01

    Dual linear polarization microstrip antenna configurations are very suitable for high-performance satellites, wireless communication and radar applications. This paper presents a new method to improve the co-cross polarization discrimination (XPD) for dual linear polarized microstrip antennas at 10 GHz. For this, three various configurations of a dual linear polarization antenna utilizing metamaterial unit cells are shown. In the first layout, the microstrip patch antenna is loaded with two pairs of spiral ring resonators, in the second model, a split ring resonator is placed between two microstrip feed lines, and in the third design, a complementary split ring resonators are etched in the ground plane. This work has two primary goals: the first is related to the addition of metamaterial unit cells to the antenna structure which permits compensation for an asymmetric current distribution flow on the microstrip antenna and thus yields a symmetrical current distribution on it. This compensation leads to an important enhancement in the XPD in comparison to a conventional dual linear polarized microstrip patch antenna. The simulation reveals an improvement of 7.9, 8.8, and 4 dB in the E and H planes for the three designs, respectively, in the XPD as compared to the conventional dual linear polarized patch antenna. The second objective of this paper is to present the characteristics and performances of the designs of the spiral ring resonator (S-RR), split ring resonator (SRR), and complementary split ring resonator (CSRR) metamaterial unit cells. The simulations are evaluated using the commercial full-wave simulator, Ansoft High-Frequency Structure Simulator (HFSS).

  8. Detection and Compensation of Degeneracy Cases for IMU-Kinect Integrated Continuous SLAM with Plane Features †

    PubMed Central

    Cho, HyunGi; Yeon, Suyong; Choi, Hyunga; Doh, Nakju

    2018-01-01

    In a group of general geometric primitives, plane-based features are widely used for indoor localization because of their robustness against noises. However, a lack of linearly independent planes may lead to a non-trivial estimation. This in return can cause a degenerate state from which all states cannot be estimated. To solve this problem, this paper first proposed a degeneracy detection method. A compensation method that could fix orientations by projecting an inertial measurement unit’s (IMU) information was then explained. Experiments were conducted using an IMU-Kinect v2 integrated sensor system prone to fall into degenerate cases owing to its narrow field-of-view. Results showed that the proposed framework could enhance map accuracy by successful detection and compensation of degenerated orientations. PMID:29565287

  9. Method and apparatus for control of coherent synchrotron radiation effects during recirculation with bunch compression

    DOEpatents

    Douglas, David R; Tennant, Christopher

    2015-11-10

    A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.

  10. Ultrametric properties of the attractor spaces for random iterated linear function systems

    NASA Astrophysics Data System (ADS)

    Buchovets, A. G.; Moskalev, P. V.

    2018-03-01

    We investigate attractors of random iterated linear function systems as independent spaces embedded in the ordinary Euclidean space. The introduction on the set of attractor points of a metric that satisfies the strengthened triangle inequality makes this space ultrametric. Then inherent in ultrametric spaces the properties of disconnectedness and hierarchical self-similarity make it possible to define an attractor as a fractal. We note that a rigorous proof of these properties in the case of an ordinary Euclidean space is very difficult.

  11. Neighboring extremal optimal control design including model mismatch errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T.J.; Hull, D.G.

    1994-11-01

    The mismatch control technique that is used to simplify model equations of motion in order to determine analytic optimal control laws is extended using neighboring extremal theory. The first variation optimal control equations are linearized about the extremal path to account for perturbations in the initial state and the final constraint manifold. A numerical example demonstrates that the tuning procedure inherent in the mismatch control method increases the performance of the controls to the level of a numerically-determined piecewise-linear controller.

  12. Conservation properties of numerical integration methods for systems of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Rosenbaum, J. S.

    1976-01-01

    If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.

  13. Integrated flight/propulsion control system design based on a centralized approach

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane L.; Bullard, Randy E.

    1989-01-01

    An integrated flight/propulsion control system design is presented for the piloted longitudinal landing task with a modern, statically unstable, fighter aircraft. A centralized compensator based on the Linear Quadratic Gaussian/Loop Transfer Recovery methodology is first obtained to satisfy the feedback loop performance and robustness specificiations. This high-order centralized compensator is then partitioned into airframe and engine sub-controllers based on modal controllability/observability for the compensator modes. The order of the sub-controllers is then reduced using internally-balanced realization techniques and the sub-controllers are simplified by neglecting the insignificant feedbacks. These sub-controllers have the advantage that they can be implemented as separate controllers on the airframe and the engine while still retaining the important performance and stability characteristics of the full-order centralized compensator. Command prefilters are then designed for the closed-loop system with the simplified sub-controllers to obtain the desired system response to airframe and engine command inputs, and the overall system performance evaluation results are presented.

  14. Fiber-optical sensor with intensity compensation model in college teaching of physics experiment

    NASA Astrophysics Data System (ADS)

    Su, Liping; Zhang, Yang; Li, Kun; Zhang, Yu

    2017-08-01

    Optical fiber sensor technology is one of the main contents of modern information technology, which has a very important position in modern science and technology. Fiber optic sensor experiment can improve students' enthusiasm and broaden their horizons in college physics experiment. In this paper the main structure and working principle of fiberoptical sensor with intensity compensation model are introduced. And thus fiber-optical sensor with intensity compensation model is applied to measure micro displacement of Young's modulus measurement experiment and metal linear expansion coefficient measurement experiment in the college physics experiment. Results indicate that the measurement accuracy of micro displacement is higher than that of the traditional methods using fiber-optical sensor with intensity compensation model. Meanwhile this measurement method makes the students understand on the optical fiber, sensor and nature of micro displacement measurement method and makes each experiment strengthen relationship and compatibility, which provides a new idea for the reform of experimental teaching.

  15. Laser diode bars based on strain-compensated AlGaPAs/GaAs heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marmalyuk, Aleksandr A; Ladugin, M A; Yarotskaya, I V

    2012-01-31

    Traditional (in the AlGaAs/GaAs system) and phosphorus-compensated (in the AlGaAs/AlGaPAs/GaAs system) laser heterostructures emitting at a wavelength of 850 nm are grown by MOVPE and studied. Laser diode bars are fabricated and their output characteristics are studied. The method used to grow heterolayers allowed us to control (minimise) mechanical stresses in the AlGaPAs/GaAs laser heterostructure, which made it possible to keep its curvature at the level of the initial curvature of the substrate. It is shown that the use of a compensated AlGaPAs/GaAs heterostructure improves the linear distribution of emitting elements in the near field of laser diode arrays andmore » allows the power - current characteristic to retain its slope at high pump currents owing to a uniform contact of all emitting elements with the heat sink. The radius of curvature of the grown compensated heterostructures turns out to be smaller than that of traditional heterostructures.« less

  16. Coherent detection in optical fiber systems.

    PubMed

    Ip, Ezra; Lau, Alan Pak Tao; Barros, Daniel J F; Kahn, Joseph M

    2008-01-21

    The drive for higher performance in optical fiber systems has renewed interest in coherent detection. We review detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method. We compare modulation methods encoding information in various degrees of freedom (DOF). Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency, by utilizing all four available DOF, the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Linear impairments, including chromatic dispersion and polarization-mode dispersion, can be compensated quasi-exactly using finite impulse response filters. Some nonlinear impairments, such as intra-channel four-wave mixing and nonlinear phase noise, can be compensated partially. Carrier phase recovery can be performed using feedforward methods, even when phase-locked loops may fail due to delay constraints. DSP-based compensation enables a receiver to adapt to time-varying impairments, and facilitates use of advanced forward-error-correction codes. We discuss both single- and multi-carrier system implementations. For a given modulation format, using coherent detection, they offer fundamentally the same spectral efficiency and power efficiency, but may differ in practice, because of different impairments and implementation details. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gbit/s should become practical within the next few years.

  17. Thermal oxidative degradation reactions of linear perfluoroalkyl ethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paclorek, K. J. L.; Ito, T. I.; Kratzer, R. H.

    1983-01-01

    Thermal and thermal oxidative stability studies were performed on linear perfluoroalkyl ether fluids. The effect on degradation by metal catalysts and degradation inhibitors is reported. The linear perfluoroalkyl ethers are inherently unstable at 316 C in an oxidizing atmosphere. The metal catalysts greatly increased the rate of degradation in oxidizing atmospheres. In the presence of these metals in an oxidizing atmosphere, the degradation inhibitors were highly effective in arresting degradation at 288 C. However, the inhibitors had only limited effectiveness at 316 C. The metals promote degradation by chain scission. Based on elemental analysis and oxygen consumption data, the linear perfluoroalkyl ether fluids have a structural arrangement based on difluoroformyl and tetrafluoroethylene oxide units, with the former predominating. Previously announced in STAR as N82-26468

  18. Insights into linearized rotor dynamics, Part 2

    NASA Astrophysics Data System (ADS)

    Adams, M. L.

    1987-01-01

    This paper builds upon its 1981 namesake to extend and propose ideas which focus on some unique problems at the current center of interest in rotor vibration technology. These problems pertain to the ongoing extension of the linearized rotor-bearing model to include other rotor-stator interactive forces such as seals and turbomachinery stages. A unified linear model is proposed and contains an axiom which requires the coefficient matrix of the highest order term, in an interactive force model, to be symmetric. The paper ends on a fundamental question, namely, the potential weakness inherent in the whole idea of mechanical impedance modeling of rotor-stator interactive fluid flow fields.

  19. Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam-Poupart, Ariane; Smargiassi, Audrey; Institut national de santé publique du Québec

    2014-10-15

    Background: Predicted rise in global mean temperature and intensification of heat waves associated with climate change present an increasing challenge for occupational health and safety. Although important scientific knowledge has been gathered on the health effects of heat, very few studies have focused on quantifying the association between outdoor heat and mortality or morbidity among workers. Objective: To quantify the association between occupational heat-related illnesses and exposure to summer outdoor temperatures. Methods: We modeled 259 heat-related illnesses compensated by the Workers' Compensation Board of Quebec between May and September, from 1998 to 2010, with maximum daily summer outdoor temperatures inmore » 16 health regions of Quebec (Canada) using generalized linear models with negative binomial distributions, and estimated the pooled effect sizes for all regions combined, by sex and age groups, and for different time lags with random-effect models for meta-analyses. Results: The mean daily compensation count was 0.13 for all regions of Quebec combined. The relationship between daily counts of compensations and maximum daily temperatures was log-linear; the pooled incidence rate ratio (IRR) of daily heat-related compensations per 1 °C increase in daily maximum temperatures was 1.419 (95% CI 1.326 to 1.520). Associations were similar for men and women and by age groups. Increases in daily maximum temperatures at lags 1 and 2 and for two and three-day lag averages were also associated with increases in daily counts of compensations (IRRs of 1.206 to 1.471 for every 1 °C increase in temperature). Conclusion: This study is the first to quantify the association between occupational heat-related illnesses and exposure to summer temperatures in Canada. The model (risk function) developed in this study could be useful to improve the assessment of future impacts of predicted summer outdoor temperatures on workers and vulnerable groups, particularly in colder temperate zones. - Highlights: • 259 heat-related compensated illnesses were modeled with ambient temperature • An overall risk ratio of 1.419 (95% CI 1.326–1.520) for every 1 °C increase was found • Risk estimates were similar for men and women and by large age groups. • There were little lag effects (IRRs of 1.206 to 1.471 for every 1 °C increase)« less

  20. Enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxane-water.

    PubMed

    Bustamante, P; Romero, S; Pena, A; Escalera, B; Reillo, A

    1998-12-01

    In earlier work, a nonlinear enthalpy-entropy compensation was observed for the solubility of phenacetin in dioxane-water mixtures. This effect had not been earlier reported for the solubility of drugs in solvent mixtures. To gain insight into the compensation effect, the behavior of the apparent thermodynamic magnitudes for the solubility of paracetamol, acetanilide, and nalidixic acid is studied in this work. The solubility of these drugs was measured at several temperatures in dioxane-water mixtures. DSC analysis was performed on the original powders and on the solid phases after equilibration with the solvent mixture. The thermal properties of the solid phases did not show significant changes. The three drugs display a solubility maximum against the cosolvent ratio. The solubility peaks of acetanilide and nalidixic acid shift to a more polar region at the higher temperatures. Nonlinear van't Hoff plots were observed for nalidixic acid whereas acetanilide and paracetamol show linear behavior at the temperature range studied. The apparent enthalpies of solution are endothermic going through a maximum at 50% dioxane. Two different mechanisms, entropy and enthalpy, are suggested to be the driving forces that increase the solubility of the three drugs. Solubility is entropy controlled at the water-rich region (0-50% dioxane) and enthalpy controlled at the dioxane-rich region (50-100% dioxane). The enthalpy-entropy compensation analysis also suggests that two different mechanisms, dependent on cosolvent ratio, are involved in the solubility enhancement of the three drugs. The plots of deltaH versus deltaG are nonlinear, and the slope changes from positive to negative above 50% dioxane. The compensation effect for the thermodynamic magnitudes of transfer from water to the aqueous mixtures can be described by a common empirical nonlinear relationship, with the exception of paracetamol, which follows a separate linear relationship at dioxane ratios above 50%. The results corroborate earlier findings with phenacetin. The similar pattern shown by the drugs studied suggests that the nonlinear enthalpy-entropy compensation effect may be characteristic of the solubility of semipolar drugs in dioxane-water mixtures.

  1. Robust incremental compensation of the light attenuation with depth in 3D fluorescence microscopy.

    PubMed

    Kervrann, C; Legland, D; Pardini, L

    2004-06-01

    Summary Fluorescent signal intensities from confocal laser scanning microscopes (CLSM) suffer from several distortions inherent to the method. Namely, layers which lie deeper within the specimen are relatively dark due to absorption and scattering of both excitation and fluorescent light, photobleaching and/or other factors. Because of these effects, a quantitative analysis of images is not always possible without correction. Under certain assumptions, the decay of intensities can be estimated and used for a partial depth intensity correction. In this paper we propose an original robust incremental method for compensating the attenuation of intensity signals. Most previous correction methods are more or less empirical and based on fitting a decreasing parametric function to the section mean intensity curve computed by summing all pixel values in each section. The fitted curve is then used for the calculation of correction factors for each section and a new compensated sections series is computed. However, these methods do not perfectly correct the images. Hence, the algorithm we propose for the automatic correction of intensities relies on robust estimation, which automatically ignores pixels where measurements deviate from the decay model. It is based on techniques adopted from the computer vision literature for image motion estimation. The resulting algorithm is used to correct volumes acquired in CLSM. An implementation of such a restoration filter is discussed and examples of successful restorations are given.

  2. 160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide.

    PubMed

    Lu, Guo-Wei; Shinada, Satoshi; Furukawa, Hideaki; Wada, Naoya; Miyazaki, Tetsuya; Ito, Hiromasa

    2010-03-15

    We experimentally demonstrated ultra-fast phase-transparent wavelength conversion using cascaded sum- and difference-frequency generation (cSFG-DFG) in linear-chirped periodically poled lithium niobate (PPLN). Error-free wavelength conversion of a 160-Gb/s return-to-zero differential phase-shift keying (RZ-DPSK) signal was successfully achieved. Thanks to the enhanced conversion bandwidth in the PPLN with linear-chirped periods, no optical equalizer was required to compensate the spectrum distortion after conversion, unlike a previous demonstration of 160-Gb/s RZ on-off keying (OOK) using fixed-period PPLN.

  3. Does CEO compensation impact patient satisfaction?

    PubMed

    Akingbola, Kunle; van den Berg, Herman A

    2015-01-01

    This study examines the relationship between CEO compensation and patient satisfaction in Ontario, Canada. The purpose of this paper is to determine what impact hospital CEO compensation has on hospital patient satisfaction. The analyses in this study were based on data of 261 CEO-hospital-year observations in a sample of 103 nonprofit hospitals. A number of linear regressions were conducted, with patient satisfaction as the dependent variable and CEO compensation as the independent variable of interest. Controlling variables included hospital size, type of hospital, and frequency of adverse clinical outcomes. CEO compensation does not significantly influence hospital patient satisfaction. Both patient satisfaction and CEO compensation appear to be driven primarily by hospital size. Patient satisfaction decreases, while CEO compensation increases, with the number of acute care beds in a hospital. In addition, CEO compensation does not even appear to moderate the influence of hospital size on patient satisfaction. There are several limitations to this study. First, observations of CEO-hospital-years in which annual nominal CEO compensation was below $100,000 were excluded, as they were not publicly available. Second, this research was limited to a three-year range. Third, this study related the compensation of individual CEOs to a measure of performance based on a multitude of patient satisfaction surveys. Finally, this research is restricted to not-for-profit hospitals in Ontario, Canada. The findings seem to suggest that hospital directors seeking to improve patient satisfaction may find their efforts frustrated if they focus exclusively on the hospital CEO. The findings highlight the need for further research on how CEOs may, through leading and supporting those hospital clinicians and staff that interact more closely with patients, indirectly enhance patient satisfaction. To the best of the authors' knowledge, no research has examined the relationship between hospital CEO compensation and patient satisfaction. This research fills the gap and provides a basis for future research.

  4. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    PubMed Central

    Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju

    2014-01-01

    Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor. PMID:25006998

  5. From the left to the right: How the brain compensates progressive loss of language function.

    PubMed

    Thiel, Alexander; Habedank, Birgit; Herholz, Karl; Kessler, Josef; Winhuisen, Lutz; Haupt, Walter F; Heiss, Wolf-Dieter

    2006-07-01

    In normal right-handed subjects language production usually is a function oft the left brain hemisphere. Patients with aphasia following brain damage to the left hemisphere have a considerable potential to compensate for the loss of this function. Sometimes, but not always, areas of the right hemisphere which are homologous to language areas of the left hemisphere in normal subjects are successfully employed for compensation but this integration process may need time to develop. We investigated right-handed patients with left hemisphere brain tumors as a model of continuously progressive brain damage to left hemisphere language areas using functional neuroimaging and transcranial magnetic stimulation (TMS) to identify factors which determine successful compensation of lost language function. Only patients with slowly progressing brain lesions recovered right-sided language function as detected by TMS. In patients with rapidly progressive lesions no right-sided language function was found and language performance was linearly correlated with the lateralization of language related brain activation to the left hemisphere. It can thus be concluded that time is the factor which determines successful integration of the right hemisphere into the language network for compensation of lost left hemisphere language function.

  6. The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center

    NASA Astrophysics Data System (ADS)

    Tseng, Pai-Chung; Chen, Shen-Len

    The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.

  7. The effects of time delay in man-machine control systems: Implications for design of flight simulator Visual-Display-Delay compensation

    NASA Technical Reports Server (NTRS)

    Crane, D. F.

    1984-01-01

    When human operators are performing precision tracking tasks, their dynamic response can often be modeled by quasilinear describing functions. That fact permits analysis of the effects of delay in certain man machine control systems using linear control system analysis techniques. The analysis indicates that a reduction in system stability is the immediate effect of additional control system delay, and that system characteristics moderate or exaggerate the importance of the delay. A selection of data (simulator and flight test) consistent with the analysis is reviewed. Flight simulator visual-display delay compensation, designed to restore pilot aircraft system stability, was evaluated in several studies which are reviewed here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish the statistical significance of the results) to a brief evaluation of compensation of a computer generated imagery (CGI) visual display system in a full six degree of freedom simulation. The compensation was effective, improvements in pilot performance and workload or aircraft handling qualities rating (HQR) were observed. Results from recent aircraft handling qualities research literature, which support the compensation design approach, are also reviewed.

  8. A nonlinear Kalman filtering approach to embedded control of turbocharged diesel engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The development of efficient embedded control for turbocharged Diesel engines, requires the programming of elaborated nonlinear control and filtering methods. To this end, in this paper nonlinear control for turbocharged Diesel engines is developed with the use of Differential flatness theory and the Derivative-free nonlinear Kalman Filter. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances the Derivative-free nonlinear Kalman Filter is used and redesigned as a disturbance observer. The filter consists of the Kalman Filter recursion on the linearized equivalent of the Diesel engine model and of an inverse transformation based on differential flatness theory which enables to obtain estimates for the state variables of the initial nonlinear model. Once the disturbances variables are identified it is possible to compensate them by including an additional control term in the feedback loop. The efficiency of the proposed control method is tested through simulation experiments.

  9. Zero-Headspace Coal-Core Gas Desorption Canister, Revised Desorption Data Analysis Spreadsheets and a Dry Canister Heating System

    USGS Publications Warehouse

    Barker, Charles E.; Dallegge, Todd A.

    2005-01-01

    Coal desorption techniques typically use the U.S. Bureau of Mines (USBM) canister-desorption method as described by Diamond and Levine (1981), Close and Erwin (1989), Ryan and Dawson (1993), McLennan and others (1994), Mavor and Nelson (1997) and Diamond and Schatzel (1998). However, the coal desorption canister designs historically used with this method have an inherent flaw that allows a significant gas-filled headspace bubble to remain in the canister that later has to be compensated for by correcting the measured desorbed gas volume with a mathematical headspace volume correction (McLennan and others, 1994; Mavor and Nelson, 1997).

  10. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity andmore » line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.« less

  11. Sensitivity gains, linearity, and spectral reproducibility in nonuniformly sampled multidimensional MAS NMR spectra of high dynamic range

    PubMed Central

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David; Hoch, Jeffrey C.; Rovnyak, David

    2014-01-01

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C, 15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high-quality artifact-free datasets. PMID:24752819

  12. The Many Ways Data Must Flow.

    ERIC Educational Resources Information Center

    La Brecque, Mort

    1984-01-01

    To break the bottleneck inherent in today's linear computer architectures, parallel schemes (which allow computers to perform multiple tasks at one time) are being devised. Several of these schemes are described. Dataflow devices, parallel number-crunchers, programing languages, and a device based on a neurological model are among the areas…

  13. Prospective Mathematics Teachers' Sense Making of Polynomial Multiplication and Factorization Modeled with Algebra Tiles

    ERIC Educational Resources Information Center

    Caglayan, Günhan

    2013-01-01

    This study is about prospective secondary mathematics teachers' understanding and sense making of representational quantities generated by algebra tiles, the quantitative units (linear vs. areal) inherent in the nature of these quantities, and the quantitative addition and multiplication operations--referent preserving versus referent…

  14. Highly compact fiber Fabry-Perot interferometer: A new instrument design

    NASA Astrophysics Data System (ADS)

    Nowakowski, B. K.; Smith, D. T.; Smith, S. T.

    2016-11-01

    This paper presents the design, construction, and characterization of a new optical-fiber-based, low-finesse Fabry-Perot interferometer with a simple cavity formed by two reflecting surfaces (the end of a cleaved optical fiber and a plane, reflecting counter-surface), for the continuous measurement of displacements of several nanometers to several tens of millimeters. No beam collimation or focusing optics are required, resulting in a displacement sensor that is extremely compact (optical fiber diameter 125 μm), is surprisingly tolerant of misalignment (more than 5°), and can be used over a very wide range of temperatures and environmental conditions, including ultra-high-vacuum. The displacement measurement is derived from interferometric phase measurements using an infrared laser source whose wavelength is modulated sinusoidally at a frequency f. The phase signal is in turn derived from changes in the amplitudes of demodulated signals, at both the modulation frequency, f, and its harmonic at 2f, coming from a photodetector that is monitoring light intensity reflected back from the cavity as the cavity length changes. Simple quadrature detection results in phase errors corresponding to displacement errors of up to 25 nm, but by using compensation algorithms discussed in this paper, these inherent non-linearities can be reduced to below 3 nm. In addition, wavelength sweep capability enables measurement of the absolute surface separation. This experimental design creates a unique set of displacement measuring capabilities not previously combined in a single interferometer.

  15. Impact of a Safe Resident Handling Program in Nursing Homes on Return-to-Work and Re-injury Outcomes Following Work Injury.

    PubMed

    Kurowski, Alicia; Pransky, Glenn; Punnett, Laura

    2018-05-21

    Purpose This study examined the impact of a Safe Resident Handling Program (SRHP) on length of disability and re-injury, following work-related injuries of nursing home workers. Resident handling-related injuries and back injuries were of particular interest. Methods A large national nursing home corporation introduced a SRHP followed by three years of training for 136 centers. Lost-time workers' compensation claims (3 years pre-SRHP and 6 years post-SRHP) were evaluated. For each claim, length of first episode of disability and recurrence of disabling injury were evaluated over time. Differences were assessed using Chi square analyses and a generalized linear model, and "avoided" costs were projected. Results The SRHP had no impact on length of disability, but did appear to significantly reduce the rate of recurrence among resident handling-related injuries. As indemnity and medical costs were three times higher for claimants with recurrent disabling injuries, the SRHP resulted in significant "avoided" costs due to "avoided" recurrence. Conclusions In addition to reducing overall injury rates, SRHPs appear to improve long-term return-to-work success by reducing the rate of recurrent disabling injuries resulting in work disability. In this study, the impact was sustained over years, even after a formal training and implementation program ended. Since back pain is inherently a recurrent condition, results suggest that SRHPs help workers remain at work and return-to-work.

  16. Classification of journal surfaces using surface topography parameters and software methods to compensate for stylus geometry

    NASA Technical Reports Server (NTRS)

    Li, C. J.; Devries, W. R.; Ludema, K. C.

    1983-01-01

    Measurements made with a stylus surface tracer which provides a digitized representation of a surface profile are discussed. Parameters are defined to characterize the height (e.g., RMS roughness, skewness, and kurtosis) and length (e.g., autocorrelation) of the surface topography. These are applied to the characterization of crank shaft journals which were manufactured by different grinding and lopping procedures known to give significant differences in crank shaft bearing life. It was found that three parameters (RMS roughness, skewness, and kurtosis) are necessary to adequately distinguish the character of these surfaces. Every surface specimen has a set of values for these three parameters. They can be regarded as a set coordinate in a space constituted by three characteristics axes. The various journal surfaces can be classified along with the determination of a proper wavelength cutoff (0.25 mm) by using a method of separated subspace. The finite radius of the stylus used for profile tracing gives an inherent measurement error as it passes over the fine structure of the surface. A mathematical model is derived to compensate for this error.

  17. Analysis, compensation, and correction of temperature effects on FBG strain sensors

    NASA Astrophysics Data System (ADS)

    Haber, T. C.; Ferguson, S.; Guthrie, D.; Graver, T. W.; Soller, B. J.; Mendez, Alexis

    2013-05-01

    One of the most common fiber optic sensor (FOS) types used are fiber Bragg gratings (FBG), and the most frequently measured parameter is strain. Hence, FBG strain sensors are one of the most prevalent FOS devices in use today in structural sensing and monitoring in civil engineering, aerospace, marine, oil and gas, composites and smart structure applications. However, since FBGs are simultaneously sensitive to both temperature and strain, it becomes essential to utilize sensors that are either fully temperature insensitive or, alternatively, properly temperature compensated to avoid erroneous measurements. In this paper, we introduce the concept of measured "total strain", which is inherent and unique to optical strain sensors. We review and analyze the temperature and strain sensitivities of FBG strain sensors and decompose the total measured strain into thermal and non-thermal components. We explore the differences between substrate CTE and System Thermal Response Coefficients, which govern the type and quality of thermal strain decomposition analysis. Finally, we present specific guidelines to achieve proper temperature-insensitive strain measurements by combining adequate installation, sensor packaging and data correction techniques.

  18. Golden rule for buttressing vulnerable soluble proteins.

    PubMed

    Fernández, Ariel; Berry, R Stephen

    2010-05-07

    Local weaknesses in the structure of soluble proteins have received little attention. The structure may be inherently weak at sites where hydration of the protein backbone is locally hampered by formation of an intramolecular hydrogen bond which in turn is not fully stabilized through burial within a hydrophobic environment. The result is insufficient compensation for the thermodynamic cost of dehydrating the backbone polar groups. This work shows that these structural deficiencies, the unburied backbone hydrogen bonds, are compensated in natural proteins by disulfide bonds that are needed to maintain the structural integrity. Examination of all PDB-reported soluble structures reveals that, after suitable normalization, the number of disulfide bonds, X, correlates tightly with the number of unburied backbone hydrogen bonds, Y, beyond the baseline level Y = 20, revealing a simple balance relation: Y = 5X + 20. This equation introduces a 1:5 ratio associated with the buttressing of soluble proteins with structural deficiencies. The results are justified on thermodynamic grounds and have implications for biomolecular engineering as they introduce two constants of universal applicability determining the architecture of soluble proteins.

  19. Consideration of computer limitations in implementing on-line controls. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Roberts, G. K.

    1976-01-01

    A formal statement of the optimal control problem which includes the interval of dicretization as an optimization parameter, and extend this to include selection of a control algorithm as part of the optimization procedure, is formulated. The performance of the scalar linear system depends on the discretization interval. Discrete-time versions of the output feedback regulator and an optimal compensator, and the use of these results in presenting an example of a system for which fast partial-state-feedback control better minimizes a quadratic cost than either a full-state feedback control or a compensator, are developed.

  20. Compensation based on linearized analysis for a six degree of freedom motion simulator

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Dieudonne, J. E.; Martin, D. J., Jr.; Copeland, J. L.

    1973-01-01

    The inertial response characteristics of a synergistic, six-degree-of-freedom motion base are presented in terms of amplitude ratio and phase lag as functions of frequency data for the frequency range of interest (0 to 2 Hz) in real time, digital, flight simulators. The notch filters which smooth the digital-drive signals to continuous drive signals are presented, and appropriate compensation, based on the inertial response data, is suggested. The existence of an inverse transformation that converts actuator extensions into inertial positions makes it possible to gather the response data in the inertial axis system.

  1. FIBER OPTICS: Schrödinger soliton in a fiber waveguide exhibiting both gain and losses: squeezed states and growth of noise in the linear approximation

    NASA Astrophysics Data System (ADS)

    Belinskiĭ, A. V.

    1992-09-01

    An investigation is made of the evolution of quantum fluctuations of a fundamental soliton in the course of its propagation in a nonlinear fiber waveguide characterized by losses and compensated by amplification. Simple relationships are obtained for the amplitude and phase noise, quantum uncertainty of the position and momentum, and also fluctuations of the quadrature components of the radiation field. Numerical estimates are obtained. It is shown that loss-compensating amplification is unnecessary for efficient formation of squeezed states of a soliton.

  2. Neodymium glass laser with a phase conjugate mirror producing 220 J pulses at 0.02 Hz repetition rate.

    PubMed

    Kuzmin, A A; Khazanov, E A; Kulagin, O V; Shaykin, A A

    2014-08-25

    For pumping multipetawatt Ti:sapphire laser facilities we developed a compact repetitively pulsed laser based on neodymium phosphate glass with pulse energy of 220 J, pulse repetition rate of 0.02 Hz, beam diameter of 43 mm, aperture fill factor of 0.8, and FWHM pulse duration of 30 ns. The phase distortions of laser radiation were compensated by optical phase conjugation via stimulated Brillouin scattering. The depolarization was reduced to 0.4% using linear compensation methods. The beam quality was 2.5 x diffraction limit (150 µrad).

  3. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  4. Directionality compensation for linear multivariable anti-windup synthesis

    NASA Astrophysics Data System (ADS)

    Adegbege, Ambrose A.; Heath, William P.

    2015-11-01

    We develop new synthesis procedures for optimising anti-windup control applicable to open-loop exponentially stable multivariable plants subject to hard bounds on the inputs. The optimising anti-windup control falls into a class of compensator commonly termed directionality compensation. The computation of the control involves the online solution of a low-order quadratic programme in place of simple saturation. We exploit the structure of the quadratic programme to incorporate directionality information into the offline anti-windup synthesis using a decoupled architecture similar to that proposed in the literature for anti-windup schemes with simple saturation. We demonstrate the effectiveness of the design compared to several schemes using a simulated example. Preliminary results of this work have been published in the proceedings of the IEEE Conference on Decision and Control, Orlando, 2011 (Adegbege & Heath, 2011a).

  5. Seismic Full Waveform Modeling & Imaging in Attenuating Media

    NASA Astrophysics Data System (ADS)

    Guo, Peng

    Seismic attenuation strongly affects seismic waveforms by amplitude loss and velocity dispersion. Without proper inclusion of Q parameters, errors can be introduced for seismic full waveform modeling and imaging. Three different (Carcione's, Robertsson's, and the generalized Robertsson's) isotropic viscoelastic wave equations based on the generalized standard linear solid (GSLS) are evaluated. The second-order displacement equations are derived, and used to demonstrate that, with the same stress relaxation times, these viscoelastic formulations are equivalent. By introducing separate memory variables for P and S relaxation functions, Robertsson's formulation is generalized to allow different P and S wave stress relaxation times, which improves the physical consistency of the Qp and Qs modelled in the seismograms.The three formulations have comparable computational cost. 3D seismic finite-difference forward modeling is applied to anisotropic viscoelastic media. The viscoelastic T-matrix (a dynamic effective medium theory) relates frequency-dependent anisotropic attenuation and velocity to reservoir properties in fractured HTI media, based on the meso-scale fluid flow attenuation mechanism. The seismic signatures resulting from changing viscoelastic reservoir properties are easily visible. Analysis of 3D viscoelastic seismograms suggests that anisotropic attenuation is a potential tool for reservoir characterization. To compensate the Q effects during reverse-time migration (RTM) in viscoacoustic and viscoelastic media, amplitudes need to be compensated during wave propagation; the propagation velocity of the Q-compensated wavefield needs to be the same as in the attenuating wavefield, to restore the phase information. Both amplitude and phase can be compensated when the velocity dispersion and the amplitude loss are decoupled. For wave equations based on the GSLS, because Q effects are coupled in the memory variables, Q-compensated wavefield propagates faster than the attenuating wavefield, and introduce unwanted phase shift. Numerical examples show that there are phase (depth) shifts in the Q-compensated RTM images from the GSLS equation. An adjoint-based least-squares reverse-time migration is proposed for viscoelastic media (Q-LSRTM), to compensate the attenuation losses in P and S images. The viscoelastic adjoint operator, and the P and S modulus perturbation imaging conditions are derived using the adjoint-state method and an augmented Lagrangian functional. Q-LSRTM solves the viscoelastic linearized modeling operator for synthetic data, and the adjoint operator is used for back propagating the data residual. Q-LSRTM is capable of iteratively updating the P and S modulus perturbations,in the direction of minimizing data residuals, and attenuation loss is iteratively compensated. A novel Q compensation approach is developed for adjoint seismic imaging by pseudodifferential scaling. With a correct Q model included in the migration algorithm, propagation effects, including the Q effects, can be compensated with the application of the inverse Hessian to the RTM image. Pseudodifferential scaling is used to efficiently approximate the action of the inverse Hessian. Numerical examples indicate that the adjoint RTM images with pseudodifferential scaling approximate the true model perturbation, and can be used as well-conditioned gradients for least-squares imaging.

  6. Toward a low-cost, low-power, low-complexity DAC-based multilevel (M-ary QAM) coherent transmitter using compact linear optical field modulator

    NASA Astrophysics Data System (ADS)

    Dingel, Benjamin

    2017-01-01

    In this invited paper, we summarize the current developments in linear optical field modulators (LOFMs) for coherent multilevel optical transmitters. Our focus is the presentation of a new, novel LOFM design that provides beneficial and necessary features such as lowest hardware component counts, lowered insertion loss, smaller RF power consumption, smaller footprint, simple structure, and lowered cost. We refer to this modulator as called Double-Pass LOFM (DP-LOFM) that becomes the building block for high-performance, linear Dual-Polarization, In-Phase- Quadrature-Phase (DP-IQ) modulator. We analyze its performance in term of slope linearity, and present one of its unique feature -- a built-in compensation functionality that no other linear modulators possessed till now.

  7. Model, analysis, and evaluation of the effects of analog VLSI arithmetic on linear subspace-based image recognition.

    PubMed

    Carvajal, Gonzalo; Figueroa, Miguel

    2014-07-01

    Typical image recognition systems operate in two stages: feature extraction to reduce the dimensionality of the input space, and classification based on the extracted features. Analog Very Large Scale Integration (VLSI) is an attractive technology to achieve compact and low-power implementations of these computationally intensive tasks for portable embedded devices. However, device mismatch limits the resolution of the circuits fabricated with this technology. Traditional layout techniques to reduce the mismatch aim to increase the resolution at the transistor level, without considering the intended application. Relating mismatch parameters to specific effects in the application level would allow designers to apply focalized mismatch compensation techniques according to predefined performance/cost tradeoffs. This paper models, analyzes, and evaluates the effects of mismatched analog arithmetic in both feature extraction and classification circuits. For the feature extraction, we propose analog adaptive linear combiners with on-chip learning for both Least Mean Square (LMS) and Generalized Hebbian Algorithm (GHA). Using mathematical abstractions of analog circuits, we identify mismatch parameters that are naturally compensated during the learning process, and propose cost-effective guidelines to reduce the effect of the rest. For the classification, we derive analog models for the circuits necessary to implement Nearest Neighbor (NN) approach and Radial Basis Function (RBF) networks, and use them to emulate analog classifiers with standard databases of face and hand-writing digits. Formal analysis and experiments show how we can exploit adaptive structures and properties of the input space to compensate the effects of device mismatch at the application level, thus reducing the design overhead of traditional layout techniques. Results are also directly extensible to multiple application domains using linear subspace methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Microwave imaging by three-dimensional Born linearization of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Caorsi, S.; Gragnani, G. L.; Pastorino, M.

    1990-11-01

    An approach to microwave imaging is proposed that uses a three-dimensional vectorial form of the Born approximation to linearize the equation of electromagnetic scattering. The inverse scattering problem is numerically solved for three-dimensional geometries by means of the moment method. A pseudoinversion algorithm is adopted to overcome ill conditioning. Results show that the method is well suited for qualitative imaging purposes, while its capability for exactly reconstructing the complex dielectric permittivity is affected by the limitations inherent in the Born approximation and in ill conditioning.

  9. Television camera as a scientific instrument

    NASA Technical Reports Server (NTRS)

    Smokler, M. I.

    1970-01-01

    Rigorous calibration program, coupled with a sophisticated data-processing program that introduced compensation for system response to correct photometry, geometric linearity, and resolution, converted a television camera to a quantitative measuring instrument. The output data are in the forms of both numeric printout records and photographs.

  10. Quantitative Robust Control Engineering: Theory and Applications

    DTIC Science & Technology

    2006-09-01

    30]. Gutman, PO., Baril , C. Neuman, L. (1994), An algorithm for computing value sets of uncertain transfer functions in factored real form...linear compensation design for saturating unstable uncertain plants. Int. J. Control, Vol. 44, pp. 1137-1146. [90]. Oldak S., Baril C. and Gutman

  11. Snapshot polarization-sensitive plug-in optical module for a Fourier-domain optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Marques, Manuel J.; Rivet, Sylvain; Bradu, Adrian; Podoleanu, Adrian

    2018-02-01

    In this communication, we present a proof-of-concept polarization-sensitive Optical Coherence Tomography (PS-OCT) which can be used to characterize the retardance and the axis orientation of a linear birefringent sample. This module configuration is an improvement from our previous work1, 2 since it encodes the two polarization channels on the optical path difference, effectively carrying out the polarization measurements simultaneously (snapshot measurement), whilst retaining all the advantages (namely the insensitivity to environmental parameters when using SM fibers) of these two previous configurations. Further progress consists in employing Master Slave OCT technology,3 which is used to automatically compensate for the dispersion mismatch introduced by the elements in the module. This is essential given the encoding of the polarization states on two different optical path lengths, each of them having dissimilar dispersive properties. By utilizing this method instead of the commonly used re-linearization and numerical dispersion compensation methods an improvement in terms of the calculation time required can be achieved.

  12. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    NASA Astrophysics Data System (ADS)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-06-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  13. Design of feedback control systems for stable plants with saturating actuators

    NASA Technical Reports Server (NTRS)

    Kapasouris, Petros; Athans, Michael; Stein, Gunter

    1988-01-01

    A systematic control design methodology is introduced for multi-input/multi-output stable open loop plants with multiple saturations. This new methodology is a substantial improvement over previous heuristic single-input/single-output approaches. The idea is to introduce a supervisor loop so that when the references and/or disturbances are sufficiently small, the control system operates linearly as designed. For signals large enough to cause saturations, the control law is modified in such a way as to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of the methodology are: the modified compensator never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directional properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated in the simulation of an academic example and the simulation of the multivariable longitudinal control of a modified model of the F-8 aircraft.

  14. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    NASA Astrophysics Data System (ADS)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-03-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  15. Blind deconvolution post-processing of images corrected by adaptive optics

    NASA Astrophysics Data System (ADS)

    Christou, Julian C.

    1995-08-01

    Experience with the adaptive optics system at the Starfire Optical Range has shown that the point spread function is non-uniform and varies both spatially and temporally as well as being object dependent. Because of this, the application of a standard linear and non-linear deconvolution algorithms make it difficult to deconvolve out the point spread function. In this paper we demonstrate the application of a blind deconvolution algorithm to adaptive optics compensated data where a separate point spread function is not needed.

  16. Thermal oxidative degradation reactions of linear perfluoroalky lethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paciorek, K. J. L.; Ito, T. I.; Kratzer, R. H.

    1982-01-01

    Thermal and thermal oxidative stability studies were performed on linear perfluoro alkyl ether fluids. The effect on degradation by metal catalysts and degradation inhibitors are reported. The liner perfluoro alkylethers are inherently unstable at 316 C in an oxidizing atmosphere. The metal catalysts greatly increased the rate of degradation in oxidizing atmospheres. In the presence of these metals in an oxidizing atmosphere, the degradation inhibitors were highly effective in arresting degradation at 288 C. However, the inhibitors had only limited effectiveness at 316 C. The metals promote degradation by chain scission. Based on elemental analysis and oxygen consumption data, the linear perfluoro alkylether fluids have a structural arrangement based on difluoroformyl and tetrafluoroethylene oxide units, with the former predominating.

  17. 3-D in vitro estimation of temperature using the change in backscattered ultrasonic energy.

    PubMed

    Arthur, R Martin; Basu, Debomita; Guo, Yuzheng; Trobaugh, Jason W; Moros, Eduardo G

    2010-08-01

    Temperature imaging with a non-invasive modality to monitor the heating of tumors during hyperthermia treatment is an attractive alternative to sparse invasive measurement. Previously, we predicted monotonic changes in backscattered energy (CBE) of ultrasound with temperature for certain sub-wavelength scatterers. We also measured CBE values similar to our predictions in bovine liver, turkey breast muscle, and pork rib muscle in 2-D in vitro studies and in nude mice during 2-D in vivo studies. To extend these studies to three dimensions, we compensated for motion and measured CBE in turkey breast muscle. 3-D data sets were assembled from images formed by a phased-array imager with a 7.5-MHz linear probe moved in 0.6-mm steps in elevation during uniform heating from 37 to 45 degrees C in 0.5 degrees C increments. We used cross-correlation as a similarity measure in RF signals to automatically track feature displacement as a function of temperature. Feature displacement was non-rigid. Envelopes of image regions, compensated for non-rigid motion, were found with the Hilbert transform then smoothed with a 3 x 3 running average filter before forming the backscattered energy at each pixel. CBE in 3-D motion-compensated images was nearly linear with an average sensitivity of 0.30 dB/ degrees C. 3-D estimation of temperature in separate tissue regions had errors with a maximum standard deviation of about 0.5 degrees C over 1-cm(3) volumes. Success of CBE temperature estimation based on 3-D non-rigid tracking and compensation for real and apparent motion of image features could serve as the foundation for the eventual generation of 3-D temperature maps in soft tissue in a non-invasive, convenient, and low-cost way in clinical hyperthermia.

  18. The Effect of a Workplace-Based Early Intervention Program on Work-Related Musculoskeletal Compensation Outcomes at a Poultry Meat Processing Plant.

    PubMed

    Donovan, Michael; Khan, Asaduzzaman; Johnston, Venerina

    2017-03-01

    Introduction The aim of this study is to determine whether a workplace-based early intervention injury prevention program reduces work-related musculoskeletal compensation outcomes in poultry meat processing workers. Methods A poultry meatworks in Queensland, Australia implemented an onsite early intervention which included immediate reporting and triage, reassurance, multidisciplinary participatory consultation, workplace modifica tion and onsite physiotherapy. Secondary pre-post analyses of the meatworks' compensation data over 4 years were performed, with the intervention commencing 2 years into the study period. Outcome measures included rate of claims, costs per claim and work days absent at an individual claim level. Where possible, similar analyses were performed on data for Queensland's poultry meat processing industry (excluding the meatworks used in this study). Results At the intervention meatworks, in the post intervention period an 18 % reduction in claims per 1 million working hours (p = 0.017) was observed. Generalized linear modelling revealed a significant reduction in average costs per claim of $831 (OR 0.74; 95 % CI 0.59-0.93; p = 0.009). Median days absent was reduced by 37 % (p = 0.024). For the poultry meat processing industry over the same period, generalized linear modelling revealed no significant change in average costs per claim (OR 1.02; 95 % CI 0.76-1.36; p = 0.91). Median days absent was unchanged (p = 0.93). Conclusion The introduction of an onsite, workplace-based early intervention injury prevention program demonstrated positive effects on compensation outcomes for work-related musculoskeletal disorders in poultry meat processing workers. Prospective studies are needed to confirm the findings of the present study.

  19. Long-period fiber gratings as ultrafast optical differentiators.

    PubMed

    Kulishov, Mykola; Azaña, José

    2005-10-15

    It is demonstrated that a single, uniform long-period fiber grating (LPFG) working in the linear regime inherently behaves as an ultrafast optical temporal differentiator. Specifically, we show that the output temporal waveform in the core mode of a LPFG providing full energy coupling into the cladding mode is proportional to the first derivative of the optical temporal signal (e.g., optical pulse) launched at the input of the LPFG. Moreover, a LPFG providing full energy recoupling back from the cladding mode into the core mode inherently implements second-order temporal differentiation. Our numerical results have confirmed the feasibility of this simple, all-fiber approach to processing optical signals with temporal features in the picosecond and subpicosecond ranges.

  20. Compensation of chief executive officers at nonprofit US hospitals.

    PubMed

    Joynt, Karen E; Le, Sidney T; Orav, E John; Jha, Ashish K

    2014-01-01

    Hospital chief executive officers (CEOs) can shape the priorities and performance of their organizations. The degree to which their compensation is based on their hospitals' quality performance is not well known. To characterize CEO compensation and examine its relation with quality metrics. Retrospective observational study. Participants included 1877 CEOs at 2681 private, nonprofit US hospitals. We used linear regression to identify hospital structural characteristics associated with CEO pay. We then determined the degree to which a hospital's performance on financial metrics, technologic metrics, quality metrics, and community benefit in 2008 was associated with CEO pay in 2009. The CEOs in our sample had a mean compensation of $595,781 (median, $404,938) in 2009. In multivariate analyses, CEO pay was associated with the number of hospital beds overseen ($550 for each additional bed; 95% CI, 429-671; P < .001), teaching status ($425,078 more at major teaching vs nonteaching hospitals; 95% CI, 315,238-534,918; P < .001), and urban location. Hospitals with high levels of advanced technologic capabilities compensated their CEOs $135,862 more (95% CI, 80,744-190,990; P < .001) than did hospitals with low levels of technology. Hospitals with high performance on patient satisfaction compensated their CEOs $51,706 more than did those with low performance on patient satisfaction (95% CI, 15,166-88,247; P = .006). We found no association between CEO pay and hospitals' margins, liquidity, capitalization, occupancy rates, process quality performance, mortality rates, readmission rates, or measures of community benefit. Compensation of CEOs at nonprofit hospitals was highly variable across the country. Compensation was associated with technology and patient satisfaction but not with processes of care, patient outcomes, or community benefit.

  1. Fast and Efficient Discrimination of Traveling Salesperson Problem Stimulus Difficulty

    ERIC Educational Resources Information Center

    Dry, Matthew J.; Fontaine, Elizabeth L.

    2014-01-01

    The Traveling Salesperson Problem (TSP) is a computationally difficult combinatorial optimization problem. In spite of its relative difficulty, human solvers are able to generate close-to-optimal solutions in a close-to-linear time frame, and it has been suggested that this is due to the visual system's inherent sensitivity to certain geometric…

  2. Probabilistic accounting of uncertainty in forecasts of species distributions under climate change

    Treesearch

    Seth J. Wenger; Nicholas A. Som; Daniel C. Dauwalter; Daniel J. Isaak; Helen M. Neville; Charles H. Luce; Jason B. Dunham; Michael K. Young; Kurt D. Fausch; Bruce E. Rieman

    2013-01-01

    Forecasts of species distributions under future climates are inherently uncertain, but there have been few attempts to describe this uncertainty comprehensively in a probabilistic manner. We developed a Monte Carlo approach that accounts for uncertainty within generalized linear regression models (parameter uncertainty and residual error), uncertainty among competing...

  3. Injuries in a modern dance company effect of comprehensive management on injury incidence and cost.

    PubMed

    Ojofeitimi, Sheyi; Bronner, Shaw

    2011-09-01

    Injury costs strain the finances of many dance companies. The objectives of this study were to analyze the effect of comprehensive management on injury patterns, incidence, and time loss and examine its financial impact on workers compensation premiums in a modern dance company. In this retrospective-prospective cohort study, injury was defined as any physical insult that required financial outlay (workers compensation or self insurance) or caused a dancer to cease dancing beyond the day of injury (time-loss injury). Injury data and insurance premiums were analyzed over an eight-year period. Injuries were compared using a mixed linear model with phase and gender as fixed effects. It was found that comprehensive management resulted in 34% decline in total injury incidence, 66% decrease in workers compensation claims, and 56% decrease in lost days. These outcomes achieved substantial savings in workers compensation premiums. Thus, this study demonstrates the effectiveness of an injury prevention program in reducing injury-related costs and promoting dancers' health and wellness in a modern dance company.

  4. Temperature compensation and temperature sensation in the circadian clock

    PubMed Central

    Kidd, Philip B.; Young, Michael W.; Siggia, Eric D.

    2015-01-01

    All known circadian clocks have an endogenous period that is remarkably insensitive to temperature, a property known as temperature compensation, while at the same time being readily entrained by a diurnal temperature oscillation. Although temperature compensation and entrainment are defining features of circadian clocks, their mechanisms remain poorly understood. Most models presume that multiple steps in the circadian cycle are temperature-dependent, thus facilitating temperature entrainment, but then insist that the effect of changes around the cycle sums to zero to enforce temperature compensation. An alternative theory proposes that the circadian oscillator evolved from an adaptive temperature sensor: a gene circuit that responds only to temperature changes. This theory implies that temperature changes should linearly rescale the amplitudes of clock component oscillations but leave phase relationships and shapes unchanged. We show using timeless luciferase reporter measurements and Western blots against TIMELESS protein that this prediction is satisfied by the Drosophila circadian clock. We also review evidence for pathways that couple temperature to the circadian clock, and show previously unidentified evidence for coupling between the Drosophila clock and the heat-shock pathway. PMID:26578788

  5. A temperature compensation methodology for piezoelectric based sensor devices

    NASA Astrophysics Data System (ADS)

    Wang, Dong F.; Lou, Xueqiao; Bao, Aijian; Yang, Xu; Zhao, Ji

    2017-08-01

    A temperature compensation methodology comprising a negative temperature coefficient thermistor with the temperature characteristics of a piezoelectric material is proposed to improve the measurement accuracy of piezoelectric sensing based devices. The piezoelectric disk is characterized by using a disk-shaped structure and is also used to verify the effectiveness of the proposed compensation method. The measured output voltage shows a nearly linear relationship with respect to the applied pressure by introducing the proposed temperature compensation method in a temperature range of 25-65 °C. As a result, the maximum measurement accuracy is observed to be improved by 40%, and the higher the temperature, the more effective the method. The effective temperature range of the proposed method is theoretically analyzed by introducing the constant coefficient of the thermistor (B), the resistance of initial temperature (R0), and the paralleled resistance (Rx). The proposed methodology can not only eliminate the influence of piezoelectric temperature dependent characteristics on the sensing accuracy but also decrease the power consumption of piezoelectric sensing based devices by the simplified sensing structure.

  6. Critical and compensation behavior of a mixed spin-3/2 and spin-5/2 Ising ferrimagnetic system in a graphene layer

    NASA Astrophysics Data System (ADS)

    Alzate-Cardona, J. D.; Sabogal-Suárez, D.; Restrepo-Parra, E.

    2017-05-01

    We have studied the magnetic properties of the mixed spin σ = ± 3/2, ± 1/2 and spin S = ± 5/2, ± 3/2, ± 1/2 Ising ferrimagnetic system in a graphene layer by means of Monte Carlo simulations. The effects of next-nearest neighbors exchange interactions and crystal field anisotropy on the critical and compensation behavior of the system have been investigated. The results show that, for a system with given values of the crystal field anisotropy and exchange interaction constants, a compensation point only exists if the values of the spins in the ground state are such that | S | > | σ | and Jσ is higher than a certain value Jσmin . It was shown that the relationship between Jσmin and JS is linear for a given value of the crystal field constant. The compensation and the critical temperature are very sensitive to the change of JS and Jσ, respectively, while the crystal field anisotropy affects both temperatures to a large extent.

  7. A new method for distortion magnetic field compensation of a geomagnetic vector measurement system

    NASA Astrophysics Data System (ADS)

    Liu, Zhongyan; Pan, Mengchun; Tang, Ying; Zhang, Qi; Geng, Yunling; Wan, Chengbiao; Chen, Dixiang; Tian, Wugang

    2016-12-01

    The geomagnetic vector measurement system mainly consists of three-axis magnetometer and an INS (inertial navigation system), which have many ferromagnetic parts on them. The magnetometer is always distorted by ferromagnetic parts and other electric equipments such as INS and power circuit module within the system, which can lead to geomagnetic vector measurement error of thousands of nT. Thus, the geomagnetic vector measurement system has to be compensated in order to guarantee the measurement accuracy. In this paper, a new distortion magnetic field compensation method is proposed, in which a permanent magnet with different relative positions is used to change the ambient magnetic field to construct equations of the error model parameters, and the parameters can be accurately estimated by solving linear equations. In order to verify effectiveness of the proposed method, the experiment is conducted, and the results demonstrate that, after compensation, the components errors of measured geomagnetic field are reduced significantly. It demonstrates that the proposed method can effectively improve the accuracy of the geomagnetic vector measurement system.

  8. Dispersion-compensating photonic crystal fiber with wavelength tunability based on a modified dual concentric core structure

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Zhang, Xuedian; Nie, Fukun; Lu, Xinglian; Chang, Min

    2018-07-01

    We present a 5-layer air-hole dispersion-compensating photonic crystal fiber (PCF) with a modified dual concentric core structure, based on central rod doping. The finite element method (FEM) was used to investigate the structure numerically. If the structural parameters remain unchanged, a high degree of linear correlation between the central rod refractive index and the operating wavelength can be achieved in the wavelength range of 1.5457-1.5857 μm, which suggests that the operating wavelength can be determined by the refractive index of the centre rod. A negative dispersion coefficient between -5765.2 ps/km/nm and -6115.8 ps/km/nm was obtained by calculation and within the bandwidth of 108 nm (1.515-1.623 μm) around 1.55 μm, a dispersion coefficient of -3000 ps/km/nm can be ensured for compensation. In addition, this proposed PCF also has the advantage of low confinement loss, between 0.00011 and 0.00012 dB/m, and ease of fabrication with existing technology. The proposed PCF has good prospects in dispersion-compensating applications.

  9. Aberration compensation in a Skew parametric-resonance ionization cooling channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sy, Amy V.; Derbenev, Yaroslav S.; Morozov, Vasiliy

    Skew Parametric-resonance Ionization Cooling (Skew PIC) represents a novel method for focusing of highly divergent particle beams, as in the final 6D cooling stage of a high-luminosity muon collider. In the muon collider concept, the resultant equilibrium transverse emittances from cooling with Skew PIC are an order of magnitude smaller than in conventional ionization cooling. The concept makes use of coupling of the transverse dynamic behavior, and the linear dynamics are well-behaved with good agreement between analytic solutions and simulation results. Compared to the uncoupled system, coupling of the transverse dynamic behavior purports to reduce the number of multipoles requiredmore » for aberration compensation while also avoiding unwanted resonances. Aberration compensation is more complicated in the coupled case, especially in the high-luminosity muon collider application where equilibrium angular spreads in the cooling channel are on the order of 200 mrad. We present recent progress on aberration compensation for control of highly divergent muon beams in the coupled correlated optics channel, and a simple cooling model to test the transverse acceptance of the channel.« less

  10. Thermal and ultrasonic evaluation of porosity in composite laminates

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.; Winfree, William P.; Long, Edward R., Jr.; Kullerd, Susan M.; Nathan, N.; Partos, Richard D.

    1992-01-01

    The effects of porosity on damage incurred by low-velocity impact are investigated. Specimens of graphite/epoxy composite were fabricated with various volume fractions of voids. The void fraction was independently determined using optical examination and acid resin digestion methods. Thermal diffusivity and ultrasonic attenuation were measured, and these results were related to the void volume fraction. The relationship between diffusivity and fiber volume fraction was also considered. The slope of the ultrasonic attenuation coefficient was found to increase linearly with void content, and the diffusivity decreased linearly with void volume fraction, after compensation for an approximately linear dependence on the fiber volume fraction.

  11. Soybean cell enlargement oscillates with a temperature-compensated period length of ca. 24 min

    NASA Technical Reports Server (NTRS)

    Morre, D. J.; Pogue, R.; Morre, D. M.

    2001-01-01

    Rate of enlargement of epidermal cells from soybean, when measured at intervals of 1 min using a light microscope equipped with a video measurement system, oscillated with a period length of about 24 min. This oscillation parallels the 24-min periodicity observed for the oxidation of NADH by the external plasma membrane NADH oxidase. The increase in length was not only non-linear, but intervals of rapid increase in area alternated with intervals of rapid decrease in area. The length of the period was temperature compensated, and was approximately the same when measured at 14, 24 and 34 degrees C even though the rate of cell enlargement varied over this same range of temperatures. These observations represent the first demonstration of an oscillatory growth behavior correlated with a biochemical activity where the period length of both is independent of temperature (temperature compensated) as is the hallmark of clock-related biological phenomena.

  12. Adaptive positive position feedback control with a feedforward compensator of a magnetostrictive beam for vibration suppression

    NASA Astrophysics Data System (ADS)

    Bian, Leixiang; Zhu, Wei

    2018-07-01

    In this paper, a Fe–Ga alloy magnetostrictive beam is designed as an actuator to restrain the vibration of a supported mass. Dynamic modeling of the system based on the transfer matrix method of multibody system is first shown, and then a hybrid controller is developed to achieve vibration control. The proposed vibration controller combines a multi-mode adaptive positive position feedback (APPF) with a feedforward compensator. In the APPF control, an adaptive natural frequency estimator based on the recursive least-square method is developed to be used. In the feedforward compensator, the hysteresis of the magnetostrictive beam is linearized based on a Bouc–Wen model. The further remarkable vibration suppression capability of the proposed hybrid controller is demonstrated experimentally and compared with the positive position feedback controller. Experiment results show that the proposed controller is applicable to the magnetostrictive beam for improving vibration control effectiveness.

  13. Improving stability margins in discrete-time LQG controllers

    NASA Technical Reports Server (NTRS)

    Oranc, B. Tarik; Phillips, Charles L.

    1987-01-01

    Some of the problems are discussed which are encountered in the design of discrete-time stochastic controllers for problems that may adequately be described by the Linear Quadratic Gaussian (LQG) assumptions; namely, the problems of obtaining acceptable relative stability, robustness, and disturbance rejection properties. A dynamic compensator is proposed to replace the optimal full state feedback regulator gains at steady state, provided that all states are measurable. The compensator increases the stability margins at the plant input, which may possibly be inadequate in practical applications. Though the optimal regulator has desirable properties the observer based controller as implemented with a Kalman filter, in a noisy environment, has inadequate stability margins. The proposed compensator is designed to match the return difference matrix at the plant input to that of the optimal regulator while maintaining the optimality of the state estimates as directed by the measurement noise characteristics.

  14. Annular suspension and pointing system with controlled DC electromagnets

    NASA Technical Reports Server (NTRS)

    Vu, Josephine Lynn; Tam, Kwok Hung

    1993-01-01

    The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.

  15. Applying Strategies of Selection, Optimization, and Compensation to Maintain Work Ability-A Psychosocial Resource Complementing the Job Demand-Control Model? Results From the Representative lidA Cohort Study on Work, Age, and Health in Germany.

    PubMed

    Riedel, Natalie; Müller, Andreas; Ebener, Melanie

    2015-05-01

    To investigate whether aging employees' selection, optimization, and compensation (SOC) strategies were associated with work ability over and above job demand and control variables, as well as across professions. Multivariable linear regressions were conducted using a representative sample of German employees born in 1959 and 1965 (N = 6057). SOC was assessed to have an independent effect on work ability. Associations of job demands and control variables with work ability were more prominent. The SOC tended to enhance the positive association between decision authority and work ability. Individual strategies of selection, optimization, and compensation could be considered as psychosocial resources adding up to a better work ability and complement prevention programs. Workplace interventions should deal with job demands and control to maintain older employees' work ability in times of working population shrinkage.

  16. ERROR COMPENSATOR FOR A POSITION TRANSDUCER

    DOEpatents

    Fowler, A.H.

    1962-06-12

    A device is designed for eliminating the effect of leadscrew errors in positioning machines in which linear motion of a slide is effected from rotary motion of a leadscrew. This is accomplished by providing a corrector cam mounted on the slide, a cam follower, and a transducer housing rotatable by the follower to compensate for all the reproducible errors in the transducer signal which can be related to the slide position. The transducer has an inner part which is movable with respect to the transducer housing. The transducer inner part is coupled to the means for rotating the leadscrew such that relative movement between this part and its housing will provide an output signal proportional to the position of the slide. The corrector cam and its follower perform the compensation by changing the angular position of the transducer housing by an amount that is a function of the slide position and the error at that position. (AEC)

  17. Decomposition and correction overlapping peaks of LIBS using an error compensation method combined with curve fitting.

    PubMed

    Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei

    2017-09-01

    The laser induced breakdown spectroscopy (LIBS) technique is an effective method to detect material composition by obtaining the plasma emission spectrum. The overlapping peaks in the spectrum are a fundamental problem in the qualitative and quantitative analysis of LIBS. Based on a curve fitting method, this paper studies an error compensation method to achieve the decomposition and correction of overlapping peaks. The vital step is that the fitting residual is fed back to the overlapping peaks and performs multiple curve fitting processes to obtain a lower residual result. For the quantitative experiments of Cu, the Cu-Fe overlapping peaks in the range of 321-327 nm obtained from the LIBS spectrum of five different concentrations of CuSO 4 ·5H 2 O solution were decomposed and corrected using curve fitting and error compensation methods. Compared with the curve fitting method, the error compensation reduced the fitting residual about 18.12-32.64% and improved the correlation about 0.86-1.82%. Then, the calibration curve between the intensity and concentration of the Cu was established. It can be seen that the error compensation method exhibits a higher linear correlation between the intensity and concentration of Cu, which can be applied to the decomposition and correction of overlapping peaks in the LIBS spectrum.

  18. Compensator design for improved counterbalancing in high speed atomic force microscopy.

    PubMed

    Bozchalooi, I S; Youcef-Toumi, K; Burns, D J; Fantner, G E

    2011-11-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. © 2011 American Institute of Physics

  19. Compensator design for improved counterbalancing in high speed atomic force microscopy

    PubMed Central

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-01-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. PMID:22128989

  20. Compensator design for improved counterbalancing in high speed atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-11-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds.

  1. Mixed Linear/Square-Root Encoded Single-Slope Ramp Provides Low-Noise ADC with High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Chris J.; Hancock, Bruce R.; Newton, Kenneth W.; Cunningham, Thomas J.

    2013-01-01

    Single-slope analog-to-digital converters (ADCs) are particularly useful for onchip digitization in focal plane arrays (FPAs) because of their inherent monotonicity, relative simplicity, and efficiency for column-parallel applications, but they are comparatively slow. Squareroot encoding can allow the number of code values to be reduced without loss of signal-to-noise ratio (SNR) by keeping the quantization noise just below the signal shot noise. This encoding can be implemented directly by using a quadratic ramp. The reduction in the number of code values can substantially increase the quantization speed. However, in an FPA, the fixed pattern noise (FPN) limits the use of small quantization steps at low signal levels. If the zero-point is adjusted so that the lowest column is onscale, the other columns, including those at the center of the distribution, will be pushed up the ramp where the quantization noise is higher. Additionally, the finite frequency response of the ramp buffer amplifier and the comparator distort the shape of the ramp, so that the effective ramp value at the time the comparator trips differs from the intended value, resulting in errors. Allowing increased settling time decreases the quantization speed, while increasing the bandwidth increases the noise. The FPN problem is solved by breaking the ramp into two portions, with some fraction of the available code values allocated to a linear ramp and the remainder to a quadratic ramp. To avoid large transients, both the value and the slope of the linear and quadratic portions should be equal where they join. The span of the linear portion must cover the minimum offset, but not necessarily the maximum, since the fraction of the pixels above the upper limit will still be correctly quantized, albeit with increased quantization noise. The required linear span, maximum signal and ratio of quantization noise to shot noise at high signal, along with the continuity requirement, determines the number of code values that must be allocated to each portion. The distortion problem is solved by using a lookup table to convert captured code values back to signal levels. The values in this table will be similar to the intended ramp value, but with a correction for the finite bandwidth effects. Continuous-time comparators are used, and their bandwidth is set below the step rate, which smoothes the ramp and reduces the noise. No settling time is needed, as would be the case for clocked comparators, but the low bandwidth enhances the distortion of the non-linear portion. This is corrected by use of a return lookup table, which differs from the one used to generate the ramp. The return lookup table is obtained by calibrating against a stepped precision DC reference. This results in a residual non-linearity well below the quantization noise. This method can also compensate for differential non-linearity (DNL) in the DAC used to generate the ramp. The use of a ramp with a combination of linear and quadratic portions for a single-slope ADC is novel. The number of steps is minimized by keeping the step size just below the photon shot noise. This in turn maximizes the speed of the conversion. High resolution is maintained by keeping small quantization steps at low signals, and noise is minimized by allowing the lowest analog bandwidth, all without increasing the quantization noise. A calibrated return lookup table allows the system to maintain excellent linearity.

  2. Arbitrarily accurate twin composite π -pulse sequences

    NASA Astrophysics Data System (ADS)

    Torosov, Boyan T.; Vitanov, Nikolay V.

    2018-04-01

    We present three classes of symmetric broadband composite pulse sequences. The composite phases are given by analytic formulas (rational fractions of π ) valid for any number of constituent pulses. The transition probability is expressed by simple analytic formulas and the order of pulse area error compensation grows linearly with the number of pulses. Therefore, any desired compensation order can be produced by an appropriate composite sequence; in this sense, they are arbitrarily accurate. These composite pulses perform equally well as or better than previously published ones. Moreover, the current sequences are more flexible as they allow total pulse areas of arbitrary integer multiples of π .

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaohu; Shi, Di; Wang, Zhiwei

    Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a planning model based on mixed integer conic programming (MICP) to optimally allocate SVCs in the transmission network considering load uncertainty. The load uncertainties are represented by a number of scenarios. Reformulation and linearization techniques are utilized to transform the original non-convex model into a convex second order cone programming (SOCP) model. Numerical case studies based on the IEEE 30-bus systemmore » demonstrate the effectiveness of the proposed planning model.« less

  4. A simple method for evaluating the wavefront compensation error of diffractive liquid-crystal wavefront correctors.

    PubMed

    Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Lu, Xinghai; Xuan, Li

    2009-09-28

    A simple method for evaluating the wavefront compensation error of diffractive liquid-crystal wavefront correctors (DLCWFCs) for atmospheric turbulence correction is reported. A simple formula which describes the relationship between pixel number, DLCWFC aperture, quantization level, and atmospheric coherence length was derived based on the calculated atmospheric turbulence wavefronts using Kolmogorov atmospheric turbulence theory. It was found that the pixel number across the DLCWFC aperture is a linear function of the telescope aperture and the quantization level, and it is an exponential function of the atmosphere coherence length. These results are useful for people using DLCWFCs in atmospheric turbulence correction for large-aperture telescopes.

  5. Topographic Change of the Dichotomy Boundary Suggested by Crustal Inversion

    NASA Technical Reports Server (NTRS)

    Neumann, G. A.

    2004-01-01

    Linear negative gravity anomalies in Acidalia Planitia along the eastern edge of Tempe Terra and along the northern edge of Arabia Terra have been noted in Mars Global Surveyor gravity fields. Once proposed to represent buried fluvial channels, it is now believed that these gravity troughs mainly arise from partial compensation of the hemispheric dichotomy topographic scarp. A recent inversion for crustal structure finds that mantle compensation of the scarp is offset from the present-day topographic expression of the dichotomy boundary. The offset suggests that erosion or other forms of mass wasting occurred after lithosphere thickened and no longer accomodated topographic change through viscous relaxation.

  6. Image Quality Assessment Based on Local Linear Information and Distortion-Specific Compensation.

    PubMed

    Wang, Hanli; Fu, Jie; Lin, Weisi; Hu, Sudeng; Kuo, C-C Jay; Zuo, Lingxuan

    2016-12-14

    Image Quality Assessment (IQA) is a fundamental yet constantly developing task for computer vision and image processing. Most IQA evaluation mechanisms are based on the pertinence of subjective and objective estimation. Each image distortion type has its own property correlated with human perception. However, this intrinsic property may not be fully exploited by existing IQA methods. In this paper, we make two main contributions to the IQA field. First, a novel IQA method is developed based on a local linear model that examines the distortion between the reference and the distorted images for better alignment with human visual experience. Second, a distortion-specific compensation strategy is proposed to offset the negative effect on IQA modeling caused by different image distortion types. These score offsets are learned from several known distortion types. Furthermore, for an image with an unknown distortion type, a Convolutional Neural Network (CNN) based method is proposed to compute the score offset automatically. Finally, an integrated IQA metric is proposed by combining the aforementioned two ideas. Extensive experiments are performed to verify the proposed IQA metric, which demonstrate that the local linear model is useful in human perception modeling, especially for individual image distortion, and the overall IQA method outperforms several state-of-the-art IQA approaches.

  7. Real-time estimation of helicopter rotor blade kinematics through measurement of rotation induced acceleration

    NASA Astrophysics Data System (ADS)

    Allred, C. Jeff; Churchill, David; Buckner, Gregory D.

    2017-07-01

    This paper presents a novel approach to monitoring rotor blade flap, lead-lag and pitch using an embedded gyroscope and symmetrically mounted MEMS accelerometers. The central hypothesis is that differential accelerometer measurements are proportional only to blade motion; fuselage acceleration and blade bending are inherently compensated for. The inverse kinematic relationships (from blade position to acceleration and angular rate) are derived and simulated to validate this hypothesis. An algorithm to solve the forward kinematic relationships (from sensor measurement to blade position) is developed using these simulation results. This algorithm is experimentally validated using a prototype device. The experimental results justify continued development of this kinematic estimation approach.

  8. Is There Really a Spin Crisis?

    NASA Astrophysics Data System (ADS)

    Qing, Di; Chen, XiangSong; Su, WeiNing; Wang, Fan

    1999-10-01

    The matrix element of quark axial vector current is shown to be different from the nonrelativistic quark spin sum for a nucleon at rest. The nucleon spin content discovered in polarized deep inelastic scattering is shown to be accommodated in a constituent quark model with 15% sea quark component mixing. The relativistic correction and sea quark pair excitation inherently related to quark axial vector current reduce the nucleon axial charge and this reduction is compensated by the relativistic quark orbital angular momentum exactly and in turn keeps the nucleon spin 1/2 untouched. Nucleon tensor charge has similar but smaller relativistic and sea quark pair excitation reduction. The project supported in part by the NSF (19675018), SED and SSTD of China

  9. Is nucleon spin structure inconsistent with the constituent quark model?

    NASA Astrophysics Data System (ADS)

    Qing, Di; Chen, Xiang-Song; Wang, Fan

    1998-12-01

    Proton spin structure discovered in polarized deep inelastic scattering is shown to be consistent with the valence-sea quark mixing constituent quark model. The relativistic correction and quark-antiquark pair creation (annihilation) terms inherently involved in the quark axial vector current suppress the quark spin contribution to the proton spin. The relativistic quark orbital angular momentum provides compensative terms to keep the proton spin 12 untouched. The tensor charge of the proton is predicted to have a similar but smaller suppression. An explanation on why baryon magnetic moments can be parametrized by the naive quark model spin content as well as the spin structure discovered in polarized deep inelastic scattering is given.

  10. Using the stepladder technique to facilitate the performance of audioconferencing groups.

    PubMed

    Rogelberg, Steven G; O'Connor, Matthew S; Sederburg, Matthew

    2002-10-01

    Organizational workforces are becoming increasingly dispersed. To facilitate communications among individuals or groups of people located in a number of different locations, teleconferencing technologies, such as audioconferencing, have been developed. The authors examined whether a structural group intervention, the stepladder technique, can facilitate the task performance of 4-person groups (n = 52) when using audioconferencing. Consistent with research conducted on face-to-face groups, the stepladder technique was found to facilitate the decision-making performance of groups interacting via audioconference. The authors postulated that certain structural elements of the stepladder technique compensate for obstacles inherent in nonvisual communications. Supplementary analyses examined best member influence and the existence of order of entry effects into the stepladder process.

  11. Is "good enough" good enough for portable visible and near-visible spectrometry?

    NASA Astrophysics Data System (ADS)

    Scheeline, Alexander

    2015-06-01

    Some uses of portable spectrometers require the same quality as laboratory instruments. Such quality is challenging because of temperature and humidity variation, dust, and vibration. Typically, one chooses materials and mechanical layout to minimize the influence of these noise and background sources. Mechanical stability is constrained by limits on instrument mass and ergonomics. An alternative approach is to make minimally adequate hardware, compensating for variability in software. We describe an instrument developed specifically to use software to compensate for marginal hardware. An initial instantiation of the instrument is limited to 430 - 700 nm. Simple changes will allow expansion to cover 315 - 1000 nm. Outside this range, costs are likely to increase significantly. Inherent wavelength calibration comes from knowing the peak emission wavelength of an LED light source, and fitting of instrument dispersion to a model of order placement with each measurement. Dynamic range is determined by the product of camera response and intentionally wide throughput variation among hundreds of diffraction orders. Resolution degrades gracefully at low light levels, but is limited to ~ 2 nm at high light levels as initially fabricated and ~ 1 nm in principle. Stray light may be measured in real-time. Diffuse stray light can be employed for turbidimetry fluorimetry, and to aid compensation of working curve nonlinearity. While unsuitable for, Raman spectroscopy, the instrument shows promise for absorption, fluorescence, reflectance, and surface plasmon resonance spectrometries. To aid non-expert users, real-time training, measurement sequencing, and outcome interpretation are programmed with QR codes or web-linked instructions.

  12. Learning a common dictionary for subject-transfer decoding with resting calibration.

    PubMed

    Morioka, Hiroshi; Kanemura, Atsunori; Hirayama, Jun-ichiro; Shikauchi, Manabu; Ogawa, Takeshi; Ikeda, Shigeyuki; Kawanabe, Motoaki; Ishii, Shin

    2015-05-01

    Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Effects on the medical revenue of comprehensive pricing reform in Chinese urban public hospitals after removing drug markups: case of Nanjing.

    PubMed

    Tang, Wenxi; Xie, Jing; Lu, Yijuan; Liu, Qizhi; Malone, Daniel; Ma, Aixia

    2018-04-01

    The State Council of China requires that all urban public hospitals must eliminate drug markups by September 2017, and that hospital drugs must be sold at the purchase price. Nanjing-one of the first provincial capital cities to implement the reform-is studied to evaluate the effects of the comprehensive reform on drug prices in public hospitals, and to explore differential compensation plans. Sixteen hospitals were selected, and financial data were collected over the 48-month period before the reform and for 12 months after the reform. An analysis was carried out using a simple linear interrupted time series model. The average difference ratio of drug surplus fell 13.39% after the reform, and the drug markups were basically eliminated. Revenue from medical services showed a net growth of 28.25%. The overall compensation received from government financial budget and medical service revenue growth was 103.69% for the loss from policy-permitted 15% markup sales, and 116.48% for the net loss. However, there were large differences in compensation levels at different hospitals, ranging from -21.92% to 413.74% by medical services revenue growth, causing the combined rate of both financial and service compensation to vary from 28.87-413.74%, There was a significant positive correlation between the services compensation rate and the proportion of medical service revenue (p < .001), and the compensation rate increased by 8% for every 1% increase in the proportion of services revenue. Nanjing's pricing and compensation reform has basically achieved the policy targets of eliminating the drug markups, promoting the growth of medical services revenue, and adjusting the structure of medical revenue. However, the growth rate of service revenue of hospitals varied significantly from one another. Nanjing's reform represents successful pricing and compensation reform in Chinese urban public hospitals. It is recommended that a differentiated and dynamic compensation plan should be established in accordance with the revenue structure of different hospitals.

  14. Self-compensating design for reduction of timing and leakage sensitivity to systematic pattern dependent variation

    NASA Astrophysics Data System (ADS)

    Gupta, Puneet; Kahng, Andrew B.; Kim, Youngmin; Sylvester, Dennis

    2006-03-01

    Focus is one of the major sources of linewidth variation. CD variation caused by defocus is largely systematic after the layout is finished. In particular, dense lines "smile" through focus while isolated lines "frown" in typical Bossung plots. This well-defined systematic behavior of focus-dependent CD variation allows us to develop a self-compensating design methodology. In this work, we propose a novel design methodology that allows explicit compensation of focus-dependent CD variation, either within a cell (self-compensated cells) or across cells in a critical path (self-compensated design). By creating iso and dense variants for each library cell, we can achieve designs that are more robust to focus variation. Optimization with a mixture of iso and dense cell variants is possible both for area and leakage power, with the latter providing an interesting complement to existing leakage reduction techniques such as dual-Vth. We implement both heuristic and Mixed-Integer Linear Programming (MILP) solution methods to address this optimization, and experimentally compare their results. Our results indicate that designing with a self-compensated cell library incurs ~12% area penalty and ~6% leakage increase over original layouts while compensating for focus-dependent CD variation (i.e., the design meets timing constraints across a large range of focus variation). We observe ~27% area penalty and ~7% leakage increase at the worst-case defocus condition using only single-pitch cells. The area penalty of circuits after using either the heuristic or MILP optimization approach is reduced to ~3% while maintaining timing. We also apply our optimizations to leakage, which traditionally shows very large variability due to its exponential relationship with gate CD. We conclude that a mixed iso/dense library combined with a sensitivity-based optimization approach yields much better area/timing/leakage tradeoffs than using a self-compensated cell library alone. Self-compensated design shows an average of 25% leakage reduction at the worst defocus condition for the benchmark designs that we have studied.

  15. Interactive Controls Analysis (INCA)

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.

    1989-01-01

    Version 3.12 of INCA provides user-friendly environment for design and analysis of linear control systems. System configuration and parameters easily adjusted, enabling INCA user to create compensation networks and perform sensitivity analysis in convenient manner. Full complement of graphical routines makes output easy to understand. Written in Pascal and FORTRAN.

  16. Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters.

    PubMed

    Cheng, Rui; Xia, Li; Zhou, Jiaao; Liu, Deming

    2015-04-15

    Conventional intensity-modulated measurements require to be operated in linear range of filter or interferometric response to ensure a linear detection. Here, we present a wavelength interrogation system for fiber Bragg grating sensors where the linear transition is achieved with crossed Gaussian transmissions. This unique filtering characteristic makes the responses of the two branch detections follow Gaussian functions with the same parameters except for a delay. The substraction of these two delayed Gaussian responses (in dB) ultimately leads to a linear behavior, which is exploited for the sensor wavelength determination. Beside its flexibility and inherently power insensitivity, the proposal also shows a potential of a much wider operational range. Interrogation of a strain-tuned grating was accomplished, with a wide sensitivity tuning range from 2.56 to 8.7 dB/nm achieved.

  17. APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musson, John C.; Seaton, Chad; Spata, Mike F.

    2012-11-01

    Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementationmore » of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.« less

  18. Development of novel hybrid flexure-based microgrippers for precision micro-object manipulation.

    PubMed

    Mohd Zubir, Mohd Nashrul; Shirinzadeh, Bijan; Tian, Yanling

    2009-06-01

    This paper describes the process of developing a microgripper that is capable of high precision and fidelity manipulation of micro-objects. The design adopts the concept of flexure-based hinges on its joints to provide the rotational motion, thus eliminating the inherent nonlinearities associated with the application of conventional rigid hinges. A combination of two modeling techniques, namely, pseudorigid body model and finite element analysis was utilized to expedite the prototyping procedure, which leads to the establishment of a high performance mechanism. A new hybrid compliant structure integrating cantilever beam and flexural hinge configurations within microgripper mechanism mainframe has been developed. This concept provides a novel approach to harness the advantages within each individual configuration while mutually compensating the limitations inherent between them. A wire electrodischarge machining technique was utilized to fabricate the gripper out of high grade aluminum alloy (Al 7075T6). Experimental studies were conducted on the model to obtain various correlations governing the gripper performance as well as for model verification. The experimental results demonstrate high level of compliance in comparison to the computational results. A high amplification characteristic and maximum achievable stroke of 100 microm can be achieved.

  19. Development of novel hybrid flexure-based microgrippers for precision micro-object manipulation

    NASA Astrophysics Data System (ADS)

    Mohd Zubir, Mohd Nashrul; Shirinzadeh, Bijan; Tian, Yanling

    2009-06-01

    This paper describes the process of developing a microgripper that is capable of high precision and fidelity manipulation of micro-objects. The design adopts the concept of flexure-based hinges on its joints to provide the rotational motion, thus eliminating the inherent nonlinearities associated with the application of conventional rigid hinges. A combination of two modeling techniques, namely, pseudorigid body model and finite element analysis was utilized to expedite the prototyping procedure, which leads to the establishment of a high performance mechanism. A new hybrid compliant structure integrating cantilever beam and flexural hinge configurations within microgripper mechanism mainframe has been developed. This concept provides a novel approach to harness the advantages within each individual configuration while mutually compensating the limitations inherent between them. A wire electrodischarge machining technique was utilized to fabricate the gripper out of high grade aluminum alloy (Al 7075T6). Experimental studies were conducted on the model to obtain various correlations governing the gripper performance as well as for model verification. The experimental results demonstrate high level of compliance in comparison to the computational results. A high amplification characteristic and maximum achievable stroke of 100 μm can be achieved.

  20. Linear Parameter Varying Control Synthesis for Actuator Failure, Based on Estimated Parameter

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine

    2002-01-01

    The design of a linear parameter varying (LPV) controller for an aircraft at actuator failure cases is presented. The controller synthesis for actuator failure cases is formulated into linear matrix inequality (LMI) optimizations based on an estimated failure parameter with pre-defined estimation error bounds. The inherent conservatism of an LPV control synthesis methodology is reduced using a scaling factor on the uncertainty block which represents estimated parameter uncertainties. The fault parameter is estimated using the two-stage Kalman filter. The simulation results of the designed LPV controller for a HiMXT (Highly Maneuverable Aircraft Technology) vehicle with the on-line estimator show that the desired performance and robustness objectives are achieved for actuator failure cases.

  1. Positioner with long travel in two dimensions

    DOEpatents

    Trumper, David L.; Williams, Mark E.

    1997-12-23

    A precision positioning system is provided which provides long travel in two of the linear dimensions, while using non-contact bearings for both a first subassembly which provides long travel in one of the linear dimension and a second subassembly which provides long travel in the second linear dimension. The first or upper subassembly is preferably a magnetic subassembly which, in addition to providing long travel, also compensates or positions in three rotary dimensions and in the third linear dimension. The second subassembly is preferably either an air bearing or magnetic subassembly and is normally used only to provide long travel. Angled surfaces may be provided for magnetic bearings and capacitive or other gap sensing probes may be mounted to the stage and ground flush with the bearing actuators to provide more precise gap measurements.

  2. Symmetric linear systems - An application of algebraic systems theory

    NASA Technical Reports Server (NTRS)

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  3. Linear Parameter Varying Control for Actuator Failure

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    A robust linear parameter varying (LPV) control synthesis is carried out for an HiMAT vehicle subject to loss of control effectiveness. The scheduling parameter is selected to be a function of the estimates of the control effectiveness factors. The estimates are provided on-line by a two-stage Kalman estimator. The inherent conservatism of the LPV design is reducing through the use of a scaling factor on the uncertainty block that represents the estimation errors of the effectiveness factors. Simulations of the controlled system with the on-line estimator show that a superior fault-tolerance can be achieved.

  4. Electromagnetic organ tracking allows for real-time compensation of tissue shift in image-guided laparoscopic rectal surgery: results of a phantom study.

    PubMed

    Wagner, M; Gondan, M; Zöllner, C; Wünscher, J J; Nickel, F; Albala, L; Groch, A; Suwelack, S; Speidel, S; Maier-Hein, L; Müller-Stich, B P; Kenngott, H G

    2016-02-01

    Laparoscopic resection is a minimally invasive treatment option for rectal cancer but requires highly experienced surgeons. Computer-aided technologies could help to improve safety and efficiency by visualizing risk structures during the procedure. The prerequisite for such an image guidance system is reliable intraoperative information on iatrogenic tissue shift. This could be achieved by intraoperative imaging, which is rarely available. Thus, the aim of the present study was to develop and validate a method for real-time deformation compensation using preoperative imaging and intraoperative electromagnetic tracking (EMT) of the rectum. Three models were compared and evaluated for the compensation of tissue deformation. For model A, no compensation was performed. Model B moved the corresponding points rigidly to the motion of the EMT sensor. Model C used five nested linear regressions with increasing level of complexity to compute the deformation (C1-C5). For evaluation, 14 targets and an EMT organ sensor were fit into a silicone-molded rectum of the OpenHELP phantom. Following a computed tomography, the image guidance was initiated and the rectum was deformed in the same way as during surgery in a total of 14 experimental runs. The target registration error (TRE) was measured for all targets in different positions of the rectum. The mean TRE without correction (model A) was 32.8 ± 20.8 mm, with only 19.6% of the measurements below 10 mm (80.4% above 10 mm). With correction, the mean TRE could be reduced using the rigid correction (model B) to 6.8 ± 4.8 mm with 78.7% of the measurements being <10 mm. Using the most complex linear regression correction (model C5), the error could be reduced to 2.9 ± 1.4 mm with 99.8% being below 10 mm. In laparoscopic rectal surgery, the combination of electromagnetic organ tracking and preoperative imaging is a promising approach to compensating for intraoperative tissue shift in real-time.

  5. Is the local linearity of space-time inherited from the linearity of probabilities?

    NASA Astrophysics Data System (ADS)

    Müller, Markus P.; Carrozza, Sylvain; Höhn, Philipp A.

    2017-02-01

    The appearance of linear spaces, describing physical quantities by vectors and tensors, is ubiquitous in all of physics, from classical mechanics to the modern notion of local Lorentz invariance. However, as natural as this seems to the physicist, most computer scientists would argue that something like a ‘local linear tangent space’ is not very typical and in fact a quite surprising property of any conceivable world or algorithm. In this paper, we take the perspective of the computer scientist seriously, and ask whether there could be any inherently information-theoretic reason to expect this notion of linearity to appear in physics. We give a series of simple arguments, spanning quantum information theory, group representation theory, and renormalization in quantum gravity, that supports a surprising thesis: namely, that the local linearity of space-time might ultimately be a consequence of the linearity of probabilities. While our arguments involve a fair amount of speculation, they have the virtue of being independent of any detailed assumptions on quantum gravity, and they are in harmony with several independent recent ideas on emergent space-time in high-energy physics.

  6. Effect of summer outdoor temperatures on work-related injuries in Quebec (Canada).

    PubMed

    Adam-Poupart, Ariane; Smargiassi, Audrey; Busque, Marc-Antoine; Duguay, Patrice; Fournier, Michel; Zayed, Joseph; Labrèche, France

    2015-05-01

    To quantify the associations between occupational injury compensations and exposure to summer outdoor temperatures in Quebec (Canada). The relationship between 374,078 injuries compensated by the Workers' Compensation Board (WCB) (between May and September, 2003-2010) and maximum daily outdoor temperatures was modelled using generalised linear models with negative binomial distributions. Pooled effect sizes for all 16 health regions of Quebec were estimated with random-effect models for meta-analyses for all compensations and by sex, age group, mechanism of injury, industrial sector and occupations (manual vs other) within each sector. Time lags and cumulative effect of temperatures were also explored. The relationship between daily counts of compensations and maximum daily temperatures reached statistical significance for three health regions. The incidence rate ratio (IRR) of daily compensations per 1°C increase was 1.002 (95% CI 1.002 to 1.003) for all health regions combined. Statistically significant positive associations were observed for men, workers aged less than 45 years, various industrial sectors with both indoor and outdoor activities, and for slips/trips/falls, contact with object/equipment and exposure to harmful substances/environment. Manual occupations were not systematically at higher risk than non-manual and mixed ones. This study is the first to quantify the association between work-related injury compensations and exposure to summer temperatures according to physical demands of the occupation and this warrants further investigations. In the context of global warming, results can be used to estimate future impacts of summer outdoor temperatures on workers, as well as to plan preventive interventions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Isostatic compensation of equatorial highlands on Venus

    NASA Technical Reports Server (NTRS)

    Kucinskas, Algis B.; Turcotte, Donald L.

    1994-01-01

    Spherical harmonic models for Venus' global topography and gravity incorporating Magellan data are used to test isostatic compensation models in five 30 deg x 30 deg regions representative of the main classes of equatorial highlands. The power spectral density for the harmonic models obeys a power-law scaling with spectral slope Beta approximately 2 (Brown noise) for the topography and Beta approximately 3 (Kaula's law) for the geoid, similar to what is observed for Earth. The Venus topography spectrum has lower amplitudes than Earth's which reflects the dominant lowland topography on Venus. Observed degree geoid to topography ratios (GTRs) on Venus are significantly smaller than degree GTRs for uncompensated topography, indicative of substantial compensation. Assuming a global Airy compensation, most of the topography is compensated at depths greater than 100 km, suggesting a thick lithosphere on Venus. For each region considered we obtain a regional degree of compensation C from a linear regression of Bouguer anomaly versus Bouguer gravity data. Geoid anomaly (N) versus topography variation (h) data for each sample were compared, in the least-squares sense, to theoretical correlations for Pratt, Airy, and thermal thinning isostasy models yielding regional GTR, zero-elevation crustal thickness (H), and zero elevation thermal lithosphere thickness (y(sub L(sub 0)), respectively. We find the regional compensation to be substantial (C approximately 52-80%), and the h, N data correlations in the chosen areas can be explained by isostasy models applicable on the Earth and involving variations in crustal thickness (Airy) and/or lithospheric (thermal thinning) thickness. However, a thick crust and lithosphere (y(sub L(sub 0)) approximately 300 km) must be assumed for Venus.

  8. Control design for robust stability in linear regulators: Application to aerospace flight control

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1986-01-01

    Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.

  9. Computation of linear acceleration through an internal model in the macaque cerebellum

    PubMed Central

    Laurens, Jean; Meng, Hui; Angelaki, Dora E.

    2013-01-01

    A combination of theory and behavioral findings has supported a role for internal models in the resolution of sensory ambiguities and sensorimotor processing. Although the cerebellum has been proposed as a candidate for implementation of internal models, concrete evidence from neural responses is lacking. Here we exploit un-natural motion stimuli, which induce incorrect self-motion perception and eye movements, to explore the neural correlates of an internal model proposed to compensate for Einstein’s equivalence principle and generate neural estimates of linear acceleration and gravity. We show that caudal cerebellar vermis Purkinje cells and cerebellar nuclei neurons selective for actual linear acceleration also encode erroneous linear acceleration, as expected from the internal model hypothesis, even when no actual linear acceleration occurs. These findings provide strong evidence that the cerebellum might be involved in the implementation of internal models that mimic physical principles to interpret sensory signals, as previously hypothesized by theorists. PMID:24077562

  10. Digital off-axis holographic interferometry with simulated wavefront.

    PubMed

    Belashov, A V; Petrov, N V; Semenova, I V

    2014-11-17

    The paper presents a novel algorithm based on digital holographic interferometry and being promising for evaluation of phase variations from highly noisy or modulated by speckle-structures digital holograms. The suggested algorithm simulates an interferogram in finite width fringes, by analogy with classical double exposure holographic interferometry. Thus obtained interferogram is then processed as a digital hologram. The advantages of the suggested approach are demonstrated in numerical experiments on calculations of differences in phase distributions of wave fronts modulated by speckle structure, as well as in a physical experiment on the analysis of laser-induced heating dynamics of an aqueous solution of a photosensitizer. It is shown that owing to the inherent capability of the approach to perform adjustable smoothing of compared wave fronts, the resulting difference undergoes noise filtering. This capability of adjustable smoothing may be used to minimize losses in spatial resolution. Since the method allows to vary an observation angle of compared wave fields, an opportunity to compensate misalignment of optical axes of these wave fronts arises. This feature can be required, for example, when using two different setups in comparative digital holography or for compensation of recording system displacements during a set of exposures in studies of dynamic processes.

  11. Multiframe video coding for improved performance over wireless channels.

    PubMed

    Budagavi, M; Gibson, J D

    2001-01-01

    We propose and evaluate a multi-frame extension to block motion compensation (BMC) coding of videoconferencing-type video signals for wireless channels. The multi-frame BMC (MF-BMC) coder makes use of the redundancy that exists across multiple frames in typical videoconferencing sequences to achieve additional compression over that obtained by using the single frame BMC (SF-BMC) approach, such as in the base-level H.263 codec. The MF-BMC approach also has an inherent ability of overcoming some transmission errors and is thus more robust when compared to the SF-BMC approach. We model the error propagation process in MF-BMC coding as a multiple Markov chain and use Markov chain analysis to infer that the use of multiple frames in motion compensation increases robustness. The Markov chain analysis is also used to devise a simple scheme which randomizes the selection of the frame (amongst the multiple previous frames) used in BMC to achieve additional robustness. The MF-BMC coders proposed are a multi-frame extension of the base level H.263 coder and are found to be more robust than the base level H.263 coder when subjected to simulated errors commonly encountered on wireless channels.

  12. Mobile phone use during driving: Effects on speed and effectiveness of driver compensatory behaviour.

    PubMed

    Choudhary, Pushpa; Velaga, Nagendra R

    2017-09-01

    This study analysed and modelled the effects of conversation and texting (each with two difficulty levels) on driving performance of Indian drivers in terms of their mean speed and accident avoiding abilities; and further explored the relationship between speed reduction strategy of the drivers and their corresponding accident frequency. 100 drivers of three different age groups (young, mid-age and old-age) participated in the simulator study. Two sudden events of Indian context: unexpected crossing of pedestrians and joining of parked vehicles from road side, were simulated for estimating the accident probabilities. Generalized linear mixed models approach was used for developing linear regression models for mean speed and binary logistic regression models for accident probability. The results of the models showed that the drivers significantly compensated the increased workload by reducing their mean speed by 2.62m/s and 5.29m/s in the presence of conversation and texting tasks respectively. The logistic models for accident probabilities showed that the accident probabilities increased by 3 and 4 times respectively when the drivers were conversing or texting on a phone during driving. Further, the relationship between the speed reduction patterns and their corresponding accident frequencies showed that all the drivers compensated differently; but, among all the drivers, only few drivers, who compensated by reducing the speed by 30% or more, were able to fully offset the increased accident risk associated with the phone use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Minimal complexity control law synthesis

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Haddad, Wassim M.; Nett, Carl N.

    1989-01-01

    A paradigm for control law design for modern engineering systems is proposed: Minimize control law complexity subject to the achievement of a specified accuracy in the face of a specified level of uncertainty. Correspondingly, the overall goal is to make progress towards the development of a control law design methodology which supports this paradigm. Researchers achieve this goal by developing a general theory of optimal constrained-structure dynamic output feedback compensation, where here constrained-structure means that the dynamic-structure (e.g., dynamic order, pole locations, zero locations, etc.) of the output feedback compensation is constrained in some way. By applying this theory in an innovative fashion, where here the indicated iteration occurs over the choice of the compensator dynamic-structure, the paradigm stated above can, in principle, be realized. The optimal constrained-structure dynamic output feedback problem is formulated in general terms. An elegant method for reducing optimal constrained-structure dynamic output feedback problems to optimal static output feedback problems is then developed. This reduction procedure makes use of star products, linear fractional transformations, and linear fractional decompositions, and yields as a byproduct a complete characterization of the class of optimal constrained-structure dynamic output feedback problems which can be reduced to optimal static output feedback problems. Issues such as operational/physical constraints, operating-point variations, and processor throughput/memory limitations are considered, and it is shown how anti-windup/bumpless transfer, gain-scheduling, and digital processor implementation can be facilitated by constraining the controller dynamic-structure in an appropriate fashion.

  14. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System.

    PubMed

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-09-03

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments.

  15. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System

    PubMed Central

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-01-01

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174

  16. Analysis and compensation for the effect of the catheter position on image intensities in intravascular optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Eggermont, Jeroen; Wolterbeek, Ron; Broersen, Alexander; Busk, Carol A. G. R.; Precht, Helle; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke

    2016-12-01

    Intravascular optical coherence tomography (IVOCT) is an imaging technique that is used to analyze the underlying cause of cardiovascular disease. Because a catheter is used during imaging, the intensities can be affected by the catheter position. This work aims to analyze the effect of the catheter position on IVOCT image intensities and to propose a compensation method to minimize this effect in order to improve the visualization and the automatic analysis of IVOCT images. The effect of catheter position is modeled with respect to the distance between the catheter and the arterial wall (distance-dependent factor) and the incident angle onto the arterial wall (angle-dependent factor). A light transmission model incorporating both factors is introduced. On the basis of this model, the interaction effect of both factors is estimated with a hierarchical multivariant linear regression model. Statistical analysis shows that IVOCT intensities are significantly affected by both factors with p<0.001, as either aspect increases the intensity decreases. This effect differs for different pullbacks. The regression results were used to compensate for this effect. Experiments show that the proposed compensation method can improve the performance of the automatic bioresorbable vascular scaffold strut detection.

  17. Number Line Estimation in Children with Developmental Dyscalculia

    ERIC Educational Resources Information Center

    Sella, Francesco; Berteletti, Ilaria; Martina, Brazzolotto; Lucangeli, Daniela; Zorzi, Marco

    2013-01-01

    In the number to position task, several studies have shown that typically developing children shift from a biased (logarithmic) to an accurate (linear) mapping of symbolic digits onto a spatial position on a line. The initial pattern of overestimation of small numbers and the underestimation of larger numbers is compensated by means of age and…

  18. Shape Control of Plates with Piezo Actuators and Collocated Position/Rate Sensors

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1994-01-01

    This paper treats the control problem of shaping the surface deformation of a circular plate using embedded piezo-electric actuators and collocated rate sensors. An explicit Linear Quadratic Gaussian (LQG) optimizer stability augmentation compensator is derived as well as the optimal feed-forward control. Corresponding performance evaluation formulas are also derived.

  19. Shape Control of Plates with Piezo Actuators and Collocated Position/Rate Sensors

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1994-01-01

    This paper treats the control problem of shaping the surface deformation of a circular plate using embedded piezo-electric actuator and collocated rate sensors. An explicit Linear Quadratic Gaussian (LQG) optimizer stability augmentation compensator is derived as well as the optimal feed-forward control. Corresponding performance evaluation formulas are also derived.

  20. Probability distribution and statistical properties of spherically compensated cosmic regions in ΛCDM cosmology

    NASA Astrophysics Data System (ADS)

    Alimi, Jean-Michel; de Fromont, Paul

    2018-04-01

    The statistical properties of cosmic structures are well known to be strong probes for cosmology. In particular, several studies tried to use the cosmic void counting number to obtain tight constrains on dark energy. In this paper, we model the statistical properties of these regions using the CoSphere formalism (de Fromont & Alimi) in both primordial and non-linearly evolved Universe in the standard Λ cold dark matter model. This formalism applies similarly for minima (voids) and maxima (such as DM haloes), which are here considered symmetrically. We first derive the full joint Gaussian distribution of CoSphere's parameters in the Gaussian random field. We recover the results of Bardeen et al. only in the limit where the compensation radius becomes very large, i.e. when the central extremum decouples from its cosmic environment. We compute the probability distribution of the compensation size in this primordial field. We show that this distribution is redshift independent and can be used to model cosmic voids size distribution. We also derive the statistical distribution of the peak parameters introduced by Bardeen et al. and discuss their correlation with the cosmic environment. We show that small central extrema with low density are associated with narrow compensation regions with deep compensation density, while higher central extrema are preferentially located in larger but smoother over/under massive regions.

  1. An ultra-wideband tunable multi-wavelength Brillouin fibre laser based on a semiconductor optical amplifier and dispersion compensating fibre in a linear cavity configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulkifli, M Z; Ahmad, H; Hassan, N A

    2011-07-31

    A multi-wavelength Brillouin fibre laser (MBFL) with an ultra-wideband tuning range from 1420 nm to 1620 nm is demonstrated. The MBFL uses an ultra-wideband semiconductor optical amplifier (SOA) and a dispersion compensating fibre (DCF) as the linear gain medium and nonlinear gain medium, respectively. The proposed MBFL has a wide tuning range covering the short (S-), conventional (C-) and long (L-) bands with a wavelength spacing of 0.08 nm, making it highly suitable for DWDM system applications. The output power of the observed Brillouin Stokes ranges approximately from -5.94 dBm to -0.41 dBm for the S-band, from -4.34 dBm tomore » 0.02 dBm for the C-band and from -2.19 dBm to 0.39 dBm for the L-band. The spacing between each adjacent wavelengths of all the three bands is about 0.08 nm, which is approximately 10.7 GHz for the frequency domain. (lasers)« less

  2. Ion transport with charge-protected and non-charge-protected cations using the compensated Arrhenius formalism. Part 2. Relationship between ionic conductivity and diffusion.

    PubMed

    Petrowsky, Matt; Fleshman, Allison; Bopege, Dharshani N; Frech, Roger

    2012-08-09

    Temperature-dependent ionic conductivities and cation/anion self-diffusion coefficients are measured for four electrolyte families: TbaTf-linear primary alcohols, LiTf-linear primary alcohols, TbaTf-n-alkyl acetates, and LiTf-n-alkyl acetates. The Nernst-Einstein equation does not adequately describe the data. Instead, the compensated Arrhenius formalism is applied to both conductivity and diffusion data. General trends based on temperature and alkyl chain length are observed when conductivity is plotted against cation or anion diffusion coefficient, but there is no clear pattern to the data. However, plotting conductivity exponential prefactors against those for diffusion results in four distinct curves, one each for the alcohol and acetate families described above. Furthermore, the TbaTf-alcohol and TbaTf-acetate data are "in line" with each other. The conductivity prefactors for the LiTf-alcohol data are smaller than those for the TbaTf data. The LiTf-acetate data have the lowest conductivity prefactors. This trend in prefactors mirrors the observed trend in degree of ionic association for these electrolytes.

  3. Power amplifier linearization technique with IQ imbalance and crosstalk compensation for broadband MIMO-OFDM transmitters

    NASA Astrophysics Data System (ADS)

    Gregorio, Fernando; Cousseau, Juan; Werner, Stefan; Riihonen, Taneli; Wichman, Risto

    2011-12-01

    The design of predistortion techniques for broadband multiple input multiple output-OFDM (MIMO-OFDM) systems raises several implementation challenges. First, the large bandwidth of the OFDM signal requires the introduction of memory effects in the PD model. In addition, it is usual to consider an imbalanced in-phase and quadrature (IQ) modulator to translate the predistorted baseband signal to RF. Furthermore, the coupling effects, which occur when the MIMO paths are implemented in the same reduced size chipset, cannot be avoided in MIMO transceivers structures. This study proposes a MIMO-PD system that linearizes the power amplifier response and compensates nonlinear crosstalk and IQ imbalance effects for each branch of the multiantenna system. Efficient recursive algorithms are presented to estimate the complete MIMO-PD coefficients. The algorithms avoid the high computational complexity in previous solutions based on least squares estimation. The performance of the proposed MIMO-PD structure is validated by simulations using a two-transmitter antenna MIMO system. Error vector magnitude and adjacent channel power ratio are evaluated showing significant improvement compared with conventional MIMO-PD systems.

  4. Robust output tracking control of a laboratory helicopter for automatic landing

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Lu, Geng; Zhong, Yisheng

    2014-11-01

    In this paper, robust output tracking control problem of a laboratory helicopter for automatic landing in high seas is investigated. The motion of the helicopter is required to synchronise with that of an oscillating platform, e.g. the deck of a vessel subject to wave-induced motions. A robust linear time-invariant output feedback controller consisting of a nominal controller and a robust compensator is designed. The robust compensator is introduced to restrain the influences of parametric uncertainties, nonlinearities and external disturbances. It is shown that robust stability and robust tracking property can be achieved simultaneously. Experimental results on the laboratory helicopter for automatic landing demonstrate the effectiveness of the designed control approach.

  5. A linear induction motor with a coated conductor superconducting secondary

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zheng, Shijun; Li, Jing; Ma, Guang Tong; Yen, Fei

    2018-07-01

    A linear induction motor system composed of a high-Tc superconducting secondary with close-ended coils made of REBCO coated conductor wire was designed and tested experimentally. The measured thrust, normal force and power loss are presented and explained by combining the flux dynamics inside superconductors with existing linear drive theory. It is found that an inherent capacitive component associated to the flux motion of vortices in the Type-II superconductor reduces the impedance of the coils; from such, the associated Lorentz forces are drastically increased. The resulting breakout thrust of the designed linear motor system was found to be extremely high (up to 4.7 kN/m2) while the associated normal forces only a fraction of the thrust. Compared to its conventional counterparts, high-Tc superconducting secondaries appear to be more feasible for use in maglev propulsion and electromagnetic launchers.

  6. Design and test of the Stirling-type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Hong, Yong-Ju; Ko, Junseok; Kim, Hyo-Bong; Yeom, Han-Kil; In, Sehwan; Park, Seong-Je

    2017-12-01

    Stirling type pulse tube cryocoolers are very attractive for cooling of diverse application because it has it has several inherent advantages such as no moving part in the cold end, low manufacturing cost and long operation life. To develop the Stirling-type pulse tube cryocooler, we need to design a linear compressor to drive the pulse tube cryocooler. A moving magnet type linear motor of dual piston configuration is designed and fabricated, and this compressor could be operated with the electric power of 100 W and the frequency up to 60 Hz. A single stage coaxial type pulse tube cold finger aiming at over 1.5 W at 80K is built and tested with the linear compressor. Experimental investigations have been conducted to evaluate their performance characteristics with respect to several parameters such as the phase shifter, the charging pressure and the operating frequency of the linear compressor.

  7. Study report on guidelines and test procedures for investigating stability of nonlinear cardiovascular control system models

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1974-01-01

    A general study of the stability of nonlinear as compared to linear control systems is presented. The analysis is general and, therefore, applies to other types of nonlinear biological control systems as well as the cardiovascular control system models. Both inherent and numerical stability are discussed for corresponding analytical and graphic methods and numerical methods.

  8. Predictions about Bisymmetry and Cross-Modal Matches from Global Theories of Subjective Intensities

    ERIC Educational Resources Information Center

    Luce, R. Duncan

    2012-01-01

    The article first summarizes the assumptions of Luce (2004, 2008) for inherently binary (2-D) stimuli (e.g., the ears and eyes) that lead to a "p-additive," order-preserving psychophysical representation. Next, a somewhat parallel theory for unary (1-D) signals is developed for intensity attributes such as linear extent, vibration to finger, and…

  9. LARC-TPI and new thermoplastic polyimides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, A.; Ohta, M.

    1987-02-01

    The LARC-TPI linear thermoplastic polyimide has been developed by NASA for high temperature adhesive applications in aerospace structures in the forms of varnish, films, powders, and prepregs. LARC-TPI improves adhesive processability and lowers glass transition temperature, while retaining mechanical, thermal and electrical properties inherent in the polyimides. It may be used as a structural adhesive for metals, composites, ceramics, and films. 8 references.

  10. Examining the Effect of Binge Eating and Disinhibition on Compensatory Changes in Energy Balance following Exercise among Overweight and Obese Women

    PubMed Central

    Emery, Rebecca L.; Levine, Michele D.; Jakicic, John M.

    2016-01-01

    Some women behaviorally compensate for the energy expended during exercise by increasing their energy intake or becoming more sedentary, thereby decreasing their energy expenditure. Although behavioral compensation can attenuate or even reverse the energy deficit generated by exercise, few data are available on predictors of compensatory responses to exercise. The present study aimed to identify eating-related predictors of compensatory changes in energy balance following exercise. Overweight and obese, physically inactive women (N = 48) completed self-report measures of disinhibition and binge eating and participated in two experimental conditions, exercise and rest, in counterbalanced order. Energy intake and expenditure were measured for 24-hours following each experimental condition to estimate energy balance. On average, women were 21.33 ± 2.09 years old and 63% were white. Of the sample, 63% compensated for the energy expended during exercise by increasing their energy intake or decreasing their energy expenditure. Linear mixed effects modeling with repeated measurement showed that disinhibition was not predictive of behavioral compensation. However, there was a significant difference between the negative energy balance observed following the rest condition and the positive energy balance observed following the exercise condition among women who reported binge eating, which was driven by a tendency to spend less time being physically active and more time being sedentary following exercise. These findings indicate that women who binge eat may be at greatest risk of compensating for exercise. Future research is needed to better understand psychosocial predictors and common mechanisms through which behavioral compensation is promoted. PMID:27064752

  11. Influence of crystallography and bonding on the structure and migration of irrational interphase boundaries

    NASA Astrophysics Data System (ADS)

    Aaronson, H. I.

    2006-03-01

    Interphase boundary structure developed during precipitation from solid solution and during massive transformations is considered in diverse alloy systems in the presence of differences in stacking sequence across interphase boundaries. Linear misfit compensating defects, including misfit dislocations, structural disconnections, and misfit disconnections, are present over a wide range of crystallographie when both phases have metallic bonding. Misfit dislocations have also been observed when both phases have covalent bonding ( e.g., US: β US2 by Sole and van der Walt). These defects are also found when one phase is ionic and the other is metallic (Nb∶Al2O3 by Rühle et al.), albeit when the latter is formed by vapor deposition. However, when bonding is metallic in one phase but significantly covalent in the other, the structure of the interphase boundary appears to depend upon the strength of the covalent bonding relative to that in the metallically bonded phase. When this difference is large, growth can take place as if it were occurring at a free surface, resulting in orientation relationships that are irrational and conjugate habit planes that are ill matched ( e.g., ZrN: α Zr-N by Li et al. and Xe(solid):Al-Xe by Kishida and Yamaguchi). At lower levels of bonding directionality and strength, crystallography is again irrational, but now edge-to-edge-based low-energy structures can replace linear misfit compensating defects (γm:TiAl:αTi-Al by Reynolds et al.). In the perhaps still smaller difference case of Widmanstätten cementite precipitated from austenite, one orientation relationship yields plates with linear misfit compensating defects at their broad faces whereas another (presumably nucleated at different types of site) produces laths with poorly defined shapes and interfacial structures. Hence, Hume-Rothery-type bonding considerations can markedly affect interphase boundary structure and thus the mechanisms, kinetics, and morphology of growth.

  12. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.

    PubMed

    Wu, Kuan-Yi; Su, Yin-Yu; Yu, Ying-Lung; Lin, Kuei-You; Lan, Chao-Chieh

    2017-07-01

    Powered exoskeletons can facilitate rehabilitation of patients with upper limb disabilities. Designs using rotary motors usually result in bulky exoskeletons to reduce the problem of moving inertia. This paper presents a new linearly actuated elbow exoskeleton that consists of a slider crank mechanism and a linear motor. The linear motor is placed beside the upper arm and closer to shoulder joint. Thus better inertia properties can be achieved while lightweight and compactness are maintained. A passive joint is introduced to compensate for the exoskeleton-elbow misalignment and intersubject size variation. A linear series elastic actuator (SEA) is proposed to obtain accurate force and impedance control at the exoskeleton-elbow interface. Bidirectional actuation between exoskeleton and forearm is verified, which is required for various rehabilitation processes. We expect this exoskeleton can provide a means of robot-aided elbow rehabilitation.

  13. Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices

    PubMed Central

    Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter

    2009-01-01

    We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation. PMID:20059271

  14. Development of a microcomputer-based magnetic heading sensor

    NASA Technical Reports Server (NTRS)

    Garner, H. D.

    1987-01-01

    This paper explores the development of a flux-gate magnetic heading reference using a single-chip microcomputer to process heading information and to present it to the pilot in appropriate form. This instrument is intended to replace the conventional combination of mechanical compass and directional gyroscope currently in use in general aviation aircraft, at appreciable savings in cost and reduction in maintenance. Design of the sensing element, the signal processing electronics, and the computer algorithms which calculate the magnetic heading of the aircraft from the magnetometer data have been integrated in such a way as to minimize hardware requirements and simplify calibration procedures. Damping and deviation errors are avoided by the inherent design of the device, and a technique for compensating for northerly-turning-error is described.

  15. Differential risk theory as a subset of social exchange theory: implications for making gay marriage culturally normative and for understanding stigma against homosexuals.

    PubMed

    Schumm, Walter R

    2004-02-01

    Differential risk theory, a subset of social exchange and equity theories, is proposed as an explanation for stigma towards homosexuals and as a basis for normative preferences for heterosexual marriage. Numerous gender differences involved in long-term relationships require members of such close relationships to assume greater interpersonal and social risks and thus costs, compared to same-gender relationships. Without compensating rewards or reduced costs, heterosexual relationships would be unfairly disadvantaged. Resistance to making gay marriage normative and/or equivalent legally to heterosexual marriage may be traced, rather than to homophobia, to societal attempts to maintain equity between classes of relationships characterized by inherent differential risks.

  16. Negligence, genuine error, and litigation

    PubMed Central

    Sohn, David H

    2013-01-01

    Not all medical injuries are the result of negligence. In fact, most medical injuries are the result either of the inherent risk in the practice of medicine, or due to system errors, which cannot be prevented simply through fear of disciplinary action. This paper will discuss the differences between adverse events, negligence, and system errors; the current medical malpractice tort system in the United States; and review current and future solutions, including medical malpractice reform, alternative dispute resolution, health courts, and no-fault compensation systems. The current political environment favors investigation of non-cap tort reform remedies; investment into more rational oversight systems, such as health courts or no-fault systems may reap both quantitative and qualitative benefits for a less costly and safer health system. PMID:23426783

  17. The NACA High-Speed Motion-Picture Camera Optical Compensation at 40,000 Photographs Per Second

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D

    1946-01-01

    The principle of operation of the NACA high-speed camera is completely explained. This camera, operating at the rate of 40,000 photographs per second, took the photographs presented in numerous NACA reports concerning combustion, preignition, and knock in the spark-ignition engine. Many design details are presented and discussed, details of an entirely conventional nature are omitted. The inherent aberrations of the camera are discussed and partly evaluated. The focal-plane-shutter effect of the camera is explained. Photographs of the camera are presented. Some high-speed motion pictures of familiar objects -- photoflash bulb, firecrackers, camera shutter -- are reproduced as an illustration of the quality of the photographs taken by the camera.

  18. Calibration test of the temperature and strain sensitivity coefficient in regional reference grating method

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Huang, Junbing; Wu, Hanping; Gu, Hongcan; Tang, Bo

    2014-12-01

    In order to verify the validity of the regional reference grating method in solve the strain/temperature cross sensitive problem in the actual ship structural health monitoring system, and to meet the requirements of engineering, for the sensitivity coefficients of regional reference grating method, national standard measurement equipment is used to calibrate the temperature sensitivity coefficient of selected FBG temperature sensor and strain sensitivity coefficient of FBG strain sensor in this modal. And the thermal expansion sensitivity coefficient of the steel for ships is calibrated with water bath method. The calibration results show that the temperature sensitivity coefficient of FBG temperature sensor is 28.16pm/°C within -10~30°C, and its linearity is greater than 0.999, the strain sensitivity coefficient of FBG strain sensor is 1.32pm/μɛ within -2900~2900μɛ whose linearity is almost to 1, the thermal expansion sensitivity coefficient of the steel for ships is 23.438pm/°C within 30~90°C, and its linearity is greater than 0.998. Finally, the calibration parameters are used in the actual ship structure health monitoring system for temperature compensation. The results show that the effect of temperature compensation is good, and the calibration parameters meet the engineering requirements, which provide an important reference for fiber Bragg grating sensor is widely used in engineering.

  19. A metal artifact reduction algorithm in CT using multiple prior images by recursive active contour segmentation

    PubMed Central

    Nam, Haewon

    2017-01-01

    We propose a novel metal artifact reduction (MAR) algorithm for CT images that completes a corrupted sinogram along the metal trace region. When metal implants are located inside a field of view, they create a barrier to the transmitted X-ray beam due to the high attenuation of metals, which significantly degrades the image quality. To fill in the metal trace region efficiently, the proposed algorithm uses multiple prior images with residual error compensation in sinogram space. Multiple prior images are generated by applying a recursive active contour (RAC) segmentation algorithm to the pre-corrected image acquired by MAR with linear interpolation, where the number of prior image is controlled by RAC depending on the object complexity. A sinogram basis is then acquired by forward projection of the prior images. The metal trace region of the original sinogram is replaced by the linearly combined sinogram of the prior images. Then, the additional correction in the metal trace region is performed to compensate the residual errors occurred by non-ideal data acquisition condition. The performance of the proposed MAR algorithm is compared with MAR with linear interpolation and the normalized MAR algorithm using simulated and experimental data. The results show that the proposed algorithm outperforms other MAR algorithms, especially when the object is complex with multiple bone objects. PMID:28604794

  20. An NN-Based SRD Decomposition Algorithm and Its Application in Nonlinear Compensation

    PubMed Central

    Yan, Honghang; Deng, Fang; Sun, Jian; Chen, Jie

    2014-01-01

    In this study, a neural network-based square root of descending (SRD) order decomposition algorithm for compensating for nonlinear data generated by sensors is presented. The study aims at exploring the optimized decomposition of data 1.00,0.00,0.00 and minimizing the computational complexity and memory space of the training process. A linear decomposition algorithm, which automatically finds the optimal decomposition of N subparts and reduces the training time to 1N and memory cost to 1N, has been implemented on nonlinear data obtained from an encoder. Particular focus is given to the theoretical access of estimating the numbers of hidden nodes and the precision of varying the decomposition method. Numerical experiments are designed to evaluate the effect of this algorithm. Moreover, a designed device for angular sensor calibration is presented. We conduct an experiment that samples the data of an encoder and compensates for the nonlinearity of the encoder to testify this novel algorithm. PMID:25232912

  1. Acquisition of control skill with delayed and compensated displays.

    PubMed

    Ricard, G L

    1995-09-01

    The difficulty of mastering a two-axis, compensatory, manual control task was manipulated by introducing transport delays into the feedback loop of the controlled element. Realistic aircraft dynamics were used. Subjects' display was a simulation of an "inside-out" artificial horizon instrument perturbed by atmospheric turbulence. The task was to maintain straight and level flight, and delays tested were representative of those found in current training simulators. Delay compensations in the form of first-order lead and first-order lead/lag transfer functions, along with an uncompensated condition, were factorially combined with added delays. Subjects were required to meet a relatively strict criterion for performance. Control activity showed no differences during criterion performance, but the trials needed to achieve the criterion were linearly related to the magnitude of the delay and the compensation condition. These data were collected in the context of aircraft attitude control, but the results can be applied to the simulation of other vehicles, to remote manipulation, and to maneuvering in graphical environments.

  2. A temperature characteristic research and compensation design for micro-machined gyroscope

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; di, Xin-Peng; Chen, Wei-Ping; Yin, Liang; Liu, Xiao-Wei

    2017-02-01

    The all temperature range stability is the most important technology of MEMS angular velocity sensor according to the principle of capacity detecting. The correlation between driven force and zero-point of sensor is summarized according to the temperature characteristic of the air-damping and resonant frequency of sensor header. A constant trans-conductance high-linearity amplifier is designed to realize the low phase-drift and low amplitude-drift interface circuit at all-temperature range. The chip is fabricated in a standard 0.5 μm CMOS process. Compensation achieved by driven force to zero-point drift caused by the stiffness of physical construction and air-damping is adopted. Moreover, the driven force can be obtained from the drive-circuit to avoid the complex sampling. The test result shows that the zero-point drift is lower than 30∘/h (1-sigma) at the temperature range from -40∘C to 60∘C after three-order compensation made by driven force.

  3. Experimental demonstration of non-iterative interpolation-based partial ICI compensation in100G RGI-DP-CO-OFDM transport systems.

    PubMed

    Mousa-Pasandi, Mohammad E; Zhuge, Qunbi; Xu, Xian; Osman, Mohamed M; El-Sahn, Ziad A; Chagnon, Mathieu; Plant, David V

    2012-07-02

    We experimentally investigate the performance of a low-complexity non-iterative phase noise induced inter-carrier interference (ICI) compensation algorithm in reduced-guard-interval dual-polarization coherent-optical orthogonal-frequency-division-multiplexing (RGI-DP-CO-OFDM) transport systems. This interpolation-based ICI compensator estimates the time-domain phase noise samples by a linear interpolation between the CPE estimates of the consecutive OFDM symbols. We experimentally study the performance of this scheme for a 28 Gbaud QPSK RGI-DP-CO-OFDM employing a low cost distributed feedback (DFB) laser. Experimental results using a DFB laser with the linewidth of 2.6 MHz demonstrate 24% and 13% improvement in transmission reach with respect to the conventional equalizer (CE) in presence of weak and strong dispersion-enhanced-phase-noise (DEPN), respectively. A brief analysis of the computational complexity of this scheme in terms of the number of required complex multiplications is provided. This practical approach does not suffer from error propagation while enjoying low computational complexity.

  4. A microprocessor application to a strapdown laser gyro navigator

    NASA Technical Reports Server (NTRS)

    Giardina, C.; Luxford, E.

    1980-01-01

    The replacement of analog circuit control loops for laser gyros (path length control, cross axis temperature compensation loops, dither servo and current regulators) with digital filters residing in microcomputers is addressed. In addition to the control loops, a discussion is given on applying the microprocessor hardware to compensation for coning and skulling motion where simple algorithms are processed at high speeds to compensate component output data (digital pulses) for linear and angular vibration motions. Highlights are given on the methodology and system approaches used in replacing differential equations describing the analog system in terms of the mechanized difference equations of the microprocessor. Standard one for one frequency domain techniques are employed in replacing analog transfer functions by their transform counterparts. Direct digital design techniques are also discussed along with their associated benefits. Time and memory loading analyses are also summarized, as well as signal and microprocessor architecture. Trade offs in algorithm, mechanization, time/memory loading, accuracy, and microprocessor architecture are also given.

  5. Lag compensation of optical fibers or thermocouples to achieve waveform fidelity in dynamic gas pyrometry

    NASA Technical Reports Server (NTRS)

    Warshawsky, I.

    1991-01-01

    Fidelity of waveform reproduction requires constant amplitude ratio and constant time lag of a temperature sensor's indication, at all frequencies of interest. However, heat-transfer type sensors usually cannot satisfy these requirements. Equations for the actual indication of a thermocouple and an optical-fiber pyrometer are given explicitly, in terms of sensor and flowing-gas properties. A practical, realistic design of each type of sensor behaves like a first-order system with amplitude-ratio attenuation inversely proportional to frequency when the frequency exceeds the corner frequency. Only at much higher frequencies does the amplitude-ratio attenuation for the optical fiber sensor become inversely proportional to the square root of the frequency. Design options for improving the frequency response are discussed. On-line electrical lag compensation, using a linear amplifier and a passive compensation network, can extend the corner frequency of the thermocouple 100-fold or more; a similar passive network can be used for the optical-fiber sensor. Design details for these networks are presented.

  6. Is the time-dependent behaviour of the aortic valve intrinsically quasi-linear?

    NASA Astrophysics Data System (ADS)

    Anssari-Benam, Afshin

    2014-05-01

    The widely popular quasi-linear viscoelasticity (QLV) theory has been employed extensively in the literature for characterising the time-dependent behaviour of many biological tissues, including the aortic valve (AV). However, in contrast to other tissues, application of QLV to AV data has been met with varying success, with studies reporting discrepancies in the values of the associated quantified parameters for data collected from different timescales in experiments. Furthermore, some studies investigating the stress-relaxation phenomenon in valvular tissues have suggested discrete relaxation spectra, as an alternative to the continuous spectrum proposed by the QLV. These indications put forward a more fundamental question: Is the time-dependent behaviour of the aortic valve intrinsically quasi-linear? In other words, can the inherent characteristics of the tissue that govern its biomechanical behaviour facilitate a quasi-linear time-dependent behaviour? This paper attempts to address these questions by presenting a mathematical analysis to derive the expressions for the stress-relaxation G( t) and creep J( t) functions for the AV tissue within the QLV theory. The principal inherent characteristic of the tissue is incorporated into the QLV formulation in the form of the well-established gradual fibre recruitment model, and the corresponding expressions for G( t) and J( t) are derived. The outcomes indicate that the resulting stress-relaxation and creep functions do not appear to voluntarily follow the observed experimental trends reported in previous studies. These results highlight that the time-dependent behaviour of the AV may not be quasi-linear, and more suitable theoretical criteria and models may be required to explain the phenomenon based on tissue's microstructure, and for more accurate estimation of the associated material parameters. In general, these results may further be applicable to other planar soft tissues of the same class, i.e. with the same representation for fibre recruitment mechanism and discrete time-dependent spectra.

  7. Controller Synthesis for Periodically Forced Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Basso, Michele; Genesio, Roberto; Giovanardi, Lorenzo

    Delayed feedback controllers are an appealing tool for stabilization of periodic orbits in chaotic systems. Despite their conceptual simplicity, specific and reliable design procedures are difficult to obtain, partly also because of their inherent infinite-dimensional structure. This chapter considers the use of finite dimensional linear time invariant controllers for stabilization of periodic solutions in a general class of sinusoidally forced nonlinear systems. For such controllers — which can be interpreted as rational approximations of the delayed ones — we provide a computationally attractive synthesis technique based on Linear Matrix Inequalities (LMIs), by mixing results concerning absolute stability of nonlinear systems and robustness of uncertain linear systems. The resulting controllers prove to be effective for chaos suppression in electronic circuits and systems, as shown by two different application examples.

  8. Androgen resistance in squirrel monkeys (Saimiri spp.).

    PubMed

    Gross, Katherine L; Westberry, Jenne M; Hubler, Tina R; Sadosky, Patti W; Singh, Ravinder J; Taylor, Robert L; Scammell, Jonathan G

    2008-08-01

    The goal of this study was to understand the basis for high androgen levels in squirrel monkeys (Saimiri spp.). Mass spectrometry was used to analyze serum testosterone, androstenedione, and dihydrotestosterone of male squirrel monkeys during the nonbreeding (n = 7) and breeding (n = 10) seasons. All hormone levels were elevated compared with those of humans, even during the nonbreeding season; the highest levels occurred during the breeding season. The ratio of testosterone to dihydrotestosterone in squirrel monkeys is high during the breeding season compared to man. Squirrel monkeys may have high testosterone to compensate for inefficient metabolism to dihydrotestosterone. We also investigated whether squirrel monkeys have high androgens to compensate for low-activity androgen receptors (AR). The response to dihydrotestosterone in squirrel monkey cells transfected with AR and AR-responsive reporter plasmids was 4-fold, compared with 28-fold in human cells. This result was not due to overexpression of cellular FKBP51, which causes glucocorticoid and progestin resistance in squirrel monkeys, because overexpression of FKBP51 had no effect on dihydrotestosterone-stimulated reporter activity in a human fibroblast cell line. To test whether the inherently low levels of FKBP52 in squirrel monkeys contribute to androgen insensitivity, squirrel monkey cells were transfected with an AR expression plasmid, an AR-responsive reporter plasmid, and a plasmid expressing FKBP52. Expression of FKBP52 decreased the EC50 or increased the maximal response to dihydrotestosterone. Therefore, the high androgen levels in squirrel monkeys likely compensate for their relatively low 5 alpha-reductase activity during the breeding season and AR insensitivity resulting from low cellular levels of FKBP52.

  9. Parameter tuning method for dither compensation of a pneumatic proportional valve with friction

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Song, Yang; Huang, Leisheng; Fan, Wei

    2016-05-01

    In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal (using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.

  10. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods aremore » under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.« less

  11. Development of a Low Inductance Linear Alternator for Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schifer, Nicholas A.

    2017-01-01

    The free-piston Stirling power convertor is a promising technology for high efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper, eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations, and compares the predictions with experimental data for one of the configurations that has been built and is currently being tested.

  12. Development of a Low-Inductance Linear Alternator for Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schifer, Nicholas A.

    2017-01-01

    The free-piston Stirling power convertor is a promising technology for high-efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-the-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations. Additionally, one of the configurations was built and tested at GRC, and the experimental data is compared with the predictions.

  13. Nonlinear robust control of hypersonic aircrafts with interactions between flight dynamics and propulsion systems.

    PubMed

    Li, Zhaoying; Zhou, Wenjie; Liu, Hao

    2016-09-01

    This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. SU-F-T-533: Study of Dosimetric Properties of Cadmium Free Alloy Used in Compensator Based IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, A; Kaushik, S; Guru Jambheshwar University of Science & Technology, Hisar, Haryana

    Purpose: To study the dosimetric properties of cadmium free alloy which is used in compensator based IMRT. Methods: A mixture of 30% of lead,52% of bismuth and 18% of tin was used to prepare alloy. We prepared slabs of different thicknesses ranging from 0.71 cm to 6.14 cm. Density of alloy was measured by Archimedes’ principle using SI-234 Denver instrument and water as buoyant liquid. Transmission, linear attenuation coefficient (µ), tissue phantom ration (TPR), beam hardening, surface dose (Ds), percentage depth dose (PDD) and effect of scatter were measured and analyze for different field size and different thickness of compensatormore » for 6 MV photon beam. Measurements were carried out at 100 cm SSD and 160 cm SSD. Results: Density of alloy was found to be 9.5456 gm/cm3. Melting point of alloy is 90–95 °C. For a field size of 10×10 cm2 µ was 0.4253 cm-1 at 100 cm SSD. Calculated TPR was found to be within 3 % of measured TPR. Ds was found to be decreasing with increasing thickness of compensator. 1cm, 1.98 cm and 4.16 cm thick compensator slab decreased surface dose by 4.2%, 6.1% and 9.5% respectively for a field size of 10×10cm2 at 100 cm SSD. As field size increases Ds increases for a given compensator thickness. This is due to increase in amount of scattered dose from wider collimator opening. For smaller field size, PDDs are increased from 3.0% to 5.5% of open beam PDDs as compensator thickness increases from 1 cm to 6.14 cm at a depth of 10 cm in water. For larger field size variation in PDDs is not significant. Conclusion: High degree of modulation can be achieved from this compensator material, which is essential in compensator based IMRT. Dosimetric properties analyzed in this study establish this alloy as a reliable, cost effective, reusable compensator material.« less

  15. Dosimetric studies of cadmium free alloy used in compensator based intensity modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Kaushik, Sandeep; Punia, Rajesh; Tyagi, Atul; Singh, Mann P.

    2017-10-01

    Aim of this study was to investigate dosimetric properties of cadmium free alloy which is used in compensator based intensity modulated radiotherapy (cIMRT). A mixture of lead, bismuth and tin was used to prepare the alloy whose melting point is 90-95 °C. Slabs of different thicknesses ranging from 0.71 cm to 6.14 cm were prepared. Density of alloy was measured by Archimedes' principle using water. For six megavolt (6 MV) photon beam energy transmission, linear effective attenuation coefficient (μeff), tissue phantom ratio (TPR1020), beam hardening, surface dose (Ds), percentage depth dose (PDD) and effect of scatter has been measured and analyzed for different field sizes and different thickness of compensator. Effect of extended source to detector distance (SDD) on transmissions and μeff was measured. The density of alloy was found to be 9.5456 g/cm3. At SDD of 100 cm, μeff was observed 0.4253 cm-1 for a field size of 10×10 cm 2. Calculated TPR1020 was found to be within 3% of experimental TPR1020 . It was found to be increasing with increasing thickness of compensator. Ds was found to decrease with thickness of compensator and increase with wider collimator opening due to increased scattered dose. Compensator slabs of 1 cm, 1.98 cm and 4.16 cm decreased surface dose by 4.2%, 6.1% and 9.5% respectively for a field size of 10×10 cm2 at 100 cm SDD. For small field size of 3×3 cm2 and 5×5 cm2 PDDs are increased from 3.0% to 5.5% of open beam PDDs as compensator thickness increased from 1 cm to 6.14 cm at a depth of 10 cm in water while variation in PDD is insignificant in for larger field sizes 10×10 cm2 to 20×20 cm2. A high degree of intensity modulation is essential in cIMRT and it can be achieved with this compensator material. Dosimetric properties analyzed in this study establish this alloy as a reliable, reusable, optimally dense and cost effective compensator material.

  16. Applications of Support Vector Machines In Chemo And Bioinformatics

    NASA Astrophysics Data System (ADS)

    Jayaraman, V. K.; Sundararajan, V.

    2010-10-01

    Conventional linear & nonlinear tools for classification, regression & data driven modeling are being replaced on a rapid scale by newer techniques & tools based on artificial intelligence and machine learning. While the linear techniques are not applicable for inherently nonlinear problems, newer methods serve as attractive alternatives for solving real life problems. Support Vector Machine (SVM) classifiers are a set of universal feed-forward network based classification algorithms that have been formulated from statistical learning theory and structural risk minimization principle. SVM regression closely follows the classification methodology. In this work recent applications of SVM in Chemo & Bioinformatics will be described with suitable illustrative examples.

  17. Testing and simulation of silicon photomultiplier readouts for scintillators in high-energy astronomy and solar physics

    NASA Astrophysics Data System (ADS)

    Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; Jablonski, L. F.; Wurtz, J. R.; Ertley, C. D.; McConnell, M. L.; Ryan, J. M.

    2014-11-01

    Space-based gamma-ray detectors for high-energy astronomy and solar physics face severe constraints on mass, volume, and power, and must endure harsh launch conditions and operating environments. Historically, such instruments have usually been based on scintillator materials due to their relatively low cost, inherent ruggedness, high stopping power, and radiation hardness. New scintillator materials, such as LaBr3:Ce, feature improved energy and timing performance, making them attractive for future astronomy and solar physics space missions in an era of tightly constrained budgets. Despite this promise, the use of scintillators in space remains constrained by the volume, mass, power, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). In recent years, silicon photomultipliers (SiPMs) have emerged as promising alternative light readout devices that offer gains and quantum efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. In order for SiPMs to replace PMTs in space-based instruments, however, it must be shown that they can provide comparable performance, and that their inherent temperature sensitivity can be corrected for. To this end, we have performed extensive testing and modeling of a small gamma-ray spectrometer composed of a 6 mm×6 mm SiPM coupled to a 6 mm×6 mm ×10 mm LaBr3:Ce crystal. A custom readout board monitors the temperature and adjusts the bias voltage to compensate for gain variations. We record an energy resolution of 5.7% (FWHM) at 662 keV at room temperature. We have also performed simulations of the scintillation process and optical light collection using Geant4, and of the SiPM response using the GosSiP package. The simulated energy resolution is in good agreement with the data from 22 keV to 662 keV. Above ~1 MeV, however, the measured energy resolution is systematically worse than the simulations. This discrepancy is likely due to the high input impedance of the readout board front-end electronics, which introduces a non-linear saturation effect in the SiPM for large light pulses. Analysis of the simulations indicates several additional steps that must be taken to optimize the energy resolution of SiPM-based scintillator detectors.

  18. Remote-seeded WDM-PON upgrade using linear semiconductor opticalamplifiers

    NASA Astrophysics Data System (ADS)

    Martínez, J. J.; Merayo, N.; Villafranca, A.; Garcés, I.

    2013-05-01

    In this work we have assessed the capacity of a linear (gain-clamped) semiconductor optical amplifier to enhance the budget of WDM PON network links for their evolution from FTTC to FTTH access. A wavelength-seeded network architecture has been considered, evaluating the performance improvement obtained by the use of an amplifier for the cases of link reach extension and optical splitting to reach end users. The evaluation measurements have shown that the extra budget is enough to compensate for the losses of a passive splitter up to atleast 1:16 division rate or to highly increment reach of the network.

  19. Stable long-time semiclassical description of zero-point energy in high-dimensional molecular systems.

    PubMed

    Garashchuk, Sophya; Rassolov, Vitaly A

    2008-07-14

    Semiclassical implementation of the quantum trajectory formalism [J. Chem. Phys. 120, 1181 (2004)] is further developed to give a stable long-time description of zero-point energy in anharmonic systems of high dimensionality. The method is based on a numerically cheap linearized quantum force approach; stabilizing terms compensating for the linearization errors are added into the time-evolution equations for the classical and nonclassical components of the momentum operator. The wave function normalization and energy are rigorously conserved. Numerical tests are performed for model systems of up to 40 degrees of freedom.

  20. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference.

    PubMed

    Park, Hyoung-Jun; Song, Minho

    2008-10-29

    The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method.

  1. Measuring and modeling for the assessment of the genetic background behind cognitive processes in donkeys.

    PubMed

    Navas, Francisco Javier; Jordana, Jordi; León, José Manuel; Arando, Ander; Pizarro, Gabriela; McLean, Amy Katherine; Delgado, Juan Vicente

    2017-08-01

    New productive niches can offer new commercial perspectives linked to donkeys' products and human therapeutic or leisure applications. However, no assessment for selection criteria has been carried out yet. First, we assessed the animal inherent features and environmental factors that may potentially influence several cognitive processes in donkeys. Then, we aimed at describing a practical methodology to quantify such cognitive processes, seeking their inclusion in breeding and conservation programmes, through a multifactorial linear model. Sixteen cognitive process-related traits were scored on a problem-solving test in a sample of 300 Andalusian donkeys for three consecutive years from 2013 to 2015. The linear model assessed the influence and interactions of four environmental factors, sex as an animal-inherent factor, age as a covariable, and the interactions between these factors. Analyses of variance were performed with GLM procedure of SPSS Statistics for Windows, Version 24.0 software to assess the relative importance of each factor. All traits were significantly (P<0.05) affected by all factors in the model except for sex that was not significant for some of the cognitive processes, and stimulus which was not significant (P<0.05) for all of them except for the coping style related ones. The interaction between all factors within the model was non-significant (P<0.05) for almost all cognitive processes. The development of complex multifactorial models to study cognitive processes may counteract the inherent variability in behavior genetics and the estimation and prediction of related breeding parameters, key for the implementation of successful conservation programmes in apparently functionally misplaced endangered breeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Aeroelastic modeling of the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Heeg, Jennifer; Bennett, Robert M.

    1991-01-01

    The primary issues involved in the generation of linear, state-space equations of motion of a flexible wind tunnel model, the Active Flexible Wing (AFW), are discussed. The codes that were used and their inherent assumptions and limitations are also briefly discussed. The application of the CAP-TSD code to the AFW for determination of the model's transonic flutter boundary is included as well.

  3. Science 101: When Drawing Graphs from Collected Data, Why Don't You Just "Connect the Dots?"

    ERIC Educational Resources Information Center

    Robertson, William C.

    2007-01-01

    Using "error bars" on graphs is a good way to help students see that, within the inherent uncertainty of the measurements due to the instruments used for measurement, the data points do, in fact, lie along the line that represents the linear relationship. In this article, the author explains why connecting the dots on graphs of collected data is…

  4. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view.

    PubMed

    Kremer, Y; Léger, J-F; Lapole, R; Honnorat, N; Candela, Y; Dieudonné, S; Bourdieu, L

    2008-07-07

    Acousto-optic deflectors (AOD) are promising ultrafast scanners for non-linear microscopy. Their use has been limited until now by their small scanning range and by the spatial and temporal dispersions of the laser beam going through the deflectors. We show that the use of AOD of large aperture (13mm) compared to standard deflectors allows accessing much larger field of view while minimizing spatio-temporal distortions. An acousto-optic modulator (AOM) placed at distance of the AOD is used to compensate spatial and temporal dispersions. Fine tuning of the AOM-AOD setup using a frequency-resolved optical gating (GRENOUILLE) allows elimination of pulse front tilt whereas spatial chirp is minimized thanks to the large aperture AOD.

  5. Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror

    NASA Technical Reports Server (NTRS)

    Li, Steven

    2011-01-01

    A laser cavity was designed and implemented by using a wedged polarization rotator and a Porro prism in order to reduce the parts count, and to improve the laser reliability. In this invention, a z-cut quartz polarization rotator is used to compensate the wavelength retardance introduced by the Porro prism. The polarization rotator rotates the polarization of the linear polarized beam with a designed angle that is independent of the orientation of the rotator. This unique property was used to combine the retardance compensation and a Risley prism to a single optical component: a wedged polarization rotator. This greatly simplifies the laser alignment procedure and reduces the number of the laser optical components.

  6. Stability analysis and compensation of a boost regulator with two-loop control

    NASA Technical Reports Server (NTRS)

    Wester, G. W.

    1974-01-01

    A useful stability measure has been demonstrated by Wester (1973) for switching regulators with a single feedback loop by applying the Nyquist criterion to the approximate loop gain determined by a time-averaging technique. This approach is extended and applied to the characterization, stability analysis, and compensation design of a switching regulator with two-loop control. The role and relative significance of each control loop is clarified on the basis of a description of circuit operation, and the major and minor loops are identified. In view of the inapplicability of linear feedback theory, describing functions of the feedback loops and power stage are derived, using small-signal analysis. Several phenomena revealed from an analysis of the major loop gain are discussed.

  7. Robust energy-absorbing compensators for the ACTEX II test article

    NASA Astrophysics Data System (ADS)

    Blaurock, Carl A.; Miller, David W.; Nye, Ted

    1995-05-01

    The paper addresses the problem of satellite solar panel vibration. A multi-layer vibration control scheme is investigated using a flight test article. Key issues in the active control portion are presented in the paper. The paper discusses the primary control design drivers, which are the time variations in modal frequencies due to configuration and thermal changes. A local control design approach is investigated, but found to be unworkable due to sensor/actuator non-collocation. An alternate design process uses linear robust control techniques, by describing the modal shifts as uncertainties. Multiple modal design, alpha- shifted multiple model, and a feedthrough compensation scheme are examined. Ground and simulation tests demonstrate that the resulting controllers provide significant vibration reduction in the presence of expected system variations.

  8. Electric vehicle drive train with rollback detection and compensation

    DOEpatents

    Konrad, C.E.

    1994-12-27

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  9. Electric vehicle drive train with rollback detection and compensation

    DOEpatents

    Konrad, Charles E.

    1994-01-01

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  10. Stroke maximizing and high efficient hysteresis hybrid modeling for a rhombic piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Shao, Shubao; Xu, Minglong; Zhang, Shuwen; Xie, Shilin

    2016-06-01

    Rhombic piezoelectric actuator (RPA), which employs a rhombic mechanism to amplify the small stroke of PZT stack, has been widely used in many micro-positioning machineries due to its remarkable properties such as high displacement resolution and compact structure. In order to achieve large actuation range along with high accuracy, the stroke maximizing and compensation for the hysteresis are two concerns in the use of RPA. However, existing maximization methods based on theoretical model can hardly accurately predict the maximum stroke of RPA because of approximation errors that are caused by the simplifications that must be made in the analysis. Moreover, despite the high hysteresis modeling accuracy of Preisach model, its modeling procedure is trivial and time-consuming since a large set of experimental data is required to determine the model parameters. In our research, to improve the accuracy of theoretical model of RPA, the approximation theory is employed in which the approximation errors can be compensated by two dimensionless coefficients. To simplify the hysteresis modeling procedure, a hybrid modeling method is proposed in which the parameters of Preisach model can be identified from only a small set of experimental data by using the combination of discrete Preisach model (DPM) with particle swarm optimization (PSO) algorithm. The proposed novel hybrid modeling method can not only model the hysteresis with considerable accuracy but also significantly simplified the modeling procedure. Finally, the inversion of hysteresis is introduced to compensate for the hysteresis non-linearity of RPA, and consequently a pseudo-linear system can be obtained.

  11. A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping.

    PubMed

    Burt, Eric A; Diener, William A; Tjoelker, Robert L

    2008-12-01

    The multi-pole linear ion trap frequency standard (LITS) being developed at the Jet Propulsion Laboratory (JPL) has demonstrated excellent short- and long-term stability. The technology has now demonstrated long-term field operation providing a new capability for timekeeping standards. Recently implemented enhancements have resulted in a record line Q of 5 x 10(12) for a room temperature microwave atomic transition and a short-term fractional frequency stability of 5 x 10(-14)/tau(1/2). A scheme for compensating the second order Doppler shift has led to a reduction of the combined sensitivity to the primary LITS systematic effects below 5 x 10(-17) fractional frequency. Initial comparisons to JPL's cesium fountain clock show a systematic floor of less than 2 x 10(-16). The compensated multi-pole LITS at JPL was operated continuously and unattended for a 9-mo period from October 2006 to July 2007. During that time it was used as the frequency reference for the JPL geodetic receiver known as JPLT, enabling comparisons to any clock used as a reference for an International GNSS Service (IGS) site. Comparisons with the laser-cooled primary frequency standards that reported to the Bureau International des Poids et Mesures (BIPM) over this period show a frequency deviation less than 2.7 x 10(-17)/day. In the capacity of a stand-alone ultra-stable flywheel, such a standard could be invaluable for long-term timekeeping applications in metrology labs while its methodology and robustness make it ideal for space applications as well.

  12. Metal-ligand bond directionality in the M2-NH3 complexes (M = Cu, Ag and Au)

    NASA Astrophysics Data System (ADS)

    Eskandari, K.; Ebadinejad, F.

    2018-05-01

    The metal-ligand bonds in the M2-NH3 complexes (M = Au, Ag and Cu) are directional and the M-M-N angles tend to be linear. Natural energy decomposition analysis (NEDA) and localised molecular orbital energy decomposition analysis (LMOEDA) approaches indicate that the metal-ligand bonds in these complexes are mainly electrostatic in nature, however, the electrostatic is not the cause of the linearity of M-M-N arrangements. Instead, NEDA shows that the charge transfer and core repulsion are mainly responsible for the directionality of these bonds. In the LMOEDA point of view, the repulsion term is the main reason for the linearity of these complexes. Interacting quantum atoms (IQA) analysis shows that inter-atomic and inter-fragment interactions favour the nonlinear arrangements; however, these terms are compensated by the atomic self-energies, which stabilise the linear structure.

  13. Transients in the inhibitory driving of neurons and their postsynaptic consequences.

    PubMed

    Segundo, J P; Stiber, M; Altshuler, E; Vibert, J F

    1994-09-01

    The presynaptic fiber at an inhibitory synapse on a pacemaker neuron was forced to generate transients, defined here as spike trains with a trend, unceasingly accelerating or slowing. Experiments were on isolated crayfish stretch receptor organs. Spike train analyses used tools and notions from conventional point processes and from non-linear dynamics. Pre- and postsynaptic discharges contrasted clearly in terms of rates and interspike intervals. The inhibitory train evolved monotonically and smoothly, following tightly the simple prescribed curves; it was uniform, exhibiting throughout a single and simple discharge form (i.e. interval patterning). The inhibited postsynaptic train alternately accelerated and slowed, not following tightly any simple curve; it was heterogeneous, exhibiting in succession several different and often complex discharge forms, and switching abruptly from one to another. The inhibited trains depended on the inhibitory transient's span, range and average slope. Accordingly, transients separated (not cuttingly) into categories with prolonged spans (over 1 s) and slow slopes (around 1/s2) and those with short spans (under 1 s) and fast slopes (around 30/s2). Special transients elicited postsynaptic discharges that reproduced it faithfully, e.g. accelerated with the transient and proportionately; no transient elicited postsynaptic discharges faithful to its mirror image. Crayfish synapses are prototypes, so these findings should be expected in any other junction, as working hypotheses at least. Implications involve the operation of neural networks, including the role of distortions and their compensation, and the underlying mechanisms. Transients have received little attention, most work on synaptic coding concentrating on stationary discharges. Transients are inherent to the changing situations that pervade everyday life, however, and their biological importance is self-evident. The different discharges encountered during a transient had strong similarities to the stationary forms reported for different pacemaker drivings that are called locking, intermittency, erratic and stammering; they were, in fact, trendy versions of these. Such forms appear with several synaptic drivings in the same order along the presynaptic rate scale; they may constitute basic building blocks for synaptic operation. In terms of non-linear science, it is as if the attractors postulated for stationary drivings remained strongly influential during the transients, though affected by the rate of change.

  14. The role of demographic compensation theory in incidental take assessments for endangered species

    USGS Publications Warehouse

    McGowan, Conor P.; Ryan, Mark R.; Runge, Michael C.; Millspaugh, Joshua J.; Cochrane, Jean Fitts

    2011-01-01

    Many endangered species laws provide exceptions to legislated prohibitions through incidental take provisions as long as take is the result of unintended consequences of an otherwise legal activity. These allowances presumably invoke the theory of demographic compensation, commonly applied to harvested species, by allowing limited harm as long as the probability of the species' survival or recovery is not reduced appreciably. Demographic compensation requires some density-dependent limits on survival or reproduction in a species' annual cycle that can be alleviated through incidental take. Using a population model for piping plovers in the Great Plains, we found that when the population is in rapid decline or when there is no density dependence, the probability of quasi-extinction increased linearly with increasing take. However, when the population is near stability and subject to density-dependent survival, there was no relationship between quasi-extinction probability and take rates. We note however, that a brief examination of piping plover demography and annual cycles suggests little room for compensatory capacity. We argue that a population's capacity for demographic compensation of incidental take should be evaluated when considering incidental allowances because compensation is the only mechanism whereby a population can absorb the negative effects of take without incurring a reduction in the probability of survival in the wild. With many endangered species there is probably little known about density dependence and compensatory capacity. Under these circumstances, using multiple system models (with and without compensation) to predict the population's response to incidental take and implementing follow-up monitoring to assess species response may be valuable in increasing knowledge and improving future decision making.

  15. A novel control architecture for physiological tremor compensation in teleoperated systems.

    PubMed

    Ghorbanian, A; Zareinejad, M; Rezaei, S M; Sheikhzadeh, H; Baghestan, K

    2013-09-01

    Telesurgery delivers surgical care to a 'remote' patient by means of robotic manipulators. When accurate positioning of the surgeon's tool is required, as in microsurgery, physiological tremor causes unwanted imprecision during a surgical operation. Accurate estimation/compensation of physiological tremor in teleoperation systems has been shown to improve performance during telesurgery. A new control architecture is proposed for estimation and compensation of physiological tremor in the presence of communication time delays. This control architecture guarantees stability with satisfactory transparency. In addition, the proposed method can be used for applications that require modifications in transmitted signals through communication channels. Stability of the bilateral tremor-compensated teleoperation is preserved by extending the bilateral teleoperation to the equivalent trilateral Dual-master/Single-slave teleoperation. The bandlimited multiple Fourier linear combiner (BMFLC) algorithm is employed for real-time estimation of the operator's physiological tremor. Two kinds of stability analysis are employed. In the model-base controller, Llewellyn's Criterion is used to analyze the teleoperation absolute stability. In the second method, a nonmodel-based controller is proposed and the stability of the time-delayed teleoperated system is proved by employing a Lyapunov function. Experimental results are presented to validate the effectiveness of the new control architecture. The tremorous motion is measured by accelerometer to be compensated in real time. In addition, a Needle-Insertion setup is proposed as a slave robot for the application of brachytherapy, in which the needle penetrates in the desired position. The slave performs the desired task in two classes of environments (free motion of the slave and in the soft tissue). Experiments show that the proposed control architecture effectively compensates the user's tremorous motion and the slave follows only the master's voluntary motion in a stable manner. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Examining the effect of binge eating and disinhibition on compensatory changes in energy balance following exercise among overweight and obese women.

    PubMed

    Emery, Rebecca L; Levine, Michele D; Jakicic, John M

    2016-08-01

    Some women behaviorally compensate for the energy expended during exercise by increasing their energy intake or becoming more sedentary, thereby decreasing their energy expenditure. Although behavioral compensation can attenuate or even reverse the energy deficit generated by exercise, few data are available on predictors of compensatory responses to exercise. The present study aimed to identify eating-related predictors of compensatory changes in energy balance following exercise. Overweight and obese, physically inactive women (N=48) completed self-report measures of disinhibition and binge eating and participated in two experimental conditions, exercise and rest, in counterbalanced order. Energy intake and expenditure were measured for 24-hours following each experimental condition to estimate energy balance. On average, women were 21.33±2.09years old and 63% were white. Of the sample, 63% compensated for the energy expended during exercise by increasing their energy intake or decreasing their energy expenditure. Linear mixed effects modeling with repeated measurement showed that disinhibition was not predictive of behavioral compensation. However, there was a significant difference between the negative energy balance observed following the rest condition and the positive energy balance observed following the exercise condition among women who reported binge eating, which was driven by a tendency to spend less time being physically active and more time being sedentary following exercise. These findings indicate that women who binge eat may be at greatest risk of compensating for exercise. Future research is needed to better understand psychosocial predictors and common mechanisms through which behavioral compensation is promoted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The compensation and capitalization models: a test of two approaches to individualizing the treatment of depression.

    PubMed

    Cheavens, Jennifer S; Strunk, Daniel R; Lazarus, Sophie A; Goldstein, Lizabeth A

    2012-11-01

    Despite long-standing calls for the individualization of treatments for depression, modest progress has been made in this effort. The primary objective of this study was to test two competing approaches to personalizing cognitive-behavioral treatment of depression (viz., capitalization and compensation). Thirty-four adults meeting criteria for Major Depressive Disorder (59% female, 85% Caucasian) were randomized to 16-weeks of cognitive-behavioral treatment in which strategies used were selected based on either the capitalization approach (treatment matched to relative strengths) or the compensation approach (treatment matched to relative deficits). Outcome was assessed with a composite measure of both self-report (i.e., Beck Depression Inventory) and observer-rated (i.e., Hamilton Rating Scale for Depression) depressive symptoms. Hierarchical linear modeling revealed a significant treatment approach by time interaction indicating a faster rate of symptom change for the capitalization approach compared to the compensation approach (d = .69, p = .03). Personalizing treatment to patients' relative strengths led to better outcome than treatment personalized to patients' relative deficits. If replicated, these findings would suggest a significant change in thinking about how therapists might best adapt cognitive-behavioral interventions for depression for particular patients. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. One novel type of miniaturization FBG rotation angle sensor with high measurement precision and temperature self-compensation

    NASA Astrophysics Data System (ADS)

    Jiang, Shanchao; Wang, Jing; Sui, Qingmei

    2018-03-01

    In order to achieve rotation angle measurement, one novel type of miniaturization fiber Bragg grating (FBG) rotation angle sensor with high measurement precision and temperature self-compensation is proposed and studied in this paper. The FBG rotation angle sensor mainly contains two core sensitivity elements (FBG1 and FBG2), triangular cantilever beam, and rotation angle transfer element. In theory, the proposed sensor can achieve temperature self-compensation by complementation of the two core sensitivity elements (FBG1 and FBG2), and it has a boundless angel measurement range with 2π rad period duo to the function of the rotation angle transfer element. Based on introducing the joint working processes, the theory calculation model of the FBG rotation angel sensor is established, and the calibration experiment on one prototype is also carried out to obtain its measurement performance. After experimental data analyses, the measurement precision of the FBG rotation angle sensor prototype is 0.2 ° with excellent linearity, and the temperature sensitivities of FBG1 and FBG2 are 10 pm/° and 10.1 pm/°, correspondingly. All these experimental results confirm that the FBG rotation angle sensor can achieve large-range angle measurement with high precision and temperature self-compensation.

  19. Motion-compensated optical coherence tomography using envelope-based surface detection and Kalman-based prediction

    NASA Astrophysics Data System (ADS)

    Irsch, Kristina; Lee, Soohyun; Bose, Sanjukta N.; Kang, Jin U.

    2018-02-01

    We present an optical coherence tomography (OCT) imaging system that effectively compensates unwanted axial motion with micron-scale accuracy. The OCT system is based on a swept-source (SS) engine (1060-nm center wavelength, 100-nm full-width sweeping bandwidth, and 100-kHz repetition rate), with axial and lateral resolutions of about 4.5 and 8.5 microns respectively. The SS-OCT system incorporates a distance sensing method utilizing an envelope-based surface detection algorithm. The algorithm locates the target surface from the B-scans, taking into account not just the first or highest peak but the entire signature of sequential A-scans. Subsequently, a Kalman filter is applied as predictor to make up for system latencies, before sending the calculated position information to control a linear motor, adjusting and maintaining a fixed system-target distance. To test system performance, the motioncorrection algorithm was compared to earlier, more basic peak-based surface detection methods and to performing no motion compensation. Results demonstrate increased robustness and reproducibility, particularly noticeable in multilayered tissues, while utilizing the novel technique. Implementing such motion compensation into clinical OCT systems may thus improve the reliability of objective and quantitative information that can be extracted from OCT measurements.

  20. SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell

    PubMed Central

    González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-García, Mateo; Dorta-Naranjo, Blas-Pablo

    2008-01-01

    This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar. PMID:27879884

  1. SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell.

    PubMed

    González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-Garcia, Mateo; Dorta-Naranjo, Blas-Pablo

    2008-05-23

    This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar.

  2. Voltage sensing systems and methods for passive compensation of temperature related intrinsic phase shift

    DOEpatents

    Davidson, James R.; Lassahn, Gordon D.

    2001-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. In crystals that introduce a phase differential attributable to temperature, a compensating crystal is provided to cancel the effect of temperature on the phase differential of the input beam. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  3. High-contrast imaging with an arbitrary aperture: active correction of aperture discontinuities

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent; Norman, Colin; Soummer, Rémi; Perrin, Marshall; N'Diaye, Mamadou; Choquet, Elodie

    2013-09-01

    We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential Deformable Mirrors to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of Deformable Mirror Surfaces that yield high contrast Point Spread Functions is not linear, and non-linear methods are needed to find the true minimum in the optimization topology. We solve the highly non-linear Monge-Ampere equation that is the fundamental equation describing the physics of phase induced amplitude modulation. We determine the optimum configuration for our two sequential Deformable Mirror system and show that high-throughput and high contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to JWST, ACAD can attain at least 10-7 in contrast and an order of magnitude higher for future Extremely Large Telescopes, even when the pupil features a missing segment" . We show that the converging non-linear mappings resulting from our Deformable Mirror shapes actually damp near-field diffraction artifacts in the vicinity of the discontinuities. Thus ACAD actually lowers the chromatic ringing due to diffraction by segment gaps and strut's while not amplifying the diffraction at the aperture edges beyond the Fresnel regime and illustrate the broadband properties of ACAD in the case of the pupil configuration corresponding to the Astrophysics Focused Telescope Assets. Since details about these telescopes are not yet available to the broader astronomical community, our test case is based on a geometry mimicking the actual one, to the best of our knowledge.

  4. Acoustic radiation force impulse elastography: comparison and combination with other noninvasive tests for the diagnosis of compensated liver cirrhosis.

    PubMed

    Pfeifer, Lukas; Adler, Werner; Zopf, Steffen; Siebler, Jürgen; Wildner, Dane; Goertz, Ruediger S; Schellhaas, Barbara; Neurath, Markus F; Strobel, Deike

    2017-05-01

    The aim of this study was to compare acoustic radiation force impulse (ARFI) elastography with other noninvasive tests and to develop a new score for the assessment of liver fibrosis/cirrhosis. B-mode ultrasound (including high-frequency liver surface evaluation), routine blood tests, ARFI quantification, and mini-laparoscopic liver evaluation were obtained in compensated patients scheduled for mini-laparoscopic biopsy. Our new cirrhosis score (CS) for the assessment of liver cirrhosis, based on a linear combination of ARFI, platelet (PLT), liver surface, and prothrombin index (PI), was calculated by linear discriminant analysis. Its performance was compared with ARFI-elastography, APRI, FIB-4, alanine aminotransferase (ALT)/aspartate aminotransferase (AST)-ratio, PLT, and PI. For the diagnosis of cirrhosis, a combined gold standard (cirrhosis at histology and/or at macroscopic liver evaluation) was used. In total, 171 patients, of whom 38 had compensated cirrhosis, were included. The CS was significantly better for the diagnosis of cirrhosis compared with ARFI (P=0.028), APRI (P=0.012), PLTs (P=0.013), PI (P=0.025), and ALT/AST ratio (P=0.001), but not the FIB-4 score (P=0.207), with an area under the receiver operating characteristic curve of 0.92 [95% confidence interval (CI): 0.87-0.97], 0.86 (95% CI:0.79-0.93), 0.80 (95% CI: 0.72-0.87), 0.79 (95% CI: 0.7-0.87), 0.81 (95% CI: 0.73-0.89), 0.72 (95% CI:0.64-0.81), and 0.86 (95% CI: 0.8-0.93), respectively. Sensitivity, specificity, positive predictive value, and negative predictive value for CS were 87%, 86%, 63%, and 96%, respectively. The FIB-4 score was significantly superior to the APRI score (P=0.041) and the ALT/AST ratio (P=0.011), with no significant difference from ARFI elastography (P=0.88) for the diagnosis of cirrhosis. Combining ARFI elastography with other noninvasive tests that are used routinely in the workup of patients with suspected liver disease can improve diagnostic accuracy for compensated liver cirrhosis as compared with ARFI elastography alone. The FIB-4 score showed an overall comparable diagnostic accuracy to ARFI-elastography for compensated cirrhosis.

  5. Quantification of the inherent uncertainty in the relaxation modulus and creep compliance of asphalt mixes

    NASA Astrophysics Data System (ADS)

    Kassem, Hussein A.; Chehab, Ghassan R.; Najjar, Shadi S.

    2017-08-01

    Advanced material characterization of asphalt concrete is essential for realistic and accurate performance prediction of flexible pavements. However, such characterization requires rigorous testing regimes that involve mechanical testing of a large number of laboratory samples at various conditions and set-ups. Advanced measurement instrumentation in addition to meticulous and accurate data analysis and analytical representation are also of high importance. Such steps as well as the heterogeneous nature of asphalt concrete (AC) constitute major factors of inherent variability. Thus, it is imperative to model and quantify the variability of the needed asphalt material's properties, mainly the linear viscoelastic response functions such as: relaxation modulus, E(t), and creep compliance, D(t). The objective of this paper is to characterize the inherent uncertainty of both E(t) and D(t) over the time domain of their master curves. This is achieved through a probabilistic framework using Monte Carlo simulations and First Order approximations, utilizing E^{*} data for six AC mixes with at least eight replicates per mix. The study shows that the inherent variability, presented by the coefficient of variation (COV), in E(t) and D(t) is low at small reduced times, and increases with the increase in reduced time. At small reduced times, the COV in E(t) and D(t) are similar in magnitude; however, differences become significant at large reduced times. Additionally, the probability distributions and COVs of E(t) and D(t) are mix dependent. Finally, a case study is considered in which the inherent uncertainty in D(t) is forward propagated to assess the effect of variability on the predicted number of cycles to fatigue failure of an asphalt mix.

  6. Control of the constrained planar simple inverted pendulum

    NASA Technical Reports Server (NTRS)

    Bavarian, B.; Wyman, B. F.; Hemami, H.

    1983-01-01

    Control of a constrained planar inverted pendulum by eigenstructure assignment is considered. Linear feedback is used to stabilize and decouple the system in such a way that specified subspaces of the state space are invariant for the closed-loop system. The effectiveness of the feedback law is tested by digital computer simulation. Pre-compensation by an inverse plant is used to improve performance.

  7. Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s.

    PubMed

    Schmeckebier, H; Fiol, G; Meuer, C; Arsenijević, D; Bimberg, D

    2010-02-15

    A complete characterization of pulse shape and phase of a 1.3 microm, monolithic-two-section, quantum-dot mode-locked laser (QD-MLL) at a repetition rate of 40 GHz is presented, based on frequency resolved optical gating. We show that the pulse broadening of the QD-MLL is caused by linear chirp for all values of current and voltage investigated here. The chirp increases with the current at the gain section, whereas larger bias at the absorber section leads to less chirp and therefore to shorter pulses. Pulse broadening is observed at very high bias, likely due to the quantum confined stark effect. Passive- and hybrid-QD-MLL pulses are directly compared. Improved pulse intensity profiles are found for hybrid mode locking. Via linear chirp compensation pulse widths down to 700 fs can be achieved independent of current and bias, resulting in a significantly increased overall mode-locking range of 101 MHz. The suitability of QD-MLL chirp compensated pulse combs for optical communication up to 160 Gbit/s using optical-time-division multiplexing are demonstrated by eye diagrams and autocorrelation measurements.

  8. A New Model Based on Adaptation of the External Loop to Compensate the Hysteresis of Tactile Sensors

    PubMed Central

    Sánchez-Durán, José A.; Vidal-Verdú, Fernando; Oballe-Peinado, Óscar; Castellanos-Ramos, Julián; Hidalgo-López, José A.

    2015-01-01

    This paper presents a novel method to compensate for hysteresis nonlinearities observed in the response of a tactile sensor. The External Loop Adaptation Method (ELAM) performs a piecewise linear mapping of the experimentally measured external curves of the hysteresis loop to obtain all possible internal cycles. The optimal division of the input interval where the curve is approximated is provided by the error minimization algorithm. This process is carried out off line and provides parameters to compute the split point in real time. A different linear transformation is then performed at the left and right of this point and a more precise fitting is achieved. The models obtained with the ELAM method are compared with those obtained from three other approaches. The results show that the ELAM method achieves a more accurate fitting. Moreover, the involved mathematical operations are simpler and therefore easier to implement in devices such as Field Programmable Gate Array (FPGAs) for real time applications. Furthermore, the method needs to identify fewer parameters and requires no previous selection process of operators or functions. Finally, the method can be applied to other sensors or actuators with complex hysteresis loop shapes. PMID:26501279

  9. Design for performance enhancement in feedback control systems with multiple saturating nonlinearities. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kapasouris, Petros

    1988-01-01

    A systematic control design methodology is introduced for multi-input/multi-output systems with multiple saturations. The methodology can be applied to stable and unstable open loop plants with magnitude and/or rate control saturations and to systems in which state limitations are desired. This new methodology is a substantial improvement over previous heuristic single-input/single-output approaches. The idea is to introduce a supervisor loop so that when the references and/or disturbances are sufficiently small, the control system operates linearly as designed. For signals large enough to cause saturations, the control law is modified in such a way to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of this methodology are: the modified compensator never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directional properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated by numerous simulations, including the multivariable longitudinal control of modified models of the F-8 (stable) and F-16 (unstable) aircraft.

  10. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The Jet Propulsion Laboratory evaluated the use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto-Fast-Flyby (PFF) mission. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers. Using a control package, the mirror system provides image motion compensation and mosaicking capabilities. While this device offers unique advantages, there were concerns pertaining to its operational capabilities for the PFF mission. The issues include irradiation effects and thermal concerns. A literature study indicated that irradiation effects will not significantly impact the linear motor's operational characteristics. On the other hand, thermal concerns necessitated an in depth study.

  11. Multi-Window Controllers for Autonomous Space Systems

    NASA Technical Reports Server (NTRS)

    Lurie, B, J.; Hadaegh, F. Y.

    1997-01-01

    Multi-window controllers select between elementary linear controllers using nonlinear windows based on the amplitude and frequency content of the feedback error. The controllers are relatively simple to implement and perform much better than linear controllers. The commanders for such controllers only order the destination point and are freed from generating the command time-profiles. The robotic missions rely heavily on the tasks of acquisition and tracking. For autonomous and optimal control of the spacecraft, the control bandwidth must be larger while the feedback can (and, therefore, must) be reduced.. Combining linear compensators via multi-window nonlinear summer guarantees minimum phase character of the combined transfer function. It is shown that the solution may require using several parallel branches and windows. Several examples of multi-window nonlinear controller applications are presented.

  12. A self-adaption compensation control for hysteresis nonlinearity in piezo-actuated stages based on Pi-sigma fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Zhou, Miaolei

    2018-04-01

    Piezo-actuated stages are widely applied in the high-precision positioning field nowadays. However, the inherent hysteresis nonlinearity in piezo-actuated stages greatly deteriorates the positioning accuracy of piezo-actuated stages. This paper first utilizes a nonlinear autoregressive moving average with exogenous inputs (NARMAX) model based on the Pi-sigma fuzzy neural network (PSFNN) to construct an online rate-dependent hysteresis model for describing the hysteresis nonlinearity in piezo-actuated stages. In order to improve the convergence rate of PSFNN and modeling precision, we adopt the gradient descent algorithm featuring three different learning factors to update the model parameters. The convergence of the NARMAX model based on the PSFNN is analyzed effectively. To ensure that the parameters can converge to the true values, the persistent excitation condition is considered. Then, a self-adaption compensation controller is designed for eliminating the hysteresis nonlinearity in piezo-actuated stages. A merit of the proposed controller is that it can directly eliminate the complex hysteresis nonlinearity in piezo-actuated stages without any inverse dynamic models. To demonstrate the effectiveness of the proposed model and control methods, a set of comparative experiments are performed on piezo-actuated stages. Experimental results show that the proposed modeling and control methods have excellent performance.

  13. Distinguishing low frequency oscillations within the 1/f spectral behaviour of electromagnetic brain signals.

    PubMed

    Demanuele, Charmaine; James, Christopher J; Sonuga-Barke, Edmund Js

    2007-12-10

    It has been acknowledged that the frequency spectrum of measured electromagnetic (EM) brain signals shows a decrease in power with increasing frequency. This spectral behaviour may lead to difficulty in distinguishing event-related peaks from ongoing brain activity in the electro- and magnetoencephalographic (EEG and MEG) signal spectra. This can become an issue especially in the analysis of low frequency oscillations (LFOs) - below 0.5 Hz - which are currently being observed in signal recordings linked with specific pathologies such as epileptic seizures or attention deficit hyperactivity disorder (ADHD), in sleep studies, etc. In this work we propose a simple method that can be used to compensate for this 1/f trend hence achieving spectral normalisation. This method involves filtering the raw measured EM signal through a differentiator prior to further data analysis. Applying the proposed method to various exemplary datasets including very low frequency EEG recordings, epileptic seizure recordings, MEG data and Evoked Response data showed that this compensating procedure provides a flat spectral base onto which event related peaks can be clearly observed. Findings suggest that the proposed filter is a useful tool for the analysis of physiological data especially in revealing very low frequency peaks which may otherwise be obscured by the 1/f spectral activity inherent in EEG/MEG recordings.

  14. Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Kemper, Björn

    2017-02-01

    The modular combination of optical microscopes with digital holographic microscopy (DHM) has been proven to be a powerful tool for quantitative live cell imaging. The introduction of condenser and different microscope objectives (MO) simplifies the usage of the technique and makes it easier to measure different kinds of specimens with different magnifications. However, the high flexibility of illumination and imaging also causes variable phase aberrations that need to be eliminated for high resolution quantitative phase imaging. The existent phase aberrations compensation methods either require add additional elements into the reference arm or need specimen free reference areas or separate reference holograms to build up suitable digital phase masks. These inherent requirements make them unpractical for usage with highly variable illumination and imaging systems and prevent on-line monitoring of living cells. In this paper, we present a simple numerical method for phase aberration compensation based on the analysis of holograms in spatial frequency domain with capabilities for on-line quantitative phase imaging. From a single shot off-axis hologram, the whole phase aberration can be eliminated automatically without numerical fitting or pre-knowledge of the setup. The capabilities and robustness for quantitative phase imaging of living cancer cells are demonstrated.

  15. Disability evaluation in arthritis patients.

    PubMed

    Luck, J V; Beardmore, T D; Kaufman, R

    1987-08-01

    During the working years, rheumatic conditions are the foremost cause of disability in the United States. Disability evaluation for Social Security applicants and Workers' Compensation patients is commonplace in orthopedic practices. Yet, formal education in this aspect of patient care is rare both during and after residency. Because of a lack of understanding and sophistication the physician who knows the patient better than any other evaluator often play a minor role in the determination of disability. Disability Evaluation Under Social Security--A Handbook for Physicians lists the medical criteria necessary for qualification. Severely disabled arthritis patients will not always fit into these various categories and may have to be considered under the rule of medical equivalency. Workers' Compensation statutes vary somewhat from state to state but generally include disability criteria. Familiarity with these criteria and the process involved will allow the orthopedist to communicate more meaningfully with administrators and will reduce much of the frustration and some of the cost inherent in this system. When subjective complaint (illness) is in excess of apparent organic pathology (disease), team evaluation under the direction of the treating physician will help sort out the dilemma and develop a treatment plan. One hopes that this will bring the illness more in line with the disease, and thus reduce the disability.

  16. A review on noise suppression and aberration compensation in holographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Tamrin, K. F.; Rahmatullah, B.

    2016-12-01

    Understanding three-dimensional (3D) fluid flow behaviour is undeniably crucial in improving performance and efficiency in a wide range of applications in engineering and medical fields. Holographic particle image velocimetry (HPIV) is a potential tool to probe and characterize complex flow dynamics since it is a truly three-dimensional three-component measurement technique. The technique relies on the coherent light scattered by small seeding particles that are assumed to faithfully follow the flow for subsequent reconstruction of the same the event afterward. However, extraction of useful 3D displacement data from these particle images is usually aggravated by noise and aberration which are inherent within the optical system. Noise and aberration have been considered as major hurdles in HPIV in obtaining accurate particle image identification and its corresponding 3D position. Major contributions to noise include zero-order diffraction, out-of-focus particles, virtual image and emulsion grain scattering. Noise suppression is crucial to ensure that particle image can be distinctly differentiated from background noise while aberration compensation forms particle image with high integrity. This paper reviews a number of HPIV configurations that have been proposed to address these issues, summarizes the key findings and outlines a basis for follow-on research.

  17. Synthesis Methods for Robust Passification and Control

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)

    2000-01-01

    The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.

  18. An estimator-predictor approach to PLL loop filter design

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Hurd, W. J.

    1986-01-01

    An approach to the design of digital phase locked loops (DPLLs), using estimation theory concepts in the selection of a loop filter, is presented. The key concept is that the DPLL closed-loop transfer function is decomposed into an estimator and a predictor. The estimator provides recursive estimates of phase, frequency, and higher order derivatives, while the predictor compensates for the transport lag inherent in the loop. This decomposition results in a straightforward loop filter design procedure, enabling use of techniques from optimal and sub-optimal estimation theory. A design example for a particular choice of estimator is presented, followed by analysis of the associated bandwidth, gain margin, and steady state errors caused by unmodeled dynamics. This approach is under consideration for the design of the Deep Space Network (DSN) Advanced Receiver Carrier DPLL.

  19. ECLIPS: An extended CLIPS for backward chaining and goal-directed reasoning

    NASA Technical Reports Server (NTRS)

    Homeier, Peter V.; Le, Thach C.

    1991-01-01

    Realistic production systems require an integrated combination of forward and backward reasoning to reflect appropriately the processes of natural human expert reasoning. A control mechanism that consists solely of forward reasoning is not an effective way to promptly focus the system's attention as calculation proceeds. Often, expert system programmers will attempt to compensate for this lack by using data to enforce the desired goal directed control structure. This approach is inherently flawed in that it is attempting to use data to fulfill the role of control. This paper will describe our implementation of backward chaining in C Language Integrated Production System (CLIPS), and show how this has shortened and simplified various CLIPS programs. This work was done at the Aerospace Corporation, and has general applicability.

  20. Vibration of a hydrostatic gas bearing due to supply pressure oscillations

    NASA Technical Reports Server (NTRS)

    Branch, H. D.; Watkins, C. B.; Eronini, I. E.

    1984-01-01

    The vibration of a statically loaded, inherently compensated hydrostatic journal bearing due to oscillating supply pressure is investigated. Both angular and radial vibration modes are analyzed. The time-dependent Reynolds equation governing the pressure distribution between the oscillating journal and the sleeve is solved numerically together with the journal equation of motion to obtain the response characteristics of the bearing. The Reynolds equation and the equation of motion are simplified by applying regular perturbation theory for small displacements. The results presented include Bode plots of bearing oscillation gain and phase for a particular bearing configuration for various combinations of parameters over a range of frequencies, including the resonant frequency. The results are compared with the results of an earlier study involving the response of a similar bearing to oscillating exhaust pressure.

  1. Coupling reconstruction and motion estimation for dynamic MRI through optical flow constraint

    NASA Astrophysics Data System (ADS)

    Zhao, Ningning; O'Connor, Daniel; Gu, Wenbo; Ruan, Dan; Basarab, Adrian; Sheng, Ke

    2018-03-01

    This paper addresses the problem of dynamic magnetic resonance image (DMRI) reconstruction and motion estimation jointly. Because of the inherent anatomical movements in DMRI acquisition, reconstruction of DMRI using motion estimation/compensation (ME/MC) has been explored under the compressed sensing (CS) scheme. In this paper, by embedding the intensity based optical flow (OF) constraint into the traditional CS scheme, we are able to couple the DMRI reconstruction and motion vector estimation. Moreover, the OF constraint is employed in a specific coarse resolution scale in order to reduce the computational complexity. The resulting optimization problem is then solved using a primal-dual algorithm due to its efficiency when dealing with nondifferentiable problems. Experiments on highly accelerated dynamic cardiac MRI with multiple receiver coils validate the performance of the proposed algorithm.

  2. Content-based intermedia synchronization

    NASA Astrophysics Data System (ADS)

    Oh, Dong-Young; Sampath-Kumar, Srihari; Rangan, P. Venkat

    1995-03-01

    Inter-media synchronization methods developed until now have been based on syntactic timestamping of video frames and audio samples. These methods are not fully appropriate for the synchronization of multimedia objects which may have to be accessed individually by their contents, e.g. content-base data retrieval. We propose a content-based multimedia synchronization scheme in which a media stream is viewed as hierarchial composition of smaller objects which are logically structured based on the contents, and the synchronization is achieved by deriving temporal relations among logical units of media object. content-based synchronization offers several advantages such as, elimination of the need for time stamping, freedom from limitations of jitter, synchronization of independently captured media objects in video editing, and compensation for inherent asynchronies in capture times of video and audio.

  3. High-Resolution Digital Two-Color PIV for Turbomachinery Flows

    NASA Astrophysics Data System (ADS)

    Copenhaver, W.; Gogineni, S.; Goss, L.

    1996-11-01

    Turbomachinery flows are inherently unsteady. However, steady design methods are currently used to develop turbomachinery, with the lack of basic understanding of unsteady effects being compensated by use of extensive empirical correlations. Conventional laser anemometry provides quantitative evidence of unsteady effects in turbomachinery but is limited in fully exploring this phenomenon. The PIV technique holds great promise for elucidating unsteady flow mechanisms in turbomachinery if obstacles to its application in a transonic turbomachine can be overcome. Implementation involves critical issues such as tracer seeding and optical access for transmitter and receiver. Initially, an 18-in.-dia. axial fan is used to explore these issues. One optical configuration considered is the fiber-optic fanning light sheet in conjunction with high-power pulsed lasers. Instantaneous velocity measurements are made between blades at different spanwise locations.

  4. Microlens frames for laser diode arrays

    DOEpatents

    Skidmore, J.A.; Freitas, B.L.

    1999-07-13

    Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter. 12 figs.

  5. Microlens frames for laser diode arrays

    DOEpatents

    Skidmore, Jay A.; Freitas, Barry L.

    1999-01-01

    Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter.

  6. Investigation of advanced pre- and post-equalization schemes in high-order CAP modulation based high-speed indoor VLC transmission system

    NASA Astrophysics Data System (ADS)

    Wang, Yiguang; Chi, Nan

    2016-10-01

    Light emitting diodes (LEDs) based visible light communication (VLC) has been considered as a promising technology for indoor high-speed wireless access, due to its unique advantages, such as low cost, license free and high security. To achieve high-speed VLC transmission, carrierless amplitude and phase (CAP) modulation has been utilized for its lower complexity and high spectral efficiency. Moreover, to compensate the linear and nonlinear distortions such as frequency attenuation, sampling time offset, LED nonlinearity etc., series of pre- and post-equalization schemes should be employed in high-speed VLC systems. In this paper, we make an investigation on several advanced pre- and postequalization schemes for high-order CAP modulation based VLC systems. We propose to use a weighted preequalization technique to compensate the LED frequency attenuation. In post-equalization, a hybrid post equalizer is proposed, which consists of a linear equalizer, a Volterra series based nonlinear equalizer, and a decision-directed least mean square (DD-LMS) equalizer. Modified cascaded multi-modulus algorithm (M-CMMA) is employed to update the weights of the linear and the nonlinear equalizer, while DD-LMS can further improve the performance after the preconvergence. Based on high-order CAP modulation and these equalization schemes, we have experimentally demonstrated a 1.35-Gb/s, a 4.5-Gb/s and a 8-Gb/s high-speed indoor VLC transmission systems. The results show the benefit and feasibility of the proposed equalization schemes for high-speed VLC systems.

  7. An Alternative Procedure for Estimating Unit Learning Curves,

    DTIC Science & Technology

    1985-09-01

    the model accurately describes the real-life situation, i.e., when the model is properly applied to the data, it can be a powerful tool for...predicting unit production costs. There are, however, some unique estimation problems inherent in the model . The usual method of generating predicted unit...production costs attempts to extend properties of least squares estimators to non- linear functions of these estimators. The result is biased estimates of

  8. Klein bottle logophysics: a unified principle for non-linear systems, cosmology, geophysics, biology, biomechanics and perception

    NASA Astrophysics Data System (ADS)

    Lucio Rapoport, Diego

    2013-04-01

    We present a unified principle for science that surmounts dualism, in terms of torsion fields and the non-orientable surfaces, notably the Klein Bottle and its logic, the Möbius strip and the projective plane. We apply it to the complex numbers and cosmology, to non-linear systems integrating the issue of hyperbolic divergences with the change of orientability, to the biomechanics of vision and the mammal heart, to the morphogenesis of crustal shapes on Earth in connection to the wavefronts of gravitation, elasticity and electromagnetism, to pattern recognition of artificial images and visual recognition, to neurology and the topographic maps of the sensorium, to perception, in particular of music. We develop it in terms of the fundamental 2:1 resonance inherent to the Möbius strip and the Klein Bottle, the minimal surfaces representation of the wavefronts, and the non-dual Klein Bottle logic inherent to pattern recognition, to the harmonic functions and vector fields that lay at the basis of geophysics and physics at large. We discuss the relation between the topographic maps of the sensorium, and the issue of turning inside-out of the visual world as a general principle for cognition, topological chemistry, cell biology and biological morphogenesis in particular in embryology

  9. Multimodal Deep Autoencoder for Human Pose Recovery.

    PubMed

    Hong, Chaoqun; Yu, Jun; Wan, Jian; Tao, Dacheng; Wang, Meng

    2015-12-01

    Video-based human pose recovery is usually conducted by retrieving relevant poses using image features. In the retrieving process, the mapping between 2D images and 3D poses is assumed to be linear in most of the traditional methods. However, their relationships are inherently non-linear, which limits recovery performance of these methods. In this paper, we propose a novel pose recovery method using non-linear mapping with multi-layered deep neural network. It is based on feature extraction with multimodal fusion and back-propagation deep learning. In multimodal fusion, we construct hypergraph Laplacian with low-rank representation. In this way, we obtain a unified feature description by standard eigen-decomposition of the hypergraph Laplacian matrix. In back-propagation deep learning, we learn a non-linear mapping from 2D images to 3D poses with parameter fine-tuning. The experimental results on three data sets show that the recovery error has been reduced by 20%-25%, which demonstrates the effectiveness of the proposed method.

  10. Orthogonal sparse linear discriminant analysis

    NASA Astrophysics Data System (ADS)

    Liu, Zhonghua; Liu, Gang; Pu, Jiexin; Wang, Xiaohong; Wang, Haijun

    2018-03-01

    Linear discriminant analysis (LDA) is a linear feature extraction approach, and it has received much attention. On the basis of LDA, researchers have done a lot of research work on it, and many variant versions of LDA were proposed. However, the inherent problem of LDA cannot be solved very well by the variant methods. The major disadvantages of the classical LDA are as follows. First, it is sensitive to outliers and noises. Second, only the global discriminant structure is preserved, while the local discriminant information is ignored. In this paper, we present a new orthogonal sparse linear discriminant analysis (OSLDA) algorithm. The k nearest neighbour graph is first constructed to preserve the locality discriminant information of sample points. Then, L2,1-norm constraint on the projection matrix is used to act as loss function, which can make the proposed method robust to outliers in data points. Extensive experiments have been performed on several standard public image databases, and the experiment results demonstrate the performance of the proposed OSLDA algorithm.

  11. Technical notes and correspondence: Stochastic robustness of linear time-invariant control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Ray, Laura R.

    1991-01-01

    A simple numerical procedure for estimating the stochastic robustness of a linear time-invariant system is described. Monte Carlo evaluations of the system's eigenvalues allows the probability of instability and the related stochastic root locus to be estimated. This analysis approach treats not only Gaussian parameter uncertainties but non-Gaussian cases, including uncertain-but-bounded variation. Confidence intervals for the scalar probability of instability address computational issues inherent in Monte Carlo simulation. Trivial extensions of the procedure admit consideration of alternate discriminants; thus, the probabilities that stipulated degrees of instability will be exceeded or that closed-loop roots will leave desirable regions can also be estimated. Results are particularly amenable to graphical presentation.

  12. Cyclization improves membrane permeation by antimicrobial peptoids

    DOE PAGES

    Andreev, Konstantin; Martynowycz, Michael W.; Ivankin, Andrey; ...

    2016-10-28

    The peptidomimetic approach has emerged as a powerful tool for overcoming the inherent limitations of natural antimicrobial peptides, where the therapeutic potential can be improved by increasing the selectivity and bioavailability. Restraining the conformational flexibility of a molecule may reduce the entropy loss upon its binding to the membrane. Experimental findings demonstrate that the cyclization of linear antimicrobial peptoids increases their bactericidal activity against Staphylococcus aureus while maintaining high hemolytic concentrations. Surface X-ray scattering shows that macrocyclic peptoids intercalate into Langmuir monolayers of anionic lipids with greater efficacy than for their linear analogues. Lastly, it is suggested that cyclization maymore » increase peptoid activity by allowing the macrocycle to better penetrate the bacterial cell membrane.« less

  13. Local control theory using trajectory surface hopping and linear-response time-dependent density functional theory.

    PubMed

    Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano

    2013-01-01

    The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approach can efficiently generate a pulse, on-the-fly, able to control the population transfer between two selected electronic states. Analysis of the computed control pulse yields insights into the photophysics of the process identifying the relevant frequencies associated to the curvature of the initial and final state potential energy curves and their energy differences. The limitations inherent to the use of the trajectory surface hopping approach are also discussed.

  14. Cyclization improves membrane permeation by antimicrobial peptoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Konstantin; Martynowycz, Michael W.; Ivankin, Andrey

    The peptidomimetic approach has emerged as a powerful tool for overcoming the inherent limitations of natural antimicrobial peptides, where the therapeutic potential can be improved by increasing the selectivity and bioavailability. Restraining the conformational flexibility of a molecule may reduce the entropy loss upon its binding to the membrane. Experimental findings demonstrate that the cyclization of linear antimicrobial peptoids increases their bactericidal activity against Staphylococcus aureus while maintaining high hemolytic concentrations. Surface X-ray scattering shows that macrocyclic peptoids intercalate into Langmuir monolayers of anionic lipids with greater efficacy than for their linear analogues. Lastly, it is suggested that cyclization maymore » increase peptoid activity by allowing the macrocycle to better penetrate the bacterial cell membrane.« less

  15. Parallel computation using boundary elements in solid mechanics

    NASA Technical Reports Server (NTRS)

    Chien, L. S.; Sun, C. T.

    1990-01-01

    The inherent parallelism of the boundary element method is shown. The boundary element is formulated by assuming the linear variation of displacements and tractions within a line element. Moreover, MACSYMA symbolic program is employed to obtain the analytical results for influence coefficients. Three computational components are parallelized in this method to show the speedup and efficiency in computation. The global coefficient matrix is first formed concurrently. Then, the parallel Gaussian elimination solution scheme is applied to solve the resulting system of equations. Finally, and more importantly, the domain solutions of a given boundary value problem are calculated simultaneously. The linear speedups and high efficiencies are shown for solving a demonstrated problem on Sequent Symmetry S81 parallel computing system.

  16. Parallel algorithms for computation of the manipulator inertia matrix

    NASA Technical Reports Server (NTRS)

    Amin-Javaheri, Masoud; Orin, David E.

    1989-01-01

    The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.

  17. Plain packaging and indirect expropriation of trademark rights under BITs: does FCTC help to establish a right to regulate tobacco products?

    PubMed

    Lo, Chang-Fa

    2012-12-01

    Recently the giant tobacco company Philip Morris served its notice to launch an investor-to-state dispute settlement proceeding against the Australian Government for its introduction of plain packaging requirements on tobacco products. It is an important event in the field of intellectual property, investment and international health law. The fundamental questions involved are whether the restriction of trademark rights as a result of the plain packaging requirement is a compensable indirect expropriation under BITs or whether it falls within the scope of government's right to regulate and thus become not compensable. This paper is of the view that the requirement of plain packaging will deprive the essential value or core function of trademark rights and thus constitutes an indirect expropriation under BITs. However, such indirect expropriation meets the public interest requirement and the necessity requirement. The paper further argues that sovereign States have an inherent right to regulate domestic economic activities. Since the pain packaging requirements provided in the FCTC Guidelines are expected to protect the value of human lives and health, the protected values clearly outweigh the affected commercial interests of tobacco companies. Also the justification for host States to adopt a plain packaging policy is strong. Thus, the interpreters of BITs need to pay higher respect to the host State's sovereign power concerning its right to regulate tobacco products for a legitimate purpose. The conclusion of the paper is that the host States should enjoy a defense of the right to regulate to refuse compensation. The author believes that this is the only reasonable conclusion to avoid possible conflicts between different treaty systems (BITs and the FCTC) and between different legal systems and fields (trademark law, investment law and international health law).

  18. Predictive coding of visual object position ahead of moving objects revealed by time-resolved EEG decoding.

    PubMed

    Hogendoorn, Hinze; Burkitt, Anthony N

    2018-05-01

    Due to the delays inherent in neuronal transmission, our awareness of sensory events necessarily lags behind the occurrence of those events in the world. If the visual system did not compensate for these delays, we would consistently mislocalize moving objects behind their actual position. Anticipatory mechanisms that might compensate for these delays have been reported in animals, and such mechanisms have also been hypothesized to underlie perceptual effects in humans such as the Flash-Lag Effect. However, to date no direct physiological evidence for anticipatory mechanisms has been found in humans. Here, we apply multivariate pattern classification to time-resolved EEG data to investigate anticipatory coding of object position in humans. By comparing the time-course of neural position representation for objects in both random and predictable apparent motion, we isolated anticipatory mechanisms that could compensate for neural delays when motion trajectories were predictable. As well as revealing an early neural position representation (lag 80-90 ms) that was unaffected by the predictability of the object's trajectory, we demonstrate a second neural position representation at 140-150 ms that was distinct from the first, and that was pre-activated ahead of the moving object when it moved on a predictable trajectory. The latency advantage for predictable motion was approximately 16 ± 2 ms. To our knowledge, this provides the first direct experimental neurophysiological evidence of anticipatory coding in human vision, revealing the time-course of predictive mechanisms without using a spatial proxy for time. The results are numerically consistent with earlier animal work, and suggest that current models of spatial predictive coding in visual cortex can be effectively extended into the temporal domain. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Performance optimization for rotors in hover and axial flight

    NASA Technical Reports Server (NTRS)

    Quackenbush, T. R.; Wachspress, D. A.; Kaufman, A. E.; Bliss, D. B.

    1989-01-01

    Performance optimization for rotors in hover and axial flight is a topic of continuing importance to rotorcraft designers. The aim of this Phase 1 effort has been to demonstrate that a linear optimization algorithm could be coupled to an existing influence coefficient hover performance code. This code, dubbed EHPIC (Evaluation of Hover Performance using Influence Coefficients), uses a quasi-linear wake relaxation to solve for the rotor performance. The coupling was accomplished by expanding of the matrix of linearized influence coefficients in EHPIC to accommodate design variables and deriving new coefficients for linearized equations governing perturbations in power and thrust. These coefficients formed the input to a linear optimization analysis, which used the flow tangency conditions on the blade and in the wake to impose equality constraints on the expanded system of equations; user-specified inequality contraints were also employed to bound the changes in the design. It was found that this locally linearized analysis could be invoked to predict a design change that would produce a reduction in the power required by the rotor at constant thrust. Thus, an efficient search for improved versions of the baseline design can be carried out while retaining the accuracy inherent in a free wake/lifting surface performance analysis.

  20. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference

    PubMed Central

    Park, Hyoung-Jun; Song, Minho

    2008-01-01

    The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method. PMID:27873898

  1. Improving material removal determinacy based on the compensation of tool influence function

    NASA Astrophysics Data System (ADS)

    Zhong, Bo; Chen, Xian-hua; Deng, Wen-hui; Zhao, Shi-jie; Zheng, Nan

    2018-03-01

    In the process of computer-controlled optical surfacing (CCOS), the key of correcting the surface error of optical components is to ensure the consistency between the simulated tool influence function and the actual tool influence function (TIF). The existing removal model usually adopts the fixed-point TIF to remove the material with the planning path and velocity, and it considers that the polishing process is linear and time invariant. However, in the actual polishing process, the TIF is a function related to the feed speed. In this paper, the relationship between the actual TIF and the feed speed (i.e. the compensation relationship between static removal and dynamic removal) is determined by experimental method. Then, the existing removal model is modified based on the compensation relationship, to improve the conformity between simulated and actual processing. Finally, the surface error modification correction test are carried out. The results show that the fitting degree of the simulated surface and the experimental surface is better than 88%, and the surface correction accuracy can be better than 1/10 λ (Λ=632.8nm).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Adriana; et al.

    Long-range beam-beam (LRBB) interactions can be a source of emittance growth and beam losses in the LHC during physics and will become even more relevant with the smaller '* and higher bunch intensities foreseen for the High Luminosity LHC upgrade (HL-LHC), in particular if operated without crab cavities. Both beam losses and emittance growth could be mitigated by compensat-ing the non-linear LRBB kick with a correctly placed current carrying wire. Such a compensation scheme is currently being studied in the LHC through a demonstration test using current-bearing wires embedded into col-limator jaws, installed either side of the high luminosity interactionmore » regions. For HL-LHC two options are considered, a current-bearing wire as for the demonstrator, or electron lenses, as the ideal distance between the particle beam and compensating current may be too small to allow the use of solid materials. This paper reports on the ongoing activities for both options, covering the progress of the wire-in-jaw collimators, the foreseen LRBB experiments at the LHC, and first considerations for the design of the electron lenses to ultimately replace material wires for HL-LHC.« less

  3. Application of the compensated arrhenius formalism to dielectric relaxation.

    PubMed

    Petrowsky, Matt; Frech, Roger

    2009-12-17

    The temperature dependence of the dielectric rate constant, defined as the reciprocal of the dielectric relaxation time, is examined for several groups of organic solvents. Early studies of linear alcohols using a simple Arrhenius equation found that the activation energy was dependent on the chain length of the alcohol. This paper re-examines the earlier data using a compensated Arrhenius formalism that assumes the presence of a temperature-dependent static dielectric constant in the exponential prefactor. Scaling temperature-dependent rate constants to isothermal rate constants so that the dielectric constant dependence is removed results in calculated energies of activation E(a) in which there is a small increase with chain length. These energies of activation are very similar to those calculated from ionic conductivity data using compensated Arrhenius formalism. This treatment is then extended to dielectic relaxation data for n-alkyl bromides, n-nitriles, and n-acetates. The exponential prefactor is determined by dividing the temperature-dependent rate constants by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the static dielectric constant places the data on a single master curve for each group of solvents.

  4. Improved Spatial Registration and Target Tracking Method for Sensors on Multiple Missiles.

    PubMed

    Lu, Xiaodong; Xie, Yuting; Zhou, Jun

    2018-05-27

    Inspired by the problem that the current spatial registration methods are unsuitable for three-dimensional (3-D) sensor on high-dynamic platform, this paper focuses on the estimation for the registration errors of cooperative missiles and motion states of maneuvering target. There are two types of errors being discussed: sensor measurement biases and attitude biases. Firstly, an improved Kalman Filter on Earth-Centered Earth-Fixed (ECEF-KF) coordinate algorithm is proposed to estimate the deviations mentioned above, from which the outcomes are furtherly compensated to the error terms. Secondly, the Pseudo Linear Kalman Filter (PLKF) and the nonlinear scheme the Unscented Kalman Filter (UKF) with modified inputs are employed for target tracking. The convergence of filtering results are monitored by a position-judgement logic, and a low-pass first order filter is selectively introduced before compensation to inhibit the jitter of estimations. In the simulation, the ECEF-KF enhancement is proven to improve the accuracy and robustness of the space alignment, while the conditional-compensation-based PLKF method is demonstrated to be the optimal performance in target tracking.

  5. Design of a Programmable Gain, Temperature Compensated Current-Input Current-Output CMOS Logarithmic Amplifier.

    PubMed

    Ming Gu; Chakrabartty, Shantanu

    2014-06-01

    This paper presents the design of a programmable gain, temperature compensated, current-mode CMOS logarithmic amplifier that can be used for biomedical signal processing. Unlike conventional logarithmic amplifiers that use a transimpedance technique to generate a voltage signal as a logarithmic function of the input current, the proposed approach directly produces a current output as a logarithmic function of the input current. Also, unlike a conventional transimpedance amplifier the gain of the proposed logarithmic amplifier can be programmed using floating-gate trimming circuits. The synthesis of the proposed circuit is based on the Hart's extended translinear principle which involves embedding a floating-voltage source and a linear resistive element within a translinear loop. Temperature compensation is then achieved using a translinear-based resistive cancelation technique. Measured results from prototypes fabricated in a 0.5 μm CMOS process show that the amplifier has an input dynamic range of 120 dB and a temperature sensitivity of 230 ppm/°C (27 °C- 57°C), while consuming less than 100 nW of power.

  6. Symmetry of the gradient profile as second experimental dimension in the short-time expansion of the apparent diffusion coefficient as measured with NMR diffusometry.

    PubMed

    Laun, Frederik Bernd; Kuder, Tristan Anselm; Zong, Fangrong; Hertel, Stefan; Galvosas, Petrik

    2015-10-01

    The time-dependent apparent diffusion coefficient as measured by pulsed gradient NMR can be used to estimate parameters of porous structures including the surface-to-volume ratio and the mean curvature of pores. In this work, the short-time diffusion limit and in particular the influence of the temporal profile of diffusion gradients on the expansion as proposed by Mitra et al. (1993) is investigated. It is shown that flow-compensated waveforms, i.e. those whose first moment is zero, are blind to the term linear in observation time, which is the term that is proportional to mean curvature and surface permeability. A gradient waveform that smoothly interpolates between flow-compensated and bipolar waveform is proposed and the degree of flow-compensation is used as a second experimental dimension. This two-dimensional ansatz is shown to yield an improved precision when characterizing the confining domain. This technique is demonstrated with simulations and in experiments performed with cylindrical capillaries of 100 μm radius. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification.

    PubMed

    Liang, Xiaojun; Kumar, Shiva

    2017-03-06

    We have investigated an optical back propagation (OBP) method to compensate for propagation impairments in fiber optic networks with lumped Erbium doped fiber amplifier (EDFA) and/or distributed Raman amplification. An OBP module consists of an optical phase conjugator (OPC), optical amplifiers and dispersion varying fibers (DVFs). We derived a semi-analytical expression that calculates the dispersion profile of DVF. The OBP module acts as a nonlinear filter that fully compensates for the nonlinear distortions due to signal propagation in a transmission fiber, and is applicable for fiber optic networks with reconfigurable optical add-drop multiplexers (ROADMs). We studied a wavelength division multiplexing (WDM) network with 3000 km transmission distance and 64-quadrature amplitude modulation (QAM) modulation. OBP brings 5.8 dB, 5.9 dB and 6.1 dB Q-factor gains over linear compensation for systems with full EDFA amplification, hybrid EDFA/Raman amplification, and full Raman amplification, respectively. In contrast, digital back propagation (DBP) or OPC-only systems provide only 0.8 ~ 1.5 dB Q-factor gains.

  8. Neural-network hybrid control for antilock braking systems.

    PubMed

    Lin, Chih-Min; Hsu, C F

    2003-01-01

    The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.

  9. Design of a cosmetic glove stiffness compensation mechanism for toddler-sized hand prostheses

    PubMed Central

    Plettenburg, Dick H.

    2017-01-01

    The addition of a cosmetic glove to an upper limb prosthesis has a distinct effect on the cosmetic value, but its viscoelastic behaviour adds a substantial amount of stiffness and hysteresis to the system. As a result, the overall usability of the prosthesis is degraded. A novel negative stiffness element is designed to compensate for the cosmetic glove's stiffness. A combination of linear helical springs and the concept of rolling link mechanisms has resulted in a Rolling Stiffness Compensation Mechanism (RSCM). Results show that the RSCM is capable of exerting a progressive negative stiffness characteristic and can be built small enough to fit inside a 33 mm diameter wrist. Using the RSCM, an otherwise voluntary opening toddler-sized prosthesis is converted into a voluntary closing device, reducing maximum operation forces down to 40 N with a combined efficiency of 52%. Further adjustments to the design are possible to further improve the efficiency of the mechanism. Moreover, changes in geometric relations of the mechanism offers possibilities for a wide range of prostheses and other applications. PMID:28800635

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisniega, A.; Vaquero, J. J., E-mail: juanjose.vaquero@uc3m.es; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modifiedmore » to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in line with those reported for other models for radiology or mammography. Conclusions: A new version of the TASMIP model for the estimation of x-ray spectra in microfocus x-ray sources has been developed and validated experimentally. Similarly to other versions of TASMIP, the estimation of spectra is very simple, involving only the evaluation of polynomial expressions.« less

  11. CHO cell enlargement oscillates with a temperature-compensated period of 24 min

    NASA Technical Reports Server (NTRS)

    Pogue, R.; Morre, D. M.; Morre, D. J.

    2000-01-01

    The rate of increase in cell area of CHO cells when measured at intervals of 1 min using a light microscope equipped with a video measurement system, oscillated with a minimum period of about 24 min. The pattern of oscillations paralleled those of the 24 min period observed with the oxidation of NADH by an external cell surface or plasma membrane NADH oxidase. The increase in cell area was non-linear. Intervals of rapid increase in area alternated with intervals of rapid decrease in area. The length of the 24 min period was temperature-compensated (approximately the same when measured at 14 degrees C, 24 degrees C or 34 degrees C) while the rate of cell enlargement increased with temperature over this same range of temperatures.

  12. RF transient analysis and stabilization of the phase and energy of the proposed PIP-II LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Chase, B. E.

    This paper describes a recent effort to develop and benchmark a simulation tool for the analysis of RF transients and their compensation in an H- linear accelerator. Existing tools in this area either focus on electron LINACs or lack fundamental details about the LLRF system that are necessary to provide realistic performance estimates. In our paper we begin with a discussion of our computational models followed by benchmarking with existing beam-dynamics codes and measured data. We then analyze the effect of RF transients and their compensation in the PIP-II LINAC, followed by an analysis of calibration errors and how amore » Newton’s Method based feedback scheme can be used to regulate the beam energy to within the specified limits.« less

  13. Experimental results of active control on a large structure to suppress vibration

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1991-01-01

    Three design methods, Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR), H-infinity, and mu-synthesis, are used to obtain compensators for suppressing the vibrations of a 10-bay vertical truss structure, a component typical of what may be used to build a large space structure. For the design process the plant dynamic characteristics of the structure were determined experimentally using an identification method. The resulting compensators were implemented on a digital computer and tested for their ability to suppress the first bending mode response of the 10-bay vertical truss. Time histories of the measured motion are presented, and modal damping obtained during the experiments are compared with analytical predictions. The advantages and disadvantages of using the various design methods are discussed.

  14. Development of a Design Methodology for Reconfigurable Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; McLean, C.

    2000-01-01

    A methodology is presented for the design of flight control systems that exhibit stability and performance-robustness in the presence of actuator failures. The design is based upon two elements. The first element consists of a control law that will ensure at least stability in the presence of a class of actuator failures. This law is created by inner-loop, reduced-order, linear dynamic inversion, and outer-loop compensation based upon Quantitative Feedback Theory. The second element consists of adaptive compensators obtained from simple and approximate time-domain identification of the dynamics of the 'effective vehicle' with failed actuator(s). An example involving the lateral-directional control of a fighter aircraft is employed both to introduce the proposed methodology and to demonstrate its effectiveness and limitations.

  15. High Resolution Full-Aperture ISAR Processing through Modified Doppler History Based Motion Compensation

    PubMed Central

    Song, Jung-Hwan; Lee, Kee-Woong; Lee, Woo-Kyung; Jung, Chul-Ho

    2017-01-01

    A high resolution inverse synthetic aperture radar (ISAR) technique is presented using modified Doppler history based motion compensation. To this purpose, a novel wideband ISAR system is developed that accommodates parametric processing over extended aperture length. The proposed method is derived from an ISAR-to-SAR approach that makes use of high resolution spotlight SAR and sub-aperture recombination. It is dedicated to wide aperture ISAR imaging and exhibits robust performance against unstable targets having non-linear motions. We demonstrate that the Doppler histories of the full aperture ISAR echoes from disturbed targets are efficiently retrieved with good fitting models. Experiments have been conducted on real aircraft targets and the feasibility of the full aperture ISAR processing is verified through the acquisition of high resolution ISAR imagery. PMID:28555036

  16. Colorimetric characterization models based on colorimetric characteristics evaluation for active matrix organic light emitting diode panels.

    PubMed

    Gong, Rui; Xu, Haisong; Tong, Qingfen

    2012-10-20

    The colorimetric characterization of active matrix organic light emitting diode (AMOLED) panels suffers from their poor channel independence. Based on the colorimetric characteristics evaluation of channel independence and chromaticity constancy, an accurate colorimetric characterization method, namely, the polynomial compensation model (PC model) considering channel interactions was proposed for AMOLED panels. In this model, polynomial expressions are employed to calculate the relationship between the prediction errors of XYZ tristimulus values and the digital inputs to compensate the XYZ prediction errors of the conventional piecewise linear interpolation assuming the variable chromaticity coordinates (PLVC) model. The experimental results indicated that the proposed PC model outperformed other typical characterization models for the two tested AMOLED smart-phone displays and for the professional liquid crystal display monitor as well.

  17. Comparisons of linear and nonlinear pyramid schemes for signal and image processing

    NASA Astrophysics Data System (ADS)

    Morales, Aldo W.; Ko, Sung-Jea

    1997-04-01

    Linear filters banks are being used extensively in image and video applications. New research results in wavelet applications for compression and de-noising are constantly appearing in the technical literature. On the other hand, non-linear filter banks are also being used regularly in image pyramid algorithms. There are some inherent advantages in using non-linear filters instead of linear filters when non-Gaussian processes are present in images. However, a consistent way of comparing performance criteria between these two schemes has not been fully developed yet. In this paper a recently discovered tool, sample selection probabilities, is used to compare the behavior of linear and non-linear filters. In the conversion from weights of order statistics (OS) filters to coefficients of the impulse response is obtained through these probabilities. However, the reverse problem: the conversion from coefficients of the impulse response to the weights of OS filters is not yet fully understood. One of the reasons for this difficulty is the highly non-linear nature of the partitions and generating function used. In the present paper the problem is posed as an optimization of integer linear programming subject to constraints directly obtained from the coefficients of the impulse response. Although the technique to be presented in not completely refined, it certainly appears to be promising. Some results will be shown.

  18. Sex Chromosome Dosage Compensation in Heliconius Butterflies: Global yet Still Incomplete?

    PubMed Central

    Walters, James R.; Hardcastle, Thomas J.; Jiggins, Chris D.

    2015-01-01

    The evolution of heterogametic sex chromosomes is often—but not always—accompanied by the evolution of dosage compensating mechanisms that mitigate the impact of sex-specific gene dosage on levels of gene expression. One emerging view of this process is that such mechanisms may only evolve in male-heterogametic (XY) species but not in female-heterogametic (ZW) species, which will consequently exhibit “incomplete” sex chromosome dosage compensation. However, recent results suggest that at least some Lepidoptera (moths and butterflies) may prove to be an exception to this prediction. Studies in bombycoid moths indicate the presence of a chromosome-wide epigenetic mechanism that effectively balances Z chromosome gene expression between the sexes by reducing Z-linked expression in males. In contrast, strong sex chromosome dosage effects without any reduction in male Z-linked expression were previously reported in a pyralid moth, suggesting a lack of any such dosage compensating mechanism. Here we report an analysis of sex chromosome dosage compensation in Heliconius butterflies, sampling multiple individuals for several different adult tissues (head, abdomen, leg, mouth, and antennae). Methodologically, we introduce a novel application of linear mixed-effects models to assess dosage compensation, offering a unified statistical framework that can estimate effects specific to chromosome, to sex, and their interactions (i.e., a dosage effect). Our results show substantially reduced Z-linked expression relative to autosomes in both sexes, as previously observed in bombycoid moths. This observation is consistent with an increasing body of evidence that some lepidopteran species possess an epigenetic dosage compensating mechanism that reduces Z chromosome expression in males to levels comparable with females. However, this mechanism appears to be imperfect in Heliconius, resulting in a modest dosage effect that produces an average 5–20% increase in male expression relative to females on the Z chromosome, depending on the tissue. Thus our results in Heliconius reflect a mixture of previous patterns reported for Lepidoptera. In Heliconius, a moderate pattern of incomplete dosage compensation persists apparently despite the presence of an epigenetic dosage compensating mechanism. The chromosomal distributions of sex-biased genes show an excess of male-biased and a dearth of female-biased genes on the Z chromosome relative to autosomes, consistent with predictions of sexually antagonistic evolution. PMID:26338190

  19. Race/Ethnicity and Success in Academic Medicine: Findings From a Longitudinal Multi-Institutional Study.

    PubMed

    Kaplan, Samantha E; Raj, Anita; Carr, Phyllis L; Terrin, Norma; Breeze, Janis L; Freund, Karen M

    2017-10-24

    To understand differences in productivity, advancement, retention, satisfaction, and compensation comparing underrepresented medical (URM) faculty with other faculty at multiple institutions. A 17-year follow-up was conducted of the National Faculty Survey, a random sample from 24 U.S. medical schools, oversampled for URM faculty. The authors examined academic productivity, advancement, retention, satisfaction, and compensation, comparing white, URM, and non-URM faculty. Retention, productivity, and advancement data were obtained from public sources for nonrespondents. Covariates included gender, specialty, time distribution, and years in academia. Negative binomial regression was used for count data, logistic regression for binary outcomes, and linear regression for continuous outcomes. In productivity analyses, advancement, and retention, 1,270 participants were included; 604 participants responded to the compensation and satisfaction survey. Response rates were lower for African American (26%) and Hispanic faculty (39%) than white faculty (52%, P < .0001). URM faculty had lower rates of peer-reviewed publications (relative number 0.64; 95% CI: 0.51, 0.79), promotion to professor (OR = 0.53; CI: 0.30, 0.93), and retention in academic medicine (OR = 0.49; CI: 0.32, 0.75). No differences were identified in federal grant acquisition, senior leadership roles, career satisfaction, or compensation between URM and white faculty. URM and white faculty had similar career satisfaction, grant support, leadership, and compensation; URM faculty had fewer publications and were less likely to be promoted and retained in academic careers. Successful retention of URM faculty requires comprehensive institutional commitment to changing the academic climate and deliberative programming to support productivity and advancement.

  20. Gender differences in compensation, job satisfaction, and other practice patterns in urology

    PubMed Central

    Spencer, E. Sophie; Deal, Allison M.; Pruthi, Nicholas R.; Gonzalez, Chris M.; Kirby, E. Will; Langston, Joshua; McKenna, Patrick H.; McKibben, Maxim J.; Nielsen, Matthew E.; Raynor, Mathew C.; Wallen, Eric M.; Woods, Michael E.; Pruthi, Raj S.; Smith, Angela B.

    2016-01-01

    Purpose The proportion of women in urology has increased from <0.5% in 1981 to 10% today. Furthermore, 33% of students matching in urology are now female. This analysis sought to characterize the female workforce in urology in comparison to men with regard to income, workload, and job satisfaction. Materials and Methods We collaborated with the American Urologic Association to survey its domestic membership of practicing urologists regarding socioeconomic, workforce, and quality of life issues. 6,511 survey invitations were sent via e-mail. The survey consisted of 26 questions and took approximately 13 minutes to complete. Linear regression models were used to evaluate bivariable and multivariable associations with job satisfaction and compensation. Results A total of 848 responses (n=660 (90%) male, n=73 (10%) female) were collected for a total response rate of 13%. On bivariable analysis, female urologists were younger (p<0.0001), more likely to be fellowship trained (p=0.002), worked in academics (p=0.008), were less likely to be self-employed, and worked fewer hours (p=0.03) compared to males. On multivariable analysis, female gender was a significant predictor of lower compensation (p = 0.001) when controlling for work hours, call frequency, age, practice setting and type, fellowship training, and Advance Practice Provider employment. Adjusted salaries among female urologists were $76,321 less than men. Gender was not a predictor for job satisfaction. Conclusions Female urologists are significantly less compensated compared to males, after adjusting for several factors likely contributing to compensation. There is no difference in job satisfaction between male and female urologists. PMID:26384452

  1. The seasonal response of the Held-Suarez climate model to prescribed ocean temperature anomalies. II - Dynamical analysis

    NASA Technical Reports Server (NTRS)

    Phillips, T. J.

    1984-01-01

    The heating associated with equatorial, subtropical, and midlatitude ocean temperature anamolies in the Held-Suarez climate model is analyzed. The local and downstream response to the anomalies is analyzed, first by examining the seasonal variation in heating associated with each ocean temperature anomaly, and then by combining knowledge of the heating with linear dynamical theory in order to develop a more comprehensive explanation of the seasonal variation in local and downstream atmospheric response to each anomaly. The extent to which the linear theory of propagating waves can assist the interpretation of the remote cross-latitudinal response of the model to the ocean temperature anomalies is considered. Alternative hypotheses that attempt to avoid the contradictions inherent in a strict application of linear theory are investigated, and the impact of sampling errors on the assessment of statistical significance is also examined.

  2. Predicting the dissolution kinetics of silicate glasses using machine learning

    NASA Astrophysics Data System (ADS)

    Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu

    2018-05-01

    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.

  3. Pursuing optimal electric machines transient diagnosis: The adaptive slope transform

    NASA Astrophysics Data System (ADS)

    Pons-Llinares, Joan; Riera-Guasp, Martín; Antonino-Daviu, Jose A.; Habetler, Thomas G.

    2016-12-01

    The aim of this paper is to introduce a new linear time-frequency transform to improve the detection of fault components in electric machines transient currents. Linear transforms are analysed from the perspective of the atoms used. A criterion to select the atoms at every point of the time-frequency plane is proposed, taking into account the characteristics of the searched component at each point. This criterion leads to the definition of the Adaptive Slope Transform, which enables a complete and optimal capture of the different components evolutions in a transient current. A comparison with conventional linear transforms (Short-Time Fourier Transform and Wavelet Transform) is carried out, showing their inherent limitations. The approach is tested with laboratory and field motors, and the Lower Sideband Harmonic is captured for the first time during an induction motor startup and subsequent load oscillations, accurately tracking its evolution.

  4. Linearized Poststall Aerodynamic and Control Law Models of the X-31A Aircraft and Comparison with Flight Data

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick C.; Bosworth, John T.; Georgie, Jennifer

    1997-01-01

    The X-31A aircraft has a unique configuration that uses thrust-vector vanes and aerodynamic control effectors to provide an operating envelope to a maximum 70 deg angle of attack, an inherently nonlinear portion of the flight envelope. This report presents linearized versions of the X-31A longitudinal and lateral-directional control systems, with aerodynamic models sufficient to evaluate characteristics in the poststall envelope at 30 deg, 45 deg, and 60 deg angle of attack. The models are presented with detail sufficient to allow the reader to reproduce the linear results or perform independent control studies. Comparisons between the responses of the linear models and flight data are presented in the time and frequency domains to demonstrate the strengths and weaknesses of the ability to predict high-angle-of-attack flight dynamics using linear models. The X-31A six-degree-of-freedom simulation contains a program that calculates linear perturbation models throughout the X-31A flight envelope. The models include aerodynamics and flight control system dynamics that are used for stability, controllability, and handling qualities analysis. The models presented in this report demonstrate the ability to provide reasonable linear representations in the poststall flight regime.

  5. Synchronous Control Method and Realization of Automated Pharmacy Elevator

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-Quan

    Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.

  6. Infrared zone-scanning system.

    PubMed

    Belousov, Aleksandr; Popov, Gennady

    2006-03-20

    Challenges encountered in designing an infrared viewing optical system that uses a small linear detector array based on a zone-scanning approach are discussed. Scanning is performed by a rotating refractive polygon prism with tilted facets, which, along with high-speed line scanning, makes the scanning gear as simple as possible. A method of calculation of a practical optical system to compensate for aberrations during prism rotation is described.

  7. Soil-plant-atmosphere ammonia exchange associated with calluna vulgaris and deschampsia flexuosa

    NASA Astrophysics Data System (ADS)

    Schjoerring, Jan K.; Husted, Søren; Poulsen, Mette M.

    Ammonia fluxes and compensation points at atmospheric NH 3 concentrations corresponding to those occurring under natural growth conditions (0-26 nmol NH 3 mol air -1) were measured for canopies of two species native to heathland in N.W. Europe, viz. Calluna vulgaris (L.) Hull and Deschampsia flexuosa (L.) Trin. The NH 3 compensation point in 2 yr-old C. vulgaris plants, in which current year's shoots had just started growing, was below the detection limit (0.1 nmol mol -1 at 8°C). Fifty days later, when current year's shoots were elongating and flowers developed, the NH 3 compensation point was approximately 6±2.0 nmol mol -1 at 22°C (0.8±0.3 nmol mol -1 at 8°C). The plants in which the shoot tips had just started growing were characterized by a low N concentration in the shoot dry matter (5.8 mg N g -1 shoot dry weight) and a low photosynthetic CO 2 assimilation compared to the flowering plants in which the average dry matter N concentration in old shoots and woody stems was 7.4 and in new shoots 9.5 mg N g -1 shoot dry weight. Plant-atmosphere NH 3 fluxes in C. vulgaris responded approximately linearly to changes in the atmospheric NH 3 concentration. The maximum net absorption rate at 26 nmol NH 3 mol -1 air was 12 nmol NH 3 m -2 ground surface s -1 (equivalent to 13.3 pmol NH 3 g -1 shoot dry matter s -1). Ammonia absorption in Deschampsia flexuosa plants increased approximately linearly with increasing NH 3 concentrations up to 20 nmol mol -1. The maximum NH 3 absorption was 8.5 nmol m -2 ground surface s -1 (30.4 pmol g -1 shoot dry weight s -1). The NH 3 compensation point at 24°C was 3.0±1.1, and at 31°C 7.5±0.6 nmol mol air -1. These values correspond to a NH 3 compensation point of 0.45±0.15 at 8°C. The soil used for cultivation of C. vulgaris (peat soil with pH 6.9) initially adsorbed NH 3 at a rate which exceeded the absorption by the plant canopy. During a 24 d period following the harvest of the plants soil NH 3 adsorption declined and the soil NH 3 compensation point increased from below the detection limit to 8.0±1.8 nmol NH 3 mol air -1 (22°C). No detectable NH 3 exchange took place between the D. flexuosa soil (sandy soil with pH 6.8) and the atmosphere.

  8. Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing

    USGS Publications Warehouse

    Foulger, G.R.; Julian, B.R.; Hill, D.P.; Pitt, A.M.; Malin, P.E.; Shalev, E.

    2004-01-01

    Most of 26 small (0.4??? M ???3.1) microearthquakes at Long Valley caldera in mid-1997, analyzed using data from a dense temporary network of 69 digital three-component seismometers, have significantly non-double-couple focal mechanisms, inconsistent with simple shear faulting. We determined their mechanisms by inverting P - and S -wave polarities and amplitude ratios using linear-programming methods, and tracing rays through a three-dimensional Earth model derived using tomography. More than 80% of the mechanisms have positive (volume increase) isotropic components and most have compensated linear-vector dipole components with outward-directed major dipoles. The simplest interpretation of these mechanisms is combined shear and extensional faulting with a volume-compensating process, such as rapid flow of water, steam, or CO2 into opening tensile cracks. Source orientations of earthquakes in the south moat suggest extensional faulting on ESE-striking subvertical planes, an orientation consistent with planes defined by earthquake hypocenters. The focal mechanisms show that clearly defined hypocentral planes in different locations result from different source processes. One such plane in the eastern south moat is consistent with extensional faulting, while one near Casa Diablo Hot Springs reflects en echelon right-lateral shear faulting. Source orientations at Mammoth Mountain vary systematically with location, indicating that the volcano influences the local stress field. Events in a 'spasmodic burst' at Mammoth Mountain have practically identical mechanisms that indicate nearly pure compensated tensile failure and high fluid mobility. Five earthquakes had mechanisms involving small volume decreases, but these may not be significant. No mechanisms have volumetric moment fractions larger than that of a force dipole, but the reason for this fact is unknown. Published by Elsevier B.V.

  9. Seismic random noise removal by delay-compensation time-frequency peak filtering

    NASA Astrophysics Data System (ADS)

    Yu, Pengjun; Li, Yue; Lin, Hongbo; Wu, Ning

    2017-06-01

    Over the past decade, there has been an increasing awareness of time-frequency peak filtering (TFPF) due to its outstanding performance in suppressing non-stationary and strong seismic random noise. The traditional approach based on time-windowing achieves local linearity and meets the unbiased estimation. However, the traditional TFPF (including the improved algorithms with alterable window lengths) could hardly relieve the contradiction between removing noise and recovering the seismic signal, and this situation is more obvious in wave crests and troughs, even for alterable window lengths (WL). To improve the efficiency of the algorithm, the following TFPF in the time-space domain is applied, such as in the Radon domain and radial trace domain. The time-space transforms obtain a reduced-frequency input to reduce the TFPF error and stretch the desired signal along a certain direction, therefore the time-space development brings an improvement by both enhancing reflection events and attenuating noise. It still proves limited in application because the direction should be matched as a straight line or quadratic curve. As a result, waveform distortion and false seismic events may appear when processing the complex stratum record. The main emphasis in this article is placed on the time-space TFPF applicable expansion. The reconstructed signal in delay-compensation TFPF, which is generated according to the similarity among the reflection events, overcomes the limitation of the direction curve fitting. Moreover, the reconstructed signal just meets the TFPF linearity unbiased estimation and integrates signal reservation with noise attenuation. Experiments on both the synthetic model and field data indicate that delay-compensation TFPF has a better performance over the conventional filtering algorithms.

  10. Cephalometric study of facial growth in children after combined pushback and pharyngeal flap operations.

    PubMed

    Pearl, R M; Kaplan, E N

    1976-04-01

    Linear and angular cephalometric measurements of children who had had combined palatal pushbacks and superiorly-based pharyngeal flaps do not show later growth retardation of the face. There was an inherent tendency for children with overt clefts of the secondary palate, classic submucous clefts, or occult submucous clefts to demonstrate pre-operatively a narrow SNA and SNB--but the difference between these angles (ANB) was normal.

  11. Photon Limited Images and Their Restoration

    DTIC Science & Technology

    1976-03-01

    arises from noise inherent in the detected image data. In the first part of this report a model is developed which can be used to mathematically and...statistically describe an image detected at low light levels. This rodel serves to clarify some basic properties of photon noise , and provides a basis...for the analysi.s of image restoration. In the second part the problem of linear least-square restoration of imagery limited by photon noise is

  12. Biological electric fields and rate equations for biophotons.

    PubMed

    Alvermann, M; Srivastava, Y N; Swain, J; Widom, A

    2015-04-01

    Biophoton intensities depend upon the squared modulus of the electric field. Hence, we first make some general estimates about the inherent electric fields within various biosystems. Generally, these intensities do not follow a simple exponential decay law. After a brief discussion on the inapplicability of a linear rate equation that leads to strict exponential decay, we study other, nonlinear rate equations that have been successfully used for biosystems along with their physical origins when available.

  13. DEEP-SaM - Energy-Efficient Provisioning Policies for Computing Environments

    NASA Astrophysics Data System (ADS)

    Bodenstein, Christian; Püschel, Tim; Hedwig, Markus; Neumann, Dirk

    The cost of electricity for datacenters is a substantial operational cost that can and should be managed, not only for saving energy, but also due to the ecologic commitment inherent to power consumption. Often, pursuing this goal results in chronic underutilization of resources, a luxury most resource providers do not have in light of their corporate commitments. This work proposes, formalizes and numerically evaluates DEEP-Sam, for clearing provisioning markets, based on the maximization of welfare, subject to utility-level dependant energy costs and customer satisfaction levels. We focus specifically on linear power models, and the implications of the inherent fixed costs related to energy consumption of modern datacenters and cloud environments. We rigorously test the model by running multiple simulation scenarios and evaluate the results critically. We conclude with positive results and implications for long-term sustainable management of modern datacenters.

  14. Impaired information processing triggers altered states of consciousness.

    PubMed

    Fritzsche, M

    2002-04-01

    Schizophrenia, intoxication with tetrahydrocannabinol (Delta-THC), and cannabis psychosis induce characteristic time and space distortions suggesting a common psychotic dysfunction. Since genetic research into schizophrenia has led into disappointing dead ends, the present study is focusing on this phenotype. It is shown that information theory can account for the dynamical basis of higher sensorimotor information processing and consciousness under physiologic as well as pathologic conditions. If Kolmogorov entropy (inherent in the processing of action and time) breaks down in acute psychosis, it is predicted that Shannon entropy (inherent in the processing of higher dimensional perception) will increase, provoking positive symptoms and altered states of consciousness. In the search for candidate genes and the protection of vulnerable individuals from cannabis abuse, non-linear EEG analysis of Kolmogorov information could thus present us with a novel diagnostic tool to directly assess the breakdown of information processing in schizophrenia. Copyright 2002 Elsevier Science Ltd. All rights reserved.

  15. Inherent limitations of probabilistic models for protein-DNA binding specificity

    PubMed Central

    Ruan, Shuxiang

    2017-01-01

    The specificities of transcription factors are most commonly represented with probabilistic models. These models provide a probability for each base occurring at each position within the binding site and the positions are assumed to contribute independently. The model is simple and intuitive and is the basis for many motif discovery algorithms. However, the model also has inherent limitations that prevent it from accurately representing true binding probabilities, especially for the highest affinity sites under conditions of high protein concentration. The limitations are not due to the assumption of independence between positions but rather are caused by the non-linear relationship between binding affinity and binding probability and the fact that independent normalization at each position skews the site probabilities. Generally probabilistic models are reasonably good approximations, but new high-throughput methods allow for biophysical models with increased accuracy that should be used whenever possible. PMID:28686588

  16. A penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography.

    PubMed

    Shang, Shang; Bai, Jing; Song, Xiaolei; Wang, Hongkai; Lau, Jaclyn

    2007-01-01

    Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.

  17. Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser.

    PubMed

    White, J O; Vasilyev, A; Cahill, J P; Satyan, N; Okusaga, O; Rakuljic, G; Mungan, C E; Yariv, A

    2012-07-02

    The output of high power fiber amplifiers is typically limited by stimulated Brillouin scattering (SBS). An analysis of SBS with a chirped pump laser indicates that a chirp of 2.5 × 10(15) Hz/s could raise, by an order of magnitude, the SBS threshold of a 20-m fiber. A diode laser with a constant output power and a linear chirp of 5 × 10(15) Hz/s has been previously demonstrated. In a low-power proof-of-concept experiment, the threshold for SBS in a 6-km fiber is increased by a factor of 100 with a chirp of 5 × 10(14) Hz/s. A linear chirp will enable straightforward coherent combination of multiple fiber amplifiers, with electronic compensation of path length differences on the order of 0.2 m.

  18. Enhancement of the mechanoluminescence properties on Ca2MgSi2O7:Dy3+ phosphor by co-doping of charge compensator ions

    NASA Astrophysics Data System (ADS)

    Sahu, Ishwar Prasad

    2016-08-01

    In the present article, effect of charge compensator ions (R+ = Li+, Na+ and K+) on dysprosium-doped di-calcium magnesium di-silicate (Ca2MgSi2O7:Dy3+) phosphors were investigated. The Ca2MgSi2O7:Dy3+ and Ca2MgSi2O7:Dy3+, R+ phosphors, were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The peaks of mechanoluminescence (ML) intensity were increased linearly with increasing impact velocity of the moving piston. Thus, present investigation indicates that the piezoelectricity was responsible to produce ML in prepared phosphors. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity. Addition of charge compensator ions enhances the luminescence intensity of prepared Ca2MgSi2O7:Dy3+ phosphors, because they neutralize the charge generated by Dy3+ substitution for Ca2+ ions. The role of Li+ ions among all charge compensator ions (Na+ or K+) used was found to be most effective for enhanced Dy3+ ion emission. These ML materials can be used in the devices such as stress sensor, fracture sensor, impact sensor, damage sensors, safety management monitoring system and fuse system for army warheads.

  19. A respiratory compensating system: design and performance evaluation.

    PubMed

    Chuang, Ho-Chiao; Huang, Ding-Yang; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2014-05-08

    This study proposes a respiratory compensating system which is mounted on the top of the treatment couch for reverse motion, opposite from the direction of the targets (diaphragm and hemostatic clip), in order to offset organ displacement generated by respiratory motion. Traditionally, in the treatment of cancer patients, doctors must increase the field size for radiation therapy of tumors because organs move with respiratory motion, which causes radiation-induced inflammation on the normal tissues (organ at risk (OAR)) while killing cancer cells, and thereby reducing the patient's quality of life. This study uses a strain gauge as a respiratory signal capture device to obtain abdomen respiratory signals, a proposed respiratory simulation system (RSS) and respiratory compensating system to experiment how to offset the organ displacement caused by respiratory movement and compensation effect. This study verifies the effect of the respiratory compensating system in offsetting the target displacement using two methods. The first method uses linac (medical linear accelerator) to irradiate a 300 cGy dose on the EBT film (GAFCHROMIC EBT film). The second method uses a strain gauge to capture the patients' respiratory signals, while using fluoroscopy to observe in vivo targets, such as a diaphragm, to enable the respiratory compensating system to offset the displacements of targets in superior-inferior (SI) direction. Testing results show that the RSS position error is approximately 0.45 ~ 1.42 mm, while the respiratory compensating system position error is approximately 0.48 ~ 1.42 mm. From the EBT film profiles based on different input to the RSS, the results suggest that when the input respiratory signals of RSS are sine wave signals, the average dose (%) in the target area is improved by 1.4% ~ 24.4%, and improved in the 95% isodose area by 15.3% ~ 76.9% after compensation. If the respiratory signals input into the RSS respiratory signals are actual human respiratory signals, the average dose (%) in the target area is improved by 31.8% ~ 67.7%, and improved in the 95% isodose area by 15.3% ~ 86.4% (the above rates of improvements will increase with increasing respiratory motion displacement) after compensation. The experimental results from the second method suggested that about 67.3% ~ 82.5% displacement can be offset. In addition, gamma passing rate after compensation can be improved to 100% only when the displacement of the respiratory motion is within 10 ~ 30 mm. This study proves that the proposed system can contribute to the compensation of organ displacement caused by respiratory motion, enabling physicians to use lower doses and smaller field sizes in the treatment of tumors of cancer patients.

  20. A respiratory compensating system: design and performance evaluation

    PubMed Central

    Huang, Ding‐Yang; Tien, Der‐Chi; Wu, Ren‐Hong; Hsu, Chung‐Hsien

    2014-01-01

    This study proposes a respiratory compensating system which is mounted on the top of the treatment couch for reverse motion, opposite from the direction of the targets (diaphragm and hemostatic clip), in order to offset organ displacement generated by respiratory motion. Traditionally, in the treatment of cancer patients, doctors must increase the field size for radiation therapy of tumors because organs move with respiratory motion, which causes radiation‐induced inflammation on the normal tissues (organ at risk (OAR)) while killing cancer cells, and thereby reducing the patient's quality of life. This study uses a strain gauge as a respiratory signal capture device to obtain abdomen respiratory signals, a proposed respiratory simulation system (RSS) and respiratory compensating system to experiment how to offset the organ displacement caused by respiratory movement and compensation effect. This study verifies the effect of the respiratory compensating system in offsetting the target displacement using two methods. The first method uses linac (medical linear accelerator) to irradiate a 300 cGy dose on the EBT film (GAFCHROMIC EBT film). The second method uses a strain gauge to capture the patients' respiratory signals, while using fluoroscopy to observe in vivo targets, such as a diaphragm, to enable the respiratory compensating system to offset the displacements of targets in superior‐inferior (SI) direction. Testing results show that the RSS position error is approximately 0.45 ~ 1.42 mm, while the respiratory compensating system position error is approximately 0.48 ~ 1.42 mm. From the EBT film profiles based on different input to the RSS, the results suggest that when the input respiratory signals of RSS are sine wave signals, the average dose (%) in the target area is improved by 1.4% ~ 24.4%, and improved in the 95% isodose area by 15.3% ~ 76.9% after compensation. If the respiratory signals input into the RSS respiratory signals are actual human respiratory signals, the average dose (%) in the target area is improved by 31.8% ~ 67.7%, and improved in the 95% isodose area by 15.3% ~ 86.4% (the above rates of improvements will increase with increasing respiratory motion displacement) after compensation. The experimental results from the second method suggested that about 67.3% ~ 82.5% displacement can be offset. In addition, gamma passing rate after compensation can be improved to 100% only when the displacement of the respiratory motion is within 10 ~ 30 mm. This study proves that the proposed system can contribute to the compensation of organ displacement caused by respiratory motion, enabling physicians to use lower doses and smaller field sizes in the treatment of tumors of cancer patients. PACS number: 87.19. Wx; 87.55. Km PMID:24892345

Top