Critical behavior of the mixed-spin Ising model with two competing dynamics.
Godoy, Mauricio; Figueiredo, Wagner
2002-02-01
In this work we investigate the stationary states of a nonequilibrium mixed-spin Ising model on a square lattice. The model system consists of two interpenetrating sublattices of spins sigma=1/2 and S=1, and we take only nearest neighbor interactions between pairs of spins. The system is in contact with a heat bath at temperature T and subject to an external flux of energy. The contact with the heat bath is simulated by single spin flips according to the Metropolis rule, while the input of energy is mimicked by the simultaneous flipping of pairs of neighboring spins. We performed Monte Carlo simulations on this model in order to find its phase diagram in the plane of temperature T versus the competition parameter between one- and two-spin flips, p. The phase diagram of the model exhibits two ordered phases with sublattice magnetizations m(1), m(2)>0 and m(1)>0, m(2)<0. These phases are separated from the paramagnetic phase (m(1)=m(2)=0) by continuous transition lines. We found the static critical exponents along these lines and showed that this nonequilibrium model belongs to the universality class of the two-dimensional equilibrium Ising model.
NASA Astrophysics Data System (ADS)
Demirtas, Sezen; Koymen, Ali; Salamon, Myron
2010-03-01
In this study we investigate a dynamic extension of well known classic spin valves. Ultra thin films were dc sputtered in a UHV chamber and their dynamic responses were measured by ferromagnetic resonance (FMR). Two Co layers, separated by a nonmagnetic Ag layer--thick enough to suppress exchange coupling--were deposited, with one of them coupled to a Gd underlayer, forming a Co(1)/Ag/Co(2)/Gd multilayer. At room temperature both Co(1) and Co(2) FMR's are observed for the external magnetic field in the plane of the film. The field for resonance of Co(2) is reduced significantly relative to Co(1), with the paramagnetic moment of the Gd apparently added to the Co magnetization, and the linewidth is broader. Spin pumping effects are minimal since Co(1) and Co(2) do not resonate at the same field.. The Co(2) FMR disappears at the TC of Gd leaving the linewidth of the Co(1) FMR weakly temperature dependent down to the compensation temperature of the Co(2)/Gd bilayer. Below that point, the two Co layers in this dynamic spin valve device are in antiparallel alignment, leading to strong broadening of the Co(1) FMR with decreasing temperature.
NASA Astrophysics Data System (ADS)
Snyder, Joseph William
2003-07-01
Geometrically frustrated magnets (GFMs) are materials in which it is impossible to satisfy all exchange interactions due the geometry of the lattice. The frustration of interactions is the origin of many unique and interesting material properties. GFMs are typified by large ground state degeneracy and will undergo spin fluctuations down to temperatures well below theta W, where un-frustrated materials display long-range order. This results in the development of correlated magnetic states that are analogous to various structural phases of matter such as spin glasses and spin liquids. Very recently, another magnetic-structural analog has been discovered where the magnetic properties show distinct similarities with the structural properties of a common substance that has itself long perplexed scientists, water ice. The aptly named spin ice compounds have been shown to exhibit the same "ground state entropy" as water ice and to be well characterized by consideration in terms of the "ice model". In this thesis, we explore the low temperature dynamics of the spins in the spin ice compound Dy2Ti2O7 through measurements of the magnetization and ac susceptibility. We show that the ground state represents a unique form of glassiness in a dense magnetic system. Our results show the onset of irreversibility and the development of a metastable state where the dynamics are significantly slowed but no long-range order is achieved below Tirr ˜ 650 mK. The system is also shown to display unique properties at higher temperatures with a partial freezing of the ac susceptibility at T ˜ 16 K. This freezing is shown to be thermally activated in nature above Tcross ˜ 12 K below which it is driven by quantum tunneling until it assumes faster than activated behavior at T ice ˜ 4 K. The freezing is shown to occur over a very narrow range of relaxation time constants, similar to that seen in the dielectric constants of ice. Measurements of Dy2-xYxTi2O 7, where the J = 15/2 Dy3+ ions were
Spin-current emission governed by nonlinear spin dynamics
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-01-01
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712
Competing spin pumping effects in magnetic hybrid structures
Azevedo, A. Alves Santos, O.; Fonseca Guerra, G. A.; Cunha, R. O.; Rezende, S. M.; Rodríguez-Suárez, R.
2014-02-03
Pure spin current can be detected by its conversion into charge current in nanometer thick nonmagnetic metal layer with large spin-orbit coupling by means of the inverse spin Hall effect (ISHE). Recently, it has been shown that the metallic ferromagnet Permalloy (Py) can also be used as spin current detector in experiments in which an ISHE voltage is created in a Py layer in contact with the insulating ferromagnet yttrium iron garnet (YIG) under a thermal gradient in the longitudinal spin Seebeck configuration. Here, we report experiments with microwave driven spin pumping in heterostructures made with single crystal YIG film and a nanometer thick Py or Pt layer that show that Py behaves differently than nonmagnetic metals as a spin current detector. The results are attributed to the competition between the spin currents generated by the dynamics of the magnetizations in YIG and in Py, which are exchange coupled at the interface.
Measurements of nuclear spin dynamics by spin-noise spectroscopy
Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S.; Kavokin, K. V.; Glazov, M. M.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Lemaître, A.; Bloch, J.
2015-06-15
We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-05-07
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
NASA Astrophysics Data System (ADS)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-05-01
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Spin dynamics simulations at AGS
Huang, H.; MacKay, W.W.; Meot, F.; Roser, T.
2010-05-23
To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.
Algebraic spin liquid as the mother of many competing orders
NASA Astrophysics Data System (ADS)
Hermele, Michael; Senthil, T.; Fisher, Matthew P. A.
2005-09-01
We study the properties of a class of two-dimensional interacting critical states—dubbed algebraic spin liquids—that can arise in two-dimensional quantum magnets. A particular example that we focus on is the staggered flux spin liquid, which plays a key role in some theories of underdoped cuprate superconductors. We show that the low-energy theory of such states has much higher symmetry than the underlying microscopic spin system. This symmetry has remarkable consequences, leading in particular to the unification of a number of seemingly unrelated competing orders. The correlations of these orders—including, in the staggered flux state, the Néel vector, and the order parameter for the columnar and box valence-bond solid states—all exhibit the same slow power-law decay. Implications for experiments in the pseudogap regime of the cuprates and for numerical calculations on model systems are discussed.
Competing spin phases in geometrically frustrated magnetic molecules.
Schröder, Christian; Nojiri, Hiroyuki; Schnack, Jürgen; Hage, Peter; Luban, Marshall; Kögerler, Paul
2005-01-14
We identify a class of zero-dimensional classical and quantum Heisenberg spin systems exhibiting anomalous behavior in an external magnetic field B similar to that found for the geometrically frustrated kagome lattice of classical spins. Our calculations for the isotropic Heisenberg model show the emergence of a pronounced minimum in the differential susceptibility dM/dB at B(sat)/3 as the temperature T is raised from 0 K for structures based on corner-sharing triangles, specifically the octahedron, cuboctahedron, and icosidodecahedron. As the first experimental evidence we note that the giant Keplerate magnetic molecule {Mo(72)Fe(30)} (Fe(3+) ions on the 30 vertices of an icosidodecahedron) exhibits this behavior. For low T when B approximately B(sat)/3 two competing families of spin configurations exist of which one behaves magnetically "stiff" leading to a reduction of dM/dB.
Scattering bottleneck for spin dynamics in metallic helical antiferromagnetic dysprosium
NASA Astrophysics Data System (ADS)
Langner, M. C.; Roy, S.; Kemper, A. F.; Chuang, Y.-D.; Mishra, S. K.; Versteeg, R. B.; Zhu, Y.; Hertlein, M. P.; Glover, T. E.; Dumesnil, K.; Schoenlein, R. W.
2015-11-01
Ultrafast studies of magnetization dynamics have revealed fundamental processes that govern spin dynamics, and the emergence of time-resolved x-ray techniques has extended these studies to long-range spin structures that result from interactions with competing symmetries. By combining time-resolved resonant x-ray scattering and ultrafast magneto-optical Kerr studies, we show that the dynamics of the core spins in the helical magnetic structure occur on much longer time scales than the excitation of conduction electrons in the lanthanide metal Dy. The observed spin behavior differs markedly from that observed in the ferromagnetic phase of other lanthanide metals or transition metals and is strongly dependent on temperature and excitation fluence. This unique behavior results from coupling of the real-space helical spin structure to the shape of the conduction electron Fermi surface in momentum space, which creates a bottleneck in spin scattering events that transfer the valence excitation to the core spins. The dependence of the dynamics on the intersite interactions renders the helical ordering much more robust to perturbations than simple ferromagnetic or antiferromagnetic ordering, where dynamics are driven primarily by on-site interactions.
Coherent spin mixing dynamics in a spin-1 atomic condensate
Zhang Wenxian; Chang, M.-S.; Chapman, M.S.; Zhou, D.L.; You, L.
2005-07-15
We study the coherent off-equilibrium spin mixing inside an atomic condensate. Using mean-field theory and adopting the single-spatial-mode approximation, the condensate spin dynamics is found to be well described by that of a nonrigid pendulum and displays a variety of periodic oscillations in an external magnetic field. Our results illuminate several recent experimental observations and provide critical insights into the observation of coherent interaction-driven oscillations in a spin-1 condensate.
NASA Astrophysics Data System (ADS)
Flatté, Michael E.
Transport of carriers through disordered electronic energy landscapes occurs via hopping or tunneling through various sites, and can enhance the effects of carrier spin dynamics on the transport. When incoherent hopping preserves the spin orientation of carriers, the magnetic-field-dependent correlations between pairs of spins influence the charge conductivity of the material. Examples of these phenomena have been identified in hopping transport in organic semiconductors and colloidal quantum dots, as well as tunneling through oxide barriers in complex oxide devices, among other materials. The resulting room-temperature magnetic field effects on the conductivity or electroluminescence require external fields of only a few milliTesla. These magnetic field effects can be dramatically modified by changes in the local spin environment. Recent theoretical and experimental work has identified a regime for low-field magnetoresistance in organic semiconductors in which the spin-relaxing effects of localized nuclear spins and electronic spins interfere1. The regime is studied experimentally by the controlled addition of localized electronic spins, through the addition of a stable free radical (galvinoxyl) to a material (MEH-PPV) that exhibits substantial room-temperature magnetoresistance (20 initially suppressed by the doping, as the localized electronic spin mixes one of the two spins whose correlation controls the transport. At intermediate doping, when one spin is fully decohered but the other is not, there is a regime where the magnetoresistance is insensitive to the doping level. For much greater doping concentrations the magnetoresistance is fully suppressed as both spins that control the charge conductivity of the material are mixed. The behavior is described within a theoretical model describing the effect of carrier spin dynamics on the current. Generalizations to amorphous and other disordered crystalline semiconductors will also be described. This work was
Thermal Spin Dynamics of Yttrium Iron Garnet
NASA Astrophysics Data System (ADS)
Barker, Joseph; Bauer, Gerrit E. W.
2016-11-01
The magnetic insulator yttrium iron garnet can be grown with near perfection and is therefore and ideal conduit for spin currents. It is a complex material with 20 magnetic moments in the unit cell. In spite of being a ferrimagnet, YIG is almost always modeled as a simple ferromagnet with a single spin wave mode. We use the method of atomistic spin dynamics to study the temperature evolution of the full spin wave spectrum, in quantitative agreement with neutron scattering experiments. The antiferromagnetic or optical mode is found to suppress the spin Seebeck effect at room temperature and beyond due to thermally pumped spin currents with opposite polarization to the ferromagnetic mode.
Spin Interactions and Spin Dynamics in Electronic Nanostructures
2007-11-02
of technological importance, and the spectroscopic study of the spin transport properties of nanoscale systems, the demonstration of terahertz spin...dynamics at near- terahertz frequencies in magnetically doped quantum wells,” R. C. Myers. K. C. Ku, X. Li, N. Samarth, and D. D. Awschalom, Phys. Rev. B 72...dynamics at near- terahertz frequencies in magnetically doped quantum wells,” R. C. Myers. K. C. Ku, X. Li, N. Samarth, and D. D. Awschalom, Phys. Rev
Intrinsic spin dynamics in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Valín-Rodríguez, Manuel
2005-12-01
We investigate the characteristic spin dynamics corresponding to semiconductor quantum dots within the multiband envelope function approximation (EFA). By numerically solving an 8 × 8 k·p Hamiltonian we treat systems based on different III-V semiconductor materials. It is shown that, even in the absence of an applied magnetic field, these systems show intrinsic spin dynamics governed by intraband and interband transitions leading to characteristic spin frequencies ranging from THz to optical frequencies.
Spin dynamics in driven composite multiferroics
Wang, Zidong Grimson, Malcolm J.
2015-09-28
A spin dynamics approach has been used to study the behavior of the magnetic spins and the electric pseudo-spins in a 1-D composite multiferroic chain with a linear magneto-electric coupling at the interface. The response is investigated with either external magnetic or electric fields driving the system. The spin dynamics is based on the Landau-Lifshitz-Gilbert equation. A Gaussian white noise is later added into the dynamic process to include the thermal effects. The interface requires a closer inspection of the magneto-electric effects. Thus, we construct a 2-D ladder model to describe the behavior of the magnetic spins and the electric pseudo-spins with different magneto-electric couplings.
Dynamical model for competing opinions
NASA Astrophysics Data System (ADS)
Souza, S. R.; Gonçalves, S.
2012-05-01
We propose an opinion model based on agents located at the vertices of a regular lattice. Each agent has an independent opinion (among an arbitrary, but fixed, number of choices) and its own degree of conviction. The latter changes every time two agents which have different opinions interact with each other. The dynamics leads to size distributions of clusters (made up of agents which have the same opinion and are located at contiguous spatial positions) which follow a power law, as long as the range of the interaction between the agents is not too short; i.e., the system self-organizes into a critical state. Short range interactions lead to an exponential cutoff in the size distribution and to spatial correlations which cause agents which have the same opinion to be closely grouped. When the diversity of opinions is restricted to two, a nonconsensus dynamic is observed, with unequal population fractions, whereas consensus is reached if the agents are also allowed to interact with those located far from them. The individual agents' convictions, the preestablished interaction range, and the locality of the interaction between a pair of agents (their neighborhood has no effect on the interaction) are the main characteristics which distinguish our model from previous ones.
Tang, Yanhao; Xie, Wei; McGuire, John A. Lai, Chih Wei; Mandal, Krishna C.
2015-09-21
We analyze exciton spin dynamics in GaSe under nonresonant circularly polarized optical pumping with an exciton spin-flip rate-equation model. The model reproduces polarized time-dependent photoluminescence measurements in which the initial circular polarization approaches unity even when pumping with 0.15 eV excess energy. At T = 10 K, the exciton spin relaxation exhibits a biexponential decay with sub-20 ps and >500 ps time constants, which are also reproduced by the rate-equation model assuming distinct spin-relaxation rates for hot (nonequilibrium) and cold band-edge excitons.
Interface dynamics of competing tissues
NASA Astrophysics Data System (ADS)
Podewitz, Nils; Jülicher, Frank; Gompper, Gerhard; Elgeti, Jens
2016-08-01
Tissues can be characterized by their homeostatic stress, i.e. the value of stress for which cell division and cell death balance. When two different tissues grow in competition, a difference of their homeostatic stresses determines which tissue grows at the expense of the second. This then leads to the propagation of the interface separating the tissues. Here, we study structural and dynamical properties of this interface by combining continuum theory with mesoscopic simulations of a cell-based model. Using a simulation box that moves with the interface, we find that a stationary state exists in which the interface has a finite width and propagates with a constant velocity. The propagation velocity in the simulations depends linearly on the homeostatic stress difference, in excellent agreement with the analytical predictions. This agreement is also seen for the stress and velocity profiles. Finally, we analyzed the interface growth and roughness as a function of time and system size. We estimated growth and roughness exponents, which differ from those previously obtained for simple tissue growth.
Ab initio non-relativistic spin dynamics
Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.
2014-12-07
Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.
Magnetic Suspension for Dynamic Spin Rig
NASA Technical Reports Server (NTRS)
Johnson, Dexter
1998-01-01
NASA Lewis Research Center's Dynamic Spin Rig, located in Building 5, Test Cell CW-18, is used to test turbomachinery blades and components by rotating them in a vacuum chamber. A team from Lewis' Machine Dynamics Branch successfully integrated a magnetic bearing and control system into the Dynamic Spin Rig. The magnetic bearing worked very well both to support and shake the shaft. It was demonstrated that the magnetic bearing can transmit more vibrational energy into the shaft and excite some blade modes to larger amplitudes than the existing electromagnetic shakers can.
Spin dynamics of polarization inversion spin exchange at the magic angle in multiple spin systems.
Gan, Z
2000-03-01
Polarization inversion spin exchange at the magic angle (PISEMA) [J. Magn. Reson. A 109, 270 (1994)] is an important experiment in NMR structural characterization of membrane proteins in oriented lipid bilayers. This paper presents a theoretical and experimental study of the spin dynamics in PISEMA to investigate the line-narrowing mechanism. The study focuses on the effect of neighboring protons on the spin exchange of a strongly coupled spin pair. The spin exchange is solved analytically for simple spin systems and is numerically simulated for many-spin systems. The results show that the dipolar couplings from the neighboring protons of a strongly coupled spin pair perturb the spin exchange only in the second order, therefore it has little contribution to the linewidth of PISEMA spectra in comparison to the separated-local-field spectra. The effects from proton resonance offset and the mismatch of the Hartmann-Hahn condition are also discussed along with experimental results using model single-crystal samples.
Spin Dynamics of Charged Colloidal Quantum Dots
NASA Astrophysics Data System (ADS)
Stern, N. P.
2005-03-01
Colloidal semiconductor quantum dots are promising structures for controlling spin phenomena because of their highly size- tunable physical properties, ease of manufacture, and nanosecond-scale spin lifetimes at room temperature. Recent experiments have succeeded in controlling the charging of the lowest electronic state of colloidal quantum dots ootnotetextC. Wang, B. L. Wehrenberg, C. Y. Woo, and P. Guyot-Sionnest, J. Phys. Chem B 108, 9027 (2004).. Here we use time-resolved Faraday rotation measurements in the Voigt geometry to investigate the spin dynamics of colloidal CdSe quantum dot films in both a charged and uncharged state at room temperature. The charging of the film is controlled by applying a voltage in an electrochemical cell and is confirmed by absorbance measurements. Significant changes in the spin precession are observed upon charging, reflecting the voltage- controlled electron occupation of the quantum dot states and filling of surface states.
Spin Chains with Dynamical Lattice Supersymmetry
NASA Astrophysics Data System (ADS)
Hagendorf, Christian
2013-02-01
Spin chains with exact supersymmetry on finite one-dimensional lattices are considered. The supercharges are nilpotent operators on the lattice of dynamical nature: they change the number of sites. A local criterion for the nilpotency on periodic lattices is formulated. Any of its solutions leads to a supersymmetric spin chain. It is shown that a class of special solutions at arbitrary spin gives the lattice equivalents of the {N}=(2,2) superconformal minimal models. The case of spin one is investigated in detail: in particular, it is shown that the Fateev-Zamolodchikov chain and its off-critical extension possess a lattice supersymmetry for all its coupling constants. Its supersymmetry singlets are thoroughly analysed, and a relation between their components and the weighted enumeration of alternating sign matrices is conjectured.
Phase ordering dynamics in spin-1 ferromagnetic condensates
NASA Astrophysics Data System (ADS)
Williamson, Lewis; Blakie, Peter
2016-05-01
Spinor Bose-Einstein condensates present rich phase diagrams for exploring phase transitions between states with different symmetry properties. In this work we simulate the approach to equilibrium of a spin-1 condensate quenched from an unmagnetised phase to three different ferromagnetic phases. The three ferromagnetic phases have Z2, SO(2) and SO(3) symmetries respectively and possess different conservation laws. Following the quench, domains of magnetization form, with each domain making an independent choice of the symmetry breaking order parameter. These domains grow and compete for the global equilibrium state. We find that this growth follows universal scaling laws and identify the dynamic universality class for each of the three quenches. Polar-core spin-vortices play a crucial role in the phase ordering of the SO(2) system and we identify fractal structures in the domain patterns of the SO(2) and SO(3) systems. We acknowledge support from the Marsden Fund of New Zealand.
The classical and quantum dynamics of molecular spins on graphene
NASA Astrophysics Data System (ADS)
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2016-02-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.
Unusual spin dynamics in topological insulators
Dóra, Balázs; Simon, Ferenc
2015-01-01
The dynamic spin susceptibility (DSS) has a ubiquitous Lorentzian form around the Zeeman energy in conventional materials with weak spin orbit coupling, whose spectral width characterizes the spin relaxation rate. We show that DSS has an unusual non-Lorentzian form in topological insulators, which are characterized by strong SOC, and the anisotropy of the DSS reveals the orientation of the underlying spin texture of topological states. At zero temperature, the high frequency part of DSS is universal and increases in certain directions as ωd−1 with d = 2 and 3 for surface states and Weyl semimetals, respectively, while for helical edge states, the interactions renormalize the exponent as d = 2K − 1 with K the Luttinger-liquid parameter. As a result, spin relaxation rate cannot be deduced from the DSS in contrast to the case of usual metals, which follows from the strongly entangled spin and charge degrees of freedom in these systems. PMID:26439629
NASA Astrophysics Data System (ADS)
Singh, Avinash; Mohapatra, Shubhajyoti; Ziman, Timothy; Chatterji, Tapan
2017-02-01
Spin waves in the type-III ordered antiferromagnetic state of the frustrated t- t ' Hubbard model on the face-centred-cubic (fcc) lattice are calculated to investigate finite-U-induced competing interaction and frustration effects on magnetic excitations and instabilities. Particularly strong competing interactions generated due to the interplay of fcc lattice geometry and magnetic order result in significant spin wave softening. The calculated spin wave dispersion is found to be in qualitative agreement with the measured spin wave dispersion in the pyrite mineral MnS2 obtained from inelastic neutron scattering experiments. Instabilities to other magnetic orders (type I, type II, spiral, non-collinear), as signalled by spin wave energies turning negative, are also discussed.
Spin observables and spin structure functions: Inequalities and dynamics
NASA Astrophysics Data System (ADS)
Artru, Xavier; Elchikh, Mokhtar; Richard, Jean-Marc; Soffer, Jacques; Teryaev, Oleg V.
2009-01-01
Model-independent identities and inequalities which relate the various spin observables of collisions in nuclear and particle physics are reviewed in a unified formalism. Their physical interpretation and their implications for dynamical models are also discussed. These constraints between observables can be obtained in several ways: from the explicit expression of the observables in terms of a set of helicity or transversity amplitudes, a non-trivial algebraic exercise which can be preceded by numerical simulation with randomly chosen amplitudes, from anticommutation relations, or from the requirement that any polarisation vector is less than unity. The most powerful tool is the positivity of the density matrices describing the spins in the initial or final state of the reaction or its crossed channels. The inequalities resulting from positivity need to be projected to single out correlations between two or three observables. The quantum aspects of the information carried by spins, in particular entanglement, are considered when deriving and discussing the constraints. Several examples are given, with a comparison with experimental data in some cases. For the exclusive reactions, the cases of the strangeness-exchange proton-antiproton scattering and the photoproduction of pseudoscalar mesons are treated in some detail: all triples of observables are constrained, and new results are presented for the allowed domains. The positivity constraints for total cross sections and for the simplest observables of single-particle inclusive reactions are reviewed. They also apply to spin-dependent structure functions and parton distributions, both integrated or transverse-momentum dependent. The corresponding inequalities are shown to be preserved by the evolution equations of quantum chromodynamics.
Structurally Dynamic Spin Market Networks
NASA Astrophysics Data System (ADS)
Horváth, Denis; Kuscsik, Zoltán
The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.
Communication: quantum dynamics in classical spin baths.
Sergi, Alessandro
2013-07-21
A formalism for studying the dynamics of quantum systems embedded in classical spin baths is introduced. The theory is based on generalized antisymmetric brackets and predicts the presence of open-path off-diagonal geometric phases in the evolution of the density matrix. The weak coupling limit of the equation can be integrated by standard algorithms and provides a non-Markovian approach to the computer simulation of quantum systems in classical spin environments. It is expected that the theory and numerical schemes presented here have a wide applicability.
Spin Dynamics in Novel Materials Systems
NASA Astrophysics Data System (ADS)
Yu, Howard
Spintronics and organic electronics are fields that have made considerable advances in recent years, both in fundamental research and in applications. Organic materials have a number of attractive properties that enable them to complement applications traditionally fulfilled by inorganic materials, while spintronics seeks to take advantage of the spin degree of freedom to produce new applications. My research is aimed at combining these two fields to develop organic materials for spintronics use. My thesis is divided into three primary projects centered around an organic-based semiconducting ferrimagnet, vanadium tetracyanoethylene. First, we investigated the transport characteristics of a hybrid organic-inorganic heterostructure. Semiconductors form the basis of the electronics industry, and there has been considerable effort put forward to develop organic semiconductors for applications like organic light-emitting diodes and organic thin film transistors. Working with hybrid organic-inorganic semiconductor device structures allows us to potentially take advantage of the infrastructure that has already been developed for silicon and other inorganic semiconductors. This could potentially pave the way for a new class of active hybrid devices with multifunctional behavior. Second, we investigated the magnetic resonance characteristics of V[TCNE]x, in multiple measurement schemes and exploring the effect of temperature, frequency, and chemical tuning. Recently, the spintronics community has shifted focus from static electrical spin injection to various dynamic processes, such as spin pumping and thermal effects. Spin pumping in particular is an intriguing way to generate pure spin currents via magnetic resonance that has attracted a high degree of interest, with the FMR linewidth being an important metric for spin injection. Furthermore, we can potentially use these measurements to probe the magnetic properties as we change the physical properties of the materials by
Dynamic Feedback in Ferromagnet-Spin Hall Metal Heterostructures
NASA Astrophysics Data System (ADS)
Cheng, Ran; Zhu, Jian-Gang; Xiao, Di
2016-08-01
In ferromagnet-normal-metal heterostructures, spin pumping and spin-transfer torques are two reciprocal processes that occur concomitantly. Their interplay introduces a dynamic feedback effect interconnecting energy dissipation channels of both magnetization and current. By solving the spin diffusion process in the presence of the spin Hall effect in the normal metal, we show that the dynamic feedback gives rise to (i) a nonlinear magnetic damping that is crucial to sustain uniform steady-state oscillations of a spin Hall oscillator at large angles and (ii) a frequency-dependent spin Hall magnetoimpedance that reduces to the spin Hall magnetoresistance in the dc limit.
Planetary Interior Structure Revealed by Spin Dynamics
NASA Astrophysics Data System (ADS)
Margot, J.; Peale, S. J.; Jurgens, R. F.; Slade, M. A.; Holin, I. V.
2002-12-01
The spin state of a planet depends on the distribution of mass within the interior, gradual and discrete changes in its moments of inertia, dissipation mechanisms at the surface and below, and external torques. Detailed measurements of the spin dynamics can therefore reveal much about planetary interior structure, interactions at the core-mantle and atmosphere-surface boundaries, and mass redistribution events. Studies of the spin precession, polar wobble, and length of day variations have been used to determine Earth's moments of inertia and rigidity and to study the effects of atmospheric angular momentum changes, post-glacial rebound, and large earthquakes. In planetary investigations the spin measurements are particularly important because other means of constraining interior properties require in-situ or orbiting sensors (e.g. seismometers, magnetometers, and Doppler tracking of spacecraft). Here we describe the successful implementation of a new Earth-based radar technique (Holin, 1992) that provides spin state measurements with unprecedented accuracy. Our first observations were designed to characterize Mercury's core. Peale (1976) showed that the measurement of four quantities (the obliquity of the planet, the amplitude of its longitude librations, and the second-degree gravitational harmonics) are sufficient to determine the size and state of Mercury's core. The existence of a molten core would place strong constraints on the thermal and rotational histories of the planet, with profound implications for the composition and rotation state of the planet at the time of formation. A solid core would have a fundamental impact on theories of planetary magnetic field generation. We observed Mercury with the Goldstone radar and the Green Bank Telescope in May-June 2002. We illuminated the planet with a monochromatic signal, recorded the scattered power at the two antennas, and cross-correlated the echoes in the time domain. We obtained strong correlations which
Dynamics of the Lunar Spin Axis
NASA Technical Reports Server (NTRS)
Wisdom, Jack
2006-01-01
The evolution of the lunar spin axis is studied. Prior work has assumed that the inclination of the lunar orbit is constant and that the node regresses uniformly. This work takes into account the nonconstant inclination and nonuniform regression of the node as determined from averaged models of the motion of the lunar orbit. The resulting dynamics is considerably more rich, exhibiting additional resonances, period doubling and tripling, and chaos.
Combined molecular dynamics-spin dynamics simulations of bcc iron
Perera, Meewanage Dilina N; Yin, Junqi; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Brown, Greg
2014-01-01
Using a classical model that treats translational and spin degrees of freedom on an equal footing, we study phonon-magnon interactions in BCC iron with combined molecular and spin dynamics methods. The atomic interactions are modeled via an empirical many-body potential while spin dependent interactions are established through a Hamiltonian of the Heisenberg form with a distance dependent magnetic exchange interaction obtained from first principles electronic structure calculations. The temporal evolution of translational and spin degrees of freedom was determined by numerically solving the coupled equations of motion, using an algorithm based on the second order Suzuki-Trotter decomposition of the exponential operators. By calculating Fourier transforms of space- and time-displaced correlation functions, we demonstrate that the the presence of lattice vibrations leads to noticeable softening and damping of spin wave modes. As a result of the interplay between lattice and spin subsystems, we also observe additional longitudinal spin wave excitations, with frequencies which coincide with that of the longitudinal lattice vibrations.
Competition between Bose-Einstein Condensation and Spin Dynamics.
Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B
2016-10-28
We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.
Agnihotri, Pratik; Bandyopadhyay, Supriyo
2012-05-30
Using ensemble Monte Carlo simulation, we have studied hot carrier spin dynamics and spin noise in a multi-subband GaAs quantum wire in the presence of a randomly varying Rashba spin-orbit interaction. The random variation reduces the carrier ensemble's spin dephasing time due to the D'yakonov-Perel' mechanism, but otherwise makes no qualitative difference to the temporal spin relaxation characteristics. However, it makes a qualitative difference to the spatial spin relaxation characteristics which change from monotonic and smooth to non-monotonic and chaotic because of a complex interplay between carriers in different subbands. As far as spin fluctuation and spin noise are concerned, the random variation has no major effect except that the low-frequency noise power spectral density increases slightly when the magnitude of the Rashba spin-orbit interaction field is varied randomly while holding the direction constant.
Wheeler-Feynman dynamics of spin-1/2 particles
NASA Astrophysics Data System (ADS)
van Alstine, Peter; Crater, Horace W.
1986-02-01
By combining a supersymmetric description of a spinning particle in an external field with an appropriate modification of the ``adjunct field'' of Wheeler and Feynman, we construct a many-time relativistic dynamics for arbitrary numbers of spin-(1/2) and spinless particles in mutual scalar or vector interaction. Quantization of the slow-motion approximation to the dynamics of two spinning particles reproduces the corresponding field-theoretic (Bethe-Salpeter) dynamics through order α4.
Electrical detection of magnetization dynamics via spin rectification effects
NASA Astrophysics Data System (ADS)
Harder, Michael; Gui, Yongsheng; Hu, Can-Ming
2016-11-01
The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.
Dynamics of Interacting Fermions in Spin-Dependent Potentials.
Koller, Andrew P; Wall, Michael L; Mundinger, Josh; Rey, Ana Maria
2016-11-04
Recent experiments with dilute trapped Fermi gases observed that weak interactions can drastically modify spin transport dynamics and give rise to robust collective effects including global demagnetization, macroscopic spin waves, spin segregation, and spin self-rephasing. In this Letter, we develop a framework for studying the dynamics of weakly interacting fermionic gases following a spin-dependent change of the trapping potential which illuminates the interplay between spin, motion, Fermi statistics, and interactions. The key idea is the projection of the state of the system onto a set of lattice spin models defined on the single-particle mode space. Collective phenomena, including the global spreading of quantum correlations in real space, arise as a consequence of the long-ranged character of the spin model couplings. This approach achieves good agreement with prior measurements and suggests a number of directions for future experiments.
Dynamics of Interacting Fermions in Spin-Dependent Potentials
NASA Astrophysics Data System (ADS)
Koller, Andrew P.; Wall, Michael L.; Mundinger, Josh; Rey, Ana Maria
2016-11-01
Recent experiments with dilute trapped Fermi gases observed that weak interactions can drastically modify spin transport dynamics and give rise to robust collective effects including global demagnetization, macroscopic spin waves, spin segregation, and spin self-rephasing. In this Letter, we develop a framework for studying the dynamics of weakly interacting fermionic gases following a spin-dependent change of the trapping potential which illuminates the interplay between spin, motion, Fermi statistics, and interactions. The key idea is the projection of the state of the system onto a set of lattice spin models defined on the single-particle mode space. Collective phenomena, including the global spreading of quantum correlations in real space, arise as a consequence of the long-ranged character of the spin model couplings. This approach achieves good agreement with prior measurements and suggests a number of directions for future experiments.
Nonequilibrium Spin Dynamics: from Protons in Water to a Gauge Theory of Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Tokatly, I. V.; Sherman, E. Ya.
Nonequilibrium dynamics of spin degrees of freedom in condensed matter, ranging from classical liquids to solids and ultracold atomic gases, is one of the focus topics in physics. Here we present a gauge theory of spin dynamics in spinorbit coupled gases for a "pure" gauge realization of the spin-orbit coupling field. This approach allows one to describe the spin dynamics in fermionic systems in terms of exact general response functions and to map it on the density dynamics in a dual system without spin-orbit coupling. We apply this approach to electrons in disordered two-dimensional structures and to cold atomic gases of interacting fermions with synthetic spin-orbit coupling at very low temperatures.
The classical and quantum dynamics of molecular spins on graphene
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2015-01-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic1 and quantum computing2 devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics3,4, and electrical spin-manipulation4-11. However, the influence of the graphene environment on the spin systems has yet to be unraveled12. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets13 on graphene. While the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly-developed model. Coupling to Dirac electrons introduces a dominant quantum-relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully-coherent, resonant spin tunneling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin-manipulation in graphene nanodevices. PMID:26641019
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples.
Dynamic Nuclear Spin Resonance in n-GaAs
NASA Astrophysics Data System (ADS)
Chen, Y. S.; Reuter, D.; Wieck, A. D.; Bacher, G.
2011-10-01
The dynamics of optically detected nuclear magnetic resonance is studied in n-GaAs via time-resolved Kerr rotation using an on-chip microcoil for rf field generation. Both optically allowed and optically forbidden NMR are observed with a dynamics controlled by the interplay between dynamic nuclear polarization via hyperfine interaction with optically generated spin-polarized electrons and nuclear spin depolarization due to magnetic resonance absorption. Comparing the characteristic nuclear spin relaxation rate obtained in experiment with master equation simulations, the underlying nuclear spin depolarization mechanism for each resonance is extracted.
Competing exotic quantum phases of spin- 12 ultracold lattice bosons with extended spin interactions
Chang, Chia-Chen; Rousseau, Valéry G.; Scalettar, Richard T.; ...
2015-08-12
Advances in pure optical trapping techniques now allow the creation of degenerate Bose gases with internal degrees of freedom. Systems such as 87Rb, 39K or 23Na in the F = 1 hyperfine state offer an ideal platform for studying the interplay of super fluidity and quantum magnetism. Motivated by the experimental developments, we study ground state phases of a two-component Bose gas loaded on an optical lattice. We describe this effectively by the Bose-Hubbard Hamiltonian with onsite and near neighbor spin-spin interactions. One important feature of our investigation is the inclusion of interconversion (spin-flip) terms between the two species, whichmore » has been observed in optical lattice experiments. Furthermore, using mean-field theory and quantum Monte Carlo simulations, we map out the phase diagram of the system. A rich variety of phases is identified, including antiferromagnetic (AF) Mott insulators, ferromagnetic and AF super fluids.« less
NASA Astrophysics Data System (ADS)
Dietl, Tomasz
2015-03-01
A physically transparent and mathematically simple semiclassical model is employed to examine dynamics in the central-spin problem. The results reproduce previous findings obtained by various quantum approaches and, at the same time, provide information on the electron spin dynamics and Berry's phase effects over a wider range of experimentally relevant parameters than available previously. This development is relevant to dynamics of bound magnetic polarons and spin dephasing of an electron trapped by an impurity or a quantum dot, and coupled by a contact interaction to neighboring localized magnetic impurities or nuclear spins. Furthermore, it substantiates the applicability of semiclassical models to simulate dynamic properties of spintronic nanostructures with a mesoscopic number of spins.
Spin Dynamics in the Kapitza-Dirac Effect
NASA Astrophysics Data System (ADS)
Ahrens, Sven; Bauke, Heiko; Keitel, Christoph H.; Müller, Carsten
2012-07-01
Electron spin dynamics in Kapitza-Dirac scattering from a standing laser wave of high frequency and high intensity is studied. We develop a fully relativistic quantum theory of the electron motion based on the time-dependent Dirac equation. Distinct spin dynamics, with Rabi oscillations and complete spin-flip transitions, is demonstrated for Kapitza-Dirac scattering involving three photons in a parameter regime accessible to future high-power x-ray laser sources. The Rabi frequency and, thus, the diffraction pattern is shown to depend crucially on the spin degree of freedom.
Nonlinear dynamics of spin and charge in spin-Calogero model
Kulkarni, Manas; Franchini, Fabio; Abanov, Alexander G.
2009-10-15
The fully nonlinear dynamics of spin and charge in spin-Calogero model is studied. The latter is an integrable one-dimensional model of quantum spin-1/2 particles interacting through inverse-square interaction and exchange. Classical hydrodynamic equations of motion are written for this model in the regime where gradient corrections to the exact hydrodynamic formulation of the theory may be neglected. In this approximation variables separate in terms of dressed Fermi momenta of the model. Hydrodynamic equations reduce to a set of decoupled Riemann-Hopf (or inviscid Burgers') equations for the dressed Fermi momenta. We study the dynamics of some nonequilibrium spin-charge configurations for times smaller than the time scale of the gradient catastrophe. We find an interesting interplay between spin and charge degrees of freedom. In the limit of large coupling constant the hydrodynamics reduces to the spin hydrodynamics of the Haldane-Shastry model.
Dynamical cooling of nuclear spins in double quantum dots.
Rudner, M S; Levitov, L S
2010-07-09
Electrons trapped in quantum dots can exhibit quantum-coherent spin dynamics over long timescales. These timescales are limited by the coupling of electron spins to the disordered nuclear spin background, which is a major source of noise and dephasing in such systems. We propose a scheme for controlling and suppressing fluctuations of nuclear spin polarization in double quantum dots, which uses nuclear spin pumping in the spin-blockade regime. We show that nuclear spin polarization fluctuations can be suppressed when electronic levels in the two dots are properly positioned near resonance. The proposed mechanism is analogous to that of optical Doppler cooling. The Overhauser shift due to fluctuations of nuclear polarization brings electron levels in and out of resonance, creating internal feedback to suppress fluctuations. Estimates indicate that a better than 10-fold reduction of fluctuations is possible.
Spin liquids and spin dynamics in kagome antiferromagnets
NASA Astrophysics Data System (ADS)
Mendels, Philippe
2006-03-01
Among all the corner sharing highly frustrated magnets, only a few experimental systems are good candidates for a low-T fluctuating state, ie fulfilling the important conditions of the pure Heisenberg lattice with nn couplings. The combination of the weakness of the single-ion anisotropy and of a direct overlap antiferromagnetic exchange are certainly the major advantages of the chromate S=3/2 kagome bilayer Ba2Sn2ZnGa10-7pCr7pO22- BSZCGO(p)- and the long studied SrCr9pGa12-9pO19 - SCGO(p). Beyond the absence of ordering well below the Curie-Weiss temperature, the unusual large value of the specific heat unveils a high density of low lying excitations and its field independence suggests that the excited states are mostly singlets. Moreover, their ground state is found essentially fluctuating although an intrinsic spin glass (SG) signature is observed in susceptibility measurements. Through a review of our past years work, I'll illustrate all the potential of local studies (NMR and μSR) to reveal some key aspects of the physics of these compounds: susceptibility, fluctuations, impact of dilution defects which generate an extended response of the spin-lattice ... as well as the puzzling spin-glass state. More recently we also investigated new series of compounds, among them volborthite and delafossites which feature S=1/2 spins on a corner sharing antiferromagnetic lattice. I'll introduce these compounds and shortly discuss their relation to ideal Hamiltonians and novel features. - D. Bono et al.Phys. Rev. Lett. 93, 187201 (2004), 92, 217202 (2004) ; Cond-mat/0503496. F. Bert et al. Phys. Rev. Lett., 95, 087203 (2005). L. Limot, et al., Phys. Rev. B, 65, 132403 (2002). P. Mendels et al. Phys. Rev. Lett., 85, 3496 (2000).
Dynamics of test bodies with spin in de Sitter spacetime
Obukhov, Yuri N.; Puetzfeld, Dirk
2011-02-15
We study the motion of spinning test bodies in the de Sitter spacetime of constant positive curvature. With the help of the 10 Killing vectors, we derive the 4-momentum and the tensor of spin explicitly in terms of the spacetime coordinates. However, in order to find the actual trajectories, one needs to impose the so-called supplementary condition. We discuss the dynamics of spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.
Spin-dynamics simulations of the antiferromagnetic triangular XY model*
NASA Astrophysics Data System (ADS)
Nho, Kwangsik; Landau, D. P.
2002-03-01
Using Monte Carlo and spin-dynamics methods, we have simulated the dynamic behavior of the classical, antiferromagnetic XY model on a triangular lattice. The temporal evolutions of spin configurations were obtained by solving numerically the coupled equations of motion for each spin using fourth-order Suzuki-Trotter decompositions of exponential operators. From space-and time-displaced spin-spin correlation functions and their space-time Fourier transforms we obtained the dynamic structure factor S(q,w) for momentum q and frequency w. Below T_c, where long-range order appears in the staggered chirality[1], S(q,w) exhibits very strong and sharp spin-wave peaks in the in-plane-component S^xx. We also observe two-spin-wave peaks at low w and an almost dispersionless domain-wall peak at high w. Above T_c, a weak spin-wave peak persists but the domain-wall peak disappears for all q. We have calculated the dispersion relation and the linewidth of the spin-wave peak in S^xx by fitting the line shape to simple Lorentzians. *Supported by NSF [1] D.H. Lee, J.D. Joannopoulos, J.W. Negele, and D.P. Landau, Phys. Rev. Lett. 52, 433 (1984)
Spin and charge dynamics of chromium alloys
Fishman, R.S.; Viswanath, V.S.; Liu, S.H.
1996-07-01
Both the spin- and charge-density waves of Cr alloys are produced by the Coulomb attraction between electrons and holes on nearly nested Fermi surfaces. Driven by quasi-particle transitions, transverse spin- wave and longitudinal phason modes are associated with rotational and translational symmetries of pure Cr and its dilute alloys. At low frequencies, both spin and charge phasons have a nearly linear dispersion with a mode velocity which approaches the spin-wave velocity as T approaches T{sub N} or as the mismatch between the Fermi surfaces increases.
Production dynamics and high p/sub T/ spin effects
Soffer, J.
1988-08-01
We will emphasize the importance of spin for our understanding of production dynamics at high p/sub T/. Within the framework of perturbative QCD several predictions for interesting spin observables are presented for various reactions. They are crucial tests accessible to existing or future experimental programs. 17 refs., 10 figs.
Toward Ultrafast Spin Dynamics in Low Dimensional Semiconductors
NASA Astrophysics Data System (ADS)
Chiu, Yi-Hsin
Since the discovery of long spin relaxation times of itinerant electrons up to 100 nanoseconds and spin diffusion lengths over 100 mum in GaAs, extraordinary advances in semiconductor spintronics have been made in the past one and half decades. Incorporating spins in semiconductors requires the following essential capabilities: (i) injection of spins into semiconductors, (ii) manipulation of spins, and (iii) sensitive detection of spin coherence. The solutions to these challenges lie in a deeper understanding of spin interactions and spin relaxation in semiconductors as well as appropriate tools to probe spin dynamics. In particular, recent experiments have suggested the important role of dimensionality in spin dynamics. For example, spin-orbit interaction, the dominant source of spin relaxation in most II-VI and III-V semiconductors, has been shown to be significantly suppressed in reduced dimensions. Low-dimensional semiconductors are therefore appealing candidates for exploring spin physics and device applications. This dissertation aims at exploring spin dynamics in low dimensional semiconductor systems using time-resolved optical techniques. The time resolution allows for a direct measurement of the equilibrium and non-equilibrium carrier spins and various spin interactions in the time domain. Optical approaches are also a natural fit for probing optically active nanostructures where electric approaches can often encounter challenges. For instance, fabricating electric contacts with nanostructures is a proven challenge because of their reduced size and modified electronic structure. This dissertation is divided into three sections targeting an ultimate goal of employing optical methods to explore spin dynamics in low dimensional semiconductors. First, the time-resolved Kerr rotation technique is employed to study spin relaxation in Fe/MgO/GaAs heterostructures. The results reveal rich interactions between the GaAs electron spins, nuclear spins, and the
Spin dynamics simulation of electron spin relaxation in Ni{sup 2+}(aq)
Rantaharju, Jyrki Mareš, Jiří Vaara, Juha
2014-07-07
The ability to quantitatively predict and analyze the rate of electron spin relaxation of open-shell systems is important for electron paramagnetic resonance and paramagnetic nuclear magnetic resonance spectroscopies. We present a combined molecular dynamics (MD), quantum chemistry (QC), and spin dynamics simulation method for calculating such spin relaxation rates. The method is based on the sampling of a MD trajectory by QC calculations, to produce instantaneous parameters of the spin Hamiltonian used, in turn, to numerically solve the Liouville-von Neumann equation for the time evolution of the spin density matrix. We demonstrate the approach by simulating the relaxation of electron spin in an aqueous solution of Ni{sup 2+} ion. The spin-lattice (T{sub 1}) and spin-spin (T{sub 2}) relaxation rates are extracted directly from the simulations of the time dependence of the longitudinal and transverse magnetization, respectively. Good agreement with the available, indirectly obtained experimental data is obtained by our method.
Protection of centre spin coherence by dynamic nuclear spin polarization in diamond.
Liu, Gang-Qin; Jiang, Qian-Qing; Chang, Yan-Chun; Liu, Dong-Qi; Li, Wu-Xia; Gu, Chang-Zhi; Po, Hoi Chun; Zhang, Wen-Xian; Zhao, Nan; Pan, Xin-Yu
2014-09-07
We experimentally investigate the protection of electron spin coherence of a nitrogen-vacancy (NV) centre in diamond by dynamic nuclear spin polarization (DNP). The electron spin decoherence of an NV centre is caused by the magnetic field fluctuation of the (13)C nuclear spin bath, which contributes large thermal fluctuation to the centre electron spin when it is in an equilibrium state at room temperature. To address this issue, we continuously transfer the angular momentum from electron spin to nuclear spins, and pump the nuclear spin bath to a polarized state under the Hartmann-Hahn condition. The bath polarization effect is verified by the observation of prolongation of the electron spin coherence time (T). Optimal conditions for the DNP process, including the pumping pulse duration and repeat numbers, are proposed by numerical simulation and confirmed by experiment. We also studied the depolarization effect of laser pulses. Our results provide a new route for quantum information processing and quantum simulation using the polarized nuclear spin bath.
NASA Astrophysics Data System (ADS)
Xu, Lan; Wu, Guiping; Yan, Lin
2017-03-01
We study the dynamics of quantum entanglement and quantum discord between two non-interacting qubits, which couple with two independent spin baths, obeying the XXZ Hamiltonian. After the Holstein-Primakoff transformation, one could reduce the spin bath to a single-mode bosonic bath field. Then we use this model to study the entanglement and discord dynamics of two qubits in their corresponding spin bath. For the initial Werner state, it is indicated that both entanglement and quantum discord exhibit death and revival behavior, while the quantum correlations change more smaller.
Competing dynamic phases of active polymer networks
NASA Astrophysics Data System (ADS)
Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.
Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
ULTRAFAST ELECTRON SPIN DYNAMICS OF AS-GROWN Ga1-xMnxAs WITH APPROPRIATE Mn DOPING
NASA Astrophysics Data System (ADS)
Yue, Han
2013-06-01
The electron spin dynamics in the as-grown Ga1-xMnxAs films with appropriate Mn doping of x 2-5% is studied using time-resolved magneto-optical Kerr effect measurements. Due to the existence of Mn interstitials, the s-d exchange scattering is found to play an important role for the as-grown Ga1-xMnxAs, and compete with p-d exchange coupling to dominate the electron spin relaxation process. The contribution of electron-electron Coulomb scattering to the electron spin dynamics for the as-grown Ga1-x MnxAs appears to be as important as that of the annealed ones. Our findings are fundamentally important for better understanding the electron spin dynamics in Ga1-xMnxAs for its future spintronic applications.
Domain wall dynamics in a spin-reorientation transition system Au/Co/Au
Roy, Sujoy; Seu, Keoki; Turner, Joshua J.; Park, Sungkyun; Kevan, Steve; Falco, Charles M.
2009-05-14
We report measurements of domain wall dynamics in an ultrathin Au/Co/Au system that exhibits a spin reorientation phase transition as a function of temperature.The domain walls exhibit cooperative motion throughout the temperature range of 150 - 300 K. The decay times were found to exhibit a maximum at the transition temperature. The slowdown has been explained as due to formation of a double well in the energy landscape by the different competing interactions. Our results show that the complex, slow dynamics can provide a more fundamental understanding of magnetic phase transitions.
NASA Astrophysics Data System (ADS)
Huang, Cheng-Yi; Tsai, Wei-Feng; Wang, Yung Jui; Lin, Hsin; Bansil, Arun
2014-03-01
We discuss spin reorientation phenomena, which may or may not yield gap formation, on the surface of topological crystalline insulators Pb1-xSnx(Te, Se) under various applied strains. The low-energy surface electrons on the (001) surface behave like massless Dirac particles with four Dirac points centered along the intersection of the mirror (xz or yz) plane and the surface plane. We use a four-band k.p model, which captures the spin and orbital texture of the surface states around surface X (or Y) point up to the energy around the Lifshitz transition, and systematically study effects of the applied strain. In contrast to the case without any strain, where the absence of the out-of-the-plane spin component is guaranteed by both the mirror and the time-reversal symmetries, we find that without time-reversal symmetry breaking, the hedgehog-like spin textures associated with a gap formation can be induced by the strain only, breaking the xz mirror symmetry. The other cases cannot induce a gap at Dirac points. We also investigate interaction-driven competing orders under the strain and obtain a phase diagram at the mean-field level to reveal the possible novel surface states in the system.
Dynamics of polar-core spin vortices in a ferromagnetic spin-1 Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Williamson, Lewis A.; Blakie, P. B.
2016-12-01
A ferromagnetic spin-1 condensate supports polar-core spin vortices (PCVs) in the easy plane phase. We derive a model for the dynamics of these PCVs using a variational Lagrangian approach. The PCVs behave as massive charged particles interacting under the two-dimensional Coulomb interaction, with the mass arising from interaction effects within the vortex core. We compare this model to numerical simulations of the spin-1 Gross-Pitaevskii equations and find semiquantitative agreement. In addition, the numerical results suggest that the PCV core couples to spin waves, and this affects the PCV dynamics even far from the core. We identify areas of further research that could extend the model of PCV dynamics presented here.
Gilbert damping of ferromagnetic metals incorporating inhomogeneous spin dynamics
Umetsu, Nobuyuki Miura, Daisuke; Sakuma, Akimasa
2015-05-07
The effects of inhomogeneous spin dynamics on magnetic damping in ferromagnetic metals are studied. On the basis of linear response theory, we derive the microscopic expression for the Gilbert damping term in a two-dimensional electron gas interacting with the magnetization via exchange coupling in the presence of Rashba spin-orbit coupling (SOC). In the spin wave propagating with the wave vector, q, the behavior of q-dependent damping can be explained in terms of both inter- and intra-band spin excitations. The spatially dependent damping torques originating from Rashba SOC that cancel out in a uniform precession system distort the circular orbit of a magnetization-precession trajectory in the presence of inhomogeneous spin dynamics.
Electron spin dynamics in cubic GaN
NASA Astrophysics Data System (ADS)
Buß, J. H.; Schupp, T.; As, D. J.; Brandt, O.; Hägele, D.; Rudolph, J.
2016-12-01
The electron spin dynamics in cubic GaN is comprehensively investigated by time-resolved magneto-optical Kerr-rotation spectroscopy over a wide range of temperatures, magnetic fields, and doping densities. The spin dynamics is found to be governed by the interplay of spin relaxation of localized electrons and Dyakonov-Perel relaxation of delocalized electrons. Localized electrons significantly contribute to spin relaxation up to room temperature at moderate doping levels, while Dyakonov-Perel relaxation dominates for high temperatures or degenerate doping levels. Quantitative agreement to Dyakonov-Perel theory requires a larger value of the spin-splitting constant than theoretically predicted. Possible reasons for this discrepancy are discussed, including the role of charged dislocations.
NMR with generalized dynamics of spin and spatial coordinates
Lee, Chang Jae
1987-11-01
This work is concerned with theoretical and experimental aspects of the generalized dynamics of nuclear spin and spatial coordinates under magnetic-field pulses and mechanical motions. The main text begins with an introduction to the concept of ''fictitious'' interactions. A systematic method for constructing fictitious spin-1/2 operators is given. The interaction of spins with a quantized-field is described. The concept of the fictitious interactions under the irradiation of multiple pulses is utilized to design sequences for selectively averaging linear and bilinear operators. Relations between the low-field sequences and high-field iterative schemes are clarified. These relations and the transformation properties of the spin operators are exploited to develop schemes for heteronuclear decoupling of multi-level systems. The resulting schemes are evaluated for heteronuclear decoupling of a dilute spin-1/2 from a spin-1 in liquid crystal samples and from a homonuclear spin-1/2 pair in liquids. A relation between the spin and the spatial variables is discussed. The transformation properties of the spin operators are applied to spatial coordinates and utilized to develop methods for removing the orientational dependence responsible for line broadening in a powder sample. Elimination of the second order quadrupole effects, as well as the first order anisotropies is discussed. It is shown that various sources of line broadening can effectively be eliminated by spinning and/or hopping the sample about judiciously chosen axes along with appropriate radio-frequency pulse sequences.
Modulation of spin dynamics via voltage control of spin-lattice coupling in multiferroics
Zhu, Mingmin; Zhou, Ziyao; Peng, Bin; ...
2017-02-03
Our work aims at magnonics manipulation by the magnetoelectric coupling effect and is motivated by the most recent progresses in both magnonics (spin dynamics) and multiferroics fields. Here, voltage control of magnonics, particularly the surface spin waves, is achieved in La0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 multiferroic heterostructures. With the electron spin resonance method, a large 135 Oe shift of surface spin wave resonance (≈7 times greater than conventional voltage-induced ferromagnetic resonance shift of 20 Oe) is determined. A model of the spin-lattice coupling effect, i.e., varying exchange stiffness due to voltage-induced anisotropic lattice changes, has been established to explain experiment results with good agreement.more » In addition, an “on” and “off” spin wave state switch near the critical angle upon applying a voltage is created. The modulation of spin dynamics by spin-lattice coupling effect provides a platform for realizing energy-efficient, tunable magnonics devices.« less
Spin supercurrent, magnetization dynamics, and φ-state in spin-textured Josephson junctions
NASA Astrophysics Data System (ADS)
Kulagina, Iryna; Linder, Jacob
2014-08-01
The prospect of combining the dissipationless nature of superconducting currents with the spin polarization of magnetic materials is interesting with respect to exploring superconducting analogs of topics in spintronics. In order to accomplish this aim, it is pivotal to understand not only how such spin supercurrents can be created, but also how they interact dynamically with magnetization textures. In this paper, we investigate the appearance of a spin supercurrent and the resulting magnetization dynamics in a textured magnetic Josephson current by using three experimentally relevant models: (i) a superconductor∣ferromagnet∣superconductor (S∣F∣S) junction with spin-active interfaces, (ii) a S∣F1∣F2∣F3∣S Josephson junction with a ferromagnetic trilayer, and (iii) a Josephson junction containing a domain wall. In all of these cases, the supercurrent is spin polarized and exerts a spin-transfer torque on the ferromagnetic interlayers which causes magnetization dynamics. Using a scattering matrix formalism in the clean limit, we compute the Andreev bound states and resulting free energy of the system which in turn is used to solve the Landau-Lifshiftz-Gilbert equation. We compute both how the inhomogeneous magnetism influences the phase dependence of the charge supercurrent and the magnetization dynamics caused by the spin polarization of the supercurrent. Using a realistic experimental parameter set, we find that the spin supercurrent can induce magnetization switching that is controlled by the superconducting phase difference. Moreover, we demonstrate that the combined effect of chiral spin symmetry breaking of the system as a whole with interface scattering causes the systems above to act as phase batteries that may supply any superconducting phase difference φ in the ground state. Such a φ-junction is accompanied by an anomalous supercurrent appearing even at zero phase difference, and we demonstrate that the flow direction of this current is
Dynamical scaling in ferric oxide spin glasses
NASA Astrophysics Data System (ADS)
Irwin, G. M.
1995-06-01
A stochastic relaxation model for the Mössbauer spectra of ferric oxide spin glasses was used to analyze the spectra for the mixed spinel Mg1+tFe2-2tTitO4 with composition t=0.70. The results compare favorably with previously published results on the system BaSnxTi2-xFe4O11 with compositions x=0.40 and x=0.80, and suggest empirical scaling laws for the spin-order parameter defined as q=
Spin dynamics of counterrotating Kitaev spirals via duality
NASA Astrophysics Data System (ADS)
Kimchi, Itamar; Coldea, Radu
2016-11-01
Incommensurate spiral order is a common occurrence in frustrated magnetic insulators. Typically, all magnetic moments rotate uniformly, through the same wavevector. However the honeycomb iridates family Li2IrO3 shows an incommensurate order where spirals on neighboring sublattices are counterrotating, giving each moment a different local environment. Theoretically describing its spin dynamics has remained a challenge: The Kitaev interactions proposed to stabilize this state, which arise from strong spin-orbit effects, induce magnon umklapp scattering processes in spin-wave theory. Here we propose an approach via a (Klein) duality transformation into a conventional spiral of a frustrated Heisenberg model, allowing a direct derivation of the dynamical structure factor. We analyze both Kitaev and Dzyaloshinskii-Moriya based models, both of which can stabilize counterrotating spirals, but with different spin dynamics, and we propose experimental tests to identify the origin of counterrotation.
The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Wollan, D. S.
1974-01-01
A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.
Ning Boyuan; Zhuang Jun; Zhang Wenxian; You, J. Q.
2011-07-15
We study the enhancement of spin coherence with periodic, concatenated, or Uhrig dynamical decoupling N-pulse sequences in a spin-1 Bose-Einstein condensate, where the intrinsic dynamical instability in such a ferromagnetically interacting condensate causes spin decoherence and eventually leads to a multiple spatial-domain structure or a spin texture. Our results show that all three sequences successfully enhance the spin coherence by pushing the wave vector of the most unstable mode in the condensate to a larger value. Among the three sequences with the same number of pulses, the concatenated one shows the best performance in preserving the spin coherence. More interestingly, we find that all three sequences exactly follow the same enhancement law, k{sub -}T{sup 1/2}=c, with k{sub -} the wave vector of the most unstable mode, T the sequence period, and c a sequence-dependent constant. Such a law between k{sub -} and T is also derived analytically for an attractive scalar Bose-Einstein condensate subjected to a periodic dynamical decoupling sequence.
Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi
2016-10-07
Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.
NASA Astrophysics Data System (ADS)
Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi
2016-10-01
Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.
Spin Dynamics in an Ordered Stripe Phase
NASA Astrophysics Data System (ADS)
Tranquada, J. M.; Wochner, P.; Buttrey, D. J.
1997-09-01
Inelastic neutron scattering has been used to measure the low-energy spin excitations in the ordered charge-stripe phase of La2NiO4+δ with δ = 0.133. Spin-wave-like excitations disperse away from the incommensurate magnetic superlattice points with a velocity ~60% of that in the δ = 0 compound. Incommensurate inelastic peaks remain well resolved up to at least twice the magnetic ordering temperature. Paramagnetic scattering from a δ = 0.105 sample, which has a Néel-ordered ground state, shows anomalies suggestive of incipient stripe correlations. Similarities between these results and measurements on superconducting cuprates are discussed.
Number Fluctuation Dynamics of Atomic Spin Mixing inside a Condensate
Chang, Lee; Zhai, Q.; Lu Rong; You, L.
2007-08-24
We investigate the quantum dynamics of number fluctuations inside an atomic condensate during coherent spin mixing among internal states of the ground state hyperfine manifold, by quantizing the semiclassical nonrigid pendulum model in terms of the conjugate variable pair: the relative phase and the atom number. Our result provides a theoretical basis that resolves the resolution limit, or the effective ''shot-noise'' level, for counting atoms that is needed to clearly detect quantum correlation effects in spin mixing.
Using nonequilibrium dynamics to probe competing orders in a Mott-Peierls system
Wang, Y.; Moritz, B.; Chen, C. -C.; ...
2016-02-24
Competition between ordered phases, and their associated phase transitions, are significant in the study of strongly correlated systems. Here, we examine one aspect, the nonequilibrium dynamics of a photoexcited Mott-Peierls system, using an effective Peierls-Hubbard model and exact diagonalization. Near a transition where spin and charge become strongly intertwined, we observe antiphase dynamics and a coupling-strength-dependent suppression or enhancement in the static structure factors. The renormalized bosonic excitations coupled to a particular photoexcited electron can be extracted, which provides an approach for characterizing the underlying bosonic modes. The results from this analysis for different electronic momenta show an uneven softeningmore » due to a stronger coupling near kF. As a result, this behavior reflects the strong link between the fermionic momenta, the coupling vertices, and ultimately, the bosonic susceptibilities when multiple phases compete for the ground state of the system.« less
Using nonequilibrium dynamics to probe competing orders in a Mott-Peierls system
Wang, Y.; Moritz, B.; Chen, C. -C.; Jia, C. J.; van Veenendaal, M.; Devereaux, T. P.
2016-02-24
Competition between ordered phases, and their associated phase transitions, are significant in the study of strongly correlated systems. Here, we examine one aspect, the nonequilibrium dynamics of a photoexcited Mott-Peierls system, using an effective Peierls-Hubbard model and exact diagonalization. Near a transition where spin and charge become strongly intertwined, we observe antiphase dynamics and a coupling-strength-dependent suppression or enhancement in the static structure factors. The renormalized bosonic excitations coupled to a particular photoexcited electron can be extracted, which provides an approach for characterizing the underlying bosonic modes. The results from this analysis for different electronic momenta show an uneven softening due to a stronger coupling near k_{F}. As a result, this behavior reflects the strong link between the fermionic momenta, the coupling vertices, and ultimately, the bosonic susceptibilities when multiple phases compete for the ground state of the system.
Theory of quantum control of spin-photon dynamics and spin decoherence in semiconductors
NASA Astrophysics Data System (ADS)
Yao, Wang
Single electron spin in a semiconductor quantum dot (QD) and single photon wavepacket propagating in an optical waveguide are investigated as carriers of quantum bit (qubit) for information processing. Cavity quantum electrodynamics of the coupled system composed of charged QD, microcavity and waveguide provides a quantum interface for the interplay of stationary spin qubits and flying photon qubits via cavity assisted optical control. This interface forms the basis for a wide range of essential functions of a quantum network, including transferring, swapping, and entangling qubits at distributed quantum nodes as well as a deterministic source and an efficient detector of a single photon wavepacket with arbitrarily specified shape. The cavity assisted optical process also made possible ultrafast initialization and QND readout of the spin qubit in QD. In addition, the strong optical nonlinearity of dot-cavity-waveguide coupled system enables phase gate and entanglement operation for flying single photon qubits in waveguides. The coherence of the electron spin is the wellspring of these quantum applications being investigated. At low temperature and strong magnetic field, the dominant cause of electron spin decoherence is the coupling with the interacting lattice nuclear spins. We present a quantum solution to the coupled dynamics of the electron with the nuclear spin bath. The decoherence is treated in terms of quantum entanglement of the electron with the nuclear pair-flip excitations driven by the various nuclear interactions. A novel nuclear interaction, mediated by virtue spin-flips of the single electron, plays an important role in single spin free-induction decay (FID). The spin echo not only refocuses the dephasing by inhomogeneous broadening in ensemble dynamics but also eliminates the decoherence by electron-mediated nuclear interaction. Thus, the decoherence times for single spin FID and ensemble spin echo are significantly different. The quantum theory of
Competing orders and spin density wave instabilities in FeAs-based systems
NASA Astrophysics Data System (ADS)
Wang, Nan Lin
2009-03-01
The discovery of superconductivity with Tc up to 55 K in layered FeAs-based compounds has generated tremendous interest in the scientific community. Except for relatively high Tc, the Fe pnictides display many interesting properties. Among others, the presence of competing orders is one of the most intriguing phenomena. In the early stage of our study on the compounds, we identified a spin-density-wave (SDW) ordered state for the parent compound with a stripe (or collinear) type spin structure based on the transport, specific heat, optical spectroscopy measurements and the first- principle calculations. The proposed spin structure from a nesting of the Fermi surfaces is confirmed by subsequent neutron experiments. However, it could also be explained by a local superexchange picture. In this talk I shall focus on our recent optical data on single crystal samples, trying to address the debating issue about itinerant or localized approaches to the SDW order. We found that the undoped compounds are quite metallic with relatively high plasma frequencies above TSDW. Upon entering the SDW ordered state, a large part of the Drude component is removed by the gapping of Fermi surfaces. Meanwhile, the carrier scattering rate is even more dramatically reduced. Those observations favor an itinerant description for the driving mechanism of SDW instability. Nevertheless, our experiments also indicate that Fe pnictides are not simple metals. A high energy gap-like feature is present even above TSDW, which seems to be linked with the antiferromagnetic spin fluctuations. For the superconducting samples, a superconducting pairing energy gap is clearly observed in the far-infrared reflectance measurement. The Ferrell-Glover- Tinkham sum rule is satisfied at a low energy scale. Work done in collaboration with: G. F. Chen, J. L. Luo, Z. Fang, X. Dai, W. Z. Hu, J. Dong, G. Li, Z. Li, P. Dai, J. Lynn, H. Q. Yuang, J. Singleton.
Optically induced dynamic nuclear spin polarisation in diamond
NASA Astrophysics Data System (ADS)
Scheuer, Jochen; Schwartz, Ilai; Chen, Qiong; Schulze-Sünninghausen, David; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi; Luy, Burkhard; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor
2016-01-01
The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.
Dynamic spin label study of the barstar-barnase complex.
Timofeev, V P; Balandin, T G; Tkachev, Ya V; Novikov, V V; Lapuk, V A; Deev, S M
2007-09-01
The dynamic spin label method was used to study protein-protein interactions in the model complex of the enzyme barnase (Bn) with its inhibitor barstar. The C40A mutant of barstar (Bs) containing a single cysteine residue was modified with two different spin labels varying in length and structure of a flexible linker. Each spin label was selectively bound to the Cys82 residue, located near the Bn-Bs contact site. The formation of the stable protein complex between Bn and spin labeled Bs was accompanied by a substantial restriction of spin label mobility, indicated by remarkable changes in the registered EPR spectra. Order parameter, S, as an estimate of rapid reorientation of spin label relative to protein molecule, was sharply increasing approaching 1. However, the rotational correlation time tau for spin-labeled Bs and its complex with Bn in solution corresponded precisely to their molecular weights. These data indicate that both Bs and its complex with Bn are rigid protein entities. Spin labels attached to Bs in close proximity to an interface of interaction with Bn, regardless of its structure, undergo significant restriction of mobility by the environment of the contact site of the two proteins. The results show that this approach can be used to investigate fusion proteins containing Bn or Bs.
Collective Dynamics in Spin-Textured Electronic Systems
NASA Astrophysics Data System (ADS)
Wong, Clement H.
2010-06-01
In chapter I and II, we develop the hydrodynamic theory of collinear spin currents coupled to magnetization dynamics in metallic ferromagnets. The collective spin density couples to the spin current through a U(1) Berry-phase gauge field determined by the local texture and dynamics of the magnetization. We determine phenomenologically the dissipative corrections to the equation of motion for the electronic current, which consist of a dissipative spin-motive force generated by magnetization dynamics and a magnetic texture-dependent resistivity tensor. The reciprocal dissipative, adiabatic spin torque on the magnetic texture follows from the Onsager principle. By applying general thermodynamic relations, we determine a lower bound on the magnetic-texture resistivity. We investigate the effects of thermal fluctuations and find that electronic dynamics contribute to a nonlocal Gilbert damping tensor in the Landau-Lifshitz-Gilbert equation for the magnetization. In chapter III, we apply our general theory to soliton dynamics in spin-textured metals. We find it necessary to modify the Landau-Lifshitz-Gilbert equation and the corresponding solitonic equations of motion to include higher-order texture effects stemming hydrodynamic backaction. As an example, we consider the gyration of a vortex in a point-contact spin valve, and discuss modifications of orbit radius, frequency, and dissipation power. In chapter IV, we generalize our hydrodynamic theory to a kinetic equation, which we derive in a semiclassical expansion of the density-matrix equation of motion up to the first order in quantum mechanical corrections for a general two-band Hamiltonian. We find, in addition to corrections to the single-particle equation of motion due to Berry curvatures, a modification to the phase-space density of states, and interband terms associated with transport through a general curved phase space. We apply our kinetic equation to the case of inhomogeneities stemming from gauge
Kim, Tae Heon; Grünberg, Peter; Han, Song Hee; Cho, Beongki
2016-01-01
The spin-torque driven dynamics of antiferromagnets with Dzyaloshinskii-Moriya interaction (DMI) were investigated based on the Landau-Lifshitz-Gilbert-Slonczewski equation with antiferromagnetic and ferromagnetic order parameters (l and m, respectively). We demonstrate that antiferromagnets including DMI can be described by a 2-dimensional pendulum model of l. Because m is coupled with l, together with DMI and exchange energy, close examination of m provides fundamental understanding of its dynamics in linear and nonlinear regimes. Furthermore, we discuss magnetization reversal as a function of DMI and anisotropy energy induced by a spin current pulse. PMID:27713522
NASA Astrophysics Data System (ADS)
Kim, Tae Heon; Grünberg, Peter; Han, Song Hee; Cho, Beongki
2016-10-01
The spin-torque driven dynamics of antiferromagnets with Dzyaloshinskii-Moriya interaction (DMI) were investigated based on the Landau-Lifshitz-Gilbert-Slonczewski equation with antiferromagnetic and ferromagnetic order parameters (l and m, respectively). We demonstrate that antiferromagnets including DMI can be described by a 2-dimensional pendulum model of l. Because m is coupled with l, together with DMI and exchange energy, close examination of m provides fundamental understanding of its dynamics in linear and nonlinear regimes. Furthermore, we discuss magnetization reversal as a function of DMI and anisotropy energy induced by a spin current pulse.
Dynamics of spin torque switching in all-perpendicular spin valve nanopillars
NASA Astrophysics Data System (ADS)
Liu, H.; Bedau, D.; Sun, J. Z.; Mangin, S.; Fullerton, E. E.; Katine, J. A.; Kent, A. D.
2014-05-01
We present a systematic experimental study of the spin-torque-induced magnetic switching statistics at room temperature, using all-perpendicularly magnetized spin-valves as a model system. Three physical regimes are distinguished: a short-time ballistic limit below a few nanoseconds, where spin-torque dominates the reversal dynamics from a thermal distribution of initial conditions; a long time limit, where the magnetization reversal probability is determined by spin-torque-amplified thermal activation; and a cross-over regime, where the spin-torque and thermal agitation both contribute. For a basic quantitative understanding of the physical processes involved, an analytical macrospin model is presented which contains both spin-torque dynamics and finite temperature effects. The latter was treated rigorously using a Fokker-Plank formalism, and solved numerically for specific sets of parameters relevant to the experiments to determine the switching probability behavior in the short-time and cross-over regimes. This analysis shows that thermal fluctuations during magnetization reversal greatly affect the switching probability over all the time scales studied, even in the short-time limit.
Lattice instability and competing spin structures in the double perovskite insulator Sr2FeOsO6.
Paul, Avijit Kumar; Reehuis, Manfred; Ksenofontov, Vadim; Yan, Binghai; Hoser, Andreas; Többens, Daniel M; Abdala, Paula M; Adler, Peter; Jansen, Martin; Felser, Claudia
2013-10-18
The semiconductor Sr2FeOsO6, depending on temperature, adopts two types of spin structures that differ in the spin sequence of ferrimagnetic iron-osmium layers along the tetragonal c axis. Neutron powder diffraction experiments, 57Fe Mössbauer spectra, and density functional theory calculations suggest that this behavior arises because a lattice instability resulting in alternating iron-osmium distances fine-tunes the balance of competing exchange interactions. Thus, Sr2FeOsO6 is an example of a double perovskite, in which the electronic phases are controlled by the interplay of spin, orbital, and lattice degrees of freedom.
NASA Astrophysics Data System (ADS)
Mondal, Ritwik; Berritta, Marco; Oppeneer, Peter M.
2016-10-01
Starting from the Dirac-Kohn-Sham equation, we derive the relativistic equation of motion of spin angular momentum in a magnetic solid under an external electromagnetic field. This equation of motion can be rewritten in the form of the well-known Landau-Lifshitz-Gilbert equation for a harmonic external magnetic field and leads to a more general magnetization dynamics equation for a general time-dependent magnetic field. In both cases there is an electronic spin-relaxation term which stems from the spin-orbit interaction. We thus rigorously derive, from fundamental principles, a general expression for the anisotropic damping tensor which is shown to contain an isotropic Gilbert contribution as well as an anisotropic Ising-like and a chiral, Dzyaloshinskii-Moriya-like contribution. The expression for the spin relaxation tensor comprises furthermore both electronic interband and intraband transitions. We also show that when the externally applied electromagnetic field possesses spin angular momentum, this will lead to an optical spin torque exerted on the spin moment.
Dynamics of magnetization in ferromagnet with spin-transfer torque
NASA Astrophysics Data System (ADS)
Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming
2014-11-01
We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out
The connection between statics and dynamics of spin glasses
NASA Astrophysics Data System (ADS)
Wittmann, Matthew; Young, A. P.
2016-01-01
We present results of numerical simulations on a one-dimensional Ising spin glass with long-range interactions. Parameters of the model are chosen such that it is a proxy for a short-range spin glass above the upper critical dimension (i.e. in the mean-field regime). The system is quenched to a temperature well below the transition temperature {{T}\\text{c}} and the growth of correlations is observed. The spatial decay of the correlations at distances less than the dynamic correlation length ξ (t) agrees quantitatively with the predictions of a static theory, the ‘metastate’, evaluated according to the replica symmetry breaking (RSB) theory. We also compute the dynamic exponent z (T ) defined by ξ (t)\\propto {{t}1/z(T)} and find that it is compatible with the mean-field value of the critical dynamical exponent for short range spin glasses.
Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.
Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva
2015-09-01
Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This
Spin-dynamics simulations of the triangular antiferromagnetic XY model*
NASA Astrophysics Data System (ADS)
Nho, Kwangsik; Landau, D. P.
2003-03-01
Using Monte Carlo and spin-dynamics methods, we have studied the dynamic behavior of the classical, antiferromagnetic XY model on a triangular lattice. The temporal evolutions of spin configurations were obtained by solving numerically the coupled equations of motion for each spin using fourth-order Suzuki-Trotter decompositions of exponential operators. We calculated the dynamic structure factor S(q,w) for momentum q and frequency w. Below T_KT (Kosteritz-Thouless transition), both the in-plane (S^xx) and out-of-plane (S^zz) components exhibit very strong and sharp spin-wave peaks. Well above T_KT, S^xx and S^zz apparently display a central peak, and spin-wave signatures are still seen in S^zz. In addition, we also observed an almost dispersionless domain-wall peak at high w below Tc (Ising transition), where long-range order appears in the staggered chirality[1]. We found that our results demonstrate the consistency of the dynamic finite-size scaling theory for the characteristic frequency wm and S(q,w). *Supported by NSF [1] D.H. Lee, J.D. Joannopoulos, J.W. Negele, and D.P. Landau, Phys. Rev. Lett. 52, 433 (1984)
Tunable nonequilibrium dynamics of field quenches in spin ice
Mostame, Sarah; Castelnovo, Claudio; Moessner, Roderich; Sondhi, Shivaji L.
2014-01-01
We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state—a “Coulomb phase”—whose excitations are point-like defects—magnetic monopoles—in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties—including even the effective dimensionality of the system—can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics. PMID:24379372
Tunable nonequilibrium dynamics of field quenches in spin ice.
Mostame, Sarah; Castelnovo, Claudio; Moessner, Roderich; Sondhi, Shivaji L
2014-01-14
We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state--a "Coulomb phase"--whose excitations are point-like defects--magnetic monopoles--in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties--including even the effective dimensionality of the system--can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics.
Wiecki, P.; Roy, B.; Johnston, D. C.; Bud’ko, S. L.; Canfield, P. C.; Furukawa, Y.
2015-09-22
In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic and in-plane ferromagnetic (FM) wave vectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using ^{75}As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe_{2}As_{2} families of iron-pnictide superconductors. Furthermore, these FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of T_{c} and the shape of the superconducting dome in these and other iron-pnictide families.
Wiecki, P.; Roy, B.; Johnston, D. C.; ...
2015-09-22
In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic and in-plane ferromagnetic (FM) wave vectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using 75As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe2As2 families of iron-pnictide superconductors. Furthermore, these FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of Tc and the shape of the superconducting domemore » in these and other iron-pnictide families.« less
Destination state screening of active spaces in spin dynamics simulations
NASA Astrophysics Data System (ADS)
Krzystyniak, M.; Edwards, Luke J.; Kuprov, Ilya
2011-06-01
We propose a novel avenue for state space reduction in time domain Liouville space spin dynamics simulations, using detectability as a selection criterion - only those states that evolve into or affect other detectable states are kept in the simulation. This basis reduction procedure (referred to as destination state screening) is formally exact and can be applied on top of the existing state space restriction techniques. As demonstrated below, in many cases this results in further reduction of matrix dimension, leading to considerable acceleration of many spin dynamics simulation types. Destination state screening is implemented in the latest version of the Spinach library (http://spindynamics.org).
Spin dynamics in layered honeycomb iridates: implications for Kitaev physics
NASA Astrophysics Data System (ADS)
Choi, Sungkyun
2014-03-01
We explore the spin dynamics in the frustrated honeycomb magnets Na2IrO3 and Li2IrO3, candidates to display novel magnetic states stabilized by the strong spin-orbit coupling at the 5d Ir ions. Theory predicts composite spin-orbital J =1/2 moments at the Ir ions coupled by strongly-anisotropic and bond-directional exchanges, the so-called Kitaev honeycomb model, which has in its phase diagram novel magnetically-ordered ordered phases and a quantum spin liquid with exotic excitations. To search for such physics the experimental technique of choice is inelastic neutron scattering to probe the spin dynamics, however this is technically very challenging due to the large absorption cross-section of neutrons by the Ir nuclei. Using an optimised setup to minimise neutron absorption we have been successful in observing strongly dispersive spin-wave excitations of the Ir moments in both compounds and results are compared with predictions for a Kitaev-Heisenberg model as well as a Heisenberg model with further neighbour couplings.
Dynamic coupling of ferromagnets via spin Hall magnetoresistance
NASA Astrophysics Data System (ADS)
Taniguchi, Tomohiro
2017-03-01
The synchronized magnetization dynamics in ferromagnets on a nonmagnetic heavy metal caused by the spin Hall effect is investigated theoretically. The direct and inverse spin Hall effects near the ferromagnetic/nonmagnetic interface generate longitudinal and transverse electric currents. The phenomenon is known as the spin Hall magnetoresistance effect, whose magnitude depends on the magnetization direction in the ferromagnet due to the spin transfer effect. When another ferromagnet is placed onto the same nonmagnet, these currents are again converted to the spin current by the spin Hall effect and excite the spin torque to this additional ferromagnet, resulting in the excitation of the coupled motions of the magnetizations. The in-phase or antiphase synchronization of the magnetization oscillations, depending on the value of the Gilbert damping constant and the field-like torque strength, is found in the transverse geometry by solving the Landau-Lifshitz-Gilbert equation numerically. On the other hand, in addition to these synchronizations, the synchronization having a phase difference of a quarter of a period is also found in the longitudinal geometry. The analytical theory clarifying the relation among the current, frequency, and phase difference is also developed, where it is shown that the phase differences observed in the numerical simulations correspond to that giving the fixed points of the energy supplied by the coupling torque.
Amaha, S.; Hatano, T.; Tarucha, S.; Gupta, J. A.; Austing, D. G.
2015-04-27
We investigate nuclear spin pumping with five-electron quadruplet spin states in a spin-blockaded weakly coupled vertical double quantum dot device. Two types of hysteretic steps in the leakage current are observed on sweeping the magnetic field and are associated with bidirectional polarization of nuclear spin. Properties of the steps are understood in terms of bias-voltage-dependent conditions for the mixing of quadruplet and doublet spin states by the hyperfine interaction. The hysteretic steps vanish when up- and down-nuclear spin pumping processes are in close competition.
Dynamics of Flexible Spinning Satellites with Radial Wire Antennas
NASA Technical Reports Server (NTRS)
Longman, R. W.; Fedor, J. V.
1973-01-01
A dynamic analysis is presented for a spin stabilized spacecraft employing four radial wire antennas with tip masses, a configuration first employed in the IMP-J spacecraft. The use of wires in place of the usual booms represents the ultimate in weight reduction at the expanse of flexibility. The satellite is modelled as a 14 degree of freedom system, and the linearized equations of motion are found. The lowest order vibrational modes and natural frequencies of the gyroscopically coupled system are then determined. Because the satellite spin rate is decreased by antenna deployment, a spin-up maneuver is needed. The response of the time varying mode equations during spin-up is found, for the planar modes, in terms of Bessel functions and a Struve function of order -1/4. Because tables of the latter are not readily available, the particular solution is expressed in various forms including an infinite series of Bessel functions and a particularly useful asymptotic expansion.
LETTER TO THE EDITOR: Dynamical crossover in 'hot' spin ice
NASA Astrophysics Data System (ADS)
Ehlers, G.; Cornelius, A. L.; Orendác, M.; Kajnaková, M.; Fennell, T.; Bramwell, S. T.; Gardner, J. S.
2003-01-01
The magnetic dynamics of the spin ice material Ho2Ti2O7 in its paramagnetic ('hot') phase have been investigated by a combination of neutron spin echo and ac-susceptibility techniques. Relaxation at high temperatures (T > 15 K) is proved to occur by a thermally activated single-ion process that is distinct from the process that dominates at lower temperatures (1 K < T < 15 K). It is argued that the low-temperature process must involve quantum mechanical spin tunnelling, as quasi-classical channels of relaxation are exhausted in this temperature range. Our results resolve a mystery in the physics of spin ice: why has a 15 K ac-susceptibility peak been observed in Dy2Ti2O7 but not in Ho2Ti2O7 or Ho2Sn2O7?
Shapiro like steps reveals molecular nanomagnets’ spin dynamics
Abdollahipour, Babak; Abouie, Jahanfar Ebrahimi, Navid
2015-09-15
We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet’s spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields.
Local thermomagnonic torques in two-fluid spin dynamics
NASA Astrophysics Data System (ADS)
Flebus, Benedetta; Upadhyaya, Pramey; Duine, Rembert A.; Tserkovnyak, Yaroslav
2016-12-01
We develop a general phenomenology describing the interplay between coherent and incoherent dynamics in ferromagnetic insulators. Using the Onsager reciprocity and Neumann's principle, we derive expressions for the local thermomagnonic torques exerted by thermal magnons on the order-parameter dynamics and the reciprocal pumping processes, which are in close analogy to the spin-transfer torque and the spin pumping at metallic interfaces. Our formalism is applicable to general long-wavelength dynamics and, although here we explicitly focus on ferromagnetic insulators possessing U(1) symmetry, our approach can be easily extended to other classes of magnetic materials. As an illustrative example, we apply our theory to investigate a domain wall floating over a spin superfluid, whose dynamics are triggered thermally at the system's edge. Our results demonstrate that the local pumping of coherent spin dynamics by a thermal magnon gas offers an alternative route—with no need for conducting components and thus devoid of ohmic losses—for the control and manipulation of topological solitons.
Antiferromagnetic order and spin dynamics in iron-based superconductors
NASA Astrophysics Data System (ADS)
Dai, Pengcheng
2015-07-01
High-transition temperature (high-Tc) superconductivity in the iron pnictides or chalcogenides emerges from the suppression of the static antiferromagnetic order in their parent compounds, similar to copper oxide superconductors. This raises a fundamental question concerning the role of magnetism in the superconductivity of these materials. Neutron scattering, a powerful probe to study the magnetic order and spin dynamics, plays an essential role in determining the relationship between magnetism and superconductivity in high-Tc superconductors. The rapid development of modern neutron time-of-flight spectrometers allows a direct determination of the spin dynamical properties of iron-based superconductors throughout the entire Brillouin zone. In this paper, an overview is presented of the neutron scattering results on iron-based superconductors, focusing on the evolution of spin-excitation spectra as a function of electron and hole doping and isoelectronic substitution. Spin dynamical properties of iron-based superconductors are compared with those of copper oxide and heavy fermion superconductors and the common features of spin excitations in these three families of unconventional superconductors and their relationship with superconductivity are discussed.
Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of ½
Maryasov, Alexander G.
2012-01-01
The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or ‘powder’ sample when g tensor anisotropy is significant. PMID:22743542
Spin dynamics simulations for a nanoscale Heisenberg antiferromagnet
NASA Astrophysics Data System (ADS)
Hou, Zhuofei; Landau, D. P.; Brown, G.; Stocks, G. M.
2010-03-01
Thermoinduced magnetization(TiM) is a novel response which was predicted to occur in nanoscale antiferromagnetic materials. Extensive Monte Carlo simulations footnotetextG. Brown, A. Janotti, M. Eisenbach, and G. M. Stocks, Phys.Rev.B 72, 140405(2005) have shown that TiM is an intrinsic property of the antiferromagnetic classical Heisenberg model below the Neel temperature. To obtain a fundamental understanding of TiM, spin dynamics(SD) simulations are performed to study the spin wave behavior, which seems to be the cause of TiM. A classical Heisenberg model with an antiferromagnetic nearest-neighbor exchange interaction and uniaxial single-site anisotropy is studied. Simple-cubic lattices with free boundary conditions are used. We employed the fast spin dynamics algorithms with fourth-order Suzuki-Trotter decompositions of the exponential operator. Additional small excitation peaks due to surface effects are found in transverse S(q,w).
Combined Molecular Dynamics-Spin Dynamics Simulation of α-Iron in an External Magnetic Field
NASA Astrophysics Data System (ADS)
Mudrick, Mark; Perera, Dilina; Landau, David P.
Using an atomistic model that treats both translational and spin degrees of freedom, combined molecular and spin dynamics simulations have been performed to study dynamic properties of α-iron. Atomic interactions are described by an empirical many-body potential while spin-spin interactions are handled with a Heisenberg-like Hamiltonian with a coordinate dependent exchange interaction. Each of these interactions are parameterized by first-principles calculations. These simulations numerically solve equations of motion using an algorithm based on the second-order Suzuki-Trotter decomposition for the time evolution operator. Through calculation of the Fourier transform of space-displaced time-displaced correlation functions, vibrational and magnetic excitations have been studied. The application of an external magnetic field up to 10-T has now been included and has been shown to increase the characteristic frequencies of the single-spin-wave excitations. Two-spin-wave interactions have also been investigated.
Spin dynamics in a Curie-switch.
Kravets, A F; Tovstolytkin, A I; Dzhezherya, Yu I; Polishchuk, D M; Kozak, I M; Korenivski, V
2015-11-11
Ferromagnetic resonance properties of F1/f/F2/AF multilayers, where weakly ferromagnetic spacer f is sandwiched between strongly ferromagnetic layers F1 and F2, with F1 being magnetically soft and F2-magnetically hard due to exchange pinning to antiferromagnetic layer AF, are investigated. Spacer-mediated exchange coupling is shown to strongly affect the resonance fields of both F1 and F2 layers. Our theoretical calculations as well as measurements show that the key magnetic parameters of the spacer, which govern the ferromagnetic resonance in F1/f/F2/AF, are the magnetic exchange length (Λ), effective saturation magnetization at T = 0 (m0) and effective Curie temperature (T(C)(eff)). The values of these key parameters are deduced from the experimental data for multilayers with f = Ni(x)Cu(100-x), for the key ranges in the Ni-concentration (x = 54 ÷ 70 at. %) and spacer thickness (d = 3 ÷ 6 nm). The results obtained provide a deeper insight into thermally-controlled spin precession and switching in magnetic nanostructures, with potential applications in spin-based oscillators and memory devices.
Managerial competencies necessary in today's dynamic health care environment.
Anderson, Peggy; Pulich, Marcia
2002-12-01
The traditional functions of management--planning, organizing, leading, and controlling--continue to be the key activities used to enable the organization to accomplish its goals and objectives. Though significant changes have occurred in all organizational structures, processes, and managerial styles, these traditional functions remain a constant. What has undergone significant change, as this article examines, are the skills and competencies within each function, which managers must develop and employ if they are to be successful practitioners in today's dynamic health care organizations.
Spin dynamics in storage rings and linear accelerators
Irwin, J.
1994-04-01
The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.
Dynamical spin-density waves in a spin-orbit-coupled Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Li, Yan; Qu, Chunlei; Zhang, Yongsheng; Zhang, Chuanwei
2015-07-01
Synthetic spin-orbit (SO) coupling, an important ingredient for quantum simulation of many exotic condensed matter physics, has recently attracted considerable attention. The static and dynamic properties of a SO-coupled Bose-Einstein condensate (BEC) have been extensively studied in both theory and experiment. Here we numerically investigate the generation and propagation of a dynamical spin-density wave (SDW) in a SO-coupled BEC using a fast moving Gaussian-shaped barrier. We find that the SDW wavelength is sensitive to the barrier's velocity while varies slightly with the barrier's peak potential or width. We qualitatively explain the generation of SDW by considering a rectangular barrier in a one-dimensional system. Our results may motivate future experimental and theoretical investigations of rich dynamics in the SO-coupled BEC induced by a moving barrier.
Competing decay modes of a high-spin isomer in the proton-unbound nucleus ¹⁵⁸Ta*
Carroll, R. J.; Page, R. D.; Joss, D. T.; ...
2015-01-01
An isomeric state at high spin and excitation energy was recently observed in the proton-unbound nucleus 158Ta. This state was observed to decay by both α and γ decay modes. The large spin change required to decay via γ-ray emission incurs a lifetime long enough for α decay to compete. The α decay has an energy of 8644(11) keV, which is among the highest observed in the region, a partial half-life of 440(70) μs and changes the spin by 11ℏ. In this study, additional evidence supporting the assignment of this α decay to the high-spin isomer in 158Ta will bemore » presented.« less
Competing decay modes of a high-spin isomer in the proton-unbound nucleus ¹⁵⁸Ta*
Carroll, R. J.; Page, R. D.; Joss, D. T.; Uusitalo, J.; Darby, I. G.; Andgren, K.; Cederwall, B.; Eeckhaudt, S.; Grahn, T.; Gray-Jones, C.; Greenlees, P. T.; Hadinia, B.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppänen, A. -P.; Nyman, M.; O'Donnell, D.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Seweryniak, D.; Simpson, J.
2015-01-01
An isomeric state at high spin and excitation energy was recently observed in the proton-unbound nucleus ^{158}Ta. This state was observed to decay by both α and γ decay modes. The large spin change required to decay via γ-ray emission incurs a lifetime long enough for α decay to compete. The α decay has an energy of 8644(11) keV, which is among the highest observed in the region, a partial half-life of 440(70) μs and changes the spin by 11ℏ. In this study, additional evidence supporting the assignment of this α decay to the high-spin isomer in ^{158}Ta will be presented.
Spin Dynamics of Electrons Confined in Silicon Heterostructures
NASA Astrophysics Data System (ADS)
Jock, Ryan Michael
The spin states of electrons confined in silicon heterostructures have shown promise as qubits for quantum information processing. Recently, a host of single and few electron silicon quantum dot device architectures have arisen as implementations for quantum computation. These devices often combine regions of low density two-dimensional (2D) electrons, localized electrons, and interfaces depleted of electrons. Electron spin resonance (ESR) is a unique tool for probing the spin dynamics of both mobile and localized electrons at silicon heterointerfaces and investigating the effects limiting the ability to control electrons and their spin states in these structures. We use a continuous wave ESR method to examine localized 2D electron band-tail states at Si/SiO 2 interfaces in large area metal-oxide-semiconductor transistors. We compare two devices, fabricated in different laboratories, which display similar low temperature (4.2 K) peak mobilities. We find that one of the devices displays a smaller band-tail density of confined states and a shallower characteristic confinement. Thus, ESR reveals a difference in device quality, which is not apparent from mobility measurements, and is a valuable tool for evaluating the interface quality in Si/SiO2 heterostructures. Additionally, we use pulsed ESR techniques to study the spin dynamics of electrons confined in Si/SiGe heterostructures. For mobile 2D electrons, the density-dependent Dyakonov-Perel mechanism dominates spin relaxation. At low 2D densities, stronger electron-electron interactions cause an increase in the electron effective mass, leading to an increase in spin susceptibility. For very low densities, natural disorder localizes electrons at the silicon heterointerface. Naturally localized electrons in these structures display short spin relaxation times (< 0.1 ms). By electrostatically confining electrons to quantum dots, the spin relaxation time may be extended. We fabricate large-area dual-gated devices which
Unconventional superfluid phases and the phase dynamics in spin-orbit-coupled Bose systems
NASA Astrophysics Data System (ADS)
Dutta, Anirban; Mandal, Saptarshi
2013-12-01
We study the phase and amplitude distribution of superfluid (SF) order parameters for spin-orbit-coupled two species bosons in a two-dimensional finite-size square lattice using inhomogeneous mean-field analysis. We demonstrate how phase distribution of the SF order parameter evolves as we tune the spin-orbit coupling γ and t, the spin-independent hopping in the strong-coupling limit. For t≫γ, we find the homogeneous superfluid phase where the phase of the SF order parameter is uniform. As we increase γ, spatial inhomogeneity in the phases of the SF order parameter grows leading to a twisted superfluid phase. For t˜γ, competing orderings in the phase distribution are observed. At large γ limit, a ferromagnetic stripe ordering appears along the diagonal. We explain that this is due to the frustration bought in by the spin-orbit interaction. Isolated vortex formation is also shown to appear. The effect of the detuning field δ on the distribution of phases and amplitudes of the order parameter has also been studied. We also investigate the possible collective modes for this finite-size system. In a deep superfluid regime we derive the Euler-Lagrange equation of motion for the phases and the dynamics of lowest normal modes are discussed.
Dynamic trajectories of growth and nitrogen capture by competing plants.
Trinder, Clare; Brooker, Rob; Davidson, Hazel; Robinson, David
2012-03-01
Although dynamic, plant competition is usually estimated as biomass differences at a single, arbitrary time; resource capture is rarely measured. This restricted approach perpetuates uncertainty. To address this problem, we characterized the competitive dynamics of Dactylis glomerata and Plantago lanceolata as continuous trajectories of biomass production and nitrogen (N) capture. Plants were grown together or in isolation. Biomass and N content were measured at 17 harvests up to 76 d after sowing. Data were fitted to logistic models to derive instantaneous growth and N capture rates. Plantago lanceolata was initially more competitive in terms of cumulative growth and N capture, but D. glomerata was eventually superior. Neighbours reduced maximum biomass, but influenced both maximum N capture and its rate constant. Timings of maximal instantaneous growth and N capture rates were similar between species when they were isolated, but separated by 16 d when they were competing, corresponding to a temporal convergence in maximum growth and N capture rates in each species. Plants processed N and produced biomass differently when they competed. Biomass and N capture trajectories demonstrated that competitive outcomes depend crucially on when and how 'competition' is measured. This potentially compromises the interpretation of conventional competition experiments.
Dynamic dependence to domain wall propagation through artificial spin ice
NASA Astrophysics Data System (ADS)
Burn, D. M.; Chadha, M.; Branford, W. R.
2017-03-01
Domain wall propagation dynamics has been studied in nanostructured artificial kagome spin-ice structures. A stripline circuit has been used to provide localized pulsed magnetic fields within the artificial spin-ice (ASI) structure. This provides control of the system through electrically assisted domain wall nucleation events. Synchronization of the pulsed fields with additional global magnetic fields and the use of a focused magneto-optical Kerr effect magnetometer allows our experiments to probe the domain wall transit through an extended ASI structure. We find that the propagation distance depends on the driving field revealing field-driven properties of domain walls below their intrinsic nucleation field.
Computer studies of multiple-quantum spin dynamics
Murdoch, J.B.
1982-11-01
The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.
Universal dynamic scaling in three-dimensional Ising spin glasses
NASA Astrophysics Data System (ADS)
Liu, Cheng-Wei; Polkovnikov, Anatoli; Sandvik, Anders W.; Young, A. P.
2015-08-01
We use a nonequilibrium Monte Carlo simulation method and dynamical scaling to study the phase transition in three-dimensional Ising spin glasses. The transition point is repeatedly approached at finite velocity v (temperature change versus time) in Monte Carlo simulations starting at a high temperature. This approach has the advantage that the equilibrium limit does not have to be strictly reached for a scaling analysis to yield critical exponents. For the dynamic exponent we obtain z =5.85 (9 ) for bimodal couplings distribution and z =6.00 (10 ) for the Gaussian case. Assuming universal dynamic scaling, we combine the two results and obtain z =5.93 ±0.07 for generic 3D Ising spin glasses.
On the spin-axis dynamics of a Moonless Earth
Li, Gongjie; Batygin, Konstantin
2014-07-20
The variation of a planet's obliquity is influenced by the existence of satellites with a high mass ratio. For instance, Earth's obliquity is stabilized by the Moon and would undergo chaotic variations in the Moon's absence. In turn, such variations can lead to large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central issue for understanding climate. The relevant quantity for dynamically forced climate change is the rate of chaotic diffusion. Accordingly, here we re-examine the spin-axis evolution of a Moonless Earth within the context of a simplified perturbative framework. We present analytical estimates of the characteristic Lyapunov coefficient as well as the chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic change in Earth's obliquity is sufficiently slow to not preclude long-term habitability. Our calculations are consistent with published numerical experiments and illustrate the putative system's underlying dynamical structure in a simple and intuitive manner.
Matrix Formalism for Spin Dynamics Near a Single Depolarization Resonance
Chao, Alexander W.; /SLAC
2005-10-26
A matrix formalism is developed to describe the spin dynamics in a synchrotron near a single depolarization resonance as the particle energy (and therefore its spin precession frequency) is varied in a prescribed pattern as a function of time such as during acceleration. This formalism is first applied to the case of crossing the resonance with a constant crossing speed and a finite total step size, and then applied also to other more involved cases when the single resonance is crossed repeatedly in a prescribed manner consisting of linear ramping segments or sudden jumps. How repeated crossings produce an interference behavior is discussed using the results obtained. For a polarized beam with finite energy spread, a spin echo experiment is suggested to explore this interference effect.
Dynamic-angle spinning and double rotation of quadrupolar nuclei
Mueller, K.T. California Univ., Berkeley, CA . Dept. of Chemistry)
1991-07-01
Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.
Anisotropies and spin dynamics in ultrathin magnetic multilayer structures
NASA Astrophysics Data System (ADS)
Kardasz, Bartlomiej
High quality magnetic films were prepared by Molecular Beam Epitaxy (MBE) using Thermal Deposition (TD) and Pulse Laser Deposition (PLD) techniques. Ferromagnetic Resonance (FMR) and Mossbauer studies have shown that the Fe films prepared by PLD exhibited a more intermixed interface lattice structure than those prepared by TD. Dramatic decrease of the in-plane interface uniaxial anisotropy for the PLD films compared to those prepared by TD has shown that the in-plane uniaxial anisotropy is caused by magnetoelasticity driven by the Fe/GaAs(001) interface lattice shear. Magnetization dynamics of the ultrathin Fe/Au,Ag/Fe films was studied using Time-Resolved Magneto-Optical Kerr Effect (TRMOKE) and FMR in the frequency range from 1 to 73 GHz. The Gilbert damping was studied in the Au/Fe/GaAs(001) structures as a function of the Fe and Au layer thickness, respectively. The observed increase in magnetic damping in the Fe film covered with thick Au capping layers was explained by spin pumping at the Fe/Au interface accompanied by spin relaxation and diffusion of the accumulated spin density in the Au layer. The spin diffusion length in Au was found to be 34 nm at room temperature. Significant increase of the Gilbert damping was observed in the Au/Fe/GaAs structures with decreasing Fe film thickness. Its origin lies in the additional damping at the Fe/GaAs interface. Direct detection of the spin current propagating across the Ag spacer in Fe/Ag,Au/Fe/GaAs(001) structures was carried out with stroboscopic TRMOKE measurements. The Fe layer grown on GaAs served as a spin pumping source and the Fe layer grown on the Au,Ag spacer was used as a probe for detection of the spin current propagating across the Au and Ag spacers. The experimental results were interpreted using selfconsistent solution of the Landau Lifshitz Gilbert (LLG) equations of motion with the spin diffusion equation for the accumulated spin density in the Au and Ag spacers. The spin diffusion length in Ag was
Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Mehmed, Oral; Johnson, Dexter; Montague, Gerald; Duffy, Kirsten; Jansen, Ralph
2005-01-01
The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig is an apparatus for vibration testing of turbomachine blades in a vacuum at rotational speeds from 0 to 40,000 rpm. This rig includes (1) a vertically oriented shaft on which is mounted an assembly comprising a rotor holding the blades to be tested, (2) two actively controlled heteropolar radial magnetic bearings at opposite ends of the shaft, and (3) an actively controlled magnetic thrust bearing at the upper end of the shaft. This rig is a more capable successor to a prior apparatus, denoted the Dynamic Spin Rig (DSR), that included a vertically oriented shaft with a mechanical thrust bearing at the upper end and a single actively controlled heteropolar radial magnetic bearing at the lower end.
Dynamics of hot random quantum spin chains: from anyons to Heisenberg spins
NASA Astrophysics Data System (ADS)
Parameswaran, Siddharth; Potter, Andrew; Vasseur, Romain
2015-03-01
We argue that the dynamics of the random-bond Heisenberg spin chain are ergodic at infinite temperature, in contrast to the many-body localized behavior seen in its random-field counterpart. First, we show that excited-state real-space renormalization group (RSRG-X) techniques suffer from a fatal breakdown of perturbation theory due to the proliferation of large effective spins that grow without bound. We repair this problem by deforming the SU (2) symmetry of the Heisenberg chain to its `anyonic' version, SU(2)k , where the growth of effective spins is truncated at spin S = k / 2 . This enables us to construct a self-consistent RSRG-X scheme that is particularly simple at infinite temperature. Solving the flow equations, we compute the excited-state entanglement and show that it crosses over from volume-law to logarithmic scaling at a length scale ξk ~eαk3 . This reveals that (a) anyon chains have random-singlet-like excited states for any finite k; and (b) ergodicity is restored in the Heisenberg limit k --> ∞ . We acknowledge support from the Quantum Materials program of LBNL (RV), the Gordon and Betty Moore Foundation (ACP), and UC Irvine startup funds (SAP).
Dynamics of a Single Spin-1/2 Coupled to x- and y-Spin Baths: Algorithm and Results
NASA Astrophysics Data System (ADS)
Novotny, M. A.; Guerra, Marta L.; De Raedt, Hans; Michielsen, Kristel; Jin, Fengping
The real-time dynamics of a single spin-1/2 particle, called the central spin, coupled to the x(y)-components of the spins of one or more baths is simulated. The bath Hamiltonians contain interactions of x(y)-components of the bath spins only but are general otherwise. An efficient algorithm is described which allows solving the time-dependent Schr'odinger equation for the central spin, even if the x(y) baths contain hundreds of spins. The algorithm requires storage for 2 × 2 matrices only, no matter how many spins are in the baths. We calculate the expectation value of the central spin, as well as its von Neumann entropy S(t), the quantum purity P(t), and the off-diagonal elements of the quantum density matrix. In the case of coupling the central spin to both x- and y- baths the relaxation of S(t) and P(t) with time is a power law, compared to an exponential if the central spin is only coupled to an x-bath. The effect of different initial states for the central spin and bath is studied. Comparison with more general spin baths is also presented.
SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Ma, Pui-Wai; Dudarev, S. L.; Woo, C. H.
2016-10-01
Spin-lattice dynamics generalizes molecular dynamics to magnetic materials, where dynamic variables describing an evolving atomic system include not only coordinates and velocities of atoms but also directions and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics simulates the collective time evolution of spins and atoms, taking into account the effect of non-collinear magnetism on interatomic forces. Applications of the method include atomistic models for defects, dislocations and surfaces in magnetic materials, thermally activated diffusion of defects, magnetic phase transitions, and various magnetic and lattice relaxation phenomena. Spin-lattice dynamics retains all the capabilities of molecular dynamics, adding to them the treatment of non-collinear magnetic degrees of freedom. The spin-lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter decomposition of atomic coordinate, velocity and spin evolution operators, and delivers highly accurate numerical solutions of dynamic evolution equations over extended intervals of time. The code is parallelized in coordinate and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins are controlled by Langevin thermostats. Conduction electrons are treated by coupling the discrete spin-lattice dynamics equations for atoms and spins to the heat transfer equation for the electrons. Worked examples include simulations of thermalization of ferromagnetic bcc iron, the dynamics of laser pulse demagnetization, and collision cascades.
Pulse Control Assisted Dynamical Decoupling in a Central Spin Model
NASA Astrophysics Data System (ADS)
Li, Zhao-Yan; Wei, Yong-Bo; Wang, Zhao-Ming; Gu, Yong-Jian; Li, Wen-Dong; Ma, Xiao-Ping
2017-02-01
We study pulse control assisted dynamical decoupling through a central spin model in a total Hilbert space. We find that the effective decoupling can be realized by applying a sequence of external pulses. Compared with the bang-bang control which needs infinite strength and infinitesimal short pulses, we show that there is a large parameter space that allows an effective nonperturbative dynamical control. Furthermore, our numerical calculation shows that the reliability can be held for random pulses, such as random pulse time interval or random strength.
Controlling the Excited-State Dynamics of Nuclear Spin Isomers Using the Dynamic Stark Effect.
Waldl, Maria; Oppel, Markus; González, Leticia
2016-07-14
Stark control of chemical reactions uses intense laser pulses to distort the potential energy surfaces of a molecule, thus opening new chemical pathways. We use the concept of Stark shifts to convert a local minimum into a local maximum of the potential energy surface, triggering constructive and destructive wave-packet interferences, which then induce different dynamics on nuclear spin isomers in the electronically excited state of a quinodimethane derivative. Model quantum-dynamical simulations on reduced dimensionality using optimized ultrashort laser pulses demonstrate a difference of the excited-state dynamics of two sets of nuclear spin isomers, which ultimately can be used to discriminate between these isomers.
Dynamics and stability of spinning flexible space tether systems
NASA Astrophysics Data System (ADS)
Tyc, George
This dissertation focuses on a detailed dynamical investigation of a previously unexplored tether configuration that involves a spinning two-body tethered system with flexible appendages on each end-body where the spin axis is nominally aligned along the tether. The original motivation for this work came after the flight of the first Canadian sub-orbital tether mission OEDIPUS-A in 1989 which employed this spinning tethered configuration. To everyone's surprise, one of the end-bodies was observed to exhibit a rapid divergence of its nutation angle. It was clear after this flight that there were some fundamental mechanisms associated with the interaction between the tether and the end-body that were not fully understood at that time. Hence, a Tether Dynamics Experiment (TDE) was formed and became a formal part of the scientific agenda for the follow-on mission OEDIPUS-C which flew in 1995. This dissertation describes the work that was conducted as part of the TDE and involves: theoretical investigations into the dynamics of this spinning tethered flexible body system; ground testing to validate the models and establish the tether properties; application of the models to develop a stabilization approach for OEDIPUS-C, and comparisons between theory and flight data from both OEDIPUS-A and OEDIPUS-C. Nonlinear equations of motion are developed for a spinning tethered system where the tether could be either spinning with the end-bodies or attached to small de-spun platforms on the end-bodies. Since the tether used for the OEDIPUS missions is not a string, as is often assumed, but rather a wire that has some bending stiffness, albeit small, the tether bending was also taken into account in the formulation. Two sets of ground tests are described that were used to validate the stability conditions and gain confidence in the mathematical models. One set involved hanging a body by a tether and spinning at different speeds to investigate the end-body stability. The other set
precession: Dynamics of spinning black-hole binaries with python
NASA Astrophysics Data System (ADS)
Gerosa, Davide; Kesden, Michael
2016-06-01
We present the numerical code precession, a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. precession is a ready-to-use tool to add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation. precession provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also a useful tool to compute initial parameters for numerical-relativity simulations targeting specific precessing systems. precession can be installed from the python Package Index, and it is freely distributed under version control on github, where further documentation is provided.
Nonlinear equations of dynamics for spinning paraboloidal antennas
NASA Technical Reports Server (NTRS)
Utku, S.; Shoemaker, W. L.; Salama, M.
1983-01-01
The nonlinear strain-displacement and velocity-displacement relations of spinning imperfect rotational paraboloidal thin shell antennas are derived for nonaxisymmetrical deformations. Using these relations with the admissible trial functions in the principle functional of dynamics, the nonlinear equations of stress inducing motion are expressed in the form of a set of quasi-linear ordinary differential equations of the undetermined functions by means of the Rayleigh-Ritz procedure. These equations include all nonlinear terms up to and including the third degree. Explicit expressions are given for the coefficient matrices appearing in these equations. Both translational and rotational off-sets of the axis of revolution (and also the apex point of the paraboloid) with respect to the spin axis are considered. Although the material of the antenna is assumed linearly elastic, it can be anisotropic.
Dynamic response of an artificial square spin ice
Jungfleisch, M. B.; Zhang, W.; Iacocca, E.; ...
2016-03-02
Magnetization dynamics in an artficial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich spectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets.more » Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.« less
Dynamic response of an artificial square spin ice
Jungfleisch, M. B.; Zhang, W.; Iacocca, E.; Sklenar, J.; Ding, J.; Jiang, W.; Zhang, S.; Pearson, J. E.; Novosad, V.; Ketterson, J. B.; Heinonen, O.; Hoffmann, A.
2016-03-02
Magnetization dynamics in an artficial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich spectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets. Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.
The spin-3/2 Blume-Capel model with competing short- and long-range interactions
NASA Astrophysics Data System (ADS)
Salmon, Octavio D. Rodriguez; de Sousa, José Ricardo; Neto, Minos A.; Padilha, Igor T.; Azevedo, J. Roberto Viana; Neto, Francisco Dinóla
2016-12-01
The phase diagrams of the spin- 3 / 2 Blume-Capel model with competing short and long-range interactions were studied through the free energy density obtained by analytical methods. The competition emerges when positive short-range interactions of strength K arranged in a linear chain tend to establish an anti-parallel spin order, whereas negative long-range interactions - J tend to align them in parallel. Thus, no ferromagnetic order exists for K / J > 0.25. So, the phase-diagrams were scanned by varying the values of K, for 0 < K / J < 0.25. As in other similar study done for the spin-1 case, the second-order frontier separating the ferromagnetic and the paramagnetic phases is transformed gradually into a first-order line when K / J is greater than a certain critical value. Accordingly, there is a sub interval of K, for which two tricritical points appear restricting the length of the second-order frontier. Nevertheless, for greater values of K / J, the ferromagnetic-paramagnetic frontier becomes wholly of first order. Also, the typical line of coexistence of the spin- 3 / 2 Blume-Capel model, which divides two different ferromagnetic phases of magnetization m = 3 / 2 and m = 1 / 2, becomes more complex by giving rise to another first-order line with a reentrant behavior that encloses a third ordered phase. In this case, the competition is such that there is a region in the phase diagram, where for each spin i with Si = 3 / 2 (Si = - 3 / 2), there is another spin j, where j = i + 1 and Sj = 1 / 2 (Sj = - 1 / 2), such that the absolute value of the magnetization per spin is one.
Effect of electron spin dynamics on solid-state dynamic nuclear polarization performance.
Siaw, Ting Ann; Fehr, Matthias; Lund, Alicia; Latimer, Allegra; Walker, Shamon A; Edwards, Devin T; Han, Song-I
2014-09-21
For the broadest dissemination of solid-state dynamic nuclear polarization (ssDNP) enhanced NMR as a material characterization tool, the ability to employ generic mono-nitroxide radicals as spin probes is critical. A better understanding of the factors contributing to ssDNP efficiency is needed to rationally optimize the experimental condition for the practically accessible spin probes at hand. This study seeks to advance the mechanistic understanding of ssDNP by examining the effect of electron spin dynamics on ssDNP performance at liquid helium temperatures (4-40 K). The key observation is that bi-radicals and mono-radicals can generate comparable nuclear spin polarization at 4 K and 7 T, which is in contrast to the observation for ssDNP at liquid nitrogen temperatures (80-150 K) that finds bi-radicals to clearly outperform mono-radicals. To rationalize this observation, we analyze the change in the DNP-induced nuclear spin polarization (Pn) and the characteristic ssDNP signal buildup time as a function of electron spin relaxation rates that are modulated by the mono- and bi-radical spin concentration. Changes in Pn are consistent with a systematic variation in the product of the electron spin-lattice relaxation time and the electron spin flip-flop rate that constitutes an integral saturation factor of an inhomogeneously broadened EPR spectrum. We show that the comparable Pn achieved with both radical species can be reconciled with a comparable integral EPR saturation factor. Surprisingly, the largest Pn is observed at an intermediate spin concentration for both mono- and bi-radicals. At the highest radical concentration, the stronger inter-electron spin dipolar coupling favors ssDNP, while oversaturation diminishes Pn, as experimentally verified by the observation of a maximum Pn at an intermediate, not the maximum, microwave (μw) power. At the maximum μw power, oversaturation reduces the electron spin population differential that must be upheld between
Random walk approach to spin dynamics in a two-dimensional electron gas with spin-orbit coupling
Yang, Luyi; Orenstein, J.; Lee, Dung-Hai
2010-09-27
We introduce and solve a semiclassical random walk (RW) model that describes the dynamics of spin polarization waves in zinc-blende semiconductor quantum wells. We derive the dispersion relations for these waves, including the Rashba, linear and cubic Dresselhaus spin-orbit interactions, as well as the effects of an electric field applied parallel to the spin polarization wave vector. In agreement with calculations based on quantum kinetic theory [P. Kleinert and V. V. Bryksin, Phys. Rev. B 76, 205326 (2007)], the RW approach predicts that spin waves acquire a phase velocity in the presence of the field that crosses zero at a nonzero wave vector, q{sub 0}. In addition, we show that the spin-wave decay rate is independent of field at q{sub 0} but increases as (q-q{sub 0}){sup 2} for q {ne} q{sub 0}. These predictions can be tested experimentally by suitable transient spin grating experiments.
The effect of iron spin transition on convective dynamics, slab dynamics and the geoid
NASA Astrophysics Data System (ADS)
Jacobs, Michael; van den Berg, Arie; Spakman, Wim; Cadek, Ondrej; Cizkova, Hana; Matyska, Ctirad
2013-04-01
Iron bearing minerals in the Earths lower mantle show a transition from high-spin to low-spin in the iron constituent. This has been observed in particular for ferropericlase both experimentally (Fei et al, 2007, Lin et al. 2005) and in first principles calculations (Wu et al, 2009). The situation is less unambiguous for perovskite. Umemoto et al (2010) showed that the effect on volume is small compared to experimental uncertainty. Therefore we only considered the spin effects in ferropericlase in our models. The spin transition is characterized by a high valued positive Clapeyron slope ? = 19MPa-K while the smoothness of the transition increases with temperature. Fei et al. (2007) showed that at room temperature the spin transition pressure for iron richer composition occurs at higher values, e.g 40 GPa at 20 mol% FeO, 60 GPa at 40 mol% FeO. In order to get a full thermodynamic description of mantle material that includes the effects of spin transitions in ferropericlase we developed a model based on the multi-Einstein vibrational model approach of Jacobs et al. (2013). This model represents volume-pressure data of Lin et al. (2005), spin fraction data predicted by Wu et al. (2009) and it also includes the observed composition dependence of the spin transition pressure. Our new model further includes the thermodynamic description of Jacobs and de Jong (2007) that has been extended to describe thermodynamic properties of iron bearing (Mg,Fe)SiO3 perovskite. Because the spin transition pressure is composition dependent, the spin transition results in the formation of miscibility gap regions separating compositions enriched in high spin and compositions enriched in low-spin state. The spin transition affects thermodynamic properties, density, thermal expansivity, bulk modulus and heat capacity which in turn impact the convection dynamics of the Earth mantle. For instance, due to the high positive Clapeyron-slope of the transition convective mixing becomes more
Spin-down dynamics of magnetized solar-type stars
Oglethorpe, R. L. F.; Garaud, P.
2013-12-01
It has long been known that solar-type stars undergo significant spin-down, via magnetic braking, during their main-sequence lifetimes. However, magnetic braking only operates on the surface layers; it is not yet completely understood how angular momentum is transported within the star and how rapidly the spin-down information is communicated to the deep interior. In this work, we use insight from recent progress in understanding internal solar dynamics to model the interior of other solar-type stars. We assume, following Gough and McIntyre, that the bulk of the radiation zone of these stars is held in uniform rotation by the presence of an embedded large-scale primordial field, confined below a stably stratified, magnetic-free tachocline by large-scale meridional flows downwelling from the convection zone. We derive simple equations to describe the response of this model interior to spin-down of the surface layers, which are identical to the two-zone model of MacGregor and Brenner, with a coupling timescale proportional to the local Eddington-Sweet timescale across the tachocline. This timescale depends both on the rotation rate of the star and on the thickness of the tachocline, and it can vary from a few hundred thousand years to a few Gyr, depending on stellar properties. Qualitative predictions of the model appear to be consistent with observations, although they depend sensitively on the assumed functional dependence of the tachocline thickness on the stellar rotation rate.
Spin-down Dynamics of Magnetized Solar-type Stars
NASA Astrophysics Data System (ADS)
Oglethorpe, R. L. F.; Garaud, P.
2013-12-01
It has long been known that solar-type stars undergo significant spin-down, via magnetic braking, during their main-sequence lifetimes. However, magnetic braking only operates on the surface layers; it is not yet completely understood how angular momentum is transported within the star and how rapidly the spin-down information is communicated to the deep interior. In this work, we use insight from recent progress in understanding internal solar dynamics to model the interior of other solar-type stars. We assume, following Gough & McIntyre, that the bulk of the radiation zone of these stars is held in uniform rotation by the presence of an embedded large-scale primordial field, confined below a stably stratified, magnetic-free tachocline by large-scale meridional flows downwelling from the convection zone. We derive simple equations to describe the response of this model interior to spin-down of the surface layers, which are identical to the two-zone model of MacGregor & Brenner, with a coupling timescale proportional to the local Eddington-Sweet timescale across the tachocline. This timescale depends both on the rotation rate of the star and on the thickness of the tachocline, and it can vary from a few hundred thousand years to a few Gyr, depending on stellar properties. Qualitative predictions of the model appear to be consistent with observations, although they depend sensitively on the assumed functional dependence of the tachocline thickness on the stellar rotation rate.
Experimental investigation of the dynamics of spinning tethered bodies
NASA Astrophysics Data System (ADS)
Modi, V. J.; Pradhan, S.; Chu, M.; Tyc, G.; Misra, A. K.
1996-10-01
Ground based experiments are conducted as a part of the OEDIPUS-C sounding rocket mission, scheduled for launch in the winter of 1995. Here OEDIPUS stands for Observation of Electrified Distribution in Ionospheric Plasma—a Unique Strategy. The OEDIPUS-C configuration consists of two spinning bodies connected by a 1 km long tether (the spin axis is nominally along the tether line). The objective is to assess dynamic behaviour of the tether and the payload. The test configuration consists of an end-body supported by a tether. The test procedure involves slow spin-up of the system and identifying the speeds corresponding to onset of the tether modes or the large amplitude end-body coning. This is referred to as the critical speed and corresponds to the stability boundary of the system. Experimental results are obtained for four different bodies to study the system stability over a wide range of mass and geometric parameters. Effect of offset of the tether attachment from the end-body centre of mass is also investigated. The observed critical speeds are compared with those given by the linear theory. The test results are generally in very good agreement with the theory, however several transient phenomena observed during the test suggest that system nonlinearities cannot be ignored when modelling such a complex system.
Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.
Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir
2015-07-17
The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.
Muonium chemistry and spin dynamics in sulphur, modelling interstitial hydrogen.
Cox, S F J; Lord, J S; McKenzie, I; Adjizian, J-J; Heggie, M I; Jayasooriya, U A; Grinter, R; Reid, I D
2011-08-10
The nature of the elusive muonium centre in sulphur is re-examined in the light of new data on its level-crossing resonance and spin-lattice relaxation. The aim is to provide a model for the solid-state chemistry of interstitial hydrogen in this element, which is as yet unknown, as well as to solve one of the longest standing puzzles in μSR spectroscopy, namely the surprisingly strong depolarization of muons mimicking ion-implanted protons in this innocuous non-magnetic material. The paramagnetic muonium (and by inference hydrogen) centre is confirmed to have the character of a molecular radical, but with huge anisotropy at cryogenic temperatures and a striking shift of the resonance at ordinary temperatures, the hyperfine parameters appearing to collapse and vanish towards the melting point. New density-functional supercell calculations identify a number of possible structures for the defect centre, including a novel form of bond-centred muonium in a closed-ring S(8)Mu complex. Simulations of the spin dynamics and fits to the spectra suggest a dynamical equilibrium or chemical exchange between several configurations, with occupancy of the bond-centre site falling from unity at low cryogenic temperatures to zero near the melting point.
NASA Astrophysics Data System (ADS)
Storch, Natalia I.; Lai, Dong; Anderson, Kassandra R.
2017-03-01
Many exoplanetary systems containing hot Jupiters (HJs) exhibit significant misalignment between the spin axes of the host stars and the orbital angular momentum axes of the planets ('spin-orbit misalignment'). High-eccentricity migration involving Lidov-Kozai oscillations of the planet's orbit induced by a distant perturber is a possible channel for producing such misaligned HJ systems. Previous works have shown that the dynamical evolution of the stellar spin axis during the high-e migration plays a dominant role in generating the observed spin-orbit misalignment. Numerical studies have also revealed various patterns of the evolution of the stellar spin axis leading to the final misalignment. Here, we develop an analytic theory to elucidate the evolution of spin-orbit misalignment during the Lidov-Kozai migration of planets in stellar binaries. Secular spin-orbit resonances play a key role in the misalignment evolution. We include the effects of short-range forces and tidal dissipation, and categorize the different possible paths to spin-orbit misalignment as a function of various physical parameters (e.g. planet mass and stellar rotation period). We identify five distinct spin-orbit evolution paths and outcomes, only two of which are capable of producing retrograde orbits. We show that these paths to misalignment and the outcomes depend only on two dimensionless parameters, which compare the stellar spin precession frequency with the rate of change of the planet's orbital axis, and the Lidov-Kozai oscillation frequency. Our analysis reveals a number of novel phenomena for the stellar spin evolution, ranging from bifurcation, adiabatic advection, to fully chaotic evolution of spin-orbit angles.
Dynamical spin injection at a quasi-one-dimensional ferromagnet-graphene interface
Singh, S.; Ahmadi, A.; Mucciolo, E. R.; Barco, E. del; Cherian, C. T.; Özyilmaz, B.
2015-01-19
We present a study of dynamical spin injection from a three-dimensional ferromagnet into two-dimensional single-layer graphene. Comparative ferromagnetic resonance (FMR) studies of ferromagnet/graphene strips buried underneath the central line of a coplanar waveguide show that the FMR linewidth broadening is the largest when the graphene layer protrudes laterally away from the ferromagnetic strip, indicating that the spin current is injected into the graphene areas away from the area directly underneath the ferromagnet being excited. Our results confirm that the observed damping is indeed a signature of dynamical spin injection, wherein a pure spin current is pumped into the single-layer graphene from the precessing magnetization of the ferromagnet. The observed spin pumping efficiency is difficult to reconcile with the expected backflow of spins according to the standard spin pumping theory and the characteristics of graphene, and constitutes an enigma for spin pumping in two-dimensional structures.
Phonon-magnon interactions in body centered cubic iron: A combined molecular and spin dynamics study
Perera, Dilina Landau, David P.; Nicholson, Don M.; Malcolm Stocks, G.; Eisenbach, Markus; Yin, Junqi; Brown, Gregory
2014-05-07
Combining an atomistic many-body potential with a classical spin Hamiltonian parameterized by first principles calculations, molecular-spin dynamics computer simulations were performed to investigate phonon-magnon interactions in body centered cubic iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, additional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.
Phonon-magnon interactions in BCC iron: A combined molecular and spin dynamics study
Perera, Meewanage Dilina N; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Yin, Junqi; Brown, Greg
2014-01-01
Combining an atomistic many-body potential with a classical spin Hamiltonian pa- rameterized by first principles calculations, molecular-spin dynamics computer sim- ulations were performed to investigate phonon-magnon interactions in BCC iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, addi- tional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.
Baranowski, M.; Misiewicz, J.
2015-10-21
We report theoretical studies of spin polarization dynamics in dilute nitride semiconductors. We develop a commonly used rate equation model [Lagarde et al., Phys. Status Solidi A 204, 208 (2007) and Kunold et al. Phys. Rev. B 83, 165202 (2011)] to take into account the influence of shallow localizing states on the temperature dependence of spin polarization dynamics and a spin filtering effect. Presented investigations show that the experimentally observed temperature dependence of a spin polarization lifetime in dilute nitrides can be related to the electron capture process by shallow localizing states without paramagnetic properties. This process reduces the efficiency of spin filtering effect by deep paramagnetic centers, especially at low temperatures.
ERIC Educational Resources Information Center
Hoffman, Michael F.; Quittner, Alexandra L.; Cejas, Ivette
2015-01-01
This study compared levels of social competence and language development in 74 young children with hearing loss and 38 hearing peers aged 2.5-5.3 years. This study was the first to examine the relationship between oral language and social competence using a dynamic systems framework in children with and without hearing loss. We hypothesized that,…
Spin-Entry Characteristics of a Large Supersonic Bomber as Determined by Dynamic Model Tests
NASA Technical Reports Server (NTRS)
Bowman, James S.
1965-01-01
An investigation has been conducted in the Langley spin tunnel and at a catapult launch facility of a 1/60-scale dynamic model to determine the spin-entry characteristics of a large supersonic bomber. Catapult tests indicated that spin-entry motions were obtainable for a center-of-gravity location of 0.21 mean aerodynamic chord but were not obtainable at a center-of-gravity location of 0.25 mean aerodynamic chord. Deflected ailerons were effective in promoting or preventing the spin- entry motion and this effect was qualitatively the same as it was for the fully developed spin. Varying the configuration had little significant effect on the spin-entry characteristics. Brief tests conducted with the model in the Langley spin tunnel indicated that fully developed spins were obtainable at the forward center-of-gravity location and that spins were highly unlikely at the rearward center-of-location.
Strain dependent electron spin dynamics in bulk cubic GaN
Schaefer, A.; Buß, J. H.; Hägele, D.; Rudolph, J.; Schupp, T.; Zado, A.; As, D. J.
2015-03-07
The electron spin dynamics under variable uniaxial strain is investigated in bulk cubic GaN by time-resolved magneto-optical Kerr-rotation spectroscopy. Spin relaxation is found to be approximately independent of the applied strain, in complete agreement with estimates for Dyakonov-Perel spin relaxation. Our findings clearly exclude strain-induced relaxation as an effective mechanism for spin relaxation in cubic GaN.
NASA Astrophysics Data System (ADS)
Wagner, Norman; Godfrin, Doug; Liu, Yun
Structures in concentrated protein solutions caused by the combination of short-range attraction (SA) and long-range repulsion (LR) have been extensively studied due to their importance in understanding therapeutic protein formulations and the phase behavior in general. Despite extensive studies of kinetically arrested states in colloidal systems with short-range attraction, less is understood for the effect of an additional longer-range repulsion on model colloidal systems with a SA interaction. Highly purified lysozyme is used a model experimental system due to its stable globular structure and SALR interactions at low ionic strength that can be quantitatively modeled. The fluid microstructure and protein short time self diffusion are measured across a broad range of conditions by small angle neutron scattering (SANS) and neutron spin echo (NSE), respectively. Newtonian liquid behavior is observed at all concentrations, even with an increase of zero shear viscosity by almost four orders of magnitude with increasing concentration. However, dynamic measurements demonstrate a sub-diffusive regime at relatively short time scales for concentrated samples at low temperature. The formation of a heterogeneous density distribution is shown to produce localized regions of high density that reduce protein motion, giving it a glassy-like behavior at the short time scale. This heterogeneity occurs at the length scale associated with the intermediate range order driven by the competing potential features, distinguishable from heterogeneous colloidal gels.
Spin-charge coupled dynamics driven by a time-dependent magnetization
NASA Astrophysics Data System (ADS)
Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo
2017-03-01
The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.
Spin probe dynamics of n-hexadecane in confined geometry
NASA Astrophysics Data System (ADS)
Lukešová, Miroslava; Švajdlenková, Helena; Sippel, Pit; Macová, Eva; Berek, Dušan; Loidl, Alois; Bartoš, Josef
2015-02-01
A combined study of the rotational dynamics of the stable free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and the phase behavior of n-hexadecane (n-HXD) in the bulk and the confined states in a series of silica gels (SG) by means of ESR and DSC is presented. A slow to fast motion transition of the spin probe TEMPO in the bulk n-HXD occurs at T50 G,bulk ≪ Tm,bulk, i.e., well below the melting temperature due to its trapping and localized mobility in the interlamellar gap of the crystallites [J. Bartoš, H. Švajdlenková, M. Zaleski, M. Edelmann, M. Lukešová, Physica B 430, 99 (2013)]. On the other hand, the dynamics of the TEMPO in the confined systems is strongly slowing down with T50 G (Dpore) >Tm(Dpore) and slightly increases with the pore size Dpore = 60, 100 and 300 Å of the SG's. At the same time, both the corresponding melting temperature, Tm (Dpore), and melting enthalpy, ΔHm (Dpore), decrease with Dpore together with the mutual anti-correlation between T50 G and Tm as a function of the inverse of pore diameter, 1/Dpore. Moreover, the dynamic heterogeneity of the TEMPO in the confined state below T50 G (Dpore) is closely related to the phase transformation. The strong slowing down of the spin probe motion likely results from its preferential localization at the interface layer of the matrix pore due to specific interaction of TEMPO molecules with the polar silanol groups of the SG matrix. This is supported by special study on a series of the variously filled n-HXD/SG systems, other similar experimental findings as well as by theoretical spectral argument.
NASA Astrophysics Data System (ADS)
Solano-Carrillo, E.; Franco, R.; Silva-Valencia, J.
2011-08-01
We studied the nonequilibrium short-time dynamics of a spin-1/2 chain with Dzyaloshinskii-Moriya interactions after a sudden quench by a transverse field. We found that inhomogeneous spin spirals with opposite chiralities propagate from the edges toward the center of the chain. This propagation is accompanied by quantum spin oscillations which decay asymptotically with time. A theoretical description of this phenomenon is given to a good accuracy with the help of numerical calculations with the adaptive time-dependent density matrix renormalization group algorithm.
Quantum-critical spin dynamics in a Tomonaga-Luttinger liquid studied with muon-spin relaxation
NASA Astrophysics Data System (ADS)
Möller, J. S.; Lancaster, T.; Blundell, S. J.; Pratt, F. L.; Baker, P. J.; Xiao, F.; Williams, R. C.; Hayes, W.; Turnbull, M. M.; Landee, C. P.
2017-01-01
We demonstrate that quantum-critical spin dynamics can be probed in high magnetic fields using muon-spin relaxation (μ+SR ). Our model system is the strong-leg spin ladder bis(2,3-dimethylpyridinium) tetrabromocuprate (DIMPY). In the gapless Tomonaga-Luttinger liquid phase we observe finite-temperature scaling of the μ+SR 1 /T1 relaxation rate which allows us to determine the Luttinger parameter K . We discuss the benefits and limitations of local probes compared with inelastic neutron scattering.
Spin-tunnel investigation of a 1/25-scale model of the General Dynamics F-16XL airplane
NASA Technical Reports Server (NTRS)
Whipple, R. D.; White, W. L.
1984-01-01
A spin-tunnel investigation of the spin and recovery characteristics of a 1/25-scale model to the General Dynamics F-16XL aircraft was conducted in the Langley Spin Tunnel. Tests included erect and inverted spins at various symmetric and asymmetric loading conditions. The required size of an emergency spin-recovery parachute was determined.
NASA Astrophysics Data System (ADS)
Vélez, Saül; Bedoya-Pinto, Amilcar; Yan, Wenjing; Hueso, Luis E.; Casanova, Fèlix
2016-11-01
We study spin Hall magnetoresistance (SMR) and magnon spin transport (MST) in Pt / Y3F e5O12(YIG ) -based devices with intentionally modified interfaces. Our measurements show that the surface treatment of the YIG film results in a slight enhancement of the spin-mixing conductance and an extraordinary increase in the efficiency of the spin-to-magnon conversion at room temperature. The surface of the YIG film develops a surface magnetic frustration at low temperatures, causing a sign change of the SMR and a dramatic suppression of the MST. Our results evidence that SMR and MST could be used to explore magnetic properties of surfaces, including those with complex magnetic textures, and stress the critical importance of the nonmagnetic/ferromagnetic interface properties in the performance of the resulting spintronic devices.
Moguilevski, Alexandre; Wilke, Martin; Grell, Gilbert; Bokarev, Sergey I; Aziz, Saadullah G; Engel, Nicholas; Raheem, Azhr A; Kühn, Oliver; Kiyan, Igor Yu; Aziz, Emad F
2016-12-22
Photoinduced spin-flip in Fe(II) complexes is an ultrafast phenomenon that has the potential to become an alternative to conventional processing and magnetic storage of information. Following the initial excitation by visible light into the singlet metal-to-ligand charge-transfer state, the electronic transition to the high-spin quintet state may undergo different pathways. Here we apply ultrafast XUV (extreme ultraviolet) photoemission spectroscopy to track the low-to-high spin dynamics in the aqueous iron tris-bipyridine complex, [Fe(bpy)3 ](2+) , by monitoring the transient electron density distribution among excited states with femtosecond time resolution. Aided by first-principles calculations, this approach enables us to reveal unambiguously both the sequential and direct de-excitation pathways from singlet to quintet state, with a branching ratio of 4.5:1.
Solid effect in magic angle spinning dynamic nuclear polarization
Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.
2012-01-01
For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\omega _0 ^{ - 2}\\end{equation*} \\end{document}ω0−2 field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements
Imaging intracellular protein dynamics by spinning disk confocal microscopy
Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten
2012-01-01
The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541
NASA Astrophysics Data System (ADS)
Huang, Cheng-Yi; Lin, Hsin; Wang, Yung Jui; Bansil, Arun; Tsai, Wei-Feng
2016-05-01
We have investigated spin reorientation phenomena and interaction-driven effects under the presence of applied strains on the (001) surface of Pb1 -xSnx (Te, Se) topological crystalline insulators, which host multiple Dirac cones. Our analysis is based on a four-band k .p model, which captures the spin and orbital textures of the surface states at low energies around the X ¯ and Y ¯ points, including the Lifshitz transition. Even without breaking the time-reversal symmetry, we find that certain strains that break the mirror symmetry can induce a hedgehoglike spin texture associated with gap formation at the Dirac points. The Chern number of the gapped surface ground state is shown to be tunable through the interplay of strains and a perpendicular Zeeman field. We also consider the effects of strain in the presence of interactions in driving competing orders, and we obtain the associated phase diagram at the mean-field level. Potential applications of our results for low power consuming electronics are discussed.
NASA Astrophysics Data System (ADS)
Schuetz, M. J. A.; Kessler, E. M.; Vandersypen, L. M. K.; Cirac, J. I.; Giedke, G.
2014-05-01
We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically defined double quantum dot in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective hyperfine coupling results in sizable nuclear spin entanglement between the two quantum dots in the steady state of the evolution. We investigate this effect using analytical and numerical techniques, and demonstrate its robustness under various types of imperfections.
Spin dynamics in relativistic light-matter interaction
NASA Astrophysics Data System (ADS)
Bauke, Heiko; Ahrens, Sven; Keitel, Christoph H.; Grobe, Rainer
2015-05-01
Various spin effects are expected to become observable in light-matter interaction at relativistic intensities. Relativistic quantum mechanics equipped with a suitable relativistic spin operator forms the theoretical foundation for describing these effects. Various proposals for relativistic spin operators have been offered by different authors, which are presented in a unified way. As a result of the operators' mathematical properties only the Foldy-Wouthuysen operator and the Pryce operator qualify as possible proper relativistic spin operators. The ground states of highly charged hydrogen-like ions can be utilized to identify a legitimate relativistic spin operator experimentally. Subsequently, the Foldy-Wouthuysen spin operator is employed to study electron-spin precession in high-intensity standing light waves with elliptical polarization. For a correct theoretical description of the predicted electron-spin precession relativistic effects due to the spin angular momentum of the electromagnetic wave has to be taken into account even in the limit of low intensities.
Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Hoffmann, Axel
2016-02-03
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Lastly, our findings have direct implications on the development of engineered magnonics applications and devices.
A key role for unusual spin dynamics in ferropnictides
NASA Astrophysics Data System (ADS)
Mazin, I. I.; Johannes, M. D.
2009-02-01
The discovery of high-Tc ferropnictides introduced a new family of superconductors, and has already revealed a complicated and often contradictory picture of the structural and magnetic properties. An almost unprecedented sensitivity of the calculated magnetism and Fermi surface to structural details prevents correspondence to experiment. Experimental probes of the order parameter are in surprisingly strong disagreement, even considering the relative immaturity of the field. We outline various and seemingly contradictory evidence, both theoretical and experimental, and show it can be rectified by assuming a large-moment spin density wave, well defined but with magnetic twin and antiphase boundaries, dynamic on the experimental timescale. Under this assumption, calculations can accurately reproduce even very fine details of the structure, and a natural explanation for the temperature separation of structural and magnetic transitions is provided. Thus, our theory restores agreement between experiment and theory in crucial areas, making further cooperative progress possible on both fronts.
Spin dynamics and entanglement growth with trapped ions, atoms & molecules
NASA Astrophysics Data System (ADS)
Schachenmayer, Johannes; Lanyon, Ben; Roos, Christian; Daley, Andrew; Zhu, Bihui; Rey, Ana Maria
2014-03-01
Trapped ions and systems of cold atoms or molecules in optical lattices offer controlled environments to experimentally study non-equilibrium dynamics of many-body quantum spin-models with interactions of varying range. Theoretically calculating dynamics of observables for these experiments is a major challenge both analytically and numerically. In 1D, the growth behavior of the entanglement entropy between different blocks of a many-body state determines whether the evolution of the system can be efficiently simulated on a classical computer or not. In return, the study of entanglement growth can guide experiments to regimes where a quantum simulator can outperform a numerical simulation. Here we present results on the entanglement growth behavior in 1D strings of ions after a quench, and show how the growth depends on the range of the interactions. Furthermore we report on progress on methods for higher dimensional systems. These can be used to model Ramsey-dynamics for current experiments with alkaline earth atoms or polar molecules in optical lattices, or for systems with Rydberg atoms.
Dynamics of Spin-Orbit Coupled Bose-Einstein Condensates in a Random Potential
NASA Astrophysics Data System (ADS)
Mardonov, Sh.; Modugno, M.; Sherman, E. Ya.
2015-10-01
Disorder plays a crucial role in spin dynamics in solids and condensed matter systems. We demonstrate that for a spin-orbit coupled Bose-Einstein condensate in a random potential two mechanisms of spin evolution that can be characterized as "precessional" and "anomalous" are at work simultaneously. The precessional mechanism, typical for solids, is due to the condensate displacement. The unconventional anomalous mechanism is due to the spin-dependent velocity producing the distribution of the condensate spin polarization. The condensate expansion is accompanied by a random displacement and fragmentation, where it becomes sparse, as clearly revealed in the spin dynamics. Thus, different stages of the evolution can be characterized by looking at the condensate spin.
Spin Precessing Black Hole Binaries in Dynamical Chern-Simons Gravity
NASA Astrophysics Data System (ADS)
Loutrel, Nicholas; Yunes, Nicolas; Tanaka, Takahiro
2017-01-01
Spinning black holes in binary systems under go spin precession, as well as precession of the orbital plane, as a result of the coupling between the black hole spins and the orbital angular momentum. This effect introduces an observable modulation in the amplitude of the gravitational waves emitted by the binary. In dynamical Chern-Simons gravity, spinning black holes are modified from General Relativity through the presence of a scalar dipole moment, which is proportional to the spin of the black hole. Such additional degrees of freedom modify the spin precession equations, and thus the observable modulation of the gravitational waves. In this talk, I will discuss how to approach the spin precession of black holes in dynamical Chern-Simons gravity from an effective field theory perspective and discuss how the modulation of gravitational waves differs from General Relativity. Supported by NSF EAPSI Fellowship Award No. 1614203 and NSF CAREER Grant PHY-1250636.
Meriles, Carlos A.; Doherty, Marcus W.
2014-07-14
Key to future spintronics and spin-based information processing technologies is the generation, manipulation, and detection of spin polarization in a solid state platform. Here, we theoretically explore an alternative route to spin injection via the use of dynamically polarized nitrogen-vacancy (NV) centers in diamond. We focus on the geometry where carriers and NV centers are confined to proximate, parallel layers and use a “trap-and-release” model to calculate the spin cross-relaxation probabilities between the charge carriers and neighboring NV centers. We identify near-unity regimes of carrier polarization depending on the NV spin state, applied magnetic field, and carrier g-factor. In particular, we find that unlike holes, electron spins are distinctively robust against spin-lattice relaxation by other, unpolarized paramagnetic centers. Further, the polarization process is only weakly dependent on the carrier hopping dynamics, which makes this approach potentially applicable over a broad range of temperatures.
Competing Antiferromagnetic and Spin-Glass phases in a hollandite structure
NASA Astrophysics Data System (ADS)
Crespo Hernandez, Yanier; Andreanov, Alexei; Seriani, Nicola
2013-03-01
We introduce a simple model to explain recent experimental results on spin freezing in a hollandite-type structure. We argue that geometrical frustration of the lattice with antiferromagnetic (AFM) interactions is responsible for the appearance of a spin-glass phase in presence of disorder. We check our predictions numerically using parallel tempering on a model that considers Ising spins and nearest-neighbor AFM interactions. The proposed model presents a rich phenomenology: in absence of disorder two ground states are possible, depending on the strength of the interactions, namely an AFM or a geometrically frustrated phase. Remarkably for any set of AFM couplings having an AFM ground state in the clean system, there exist a critical value of the disorder for which the ground state is replaced by a spin-glass one while maintaining all couplings AFM. To the best of our knowledge in the literature there is not a model that presents this kind of transition considering just short-range AFM interactions. Therefore we argue that this model would be useful to understand the relation between AFM coupling, disorder and the appearance of spin glasses phase.
Dynamical theory of spin noise and relaxation: Prospects for real-time NMR measurements.
Field, Timothy R
2014-11-01
Recent developments in theoretical aspects of spin noise and relaxation and their interrelationship reveal a modified spin density, distinct from the density matrix, as the necessary object to describe fluctuations in spin systems. These fluctuations are to be viewed as an intrinsic quantum mechanical property of such systems immersed in random magnetic environments and are observed as "spin noise" in the absence of any radio frequency excitation. With the prospect of ultrafast digitization, the role of spin noise in real-time parameter extraction for (NMR) spin systems, and the advantage over standard techniques, is of essential importance, especially for systems containing a small number of spins. In this article we outline prospects for harnessing the recent dynamical theory in terms of spin-noise measurement, with attention to real-time properties.
NASA Astrophysics Data System (ADS)
Kiselev, Egor I.; Scheurer, Mathias S.; Wölfle, Peter; Schmalian, Jörg
2017-03-01
An ordered state in the spin sector that breaks parity without breaking time-reversal symmetry, i.e., that can be considered dynamically generated spin-orbit coupling, was proposed to explain puzzling observations in a range of different systems. Here, we derive severe restrictions for such a state that follow from a Ward identity related to spin conservation. It is shown that l =1 spin-Pomeranchuk instabilities are not possible in nonrelativistic systems since the response of spin-current fluctuations is entirely incoherent and nonsingular. This rules out relativistic spin-orbit coupling as an emergent low-energy phenomenon. We illustrate the exotic physical properties of the remaining higher-angular-momentum analogs of spin-orbit coupling and derive a geometric constraint for spin-orbit vectors in lattice systems.
Dynamics of two coupled semiconductor spin qubits in a noisy environment
NASA Astrophysics Data System (ADS)
Das Sarma, S.; Throckmorton, Robert E.; Wu, Yang-Le
2016-07-01
We theoretically consider the temporal dynamics of two coupled spin qubits (e.g., semiconductor quantum dots) driven by the interqubit spin-spin coupling. The presence of environmental noise (e.g., charge traps, nuclear spins, random magnetic impurities) is accounted for by including random magnetic field and random interqubit coupling terms in the Hamiltonian. Both Heisenberg coupling and Ising coupling between the spin qubits are considered, corresponding respectively to exchange and capacitive gates as appropriate for single spin and singlet-triplet semiconductor qubit systems, respectively. Both exchange (Heisenberg) and capacitive (Ising) coupling situations can be solved numerically exactly even in the presence of noise, leading to the key findings that (i) the steady-state return probability to the initial state remains close to unity in the presence of strong noise for many, but not all, starting spin configurations, and (ii) the return probability as a function of time is oscillatory with a characteristic noise-controlled decay toward the steady-state value. We also provide results for the magnetization dynamics of the coupled two-qubit system. Our predicted dynamics can be directly tested in the already existing semiconductor spin qubit setups providing insight into their coherent interaction dynamics. Retention of the initial state spin memory even in the presence of strong environmental noise has important implications for quantum computation using spin qubits.
Spin Dynamics simulations of the dynamic properties of classical models for magnetic materials
NASA Astrophysics Data System (ADS)
Bunker, Alex; Landau, D. P.
1998-03-01
The Spin Dynamics simulation technique, which has had considerable success for the study of critical properties of classical Heisenberg antiferromagnets(A. Bunker, K. Chen, and D. P. Landau Phys. Rev. B) \\underline54, 9259 (1996), has been used to determine more general properties for a wider range of materials. A general spin dynamics program has been developed which can determine the dynamic structure factor, S(q,ω), in the [100], [110], and [111] directions for a wide range of classical magnetic models at any temperature desired. We have simulated the magnetic dynamics in the ordered phase of the isotropic Heisenberg model with both ferromagnetic and antiferromagnetic coupling on L×L×L BCC and SC lattices. Outside of the critical regime relatively small lattice sizes of L = 12, 24 could be used. From our simulation we have determined the stiffness coefficient and the spin relaxation rate which were compared to both experimental(J. Als-Nielsen in Phase Transitions and Critical Phenomena), ed. C. Domb, M. S. Green, Academic Press, (1976) and theoretical results. We have performed the same simulation with anisotropy appropriate for MnF2 and FeF_2. Research supported in part by the NSF
NASA Astrophysics Data System (ADS)
Timopheev, A. A.; Pogorelov, Yu. G.; Cardoso, S.; Freitas, P. P.; Kakazei, G. N.; Sobolev, N. A.
2014-04-01
Two ferromagnetic (FM) layers magnetically decoupled by a thick, normal metal spacer layer can be dynamically coupled via spin currents emitted by the spin pump and absorbed through the spin-torque effects at the neighboring interfaces. A decrease of damping in both layers due to a partial compensation of the angular momentum leakage in each layer was previously observed at the coincidence of the two FM resonances. In the case of nonzero magnetic coupling, such a dynamic exchange will depend on the mutual precession of the magnetic moments in the layers. A difference in the linewidth of the resonance peaks is expected for the acoustic and optical regimes of precession. However, the interlayer coupling (IC) hybridizes the resonance responses of the layers and therefore can also change their linewidths. The interplay between the two mechanisms has never been considered before. In the present work, the joint influence of the hybridization and nonlocal damping on the linewidth has been studied in weakly coupled NiFe/CoFe/Cu/CoFe/MnIr spin-valve multilayers. It has been found that the dynamic exchange by spin currents is different in the optical and acoustic modes, and this difference is dependent on the IC strength. In contrast to the acoustic precession mode, the dynamic exchange in the optical mode works as an additional damping source. A simulation in the framework of the Landau-Lifshitz-Gilbert formalism for two FM layers coupled magnetically and by spin currents has been done to separate the effects of the nonlocal damping from the resonance modes hybridization. In our samples, both mechanisms bring about linewidth changes of the same order of magnitude but lead to a distinctly different angular behavior. The obtained results are relevant for a broad class of coupled magnetic multilayers with ballistic regime of the spin transport.
Measurement backaction on the quantum spin-mixing dynamics of a spin-1 Bose-Einstein condensate
Zhang Keye; Zhou Lu; Zhang Weiping; Ling, Hong Y.; Pu Han
2011-06-15
We consider a small F=1 spinor condensate inside an optical cavity driven by an optical probe field, and subject the output of the probe to a homodyne detection, with the goal of investigating the effect of measurement backaction on the spin dynamics of the condensate. Using the stochastic master equation approach, we show that the effect of backaction is sensitive to not only the measurement strength but also the quantum fluctuation of the spinor condensate. The same method is also used to estimate the atom numbers below which the effect of backaction becomes so prominent that extracting spin dynamics from this cavity-based detection scheme is no longer practical.
NASA Astrophysics Data System (ADS)
Watanabe, Tatsuya; Yoshida, Tomohiro; Yanase, Youichi
2015-11-01
We show that odd-parity superconductivity occurs in multilayer Rashba systems without requiring spin-triplet Cooper pairs. A pairing interaction in the spin-singlet channel stabilizes the odd-parity pair-density-wave (PDW) state in the magnetic field parallel to the two-dimensional conducting plane. It is shown that the layer-dependent Rashba spin-orbit coupling and the orbital effect play essential roles for the PDW state in binary and tricolor heterostructures. We demonstrate that the odd-parity PDW state is a symmetry-protected topological superconducting state characterized by the one-dimensional winding number in the symmetry class BDI. The superconductivity in the artificial heavy-fermion superlattice CeCoIn5/YbCoIn5 and bilayer interface SrTiO3/LaAlO3 is discussed.
NASA Astrophysics Data System (ADS)
Melnikov, Alexey; Razdolski, Ilya; Alekhin, Alexandr; Ilin, Nikita; Meyburg, Jan; Diesing, Detlef; Roddatis, Vladimir; Rungger, Ivan; Stamenova, Maria; Sanvito, Stefano; Bovensiepen, Uwe
2016-10-01
Further development of spintronics requires miniaturization and reduction of characteristic timescales of spin dynamics combining the nanometer spatial and femtosecond temporal ranges. These demands shift the focus of interest towards the fundamental open question of the interaction of femtosecond spin current (SC) pulses with a ferromagnet (FM). The spatio-temporal properties of the spin transfer torque (STT) exerted by ultrashort SC pulses on the FM open the time domain for studying STT fingerprint on spatially non-uniform magnetization dynamics. Using the sensitivity of magneto-induced second harmonic generation to SC, we develop technique for SC monitoring. With 20 fs resolution, we demonstrate the generation of 250 fs-long SC pulses in Fe/Au/Fe/MgO(001) structures. Their temporal profile indicates (i) nearly-ballistic hot electron transport in Au and (ii) that the pulse duration is primarily determined by the thermalization time of laser-excited hot carriers in Fe. Together with strongly spin-dependent Fe/Au interface transmission calculated for these carriers, this suggests the non-thermal spin-dependent Seebeck effect dominating the generation of ultrashort SC pulses. The analysis of SC transmission/reflection at the Au/Fe interface shows that hot electron spins orthogonal to the Fe magnetization rotate gaining huge parallel (anti-parallel) projection in transmitted (reflected) SC. This is accompanied by a STT-induced perturbation of the magnetization localized at the interface, which excites the inhomogeneous high-frequency spin dynamics in the FM. Time-resolved magneto-optical studies reveal the excitation of several standing spin wave modes in the Fe film with their spectrum extending up to 0.6 THz and indicating the STT spatial confinement to 2 nm.
NASA Astrophysics Data System (ADS)
Tang, Jin; He, Wei; Zhang, Yong-Sheng; Li, Yan; Zhang, Wei; Sheraz Ahmad, Syed; Zhang, Xiang-Qun; Cheng, Zhao-Hua
2016-12-01
Although the spin-reorientation transition from out-of-plane to in-plane in Fe/Si film is widely reported, the tuning of in-plane spin orientation is not yet well developed. Here, we report the thickness-, temperature- and Cu-adsorption- induced in-plane spin-reorientation transition processes in Fe/Si (557) film, which can be attributed to the coexistence of two competing step-induced uniaxial magnetic anisotropies, i.e., surface magnetic anisotropy with magnetization easy axis perpendicular to the step and volume magnetic anisotropy with magnetization easy axis parallel to the step. For Fe film thickness smaller than 32 monolayer (ML), the magnitudes of two effects under various temperatures are extracted from the thickness dependence of uniaxial magnetic anisotropy. For Fe film thickness larger than 32 ML, the deviation of experimental results from fitting results is understood by the strain-relief-induced reduction of volume magnetic anisotropy. Additionally, the surface and volume magnetic anisotropies are both greatly reduced after covering Cu capping layer on Fe/Si (557) film while no significant influence of NaCl capping layer on step-induced magnetic anisotropies is observed. The experimental results reported here provide various practical methods for manipulating in-plane spin orientation of Fe/Si films and improve the understanding of step-induced magnetic anisotropies. Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921403 and 2016YFA0300701) and the National Natural Sciences Foundation of China (Grant Nos. 51427801, 11374350, 11274360, and 11274361).
Development of Competence in Dynamic Learning Environments. No. 79.
ERIC Educational Resources Information Center
Bierschenk, Inger
Perspective Text Analysis is a way to measure competence by measuring the strategy of synthesizing, which intelligence tests or questionnaires cannot measure. This paper proposes the use of Perspective Text Analysis in the study of instructional materials. Perspective Text Analysis has been applied in various learning environments, and the results…
Influence of Impurity Spin Dynamics on Quantum Transport in Epitaxial Graphene.
Lara-Avila, Samuel; Kubatkin, Sergey; Kashuba, Oleksiy; Folk, Joshua A; Lüscher, Silvia; Yakimova, Rositza; Janssen, T J B M; Tzalenchuk, Alexander; Fal'ko, Vladimir
2015-09-04
Experimental evidence from both spin-valve and quantum transport measurements points towards unexpectedly fast spin relaxation in graphene. We report magnetotransport studies of epitaxial graphene on SiC in a vector magnetic field showing that spin relaxation, detected using weak-localization analysis, is suppressed by an in-plane magnetic field B(∥), and thereby proving that it is caused at least in part by spinful scatterers. A nonmonotonic dependence of the effective decoherence rate on B(∥) reveals the intricate role of the scatterers' spin dynamics in forming the interference correction to the conductivity, an effect that has gone unnoticed in earlier weak localization studies.
Spin-lattice coupling in molecular dynamics simulation of ferromagnetic iron
NASA Astrophysics Data System (ADS)
Ma, Pui Wai
A model for magnetic iron where atoms are treated as classical particles with intrinsic spins is developed. The atoms interact via scalar many-body forces as well as via spin-dependent forces of the Heisenberg form. The coupling between the lattice and spin degrees of freedom is described by a coordinate-dependent exchange function, where the spin-orientation-dependent forces are proportional to the gradient of this function. A spin-lattice dynamics simulation approach extends the existing magnetic-potential treatment to the case where the strength of interaction between the atoms depends on the relative non-collinear orientations of their spins. An algorithm for integrating the linked spin-coordinate equations of motion is based on the 2nd order Suzuki-Trotter decomposition for the non-commuting evolution operators for both coordinates and spins. The notions of the spin thermostat and the spin temperature are introduced through the combined application of the Langevin spin dynamics and the fluctuation-dissipation theorem. We investigate several applications of the method, performing microcanonical ensemble simulations of adiabatic spin-lattice relaxation of periodic arrays of 180° domain-walls, and isothermal-isobaric ensemble dynamical simulations of thermally equilibrated homogeneous systems at various temperatures. The isothermal magnetization curve evaluated using the spin-lattice dynamics algorithm is well described by the mean-field approximation and agrees satisfactorily with the experimental data for a broad range of temperatures. The equilibrium time-correlation functions of spin orientations exhibit the presence of short-range magnetic order above the Curie temperature. Short-range order spin fluctuations are shown to contribute to the thermal expansion of the material. Simulations on thermal expansion and elastic response of bulk bcc iron, and magnetization in bcc iron thin films are also performed and the results discussed. Our analysis illustrates
NASA Astrophysics Data System (ADS)
Dellerue, S.; Petrescu, A.; Smith, J. C.; Longeville, S.; Bellissent-Funel, M.-C.
2000-03-01
We have studied the collective dynamics of an hydrated soluble protein, the C-phycocyanin by using neutron spin-echo spectroscopy. Molecular dynamics simulations, performed with the same system, showed that the main dynamic contribution comes from backbone and side-chain motions. Both the experimental and spectra exhibit a dynamic relaxation with a characteristic time of about 10 ps.
Continuous Weak Measurement and Nonlinear Dynamics in a Cold Spin Ensemble
NASA Astrophysics Data System (ADS)
Smith, Greg A.; Chaudhury, Souma; Silberfarb, Andrew; Deutsch, Ivan H.; Jessen, Poul S.
2004-10-01
A weak continuous quantum measurement of an atomic spin ensemble can be implemented via Faraday rotation of an off-resonance probe beam, and may be used to create and probe nonclassical spin states and dynamics. We show that the probe light shift leads to nonlinearity in the spin dynamics and limits the useful Faraday measurement window. Removing the nonlinearity allows a nonperturbing measurement on the much longer time scale set by decoherence. The nonlinear spin Hamiltonian is of interest for studies of quantum chaos and real-time quantum state estimation.
Antiferromagnetic Ising spin glass competing with BCS pairing interaction in a transverse field
NASA Astrophysics Data System (ADS)
Magalhães, S. G.; Zimmer, F. M.; Kipper, C. J.; Calegari, E. J.
2006-07-01
The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising spin glass model with a local BCS pairing interaction in the presence of an applied magnetic transverse field Γ. In the present approach, spins in different sublattices interact with a Gaussian random coupling with an antiferromagnetic mean J0 and standard deviation J. The problem is formulated in the path integral formalism in which spin operators are represented by bilinear combinations of Grassmann variables. The saddle-point Grand Canonical potential is obtained within the static approximation and the replica symmetric ansatz. The results are analysed in phase diagrams in which the AF and the SG phases can occur for small g (g is the strength of the local superconductor coupling written in units of J), while the PAIR phase appears as unique solution for large g. However, there is a complex line transition separating the PAIR phase from the others. It is second order at high temperature that ends in a tricritical point. The quantum fluctuations affect deeply the transition lines and the tricritical point due to the presence of Γ.
Competing antiferromagnetic and spin-glass phases in a hollandite structure
NASA Astrophysics Data System (ADS)
Crespo, Y.; Andreanov, A.; Seriani, N.
2013-07-01
We introduce a simple lattice model with Ising spins as a zeroth-order approximation of the hollandite-type magnetic compounds. We argue that geometrical frustration of the lattice in combination with nearest-neighbor antiferromagnetic (AFM) interactions are responsible for the appearance of a spin-glass phase in presence of disorder. We investigate this system numerically using parallel tempering. The model reproduces magnetic transitions present in some oxides with hollandite structure and displays a rich phenomenology: in the absence of disorder we have identified five different ground states, depending on the relative strength and sign of the interactions: one ferromagnetically ordered, three antiferromagnetically ordered, and one disordered, macroscopically degenerate ground state. Remarkably, for the sets of AFM couplings having an AFM ground state in the clean system, there exists a critical value of the disorder above which the ground state becomes a spin glass while maintaining all the couplings antiferromagnetically. This model presents this kind of transition with nearest-neighbor frustrated AFM interactions. We argue that this model is useful for understanding the relation between AFM coupling, disorder, and appearance of spin-glass phases.
Exact results for spin dynamics and fractionalization in the Kitaev Model.
Baskaran, G; Mandal, Saptarshi; Shankar, R
2007-06-15
We present certain exact analytical results for dynamical spin correlation functions in the Kitaev Model. It is the first result of its kind in nontrivial quantum spin models. The result is also novel: in spite of the presence of gapless propagating Majorana fermion excitations, dynamical two spin correlation functions are identically zero beyond nearest neighbor separation. This shows existence of a gapless but short range spin liquid. An unusual, all energy scale fractionalization of a spin-flip quanta, into two infinitely massive pi fluxes and a dynamical Majorana fermion, is shown to occur. As the Kitaev Model exemplifies topological quantum computation, our result presents new insights into qubit dynamics and generation of topological excitations.
Self-consistent magnetization dynamics of a ferromagnetic quantum dot driven by a spin bias
NASA Astrophysics Data System (ADS)
Siu, Z. B.; Jalil, M. B. A.; Tan, S. G.
2012-04-01
We present an iterative scheme which combines the non-equilibrium Green's function (NEGF) for evaluating the quantum spin transport in a ferromagnetic quantum dot device and the Landau-Lifshitz (LL) equation for modeling the magnetization dynamics of the dot. For a given initial magnetization, the spin polarization of current and the resulting spin torque in the dot are calculated using the NEGF formalism. The torque acts on the magnetic moment of the dot, and the resultant magnetization dynamics is obtained from the LL equation. The new value of the dot's magnetization is then used as an input for the next round of NEGF calculation, and the whole process is repeated iteratively. The spin torque is thus calculated self-consistently with the dynamics of the magnetic moment of the dot. We apply this self-consistent iterative scheme to study the magnetization dynamics in an exemplary quantum dot system with an induced spin bias in the leads under varying damping conditions.
Coupled spin-light dynamics in cavity optomagnonics
NASA Astrophysics Data System (ADS)
Viola Kusminskiy, Silvia; Tang, Hong X.; Marquardt, Florian
2016-09-01
Experiments during the past 2 years have shown strong resonant photon-magnon coupling in microwave cavities, while coupling in the optical regime was demonstrated very recently for the first time. Unlike with microwaves, the coupling in optical cavities is parametric, akin to optomechanical systems. This line of research promises to evolve into a new field of optomagnonics, aimed at the coherent manipulation of elementary magnetic excitations in solid-state systems by optical means. In this work we derive the microscopic optomagnonic Hamiltonian. In the linear regime the system reduces to the well-known optomechanical case, with remarkably large coupling. Going beyond that, we study the optically induced nonlinear classical dynamics of a macrospin. In the fast-cavity regime we obtain an effective equation of motion for the spin and show that the light field induces a dissipative term reminiscent of Gilbert damping. The induced dissipation coefficient, however, can change sign on the Bloch sphere, giving rise to self-sustained oscillations. When the full dynamics of the system is considered, the system can enter a chaotic regime by successive period doubling of the oscillations.
Two dimensional electron spin resonance: Structure and dynamics of biomolecules
NASA Astrophysics Data System (ADS)
Saxena, Sunil; Freed, Jack H.
1998-03-01
The potential of two dimensional (2D) electron spin resonance (ESR) for measuring the structural properties and slow dynamics of labeled biomolecules will be presented. Specifically, it will be shown how the recently developed method of double quantum (DQ) 2D ESR (S. Saxena and J. H. Freed, J. Chem. Phys. 107), 1317, (1997) can be used to measure large interelectron distances in bilabeled peptides. The need for DQ ESR spectroscopy, as well as the challenges and advantages of this method will be discussed. The elucidation of the slow reorientational dynamics of this peptide (S. Saxena and J. H. Freed, J. Phys. Chem. A, 101) 7998 (1997) in a glassy medium using COSY and 2D ELDOR ESR spectroscopy will be demonstrated. The contributions to the homogeneous relaxation time, T_2, from the overall and/or internal rotations of the nitroxide can be distinguished from the COSY spectrum. The growth of spectral diffusion cross-peaks^2 with mixing time in the 2D ELDOR spectra can be used to directly determine a correlation time from the experiment which can be related to the rotational correlation time.
NASA Astrophysics Data System (ADS)
Harms, Enno; Lukes-Gerakopoulos, Georgios; Bernuzzi, Sebastiano; Nagar, Alessandro
2016-11-01
We consider a spinning test-body in circular motion around a nonrotating black hole and analyze different prescriptions for the body's dynamics. We compare, for the first time, the Mathisson-Papapetrou formalism under the Tulczyjew spin-supplementary condition (SSC), the Pirani SSC, and the Ohashi-Kyrian-Semerak SSC, and the spinning particle limit of the effective-one-body Hamiltonian of Damour and Nagar [Phys. Rev. D 90, 044018 (2014).]. We analyze the four different dynamics in terms of the innermost stable circular orbit (ISCO) shifts and in terms of the coordinate-invariant binding energies, separating higher-order spin contributions from spin-orbit contributions. The asymptotic gravitational-wave fluxes produced by the spinning body are computed by solving the inhomogeneous (2 +1 )D Teukolsky equation and contrasted for the different cases. For small orbital frequencies Ω , all the prescriptions reduce to the same dynamics and the same radiation fluxes. For large frequencies, x ≡(M Ω )2/3>0.1 , where M is the black hole mass, and especially for positive spins (aligned with the orbital angular momentum) a significant disagreement between the different dynamics is observed. The ISCO shifts can differ by up to a factor of 2 for large positive spins; for the Ohashi-Kyrian-Semerak and the Pirani SSC the ISCO diverges around dimensionless spins ˜0.52 and ˜0.94 , respectively. In the spin-orbit part of the energetics the deviation from the Hamiltonian dynamics is largest for the Ohashi-Kyrian-Semerak SSC; it exceeds 10% for x >0.17 . The Tulczyjew and the Pirani SSCs are compatible across almost the whole spin and frequency range. Our results will have direct applications in including spin effects in effective-one-body waveform models for circularized binaries in the extreme-mass-ratio limit.
Spinach - A software library for simulation of spin dynamics in large spin systems
NASA Astrophysics Data System (ADS)
Hogben, H. J.; Krzystyniak, M.; Charnock, G. T. P.; Hore, P. J.; Kuprov, Ilya
2011-02-01
We introduce a software library incorporating our recent research into efficient simulation algorithms for large spin systems. Liouville space simulations (including symmetry, relaxation and chemical kinetics) of most liquid-state NMR experiments on 40+ spin systems can now be performed without effort on a desktop workstation. Much progress has also been made with improving the efficiency of ESR, solid state NMR and Spin Chemistry simulations. Spinach is available for download at http://spindynamics.org.
Control of spin dynamics in a two-dimensional electron gas by electromagnetic dressing
NASA Astrophysics Data System (ADS)
Pervishko, A. A.; Kibis, O. V.; Morina, S.; Shelykh, I. A.
2015-11-01
We solved the Schrödinger problem for a two-dimensional electron gas (2DEG) with the Rashba spin-orbit interaction in the presence of a strong high-frequency electromagnetic field (dressing field). The found eigenfunctions and eigenenergies of the problem are used to describe the spin dynamics of the dressed 2DEG within the formalism of the density matrix response function. Solving the equations of spin dynamics, we show that the dressing field can switch the spin relaxation in the 2DEG between the cases corresponding to the known Elliott-Yafet and D'yakonov-Perel' regimes. As a result, the spin properties of the 2DEG can be tuned by a high-frequency electromagnetic field. The present effect opens an unexplored way for controlling the spin with light and, therefore, forms the physical prerequisites for creating light-tuned spintronics devices.
Anomalous spin dynamics in the coupled spin tetramer system CuSeO3
NASA Astrophysics Data System (ADS)
Lee, S.; Lee, W.-J.; van Tol, J.; Kuhns, P. L.; Reyes, A. P.; Berger, H.; Choi, K.-Y.
2017-02-01
We report high-field magnetization, high-frequency electron spin resonance (ESR), and 77Se nuclear magnetic resonance (NMR) measurements on the linear spin tetramer system CuSeO3, consisting of strongly interacting Cu(1) dimers and weakly coupled Cu(2) spins. The magnetization exhibits anisotropic half-step magnetization plateaus at μ0H =45 T, depending on a crystallographic orientation. A temperature dependence of the ESR linewidth Δ Hpp in a paramagnetic phase points towards the significance of anisotropic exchange interactions. Below TN=9 -10 K long-range magnetic order is evidenced by the observation of a critical divergence of both Δ Hpp(T ) and the nuclear spin-lattice relaxation rate 1 /T1 . In addition, we identify a magnetic anomaly at T*=6.0 (5 ) K below TN, which is caused by a spin reorientation. The nuclear spin-spin relaxation rate 1 /T2 unveils the development of site-specific spin correlations. The intriguing magnetism of CuSeO3 is discussed in terms of the energy hierarchy of Cu(1) and Cu(2) spins in concert with additional intertetramer interactions.
Multifrequency electron spin resonance study of the dynamics of spin labeled T4 lysozyme.
Zhang, Ziwei; Fleissner, Mark R; Tipikin, Dmitriy S; Liang, Zhichun; Moscicki, Jozef K; Earle, Keith A; Hubbell, Wayne L; Freed, Jack H
2010-04-29
An extensive set of electron spin resonance spectra was obtained over a wide range of frequencies (9, 95, 170, and 240 GHz) and temperatures (2 to 32 degrees C) to explore the dynamic modes of nitroxide-labeled T4 lysozyme in solution. A commonly used nitroxide side chain (R1), or a methylated analogue with hindered internal motion (R2), was substituted for the native side chain at solvent-exposed helical sites, 72 or 131. The spectra at all four frequencies were simultaneously fit with the slowly relaxing local structure (SRLS) model. Good fits were achieved at all the temperatures. Two principle dynamic modes are included in the SRLS model, the global tumbling of the protein and the internal motion consisting of backbone fluctuations and side chain isomerizations. Three distinct spectral components were required for R1 and two for R2 to account for the spectra at all temperatures. One is a highly ordered and slow motional component, which is observed in the spectra of both R1 and R2; it may correspond to conformers stabilized by interaction with the protein surface. The fraction of this component decreases with increasing temperature and is more populated in the R2 spectra, possibly arising from stronger interaction of the nitroxide ring with the protein surface due to the additional methyl group. The other two components of R1 and the second component of R2 are characterized by fast anisotropic diffusion and relatively low ordering, most likely corresponding to conformers having little or no interactions with nearby residues. Ficoll of different concentrations was added to increase the solution viscosity, thereby slowing down the global tumbling of the protein. A significant effect of Ficoll on the internal motion of an immobilized component was apparent in R2 but not in R1. The ability of such multifrequency studies to separate the effects of faster internal modes of motion from slower overall motions is clearly demonstrated, and its utility in future studies
Competing nematic, antiferromagnetic, and spin-flux orders in the ground state of bilayer graphene
NASA Astrophysics Data System (ADS)
Lemonik, Y.; Aleiner, I.; Fal'ko, V. I.
2012-06-01
We analyze the phase diagram of bilayer graphene (BLG) at zero temperature and zero doping. Assuming that at high energies the electronic system of BLG can be described within a weak-coupling theory (consistent with the experimental evidence), we systematically study the evolution of the couplings with going from high to low energies. The divergences of the couplings at some energies indicate the tendency towards certain symmetry breakings. Carrying out this program, we found that the phase diagram is determined by microscopic couplings defined on the short distances (initial conditions). We explored all plausible space of these initial conditions and found that the three states have the largest phase volume of the initial couplings: nematic, antiferromagnetic, and spin flux (a.k.a. quantum spin Hall). In addition, ferroelectric and two superconducting phases appear only near the very limits of the applicability of the weak-coupling approach. The paper also contains the derivation and analysis of the renormalization group equations and the group theory classification of all the possible phases which might arise from the symmetry breakings of the lattice, spin rotation, and gauge symmetries of graphene.
Hoffman, Michael F.; Quittner, Alexandra L.; Cejas, Ivette
2015-01-01
This study compared levels of social competence and language development in 74 young children with hearing loss and 38 hearing peers aged 2.5–5.3 years. This study was the first to examine the relationship between oral language and social competence using a dynamic systems framework in children with and without hearing loss. We hypothesized that, due to deficits in oral language, children who were deaf would display lower levels of social competence than their hearing peers. Furthermore, language age would predict social competence scores. Social competence was measured with a general and deaf-specific measure. Results showed that children with hearing loss performed significantly worse than hearing peers on the general measure but better than the norms on the deaf-specific measure. Controlling for maternal education and income, regression analyses indicated that hearing status and language age predicted social competence in both groups. Among children with hearing loss, correlations were also found between age at diagnosis, age at amplification, and two of the general social competence measures. Results supported our hypothesis that deficits in language would have cascading negative effects on the development of social competence in young deaf children. Development of early intervention programs that target both language and social skills are needed for this population. PMID:25583707
Hoffman, Michael F; Quittner, Alexandra L; Cejas, Ivette
2015-04-01
This study compared levels of social competence and language development in 74 young children with hearing loss and 38 hearing peers aged 2.5-5.3 years. This study was the first to examine the relationship between oral language and social competence using a dynamic systems framework in children with and without hearing loss. We hypothesized that, due to deficits in oral language, children who were deaf would display lower levels of social competence than their hearing peers. Furthermore, language age would predict social competence scores. Social competence was measured with a general and deaf-specific measure. Results showed that children with hearing loss performed significantly worse than hearing peers on the general measure but better than the norms on the deaf-specific measure. Controlling for maternal education and income, regression analyses indicated that hearing status and language age predicted social competence in both groups. Among children with hearing loss, correlations were also found between age at diagnosis, age at amplification, and two of the general social competence measures. Results supported our hypothesis that deficits in language would have cascading negative effects on the development of social competence in young deaf children. Development of early intervention programs that target both language and social skills are needed for this population.
Electron-Nuclear Spin Dynamics in a Mesoscopic Solid-State Quantum Computer
Berman, G.P.; Campbell, D.K.; Doolen, G.D.; Nagaev, K.E.
1998-12-07
We numerically simulate the process of nuclear spin measurement in Kane's quantum computer. For this purpose, we model the quantum dynamics of two coupled nuclear spins located on {sup 31}P donors implanted in Si. We estimate the minimum time of measurement necessary for the reliable transfer of quantum information from the nuclear spin subsystem to the electronic one and the probability of error for typical values of external noise.
Self-consistent description of spin-phonon dynamics in ferromagnets
NASA Astrophysics Data System (ADS)
Nieves, P.; Serantes, D.; Chubykalo-Fesenko, O.
2016-07-01
Several recently reported exciting phenomena such as spin caloritronics or ultrafast laser-induced spin dynamics involve the action of temperature on spin dynamics. However, the inverse effect of magnetization dynamics on temperature change is very frequently ignored. Based on the density matrix approach, in this work we derive a self-consistent model for describing the magnetization and phonon temperature dynamics in ferromagnets in the framework of the quantum Landau-Lifshitz-Bloch equation. We explore potential applicability of our approach for two cases, inspired by magnetocaloric effect and magnetic fluid hyperthermia. In the first case, the spin-phonon dynamics is governed by the longitudinal relaxation in bulk systems close to the Curie temperature; while in the second case it is described by the transverse relaxation during the hysteresis cycle of individual nanoparticles well below the Curie temperature.
Spin dynamics and magneto-optical response in charge-neutral tunnel-coupled quantum dots
NASA Astrophysics Data System (ADS)
Gawełczyk, Michał; Machnikowski, Paweł
2017-04-01
We model the electron and hole spin dynamics in an undoped double quantum dot structure, considering the carrier tunneling between quantum dots. Taking the presence of an additional in-plane or tilted magnetic field into account, we enable the simulation of magneto-optical experiments, like the time-resolved Kerr rotation measurement, which are currently performed on such structures to probe the temporal spin dynamics. With our model, we reproduce the experimentally observed effect of the extension of the spin polarization lifetime caused by spatial charge separation, which may occur in structures of this type. Moreover, we provide a number of qualitative predictions concerning the necessary conditions for observation of this effect as well as about possible channels of its suppression, including the spin–orbit coupling, which leads to tunneling of carriers accompanied by a spin flip. We also consider the impact of the magnetic field tilting, which results in an interesting spin polarization dynamics.
Driving magnetization dynamics with interfacial spin-orbit torques (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hoffmann, Axel F.; Zhang, Wei; Sklenar, Joseph; Jungfleisch, Matthias Benjamin; Jiang, Wanjun; Hsu, Bo; Xiao, Jiao; Pearson, John E.; Fradin, Frank Y.; Liu, Yaohua; Ketterson, John B.; Yang, Zheng
2016-10-01
Bulk spin Hall effects are well know to provide spin orbit torques, which can be used to drive magnetization dynamics [1]. But one of the reoccurring questions is to what extend spin orbit torques may also originate at the interface between materials with strong spin orbit coupling and the ferromagnets. Using spin torque driven ferromagnetic resonance we show for two systems, where interfacial torques dominate, that they can be large enough to be practically useful. First, we show spin transfer torque driven magnetization dynamics based on Rashba-Edelstein effects at the Bi/Ag interface [2]. Second, we will show that combining permalloy with monolayer MoS2 gives rise to sizable spin-orbit torques. Given the monolayer nature of MoS2 it is clear that bilk spin Hall effects are negligible and therefore the spin transfer torques are completely interfacial in nature. Interestingly the spin orbit torques with MoS2 show a distinct dependence on the orientation of the magnetization in the permalloy, and become strongly enhanced, when the magnetization is pointing perpendicular to the interfacial plane. This work was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division. [1] A. Hoffmann, IEEE Trans. Mag. 49, 5172 (2013). [2] W. Zhang et al., J. Appl. Phys. 117, 17C727 (2015). [3] M. B. Jungfleisch et al., arXiv:1508.01410.
Dynamic spin correlations in 'stuffed' spin ice Ho(2+x)Ti(2-x)O(7-d)
Ehlers, Georg
2008-02-01
The magnetic correlations in 'stuffed' spin ice Ho{sub 2+x}Ti{sub 2-x}O{sub 7-{delta}} have been characterized using quasielastic neutron scattering. At temperatures above 1K , these correlations are short ranged in nature and dynamic on a picosecond to nanosecond time scale. As for the case of pure spin ice Ho{sub 2+x}Ti{sub 2-x}O{sub 7}, one can identify, above the freezing temperature, a quantum relaxation regime which is enhanced as it persists to even higher temperatures, T{approx}30-40K , than in the parent compound.
Fogler, Michael M
2002-05-06
A long-standing problem of the low-energy dynamics of a disordered XY spin chain is reexamined. The case of a rigid chain is studied, where the quantum effects can be treated quasiclassically. It is shown that, as the frequency decreases, the relevant excitations change from localized spin waves to two-level systems to soliton-antisoliton pairs. The linear-response correlation functions are calculated. The results apply to other periodic glassy systems such as pinned density waves, planar vortex lattices, stripes, and disordered Luttinger liquids.
Reading charge transport from the spin dynamics on the surface of a topological insulator.
Liu, Xin; Sinova, Jairo
2013-10-18
Resolving the conductance of the topological surface states (TSSs) from the bulk contribution has been a great challenge for studying the transport properties of topological insulators. By developing a nonperturbative diffusion equation that describes fully the spin-charge dynamics in the strong spin-orbit coupling regime, we present a proposal to read the charge transport information of TSSs from its spin dynamics which can be isolated from the bulk contribution by the time-resolved second harmonic generation pump-probe measurement. We demonstrate the qualitatively different Dyaknov-Perel spin relaxation behavior between the TSSs and the two-dimensional spin-orbit coupling electron gas. The decay time of both in-plane and out-of-plane spin polarization is naturally proved to be identical to the charge transport time. The out-of-plane spin dynamics is shown to be in the experimentally reachable regime of the femtosecond pump-probe spectroscopy and thereby we suggest experiments to detect the charge transport properties of the TSSs from their unique spin dynamics.
Buchanan, John J; Ramos, Jorge; Robson, Nina
2015-04-01
Action competency is defined as the ability of an individual to self-evaluate their own performance capabilities. The current experiment demonstrated that physical and observational training with a motor skill alters action competency ratings in a similar manner. Using a pre-test and post-test protocol, the results revealed that action competency is constrained prior to training by the intrinsic dynamics of relative phase (ϕ), with in-phase (ϕ = 0°) and anti-phase (ϕ = 180°) patterns receiving higher competency ratings than other relative phase patterns. After 2 days of training, action competency ratings for two trained relative phase patterns, +60° and +120°, increased following physical practice or observational practice. A transfer test revealed that both physical performance ability and action competency ability transferred to the symmetry partners (-60° and -120°) of the two trained relative phase patterns following physical or observational training. The findings also revealed that relative motion direction acts as categorical information that helps to organize action production and facilitate action competency. The results are interpreted based on the coordination dynamics theory of perception-action coupling, and extend this theory by showing that visual perception, action production, and action competency are all constrained in a consistent manner by the dynamics of the order parameter relative phase. As a whole, the findings revealed that relative motion, relative phase, and possibly relative amplitude information are all distinct sources of information that contribute to the emergence of a kinematic understanding of action in the nervous system.
ERIC Educational Resources Information Center
Taskinen, Päivi H.; Steimel, Jochen; Gräfe, Linda; Engell, Sebastian; Frey, Andreas
2015-01-01
This study examined students' competencies in engineering education at the university level. First, we developed a competency model in one specific field of engineering: process dynamics and control. Then, the theoretical model was used as a frame to construct test items to measure students' competencies comprehensively. In the empirical…
Spin dynamics of polarons and polaron pairs in a random hyperfine field
NASA Astrophysics Data System (ADS)
Roundy, Robert C.
Spin-dependent recombination of polaron pairs and spin relaxation of a single polaron are the most fundamental processes are responsible for the performance of organic spintronics-based devices such as light-emitting diodes and organic spin valves. In organic materials, with no spin-orbit coupling, both processes are due to random hyperfine fields created by protons neighboring the polaron sites. The essence of spin-dependent recombination is that in order to recombine the pair must be in the singlet state. Hyperfine fields acting on the electron and hole govern the spin-dynamics of localized pairs during the waiting time for recombination. We demonstrate that for certain domain of trapping configurations of hyperfine fields, crossover to the singlet state is quenched. This leads to the blocking of current. The phenomenon of organic magnetoresistance (OMAR) is described by counting the weights of trapping configurations as a function of magnetic field. This explains the universality of the lineshapes of the OMAR curves. In finite samples incomplete averaging over the hyperfine fields gives rise to mesoscopic fluctuations of the current response. We also demonstrate that under the condition of magnetic resonance, new trapping configurations emerge. This leads to nontrivial evolution of current through the sample with microwave power. When discussing spin-relaxation two questions can be asked: (a) How does the local spin polarization decay as a function of distance from the spin-polarized injector? (b) How does the injected spin decay as a function of time after spatial averaging? With regard to (a), we demonstrate that, while decaying exponentially on average, local spin-polarization exhibits giant fluctuations from point to point. Concerning (b), we find that for a spin-carrier which moves diffusively in low dimensions the decay is faster than a simple exponent. The underlying physics for both findings is that in describing spin evolution it is necessary to add up
Spin dynamics and relaxation in graphene dictated by electron-hole puddles
NASA Astrophysics Data System (ADS)
van Tuan, Dinh; Ortmann, Frank; Cummings, Aron W.; Soriano, David; Roche, Stephan
2016-02-01
The understanding of spin dynamics and relaxation mechanisms in clean graphene, and the upper time and length scales on which spin devices can operate, are prerequisites to realizing graphene-based spintronic technologies. Here we theoretically reveal the nature of fundamental spin relaxation mechanisms in clean graphene on different substrates with Rashba spin-orbit fields as low as a few tens of μeV. Spin lifetimes ranging from 50 picoseconds up to several nanoseconds are found to be dictated by substrate-induced electron-hole characteristics. A crossover in the spin relaxation mechanism from a Dyakonov-Perel type for SiO2 substrates to a broadening-induced dephasing for hBN substrates is described. The energy dependence of spin lifetimes, their ratio for spins pointing out-of-plane and in-plane, and the scaling with disorder provide a global picture about spin dynamics and relaxation in ultraclean graphene in the presence of electron-hole puddles.
Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando
2015-05-07
We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.
Spin dynamics and relaxation in graphene dictated by electron-hole puddles
Van Tuan, Dinh; Ortmann, Frank; Cummings, Aron W.; Soriano, David; Roche, Stephan
2016-01-01
The understanding of spin dynamics and relaxation mechanisms in clean graphene, and the upper time and length scales on which spin devices can operate, are prerequisites to realizing graphene-based spintronic technologies. Here we theoretically reveal the nature of fundamental spin relaxation mechanisms in clean graphene on different substrates with Rashba spin-orbit fields as low as a few tens of μeV. Spin lifetimes ranging from 50 picoseconds up to several nanoseconds are found to be dictated by substrate-induced electron-hole characteristics. A crossover in the spin relaxation mechanism from a Dyakonov-Perel type for SiO2 substrates to a broadening-induced dephasing for hBN substrates is described. The energy dependence of spin lifetimes, their ratio for spins pointing out-of-plane and in-plane, and the scaling with disorder provide a global picture about spin dynamics and relaxation in ultraclean graphene in the presence of electron-hole puddles. PMID:26876333
NASA Astrophysics Data System (ADS)
Kochelaev, B. I.
2016-12-01
A short review of experimental results and theoretical models of the spin texture and spin dynamics in superconducting cuprates near the phase transition developed on the basis of the EPR measurements is given. Distortions of the long-range antiferromagnetic order in the YBa_2Cu_3O_{6+y} were investigated for y=0.1-0.4 using Yb^{3+} ions as the EPR probe. In weakly doped samples with y=0.1, a strong anisotropy of the EPR linewidth is revealed which was related to the indirect spin-spin interaction between the ytterbium ions via antiferromagnetic spin-waves. In the case of the doping level y=0.2-0.3, the EPR signal consists of narrow and broad lines, which were attributed to formation of charged domain walls. A theoretical analysis is well consistent with experimental results for the case of coplanar elliptical domain walls. A discussion of possible reasons for the observed unusual planar oxygen isotope effect on a critical temperature T_c related to charge heterogeneity in underdoped cuprates is given.
Dynamical Spin Properties of Confined Fermi and Bose Systems in the Presence of Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Ambrosetti, A.; Salasnich, L.; Silvestrelli, P. L.
2016-10-01
Due to the recent experimental progress, tunable spin-orbit (SO) interactions represent ideal candidates for the control of polarization and dynamical spin properties in both quantum wells and cold atomic systems. A detailed understanding of spin properties in SO-coupled systems is thus a compelling prerequisite for possible novel applications or improvements in the context of spintronics and quantum computers. Here, we analyze the case of equal Rashba and Dresselhaus couplings in both homogeneous and laterally confined two-dimensional systems. Starting from the single-particle picture and subsequently introducing two-body interactions we observe that periodic spin fluctuations can be induced and maintained in the system. Through an analytical derivation, we show that the two-body interaction does not involve decoherence effects in the bosonic dimer, and, in the repulsive homogeneous Fermi gas, it may be even exploited in combination with the SO coupling to induce and tune standing currents. By further studying the effects of a harmonic lateral confinement—a particularly interesting case for Bose condensates—we evidence the possible appearance of nontrivial spin textures, whereas the further application of a small Zeeman-type interaction can be exploited to fine-tune the system's polarizability.
Spin effects and baryon resonance dynamics in φ-meson photoproduction at few GeV
NASA Astrophysics Data System (ADS)
Titov, A. I.; Lee, T.-S. H.
2003-06-01
The diffractive φ-meson photoproduction amplitude is dominated by the Pomeron-exchange process and contains the terms that govern the spin-spin and spin-orbital interactions. We show that these terms are responsible for the spin-flip transitions at forward photoproduction angles and appear in the angular distributions of φ→K+K- decay in reactions with unpolarized and polarized photon beams. At large momentum transfers, the main contribution to the φ-meson photoproduction is found to be due to the excitation of nucleon resonances. Combined analysis of ω and φ photoproduction indicates strong Okubo-Zweig-Iizuka rule violation in φNN* couplings. We also show that the spin observables are sensitive to the dynamics of φ-meson photoproduction at large angles and could help to distinguish different theoretical models of nucleon resonances. Predictions for spin effects in φ-meson photoproduction are presented for future experimental tests.
Weyl fermions and spin dynamics of metallic ferromagnet SrRuO3
NASA Astrophysics Data System (ADS)
Itoh, Shinichi; Endoh, Yasuo; Yokoo, Tetsuya; Ibuka, Soshi; Park, Je-Geun; Kaneko, Yoshio; Takahashi, Kei S.; Tokura, Yoshinori; Nagaosa, Naoto
2016-06-01
Weyl fermions that emerge at band crossings in momentum space caused by the spin-orbit interaction act as magnetic monopoles of the Berry curvature and contribute to a variety of novel transport phenomena such as anomalous Hall effect and magnetoresistance. However, their roles in other physical properties remain mostly unexplored. Here, we provide evidence by neutron Brillouin scattering that the spin dynamics of the metallic ferromagnet SrRuO3 in the very low energy range of milli-electron volts is closely relevant to Weyl fermions near Fermi energy. Although the observed spin wave dispersion is well described by the quadratic momentum dependence, the temperature dependence of the spin wave gap shows a nonmonotonous behaviour, which can be related to that of the anomalous Hall conductivity. This shows that the spin dynamics directly reflects the crucial role of Weyl fermions in the metallic ferromagnet.
Spin dynamics in HeH(2+) molecular ion in intense laser fields.
Korani, Youssef; Sabzyan, Hassan
2016-11-23
A theoretical study is carried out on the effect of non-dipole interactions on the electron spin dynamics in the asymmetric diatomic HeH(2+) in its first excited state in intense linearly polarized laser fields. The Foldy-Wouthuysen transformation is used to solve the Dirac equation numerically without BOA. Effects of the phase of the laser pulse and alignment of the molecule on the relativistic characteristics, such as the pure spin and the pure spin-orbit current densities, spin-orbit force and spin torque, are investigated. The results of this study demonstrate that population oscillates between the two spin states during the course of interaction and its configuration depends on the molecular axis orientation and initial phase of the laser pulse. Also, a small polarization takes place in the spin states, even in the absence of the spin-orbit coupling. Furthermore, spin and spin-orbit current densities are phase-dependent and affected differently by the phase of the laser pulse.
Spin segregation via dynamically induced long-range interactions in a system of ultracold fermions
Ebling, Ulrich; Eckardt, Andre; Lewenstein, Maciej
2011-12-15
We investigate theoretically the time evolution of a one-dimensional system of spin-1/2 fermions in a harmonic trap after, initially, a spiral spin configuration far from equilibrium is created. We predict a spin segregation building up in time already for weak interaction under realistic experimental conditions. The effect relies on the interplay between exchange interaction and the harmonic trap, and it is found for a wide range of parameters. It can be understood as a consequence of an effective, dynamically induced long-range interaction that is derived by integrating out the rapid oscillatory dynamics in the trap.
SU(2s+1) symmetry and nonlinear dynamics of high spin magnets
Kovalevsky, M.Y. Glushchenko, A.V.
2014-10-15
The article is devoted to the description of dynamics of magnets with arbitrary spin on the basis of the Hamiltonian formalism. The relationship of quantum states and magnetic degrees of freedom has been considered. Subalgebras of Poisson bracket of magnetic values for spin s=1/2; 1; 3/2 have been established. We have obtained non-linear dynamic equations for the normal and degenerate non-equilibrium states of high-spin magnets with the SO(3), SU(4), SU(2)×SU(2), SU(3), SO(4), SO(5) symmetries of exchange interaction. The connection between models of magnetic exchange energy and the Casimir invariants has been discussed.
Dynamical quantum phase transitions in presence of a spin bath
NASA Astrophysics Data System (ADS)
Gómez-León, Á.; Stamp, P. C. E.
2017-02-01
We derive an effective time independent Hamiltonian for the transverse Ising model coupled to a spin bath, in the presence of a high frequency AC magnetic field. The spin blocking mechanism that removes the quantum phase transition can be suppressed by the AC field, allowing tunability of the quantum critical point. We calculate the phase diagram, including the nuclear spins, and apply the results to quantum Ising systems with long-range dipolar interactions; the example of LiHoF4 is discussed in detail.
Narang, A
1998-07-05
There is a similarity between the metabolic dynamics of a microbial species growing on a mixture of two substrates and the dynamics of growth of two competing populations. Specifically, the enzymes catalyzing the uptake and catabolism of substrates exhibit phenomena analogous to extinction and coexistence."Extinction" of the enzymes associated with one of the substrates results in sequential utilization of the substrates (diauxie) (Monod, 1942). "Coexistence" of the enzymes associated with the substrates results in simultaneous utilization of the substrates (Egli, 1995). Here, we formulate a simple model that shows the basis for this dynamical similarity: The equations describing the evolution of the enzyme levels are dynamical analogs of the Lotka-Volterra model for two competing species. The analogy suggests ways of capturing the experimentally observed preculture-dependent growth patterns, i.e., growth patterns that vary depending on the physiological state of the preculture.
Effect of a cosmic string on spin dynamics
NASA Astrophysics Data System (ADS)
Chowdhury, Debashree; Basu, B.
2014-12-01
In the present paper, we have investigated the role of the cosmic string on spin current and Hall electric field. Due to the background cosmic string, the modified electric field of the system generates renormalized spin-orbit coupling, which induces a modified non-Abelian gauge field. The defect causes a change in the Aharonov-Bohm and Aharonov-Casher phases appearing due to the modified electromagnetic field. In addition, for a time varying electric field we perform explicit analytic calculations to derive the exact form of spin electric field and spin current, which is defect parameter dependent and of oscillating type. Furthermore, in an asymmetric crystal within the Drude model approach we investigate the dependence of the cosmic string parameters on cosmic string induced Hall electric field.
Dynamics of an all-optical atomic spin gyroscope.
Fang, Jiancheng; Wan, Shuangai; Yuan, Heng
2013-10-20
We present the transfer function of an all-optical atomic spin gyroscope through a series of differential equations and validate the transfer function by experimental test. A transfer function is the basis for further control system design. We build the differential equations based on a complete set of Bloch equations describing the all-optical atomic spin gyroscope, and obtain the transfer function through application of the Laplace transformation to these differential equations. Moreover, we experimentally validate the transfer function in an all-optical Cs-Xe129 atomic spin gyroscope through a series of step responses. This transfer function is convenient for analysis of the form of control system required. Furthermore, it is available for the design of the control system specifically to improve the performance of all-optical atomic spin gyroscopes.
Magnetism of metals in the dynamic spin-fluctuation theory
NASA Astrophysics Data System (ADS)
Melnikov, N. B.; Reser, B. I.
2016-12-01
We overview new developments in spin-fluctuation theory, which describes magnetic properties of ferromagnetic metals at finite temperatures. We present a detailed analysis of the underlying techniques and compare numerical results with experiment.
Atom-diatom scattering dynamics of spinning molecules
Eyles, C. J.; Floß, J.; Averbukh, I. Sh.; Leibscher, M.
2015-01-14
We present full quantum mechanical scattering calculations using spinning molecules as target states for nuclear spin selective atom-diatom scattering of reactive D+H{sub 2} and F+H{sub 2} collisions. Molecules can be forced to rotate uni-directionally by chiral trains of short, non-resonant laser pulses, with different nuclear spin isomers rotating in opposite directions. The calculations we present are based on rotational wavepackets that can be created in this manner. As our simulations show, target molecules with opposite sense of rotation are predominantly scattered in opposite directions, opening routes for spatially and quantum state selective scattering of close chemical species. Moreover, two-dimensional state resolved differential cross sections reveal detailed information about the scattering mechanisms, which can be explained to a large degree by a classical vector model for scattering with spinning molecules.
Cavity Exciton-Polaritons, Bose Einstein Condensation and Spin Dynamics
Malpuech, Guillaume; Solnyshkov, Dmitry; Shelykh, Ivan
2009-10-07
An introduction giving elementary properties of cavity exciton-polariton will be given. The condition of occurrence of the polariton lasing effect and of the polariton Bose Eintein condensation will be discussed. The impact of the structural disorder on the superfluid behavior of polariton condensates will be analysed. The spin properties of polariton condensates will be discussed. I will show how the anisotropy of the polariton-polariton interaction leads to the suppression of zeeman splitting for polariton condensates (spin Meissner effects). I will show how the combined impact of disorder and spin Meissner effect can lead to the formation of a new condense phase. I will show how these phenomena can allow for the realization of a polaritonic Datta Das spin transistor.
Direct observation of dynamic modes excited in a magnetic insulator by pure spin current
Demidov, V. E.; Evelt, M.; Bessonov, V.; Demokritov, S. O.; Prieto, J. L.; Muñoz, M.; Ben Youssef, J.; Naletov, V. V.; de Loubens, G.; Klein, O.; Collet, M.; Bortolotti, P.; Cros, V.; Anane, A.
2016-01-01
Excitation of magnetization dynamics by pure spin currents has been recently recognized as an enabling mechanism for spintronics and magnonics, which allows implementation of spin-torque devices based on low-damping insulating magnetic materials. Here we report the first spatially-resolved study of the dynamic modes excited by pure spin current in nanometer-thick microscopic insulating Yttrium Iron Garnet disks. We show that these modes exhibit nonlinear self-broadening preventing the formation of the self-localized magnetic bullet, which plays a crucial role in the stabilization of the single-mode magnetization oscillations in all-metallic systems. This peculiarity associated with the efficient nonlinear mode coupling in low-damping materials can be among the main factors governing the interaction of pure spin currents with the dynamic magnetization in high-quality magnetic insulators. PMID:27608533
Photoexcited Eu2+ spin dynamics in EuFe2As2
NASA Astrophysics Data System (ADS)
Pogrebna, A.; Mertelj, T.; Cao, G.; Xu, Z. A.; Mihailovic, D.
2014-06-01
Employing temperature dependent time-resolved optical femtosecond spectroscopy, we investigated the quasiparticle and Eu2+ spin relaxation dynamics in EuFe2As2 (EFA). As previously reported in other undoped iron-based pnictides, we observe the quasiparticle relaxation bottleneck due to the charge gap opening in the spin density wave (SDW) state below T SDW = 189 K. Below the Eu2+ antiferromagnetic (AFM) spin ordering temperature, T AFM = 19 K, we observe another slower relaxation component, which we attribute to the Eu2+ AFM order dynamics. The slow dynamics of this component suggests a weak coupling between the Eu2+ spins and the carriers in the Fe- d derived bands.
Xu, Chao; Kiselev, Valerij G; Möller, Harald E; Fiebach, Jochen B
2013-04-01
Perfusion measurements using dynamic susceptibility contrast imaging provide additional information about the mean vessel size of microvasculature when supplemented with a dual gradient echo (GE) - spin echo (SE) contrast. Dynamic increase in the corresponding transverse relaxation rate constant changes, ΔR2GE and ΔR2SE , forms a loop on the (Δ R2SE3/2, ΔR2GE ) plane, rather than a reversible line. The shape of the loop and the direction of its passage differentiate between healthy brain and pathological tissue, such as tumour and ischemic tissue. By considering a tree model of microvasculature, the direction of the loop is found to be influenced mainly by the relative arterial and venous blood volume, as well as the tracer bolus dispersion. A parameter Λ is proposed to characterize the direction and shape of the loop, which might be considered as a novel imaging marker for describing the pathology of cerebrovascular network.
Quantum decoherence dynamics of divacancy spins in silicon carbide
Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; Miao, Kevin C.; Galli, Giulia; Awschalom, David D.
2016-01-01
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H–SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state. PMID:27679936
Quantum decoherence dynamics of divacancy spins in silicon carbide
Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; Miao, Kevin C.; Galli, Giulia; Awschalom, David D.
2016-09-29
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30mT and above), the ^{29}Si and ^{13}C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Lastly, our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.
Quantum decoherence dynamics of divacancy spins in silicon carbide
Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; ...
2016-09-29
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30mT and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs aremore » both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Lastly, our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.« less
Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; ...
2016-02-03
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, whichmore » is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Lastly, our findings have direct implications on the development of engineered magnonics applications and devices.« less
Collective dynamics in atomistic models with coupled translational and spin degrees of freedom
Perera, Dilina; Nicholson, Don M.; Eisenbach, Markus; ...
2017-01-26
When using an atomistic model that simultaneously treats the dynamics of translational and spin degrees of freedom, we perform combined molecular and spin dynamics simulations to investigate the mutual influence of the phonons and magnons on their respective frequency spectra and lifetimes in ferromagnetic bcc iron. Furthermore, by calculating the Fourier transforms of the space- and time-displaced correlation functions, the characteristic frequencies and the linewidths of the vibrational and magnetic excitation modes were determined. A comparison of the results with that of the stand-alone molecular dynamics and spin dynamics simulations reveals that the dynamic interplay between the phonons and magnonsmore » leads to a shift in the respective frequency spectra and a decrease in the lifetimes. Moreover, in the presence of lattice vibrations, additional longitudinal magnetic excitations were observed with the same frequencies as the longitudinal phonons.« less
Rényi information flow in the Ising model with single-spin dynamics.
Deng, Zehui; Wu, Jinshan; Guo, Wenan
2014-12-01
The n-index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase.
Collective dynamics in atomistic models with coupled translational and spin degrees of freedom
NASA Astrophysics Data System (ADS)
Perera, Dilina; Nicholson, Don M.; Eisenbach, Markus; Stocks, G. Malcolm; Landau, David P.
2017-01-01
Using an atomistic model that simultaneously treats the dynamics of translational and spin degrees of freedom, we perform combined molecular and spin dynamics simulations to investigate the mutual influence of the phonons and magnons on their respective frequency spectra and lifetimes in ferromagnetic bcc iron. By calculating the Fourier transforms of the space- and time-displaced correlation functions, the characteristic frequencies and the linewidths of the vibrational and magnetic excitation modes were determined. Comparison of the results with that of the stand-alone molecular dynamics and spin dynamics simulations reveals that the dynamic interplay between the phonons and magnons leads to a shift in the respective frequency spectra and a decrease in the lifetimes. Moreover, in the presence of lattice vibrations, additional longitudinal magnetic excitations were observed with the same frequencies as the longitudinal phonons.
Rényi information flow in the Ising model with single-spin dynamics
NASA Astrophysics Data System (ADS)
Deng, Zehui; Wu, Jinshan; Guo, Wenan
2014-12-01
The n -index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase.
Group dynamics for the acquisition of competences in Project Management
NASA Astrophysics Data System (ADS)
Taguas, E. V.; Aguilar, M. C.; Castillo, C.; Polo, M. J.; Pérez, R.
2012-04-01
The Bologna Process promotes European citizens' employability from teaching fields in the University which implies the design of activities addressed to the development of skills for the labor market and engagement of employers. This work has been conceived for improving the formation of Engineering Project Management through group dynamics focused on: 1) the use of the creativity for solving problems; 2) promoting leadership capacities and social skills in multidisciplinary/multicultural work groups; 3) the ethical, social and environmental compromise; 4) the continuous learning. Different types of activities were designed: short activities of 15-30 minutes where fragments of books or songs are presented and discussed and long activities (2 h) where groups of students take different roles for solving common problems and situations within the Engineering Projects context. An electronic book with the content of the dynamics and the material for the students has been carried out. A sample of 20 students of Electronic Engineering degree which had participated at least in two dynamics, evaluated the utility for improving their formation in Engineering Project Management with a mark of 8.2 (scale 0-10, standard deviation equal to 0.9). On the other hand, the teachers observed how this type of work, promotes the interdisciplinary training and the acquisition of social skills, usually not-included in the objectives of the subjects.
Keren, Amit; Gulener, F; Campbell, Ian; Bazalitsky, Galina; Amato, Alex
2002-09-02
We investigate the temperature dependence of the spin-spin dynamical autocorrelation function of the Ising spin glass Fe0.05TiS2 through field dependent muon-spin lattice relaxation measurements. We successfully analyze the results using the Ogielski function, namely, t(-x)exp((-[t/tau](y)) as employed in numerical simulations. The experimental estimates of x, y, and tau are compared with those from simulations. Our major finding is that in this system the correlation function changes its nature from Ogielski to a form indistinguishable from pure stretched exponential upon cooling close to T(g), indicating a dynamical crossover.
Spin dynamics and magnetoelectric properties of the coupled-spin tetrahedral compound Cu2Te2O5Cl2
NASA Astrophysics Data System (ADS)
Besara, T.; Choi, E. S.; Choi, K.-Y.; Kuhns, P. L.; Reyes, A. P.; Lemmens, P.; Berger, H.; Dalal, N. S.
2014-08-01
We report on the spin dynamics and discovery of magnetoelectricity in the coupled-spin tetrahedral compound Cu2Te2O5Cl2. Te125 NMR measurements show an anomalous resonance frequency shift and a signal wipe-out phenomenon around the Néel temperature TN = 18.2 K, which could be attributed to the anomalous critical slowing down of the Cu spin fluctuations on the NMR time scale (˜10-100 MHz). The critical exponent of (T1T)-1∝(T-TN)-α is 0.40 ± 0.03, as compared to 0.5 for a three-dimensional mean-field model. This is in contrast to the Br compound [S.-H. Baek et al., Phys. Rev. B 86, 180405 (2012), 10.1103/PhysRevB.86.180405], which exhibits pronounced singlet dynamics with a large spin gap. Electric polarization (Pc) is observed along the c axis for temperatures below TN under finite magnetic field but not sensitive to the electric poling. Pc increases sharply over zero to 2 T and then reaches saturation. Below TN, Pc changes its sign depending on the applied magnetic field direction, positive for the H⊥c axis and negative for H ∥ c axis. We discuss possible explanations for the observed magnetoelectric (ME) behavior in terms of linear ME effect, spin-driven multiferroicity, and an exchange striction of intertetrahedral exchange paths involving the Te4+ lone-pair ions. Our results suggest that Cu2Te2O5Cl2 is a type of ME material whose properties are tuned by intertetrahedral exchange interactions involving polarizable Te4+ ions.
Low energy spin dynamics in the spin ice, Ho2Sn2O7
Ehlers, Georg; Huq, Ashfia; Diallo, Souleymane Omar; Adriano, Cris; Rule, K; Cornelius, A. L.; Fouquet, Peter; Pagliuso, P G; Gardner, Jason
2012-01-01
The magnetic properties of Ho{sub 2}Sn{sub 2}O{sub 7} have been investigated and compared to other spin ice compounds. Although the lattice has expanded by 3% relative to the better studied Ho{sub 2}Ti{sub 2}O{sub 7} spin ice, no significant changes were observed in the high temperature properties, T {approx}> 20 K. As the temperature is lowered and correlations develop, Ho{sub 2}Sn{sub 2}O{sub 7} enters its quantum phase at a slightly higher temperature than Ho{sub 2}Ti{sub 2}O{sub 7} and is more antiferromagnetic in character. Below 80 K a weak inelastic mode associated with the holmium nuclear spin system has been measured. The hyperfine field at the holmium nucleus was found to be {approx}700 T.
NASA Astrophysics Data System (ADS)
Roy, S.; Seu, K. A.; Parks, D.; Su, R.; Turner, J. J.; Park, S.; Falco, C. M.; Kevan, S. D.
2010-03-01
We report measurements of slow magnetization fluctuations in an ultrathin Au/Co/Au system that exhibits a spin reorientation phase transition as a function of temperature. The intermediate scattering function is well described by a stretched exponential that is indicative of cooperative motion throughout the temperature range of 150 - 300 K. The decay times were found to exhibit a maximum at the transition temperature. The slowdown has been explained as due to formation of a shallow double well in the energy landscape by the different competing interactions. Our results show that slow dynamics in the mesoscopic length scale can provide valuable insights into the nature of magnetic phase transitions. Work at LBNL is supported by DOE.
NASA Astrophysics Data System (ADS)
Yu, Rong; Nevidomskyy, Andriy H.
2016-12-01
We study the symmetry and strength of the superconducting pairing in a two-orbital t-{{J}1}-{{J}2}-K model for iron pnictides using the slave boson strong coupling approach. We show that the nearest-neighbor biquadratic interaction -K{{({{S}i}\\cdot {{S}j})}2} strongly affects the superconducting pairing phase diagram by promoting the {{d}{{x2}-{{y}2}}} B 1g and the {{s}{{x2}+{{y}2}}} A 1g channels. The resulting phase diagram consists of several competing pairing channels, including the isotropic {{s}+/-} A 1g channel, an anisotropic {{d}{{x2}-{{y}2}}} B 1g channel, and two s+\\text{i}d pairing channels. We have investigated the evolution of superconducting states with electron doping, and find that the biquadratic interaction plays a crucial role in stabilizing the s+\\text{i}d and even pure d-wave pairing in the heavily electron- and hole-doped regimes. In addition, we identify a novel orbital-B 1g pairing channel, which has a s-wave form factor but a B 1g symmetry. This channel has a comparable pairing amplitude to the d-wave pairing, and may strongly influence the superconducting gap anisotropy of the system in the overdoped regime. These findings are crucial in understanding the doping evolution of the superconducting gap anisotropy observed by angle resolved photoemission spectroscopy in the iron pnictides and iron chalcogenides, including the heavily K-doped BaFe2As2 and K-doped FeSe films.
Spin dynamics and Kondo physics in optical tweezers
NASA Astrophysics Data System (ADS)
Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.
2016-05-01
We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Spin currents and magnon dynamics in insulating magnets
NASA Astrophysics Data System (ADS)
Nakata, Kouki; Simon, Pascal; Loss, Daniel
2017-03-01
Nambu–Goldstone theorem provides gapless modes to both relativistic and nonrelativistic systems. The Nambu–Goldstone bosons in insulating magnets are called magnons or spin-waves and play a key role in magnetization transport. We review here our past works on magnetization transport in insulating magnets and also add new insights, with a particular focus on magnon transport. We summarize in detail the magnon counterparts of electron transport, such as the Wiedemann–Franz law, the Onsager reciprocal relation between the Seebeck and Peltier coefficients, the Hall effects, the superconducting state, the Josephson effects, and the persistent quantized current in a ring to list a few. Focusing on the electromagnetism of moving magnons, i.e. magnetic dipoles, we theoretically propose a way to directly measure magnon currents. As a consequence of the Mermin–Wagner–Hohenberg theorem, spin transport is drastically altered in one-dimensional antiferromagnetic (AF) spin-1/2 chains; where the Néel order is destroyed by quantum fluctuations and a quasiparticle magnon-like picture breaks down. Instead, the low-energy collective excitations of the AF spin chain are described by a Tomonaga–Luttinger liquid (TLL) which provides the spin transport properties in such antiferromagnets some universal features at low enough temperature. Finally, we enumerate open issues and provide a platform to discuss the future directions of magnonics.
Dynamics of Polymer Blend Film Formation During Spin Coating
NASA Astrophysics Data System (ADS)
Mouhamad, Youmna; Clarke, Nigel; Jones, Richard A. L.; Geoghegan, Mark
2012-02-01
Spin casting is a process broadly used to obtain a uniform film on a flat substrate. A homogeneous film results from the balance between centrifugal and viscous forces. Here we revisit the Meyerhofer model of the spin casting process by taking in account the centrifugal forces, a uniform time dependent evaporation rate, and account for the changes in viscosity using the Huggins intrinsic viscosity. Time resolved light reflectometry is used to monitor the thickness changes of a polystyrene-poly(methyl methacrylate)(which we denote as PS and PMMA) film initially dissolved in toluene and spin cast for ten seconds at 1000 rpm. The experimental data are in good agreement with the model. We also investigate how the volume fraction of PS and PMMA influences the thinning of the film during spin casting. A distinct change in the temporal evolution of thickness as a function of time delimits the first phase of the spin casting process where centrifugal forces are dominant from a second phase dominated by the solvent evaporation. This hypothesis is supported by in-situ off specular scattering data. The time at which this change from centrifugal to evaporation-dominated behaviour is delayed as the volume fraction of PMMA increases.
Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect
NASA Astrophysics Data System (ADS)
Jin, Chendong; Song, Chengkun; Wang, Jianbo; Liu, Qingfang
2016-10-01
Magnetic skyrmion moved by the spin-Hall effect is promising for the application of the generation racetrack memories. However, the Magnus force causes a deflected motion of skyrmion, which limits its application. Here, we create an antiferromagnetic skyrmion by injecting a spin-polarized pulse in the nanostripe and investigate the spin Hall effect-induced motion of antiferromagnetic skyrmion by micromagnetic simulations. In contrast to ferromagnetic skyrmion, we find that the antiferromagnetic skyrmion has three evident advantages: (i) the minimum driving current density of antiferromagnetic skyrmion is about two orders smaller than the ferromagnetic skyrmion; (ii) the velocity of the antiferromagnetic skyrmion is about 57 times larger than the ferromagnetic skyrmion driven by the same value of current density; (iii) antiferromagnetic skyrmion can be driven by the spin Hall effect without the influence of Magnus force. In addition, antiferromagnetic skyrmion can move around the pinning sites due to its property of topological protection. Our results present the understanding of antiferromagnetic skyrmion motion driven by the spin Hall effect and may also contribute to the development of antiferromagnetic skyrmion-based racetrack memories.
Subpicosecond spin dynamics of excited states in the topological insulator Bi2Te3
NASA Astrophysics Data System (ADS)
Sánchez-Barriga, J.; Battiato, M.; Krivenkov, M.; Golias, E.; Varykhalov, A.; Romualdi, A.; Yashina, L. V.; Minár, J.; Kornilov, O.; Ebert, H.; Held, K.; Braun, J.
2017-03-01
Using time-, spin-, and angle-resolved photoemission, we investigate the ultrafast spin dynamics of hot electrons on the surface of the topological insulator Bi2Te3 following optical excitation by femtosecond-infrared pulses. We observe two surface-resonance states above the Fermi level coexisting with a transient population of Dirac fermions that relax in ˜2 ps. One state disperses up to ˜0.4 eV just above the bulk continuum, and the other one at ˜0.8 eV inside a projected bulk band gap. At the onset of the excitation, both states exhibit a reversed spin texture with respect to that of the transient Dirac bands, in agreement with our one-step photoemission calculations. Our data reveal that the high-energy state undergoes spin relaxation within ˜0.5 ps, a process that triggers the subsequent spin dynamics of both the Dirac cone and the low-energy state, which behave as two dynamically locked electron populations. We discuss the origin of this behavior by comparing the relaxation times observed for electrons with opposite spins to the ones obtained from a microscopic Boltzmann model of ultrafast band cooling introduced into the photoemission calculations. Our results demonstrate that the nonequilibrium surface dynamics is governed by electron-electron rather than electron-phonon scattering, with a characteristic time scale unambiguously determined by the complex spin texture of excited states above the Fermi level. Our findings reveal the critical importance of detecting momentum and energy-resolved spin textures with femtosecond resolution to fully understand the subpicosecond dynamics of transient electrons on the surface of topological insulators.
Li, Yan; Sinitsyn, N; Smith, D L; Reuter, D; Wieck, A D; Yakovlev, D R; Bayer, M; Crooker, S A
2012-05-04
The problem of how single central spins interact with a nuclear spin bath is essential for understanding decoherence and relaxation in many quantum systems, yet is highly nontrivial owing to the many-body couplings involved. Different models yield widely varying time scales and dynamical responses (exponential, power-law, gaussian, etc.). Here we detect the small random fluctuations of central spins in thermal equilibrium [holes in singly charged (In,Ga)As quantum dots] to reveal the time scales and functional form of bath-induced spin relaxation. This spin noise indicates long (400 ns) spin correlation times at a zero magnetic field that increase to ∼5 μs as dominant hole-nuclear relaxation channels are suppressed with small (100 G) applied fields. Concomitantly, the noise line shape evolves from Lorentzian to power law, indicating a crossover from exponential to slow [∼1/log(t)] dynamics.
Electron paramagnetic resonance study of the nuclear spin dynamics in an AlAs quantum well
NASA Astrophysics Data System (ADS)
Shchepetilnikov, A. V.; Frolov, D. D.; Nefyodov, Yu. A.; Kukushkin, I. V.; Tiemann, L.; Reichl, C.; Dietsche, W.; Wegscheider, W.
2016-12-01
The nuclear spin dynamics in an asymmetrically doped 16-nm AlAs quantum well grown along the [001] direction has been studied experimentally using the time decay of the Overhauser shift of paramagnetic resonance of conduction electrons. The nonzero spin polarization of nuclei causing the initial observed Overhauser shift is due the relaxation of the nonequilibrium spin polarization of electrons into the nuclear subsystem near electron paramagnetic resonance owing to the hyperfine interaction. The measured relaxation time of nuclear spins near the unity filling factor is (530 ± 30) min at the temperature T = 0.5 K. This value exceeds the characteristic spin relaxation times of nuclei in GaAs/AlGaAs heterostructures by more than an order of magnitude. This fact indicates the decrease in the strength of the hyperfine interaction in the AlAs quantum well in comparison with GaAs/AlGaAs heterostructures.
Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO_{4}
Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; Andersen, Niels H.; Li, Jiying; Le, Manh Duc; Laver, Mark; Niedermayer, Christof; Klemke, Bastian; Lefmann, Kim; Vaknin, David
2015-07-06
We report significant details of the magnetic structure and spin dynamics of LiFePO_{4} obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we show that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.
Growth direction dependence of the electron spin dynamics in {111} GaAs quantum wells
NASA Astrophysics Data System (ADS)
Ye, H. Q.; Wang, G.; Liu, B. L.; Shi, Z. W.; Wang, W. X.; Fontaine, C.; Balocchi, A.; Amand, T.; Lagarde, D.; Renucci, P.; Marie, X.
2012-07-01
The electron spin dynamics is studied by time-resolved Kerr rotation in GaAs/AlGaAs quantum wells embedded in NIP structures grown on (111)A or (111)B-oriented substrates. In both cases the spin lifetimes are significantly increased by applying an external electric field, but this field has to point along the growth direction for structures grown on (111)A and opposite to it for the ones grown on (111)B. This extended electron spin lifetime is the result of the suppression of the D'yakonov-Perel spin relaxation mechanism [Sov. Phys. Solid State 13, 3023 (1972)] due to the cancellation effect of the internal Dresselhaus term [Phys. Rev. 100, 580 (1955)] with the external electric field induced Rashba one [J. Phys. C 17, 6039 (1984)], both governing the conduction band spin-orbit splitting. These results demonstrate the key role played by the growth direction in the design of spintronic devices.
Dimensionality crossover and frustrated spin dynamics on a triangular lattice
NASA Astrophysics Data System (ADS)
Wikberg, J. M.; Dahbi, M.; Saadoune, I.; Gustafsson, T.; Edström, K.; Svedlindh, P.
2010-06-01
Investigations of the magnetic behavior of the layered oxide, LiNi0.65Co0.25Mn0.10O2 , through ac and time-dependent susceptibility, dc linear and nonlinear susceptibility as well as neutron-diffraction measurements are presented. A ferrimagneticlike spin ordering appears at 119 K with a spontaneous magnetization coexisting with spin frustration in two dimensions (2D). At lower temperature, a cluster-glass transition is found at 17.4 K indicating a transformation to a completely frustrated state in three dimensions (3D). A dimensionality crossover with temperature, from 2D to 3D, in a magnetically frustrated system has been demonstrated. The observed magnetic behavior is believed to originate from a percolating system of spin clusters defined by disordered and frustrated exchange interactions and the findings conform well with predictions of the percolation cluster model.
Influence of the black hole spin on the chaotic particle dynamics within a dipolar halo
NASA Astrophysics Data System (ADS)
Nag, Sankhasubhra; Sinha, Siddhartha; Ananda, Deepika B.; Das, Tapas K.
2017-04-01
We investigate the role of the spin angular momentum of astrophysical black holes in controlling the special relativistic chaotic dynamics of test particles moving under the influence of a post-Newtonian pseudo-Kerr black hole potential, along with a perturbative potential created by an asymmetrically placed (dipolar) halo. Proposing a Lyapunov-like exponent to be the effective measure of the degree of chaos observed in the system under consideration, it has been found that black hole spin anti-correlates with the degree of chaos for the aforementioned dynamics. Our findings have been explained applying the general principles of dynamical systems analysis.
Internal Dynamics of the 3-Pyrroline-N-Oxide Ring in Spin-Labeled Proteins.
Consentius, Philipp; Loll, Bernhard; Gohlke, Ulrich; Alings, Claudia; Müller, Carsten; Müller, Robert; Teutloff, Christian; Heinemann, Udo; Kaupp, Martin; Wahl, Markus C; Risse, Thomas
2017-03-16
Site-directed spin labeling is a versatile tool to study structure as well as dynamics of proteins using EPR spectroscopy. Methanethiosulfonate (MTS) spin labels tethered through a disulfide linkage to an engineered cysteine residue were used in a large number of studies to extract structural as well as dynamic information on the protein from the rotational dynamics of the nitroxide moiety. The ring itself was always considered to be a rigid body. In this contribution, we present a combination of high-resolution X-ray crystallography and EPR spectroscopy of spin-labeled protein single crystals demonstrating that the nitroxide ring inverts fast at ambient temperature while exhibiting nonplanar conformations at low temperature. We have used quantum chemical calculations to explore the potential energy that determines the ring dynamics as well as the impact of the geometry on the magnetic parameters probed by EPR spectroscopy.
Dynamic consequences of optical spin-orbit interaction
NASA Astrophysics Data System (ADS)
Sukhov, Sergey; Kajorndejnukul, Veerachart; Naraghi, Roxana Rezvani; Dogariu, Aristide
2015-12-01
Field symmetries and conservation laws are closely associated through Noether's theorem. Light field inhomogeneities lead to changes in linear and angular momenta and, consequently, to radiation pressure, spin or rotation of objects. Here we discuss a new type of mechanical action originating in the exchange between spin and orbital angular momenta. We demonstrate theoretically and experimentally that, when mirror and central symmetries of scattering are broken, a force appears acting perpendicularly to the direction of propagation. This new force completes the set of non-conservative forces (radiation pressure and tractor beams) that can be generated with unstructured light beams.
Hyperfine interaction and its effects on spin dynamics in organic solids
NASA Astrophysics Data System (ADS)
Yu, Z. G.; Ding, Feizhi; Wang, Haobin
2013-05-01
Hyperfine interaction (HFI) and spin-orbit coupling are two major sources that affect electron spin dynamics. Here we present a systematic study of the HFI and its role in organic spintronic applications. For electron spin dynamics in disordered π-conjugated organics, the HFI can be characterized by an effective magnetic field whose modular square is a weighted sum of contact and dipolar contributions. We determine the effective HFI fields of some common π-conjugated organics studied in the literature via first-principles calculations. Most of them are found to be less than 2 mT. While the H atoms are the major source of the HFI in organics containing only the C and H atoms, many organics contain other nuclear spins, such as Al and N in tris-(8-hydroxyquinoline) aluminum, that contribute to the total HFI. Consequently, the deuteration effect on the HFI in the latter may be much weaker than in the former. The HFI gives rise to multiple resonance peaks in electron spin resonance. In disordered organic solids, these individual resonances are unresolved, leading to a broad peak whose width is proportional to the effective HFI field. As electrons hop among adjacent organic molecules, they experience a randomly varying local HFI field, inducing electron spin relaxation and diffusion. This is analyzed rigorously based on master equations. Electron spin relaxation undergoes a crossover along the ratio between the electron hopping rate η¯ and the Larmor frequency Ω of the HFI field. The spin relaxation rate increases (decreases) with η¯ when η¯≪Ω (η¯≫Ω). A coherent beating of electron spin at Ω is possible when the external field is small compared to the HFI. In this regime, the magnetic field is found to enhance the spin relaxation.
Racial Dynamics and Cultural Competence Training in Medical and Pharmacy Education.
Echeverri, Margarita; Dise, Theresa
2017-01-01
Using the Self-Assessment of Perceived Level of Cultural Competence (SAPLCC) questionnaire, frequencies, means, and ANOVAS were determined to create medical and pharmacy student profiles of cultural competence. Profiles were used to identify needs for training and underscore critical issues that should be given priority in the curriculum. Significant differences were found in several domains of cultural competence (knowledge, skills, attitudes, and abilities); they may be explained by differences in the implementation of a pilot curriculum, the racial composition of students in both programs, and other characteristics. However, in the awareness domain, the main differences found may be explained only by respondents' attitudes and their personal experiences. Results confirm the importance of examining the racial dynamics factor and the need to address this sensitive topic early in the academic programs so students are prepared more fully to have sincere and meaningful encounters with their patients during the clinical years and as health care providers.
Spin relaxations in 2D electron gas determined by the memory in the carrier dynamics.
NASA Astrophysics Data System (ADS)
Sherman, Eugene; Glazov, Mikhail
2007-03-01
The effects of long memory, in carrier dynamics in a magnetic field, on spin polarization evolution in 2D electron gas are investigated qualitatively and quantitatively. As examples we consider (i) systems with random Rashba-type SO coupling and (ii) quantum wells with rigid short-range scatterers (antidotes) and regular Dresselhaus SO coupling. In both cases the spin dynamics is strongly non-Markovian. In the system with the random SO coupling the time dependence of the spin polarization shows Gaussian rather than exponential behavior with the cusps corresponding to the electron revolutions. The relaxation speeds up with the increase of the magnetic field. In the system with antidotes scattering, the spin polarization shows a long-tail behavior with the relaxation rate determined by inelastic electron-phonon and electron-electron collisions and demonstrates unusual field dependence.
Weyl fermions and spin dynamics of metallic ferromagnet SrRuO3
Itoh, Shinichi; Endoh, Yasuo; Yokoo, Tetsuya; Ibuka, Soshi; Park, Je-Geun; Kaneko, Yoshio; Takahashi, Kei S.; Tokura, Yoshinori; Nagaosa, Naoto
2016-01-01
Weyl fermions that emerge at band crossings in momentum space caused by the spin–orbit interaction act as magnetic monopoles of the Berry curvature and contribute to a variety of novel transport phenomena such as anomalous Hall effect and magnetoresistance. However, their roles in other physical properties remain mostly unexplored. Here, we provide evidence by neutron Brillouin scattering that the spin dynamics of the metallic ferromagnet SrRuO3 in the very low energy range of milli-electron volts is closely relevant to Weyl fermions near Fermi energy. Although the observed spin wave dispersion is well described by the quadratic momentum dependence, the temperature dependence of the spin wave gap shows a nonmonotonous behaviour, which can be related to that of the anomalous Hall conductivity. This shows that the spin dynamics directly reflects the crucial role of Weyl fermions in the metallic ferromagnet. PMID:27273207
Mean-Field Dynamics of Spin-Orbit Coupled Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Zhang, Yongping; Mao, Li; Zhang, Chuanwei
2012-01-01
Spin-orbit coupling (SOC), the interaction between the spin and momentum of a quantum particle, is crucial for many important condensed matter phenomena. The recent experimental realization of SOC in neutral bosonic cold atoms provides a new and ideal platform for investigating spin-orbit coupled quantum many-body physics. In this Letter, we derive a generic Gross-Pitaevskii equation as the starting point for the study of many-body dynamics in spin-orbit coupled Bose-Einstein condensates. We show that different laser setups for realizing the same SOC may lead to different mean-field dynamics. Various ground state phases (stripe, phase separation, etc.) of the condensate are found in different parameter regions. A new oscillation period induced by the SOC, similar to the Zitterbewegung oscillation, is found in the center-of-mass motion of the condensate.
Mean-field dynamics of spin-orbit coupled Bose-Einstein condensates.
Zhang, Yongping; Mao, Li; Zhang, Chuanwei
2012-01-20
Spin-orbit coupling (SOC), the interaction between the spin and momentum of a quantum particle, is crucial for many important condensed matter phenomena. The recent experimental realization of SOC in neutral bosonic cold atoms provides a new and ideal platform for investigating spin-orbit coupled quantum many-body physics. In this Letter, we derive a generic Gross-Pitaevskii equation as the starting point for the study of many-body dynamics in spin-orbit coupled Bose-Einstein condensates. We show that different laser setups for realizing the same SOC may lead to different mean-field dynamics. Various ground state phases (stripe, phase separation, etc.) of the condensate are found in different parameter regions. A new oscillation period induced by the SOC, similar to the Zitterbewegung oscillation, is found in the center-of-mass motion of the condensate.
Dynamical skyrmion state in a spin current nano-oscillator with perpendicular magnetic anisotropy.
Liu, R H; Lim, W L; Urazhdin, S
2015-04-03
We study the spectral characteristics of spin current nano-oscillators based on the Pt/[Co/Ni] magnetic multilayer with perpendicular magnetic anisotropy. By varying the applied magnetic field and current, both localized and propagating spin wave modes of the oscillation are achieved. At small fields, we observe an abrupt onset of the modulation sidebands. We use micromagnetic simulations to identify this state as a dynamical magnetic skyrmion stabilized in the active device region by spin current injection, whose current-induced dynamics is accompanied by the gyrotropic motion of the core due to the skew deflection. Our results demonstrate a practical route for controllable skyrmion manipulation by spin current in magnetic thin films.
NASA Astrophysics Data System (ADS)
Pohlit, Merlin; Stockem, Irina; Porrati, Fabrizio; Huth, Michael; Schröder, Christian; Müller, Jens
2016-10-01
We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.
Stochastic dynamics and control of a driven nonlinear spin chain: the role of Arnold diffusion
NASA Astrophysics Data System (ADS)
Chotorlishvili, L.; Toklikishvili, Z.; Berakdar, J.
2009-09-01
We study a chain of nonlinear interacting spins driven by a static and a time-dependent magnetic field. The aim is to identify the conditions for the locally and temporally controlled spin switching. Analytical and full numerical calculations show the possibility of stochastic control if the underlying semiclassical dynamics is chaotic. This is achievable by tuning the external field parameters according to the method described in this paper. We show analytically for a finite spin chain that Arnold diffusion is the underlying mechanism for the present stochastic control. Quantum mechanically we consider the regime where the classical dynamics is regular or chaotic. For the latter we utilize the random matrix theory. The efficiency and the stability of the non-equilibrium quantum spin states are quantified by the time dependence of the Bargmann angle related to the geometric phases of the states.
NASA Astrophysics Data System (ADS)
Ambal, K.; Payne, A.; Waters, D. P.; Williams, C. C.; Boehme, C.
2015-08-01
The suitability of the spin dynamics of paramagnetic silicon dangling bonds (E' centers) in high-E'-density amorphous silicon dioxide (SiO2 ) as probe spins for single-spin tunneling force microscopy (SSTFM) is studied. SSTFM is a spin-selection-rule-based scanning-probe single-spin readout concept. Following the synthesis of SiO2 thin films on (111)-oriented crystalline-silicon substrates with room-temperature stable densities of [E'] >5 ×1018 cm-3 throughout the 60-nm thin film, pulsed electron paramagnetic resonance spectroscopy is conducted on the E' centers at temperatures between T =5 K and T =70 K . The measurements reveal that the spin coherence (the transverse spin-relaxation time T2) of these centers is significantly shortened compared to low-E'-density SiO2 films and within error margins not dependent on temperature. In contrast, the spin-flip times (the longitudinal relaxation times T1) are dependent on the temperature but with much weaker dependence than low-density SiO2 , with the greatest deviations from low-density SiO2 seen for T =5 K . These results, discussed in the context of the spin-relaxation dynamics of dangling-bond states of other silicon-based disordered solids, indicate the suitability of E' centers in high-density SiO2 as probe spins for SSTFM.
2009-05-01
Q-G RIP-140 S-F-S-K-N-G-L-L-S-R-L-L-R-Q-N-Q-D-S-U HnCOa-2/TIF2 E-K-H-K-I-L-H-R-L-L-Q-D-S L-P- Y -E-G-S-L-L-L-K-L-L-R-A-P-V-E-E-V 9 Figure 9: cwEPR...Gullà, Jean Chamoun , Peter G. Fajer, Kalman Hideg, and David E. Budil, New site-directed spin labeling tools for characterizing the dynamic response of...Hideg, Jean Chamoun , Peter G. Fajer, David E. Budil, Characterization of novel estrogen-based nitroxide spin probe binding to the estrogen receptor α
Laser-induced ultrafast spin dynamics in ErFeO3
NASA Astrophysics Data System (ADS)
de Jong, J. A.; Kimel, A. V.; Pisarev, R. V.; Kirilyuk, A.; Rasing, Th.
2011-09-01
Using 100-fs optical laser pulses, we have been able to excite and probe spin dynamics in the rare-earth orthoferrite ErFeO3. The investigation was performed in a broad temperature range with the focus on the vicinities of the compensation point Tcomp≈47K and the spin reorientation transition region in the interval 86K≲T≲99K. Spin precession excited by the laser pulse was present in a large part of the investigated temperature range, but was especially strong near the spin reorientation region. In this region the laser pulse also caused an ultrafast spin reorientation. By changing the laser pulse fluence, we could vary both the reorientation amplitude and the reorientation speed. We show that the laser-induced spin dynamics in ErFeO3 is caused in part by heating and in part by the inverse Faraday effect. Comparing to the results of similar experiments in other rare-earth orthoferrites, we found the speed of the laser-induced spin reorientation to be significantly lower. We attribute this finding to the weaker electron-phonon coupling of the Er3+ 4f electrons with the lattice.
Directly probing spin dynamics in insulating antiferromagnets using ultrashort terahertz pulses
Bowlan, Pamela Renee; Trugman, Stuart Alan; Wang, X.; Dai, Yaomin; Cheong, S.-W.; Bauer, Eric Dietzgen; Taylor, Antoinette Jane; Yarotski, Dmitry Anatolievitch; Prasankumar, Rohit Prativadi
2016-11-22
We investigate spin dynamics in the antiferromagnetic (AFM) multiferroic TbMnO3 using opticalpump, terahertz (THz)-probe spectroscopy. Photoexcitation results in a broadband THz transmission change, with an onset time of 25 ps at 6 K that becomes faster at higher temperatures. We attribute this time constant to spin-lattice thermalization. The excellent agreement between our measurements and previous ultrafast resonant x-ray diffraction measurements on the same material confirms that our THz pulse directly probes spin order. We suggest that this could be the case in general for insulating AFM materials, if the origin of the static absorption in the THz spectral range is magnetic.
Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain
NASA Astrophysics Data System (ADS)
Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong
2010-07-01
This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.
Dynamics of spin valves investigated using Magneto-Optical Kerr Effect Spectroscopy
NASA Astrophysics Data System (ADS)
Stevens, Christopher; Paul, Jagannath; Dey, Prasenjit; Miller, Casey; McGill, Stephen; Karaiskaj, Denis
Through an all-optical approach, we are investigating the spin dynamics in different spin torque based structures. Using pump-probe Time-Resolved Magneto-Optical Kerr Effect (TR-MOKE) spectroscopy, we are able to monitor the ultrafast magnon propagation on a sub-picosecond timescale as well as the longer lived oscillations and demagnetization. This represents a recent efforts to realize magnon induced spin torque using an all optical method. This research at USF is supported by the National Science Foundation, Division of Electrical, Communications and Cyber Systems under Grant Number: 1231929. The work was done in part at the NHMFL, Tallahassee, FSU under Grants: DMR-1229217, DMR-1157490.
Depolarization Dynamics in a Strongly Interacting Solid-State Spin Ensemble
NASA Astrophysics Data System (ADS)
Choi, Joonhee; Choi, Soonwon; Kucsko, Georg; Maurer, Peter C.; Shields, Brendan J.; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Demler, Eugene; Jelezko, Fedor; Yao, Norman Y.; Lukin, Mikhail D.
2017-03-01
We study the depolarization dynamics of a dense ensemble of dipolar interacting spins, associated with nitrogen-vacancy centers in diamond. We observe anomalously fast, density-dependent, and nonexponential spin relaxation. To explain these observations, we propose a microscopic model where an interplay of long-range interactions, disorder, and dissipation leads to predictions that are in quantitative agreement with both current and prior experimental results. Our results pave the way for controlled many-body experiments with long-lived and strongly interacting ensembles of solid-state spins.
The dynamics of particle disks. II - Effects of spin degrees of freedom
NASA Technical Reports Server (NTRS)
Araki, Suguru
1988-01-01
The present treatment of the thermal equilibria of differentially-rotating, axisymmetric disks consisting of identical, spin-possessing as well as translational DOF-possessing hard sphere particles characterizes these disks' dynamics by means of two novel parameters: (1) the tangential restitution coefficient, and (2) the dimensionless moment of inertia. It is established that rings composed of spinning particles can generally be thermally balanced within more restricted ranges of the optical depth, as well as at higher values of the normal restitution coefficient, than spinless rings. Mean spin is indefinite in the present framework of neglected finite particle-size effects.
Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current
2014-01-01
We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed. PMID:25147490
Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current.
Guslienko, Konstantin Y; Sukhostavets, Oksana V; Berkov, Dmitry V
2014-01-01
We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed.
Lee, Jong Min; Jang, Chaun; Min, Byoung-Chul; Lee, Seo-Won; Lee, Kyung-Jin; Chang, Joonyeon
2016-01-13
Dzyaloshinskii-Moriya interaction (DMI), which arises from the broken inversion symmetry and spin-orbit coupling, is of prime interest as it leads to a stabilization of chiral magnetic order and provides an efficient manipulation of magnetic nanostructures. Here, we report all-electrical measurement of DMI using propagating spin wave spectroscopy based on the collective spin wave with a well-defined wave vector. We observe a substantial frequency shift of spin waves depending on the spin chirality in Pt/Co/MgO structures. After subtracting the contribution from other sources to the frequency shift, it is possible to quantify the DMI energy in Pt/Co/MgO systems. The result reveals that the DMI in Pt/Co/MgO originates from the interfaces, and the sign of DMI corresponds to the inversion asymmetry of the film structures. The electrical excitation and detection of spin waves and the influence of interfacial DMI on the collective spin-wave dynamics will pave the way to the emerging field of spin-wave logic devices.
Hybrid continuous dynamical decoupling: a photon-phonon doubly dressed spin
NASA Astrophysics Data System (ADS)
Teissier, Jean; Barfuss, Arne; Maletinsky, Patrick
2017-04-01
We study the parametric interaction between a single nitrogen-vacancy electronic spin and a diamond mechanical resonator in which the spin is embedded. Coupling between spin and oscillator is achieved by crystal strain, which is generated upon actuation of the oscillator and which parametrically modulates the spins’ energy splitting. Under coherent microwave driving of the spin, this parametric drive leads to a locking of the spin Rabi frequency to the oscillator mode in the megahertz range. Both the Rabi oscillation decay time and the inhomogeneous spin dephasing time increase by two orders of magnitude under this spin-locking condition. We present routes to prolong the dephasing times even further, potentially to the relaxation time limit. The remarkable coherence protection that our hybrid spin-oscillator system offers is reminiscent of recently proposed concatenated continuous dynamical decoupling schemes and results from our robust, drift-free strain-coupling mechanism and the narrow linewidth of the high-quality diamond mechanical oscillator employed. Our findings suggest feasible applications in quantum information processing and sensing.
NASA Astrophysics Data System (ADS)
Gelman, David; Koch, Christiane P.; Kosloff, Ronnie
2004-07-01
The dissipative quantum dynamics of an anharmonic oscillator coupled to a bath is studied with the purpose of elucidating the differences between the relaxation to a spin bath and to a harmonic bath. Converged results are obtained for the spin bath by the surrogate Hamiltonian approach. This method is based on constructing a system-bath Hamiltonian, with a finite but large number of spin bath modes, that mimics exactly a bath with an infinite number of modes for a finite time interval. Convergence with respect to the number of simultaneous excitations of bath modes can be checked. The results are compared to calculations that include a finite number of harmonic modes carried out by using the multiconfiguration time-dependent Hartree method of Nest and Meyer [J. Chem. Phys. 119, 24 (2003)]. In the weak coupling regime, at zero temperature and for small excitations of the primary system, both methods converge to the Markovian limit. When initially the primary system is significantly excited, the spin bath can saturate restricting the energy acceptance. An interaction term between bath modes that spreads the excitation eliminates the saturation. The loss of phase between two cat states has been analyzed and the results for the spin and harmonic baths are almost identical. For stronger couplings, the dynamics induced by the two types of baths deviate. The accumulation and degree of entanglement between the bath modes have been characterized. Only in the spin bath the dynamics generate entanglement between the bath modes.
Controlling the dynamical modes of the chiral magnetic structures by spin Hall effect
NASA Astrophysics Data System (ADS)
Liu, Ronghua; Lim, Weng-Lee; Urazhdin, Sergei
2014-03-01
Recently, pure spin currents generated due to spin Hall effect have been proved as an efficient approach to reverse the magnetization, modify the dynamical relaxation rates, and excite magnetization oscillations in the heavy metal/ferromagnetic heterostructures. In addition, the Dzyaloshinskii-Moriya interaction (DMI) can also induce chiral magnetization configurations and rich dynamics in these asymmetrical heterostructures . We controllably excited several distinct dynamical modes in spin Hall oscillator based on Pt/ [CoNi] magnetic multilayer with perpendicular anisotropy. At low current, a quasi-linear Slonczewski-like propagating spin wave mode was excited. This mode transforms to a localized soliton mode above a certain threshold current. At large fields, this mode can be identified as the spin wave `bullet' mode. At small fields, the localized mode is transformed to the topological structure of the `droplet' mode, which comes from the oscillations of the chiral domain walls forming the boundary of the bubble domain due to DMI. Our measurements demonstrate a straightforward route for emission of spin waves by nano-oscillators controlled either by current or by the applied magnetic field. This work was supported by the NSF grant ECCS-1218419.
Slow Spin Dynamics in Superconducting Ca0.9Ce0.1Fe2As2
Nadeem, K.; Zhang, W.; Chen, D. Y.; Ren, Z. A.; Qiu, X. G.
2015-01-01
Slow spin dynamics has been observed in superconducting under-doped Ca0.9Ce0.1Fe2As2 single crystal. Below 100 K, the system exhibits hysteresis in the cooling and warming protocols of temperature dependent resistivity due to first order tetragonal to orthorhombic structural transition with simultaneous magnetic transition from paramagnetic to spin density wave antiferromagnetic state of the iron (Fe) ions. Zero field cooled/field cooled (ZFC/FC) magnetization curves showed splitting at 32 K followed by a sharp increase of the FC curve and then FC plateau at low temperatures. Slow spin relaxation in both the ZFC and FC protocols was observed which is typical for spin-glass system. The system also showed features analogue to spin-glass behavior such as ZFC peak, FC plateau, ZFC slow spin relaxation, magnetic hysteresis, and ZFC ac memory effect. The spin-glass like behavior was rather weak and vanished at higher fields. The origin of the slow spin dynamics could be the inhomogeneous distribution of the cerium (Ce) spins ordered along the c-axis OR interactions between Fe and Ce spins which lead to magnetic frustration of Ce spins. All these findings support the coexistence of slow spin dynamics of Ce spins and superconductivity in Ca0.9Ce0.1Fe2As2 single crystal. PMID:26024047
NASA Astrophysics Data System (ADS)
Belykh, V. V.; Evers, E.; Yakovlev, D. R.; Fobbe, F.; Greilich, A.; Bayer, M.
2016-12-01
We develop an extended pump-probe Faraday rotation technique to study submicrosecond electron spin dynamics with picosecond time resolution in a wide range of magnetic fields. The electron spin dephasing time T2* and the longitudinal spin relaxation time T1, both approaching 250 ns in weak fields, are measured thereby in n -type bulk GaAs. By tailoring the pump pulse train through increasing the contained number of pulses, the buildup of resonant spin amplification is demonstrated for the electron spin polarization. The spin precession amplitude in high magnetic fields applied in the Voigt geometry shows a nonmonotonic dynamics deviating strongly from a monoexponential decay and revealing slow beatings. The beatings indicate a two spin component behavior with a g -factor difference of Δ g ˜4 ×10-4 , much smaller than the Δ g expected for free and donor-bound electrons. This g -factor variation indicates efficient, but incomplete spin exchange averaging.
Mi, Qixi; Chernick, Erin T; McCamant, David W; Weiss, Emily A; Ratner, Mark A; Wasielewski, Michael R
2006-06-15
The stable free radical 2,2,6,6-tetramethylpiperidinoxyl (TEMPO, T*) was covalently attached to the electron acceptor in a donor-chromophore-acceptor (D-C-A) system, MeOAn-6ANI-Phn-A-T*, having well-defined distances between each component, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-l,8-dicarboximide, Ph = 2,5-dimethylphenyl (n = 0,1), and A = naphthalene-1,8:4,5-bis(dicarboximide) (NI) or pyromellitimide (PI). Using both time-resolved optical and EPR spectroscopy, we show that T* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Phn-A-*-T*), resulting in modulation of the charge recombination rate within the triradical compared with the corresponding biradical lacking T*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and A-* is not altered by the presence of T*, which interacts most strongly with A-* and accelerates radical pair intersystem crossing. Charge recombination within the triradicals results in the formation of 2,4(MeOAn-6ANI-Phn-3*NI-T*) or 2,4(MeOAn-3*6ANI-Phn-PI-T*) in which T* is strongly spin polarized in emission. Normally, the spin dynamics of correlated radical pairs do not produce a net spin polarization; however, the rate at which the net spin polarization appears on T* closely follows the photogenerated radical ion pair decay rate. This effect is attributed to antiferromagnetic coupling between T* and the local triplet state 3NI, which is populated following charge recombination. These results are explained using a switch in the spin basis set between the triradical and the three-spin charge recombination product having both T* and 3*NI or 3*6ANI present.
The dynamics of a doped hole in a cuprate is not controlled by spin fluctuations
NASA Astrophysics Data System (ADS)
Ebrahimnejad, Hadi; Sawatzky, George A.; Berciu, Mona
2014-12-01
Understanding what controls the dynamics of the quasiparticle that results when a hole is doped into an antiferromagnetically ordered CuO2 layer is the first necessary step in the quest for a theory of the high-temperature superconductivity in cuprates. Here we show that the long-held belief that the quantum spin fluctuations of the antiferromagnetic background play a key role in determining this dynamics is wrong. Indeed, we demonstrate that the correct, experimentally observed quasiparticle dispersion is generically obtained for a three-band model describing the hole moving on the oxygen sublattice and coupled to a Néel lattice of spins without spin fluctuations. We argue that results from one-band model studies actually support this conclusion, and that this significant conceptual change in our understanding of this phenomenology opens the way to studying few-hole dynamics, to accurately gauge the strength of the `magnetic glue’ and its contribution to superconductivity.
Optimal Controller Tested for a Magnetically Suspended Five-Axis Dynamic Spin Rig
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.
2003-01-01
NASA Glenn Research Center's Structural Mechanics and Dynamics Branch has developed a fully suspended magnetic bearing system for their Dynamic Spin Rig, which performs vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust magnetic bearing and the associated control system were integrated into the Dynamic Spin Rig to provide magnetic excitation as well as noncontact magnetic suspension of the 35-lb vertical rotor with blades to induce turbomachinery blade vibration (ref. 1). The new system can provide longer run times at higher speeds and larger vibration amplitudes for rotating blades. Also, it was proven that bearing mechanical life was substantially extended and flexibility was increased in the excitation orientation (direction and phasing).
Spin distributions and dynamics in domain walls guided by soft magnetic nanowire structures
NASA Astrophysics Data System (ADS)
Yang, Jusang; Erskine, James L.
2017-01-01
Numerical simulations are used to investigate static and dynamic properties of spin distributions within domain walls confined by rectangular cross section Permalloy nanowire conduits having widths up to 1000 nm and thickness up to 50 nm. Phase boundaries and critical regions associated with domain-wall spin distributions of various topologies [transverse (or asymmetric transverse), vortex, double-vortex, triple-vortex and cross-tie] are accurately determined using high-performance computing resources. Mobility curves are calculated that characterize domain-wall propagation for an interesting region of the spin texture phase diagram: 20 nm thick nanowires with widths of 60-700 nm at axial drive fields extending to 150 Oe. The simulations (and corresponding experiments, which are discussed), reveal new propagating fixed configuration domain-wall topologies with enhanced velocity. Effects of temperature on the spin distributions and dynamics are explored, by conducting simulations that include separately varying temperature-dependent parameters (saturation magnetization and exchange constant) and simulating effects of temperature-dependent fluctuations using the Langevin dynamics feature of the simulation code. Related temperature-dependent experiments are discussed. The simulation studies demonstrate a close connection between static and (field-driven) dynamic spin configurations in nanowire-confined domain walls and demonstrate the importance of exploring model-system parameter space at high numerical precision.
Non-Markovian dynamics in the extended cluster spin-1/2 XX chain
NASA Astrophysics Data System (ADS)
Mahmoudi, M.; Mahdavifar, S.; Zadeh, T. Mohammad Ali; Soltani, M. R.
2017-01-01
We study the dynamics of entanglement, mutual information, and quantum discord in the extended cluster spin-1/2 XX chain, equivalent to a one-dimensional spin-1/2 XX model with three-spin interaction (TSI). Selecting the nearest neighbor pair spins as an open quantum system, the rest of the chain plays the role of the environment. The two-point Heisenberg and the TSI are responsible for coupling between the system and the environment. Although the revival phenomenon of quantum correlations as an indication of non-Markovian dynamics is observed for TSI stronger than the Heisenberg interaction, the study of the trace distance has proven that the dynamical phase transition from the Markovian to the non-Markovian regime happens at a critical value where the TSI is equal to half of the Heisenberg interaction. By focusing on the nearest neighbor pair spins of the environment, we have also shown that the dynamics of quantum correlation in the environment is sensitive to Markovian and non-Markovian regions.
Benedetti, G.A.
1990-11-01
When a fluid flows inside a tube, the deformations of the tube can interact with the fluid flowing within it and these dynamic interactions can result in significant lateral motions of the tube and the flowing fluid. The purpose of this report is to examine the dynamic stability of a spinning tube through which an incompressible frictionless fluid is flowing. The tube can be considered as either a hollow beam or a hollow cable. The analytical results can be applied to spinning or stationary tubes through which fluids are transferred; e.g., liquid coolants, fuels and lubricants, slurry solutions, and high explosives in paste form. The coupled partial differential equations are determined for the lateral motion of a spinning Bernoulli-Euler beam or a spinning cable carrying an incompressible flowing fluid. The beam, which spins about an axis parallel to its longitudinal axis and which can also be loaded by a constant axial force, is straight, uniform, simply supported, and rests on a massless, uniform elastic foundation that spins with the beam. Damping for the beam and foundation is considered by using a combined uniform viscous damping coefficient. The fluid, in addition to being incompressible, is frictionless, has a constant density, and flows at a constant speed relative to the longitudinal beam axis. The Galerkin method is used to reduce the coupled partial differential equations for the lateral motion of the spinning beam to a coupled set of 2N, second order, ordinary differential equations for the generalized beam coordinates. By simplifying these equations and examining the roots of the characteristic equation, an analytical solution is obtained for the lateral dynamic instability of the beam (or cable). The analytical solutions determined the minimum critical fluid speed and the critical spin speeds, for a specified fluid speed, in terms of the physical parameters of the system.
Effect of modularity on the Glauber dynamics of the dilute spin glass model
NASA Astrophysics Data System (ADS)
Park, Jeong-Man
2014-11-01
We study the Glauber dynamics of the dilute, infinite-ranged spin glass model, the so-called dilute Sherrington-Kirkpatrick (dSK) model. The dSK model has sparse couplings and can be classified by the modularity ( M) of the coupling matrix. We investigate the effect of the modularity on the relaxation dynamics starting from a random initial state. By using the Glauber dynamics and the replica method, we derive the relaxation dynamics equations for the magnetization ( m) and the energy per spin ( r), in addition to the equation for the spin glass order parameter ( q αβ ). In the replica symmetric (RS) analysis, we find that there are two solutions for the RS spin glass order parameter ( q): q = 0which is stable for r < 1/2 and q = (-1+4 r 2)/(32 r 4) which is stable for r > 1/2 in the non-modular system and q = 0 which is stable for r < 1/ and q = (-1+8 r 2)/(128 r 4) which is stable for r > 1/ in the completely modular system. By substituting the proper q values into the equations for r, we find that the relaxation dynamics of r depends on the modularity, M. These results suggest that, in the context of evolutionary theory, the modularity may emerge spontaneously in the point-mutation-only framework (Glauber dynamics) under a changing environment.
Attitude dynamic of spin-stabilized satellites with flexible appendages
NASA Technical Reports Server (NTRS)
Renard, M. L.
1973-01-01
Equations of motion and computer programs have been developed for analyzing the motion of a spin-stabilized spacecraft having long, flexible appendages. Stability charts were derived, or can be redrawn with the desired accuracy for any particular set of design parameters. Simulation graphs of variables of interest are readily obtainable on line using program FLEXAT. Finally, applications to actual satellites, such as UK-4 and IMP-1 have been considered.
Flight dynamics of a spinning projectile descending on a parachute
Benedetti, G.A.
1989-02-01
During the past twenty years Sandia National Laboratories and the US Army have vertically gun launched numerous 155mm and eight-inch diameter flight test projectiles. These projectiles are subsequently recovered using an on-board parachute recovery system which is attached to the forward case structure of the projectile. There have been at least five attempts to describe, through analytical and numerical simulations, the translational and rotational motions of a spinning projectile descending on a parachute. However, none of these investigations have correctly described the large nutational motion of the projectile since all of them overlooked the fundamental mechanism which causes these angular motions. Numerical simulations as well as a closed form analytical solution show conclusively that the Magnus moment is responsible for the large nutational motion of the projectile. That is, when the center of pressure for the Magnus force is aft of the center of mass for the projectile, the Magnus moment causes an unstable (or large) nutational motion which always tends to turn the spinning projectile upside down while it is descending on the parachute. Conversely, when the center of mass for the projectile is aft of the center of pressure for the Magnus force, the Magnus moment stabilizes the nutational motion tending to always point the base of the spinning projectile down. The results of this work are utilized to render projectile parachute recovery systems more reliable and to explain what initially may appear to be strange gyrodynamic behavior of a spinning projectile descending on a parachute. 14 refs., 20 figs.
NASA Astrophysics Data System (ADS)
Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.
2016-10-01
A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (< 100 psec), a regime that is not accessible in semiconductors using traditional Hanle techniques. The measurements were carried out on epitaxial Heusler alloy (Co2FeSi or Co2MnSi)/n-GaAs heterostructures. Lateral spin valve devices were fabricated by electron beam and photolithography. We compare measurements carried out by the new FMR-based technique with traditional non-local and three-terminal Hanle measurements. A full model appropriate for the measurements will be introduced, and a broader discussion in the context of spin pumping experimenments will be included in the talk. The new technique provides a simple and powerful means for detecting spin accumulation at high temperatures. Reference: C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296
Soh, Wee Tee Ong, C. K.; Peng, Bin
2015-08-15
The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-local SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO{sub 2} spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.
Evidence of dynamical spin shielding in Ce from spin-resolved photoelectron spectroscopy
Tobin, J.G.; Yu, S.W.; Komesu, T.; Chung, B.W.; Morton, S.A.; Waddill, G.D.
2008-10-30
Using Fano effect measurements upon polycrystalline Ce, we have observed a phase reversal between the spectral structure at the Fermi edge and the other 4f derived feature near a binding energy of 2 eV. The Fano effect is the observation of spin polarized photoelectron emission from nonmagnetic materials, under chirally selective excitation, such as circularly polarized photons. The observation of phase reversal between the two peaks is a direct experimental proof of Kondo shielding in Ce, confirming the predictions of Gunnarsson and Shoenhammer, albeit with a small modification.
Wen, Zichao; Yan, Zhenya
2017-03-01
We report new matter-wave solutions of the one-dimensional spin-1 Bose-Einstein condensate system by combining global spin-rotation states and similarity transformation. Dynamical behaviors of non-stationary global spin-rotation states derived from the SU(2) spin-rotation symmetry are discussed, which exhibit temporal periodicity. We derive generalized bright-dark mixed solitons and new rogue wave solutions and reveal the relations between Euler angles in spin-rotation symmetry and parameters in ferromagnetic and polar solitons. In the modulated spin-1 Bose-Einstein condensate system, new solutions are derived and graphically illustrated for different types of modulations. Moreover, numerical simulations are performed to investigate the stability of some obtained solutions for chosen parameters.
NASA Astrophysics Data System (ADS)
Corona, L. A.; Salgado-García, R.
2016-12-01
In this paper we study a class of one-dimensional spin chain having a highly degenerated set of ground-state configurations. The model consists of spin chain having infinite-range pair interactions with a given structure. We show that the set of ground-state configurations of such a model can be fully characterized by means of symbolic dynamics. Particularly we found that the set ground-state configurations define what in symbolic dynamics is called sofic shift space. Finally we prove that this system has a non-vanishing residual entropy (the topological entropy of the shift space), which can be exactly calculated.
NASA Astrophysics Data System (ADS)
Yucesoy, Burcu; Machta, Jonathan; Katzgraber, Helmut G.
2013-01-01
We present the results of a large-scale numerical study of the equilibrium three-dimensional Edwards-Anderson Ising spin glass with Gaussian disorder. Using parallel tempering (replica exchange) Monte Carlo we measure various static, as well as dynamical quantities, such as the autocorrelation times and round-trip times for the parallel tempering Monte Carlo method. The correlation between static and dynamic observables for 5000 disorder realizations and up to 1000 spins down to temperatures at 20% of the critical temperature is examined. Our results show that autocorrelation times are directly correlated with the roughness of the free-energy landscape.
NASA Astrophysics Data System (ADS)
Yucesoy, Burcu; Machta, Jonathan; Katzgraber, Helmut G.
2012-02-01
We present the results of a large-scale numerical study of the equilibrium three-dimensional Ising spin glass with Gaussian disorder. Using replica exchange (parallel tempering) Monte Carlo, we measure various static, as well as dynamical quantities, such as the autocorrelation times and round-trip times for the replica exchange Monte Carlo method. The correlation between static and dynamic observables for 5000 disorder realizations (N <=10^3 spins) down to very low temperatures (T 0.2Tc) is examined. Our results show that autocorrelation times are directly correlated with the roughness of the free energy landscape. We also discuss the size dependence of several static quantities.
A spin-wave logic gate based on a width-modulated dynamic magnonic crystal
Nikitin, Andrey A.; Ustinov, Alexey B.; Semenov, Alexander A.; Kalinikos, Boris A.; Chumak, Andrii V.; Serga, Alexander A.; Vasyuchka, Vitaliy I.; Hillebrands, Burkard; Lähderanta, Erkki
2015-03-09
An electric current controlled spin-wave logic gate based on a width-modulated dynamic magnonic crystal is realized. The device utilizes a spin-wave waveguide fabricated from a single-crystal Yttrium Iron Garnet film and two conducting wires attached to the film surface. Application of electric currents to the wires provides a means for dynamic control of the effective geometry of waveguide and results in a suppression of the magnonic band gap. The performance of the magnonic crystal as an AND logic gate is demonstrated.
Hole dynamics and spin currents after ionization in strong circularly polarized laser fields
NASA Astrophysics Data System (ADS)
Barth, Ingo; Smirnova, Olga
2014-10-01
We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields.
Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes
NASA Astrophysics Data System (ADS)
Mi, Bin-Zhou
2016-09-01
The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green's function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.
Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon
2013-01-07
Dynamic nuclear polarization is a method which allows for a dramatic increase of the NMR signals due to polarization transfer between electrons and their neighboring nuclei, via microwave irradiation. These experiments have become popular in recent years due to the ability to create hyper-polarized chemically and biologically relevant molecules, in frozen glass forming mixtures containing free radicals. Three mechanisms have been proposed for the polarization transfer between electrons and their surrounding nuclei in such non-conducting samples: the solid effect and cross effect mechanisms, which are based on quantum mechanics and relaxation on small spin systems, and thermal mixing, which originates from the thermodynamic macroscopic notion of spin temperature. We have recently introduced a spin model, which is based on the density matrix formalism and includes relaxation, and applied it to study the solid effect and cross effect mechanisms on small spin systems. In this publication we use the same model to describe the thermal mixing mechanism, and the creation of spin temperature. This is obtained without relying on the spin temperature formalism. Simulations of small model systems are used on systems with homogeneously and inhomogeneously broadened EPR lines. For the case of a homogeneously broadened line we show that the nuclear enhancement results from the thermal mixing and solid effect mechanisms, and that spin temperatures are created in the system. In the inhomogeneous case the enhancements are attributed to the solid effect and cross effect mechanisms, but not thermal mixing.
On the dynamics of misaligned accretion discs and spinning black holes
NASA Astrophysics Data System (ADS)
Lodato, G.; Pringle, J. E.
2005-12-01
In this contribution, I discuss the dynamics of misaligned accretion discs and spinning black holes in Active Galactic Nuclei, by using a nself-consistent time-dependent approach, that allows to properly track the evolution of the spin of the black hole during the alignment process. I show that, contrary to previous beliefs, the disc angular momentum and the black hole spin can end up counter-aligned, in such a way that accretion proceeds through retrograde orbits. I will discuss the implications that this counter-aligned mode of accretion has on observables from AGNs, such as the shape of X-ray iron lines, the shape of jets, and the possibility of obscuration of the central engine. I will also discuss, more in general, the effects of the alignment (or counter-alignment) process on the spin history of super-massive black holes.
Mance, Deni; Baldus, Marc; Gast, Peter; Huber, Martina; Ivanov, Konstantin L.
2015-06-21
We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.
Low field domain wall dynamics in artificial spin-ice basis structure
Kwon, J.; Goolaup, S.; Lim, G. J.; Kerk, I. S.; Lew, W. S.; Chang, C. H.; Roy, K.
2015-10-28
Artificial magnetic spin-ice nanostructures provide an ideal platform for the observation of magnetic monopoles. The formation of a magnetic monopole is governed by the motion of a magnetic charge carrier via the propagation of domain walls (DWs) in a lattice. To date, most experiments have been on the static visualization of DW propagation in the lattice. In this paper, we report on the low field dynamics of DW in a unit spin-ice structure measured by magnetoresistance changes. Our results show that reversible DW propagation can be initiated within the spin-ice basis. The initial magnetization configuration of the unit structure strongly influences the direction of DW motion in the branches. Single or multiple domain wall nucleation can be induced in the respective branches of the unit spin ice by the direction of the applied field.
Chaotic dynamics of stellar spin in binaries and the production of misaligned hot Jupiters.
Storch, Natalia I; Anderson, Kassandra R; Lai, Dong
2014-09-12
Many exoplanetary systems containing hot Jupiters are observed to have highly misaligned orbital axes relative to the stellar spin axes. Kozai-Lidov oscillations of orbital eccentricity and inclination induced by a binary companion, in conjunction with tidal dissipation, constitute a major channel for the production of hot Jupiters. We demonstrate that gravitational interaction between the planet and its oblate host star can lead to chaotic evolution of the stellar spin axis during Kozai cycles. As parameters such as the planet mass and stellar rotation period are varied, periodic islands can appear in an ocean of chaos, in a manner reminiscent of other dynamical systems. In the presence of tidal dissipation, the complex spin evolution can leave an imprint on the final spin-orbit misalignment angles.
Electron-nuclei spin dynamics in II-VI semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Le Gall, C.; Brunetti, A.; Boukari, H.; Besombes, L.
2012-05-01
We report on the dynamics of optically induced nuclear spin polarization in individual CdTe/ZnTe quantum dots loaded with one electron by modulation doping. The fine structure of the hot trion (charged exciton X- with an electron in the P shell) is identified in photoluminescence excitation spectra. A negative polarization rate of the photoluminescence, optical pumping of the resident electron, and the built up of dynamic nuclear spin polarization (DNSP) are observed in time-resolved optical pumping experiments when the quantum dot is excited at higher energy than the hot trion triplet state. The time and magnetic field dependence of the polarization rate of the X- emission allows us to probe the dynamics of formation of the DNSP in the optical pumping regime. We demonstrate using time-resolved measurements that the creation of a DNSP at B=0 T efficiently prevents longitudinal spin relaxation of the electron caused by fluctuations of the nuclear spin bath. The DNSP is built in the microsecond range at high excitation intensity. A relaxation time of the DNSP in about 10 μm is observed at B=0 T and significantly increases under a magnetic field of a few milli-Tesla. We discuss mechanisms responsible for the fast initialization and relaxation of the diluted nuclear spins in this system.
Non-Markovian dynamics in chiral quantum networks with spins and photons
NASA Astrophysics Data System (ADS)
Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter
2016-06-01
We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.
Distinguishing the ultrafast dynamics of spin and orbital moments in solids.
Boeglin, C; Beaurepaire, E; Halté, V; López-Flores, V; Stamm, C; Pontius, N; Dürr, H A; Bigot, J-Y
2010-05-27
For an isolated quantum particle, such as an electron, the orbital (L) and spin (S) magnetic moments can change provided that the total angular momentum of the particle is conserved. In condensed matter, an efficient transfer between L and S can occur owing to the spin-orbit interaction, which originates in the relativistic motion of electrons. Disentangling the absolute contributions of the orbital and spin angular momenta is challenging, however, as any transfer between the two occurs on femtosecond timescales. Here we investigate such phenomena by using ultrashort optical laser pulses to change the magnetization of a ferromagnetic film and then probe its dynamics with circularly polarized femtosecond X-ray pulses. Our measurements enable us to disentangle the spin and orbital components of the magnetic moment, revealing different dynamics for L and S. We highlight the important role played by the spin-orbit interaction in the ultrafast laser-induced demagnetization of ferromagnetic films, and show also that the magneto-crystalline anisotropy energy is an important quantity to consider in such processes. Our study provides insights into the dynamics in magnetic systems as well as perspectives for the ultrafast control of information in magnetic recording media.
Magnetization dynamics under heat current in metallic spin valves and in insulators
NASA Astrophysics Data System (ADS)
Yu, Haiming
Spin caloritronics, an emerging branch of spintronics, studying the addition of thermal effects to the electrical and magnetic properties of nanostructures, has recently seen a rapid development. It has been predicted by Hatami et al. that a heat current can exert a spin torque on the magnetization in a nanostructure, analogous to the well-known spin-transfer torque induced by an electrical current. We provided the experimental evidence for the thermal spin-transfer torque effect in spin valves, showing the switching field change with heat current. I will present measurements of the second harmonic voltage response of Co-Cu-Co pseudo-spinvalves deposited in the middle of Cu nanowires. Both the magnitude of the second harmonic response of the spin valve and the field value of the maximum response are found to be dependent on the heat current. Both effects show that the magnetization dynamics of the pseudo-spinvalves is influenced by the heat current. Thus, the data provide a quantitative estimate of the thermal spin torque exerted on the magnetization of the Co layers. In addition, I will present recent study on the magnetization dynamics in a magnetic insulator YIG film under in-plane heat current. The ferromagnetic resonance linewidth is found to be tuned by the applied temperature gradient, i.e. narrowing and broadening. This suggests that the Gilbert damping parameter is compensated or reinforced by the applied temperature gradient in respective direction. These observations can be understood as a heat-driven spin torque in magnetic insulators.
Polarization dynamics in spin-polarized vertical-cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Gerhardt, Nils C.; Höpfner, Henning; Lindemann, Markus; Hofmann, Martin R.
2014-08-01
Spin-polarized lasers and especially spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) are at- tractive novel spintronic devices providing functionalities and characteristics superior to their conventional purely charge-based counterparts. This applies in particular to ultrafast dynamics, modulation capability and chirp control of directly modulated lasers. Here we demonstrate that ultrafast oscillations of the circular polarization degree can be generated in VCSELs by pulsed spin injection which have the potential to reach frequencies beyond 100 GHz. These oscillations are due to the coupling of the carrier-spin-photon system via the optical birefringence for the linearly polarized laser modes in the micro-cavity and are principally decoupled from conventional relaxation oscillations of the carrier-photon system. Utilizing these polarization oscillations is a very promising path to ultrafast directly modulated spin-VCSELs in the near future as long as an effective concept can be developed to modulate or switch these polarization oscillations. After briefly reviewing the state of research in the emerging field of spin-VCSELs, we present a novel concept for controlled switching of polarization oscillations by use of multiple optical spin injection pulses. Depending on the amplitude and phase conditions of the excitation pulses, constructive or destructive interference of polarization oscillations leads to an excitation, stabilization or switch-off of these oscillations. Furthermore even short single polarization bursts can be generated with pulse widths only limited by the resonance frequency of the polarization oscillation. Consequently, this concept is an important building block for using spin controlled polarization oscillations for future communication applications.
Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon
NASA Astrophysics Data System (ADS)
Johnson, Steven
With femtosecond time resolution, x-ray diffraction offers unique capabilities to observe directly the dynamics of long range order. When the x-ray energy is tuned near a core-level transition is is possible in many systems to selectively study the dynamics of long-range order of valence properties such as orbital ordering or magnetic spin. Here I discuss show how resonantly enhanced magnetic scattering can be used to quantitatively measure the character and magnitude of spin motion in a coherent electromagnon in TbMnO3 driven by a THz frequency electromagnetic field. We observe a 4° rotation of the antiferromagnetically ordered spin spiral plane, a result consistent with a previously published model that suggests this may be a viable route for ultrafast domain switching in multiferroics.
Low-frequency spin dynamics in the CeMIn5 materials.
Curro, N J; Sarrao, J L; Thompson, J D; Pagliuso, P G; Kos, S; Abanov, Ar; Pines, D
2003-06-06
We measure the spin lattice relaxation of the planar In(1) nuclei in the CeMIn5 materials, extract quantitative information about the low energy spin dynamics of the lattice of Ce moments in both CeRhIn5 and CeCoIn5, and identify a crossover in the normal state. Above a temperature T(*) the Ce lattice exhibits "Kondo gas" behavior characterized by local fluctuations of independently screened moments; below T(*) both systems exhibit a "Kondo liquid" regime in which interactions between the local moments contribute to the spin dynamics. Both the antiferromagnetic and superconducting ground states in these systems emerge from the Kondo liquid regime. Our analysis provides strong evidence for quantum criticality in CeCoIn5.
Numerical study of the dynamics of some long range spin glass models
NASA Astrophysics Data System (ADS)
Billoire, Alain
2015-07-01
We present results of a Monte Carlo study of the equilibrium dynamics of the one dimensional long-range Ising spin glass model. By tuning a parameter σ , this model interpolates between the mean field Sherrington-Kirkpatrick model and a proxy of the finite dimensional Edward-Anderson model. Activated scaling fits for the behavior of the relaxation time τ as a function of the number of spins N (Namely \\ln (τ )\\propto {{N}\\psi} ) give values of \\psi that are not stable against inclusion of subleading corrections. Critical scaling (τ \\propto {{N}ρ} ) gives more stable fits, at least in the non mean field region. We also present results on the scaling of the time decay of the critical remanent magnetization of the Sherrington-Kirkpatrick model, a case where the simulation can be done with quite large systems and that shows the difficulties in obtaining precise values for dynamical exponents in spin glass models.
NASA Astrophysics Data System (ADS)
Inoue, Jun-Ichi
2011-03-01
We analytically derive deterministic equations of order parameters such as spontaneous magnetization in infinite-range quantum spin systems obeying quantum Monte Carlo dynamics. By means of the Trotter decomposition, we consider the transition probability of Glauber-type dynamics of microscopic states for the corresponding classical system. Under the static approximation, differential equations with respect to macroscopic order parameters are explicitly obtained from the master equation that describes the microscopic-law. We discuss several possible applications of our approach to disordered spin systems for statistical-mechanical informatics. Especially, we argue the ground state searching for infinite-range random spin systems via quantum adiabatic evolution. We were financially supported by Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science, No. 22500195.
Dynamic properties of spin-1/2 XY chains (in English)
NASA Astrophysics Data System (ADS)
Derzhko, O.; Krokhmalskii, T.
We have considered a numerical scheme for the calculation of the equilibrium properties of spin-{1/2} XY chains. Within its frames it is necessary to solve in the last resort only the 2N× 2N eigenvalue and eigenvector problem but not the 2^N× 2^N one as for an arbitrary system consisting of N spins {1/2}. To illustrate the approach we have presented some new results. Namely, the xx dynamic structure factor for the Ising model in transverse field, the density of states for the isotropic chain with random intersite couplings and transverse fields that linearly depend on the surrounding couplings, and the zz dynamic structure factor for the Ising model in the random transverse field. The results obtained are hoped to be useful for an interpretation of observable data for one-dimensional spin-{1/2} XY substances.
Dynamics of polymer film formation during spin coating
Mouhamad, Y.; Clarke, N.; Jones, R. A. L.; Geoghegan, M.; Mokarian-Tabari, P.
2014-09-28
Standard models explaining the spin coating of polymer solutions generally fail to describe the early stages of film formation, when hydrodynamic forces control the solution behavior. Using in situ light scattering alongside theoretical and semi-empirical models, it is shown that inertial forces (which initially cause a vertical gradient in the radial solvent velocity within the film) play a significant role in the rate of thinning of the solution. The development of thickness as a function of time of a solute-free liquid (toluene) and a blend of polystyrene and poly(methyl methacrylate) cast from toluene were fitted to different models as a function of toluene partial pressure. In the case of the formation of the polymer blend film, a concentration-dependent (Huggins) viscosity formula was used to account for changes in viscosity during spin coating. A semi-empirical model is introduced, which permits calculation of the solvent evaporation rate and the temporal evolution of the solute volume fraction and solution viscosity.
Bowlan, P.; Trugman, S. A.; Bowlan, J.; ...
2016-09-26
Here, we demonstrate an approach for directly tracking antiferromagnetic (AFM) spin dynamics by measuring ultrafast changes in a magnon resonance. We also test this idea on the multiferroic HoMnO 3 by optically photoexciting electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced change in the magnon line shape that builds up over 5–12 picoseconds, which we show to be the spin-lattice thermalization time, indicating that electrons heat the spins via phonons. We compare our results to previous studies of spin-lattice thermalization in ferromagnetic manganites, giving insightmore » into fundamental differences between the two systems. Finally, our work sheds light on the microscopic mechanism governing spin-phonon interactions in AFMs and demonstrates a powerful approach for directly monitoring ultrafast spin dynamics.« less
Lattice-site-specific spin dynamics in double perovskite Sr2CoOsO6.
Yan, Binghai; Paul, Avijit Kumar; Kanungo, Sudipta; Reehuis, Manfred; Hoser, Andreas; Többens, Daniel M; Schnelle, Walter; Williams, Robert C; Lancaster, Tom; Xiao, Fan; Möller, Johannes S; Blundell, Stephen J; Hayes, William; Felser, Claudia; Jansen, Martin
2014-04-11
Magnetic properties and spin dynamics have been studied for the structurally ordered double perovskite Sr2CoOsO6. Neutron diffraction, muon-spin relaxation, and ac-susceptibility measurements reveal two antiferromagnetic (AFM) phases on cooling from room temperature down to 2 K. In the first AFM phase, with transition temperature TN1=108 K, cobalt (3d7, S=3/2) and osmium (5d2, S=1) moments fluctuate dynamically, while their average effective moments undergo long-range order. In the second AFM phase below TN2=67 K, cobalt moments first become frozen and induce a noncollinear spin-canted AFM state, while dynamically fluctuating osmium moments are later frozen into a randomly canted state at T≈5 K. Ab initio calculations indicate that the effective exchange coupling between cobalt and osmium sites is rather weak, so that cobalt and osmium sublattices exhibit different ground states and spin dynamics, making Sr2CoOsO6 distinct from previously reported double-perovskite compounds.
Three-dimensional Computational Fluid Dynamics Investigation of a Spinning Helicopter Slung Load
NASA Technical Reports Server (NTRS)
Theorn, J. N.; Duque, E. P. N.; Cicolani, L.; Halsey, R.
2005-01-01
After performing steady-state Computational Fluid Dynamics (CFD) calculations using OVERFLOW to validate the CFD method against static wind-tunnel data of a box-shaped cargo container, the same setup was used to investigate unsteady flow with a moving body. Results were compared to flight test data previously collected in which the container is spinning.
Effects of ruthenium seed layer on the microstructure and spin dynamics of thin permalloy films
Jin Lichuan; Zhang Huaiwu; Tang Xiaoli; Bai Feiming; Zhong Zhiyong
2013-02-07
The spin dynamics and microstructure properties of a sputtered 12 nm Ni{sub 81}Fe{sub 19} thin film have been enhanced by the use of a ruthenium seed layer. Both the ferromagnetic resonance field and linewidth are enhanced dramatically as the thickness of ruthenium seed layer is increased. The surface anisotropy energy constant can also be largely tailored from 0.06 to 0.96 erg/cm{sup -2} by changing the seed layer thickness. The changes to the dynamics magnetization properties are caused by both ruthenium seed layer induced changes in the Ni{sub 81}Fe{sub 19} structure properties and surface topography properties. Roughness induced inhomogeneous linewidth broadening is also seen. The damping constant is highly tunable via the ruthenium thickness. This approach can be used to tailor both the structure and spin dynamic properties of thin Ni{sub 81}Fe{sub 19} films over a wide range. And it may benefit the applications of spin dynamics and spin current based devices.
Precession dynamics of the relativistic electron spin in laser-plasma acceleration
Pugacheva, D V; Andreev, N E
2016-01-31
A model is developed to study the precession dynamics of the relativistic electron spin in a laser-plasma accelerator versus the initial energy of the electron and its injection phase. Optimal parameters providing minimum depolarisation of the electron in the acceleration process are determined. (laser -plasma acceleration of electrons)
Dynamical symmetries and crossovers in a three-spin system with collective dissipation
NASA Astrophysics Data System (ADS)
Pigeon, S.; Xuereb, A.; Lesanovsky, I.; Garrahan, J. P.; De Chiara, G.; Paternostro, M.
2015-01-01
We consider the non-equilibrium dynamics of a simple system consisting of interacting spin-1/2 particles subjected to a collective damping. The model is close to situations that can be engineered in hybrid electro/opto-mechanical settings. Making use of large-deviation theory, we find a Gallavotti-Cohen symmetry in the dynamics of the system as well as evidence for the coexistence of two dynamical phases with different activity levels. We show that additional damping processes smooth out this behavior. Our analytical results are backed up by Monte Carlo simulations that reveal the nature of the trajectories contributing to the different dynamical phases.
"Light-cone" dynamics after quantum quenches in spin chains.
Bonnes, Lars; Essler, Fabian H L; Läuchli, Andreas M
2014-10-31
Signal propagation in the nonequilibrium evolution after quantum quenches has recently attracted much experimental and theoretical interest. A key question arising in this context is what principles, and which of the properties of the quench, determine the characteristic propagation velocity. Here we investigate such issues for a class of quench protocols in one of the central paradigms of interacting many-particle quantum systems, the spin-1/2 Heisenberg XXZ chain. We consider quenches from a variety of initial thermal density matrices to the same final Hamiltonian using matrix product state methods. The spreading velocities are observed to vary substantially with the initial density matrix. However, we achieve a striking data collapse when the spreading velocity is considered to be a function of the excess energy. Using the fact that the XXZ chain is integrable, we present an explanation of the observed velocities in terms of "excitations" in an appropriately defined generalized Gibbs ensemble.
Magnetization dynamics in LSMO/Pt nanowires in the presence of spin orbit torques
NASA Astrophysics Data System (ADS)
Lee, Hankyu; Barsukov, Igor; Safranski, Christopher; Jara, Alejandro; Chen, Yu-Jin; Swartz, Adrian; Kim, Bongju; Hwang, Harold; Krivorotov, Ilya
La0.7Sr0.3MnO3 (LSMO) possesses attractive magnetic properties for nanowire spin torque oscillators (STOs) driven by spin orbit torques: low magnetic damping, low saturation magnetization and high spin polarization. In this context, good understanding of magnetization dynamics in LSMO/Pt bilayer nanowires is important. Here, we report measurements of the spectral properties of spin-wave modes in LSMO/Pt nanowires magnetized along the two principal in-plane axes. In electrically-detected ferromagnetic resonance (FMR) we observe excitation of multiple spin wave modes, including non-aligned modes when the nanowire is magnetized perpendicular to its axis. Spectral linewidth of the FMR resonances gives quantitative information on the Gilbert damping parameter of the nanowire. In comparison to extended LSMO/Pt films, the magnetic damping in the nanowire is reduced due to the suppression of two-magnon scattering. We will present data on the effect of high bias current density applied to the wire on the frequency and linewidth of the observed spin wave resonances.
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
NASA Astrophysics Data System (ADS)
Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.
2015-08-01
We demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ˜0.7 ms up to ˜30 ms . We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.
2015-08-24
In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T_{1} effects and DD microwave pulses are used to increase the transverse coherence time T_{2} from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.
Dynamic nuclear spin polarization of liquids and gases in contact with nanostructured diamond.
Abrams, Daniel; Trusheim, Matthew E; Englund, Dirk R; Shattuck, Mark D; Meriles, Carlos A
2014-05-14
Optical pumping of spin polarization can produce almost complete spin order but its application is restricted to select atomic gases and condensed matter systems. Here, we theoretically investigate a novel route to nuclear spin hyperpolarization in arbitrary fluids in which target molecules are exposed to polarized paramagnetic centers located near the surface of a host material. We find that adsorbed nuclear spins relax to positive or negative polarization depending on the average paramagnetic center depth and nanoscale surface topology. For the particular case of optically pumped nitrogen-vacancy centers in diamond, we calculate strong nuclear spin polarization at moderate magnetic fields provided the crystal surface is engineered with surface roughness in the few-nanometer range. The equilibrium nuclear spin temperature depends only weakly on the correlation time describing the molecular adsorption dynamics and is robust in the presence of other, unpolarized paramagnetic centers. These features could be exploited to polarize flowing liquids or gases, as we illustrate numerically for the model case of a fluid brought in contact with an optically pumped diamond nanostructure.
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
Farfurnik, D.; Jarmola, A.; Pham, L. M.; ...
2015-08-24
In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal controlmore » scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less
Critical clusters and efficient dynamics for frustrated spin models
NASA Astrophysics Data System (ADS)
Cataudella, V.; Franzese, G.; Nicodemi, M.; Scala, A.; Coniglio, A.
1994-03-01
A general method to find, in a systematic way, efficient Monte Carlo cluster dynamics among the vast class of dynamics introduced by Kandel et al. [Phys. Rev. Lett. 65, 941 (1990)] is proposed. The method is successfully applied to a class of frustrated two-dimensional Ising systems. In the case of the fully frustrated model, we also find the intriguing result that critical clusters consist of self-avoiding walk at the θ point.
Resolving the role of femtosecond heated electrons in ultrafast spin dynamics
Mendil, J.; Nieves, P.; Chubykalo-Fesenko, O.; Walowski, J.; Santos, T.; Pisana, S.; Münzenberg, M.
2014-01-01
Magnetization manipulation is essential for basic research and applications. A fundamental question is, how fast can the magnetization be reversed in nanoscale magnetic storage media. When subject to an ultrafast laser pulse, the speed of the magnetization dynamics depends on the nature of the energy transfer pathway. The order of the spin system can be effectively influenced through spin-flip processes mediated by hot electrons. It has been predicted that as electrons drive spins into the regime close to almost total demagnetization, characterized by a loss of ferromagnetic correlations near criticality, a second slower demagnetization process takes place after the initial fast drop of magnetization. By studying FePt, we unravel the fundamental role of the electronic structure. As the ferromagnet Fe becomes more noble in the FePt compound, the electronic structure is changed and the density of states around the Fermi level is reduced, thereby driving the spin correlations into the limit of critical fluctuations. We demonstrate the impact of the electrons and the ferromagnetic interactions, which allows a general insight into the mechanisms of spin dynamics when the ferromagnetic state is highly excited, and identifies possible recording speed limits in heat-assisted magnetization reversal. PMID:24496221
Advances and applications of dynamic-angle spinning nuclear magnetic resonance
Baltisberger, Jay Harvey
1993-06-01
This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.
Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions
NASA Astrophysics Data System (ADS)
Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.
2016-09-01
We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.
NASA Astrophysics Data System (ADS)
Firastrau, I.; Ebels, U.; Buda-Prejbeanu, L.; Toussaint, J.-C.; Thirion, C.; Dieny, B.
2007-03-01
The dynamic state diagram for spin current-induced magnetization dynamics is presented for an out-of-plane magnetized (perpendicular) polarizer and an in-plane magnetized (planar) free layer as obtained from macrospin simulations. The state boundaries are compared upon using a constant spin polarization factor with an angular-dependent spin polarization factor g( θMP) as introduced by Slonczewski. While two critical boundaries remain unaffected by the angular dependence of the polarization, the transition from precession to an out-of-plane stable state is drastically shifted and shows a strong asymmetry with respect to the sign of the spin-polarized current.
NASA Astrophysics Data System (ADS)
Su, Sunyu
The spin dynamics of PrCl_3 and PrBr_3 have been studied in the temperature range from 124mK to 297K using Nuclear Quadrupole Resonance (NQR) techniques. In the low temperature regime, the Pr ions are in the ground state, and the dynamical properties of PrX_3 (X = Cl,Br) are well described by a 1D XY model. The data have been shown to be in agreement with the predictions of a relaxation theory for a magnetic interaction based on a rigorous treatment of the longitudinal dynamical correlation function < S_sp{z}{m}(t)S_sp {z}{n}(t)> of the electronic pseudo-spins S^{m} associated with the crystalline electric field ground state. The fits to the data have yielded reasonable values for the hyperfine interaction parameters A and exchange integrals J/k_{B}. The dynamical properties of the PrX_3 compounds depart from the 1D model as the temperature increases. The spin lattice relaxation rates display unusual temperature dependences in the high temperature regime. These temperature dependences have been qualitatively accounted for by considering the effect of populating the excited states of the crystal electric field. The theory of NQR mixed spin echoes in solids has been established using the interaction representation formalism. The NQR mixed spin echoes theory has been applied to the study of the spin interactions in PrBr_3 . It has been shown that the second moments due to quadrupole interaction M_sp{2} {q}, magnetic dipole-dipole interactions between like spins M_sp{2}{II } and magnetic dipole-dipole interactions between unlike spins M_sp{2}{IS}(Br,Pr ^{3+}),M_sp{2}{IS }(^{79}Br,^{81}Br ) can be simultaneously determined. NQR spectra have been obtained for both praseodymium trihalides. The low temperature spectrum of PrCl _3 has provided strong support to the earlier results. In addition, the present investigation of the NQR spectrum has resulted in a better estimate of the magnitude of dimerization in PrCl_3. The PrBr_3 low temperature NQR spectrum has revealed
Spin dynamics of ZnSe-ZnTe nanostructures grown by migration enhanced molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Deligiannakis, Vasilios; Dhomkar, Siddharth; Ji, Haojie; Pagliero, Daniela; Kuskovsky, Igor L.; Meriles, Carlos A.; Tamargo, Maria C.
2017-03-01
We study the spin dynamics of ZnSe layers with embedded type-II ZnTe quantum dots using time resolved Kerr rotation (TRKR). Three samples were grown with an increasing amount of Te, which correlates with increased quantum dot (QD) density. Samples with a higher quantum dot density exhibit longer electron spin lifetimes, up to ˜1 ns at low temperatures. Tellurium isoelectronic centers, which form in the ZnSe spacer regions as a result of the growth conditions, were probed via spectrally dependent TRKR. Temperature dependent TRKR results show that samples with high QD density are not affected by an electron-hole exchange dephasing mechanism.
Transient dynamics of spin-polarized injection in helical Luttinger liquids
NASA Astrophysics Data System (ADS)
Calzona, A.; Carrega, M.; Dolcetto, G.; Sassetti, M.
2015-11-01
We analyze the time evolution of spin-polarized electron wave packets injected into the edge states of a two-dimensional topological insulator. In the presence of electron interactions, the system is described as a helical Luttinger liquid and injected electrons fractionalize. However, because of the presence of metallic detectors, no evidences of fractionalization are encoded in dc measurements, and in this regime the system does not show deviations from its non-interacting behavior. Nevertheless, we show that the helical Luttinger liquid nature emerges in the transient dynamics, where signatures of charge/spin fractionalization can be clearly identified.
Reprint of : Transient dynamics of spin-polarized injection in helical Luttinger liquids
NASA Astrophysics Data System (ADS)
Calzona, A.; Carrega, M.; Dolcetto, G.; Sassetti, M.
2016-08-01
We analyze the time evolution of spin-polarized electron wave packets injected into the edge states of a two-dimensional topological insulator. In the presence of electron interactions, the system is described as a helical Luttinger liquid and injected electrons fractionalize. However, because of the presence of metallic detectors, no evidences of fractionalization are encoded in dc measurements, and in this regime the system does not show deviations from its non-interacting behavior. Nevertheless, we show that the helical Luttinger liquid nature emerges in the transient dynamics, where signatures of charge/spin fractionalization can be clearly identified.
Wylie, Benjamin J; Dzikovski, Boris G; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H; McDermott, Ann E
2015-04-01
We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces.
Non-equilibrium transport and spin dynamics in single-molecule magnets
NASA Astrophysics Data System (ADS)
Moldoveanu, V.; Dinu, I. V.; Tanatar, B.
2015-11-01
The time-dependent transport through single-molecule magnets (SMM) coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized Master equation (GME) method. We calculate the transient currents which develop when the molecule is smoothly coupled to the source and drain electrodes. The signature of the electrically induced magnetic switching on these transient currents is investigated. Our simulations show that the magnetic switching of the molecular spin can be read indirectly from the transient currents if one lead is magnetic and it is much faster if the leads have opposite spin polarizations. We identify effects of the transverse anisotropy on the dynamics of molecular states.
Exciton fine structure and spin/valley dynamics in nanosystems (Presentation Recording)
NASA Astrophysics Data System (ADS)
Glazov, Mikhail M.
2015-09-01
In my invited talk the fine structure of neutral and charged excitons for GaAs/AlGaAs quantum dots (QDs) grown on (111) plane as well for transition metal dichalcogenides (TMDCs) monolayers will be discussed. These, at first glance, different systems posses similar trigonal symmetry, which makes exciton fine structure and spin dynamics unusual compared with standard low-dimensional semiconductors. The effects of long-range exchange interaction induced mixing of excitons in two valleys of TMDCs and of magneto-induced mixing of bright and dark excitonic states in trigonal QDs are predicted and confirmed experimentally. Manifestations of excitonic spin/valley dynamics in photoluminescence, pump-probe Kerr rotation and spin noise are discussed. The presentation will be based on the following references: [1] G. Sallen, B. Urbaszek, M. M. Glazov, et al., Dark-Bright Mixing of Interband Transitions in Symmetric Semiconductor Quantum Dots, Phys. Rev. Lett. 107, 166604 (2011). [2] L. Bouet, M. Vidal, T. Mano, N. Ha, T. Kuroda, M. V. Durnev, M. M. Glazov, et al., Charge tuning in [111] grown GaAs droplet quantum dots, Appl. Phys. Lett. 105, 082111 (2014). [3] M. M. Glazov, et al., Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides Phys. Rev. B 89, 201302(R) (2014). [4] C. R. Zhu, K. Zhang, M. Glazov, et al., Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers, Phys. Rev. B 90, 161302(R) (2014).
Dynamical transition in the D=3 Edwards-Anderson spin glass in an external magnetic field.
Baity-Jesi, M; Baños, R A; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Iñiguez, D; Maiorano, A; Mantovani, F; Marinari, E; Martin-Mayor, V; Monforte-Garcia, J; Muñoz Sudupe, A; Navarro, D; Parisi, G; Perez-Gaviro, S; Pivanti, M; Ricci-Tersenghi, F; Ruiz-Lorenzo, J J; Schifano, S F; Seoane, B; Tarancon, A; Tripiccione, R; Yllanes, D
2014-03-01
We study the off-equilibrium dynamics of the three-dimensional Ising spin glass in the presence of an external magnetic field. We have performed simulations both at fixed temperature and with an annealing protocol. Thanks to the Janus special-purpose computer, based on field-programmable gate array (FPGAs), we have been able to reach times equivalent to 0.01 s in experiments. We have studied the system relaxation both for high and for low temperatures, clearly identifying a dynamical transition point. This dynamical temperature is strictly positive and depends on the external applied magnetic field. We discuss different possibilities for the underlying physics, which include a thermodynamical spin-glass transition, a mode-coupling crossover, or an interpretation reminiscent of the random first-order picture of structural glasses.
Testing statics-dynamics equivalence at the spin-glass transition in three dimensions
NASA Astrophysics Data System (ADS)
Fernández, Luis Antonio; Martín-Mayor, Víctor
2015-05-01
The statics-dynamics correspondence in spin glasses relate nonequilibrium results on large samples (the experimental realm) with equilibrium quantities computed on small systems (the typical arena for theoretical computations). Here we employ statics-dynamics equivalence to study the Ising spin-glass critical behavior in three dimensions. By means of Monte Carlo simulation, we follow the growth of the coherence length (the size of the glassy domains), on lattices too large to be thermalized. Thanks to the large coherence lengths we reach, we are able to obtain accurate results in excellent agreement with the best available equilibrium computations. To do so, we need to clarify the several physical meanings of the dynamic exponent close to the critical temperature.
Dynamical transition in the D =3 Edwards-Anderson spin glass in an external magnetic field
NASA Astrophysics Data System (ADS)
Baity-Jesi, M.; Baños, R. A.; Cruz, A.; Fernandez, L. A.; Gil-Narvion, J. M.; Gordillo-Guerrero, A.; Iñiguez, D.; Maiorano, A.; Mantovani, F.; Marinari, E.; Martin-Mayor, V.; Monforte-Garcia, J.; Muñoz Sudupe, A.; Navarro, D.; Parisi, G.; Perez-Gaviro, S.; Pivanti, M.; Ricci-Tersenghi, F.; Ruiz-Lorenzo, J. J.; Schifano, S. F.; Seoane, B.; Tarancon, A.; Tripiccione, R.; Yllanes, D.; Janus Collaboration
2014-03-01
We study the off-equilibrium dynamics of the three-dimensional Ising spin glass in the presence of an external magnetic field. We have performed simulations both at fixed temperature and with an annealing protocol. Thanks to the Janus special-purpose computer, based on field-programmable gate array (FPGAs), we have been able to reach times equivalent to 0.01 s in experiments. We have studied the system relaxation both for high and for low temperatures, clearly identifying a dynamical transition point. This dynamical temperature is strictly positive and depends on the external applied magnetic field. We discuss different possibilities for the underlying physics, which include a thermodynamical spin-glass transition, a mode-coupling crossover, or an interpretation reminiscent of the random first-order picture of structural glasses.
Order and thermalized dynamics in Heisenberg-like square and Kagomé spin ices.
Wysin, G M; Pereira, A R; Moura-Melo, W A; de Araujo, C I L
2015-02-25
Thermodynamic properties of a spin ice model on a Kagomé lattice are obtained from dynamic simulations and compared with properties in square lattice spin ice. The model assumes three-component Heisenberg-like dipoles of an array of planar magnetic islands situated on a Kagomé lattice. Ising variables are avoided. The island dipoles interact via long-range dipolar interactions and are restricted in their motion due to local shape anisotropies. We define various order parameters and obtain them and thermodynamic properties from the dynamics of the system via a Langevin equation, solved by the Heun algorithm. Generally, a slow cooling from high to low temperature does not lead to a particular state of order, even for a set of coupling parameters that gives well thermalized states and dynamics. At very low temperature, however, square ice is more likely to reach states near the ground state than Kagomé ice, for the same island coupling parameters.
Kozlov, G. G.
2007-10-15
The model used to describe the spin dynamics in quantum dots after optical excitation is considered. Problems of the electron-spin polarization decay and the dependence of the steady-state polarization on magnetic field are solved on the basis of exact diagonalization of the model Hamiltonian. An important role of the nuclear state is shown and methods of its calculation for different regimes of optical excitation are proposed. The effect of spin echo generation after application of a {pi} pulse of a magnetic field is predicted for the system under consideration.
Simulation of spin dynamics: a tool in MRI system development
NASA Astrophysics Data System (ADS)
Stöcker, Tony; Vahedipour, Kaveh; Shah, N. Jon
2011-05-01
Magnetic Resonance Imaging (MRI) is a routine diagnostic tool in the clinics and the method of choice in soft-tissue contrast medical imaging. It is an important tool in neuroscience to investigate structure and function of the living brain on a systemic level. The latter is one of the driving forces to further develop MRI technology, as neuroscience especially demands higher spatiotemporal resolution which is to be achieved through increasing the static main magnetic field, B0. Although standard MRI is a mature technology, ultra high field (UHF) systems, at B0 >= 7 T, offer space for new technical inventions as the physical conditions dramatically change. This work shows that the development strongly benefits from computer simulations of the measurement process on the basis of a semi-classical, nuclear spin-1/2 treatment given by the Bloch equations. Possible applications of such simulations are outlined, suggesting new solutions to the UHF-specific inhomogeneity problems of the static main field as well as the high-frequency transmit field.
Static versus dynamic heterogeneities in the D = 3 Edwards-Anderson-Ising spin glass.
Alvarez Baños, R; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Guidetti, M; Maiorano, A; Mantovani, F; Marinari, E; Martin-Mayor, V; Monforte-Garcia, J; Muñoz Sudupe, A; Navarro, D; Parisi, G; Perez-Gaviro, S; Ruiz-Lorenzo, J J; Schifano, S F; Seoane, B; Tarancon, A; Tripiccione, R; Yllanes, D
2010-10-22
We numerically study the aging properties of the dynamical heterogeneities in the Ising spin glass. We find that a phase transition takes place during the aging process. Statics-dynamics correspondence implies that systems of finite size in equilibrium have static heterogeneities that obey finite-size scaling, thus signaling an analogous phase transition in the thermodynamical limit. We compute the critical exponents and the transition point in the equilibrium setting, and use them to show that aging in dynamic heterogeneities can be described by a finite-time scaling ansatz, with potential implications for experimental work.
Wasielewski, M. R.
1998-08-27
Our current work in modeling reaction center dynamics has resulted in the observation of each major spin-dependent photochemical pathway that is observed in reaction centers. The development of new, simpler model systems has permitted us to probe deeply into the mechanistic issues that drive these dynamics. Based on these results we have returned to biomimetic chlorophyll-based electron donors to mimic these dynamics. Future studies will focus on the details of electronic structure and energetic of both the donor-acceptor molecules and their surrounding environment that dictate the mechanistic pathways and result in efficient photosynthetic charge separation.
Role of environmental correlations in the non-Markovian dynamics of a spin system
Lorenzo, Salvatore; Plastina, Francesco; Paternostro, Mauro
2011-09-15
We study the dynamics of a chain of interacting quantum particles affected by an individual or collective environment(s), focusing on the role played by the environmental quantum correlations over the evolution of the chain. The presence of entanglement in the state of the environment magnifies the non-Markovian nature of the chain's dynamics, giving rise to structures in figures of merit such as spin entanglement and purity that are not observed under a separable environmental state. Our analysis can be relevant to problems tackling the open-system dynamics of biological complexes of strong current interest.
Directly probing spin dynamics in insulating antiferromagnets using ultrashort terahertz pulses
Bowlan, Pamela Renee; Trugman, Stuart Alan; Wang, X.; ...
2016-11-22
We investigate spin dynamics in the antiferromagnetic (AFM) multiferroic TbMnO3 using opticalpump, terahertz (THz)-probe spectroscopy. Photoexcitation results in a broadband THz transmission change, with an onset time of 25 ps at 6 K that becomes faster at higher temperatures. We attribute this time constant to spin-lattice thermalization. The excellent agreement between our measurements and previous ultrafast resonant x-ray diffraction measurements on the same material confirms that our THz pulse directly probes spin order. We suggest that this could be the case in general for insulating AFM materials, if the origin of the static absorption in the THz spectral range ismore » magnetic.« less
Collective-mode dynamics in a spin-orbit-coupled Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Chen, Zhu; Zhai, Hui
2012-10-01
Recently a spin-orbit-coupled Bose condensate has been realized experimentally using two-photon Raman coupling, and this condensate exhibits two distinct equilibrium phases known as the plane wave phase and the stripe phase at equilibrium. In this Rapid Communication we show that such condensate exhibits unique dynamic behaviors, which originate from interactions and are absent in a noninteracting system. In the plane wave phase, a dipole mode will induce a breathing mode in its perpendicular plane and vice versa. This is a cooperation effect between spin-velocity locking and spin-dependent interaction. While in the stripe phase, a breathing mode will induce the sliding mode of the density stripe along its perpendicular direction. This reflects the fact that the sliding mode is the gapless excitation in this phase due to spontaneous spatial translation symmetry breaking.
Skyrmion dynamics in a chiral magnet driven by periodically varying spin currents*
NASA Astrophysics Data System (ADS)
Zhu, Rui; Zhang, Yin-Yan
2016-12-01
In this work, we investigated the spin dynamics in a slab of chiral magnets induced by an alternating (ac) spin current. Periodic trajectories of the skyrmion in real space are discovered under the ac current as a result of the Magnus and viscous forces, which originate from the Gilbert damping, the spin transfer torque, and the β-nonadiabatic torque effects. The results are obtained by numerically solving the Landau-Lifshitz-Gilbert equation and can be explained by the Thiele equation characterizing the skyrmion core motion. Supplementary material in the form of one avi file available from the Journal web page at: http://dx.doi.org/10.1140/epjb/e2016-70467-9
Quantum spin dynamics and entanglement generation with hundreds of trapped ions
NASA Astrophysics Data System (ADS)
Bohnet, Justin G.; Sawyer, Brian C.; Britton, Joseph W.; Wall, Michael L.; Rey, Ana Maria; Foss-Feig, Michael; Bollinger, John J.
2016-06-01
Quantum simulation of spin models can provide insight into problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. We studied quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of 9Be+ ions in a Penning trap. We verified entanglement in spin-squeezed states of up to 219 ions, directly observing 4.0 ± 0.9 decibels of spectroscopic enhancement, and observed states with non-Gaussian statistics consistent with oversqueezed states. The good agreement with ab initio theory that includes interactions and decoherence lays the groundwork for simulations of the transverse-field Ising model with variable-range interactions, which are generally intractable with classical methods.
Phase-space methods for the spin dynamics in condensed matter systems.
Hurst, Jérôme; Hervieux, Paul-Antoine; Manfredi, Giovanni
2017-04-28
Using the phase-space formulation of quantum mechanics, we derive a four-component Wigner equation for a system composed of spin-[Formula: see text] fermions (typically, electrons) including the Zeeman effect and the spin-orbit coupling. This Wigner equation is coupled to the appropriate Maxwell equations to form a self-consistent mean-field model. A set of semiclassical Vlasov equations with spin effects is obtained by expanding the full quantum model to first order in the Planck constant. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. A simple closure relation is proposed to obtain a closed set of hydrodynamic equations.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.
Valero, Rosendo; Truhlar, Donald G
2007-09-06
A diabatic representation is convenient in the study of electronically nonadiabatic chemical reactions because the diabatic energies and couplings are smooth functions of the nuclear coordinates and the couplings are scalar quantities. A method called the fourfold way was devised in our group to generate diabatic representations for spin-free electronic states. One drawback of diabatic states computed from the spin-free Hamiltonian, called a valence diabatic representation, for systems in which spin-orbit coupling cannot be ignored is that the couplings between the states are not zero in asymptotic regions, leading to difficulties in the calculation of reaction probabilities and other properties by semiclassical dynamics methods. Here we report an extension of the fourfold way to construct diabatic representations suitable for spin-coupled systems. In this article we formulate the method for the case of even-electron systems that yield pairs of fragments with doublet spin multiplicity. For this type of system, we introduce the further simplification of calculating the triplet diabatic energies in terms of the singlet diabatic energies via Slater's rules and assuming constant ratios of Coulomb to exchange integrals. Furthermore, the valence diabatic couplings in the triplet manifold are taken equal to the singlet ones. An important feature of the method is the introduction of scaling functions, as they allow one to deal with multibond reactions without having to include high-energy diabatic states. The global transformation matrix to the new diabatic representation, called the spin-valence diabatic representation, is constructed as the product of channel-specific transformation matrices, each one taken as the product of an asymptotic transformation matrix and a scaling function that depends on ratios of the spin-orbit splitting and the valence splittings. Thus the underlying basis functions are recoupled into suitable diabatic basis functions in a manner that
Replica exchange Monte Carlo simulations of the ising spin glass: Static and dynamic properties
NASA Astrophysics Data System (ADS)
Yucesoy, Burcu
Spin glasses have been the subject of intense study and considerable controversy for decades, and the low-temperature phase of short-range spin glasses is still poorly understood. Our main goal is to improve our understanding in this area and find an answer to the following question: Are there only a single pair or a countable infinity of pure states in the low temperature phase of the EA spin glass? To that aim we first start by introducing spin glasses and provide a brief history of their research, then proceed to describe our method of simulation, the parallel tempering Monte Carlo algorithm. Next, we present the results of a large-scale numerical study of the equilibrium three-dimensional Edwards-Anderson Ising spin glass with Gaussian disorder. In order to understand how the parallel tempering algorithm works, we measure various static, as well as dynamical quantities, such as the autocorrelation times and round-trip times for the parallel tempering Monte Carlo method. We examine the correlation between static and dynamic observables for ˜ 5000 disorder realizations and up to 1000 spins down to temperatures at 20% of the critical temperature, and our results show that autocorrelation times are directly correlated with the roughness of the free-energy landscape. In the following chapters, the three- and four-dimensional Edwards-Anderson and mean-field Sherrington-Kirkpatrick Ising spin glasses are studied again via large scale Monte Carlo simulations at low temperatures, deep within the spin glass phase. Performing a careful statistical analysis of several thousand independent disorder realizations and using an observable that detects peaks in the overlap distribution, we show that the Sherrington-Kirkpatrick and Edwards-Anderson models have a distinctly different low-temperature behavior. We arrive to the following conclusion: The structure of the spin-glass overlap distribution for the Edwards-Anderson model suggests that its low-temperature phase has only a
NASA Astrophysics Data System (ADS)
Pal, Mandira; Banerjee, Chitram; Chandel, Shubham; Bag, Ankan; Majumder, Shovan K.; Ghosh, Nirmalya
2016-12-01
Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices.
Pal, Mandira; Banerjee, Chitram; Chandel, Shubham; Bag, Ankan; Majumder, Shovan K; Ghosh, Nirmalya
2016-12-22
Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices.
Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.
Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A
2012-05-11
Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.
Pal, Mandira; Banerjee, Chitram; Chandel, Shubham; Bag, Ankan; Majumder, Shovan K.; Ghosh, Nirmalya
2016-01-01
Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices. PMID:28004825
Dynamics of entanglement in a two-dimensional spin system
Xu Qing; Sadiek, Gehad; Kais, Sabre
2011-06-15
We consider the time evolution of entanglement in a finite two-dimensional transverse Ising model. The model consists of a set of seven localized spin-(1/2) particles in a two-dimensional triangular lattice coupled through nearest-neighbor exchange interaction in the presence of an external time-dependent magnetic field. The magnetic field is applied in different function forms: step, exponential, hyperbolic, and periodic. We found that the time evolution of the entanglement shows an ergodic behavior under the effect of the time-dependent magnetic fields. Also, we found that while the step magnetic field causes great disturbance to the system, creating rapid oscillations, the system shows great controllability under the effects of the other magnetic fields where the entanglement profile follows closely the shape of the applied field even with the same frequency for periodic fields. This follow-up trend breaks down as the strength of the field, the transition constant for the exponential and hyperbolic forms, or the frequency for periodic field increase leading to rapid oscillations. We observed that the entanglement is very sensitive to the initial value of the applied periodic field: the smaller the initial value is, the less distorted the entanglement profile is. Furthermore, the effect of thermal fluctuations is very devastating to the entanglement, which decays very rapidly as the temperature increases. Interestingly, although a large value of the magnetic field strength may yield a small entanglement, the magnetic field strength was found to be more persistent against thermal fluctuations than the small field strengths.
Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics.
Veshtort, Mikhail; Griffin, Robert G
2011-10-07
Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R(2)). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two (13)C nuclei and about ten (1)H nuclei from their nearest environment. Spin diffusion constants computed by this
Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics
Veshtort, Mikhail; Griffin, Robert G.
2011-01-01
Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R2). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two 13C nuclei and about ten 1H nuclei from their nearest environment. Spin diffusion constants computed by this method
Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics
NASA Astrophysics Data System (ADS)
Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatté, Michael E.
2016-01-01
As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.
Influence of nonmagnetic impurity scattering on spin dynamics in diluted magnetic semiconductors
NASA Astrophysics Data System (ADS)
Cygorek, M.; Ungar, F.; Tamborenea, P. I.; Axt, V. M.
2017-01-01
The doping of semiconductors with magnetic impurities gives rise not only to a spin-spin interaction between quasifree carriers and magnetic impurities but also to a local spin-independent disorder potential for the carriers. Based on a quantum kinetic theory for the carrier and impurity density matrices as well as the magnetic and nonmagnetic carrier-impurity correlations, the influence of the nonmagnetic scattering potential on the spin dynamics in DMS after optical excitation with circularly polarized light is investigated using the example of Mn-doped CdTe. It is shown that non-Markovian effects, which are predicted in calculations where only the magnetic carrier-impurity interaction is accounted for, can be strongly suppressed in the presence of nonmagnetic impurity scattering. This effect can be traced back to a significant redistribution of carriers in k -space which is enabled by the build-up of large carrier-impurity correlation energies. A comparison with the Markov limit of the quantum kinetic theory shows that, in the presence of an external magnetic field parallel to the initial carrier polarization, the asymptotic value of the spin polarization at long times is significantly different in the quantum kinetic and the Markovian calculations. This effect can also be attributed to the formation of strong correlations, which invalidates the semiclassical Markovian picture and it is stronger when the nonmagnetic carrier-impurity interaction is accounted for. In an external magnetic field perpendicular to the initial carrier spin, the correlations are also responsible for a renormalization of the carrier spin precession frequency. Considering only the magnetic carrier-impurity interaction, a significant renormalization is predicted for a very limited set of material parameters and excitation conditions. Accounting also for the nonmagnetic interaction, a relevant renormalization of the precession frequency is found to be more ubiquitous.
X-ray imaging of spin currents and magnetisation dynamics at the nanoscale
NASA Astrophysics Data System (ADS)
Bonetti, Stefano
2017-04-01
Understanding how spins move in time and space is the aim of both fundamental and applied research in modern magnetism. Over the past three decades, research in this field has led to technological advances that have had a major impact on our society, while improving the understanding of the fundamentals of spin physics. However, important questions still remain unanswered, because it is experimentally challenging to directly observe spins and their motion with a combined high spatial and temporal resolution. In this article, we present an overview of the recent advances in x-ray microscopy that allow researchers to directly watch spins move in time and space at the microscopically relevant scales. We discuss scanning x-ray transmission microscopy (STXM) at resonant soft x-ray edges, which is available at most modern synchrotron light sources. This technique measures magnetic contrast through the x-ray magnetic circular dichroism (XMCD) effect at the resonant absorption edges, while focusing the x-ray radiation at the nanometre scale, and using the intrinsic pulsed structure of synchrotron-generated x-rays to create time-resolved images of magnetism at the nanoscale. In particular, we discuss how the presence of spin currents can be detected by imaging spin accumulation, and how the magnetisation dynamics in thin ferromagnetic films can be directly imaged. We discuss how a direct look at the phenomena allows for a deeper understanding of the the physics at play, that is not accessible to other, more indirect techniques. Finally, we present an overview of the exciting opportunities that lie ahead to further understand the fundamentals of novel spin physics, opportunities offered by the appearance of diffraction limited storage rings and free electron lasers.
Multi-Spin Interactions and Dynamics in Model Systems for Organic Molecular Materials
NASA Astrophysics Data System (ADS)
Gardner, Daniel M.
This thesis presents results from the application of electron paramagnetic resonance (EPR) techniques to study the spin-spin interactions of novel organic compounds possessing one or more unpaired electron spins. The first two chapters focus on the use of steady-state techniques to probe the interaction of a single unpaired electron with its surrounding environment. The second part of this thesis expands on these studies by employing transient techniques to analyze and control the spin-spin interactions and dynamics of systems which undergo photoinduced charge separation to generate multiple unpaired electrons. In Chapter 2 a series of novel trifluoromethylated perylene and naphthalene imide and diimide compounds are chemically reduced to yield their respective radical anions. EPR spectroscopy at both X-band and W-band fields allows for characterization of the hyperfine coupling constants and g-tensors which are important for studying their role as intermediates in electron transfer reactions. In Chapter 3 continuous-wave electron-nuclear double resonance (ENDOR) spectroscopy is employed to study the sharing of an unpaired electron across oligomers of naphthalene-1,8:4,5-bis(dicarboximide) in several novel geometries. Transient EPR techniques are introduced in Chapter 4 to measure the spin-spin interactions in photogenerated radical pairs in a series of electron donor-acceptor systems designed to mimic the photosynthetic reaction center. Measurement of the dipolar interaction at X-band fields allows for the determination of the radical pair distance, while the enhanced spectral resolution at W-band fields allows for analysis of the anisotropy of the g-tensors thereby allowing for the determination of the geometry of the radical pair. In Chapter 5 a novel U-shaped electron donor-acceptor-radical system is introduced in which use of a xanthene spacer results in negligible magnetic exchange interactions between the acceptor radical anion and the appended stable
Dynamic nuclear polarization assisted spin diffusion for the solid effect case.
Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon
2011-02-21
The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP
Tests of Dynamic Scale Model of Gemini Capsule in the Langley 20-Foot Free-Spinning Tunnel
NASA Technical Reports Server (NTRS)
1962-01-01
Tests of Dynamic Scale Model of Gemini Capsule in the Langley 20-Foot Free-Spinning Tunnel. The film shows three spin tunnel tests of a 1/20 scale model of the Gemini capsule. In the first test, the capsule spins freely. In tests 2 and 3, a drogue parachute is attached to the capsule. [Entire movie available on DVD from CASI as Doc ID 20070030989. Contact help@sti.nasa.gov
Dynamic magnetization switching and spin wave excitations by voltage-induced torque
NASA Astrophysics Data System (ADS)
Shiota, Yoichi
2013-03-01
The effect of electric fields on ultrathin ferromagnetic metal layer is one of the promising approaches for manipulating the spin direction with low-energy consumption, localization, and coherent behavior. Several experimental approaches to realize it have been investigated using ferromagnetic semiconductors, magnetostriction together with piezo-electric materials, multiferroic materials, and ultrathin ferromagnetic layer. In this talk, we will present a dynamic control of spins by voltage-induced torque. We used the magnetic tunnel junctions with ultrathin ferromagnetic layer, which shows voltage-induced perpendicular magnetic anisotropy change. By applying the voltage to the junction, the magnetic easy-axis in the ultrathin ferromagnetic layer changes from in-plane to out-of-plane, which causes a precession of the spins. This precession resulted in a two-way toggle switching by determining an appropriate pulse length. On the other hand, an application of rf-voltage causes an excitation of a uniform spin-wave. Since the precession of spin associates with an oscillation in the resistance of the junction, the applied rf-signal is rectified and produces a dc-voltage. From the spectrum of the dc-voltage as a function of frequency, we could estimate the voltage-induced torque. This research was supported by CREST-JST, G-COE program, and JSPS for the fellowship. Collaborators include T. Nozaki, S. Miwa, F. Bonell, N. Mizuochi, T. Shinjo, and Y. Suzuki.
New insights into electron spin dynamics in the presence of correlated noise.
Spezia, S; Adorno, D Persano; Pizzolato, N; Spagnolo, B
2012-02-08
The changes in the spin depolarization length in zinc-blende semiconductors when an external component of correlated noise is added to a static driving electric field are analyzed for different values of field strength, noise amplitude and correlation time. Electron dynamics is simulated by a Monte Carlo procedure which takes into account all the possible scattering phenomena of the hot electrons in the medium and includes the evolution of spin polarization. Spin depolarization is studied by examining the decay of the initial spin polarization of the conduction electrons through the D'yakonov-Perel process, the only relevant relaxation mechanism in III-V crystals. Our results show that, for electric field amplitudes lower than the Gunn field, the dephasing length shortens with increasing noise intensity. Moreover, a nonmonotonic behavior of spin depolarization length with the noise correlation time is found, characterized by a maximum variation for values of noise correlation time comparable with the dephasing time. Instead, in high field conditions, we find that, critically depending on the noise correlation time, external fluctuations can positively affect the relaxation length. The influence of the inclusion of the electron-electron scattering mechanism is also shown and discussed.
Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4
Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; ...
2015-07-06
We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we showmore » that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.« less
Electron dynamics in graphene with spin-orbit couplings and periodic potentials.
Seshadri, Ranjani; Sen, Diptiman
2017-04-20
We use both continuum and lattice models to study the energy-momentum dispersion and the dynamics of a wave packet for an electron moving in graphene in the presence of spin-orbit couplings and either a single potential barrier or a periodic array of potential barriers. Both Kane-Mele and Rashba spin-orbit couplings are considered. A number of special things occur when the Kane-Mele and Rashba couplings are equal in magnitude. In the absence of a potential, the dispersion then consists of both massless Dirac and massive Dirac states. A periodic potential is known to generate additional Dirac points; we show that spin-orbit couplings generally open gaps at all those points, but if the two spin-orbit couplings are equal, some of the Dirac points remain gapless. We show that the massless and massive states respond differently to a potential barrier; the massless states transmit perfectly through the barrier at normal incidence while the massive states reflect from it. In the presence of a single potential barrier, we show that there are states localized along the barrier. Finally, we study the time evolution of a wave packet in the presence of a periodic potential. We discover special points in momentum space where there is almost no spreading of a wave packet; there are six such points in graphene when the spin-orbit couplings are absent.
NASA Astrophysics Data System (ADS)
Kawecki, M.; Gutfreund, P.; Adlmann, F. A.; Lindholm, E.; Longeville, S.; Lapp, A.; Wolff, M.
2016-09-01
Neutron Spin Echo spectroscopy provides unique insight into molecular and submolecular dynamics as well as intra- and inter-molecular interactions in soft matter. These dynamics may change drastically under shear flow. In particular in polymer physics a stress plateau is observed, which might be explained by an entanglement-disentanglement transition. However, such a transition is difficult to identify directly by experiments. Neutron Spin Echo has been proven to provide information about entanglement length and degree by probing the local dynamics of the polymer chains. Combining shear experiments and neutron spin echo is challenging since, first the beam polarisation has to be preserved during scattering and second, Doppler scattered neutrons may cause inelastic scattering. In this paper we present a new shear device adapted for these needs. We demonstrate that a high beam polarisation can be preserved and present first data on an entangled polymer solution under shear. To complement the experiments on the dynamics we present novel SANS data revealing shear- induced conformational changes in highly entangled polymers.
Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells
Mukai, Atsushi; Kurisaki, Tomohiro; Sato, Satoshi B.; Kobayashi, Toshihide; Kondoh, Gen; Hashimoto, Naohiro
2009-10-15
Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.
Coherent spin oscillations and non-linear dynamics in two quantum magnets
NASA Astrophysics Data System (ADS)
Schmidt, Michael Andrew
I present experimental studies of the low-temperature linear and nonlinear AC magnetic behavior of two insulating magnetic materials: the dilute Ising magnet Lithium Yttrium Holmium Tetraflouride (LiHo0.045Y0.955 F4); and the frustrated Heisenberg magnet Neodymium Gadolinium Gallium Garnet (NdxGd3-xGa5O12 for x={0.01, 0.05, 0.1}). We find that under certain thermodynamic limits, LiHo 0.045Y0.955F4 can be continuously tuned between competing low-temperature states by cooling the sample in an external, DC magnetic field. Furthermore, we demonstrate the magnetic pump/probe technique as a powerful tool to quantify the stability of the magnetic state in the presence of disorder, and to probe the coupling between the spin states and the incoherent nuclear spin bath. In addition, I present susceptibility data for the three different concentrations of NdxGd3-x Ga5O12, which show that the doped samples possess the same coherent spin degrees of freedom as is seen in the pure sample. We find that even in the lightest-doped sample (0.1%), the presence of disorder suppresses the onset of Antiferromagnetic order by a factor of two, and that any transition in the other samples (0.5% and 1%) must be below 50 mK.
Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy
NASA Astrophysics Data System (ADS)
Stoll, Hermann; Noske, Matthias; Weigand, Markus; Richter, Kornel; Krüger, Benjamin; Reeve, Robert; Hänze, Max; Adolff, Christian; Stein, Falk-Ulrich; Meier, Guido; Kläui, Mathias; Schütz, Gisela
2015-04-01
The dynamics of emergent magnetic quasiparticles, such as vortices, domain walls, and bubbles are studied by scanning transmission x-ray microscopy (STXM), combining magnetic (XMCD) contrast with about 25 nm lateral resolution as well as 70 ps time resolution. Essential progress in the understanding of magnetic vortex dynamics is achieved by vortex core reversal observed by sub-GHz excitation of the vortex gyromode, either by ac magnetic fields or spin transfer torque. The basic switching scheme for this vortex core reversal is the generation of a vortex-antivortex pair. Much faster vortex core reversal is obtained by exciting azimuthal spin wave modes with (multi-GHz) rotating magnetic fields or orthogonal monopolar field pulses in x and y direction, down to 45 ps in duration. In that way unidirectional vortex core reversal to the vortex core 'down' or 'up' state only can be achieved with switching times well below 100 ps. Coupled modes of interacting vortices mimic crystal properties. The individual vortex oscillators determine the properties of the ensemble, where the gyrotropic mode represents the fundamental excitation. By self-organized state formation we investigate distinct vortex core polarization configurations and understand these eigenmodes in an extended Thiele model. Analogies with photonic crystals are drawn. Oersted fields and spin-polarized currents are used to excite the dynamics of domain walls and magnetic bubbles. From the measured phase and amplitude of the displacement of domain walls we deduce the size of the non-adiabatic spin-transfer torque. For sensing applications, the displacement of domain walls is studied and a direct correlation between domain wall velocity and spin structure is found. Finally the synchronous displacement of multiple domain walls using perpendicular field pulses is demonstrated as a possible paradigm shift for magnetic memory and logic applications.
Dynamic localization in optical and Zeeman lattices in the presence of spin-orbit coupling
NASA Astrophysics Data System (ADS)
Kartashov, Yaroslav V.; Konotop, Vladimir V.; Zezyulin, Dmitry A.; Torner, Lluis
2016-12-01
The dynamic localization of a two-level atom in a periodic potential under the action of spin-orbit coupling and a weak harmonically varying linear force is studied. We consider optical and Zeeman potentials that are either in phase or out of phase in two spinor components, respectively. The expectation value for the position of the atom after one oscillation period of the linear force is recovered in authentic resonances or in pseudoresonances. The frequencies of the linear force corresponding to authentic resonances are determined by the band structure of the periodic potential and are affected by the spin-orbit coupling. The width or dispersion of the wave packet in authentic resonances is usually minimal. The frequencies corresponding to pseudoresonances do not depend on the type of potential and on the strength of the spin-orbit coupling, while the evolution of excitations at the corresponding frequencies is usually accompanied by significant dispersion. Pseudoresonances are determined by the initial phase of the linear force and by the quasimomentum of the wave packet. Due to the spinor nature of the system, the motion of the atom is accompanied by periodic, but not harmonic, spin oscillations. Under the action of spin-orbit coupling the oscillations of the wave packet can be nearly completely suppressed in optical lattices. Dynamic localization in Zeeman lattices is characterized by doubling of the resonant oscillation periods due to band crossing at the boundary of the Brillouin zone. We also show that higher harmonics in the Fourier expansion of the energy band lead to effective dispersion, which can be strong enough to prevent dynamic localization of the Bloch wave packet.
McHaourab, Hassane S; Steed, P Ryan; Kazmier, Kelli
2011-11-09
Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 Å-80 Å) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology.
Dynamics of asteroid family halos constrained by spin/shape models
NASA Astrophysics Data System (ADS)
Broz, Miroslav
2016-10-01
A number of asteroid families cannot be identified solely on the basis of the Hierarchical Clustering Method (HCM), because they have additional 'former' members in the surroundings which constitute a so called halo (e.g. Broz & Morbidelli 2013). They are usually mixed up with the background population which has to be taken into account too.Luckily, new photometric observations allow to derive new spin/shape models, which serve as independent constraints for dynamical models. For example, a recent census of the Eos family shows 43 core and 27 halo asteroids (including background) with known spin orientations.To this point, we present a complex spin-orbital model which includes full N-body dynamics and consequently accounts for all mean-motion, secular, or three-body gravitational resonances, the Yarkovsky drift, YORP effect, collisional reorientations and also spin-orbital interactions. These are especially important for the Koronis family. In this project, we make use of data from the DAMIT database and ProjectSoft Blue Eye 600 observatory.
Dynamics of open quantum spin systems: An assessment of the quantum master equation approach.
Zhao, P; De Raedt, H; Miyashita, S; Jin, F; Michielsen, K
2016-08-01
Data of the numerical solution of the time-dependent Schrödinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtaining this quantum master equation, which takes the form of a Bloch equation with time-independent coefficients, accounts for all non-Markovian effects inasmuch the general structure of the quantum master equation allows. Our simulation results show that, with a few rather exotic exceptions, the Bloch-type equation with time-independent coefficients provides a simple and accurate description of the dynamics of a spin-1/2 particle in contact with a thermal bath. A calculation of the coefficients that appear in the Redfield master equation in the Markovian limit shows that this perturbatively derived equation quantitatively differs from the numerically estimated Markovian master equation, the results of which agree very well with the solution of the time-dependent Schrödinger equation.
Quark dynamics and spin structure in the chiral chromodielectric model
NASA Astrophysics Data System (ADS)
Barone, V.; Drago, A.; Fiolhais, M.
1994-11-01
The dynamical structure of the nucleon is studied in the chiral version of the chromodielectric model. The color-dielectric field and the meson clouds are described by hedgehog coherent states. Standard projection techniques are used to construct zero-linear-momentum eigenstates with the nucleon quantum numbers of angular momentum and isospin. Both the unpolarized and the polarized quark distribution functions are computed. Results are in good agreement with the data and a noticeable improvement with respect to the predictions of the non-chiral model is observed.
Yamamura, Takafumi; Kiba, Takayuki; Yang, Xiaojie; Takayama, Junichi; Subagyo, Agus; Sueoka, Kazuhisa; Murayama, Akihiro
2014-09-07
The growth-temperature dependence of the optical spin-injection dynamics in self-assembled quantum dots (QDs) of In{sub 0.5}Ga{sub 0.5}As was studied by increasing the sheet density of the dots from 2 × 10{sup 10} to 7 × 10{sup 10} cm{sup −2} and reducing their size through a decrease in growth temperature from 500 to 470 °C. The circularly polarized transient photoluminescence (PL) of the resulting QD ensembles was analyzed after optical excitation of spin-polarized carriers in GaAs barriers by using rate equations that take into account spin-injection dynamics such as spin-injection time, spin relaxation during injection, spin-dependent state-filling, and subsequent spin relaxation. The excitation-power dependence of the transient circular polarization of PL in the QDs, which is sensitive to the state-filling effect, was also examined. It was found that a systematic increase occurs in the degree of circular polarization of PL with decreasing growth temperature, which reflects the transient polarization of exciton spin after spin injection. This is attributed to strong suppression of the filling effect for the majority-spin states as the dot-density of the QDs increases.
Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules
Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko
2016-01-01
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices. PMID:27578395
Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules.
Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko
2016-08-31
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices.
Southon, P. D.; Liu, L.; Fellows, E. A.; Price, D. J.; Halder, G. J.; Chapman, K. W.; Moubaraki, B.; Murray, K. S.; Letard, J.F.; Kepert, C. J.; Univ. Sydney; Monash Univ.; Universite Bordeaux
2009-01-01
The nanoporous metal-organic framework [Fe(pz)Ni(CN){sub 4}], 1 (where pz is pyrazine), exhibits hysteretic spin-crossover at ambient conditions and is robust to the adsorption and desorption of a wide range of small molecular guests, both gases (N{sub 2}, O{sub 2}, CO{sub 2}) and vapors (methanol, ethanol, acetone, acetonitrile, and toluene). Through the comprehensive analysis of structure, host-guest properties, and spin-crossover behaviors, it is found that this pillared Hofmann system uniquely displays both guest-exchange-induced changes to spin-crossover and spin-crossover-induced changes to host-guest properties, with direct dynamic interplay between these two phenomena. Guest desorption and adsorption cause pronounced changes to the spin-crossover behavior according to a systematic trend in which larger guests stabilize the high-spin state and therefore depress the spin-crossover temperature of the host lattice. When stabilizing the alternate spin state of the host at any given temperature, these processes directly stimulate the spin-crossover process, providing a chemisensing function. Exploitation of the bistability of the host allows the modification of adsorption properties at a fixed temperature through control of the host spin state, with each state shown to display differing chemical affinities to guest sorption. Guest desorption then adsorption, and vice versa, can be used to switch between spin states in the bistable temperature region, adding a guest-dependent memory effect to this system.
I. Advances in NMR Signal Processing. II. Spin Dynamics in Quantum Dissipative Systems
Lin, Yung-Ya
1998-11-01
Part I. Advances in IVMR Signal Processing. Improvements of sensitivity and resolution are two major objects in the development of NMR/MRI. A signal enhancement method is first presented which recovers signal from noise by a judicious combination of a priordmowledge to define the desired feasible solutions and a set theoretic estimation for restoring signal properties that have been lost due to noise contamination. The effect of noise can be significantly mitigated through the process of iteratively modifying the noisy data set to the smallest degree necessary so that it possesses a collection of prescribed properties and also lies closest to the original data set. A novel detection-estimation scheme is then introduced to analyze noisy and/or strongly damped or truncated FIDs. Based on exponential modeling, the number of signals is detected based on information estimated using the matrix pencil method. theory and the spectral parameters are Part II. Spin Dynamics in body dipole-coupled systems Quantum Dissipative Systems. Spin dynamics in manyconstitutes one of the most fundamental problems in magnetic resonance and condensed-matter physics. Its many-spin nature precludes any rigorous treatment. ‘Therefore, the spin-boson model is adopted to describe in the rotating frame the influence of the dipolar local fields on a tagged spin. Based on the polaronic transform and a perturbation treatment, an analytical solution is derived, suggesting the existence of self-trapped states in the. strong coupling limit, i.e., when transverse local field >> longitudinal local field. Such nonlinear phenomena originate from the joint action of the lattice fluctuations and the reaction field. Under semiclassical approximation, it is found that the main effect of the reaction field is the renormalization of the Hamiltonian of interest. Its direct consequence is the two-step relaxation process: the spin is initially localized in a quasiequilibrium state, which is later detrapped by
Garcia, Yann; Campbell, Stewart J; Lord, James S; Boland, Yves; Ksenofontov, Vadim; Gütlich, Philipp
2007-09-27
The thermal spin transition that occurs in the polymeric chain compound [Fe(NH(2)trz)3](NO3)2 above room temperature has been investigated by zero-field muon spin relaxation (microSR) over the temperature range approximately 8-402 K. The depolarization curves are best described by a Lorentzian and a Gaussian line that represent fast and slow components, respectively. The spin transition is associated with a hysteresis loop of width DeltaT = 34 K (T1/2 upward arrow = 346 K and T1/2 downward arrow = 312 K) that has been delineated by the temperature variation of the initial asymmetry parameter, in good agreement with previously published magnetic measurements. Zero-field and applied field (20-2000 Oe) microSR measurements show the presence of diamagnetic muon species and paramagnetic muonium radical species (A = 753 +/- 77 MHz) over the entire temperature range. Fast dynamics have been revealed in the high-spin state of [Fe(NH(2)trz)3](NO3)2 with the presence of a Gaussian relaxation mode that is mostly due to the dipolar interaction with static nuclear moments. This situation, where the muonium radicals are totally decoupled and not able to sense paramagnetic fluctuations, implies that the high-spin dynamics fall outside the muon time scale. Insights to the origin of the cooperative effects associated with the spin transition of [Fe(NH(2)trz)3](NO3)2 through muon implantation are presented.
The dynamics of diluted Ho spin ice Ho2-xYxTi2O7 studied byneutron spin echo spectroscopy
Ehlers, G.; Gardner, J.S.; Booth, C.H.; Daniel, M.; Kam, K.C.; Cheetham, A.K.; Antonio, D.; Brooks, H.E.; Cornelius, A.L.; Bramwell,S.T.; Lago, J.; Haussler, W.; Rosov, N.
2006-02-27
We have studied the spin relaxation in diluted spin ice Ho{sub 2-x} Y{sub x} Ti{sub 2}O{sub 7} by means of neutron spin echo spectroscopy. Remarkably, the geometrical frustration is not relieved by doping with non-magnetic Y, and the dynamics of the freezing is unaltered in the spin echo time window up to x {approx_equal} 1.6. At higher doping with non-magnetic Y (x {ge} 1.6) a new relaxation process at relatively high temperature (up to at least T {approx_equal} 55 K) appears which is more than 10 times faster than the thermally activated main relaxation process. We find evidence that over the whole range of composition all Ho spins participate in the dynamics. These results are compared to a.c. susceptibility measurements of the diluted Ho and Dy spin ice systems. X-ray absorption fine structure (EXAFS) spectra and x-ray diffraction show that the samples are structurally well ordered.
The dynamics of spin stabilized spacecraft with movable appendages, part 2
NASA Technical Reports Server (NTRS)
Bainum, P. M.
1976-01-01
The dynamics and stability of a spin stabilized spacecraft with a hinged appendage system are treated analytically and numerically. The hinged system consists of a central hub with masses attached to (assumed) massless booms of fixed length whose orientation relative to the main part can change. The general three dimensional deployment dynamics of such a hinged system is considered without any restriction on the location of the hinge points. The equations of motion for the hinged system, with viscous damping at both hinge points, are linearized about the nominal equilibrium position where the booms are orthogonal to the nominal spin axis for the case of two dimensional and three dimensional motion. Analytic stability criteria are obtained from the necessary condition on the sign of all the coefficients in the system characteristic equation.
Omelyan, I P; Mryglod, I M; Folk, R
2001-07-01
A methodology is developed to integrate numerically the equations of motion for classical many-body systems in molecular dynamics simulations. Its distinguishable feature is the possibility to preserve, independently on the size of the time step, all the conservation laws inherent in the description without breaking the time reversibility. As a result, an implicit second-order algorithm is derived and applied to pure liquids, as well as spin liquids, for which the dynamics is characterized by the conservation of total energy, linear and angular momenta, as well as magnetization and individual spin lengths. It is demonstrated on the basis of Lennard-Jones and Heisenberg fluid models that when such quantities as energy and magnetization must be conserved perfectly, the algorithm turns out to be more efficient than popular decomposition integrators and standard predictor-corrector schemes.
Dissipative quantum dynamics of fermions in optical lattices: A slave-spin approach
NASA Astrophysics Data System (ADS)
Bernier, Jean-Sébastien; Poletti, Dario; Kollath, Corinna
2014-11-01
We investigate the influence of a Markovian environment on the dynamics of interacting spinful fermionic atoms in a lattice. To explore the physical phenomena occurring at short times, we develop a method based on a slave-spin representation of fermions that is amenable to the investigation of the dynamics of dissipative systems. We apply this approach to two different dissipative couplings that can occur in current experiments: a coupling via the local density and a coupling via the local double occupancy. We complement our study based on this method, with results obtained using the adiabatic elimination technique and with an exact study of a two-site model. We uncover that the decoherence is slowed down by increasing either the interaction strength or the dissipative coupling (the Zeno effect). We also find, for the coupling to the local double occupancy, that the final steady state can sustain single-particle coherence.
Quantum dynamical simulations for nuclear spin selective laser control of ortho- and para-fulvene.
Belz, S; Grohmann, T; Leibscher, M
2009-07-21
In the present paper we explore the prospects for laser control of the photoinduced nonadiabatic dynamics of para- and ortho-fulvene with the help of quantum dynamical simulations. Previous investigations [Bearpark et al., J. Am. Chem. Soc. 118, 5253 (1996); Alfalah et al., J. Chem. Phys. 130, 124318 (2009)] show that photoisomerization of fulvene is hindered by ultrafast radiationless decay through a conical intersection at planar configuration. Here, we demonstrate that photoisomerization can nevertheless be initiated by damping unfavorable nuclear vibrations with properly designed laser pulses. Moreover, we show that the resulting intramolecular torsion is nuclear spin selective. The selectivity of the photoexcitation with respect to the nuclear spin isomers can be further enhanced by applying an optimized sequence of two laser pulses.
Dynamical modelling and control of a spacecraft-mounted manipulator capturing a spinning satellite
NASA Astrophysics Data System (ADS)
Cyril, Xavier; Jaar, Gilbert J.; Misra, Arun K.
1995-01-01
Issues associated with the modelling and control of a spacecraft-mounted manipulator capturing a spinning satellite are presented. The Lagrangian formulation is used to derive the dynamical equations of the system immediately following the capture. The formulation is carried out by writing Lagrange's equations for the individual bodies, and then assembling them to obtain the constrained dynamical equations of the system. The non-working constraint forces/torques are then eliminated by using the natural orthogonal complement which produces a set of independent dynamical equations. A control algorithm whose objective is to produce a set of feedback-linearized, homogeneous and uncoupled equations is designed and implemented. The initial conditions of the state variables needed to achieve smooth berthing of the satellite are computed, and the dynamics simulation of both the controlled and uncontrolled systems is carried out. The manipulator's structural flexibility is included in the dynamics simulation model.
Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction.
Zhao, Li; Fielden, Samuel W; Feng, Xue; Wintermark, Max; Mugler, John P; Meyer, Craig H
2015-11-01
Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness.
Magnetic soft x-ray microscopy-imaging fast spin dynamics inmagnetic nanostructures
Fischer, Peter; Kim, Dong-Hyun; Mesler, Brooke L.; Chao, Weilun; Sakdinawat, Anne E.; Anderson, Erik H.
2007-06-01
Magnetic soft X-ray microscopy combines 15nm spatial resolution with 70ps time resolution and elemental sensitivity. Fresnel zone plates are used as X-ray optics and X-ray magnetic circular dichroism serves as magnetic contrast mechanism. Thus scientifically interesting and technologically relevant low dimensional nanomagnetic systems can be imaged at fundamental length and ultrafast time scales in a unique way. Studies include magnetization reversal in magnetic multilayers, nanopatterned systems, vortex dynamics in nanoelements and spin current induced phenomena.
Obaid, Rana; Kinzel, Daniel; Oppel, Markus González, Leticia
2014-10-28
Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.
Obaid, Rana; Kinzel, Daniel; Oppel, Markus; González, Leticia
2014-10-28
Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.
Microscopic spin model for the dynamics of the return distribution of the Korean stock market index
NASA Astrophysics Data System (ADS)
Yang, Jae-Suk; Chae, Seungbyung; Jung, Woo-Sung; Moon, Hie-Tae
2006-05-01
In this paper, we studied the dynamics of the log-return distribution of the Korean Composition Stock Price Index (KOSPI) from 1992 to 2004. Based on the microscopic spin model, we found that while the index during the late 1990s showed a power-law distribution, the distribution in the early 2000s was exponential. This change in distribution shape was caused by the duration and velocity, among other parameters, of the information that flowed into the market.
Spin blockade and coherent dynamics of high-spin states in a three-electron double quantum dot
NASA Astrophysics Data System (ADS)
Chen, Bao-Bao; Wang, Bao-Chuan; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Hu, Xuedong; Guo, Guo-Ping
2017-01-01
Asymmetry in a three-electron double quantum dot (DQD) allows spin blockade, when spin-3/2 (quadruplet) states and spin-1/2 (doublet) states have different charge configurations. We have observed this DQD spin blockade near the (1,2)-(2,1) charge transition using a pulsed-gate technique and a charge sensor. We, then, use this spin blockade to detect Landau-Zener-Stückelberg interference and coherent oscillations between the spin quadruplet and doublet states. Such studies add to our understandings of coherence and control properties of three-spin states in a double dot, which, in turn, would benefit explorations into various qubit encoding schemes in semiconductor nanostructures.
Silva, A C; Kim, S G
1999-09-01
Cerebral blood flow (CBF) can be measured noninvasively with nuclear magnetic resonance (NMR) by using arterial water as an endogenous perfusion tracer. However, the arterial spin labeling (ASL) techniques suffer from poor temporal resolution due to the need to wait for the exchange of labeled arterial spins with tissue spins to produce contrast. In this work, a new ASL technique is introduced, which allows the measurement of CBF dynamics with high temporal and spatial resolution. This novel method was used in rats to determine the dynamics of CBF changes elicited by somatosensory stimulation with a temporal resolution of 108 ms. The onset time of the CBF response was 0.6 +/- 0.4 sec (mean +/- SD) after onset of stimulation (n = 10). The peak response was observed 4.4 +/- 3.7 sec (mean +/- SD) after stimulation began. These results are in excellent agreement with previous data obtained with invasive techniques, such as laser-Doppler flowmetry and hydrogen clearance, and suggest the appropriateness of this novel technique to probe CBF dynamics in functional and pathological studies with high temporal and spatial resolution. Magn Reson Med 42:425-429, 1999.
Spin-labeled psoralen probes for the study of DNA dynamics
Spielmann, H.P.; Chi, D.Y.; Hunt, N.G.
1995-11-14
Six nitroxide spin-labeled psoralen derivatives have been synthesized and evaluated as probes for structural and dynamic studies. Sequence specific photoaddition of these derivatives to DNA oligonucleotides resulted in site-specifically cross-linked and spin-labeled oligomers. Comparison of the general line shape features of the observed electron paramagnetic resonance (EPR) spectra of several duplexes ranging in size from 8 to 46 base pairs with simulated EPR spectra indicate that the nitroxide spin-labeled probe reports the global tumbling motion of the oligomers. While there is no apparent large amplitude motion of the psoralen other than the overall tumbling of DNA on the time scales investigated, there are no indications of bending and other residual motions. The (A)BC excinuclease DNA repair system detects structural or dynamic features of the DNA that distinguish between damaged and undamaged DNA and are independent of the intrinsic structure of the lesion. NMR studies have shown that psoralen-cross-linked DNA has altered backbone dynamics and conformational populations in the immediate vicinity of the adduct. We suggested that the signal for recognition of a lesion to be repaired is in the sugar-phosphate backbone and not in the damaged base(s). 71 refs., 11 figs., 1 tab.
Quench dynamics of the spin-imbalanced Fermi-Hubbard model in one dimension
NASA Astrophysics Data System (ADS)
Yin, Xiao; Radzihovsky, Leo
2016-12-01
We study a nonequilibrium dynamics of a one-dimensional spin-imbalanced Fermi-Hubbard model following a quantum quench of on-site interaction, realizable, for example, in Feshbach-resonant atomic Fermi gases. We focus on the post-quench evolution starting from the initial BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) ground states and analyze the corresponding spin-singlet, spin-triplet, density-density, and magnetization-magnetization correlation functions. We find that beyond a light-cone crossover time, rich post-quench dynamics leads to thermalized and pre-thermalized stationary states that display strong dependence on the initial ground state. For initially gapped BCS state, the long-time stationary state resembles thermalization with the effective temperature set by the initial value of the Hubbard interaction. In contrast, while the initial gapless FFLO state reaches a stationary pre-thermalized form, it remains far from equilibrium. We suggest that such post-quench dynamics can be used as a fingerprint for identification and study of the FFLO phase.
Spin Dynamics of Kelvin's Pebbles, Jellett's Eggs, and Shiva's Lingam Stones
NASA Astrophysics Data System (ADS)
Brecher, Kenneth
2015-04-01
Study of the problem of the rise of the center of mass (COM) of spinning objects is said to have begun in the late nineteenth century. These early mathematical treatments aimed to explain the motion of the newly invented and patented ``tippe top.'' This semi-spheroidal top will invert when spun on a smooth surface while raising its COM. Because of the importance of friction in their dynamics, such non-holonomic systems are not readily amenable to analytic treatment, or of intuitive understanding. In notes written in 1844 - before the invention of the tippe top - Lord Kelvin (William Thomson) discussed the problem of the rising COM of spinning objects. He experimented with both oblate and prolate ellipsoidal pebbles, but did not publish a complete theoretical treatment of the problem. J. H. Jellett, in his 1872 book ``Theory of Friction,'' provided a partial account of the related problem of the rise of the COM for an egg-shaped (ovoid) object, making use of a new (adiabatic) invariant of the motion that he devised. Naturally occurring prolate ellipsoidal ``Lingam stones'' from the Narmada River in India exhibit similar counter-intuitive dynamical behavior. When spun around its minor axis in a horizontal plane, a Lingam stone will stand erect and spin around its major axis in a vertical position. This presentation will explore the history and some of the experimental facts and theoretical ideas about the rotational dynamics of such physical objects.
Davesne, V.; Gruber, M.; Miyamachi, T.; Da Costa, V.; Boukari, S.; Scheurer, F.; Joly, L.; Bowen, M.; Beaurepaire, E.; Ohresser, P.; Otero, E.; Choueikani, F.; Gaspar, A. B.; Real, J. A.; Wulfhekel, W.
2013-08-21
The dynamics of the soft x-ray induced excited spin state trapping (SOXIESST) effect of Fe(phen){sub 2}(NCS){sub 2} (Fe-phen) powder have been investigated by x-ray absorption spectroscopy (XAS) using the total electron yield method, in a wide temperature range. The low-spin (LS) state is excited into the metastable high-spin (HS) state at a rate that depends on the intensity of the x-ray illumination it receives, and both the temperature and the intensity of the x-ray illumination will affect the maximum HS proportion that is reached. We find that the SOXIESST HS spin state transforms back to the LS state at a rate that is similar to that found for the light induced excited spin state trapping (LIESST) effect. We show that it is possible to use the SOXIESST effect in combination with the LIESST effect to investigate the influence of cooperative behavior on the dynamics of both effects. To investigate the impact of molecular cooperativity, we compare our results on Fe-phen with those obtained for Fe([Me{sub 2}Pyrz]{sub 3}BH){sub 2} (Fe-pyrz) powder, which exhibits a similar thermal transition temperature but with a hysteresis. We find that, while the time constant of the dynamic is identical for both molecules, the SOXIESST effect is less efficient at exciting the HS state in Fe-pyrz than in Fe-phen.
Oxygen-17 NMR in solids by dynamic-angle spinning and double rotation
NASA Astrophysics Data System (ADS)
Chmelka, B. F.; Mueller, K. T.; Pines, A.; Stebbins, J.; Wu, Y.; Zwanziger, J. W.
1989-05-01
IT is widely lamented that despite its unqualified success with spin-1/2 nuclei such as 13C, 29Si and31P, the popular NMR technique of magic-angle spinning (MAS) has experienced a somewhat restricted applicability among quadrupolar nuclei such as 17O, 23Na and 27A1 (refs 1-3). The resolution in the central (1/2 lrarr-1/2) transition of these non-integer quadrupolar spins under MAS is thought to be limited primarily by second-order quadrupolar broadening. Such effects of second-order spatial anisotropy cannot be eliminated by rotation about a fixed axis or by multiple-pulse techniques4,5. More general mechanisms of sample reorientation (refs 6-8 and A. Samoson and A. Pines, manuscript in preparation) can, however, make high-resolution NMR of quadrupolar nuclei feasible. MAS is implemented by spinning a sample about a single axis so that second-rank spherical harmonics (which give rise to first-order broadening through anisotropy of electrical and magnetic interactions) are averaged away. But dynamic-angle-spinning (DAS) and double-rotation (DOR) NMR involve spinning around two axes, averaging away both the second- and fourth-rank spherical harmonics, which are responsible for second-order broadening. Here we present the application of these new techniques to 17O in two minerals, cristobalite (SiO2) and diopside (CaMgSi2O6). This work goes beyond previous results on 23Na (ref. 8) by showing the first experimental results using DAS and by demonstrating the application of DOR to the resolution of distinct oxygen sites in an important class of oxide materials.
Bioengineering Spin-Offs from Dynamical Systems Theory
NASA Astrophysics Data System (ADS)
Collins, J. J.
1997-03-01
Recently, there has been considerable interest in applying concepts and techniques from dynamical systems and statistical physics to physiological systems. In this talk, we present work dealing which two active topics in this area: stochastic resonance and (2) chaos control. Stochastic resonance is a phenomenon wherein the response of nonlinear system to a weak input signal is optimally enhanced by the presence of a particular level of noise. Here we demonstrate that noise-based techniques can be used to lower sensory detection thresholds in humans. We discuss how from a bioengineering and clinical standpoint, these developments may be particularly relevant for individuals with elevated sensory thresholds, such as older adults and patients with peripheral neuropathy. Chaos control techniques have been applied to a wide range of experimental systems, including biological preparations. The application of chaos control to biological systems has led to speculations that these methods may be clinically useful. Here we demonstrate that the principles of chaos control can be utilized to stabilize underlying unstable periodic orbits in non-chaotic biological systems. We discuss how from a bioengineering and clinical standpoint, these developments may be important for suppressing or eliminating certain types of cardiac arrhythmias.
Dynamic Model Investigation of a 1/20 Scale Gemini Spacecraft in the Langley Spin Tunnel
NASA Technical Reports Server (NTRS)
1963-01-01
Dynamic Model Investigation of a 1/20 Scale Gemini Spacecraft in the Langley Spin Tunnel. The investigation was conducted in the Langley spin tunnel. The tunnel is an atmospheric wind tunnel with a vertically rising airstream in the test section and a maximum airspeed of approximately 90 feet per second. For this investigation, the model was hand launched into the vertically rising airstream. At times the model, both with and without a drogue parachute, was launched gently with as little disturbance as possible to determine what motions of the spacecraft were self-excited. At other times, the spacecraft with pre-deployed drogue parachute was launched into various spinning motions to determine the effectiveness of the drogue parachute in terminating these spinning motions. During drogue-parachute deployment tests, the spacecraft was launched into various spinning and tumbling motions and the drogue parachute was deployed. The motions of the model were photographed with a motion-picture camera, and some of the film records were read to obtain typical time histories of the model motion. The angles of attack indicated in the time histories presented are believed to be accurate within +/-1 degree. The mass and dimensional characteristics of the dynamic model are believed to be measured to an accuracy of: +/-1 percent for the weight, +/-1 percent for z(sub cg)/d, +/-15 percent for x (sub cg), and +/-5 percent for the moments of inertia. The towline and bridle-line lengths were simulated to an accuracy of +/-1 foot full scale. [Entire movie available on DVD from CASI as Doc ID 20070030985. Contact help@sti.nasa.gov
Non-local dynamics of weakly nonlinear spin excitations in thin ferromagnetic films
NASA Astrophysics Data System (ADS)
Kiseliev, V. V.; Tankeyev, A. P.
1996-12-01
Effective integro-differential equations of weakly nonlinear dynamics describing the interaction of quasi-one-dimensional exchange-dipole spin-waves are derived for a thin ferromagnetic slab (film). The non-local part of the magnetostatic dispersion of these waves has been taken into account. Algebraic soliton-like states have been predicted. The conditions of their existence and their dynamic properties are investigated depending on the film thickness and on the magnitude and orientation of the external magnetic field. The role of crystallographic magnetic anisotropy in the formation of these states is analysed.
Supercurrent and dynamical instability of spin-orbit-coupled ultracold Bose gases
NASA Astrophysics Data System (ADS)
Ozawa, Tomoki; Pitaevskii, Lev P.; Stringari, Sandro
2013-06-01
We investigate the stability of supercurrents in a Bose-Einstein condensate with one-dimensional spin-orbit and Raman couplings. The consequence of the lack of Galilean invariance is explicitly discussed. We show that in the plane-wave phase, characterized by a uniform density, the supercurrent state can become dynamically unstable, the instability being associated with the occurrence of a complex sound velocity, in a region where the effective mass is negative. We also discuss the emergence of energetic instability in these supercurrent states. We argue that both the dynamical and the energetic instabilities in these systems can be generated experimentally through excitation of the collective dipole oscillation.
NASA Technical Reports Server (NTRS)
Lee, Henry A.; Burk, Sanger M., Jr.
1967-01-01
An investigation has been conducted in the Langley spin tunnel to determine the dynamic stability of the Apollo command module at low subsonic speeds, both with and without drogue parachutes. The investigation consisted of tests to determine (1) the dynamic stability of the command module alone, (2) the motion of the command module during the deployment of a drogue parachute, (3) the effect of various drogue-parachute configurations on the stability of the command module, and (4) the effect of modifications to the command module to prevent an apex-forward trim condition.
Energy Band and Josephson Dynamics of Spin-Orbit Coupled Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Zhang, Xin; Yu, Zi-Fa; Xue, Ju-Kui
2015-10-01
We theoretically investigate the energy band structure and Josephson dynamics of a spin-orbit coupled Bose-Einstein condensate in a double-well potential. We study the energy band structure and the corresponding tunneling dynamics of the system by properly adjusting the SO coupling, Raman coupling, Zeeman field and atomic interactions. The coupled effects of SO coupling, Raman coupling, Zeeman field and atomic interactions lead to the appearance of complex energy band structure including the loop structure. Particularly, the emergence of the loop structure in energy band also depends on SO coupling, Raman coupling, Zeeman field and atomic interactions. Correspondingly, the Josephson dynamics of the system are strongly related to the energy band structure. Especially, the emergence of the loop structure results in complex tunneling dynamics, including suppression-revival transitions and self-trapping of atoms transfer between two spin states and two wells. This engineering provides a possible means for studying energy level and corresponding dynamics of two-species SO coupled BECs. Supported by the National Natural Science Foundation of China under Grant Nos. 11274255 and 11305132, by Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20136203110001, by the Natural Science Foundation of Gansu province under Grant No. 2011GS04358, and by Creation of Science and Technology of Northwest Normal University under Grant Nos. NWNU-KJCXGC-03-48, NWNU-LKQN-12-12
Short-Time Glassy Dynamics in Viscous Protein Solutions with Competing Interactions
Godfrin, P. Douglas; Hudson, Steven; Hong, Kunlun; Porcar, Lionel; Falus, Peter; Wagner, Norman; Liu, Yun
2015-11-24
Although there have been numerous investigations of the glass transition for colloidal dispersions with only a short-ranged attraction, less is understood for systems interacting with a long-ranged repulsion in addition to this attraction, which is ubiquitous in aqueous protein solutions at low ionic strength. Highly puri ed concentrated lysozyme solutions are used as a model system and investigated over a large range of protein concentrations at very low ionic strength. Newtonian liquid behavior is observed at all concentrations, even up to 480 mg/mL, where the zero shear viscosity increases by more than three orders of magnitude with increasing concentration. Remarkably, despite this macroscopic liquid-like behavior, the measurements of the dynamics in the short-time limit shows features typical of glassy colloidal systems. Investigation of the inter-protein structure indicates that the reduced short-time mobility of the protein is caused by localized regions of high density within a heterogeneous density distribution. This structural heterogeneity occurs on intermediate range length scale, driven by the competing potential features, and is distinct from commonly studied colloidal gel systems in which a heterogeneous density distribution tends to extend to the whole system. The presence of long-ranged repulsion also allows for more mobility over large length and long time scales resulting in the macroscopic relaxation of the structure. The experimental results provide evidence for the need to explicitly include intermediate range order in theories for the macroscopic properties of protein solutions interacting via competing potential features.
NASA Astrophysics Data System (ADS)
Onur, A. R.; de Jong, J. P.; O'Shea, D.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.
2016-04-01
We experimentally demonstrate how coherent population trapping (CPT) for donor-bound electron spins in GaAs results in autonomous feedback that prepares stabilized states for the spin polarization of nuclei around the electrons. CPT was realized by excitation with two lasers to a bound-exciton state. Transmission studies of the spectral CPT feature on an ensemble of electrons directly reveal the statistical distribution of prepared nuclear-spin states. Tuning the laser driving from blue to red detuned drives a transition from one to two stable states. Our results have importance for ongoing research on schemes for dynamic nuclear-spin polarization, the central spin problem, and control of spin coherence.
Molecular-scale dynamics of light-induced spin cross-over in a two-dimensional layer
Bairagi, Kaushik; Iasco, Olga; Bellec, Amandine; Kartsev, Alexey; Li, Dongzhe; Lagoute, Jérôme; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Miserque, Frédéric; Dappe, Yannick J; Smogunov, Alexander; Barreteau, Cyrille; Boillot, Marie-Laure; Mallah, Talal; Repain, Vincent
2016-01-01
Spin cross-over molecules show the unique ability to switch between two spin states when submitted to external stimuli such as temperature, light or voltage. If controlled at the molecular scale, such switches would be of great interest for the development of genuine molecular devices in spintronics, sensing and for nanomechanics. Unfortunately, up to now, little is known on the behaviour of spin cross-over molecules organized in two dimensions and their ability to show cooperative transformation. Here we demonstrate that a combination of scanning tunnelling microscopy measurements and ab initio calculations allows discriminating unambiguously between both states by local vibrational spectroscopy. We also show that a single layer of spin cross-over molecules in contact with a metallic surface displays light-induced collective processes between two ordered mixed spin-state phases with two distinct timescale dynamics. These results open a way to molecular scale control of two-dimensional spin cross-over layers. PMID:27425776
NASA Astrophysics Data System (ADS)
Buessen, Finn Lasse; Trebst, Simon
2016-12-01
Quantum magnets on kagome lattice geometries in two and three spatial dimensions are archetypal examples of spin systems in which geometric frustration inhibits conventional magnetic ordering and instead benefits the emergence of long-range entangled spin liquids at low temperature. Here we employ a recently developed pseudofermion functional renormalization group (pf-FRG) approach to study the low-temperature quantum magnetism of kagome and hyperkagome spin systems with exchange interactions beyond the nearest-neighbor coupling. We find that next-nearest-neighbor couplings stabilize a variety of magnetic orders as well as induce additional spin liquid regimes, giving rise to rather rich phase diagrams, which we characterize in detail. On a technical level, we find that the pf-FRG approach is in excellent quantitative agreement with high-temperature series expansions over their range of validity and it exhibits a systematic finite-size convergence in the temperature regime below. We discuss notable advantages and some current limitations of the pf-FRG approach in the ongoing search for unconventional forms of quantum magnetism.
Solid effect in the electron spin dressed state: A new approach for dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Weis, V.; Bennati, M.; Rosay, M.; Griffin, R. G.
2000-10-01
We describe a new type of solid effect for dynamic nuclear polarization (DNP) that is based on simultaneous, near resonant microwave (mw) and radio frequency (rf) irradiation of a coupled electron nuclear spin system. The interaction of the electron spin with the mw field is treated as an electron spin dressed state. In contrast to the customary laboratory frame solid effect, it is possible to obtain nuclear polarization with the dressed state solid effect (DSSE) even in the absence of nonsecular hyperfine coupling. Efficient, selective excitation of dressed state transitions generates nuclear polarization in the nuclear laboratory frame on a time scale of tens of μs, depending on the strength of the electron-nuclear coupling, the mw and rf offset and field strength. The experiment employs both pulsed mw and rf irradiation at a repetition rate comparable to T1e-1, where T1e is the electronic spin lattice relaxation time. The DSSE is demonstrated on a perdeuterated BDPA radical in a protonated matrix of polystyrene.
NASA Astrophysics Data System (ADS)
Asfaw, Abraham; Tyryshkin, Alexei; Lyon, Stephen
Global magnetic field fluctuations present significant challenges to pulsed electron spin resonance experiments on systems with long spin coherence times. We will discuss results from experiments in which we follow instantaneous changes in magnetic field by locking to the free induction decay of a proton NMR signal using a phase-locked loop. We extend conventional field-frequency locking techniques used in NMR to follow slow magnetic field drifts by using a modified Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence in which the phase of the pi-pulses follows the phase of the proton spins at all times. Hence, we retain the ability of the CPMG pulse sequence to refocus local magnetic field inhomogeneities without refocusing global magnetic field fluctuations. In contrast with conventional field-frequency locking techniques, our experiments demonstrate the potential of this method to dynamically track global magnetic field fluctuations on timescales of about 2 seconds and with rates faster than a kHz. This frequency range covers the dominant noise frequencies in our electron spin resonance experiments as previously reported.
Detection of topological states in two-dimensional Dirac systems by the dynamic spin susceptibility
NASA Astrophysics Data System (ADS)
Nakamura, Masaaki; Tokuno, Akiyuki
2016-08-01
We discuss dynamic spin susceptibility (DSS) in two-dimensional (2D) Dirac electrons with spin-orbit interactions to characterize topological insulators. The imaginary part of the DSS appears as an absorption rate in response to a transverse ac magnetic field, just as in an electron spin resonance experiment for localized spin systems. We found that when the system is in a static magnetic field, the topological state can be identified by an anomalous resonant peak of the imaginary part of the DSS as a function of the frequency of the transverse magnetic field ω . In the absence of a static magnetic field, the imaginary part of the DSS becomes a continuous function of ω with a threshold frequency ωc. In this case, the topological and the trivial phases can also be distinguished by the values of ωc and by the line shapes. Thus the DSS is an experimentally observable physical quantity to characterize a topological insulator directly from bulk properties, without observing a topological transition.
Relevance of electron spin dissipative processes to dynamic nuclear polarization via thermal mixing.
Serra, Sonia Colombo; Filibian, Marta; Carretta, Pietro; Rosso, Alberto; Tedoldi, Fabio
2014-01-14
The available theoretical approaches aiming at describing Dynamic Nuclear spin Polarization (DNP) in solutions containing molecules of biomedical interest and paramagnetic centers are not able to model the behaviour observed upon varying the concentration of trityl radicals or the polarization enhancement caused by moderate addition of gadolinium complexes. In this manuscript, we first show experimentally that the nuclear steady state polarization reached in solutions of pyruvic acid with 15 mM trityl radicals is substantially independent on the average internuclear distance. This evidences a leading role of electron (over nuclear) spin relaxation processes in determining the ultimate performances of DNP. Accordingly, we have devised a variant of the Thermal Mixing model for inhomogenously broadened electron resonance lines which includes a relaxation term describing the exchange of magnetic anisotropy energy of the electron spin system with the lattice. Thanks to this additional term, the dependence of the nuclear polarization on the electron concentration can be properly accounted for. Moreover, the model predicts a strong increase of the final polarization upon shortening the electron spin-lattice relaxation time, providing a possible explanation for the effect of gadolinium doping.
Characterization of spin dynamics in stripe-ordered La2-xSrxNiO4
NASA Astrophysics Data System (ADS)
Woo, H.; Tranquada, J. M.; Boothroyd, A. T.; Nakajima, K.; Perring, T. G.; Frost, C.; Freeman, P. G.; Prabhakaran, D.; Yamada, K.
2004-03-01
Inelastic neutron scattering experiments at a spallation source have enabled us to measure the full momentum- and energy- dependent spectra of magnetic fluctuations in the charge- and spin-stripe ordered systems La_2-xSr_xNiO4 ( x=1/3 and x=0.275). Peaks in the dynamic magnetic response at incommensurate wavevectors and over a wide frequency range are commonly observed in the high-Tc superconductors YBa_2Cu_3O_6+x and La_2-xA_xCuO_4(A=Sr,Ba) , as well as in the static charge- and spin-striped system nickelates La_2-xSr_xNiO_4. High energy transfer up to 90meV with broad reciprocal spaces was observed. In addition to intrastripe and interstripe exchange interactions between neighboring Ni spins [1], exchange interactions between diagonal Ni spins (not through oxygen) are also considered. We will present a detailed measurement and analysis in the NiO2 plane. We acknowledge U.S.-DOE for financial support: contract # DE-AC02-98CH1088. [1] Boothroyd et al. Phys. Rev. B 67, 100407(R) (2003).
Improving the coherence properties of solid-state spin ensembles via optimized dynamical decoupling
NASA Astrophysics Data System (ADS)
Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.
2016-04-01
In this work, we optimize a dynamical decoupling (DD) protocol to improve the spin coherence properties of a dense ensemble of nitrogen-vacancy (NV) centers in diamond. Using liquid nitrogen-based cooling and DD microwave pulses, we increase the transverse coherence time T2 from ˜ 0.7 ms up to ˜ 30 ms. We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. After performing a detailed analysis of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the concatenated XY8 pulse sequences serves as the optimal control scheme for preserving an arbitrary spin state. Finally, we use the concatenated sequences to demonstrate an immediate improvement of the AC magnetic sensitivity up to a factor of two at 250 kHz. For future work, similar protocols may be used to increase coherence times up to NV-NV interaction time scales, a major step toward the creation of quantum collective NV spin states.
Spin models for two-site resonant tunnelling dynamics of bosons in a tilted optical lattice
NASA Astrophysics Data System (ADS)
Buyskikh, Anton; Pekker, David; Daley, Andrew
2016-05-01
We study the non-equilibrium dynamics of a one dimensional tilted Bose-Hubbard model, beginning from unit filling in the Mott insulator regime. Studying a quench to the resonance point for tunnelling of the particles over two sites, we show how in the presence of a superlattice, a spin model emerges involving two subchains described by an Ising model that are then coupled by interaction terms. Using this model, we study the behaviour of the system near the quantum critical point in the vicinity of the tunnelling resonance, especially looking at the out-of-equilibrium dynamics after the quench. We compare the dephasing of local observables corresponding to the number of doubly occupied sites, which were measured in recent experiments, to the dynamics expected in the presence of noise and decoherence. These results should be directly measurable in experiments, and provide a diagnostic tool for investigating decoherence in such out-of-equilibrium dynamics.
The truncated Wigner approximation for spin dynamics in systems of trapped ions, atoms & molecules
NASA Astrophysics Data System (ADS)
Schachenmayer, Johannes; Zhu, Bihui; Pikovski, Alexander; Hazzard, Kaden; Holland, Murray; Rey, Ana Maria
2014-05-01
Trapped ions and systems of cold atoms or molecules in optical lattices offer controlled environments to experimentally study non-equilibrium dynamics of many-body quantum spin-models with interactions of varying range. Theoretically calculating dynamics of observables for these experiments is a major challenge both analytically and numerically. While in one dimension, time-dependent density matrix renormalization group techniques (t-DMRG) allow for an efficient simulation of the dynamics as long as the time-dependent bi-partite entanglement growth remains moderate, a simulation for systems in two or three dimensions is more demanding. Here we present a numerical technique, which employs the truncated Wigner approximation (TWA) and which can be used to simulate Ramsey-dynamics for current experiments with trapped ions, alkaline earth atoms, polar molecules in optical lattices, or for systems with Rydberg atoms.
A simple analytical description of the non-stationary dynamics in Ising spin systems
NASA Astrophysics Data System (ADS)
Domínguez Vázquez, Eduardo; Del Ferraro, Gino; Ricci-Tersenghi, Federico
2017-03-01
The analytical description of the dynamics in models with discrete variables (e.g. Ising spins) is a notoriously difficult problem, which can only be tackled under some approximation. Recently a novel variational approach to solve the stationary dynamical regime has been introduced by Pelizzola (2013 Eur. Phys. J. B 86 120), where simple closed equations are derived under mean-field approximations based on the cluster variational method. Here we propose to use the same approximation based on the cluster variational method also for the non-stationary regime, which has not been considered up to now within this framework. We check the validity of this approximation in describing the non-stationary dynamical regime of several Ising models defined on Erdős–Rényi random graphs: we study ferromagnetic models with symmetric and partially asymmetric couplings, models with random fields and also spin glass models. A comparison with the actual Glauber dynamics, solved numerically, shows that one of the two studied approximations (the so-called ‘diamond’ approximation) provides very accurate results in all the systems studied. Only for the spin glass models do we find some small discrepancies in the very low temperature phase, probably due to the existence of a large number of metastable states. Given the simplicity of the equations to be solved, we believe the diamond approximation should be considered as the ‘minimal standard’ in the description of the non-stationary regime of Ising-like models: any new method pretending to provide a better approximate description to the dynamics of Ising-like models should perform at least as good as the diamond approximation.
Memory effects in the dynamic response of a random two-spin Ising system
NASA Astrophysics Data System (ADS)
Nifle, M.; Hilhorst, H. J.
1991-01-01
Motivated by magnetic memory effects observable in spin glasses we study an extremely simplified model system. It consists of two Ising spins with Glauber dynamics, whose equilibrium correlation is a rapidly and randomly changing function of the external field. As in spin glasses, a nonliear dynamic response appears even in the regime of linear static properties. We calculate (i) the linear and nonlinear ac susceptibility in zero field and (ii) the linear ac susceptibility as a function of the rate change of a slowly varying background field. Mathematically the problem is to deal with a stochastic differential equation with long-ranged correlations in time. For an oscillating field of sufficiently large amplitude H0 (but still in the statically linear regime) these correlations lead to nonanalytic correction terms sim H0^{-1} log H0 in the dynamic susceptibility. Motivé par des effets de mémoire observables dans les verres de spin l'on étudie un système modèle extrêmement simplifié. Ils se compose de deux spins d'Ising à dynamique de Glauber, dont la fonction de corrélation à l'équilibre varie rapidement et aléatoirement en fonction du champ extérieur. Comme dans les verres de spin, une réponse dynamique non linéaire apparaît déjà dans le régime linéaire des propriétés statiques. On calcule (i) les susceptibilités alternatives linéaire et non linéaire en champ zéro et (ii) la susceptibilité alternative linéaire en fonction du taux de variation d'un champ primaire à variation lente. Le problème mathématique consiste en une équation différentielle stochastique avec des corrélations temporelles de longue portée. Pour un champ oscillant d'amplitude H0 suffisamment grande (mais toujours dans le régime statiquement linéaire) ces corrélations conduisent à des termes correctifs non analytiques sim H0^{-1} log H0 dans la susceptibilité dynamique.
Quantum spin dynamics and entanglement in systems with long-range interactions
NASA Astrophysics Data System (ADS)
Rey, Ana M.
One of the fundamental goals of modern quantum sciences is to learn how to control and manipulate non-equilibrium many-body systems and use them to make powerful and improved quantum devices, materials and technologies. However, out-of-equilibrium systems are complex, typically strongly correlated and entangled, and thus to model them we are in an urgent need of new methodologies. In this talk I will discuss new theoretical methods that we have developed to investigate emergent non-equilibrium phenomena in driven-dissipative spin systems interacting via long-range interactions. I will show we can capture the dynamics of correlations and entanglement in close systems and the interplay between dissipation and entanglement in open quantum systems including spin-boson models. As a specific application I will discuss the use of our methods to model the spin dynamics exhibited by arrays of trapped ions with controllable long-range interactions. I will show that our predictions are consistent with recent experimental measurements. I will also discuss new protocols to diagnostic and characterize entanglement based on well-established NMR protocols This work is supported by NSF, ARO, AFOSR-MURI, and NIST.
Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics
Pohlit, Merlin Porrati, Fabrizio; Huth, Michael; Müller, Jens
2015-05-07
We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their “coercive field” with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior within experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' “survival time” with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct “paths” most likely driven by thermal perturbation.
Spin dynamics and magnetic correlation length in two-dimensional quantum heisenberg antiferromagnets
Carretta; Ciabattoni; Cuccoli; Mognaschi; Rigamonti; Tognetti; Verrucchi
2000-01-10
The correlated spin dynamics and temperature dependence of the correlation length xi(T) in two-dimensional quantum (S = 1/2) Heisenberg antiferromagnets (2DQHAF) on a square lattice are discussed in light of experimental results of proton spin lattice relaxation in copper formiate tetradeuterate. In this compound the exchange constant is much smaller than the one in recently studied 2DQHAF, such as La2CuO4 and Sr2CuO2Cl2. Thus the spin dynamics can be probed in detail over a wider temperature range. The NMR relaxation rates turn out to be in excellent agreement with a theoretical mode-coupling calculation. The deduced temperature behavior of xi(T) is in agreement with high-temperature expansions, quantum Monte Carlo simulations, and the pure quantum self-consistent harmonic approximation. Contrary to the predictions of the theories based on the nonlinear sigma model, no evidence of crossover between different quantum regimes is observed.
Dynamics of Bound Monopoles in Artificial Spin Ice: How to Store Energy in Dirac Strings
NASA Astrophysics Data System (ADS)
Vedmedenko, E. Y.
2016-02-01
Dirac strings in spin ices are lines of reversed dipoles joining two quasiparticle excitations. These excitations behave as unbound emergent monopoles if the tension of Dirac strings vanishes. In this Letter, analytical and numerical analysis are used to study the dynamics of two-dimensional dipolar spin ices, artificially created analogs of bulk spin ice, in the regime of bound monopoles. It is shown that, in this regime, strings, rather than monopoles, are effective degrees of freedom explaining the finite-width band of Pauling states. A measurable prediction of path-time dependence of endpoints of a stretched and, then, released Dirac string is made and verified via simulations. It is shown that string dynamics is defined by the characteristic tension-to-mass ratio, which is determined by the fine structure constant and lattice dependent parameter. It is proposed to use string tension to achieve spontaneous magnetic currents. A concept of an energy storing device on the basis of this principle is proposed and illustrated by an experimental demonstration. A scheme of independent measurement at the nanoscale is proposed.
PRECESSION: Python toolbox for dynamics of spinning black-hole binaries
NASA Astrophysics Data System (ADS)
Gerosa, Davide; Kesden, Michael
2016-11-01
PRECESSION is a comprehensive toolbox for exploring the dynamics of precessing black-hole binaries in the post-Newtonian regime. It allows study of the evolution of the black-hole spins along their precession cycles, performs gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and predicts the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. PRECESSION can add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation, and provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also useful for computing initial parameters for numerical-relativity simulations targeting specific precessing systems.
Kinematical and dynamical aspects of higher-spin bound-state equations in holographic QCD
de Téramond, Guy F.; Dosch, Hans Günter; Brodsky, Stanley J.
2013-04-01
In this paper we derive holographic wave equations for hadrons with arbitrary spin starting from an effective action in a higher-dimensional space asymptotic to anti–de Sitter (AdS) space. Our procedure takes advantage of the local tangent frame, and it applies to all spins, including half-integer spins. An essential element is the mapping of the higher-dimensional equations of motion to the light-front Hamiltonian, thus allowing a clear distinction between the kinematical and dynamical aspects of the holographic approach to hadron physics. Accordingly, the nontrivial geometry of pure AdS space encodes the kinematics, and the additional deformations of AdS space encode the dynamics, including confinement. It thus becomes possible to identify the features of holographic QCD, which are independent of the specific mechanisms of conformal symmetry breaking. In particular, we account for some aspects of the striking similarities and differences observed in the systematics of the meson and baryon spectra.
Collective dynamics of a spin-orbit-coupled Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Hu, Fang-Qi; Wang, Jian-Jun; Yu, Zi-Fa; Zhang, Ai-Xia; Xue, Ju-Kui
2016-02-01
We study the collective dynamics of the spin-orbit coupled two pseudospin components of a Bose-Einstein condensate trapped in a quasi-one-dimensional harmonic potential, by using variational and directly numerical approach of binary mean-field Gross-Pitaevskii equations. The results show that, because of strong coupling of spin-orbit coupling (SOC), Rabi coupling, and atomic interaction, the collective dynamics of the system behave as complex characters. When the Rabi coupling is absent, the density profiles of the system preserve the Gauss type and the wave packets do harmonic oscillations. The amplitude of the collective oscillations increases with SOC. Furthermore, when the SOC strength increases, the dipole oscillations of the two pseudospin components undergo a transition from in-phase to out-of-phase oscillations. When the Rabi coupling present, there will exist a critical value of SOC strength (which depends on the Rabi coupling and atomic interaction). If the SOC strength is less than this critical value, the density profiles of the system can preserve the Gauss type and the wave packets do anharmonic (the frequency of dipole oscillations depends on SOC) oscillations synchronously (i.e., in-phase oscillations). However, if the SOC strength is larger than this critical value, the wave packets are dynamically fragmented and the stable dipole oscillations of the system can not exist. The collective dynamics of the system can be controlled by adjusting the atomic interaction, SOC, and Rabi-coupling strength.
Collective dynamics of a spin-orbit-coupled Bose-Einstein condensate.
Hu, Fang-Qi; Wang, Jian-Jun; Yu, Zi-Fa; Zhang, Ai-Xia; Xue, Ju-Kui
2016-02-01
We study the collective dynamics of the spin-orbit coupled two pseudospin components of a Bose-Einstein condensate trapped in a quasi-one-dimensional harmonic potential, by using variational and directly numerical approach of binary mean-field Gross-Pitaevskii equations. The results show that, because of strong coupling of spin-orbit coupling (SOC), Rabi coupling, and atomic interaction, the collective dynamics of the system behave as complex characters. When the Rabi coupling is absent, the density profiles of the system preserve the Gauss type and the wave packets do harmonic oscillations. The amplitude of the collective oscillations increases with SOC. Furthermore, when the SOC strength increases, the dipole oscillations of the two pseudospin components undergo a transition from in-phase to out-of-phase oscillations. When the Rabi coupling present, there will exist a critical value of SOC strength (which depends on the Rabi coupling and atomic interaction). If the SOC strength is less than this critical value, the density profiles of the system can preserve the Gauss type and the wave packets do anharmonic (the frequency of dipole oscillations depends on SOC) oscillations synchronously (i.e., in-phase oscillations). However, if the SOC strength is larger than this critical value, the wave packets are dynamically fragmented and the stable dipole oscillations of the system can not exist. The collective dynamics of the system can be controlled by adjusting the atomic interaction, SOC, and Rabi-coupling strength.
A Comparison Study of Magnetic Bearing Controllers for a Fully Suspended Dynamic Spin Rig
NASA Technical Reports Server (NTRS)
Choi, Benjamin; Johnson, Dexter; Morrison, Carlos; Mehmed, Oral; Huff, Dennis (Technical Monitor)
2002-01-01
NASA Glenn Research Center (GRC) has developed a fully suspended magnetic bearing system for the Dynamic Spin Rig (DSR) that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust bearing and the associated control system were integrated into the DSR to provide noncontact magnetic suspension and mechanical excitation of the 35 lb vertical rotor with blades to induce turbomachinery blade vibration. A simple proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked very well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, and energy savings for the system. The test results of a variety of controllers we demonstrated up to the rig's maximum allowable speed of 10,000 rpm are shown.
Quantum Langevin approach for non-Markovian quantum dynamics of the spin-boson model
NASA Astrophysics Data System (ADS)
Zhou, Zheng-Yang; Chen, Mi; Yu, Ting; You, J. Q.
2016-02-01
One longstanding difficult problem in quantum dissipative dynamics is to solve the spin-boson model in a non-Markovian regime where a tractable systematic master equation does not exist. The spin-boson model is particularly important due to its crucial applications in quantum noise control and manipulation as well as its central role in developing quantum theories of open systems. Here we solve this important model by developing a non-Markovian quantum Langevin approach. By projecting the quantum Langevin equation onto the coherent states of the bath, we can derive a set of non-Markovian quantum Bloch equations containing no explicit noise variables. This special feature offers a tremendous advantage over the existing stochastic Schrödinger equations in numerical simulations. The physical significance and generality of our approach are briefly discussed.
Multidimensional Instability and Dynamics of Spin Avalanches in Crystals of Nanomagnets
NASA Astrophysics Data System (ADS)
Jukimenko, O.; Dion, C. M.; Marklund, M.; Bychkov, V.
2014-11-01
We obtain a fundamental instability of the magnetization-switching fronts in superparamagnetic and ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of quantum dots with large spin. We develop the instability theory for both linear and nonlinear stages. By using numerical simulations we investigate the instability properties focusing on spin avalanches in crystals of nanomagnets. The instability distorts spontaneously the fronts and leads to a complex multidimensional front dynamics. We show that the instability has a universal physical nature, with a deep relationship to a wide variety of physical systems, such as the Darrieus-Landau instability of deflagration fronts in combustion, inertial confinement fusion, and thermonuclear supernovae, and the instability of doping fronts in organic semiconductors.
Evidence for Glass and Spin-Glass Phase Transitions From the Dynamic Susceptibility
Bitko, D.; Coppersmith, S. N.; Leheny, R. L.; Menon, N.; Nagel, S. R.; Rosenbaum, T. F.
1997-01-01
We present evidence that there is a phase transition, with a diverging static susceptibility, underlying the transformation of a liquid into a glass. The dielectric susceptibility, at frequencies above its characteristic value, shows a power-law tail extending over many decades to higher frequencies. An extrapolation of this behavior to the temperature where the dynamics becomes arrested indicates a diverging susceptibility. We present evidence for analogous behavior in the magnetic susceptibility of a paramagnet approaching the spin-glass transition. The similarity of the response in these two glassy systems suggests that some conventional lore, such as that the spin glass shows evidence for a diverging correlation length only in a nonlinear but not in the linear susceptibility, may be invalid. PMID:27805138
Anisotropic dynamics of a spin-orbit-coupled Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Martone, Giovanni I.; Li, Yun; Pitaevskii, Lev P.; Stringari, Sandro
2012-12-01
By calculating the density response function we identify the excitation spectrum of a Bose-Einstein condensate with equal Rashba and Dresselhaus spin-orbit coupling. We find that the velocity of sound along the direction of spin-orbit coupling is deeply quenched and vanishes when one approaches the second-order phase transition between the plane-wave and the zero momentum quantum phases. We also point out the emergence of a roton minimum in the excitation spectrum for small values of the Raman coupling, providing the onset of the transition to the stripe phase. Our findings point out the occurrence of a strong anisotropy in the dynamic behavior of the gas. A hydrodynamic description accounting for the collective oscillations in both uniform and harmonically trapped gases is also derived.
Nanosecond magnetization dynamics during spin Hall switching of in-plane magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Rowlands, G. E.; Aradhya, S. V.; Shi, S.; Yandel, E. H.; Oh, J.; Ralph, D. C.; Buhrman, R. A.
2017-03-01
We present a study of the magnetic dynamics associated with nanosecond scale magnetic switching driven by the spin Hall effect in 3-terminal nanoscale magnetic tunnel junctions (MTJs) with in-plane magnetization. Utilizing fast pulse measurements in a variety of material stacks and detailed micromagnetic simulations, we demonstrate that this unexpectedly fast and reliable magnetic reversal is facilitated by the self-generated Oersted field, and that the short-pulse energy efficiency can be substantially enhanced by spatial non-uniformity in the initial magnetization of the magnetic free layer. The sign of the Oersted field is essential for this enhancement—in simulations in which we artificially impose a field-like torque with a sign opposite to the effect of the Oersted field, the result is a much slower and stochastic switching process that is reminiscent of the so-called incubation delay in conventional 2-terminal spin-torque-switched MTJs.
Spin dynamics and implications for superconductivity: Some problems with the d-wave scenario
Levin, K.; Zha, Y.; Radtke, R.J.; Si, Q.; Norman, M.R.; Schuttler, H.B.
1993-09-01
We review the spin dynamics of the normal state of the cuprates with special emphasis on neutron data in both the YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} and La{sub 2-x}Sr{sub x}CuO{sub 4} systems. When realistic models of the Fermi surface shapes are incorporated, along with a moderate degree of spin fluctuations, we find good semi-quantiative agreement with experiment for both cuprates. Building on the success of this Fermi-liquid-based scheme, we explore the implications for d-wave pairing from a number of vantage points. We conclude that our present experimental and theoretical understanding is inadequate to confirm or refute the d-wave scenario.
Dynamical correlation effects on structure factor of spin-polarized two-dimensional electron gas
Singh, Gurvinder; Moudgil, R. K.; Kumar, Krishan; Garg, Vinayak
2015-06-24
We report a theoretical study on static density structure factor S(q) of a spin-polarized two-dimensional electron gas over a wide range of electron number density r{sub s}. The electron correlations are treated within the dynamical version of the self-consistent mean-field theory of Singwi, Tosi, Land, and Sjolander, the so-called qSTLS approach. The calculated S(q) exhibits almost perfect agreement with the quantum Monte Carlo simulation data at r{sub s}=1. However, the extent of agreement somewhat diminishes with increasing r{sub s}, particularly for q around 2k{sub F}. Seen in conjunction with the success of qSTLS theory in dealing with correlations in the unpolarized phase, our study suggests that the otherwise celebrated qSTLS theory is not that good in treating the like-spin correlations.
Multidimensional instability and dynamics of spin avalanches in crystals of nanomagnets.
Jukimenko, O; Dion, C M; Marklund, M; Bychkov, V
2014-11-21
We obtain a fundamental instability of the magnetization-switching fronts in superparamagnetic and ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of quantum dots with large spin. We develop the instability theory for both linear and nonlinear stages. By using numerical simulations we investigate the instability properties focusing on spin avalanches in crystals of nanomagnets. The instability distorts spontaneously the fronts and leads to a complex multidimensional front dynamics. We show that the instability has a universal physical nature, with a deep relationship to a wide variety of physical systems, such as the Darrieus-Landau instability of deflagration fronts in combustion, inertial confinement fusion, and thermonuclear supernovae, and the instability of doping fronts in organic semiconductors.
Wylie, Benjamin J; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.
2016-01-01
We demonstrate that dynamic nuclear polarization (DNP) of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of 6-fold for the dimeric protein. The enhancement affect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces. PMID:25828256
Inhomogeneous quasi-adiabatic driving of quantum critical dynamics in weakly disordered spin chains
NASA Astrophysics Data System (ADS)
Rams, Marek M.; Mohseni, Masoud; del Campo, Adolfo
2016-12-01
We introduce an inhomogeneous protocol to drive a weakly disordered quantum spin chain quasi-adiabatically across a quantum phase transition and minimize the residual energy of the final state. The number of spins that simultaneously reach the critical point is controlled by the length scale in which the magnetic field is modulated, introducing an effective size that favors adiabatic dynamics. The dependence of the residual energy on this length scale and the velocity at which the magnetic field sweeps out the chain is shown to be nonmonotonic. We determine the conditions for an optimal suppression of the residual energy of the final state and show that inhomogeneous driving can outperform conventional adiabatic schemes based on homogeneous control fields by several orders of magnitude.
NASA Astrophysics Data System (ADS)
Li, P. H. Y.; Bishop, R. F.; Campbell, C. E.
2015-01-01
We use the coupled cluster method (CCM) to study the zero-temperature ground-state (GS) properties of a spin-1/2 J1-J2 Heisenberg antiferromagnet on a triangular lattice with competing nearest-neighbor and next-nearest-neighbor exchange couplings J1>0 and J2≡κ J1>0 , respectively, in the window 0 ≤κ <1 . The classical version of the model has a single GS phase transition at κcl=1/8 in this window from a phase with 3-sublattice antiferromagnetic (AFM) 120∘ Néel order for κ <κcl to an infinitely degenerate family of 4-sublattice AFM Néel phases for κ >κcl . This classical accidental degeneracy is lifted by quantum fluctuations, which favor a 2-sublattice AFM striped phase. For the quantum model we work directly in the thermodynamic limit of an infinite number of spins, with no consequent need for any finite-size scaling analysis of our results. We perform high-order CCM calculations within a well-controlled hierarchy of approximations, which we show how to extrapolate to the exact limit. In this way we find results for the case κ =0 of the spin-1/2 model for the GS energy per spin, E /N =-0.5521 (2 ) J1 , and the GS magnetic order parameter, M =0.198 (5 ) (in units where the classical value is Mcl=1/2), which are among the best available. For the spin-1/2 J1-J2 model we find that the classical transition at κ =κcl is split into two quantum phase transitions at κ1c=0.060 (10 ) and κ2c=0.165 (5 ) . The two quasiclassical AFM states (viz., the 120∘ Néel state and the striped state) are found to be the stable GS phases in the regime κ <κ1c and κ >κ2c , respectively, while in the intermediate regimes κ1c<κ <κ2c the stable GS phase has no evident long-range magnetic order.
DYNAMICAL SPIN SUSCEPTIBILITY IN THE TD-LDA AND QSGW APPROXIMATIONS
SCHILFGAARDE, MARK VAN; KOTANI, TAKAO
2012-10-15
Abstract. This project was aimed at building the transverse dynamical spin susceptibility with the TD-LDA and the recently-developed Quasparticle Self-Consisent Approximations, which determines an optimum quasiparticle picture in a self-consistent manner within the GW approximation. Our main results were published into two papers, (J. Phys. Cond. Matt. 20, 95214 (2008), and Phys. Rev. B83, 060404(R) (2011). In the first paper we present spin wave dispersions for MnO, NiO, and -MnAs based on quasiparticle self-consistent GW approximation (QSGW). For MnO and NiO, QSGW results are in rather good agreement with experiments, in contrast to the LDA and LDA+U descriptions. For -MnAs, we find a collinear ferromagnetic ground state in QSGW, while this phase is unstable in the LDA. In the second, we apply TD-LDA to the CaFeAs2 the first attempt the first ab initio calculation of dynamical susceptibililty in a system with complex electronic structure Magnetic excitations in the striped phase of CaFe2As2 are studied as a function of local moment amplitude. We find a new kind of excitation: sharp resonances of Stoner-like (itinerant) excitations at energies comparable to the ´eel temperature, originating largely from a narrow band of Fe d states near the Fermi level, and coexisting with more conventional (localized) spin waves. Both kinds of excitations can show multiple branches, highlighting the inadequacy of a description based on a localized spin model.
Bullock Spt, Garrett S; Brookerson, Nate; Knab, Amy M; Butler, Robert J
2016-09-16
Abnormal fundamental movement patterns and upper quarter dynamic balance are proposed mechanisms affecting athletic performance and injury risk. There are few studies investigating functional movement and closed chain upper extremity dynamic stability in swimmers. The purpose of this study was to determine differences in fundamental movement competency and closed chain upper extremity dynamic balance, utilizing the Functional Movement Screen (FMS) and Upper Quarter Y-Balance Test (YBT-UQ), of high school (HS; n=70) and collegiate (COL; n=70) swimmers. Variables included the individual movement tests on the FMS, and the average normalized reach (%LL) for each direction, with the YBT-UQ. Statistical analysis was completed utilizing a chi-square for the independent test scores on the FMS while independent samples t-test to examine performance on the YBT-UQ (p<0.05). HS swimmers exhibited a statistically significant greater percentage of below average performance (score of 0 or 1) on the following FMS tests: lunge (HS:22.9%, COL:4.3%), hurdle step (HS:31.4%, COL:7.1%) and push up (HS:61.4 %, COL:31.4%). Furthermore, COL males performed worse in the lunge (Male 9%, Female 0%), while COL females had poorer efficiency in the pushup (Male: 17.6%, Female 44%). Significant effects of competition level and sex were observed in YBT-UQ medial reach (HS: Female 92.06, Male 101.63, COL: Female 101.3, Male 101.5 %LL). Individual fundamental movement patterns that involved lumbopelvic neuromuscular control differed between HS and COL swimmers. General upper extremity dynamic balance differed between competition levels. These data may be helpful in understanding injury and performance based normative data for participation and return to swimming.
NASA Astrophysics Data System (ADS)
Ito, Atsuko; Morimoto, Setsu; Someya, Yoshiko; Syono, Yasuhiko; Takei, Humihiko
1982-10-01
The physics of random mixtures with competing spin anisotropies is found to be much more complex than ever considered. According to our neutron scattering study of FexCo1-xTiO3, orderings of the orthogonal spin components S// and \\includegraphics{dummy.eps} seem to be decoupled with each other though not complete; two antiferromagnetic (AF) phases and a mixed ordering phase appear on the concentration vs temperature phase diagram. However, according to our Mössbauer study, S// and \\includegraphics{dummy.eps} seem to be closely coupled in the AF phases; the boundary between the AF and the mixed ordering phase is not found. This apparently contradictory result is interpreted as follows. In the \\includegraphics{dummy.eps} ordered AF phase, orientational distribution of \\includegraphics{dummy.eps} is such that it does not produce coherent scatterings of neutrons, but each \\includegraphics{dummy.eps} stays statically at least in the time scale of the Larmor precession time τL of 57Fe.
Negoro, M; Nakayama, K; Tateishi, K; Kagawa, A; Takeda, K; Kitagawa, M
2010-10-21
In dynamic nuclear polarization (DNP) experiments applied to organic solids for creating nonequilibrium, high (1)H spin polarization, an efficient buildup of (1)H polarization is attained by partially deuterating the material of interest with an appropriate (1)H concentration. In such a dilute (1)H spin system, it is shown that the (1)H spin diffusion rate and thereby the buildup efficiency of (1)H polarization can further be enhanced by continually applying radiofrequency irradiation for deuterium decoupling during the DNP process. As experimentally confirmed in this work, the electron spin polarization of the photoexcited triplet state is mainly transferred only to those (1)H spins, which are in the vicinity of the electron spins, and (1)H spin diffusion transports the localized (1)H polarization over the whole sample volume. The (1)H spin diffusion coefficients are estimated from DNP repetition interval dependence of the initial buildup rate of (1)H polarization, and the result indicates that the spin diffusion coefficient is enhanced by a factor of 2 compared to that without (2)H decoupling.
Low-Energy Charge and Spin Dynamics in Quantum Confined Systems
NASA Astrophysics Data System (ADS)
Rice, William D.
Condensed matter systems exhibit a variety of dynamical phenomena at low energy scales, from gigahertz (GHz) to terahertz (THz) frequencies in particular, arising from complex interplay between charge, spin, and lattice. A large number of collective and elementary excitations in solids occur in this frequency range, which are further modified and enriched by scattering, interactions, and disorder. Recent advancements in spectroscopic methods for probing low-energy dynamics allow us to investigate novel aspects of charge and spin dynamics in solids. In this dissertation work, we used direct current (DC) conductivity, GHz, THz, and mid-infrared (MIR) techniques to provide significant new insights into interaction and disorder effects in low-dimensional systems. Specifically, we have studied temperature-dependent magnetoresistance (MR) and electron spin resonance (ESR) in single-wall carbon nanotubes (SWCNTs), intra-exciton scattering in InGaAs quantum wells, and high-field MIR-induced band gaps in graphene. Temperature-dependent resistance and MR were measured in an ensemble of SWCNTs from 0.3 to 350 K. The resistance temperature behavior followed a 3D variable range hopping (VRH) behavior from 0.3 to ˜100 K. A positive MR was observed at temperatures above 25 K and could be fit with a spin-dependent VRH model; negative MR was seen at low temperatures. In the GHz regime, the ESR linewidth for SWCNTs was observed to narrow by as much as 50% as the temperature was increased from 3 to 300 K, a phenomenon known as motional narrowing, suggesting that we are detecting the ESR of hopping spins. From the linewidth change versus temperature, we find the hopping frequency to be 285 GHz. For excitons in InGaAs quantum wells, we demonstrate the manipulation of intra-excitonic populations using intense, narrow-band THz pulses. The THz radiation temporarily quenches the 1s emission, which is then followed by an enhancement and subsequent decay of 2s emission. After the quenching
NASA Astrophysics Data System (ADS)
Onufrieva, F.
2017-03-01
The paper is motivated by the observation of unusual and not well understood spin dynamics in low- and moderately doped high-Tc cuprates as well as by the discovery in these materials of a static incommensurate order for doping exceeding the insulator-metal boundary in the phase diagram. We develop a microscopic approach that allows us to treat accurately the quantum fluctuations in the spiral state developing upon doping the Mott-Neel insulator. We show that the spiral order of localized spins induces an off-diagonal order of mobile charges and a gap Δ ∝|Q | in their spectrum (Q is the spiral incommensurability wave vector defined with respect to QAF). Due to the dynamic spin-charge interaction the latter gap produces a feedback effect consisting in the appearence of a gap in the coherent spin excitation spectrum. As a result, the characteristic energy ωc=Δ appears, in the spin excitation spectra. It separates two components with qualitatively different behavior-above ωc, spin excitations are magnonlike and have an upward dispersion, below it, they are of the relaxation type and have a slight downward dispersion. The form of the dispersion is close to the form observed experimentally (by inelastic neutron scattering), which can be characterized as OPEN-hour-glass shaped or Y -shaped. There is no qualitative difference between the spin dynamics in the normal and SC states as far as doping is relatively low. There is no resonance. Other important features, including the incommensurability and uniaxial anisotropy of the low-energy spin excitations and the doping dependencies of the characteristic energy and wave vectors, are also close to those observed experimentally in low-doped cuprates. We show that the static spiral state becomes unstable at the critical doping nc. We show also that adopting the hypothesis about the presence of finite-energy spiral correlations in the paramagnetic state above nc and based on the results obtained for the static spiral state
Short-Time Glassy Dynamics in Viscous Protein Solutions with Competing Interactions
Godfrin, P. Douglas; Hudson, Steven; Hong, Kunlun; ...
2015-11-24
Although there have been numerous investigations of the glass transition for colloidal dispersions with only a short-ranged attraction, less is understood for systems interacting with a long-ranged repulsion in addition to this attraction, which is ubiquitous in aqueous protein solutions at low ionic strength. Highly puri ed concentrated lysozyme solutions are used as a model system and investigated over a large range of protein concentrations at very low ionic strength. Newtonian liquid behavior is observed at all concentrations, even up to 480 mg/mL, where the zero shear viscosity increases by more than three orders of magnitude with increasing concentration. Remarkably,more » despite this macroscopic liquid-like behavior, the measurements of the dynamics in the short-time limit shows features typical of glassy colloidal systems. Investigation of the inter-protein structure indicates that the reduced short-time mobility of the protein is caused by localized regions of high density within a heterogeneous density distribution. This structural heterogeneity occurs on intermediate range length scale, driven by the competing potential features, and is distinct from commonly studied colloidal gel systems in which a heterogeneous density distribution tends to extend to the whole system. The presence of long-ranged repulsion also allows for more mobility over large length and long time scales resulting in the macroscopic relaxation of the structure. The experimental results provide evidence for the need to explicitly include intermediate range order in theories for the macroscopic properties of protein solutions interacting via competing potential features.« less
Spin Dynamics Simulations of Multiple Echo Spacing Pulse Sequences in Grossly Inhomogeneous Fields
NASA Astrophysics Data System (ADS)
Heidler, R.; Bachman, H. N.; Johansen, Y.
2008-12-01
Pulse sequences with multiple lengths of echo spacings are used in oilfield NMR logging for diffusion-based NMR applications such as rock and fluid characterization. One specific implementation is the so-called diffusion editing sequence comprising two long echo spacings followed by a standard CPMG at a shorter echo spacing. The echoes in the CPMG portion contain signal from both the direct and stimulated echoes. Modern oilfield NMR logging tools are designed for continuous depth logging of earth formations by projecting both the static (B0) and dynamic (B1) fields into the formation. Both B0 and B1 profiles are grossly inhomogeneous which results in non-steady-state behavior in the early echoes. The spin dynamics effects present a challenge for processing the echo amplitudes to measure porosity (amplitude extrapolated to zero time) and attenuations for fluid or pore size characterization. In this work we describe a calculation of the spin dynamics of the diffusion editing sequence with two long echo spacings. The calculation takes into account full B1 and B0 field maps, and comparisons will be made for sensors and parameters typical of oilfield logging tools and environments.
Spin-orbit effects on the full dynamics of double quantum dot qubit states
NASA Astrophysics Data System (ADS)
Cota, Ernesto; Rolon, Juan E.; Platero, Gloria; Ulloa, Sergio E.
2012-02-01
We study spin-obit interaction (SOI) and relaxation effects on the measurement of the extended singlet state return probability P(S) in a double quantum dot (DQD) system with two electrons, in the presence of hyperfine interaction (HFI) and weak external magnetic fields. Using appropriate pulse cycles to change the detuning between the two quantum dots, we describe the full dynamical behavior of the system taking into account the complete set of states. We find that the mixing of the ms=1;(T+) triplet with the (0,2) local singlet, induced by SOI via non-spin-conserving tunneling transitions, has an important effect on the measurement of P(S), and a clear experimental signature. The numerical results are also analyzed in terms of a Feshbach projection to the effective low-energy dynamics, which explain the role of SOI on the relaxation and overall dynamics relevant in experiments. We also explore the case of the Landau-Zener-St"uckelberg interferometry realized via voltage sweeps through the S-T+anticrossing generated by HFI in the DQD energy spectrum [1]. We focus on studying the effects of SOI and relaxation on the interferometric properties of the system in this regime. [1] J.R. Petta, H. Lu and A.C. Gossard, Science 327, 669 (2010).
Optimal pulse spacing for dynamical decoupling in the presence of a purely dephasing spin bath
Ajoy, Ashok; Alvarez, Gonzalo A.; Suter, Dieter
2011-03-15
Maintaining quantum coherence is a crucial requirement for quantum computation; hence protecting quantum systems against their irreversible corruption due to environmental noise is an important open problem. Dynamical decoupling (DD) is an effective method for reducing decoherence with a low control overhead. It also plays an important role in quantum metrology, where, for instance, it is employed in multiparameter estimation. While a sequence of equidistant control pulses [the Carr-Purcell-Meiboom-Gill (CPMG) sequence] has been ubiquitously used for decoupling, Uhrig recently proposed that a nonequidistant pulse sequence [the Uhrig dynamic decoupling (UDD) sequence] may enhance DD performance, especially for systems where the spectral density of the environment has a sharp frequency cutoff. On the other hand, equidistant sequences outperform UDD for soft cutoffs. The relative advantage provided by UDD for intermediate regimes is not clear. In this paper, we analyze the relative DD performance in this regime experimentally, using solid-state nuclear magnetic resonance. Our system qubits are {sup 13}C nuclear spins and the environment consists of a {sup 1}H nuclear spin bath whose spectral density is close to a normal (Gaussian) distribution. We find that in the presence of such a bath, the CPMG sequence outperforms the UDD sequence. An analogy between dynamical decoupling and interference effects in optics provides an intuitive explanation as to why the CPMG sequence performs better than any nonequidistant DD sequence in the presence of this kind of environmental noise.
Optimal pulse spacing for dynamical decoupling in the presence of a purely dephasing spin bath
NASA Astrophysics Data System (ADS)
Ajoy, Ashok; Álvarez, Gonzalo A.; Suter, Dieter
2011-03-01
Maintaining quantum coherence is a crucial requirement for quantum computation; hence protecting quantum systems against their irreversible corruption due to environmental noise is an important open problem. Dynamical decoupling (DD) is an effective method for reducing decoherence with a low control overhead. It also plays an important role in quantum metrology, where, for instance, it is employed in multiparameter estimation. While a sequence of equidistant control pulses [the Carr-Purcell-Meiboom-Gill (CPMG) sequence] has been ubiquitously used for decoupling, Uhrig recently proposed that a nonequidistant pulse sequence [the Uhrig dynamic decoupling (UDD) sequence] may enhance DD performance, especially for systems where the spectral density of the environment has a sharp frequency cutoff. On the other hand, equidistant sequences outperform UDD for soft cutoffs. The relative advantage provided by UDD for intermediate regimes is not clear. In this paper, we analyze the relative DD performance in this regime experimentally, using solid-state nuclear magnetic resonance. Our system qubits are C13 nuclear spins and the environment consists of a H1 nuclear spin bath whose spectral density is close to a normal (Gaussian) distribution. We find that in the presence of such a bath, the CPMG sequence outperforms the UDD sequence. An analogy between dynamical decoupling and interference effects in optics provides an intuitive explanation as to why the CPMG sequence performs better than any nonequidistant DD sequence in the presence of this kind of environmental noise.
New tools for far-from-equilibrium quantum spin dynamics inspired by ultracold molecule experiments
NASA Astrophysics Data System (ADS)
Hazzard, Kaden; Foss-Feig, Michael; Gadway, Bryce; Yan, Bo; Moses, Steven; Covey, Jacob; Jin, Deborah; Ye, Jun; Rey, Ana Maria
2014-03-01
We describe new numerical techniques based on a type of cluster expansion and analytic solutions for treating far-from-equilibrium dynamics in quantum many-body spin models. Specifically, we apply them to dynamics following a quantum quench that is routinely implemented in experiments with Ramsey spectroscopy. For many observables, these new approaches converge extremely rapidly compared to existing techniques, which are unable to converge using any feasible computational resources. We describe the theoretical methods and our understanding of their superior convergence. These calculations are motivated by recent experiments with ultracold molecules in optical lattices [ Yan et al., Nature 501, 521 (2013) ] and trapped ions [ Britton et al., Nature 484, 489 (2012) ], which are described by spin models with long-range interactions in appropriate limits. We will compare theoretical predictions with experimental observations in these systems. We expect the novel methods developed to describe ultracold matter to also have applications to solid state systems, for example in the dynamics of nitrogen-vacancy centers in diamond or energy transfer in complicated molecules.
Zhang, Wei; Jungfleisch, Matthias B.; Freimuth, Frank; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Mokrousov, Yuri; Hoffmann, Axel
2015-10-06
We investigate spin-orbit torques of metallic CuAu-I-type antiferromagnets using spin-torque ferromagnetic resonance tuned by a dc-bias current. The observed spin torques predominantly arise from diffusive transport of spin current generated by the spin Hall effect. We find a growth-orientation dependence of the spin torques by studying epitaxial samples, which may be correlated to the anisotropy of the spin Hall effect. The observed anisotropy is consistent with first-principles calculations on the intrinsic spin Hall effect. Our work suggests large tunable spin-orbit effects in magnetically-ordered materials.
Matsumoto, Takafumi; Teki, Yoshio
2012-08-07
The population transfer to the spin-sublevels of the unique quartet (S = 3/2) high-spin state of the strongly exchange-coupled (SC) radical-triplet pair (for example, an Acceptor-Donor-Radical triad (A-D-R)) via a doublet-quartet quantum-mixed (QM) state is theoretically investigated by a stochastic Liouville equation. In this work, we have treated the loss of the quantum coherence (de-coherence) due to the de-phasing during the population transfer and neglected the effect of other de-coherence mechanisms. The dependences on the magnitude of the exchange coupling or the fine-structure parameter of the QM state are investigated. The dependence on the velocity of the population transfer (by the electron transfer or the energy-transfer) from the QM state to the SC quartet state is also clarified. It is revealed that the de-coherence during the population transfer mainly originates from the fine-structure term of the QM state in the doublet-triplet exchange coupled systems. This de-coherence leads to the unique dynamic electron polarization (DEP) on the high-field spin sublevels of the SC state, which is similar to the unique DEP pattern of the photo-excited triplet states of the reaction centers of photosystems I and II. The magnetic field dependence of the population transfer leading to the populations of the spin-sublevels of the SC states is also calculated. The possibility of the control of energy transport, spin transport and information technology by using the QM state is discussed based on these results. The knowledge obtained in this work is useful in the spin dynamics of any doublet-triplet exchange coupled systems.
Dynamics of quantized vortices in Bose-Einstein condensates with laser-induced spin-orbit coupling
NASA Astrophysics Data System (ADS)
Kasamatsu, Kenichi
2015-12-01
We study vortex dynamics in trapped two-component Bose-Einstein condensates with a laser-induced spin-orbit coupling using the numerical analysis of the Gross-Pitaevskii equation. The spin-orbit coupling leads to three distinct ground-state phases, which depend on some experimentally controllable parameters. When a vortex is put in one or both of the two-component condensates, the vortex dynamics exhibits very different behaviors in each phase, which can be observed in experiments. These dynamical behaviors can be understood by clarifying the stable vortex structure realized in each phase.
Cosmological dynamics in spin-foam loop quantum cosmology: challenges and prospects
NASA Astrophysics Data System (ADS)
Craig, David A.; Singh, Parampreet
2017-04-01
We explore the structure of the spin foam-like vertex expansion in loop quantum cosmology and discuss properties of the corresponding amplitudes, with the aim of elucidating some of the expansion’s useful properties and features. We find that the expansion is best suited for consideration of conceptual questions and for investigating short-time, highly quantum behavior. In order to study dynamics at cosmological scales, the expansion must be carried to very high order, limiting its direct utility as a calculational tool for such questions. Conversely, it is unclear that the expansion can be truncated at finite order in a controlled manner.
Calibration of the spin-scan ozone imager aboard the dynamics Explorer 1 satellite
NASA Technical Reports Server (NTRS)
Bressette, Walter E.; Keating, Gerald M.; Young, David F.
1987-01-01
The calibration technique, which contains the calibrated backscattered radiance values necessary for performing the calibrations, is presented. The calibration constants for September to October 1981 to determine total columnar ozone from the Spin-Scan Ozone Imager (SOI), which is a part of the auroral imaging instrumentation aboard the Dynamics Explorer 1 Satellite, are provided. The precision of the SOI-derived total columnar ozone is estimated to be better than 2.4 percent. Linear regression analysis was used to calculate correlation coefficients between total columnar ozone obtained from Dobson ground stations and SOI which indicate that the SOI total columnar ozone determination is equally accurate for clear or cloudy weather conditions.
Chaos and its avoidance in spinup dynamics of an axial dual-spin spacecraft
NASA Astrophysics Data System (ADS)
Doroshin, Anton V.
2014-02-01
Attitude dynamics of a dual-spin spacecraft (DSSC) and a torque-free angular motion of a coaxial bodies system are considered. Some regimes of the heteroclinic chaos are described. The local chaotization of the DSSC is investigated at the presence of polyharmonic perturbations and small nutation restoring/overturning torques on the base of the Melnikov method and Poincaré Maps. Reasons of the chaotic regimes initiation at the spinup maneuver realization are studied. An approach for the local heteroclinic chaos escape/avoidance at the modification of the classical spinup maneuver is suggested.
Charges and currents in quantum spin chains: late-time dynamics and spontaneous currents
NASA Astrophysics Data System (ADS)
Fagotti, Maurizio
2017-01-01
We review the structure of the conservation laws in noninteracting spin chains and unveil a formal expression for the corresponding currents. We briefly discuss how interactions affect the picture. In the second part, we explore the effects of a localized defect. We show that the emergence of spontaneous currents near the defect undermines any description of the late-time dynamics by means of a stationary state in a finite chain. In particular, the diagonal ensemble does not work. Finally, we provide numerical evidence that simple generic localized defects are not sufficient to induce thermalization.
Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR.
Rosay, Melanie; Blank, Monica; Engelke, Frank
2016-03-01
Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.
Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR
NASA Astrophysics Data System (ADS)
Rosay, Melanie; Blank, Monica; Engelke, Frank
2016-03-01
Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100 K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.
Current induced domain wall dynamics in the presence of spin orbit torques
NASA Astrophysics Data System (ADS)
Boulle, O.; Buda-Prejbeanu, L. D.; Jué, E.; Miron, I. M.; Gaudin, G.
2014-05-01
Current induced domain wall (DW) motion in perpendicularly magnetized nanostripes in the presence of spin orbit torques is studied. We show using micromagnetic simulations that the direction of the current induced DW motion and the associated DW velocity depend on the relative values of the field like torque (FLT) and the Slonczewski like torques (SLT). The results are well explained by a collective coordinate model which is used to draw a phase diagram of the DW dynamics as a function of the FLT and the SLT. We show that a large increase in the DW velocity can be reached by a proper tuning of both torques.
Current induced domain wall dynamics in the presence of spin orbit torques
Boulle, O. Buda-Prejbeanu, L. D.; Jué, E.; Miron, I. M.; Gaudin, G.
2014-05-07
Current induced domain wall (DW) motion in perpendicularly magnetized nanostripes in the presence of spin orbit torques is studied. We show using micromagnetic simulations that the direction of the current induced DW motion and the associated DW velocity depend on the relative values of the field like torque (FLT) and the Slonczewski like torques (SLT). The results are well explained by a collective coordinate model which is used to draw a phase diagram of the DW dynamics as a function of the FLT and the SLT. We show that a large increase in the DW velocity can be reached by a proper tuning of both torques.
Understanding Visual Map Formation through Vortex Dynamics of Spin Hamiltonian Models
NASA Astrophysics Data System (ADS)
Cho, Myoung Won; Kim, Seunghwan
2004-01-01
The pattern formation in orientation and ocular dominance columns is one of the most investigated problems in the brain. From a known cortical structure, we build spinlike Hamiltonian models with long-range interactions of the Mexican hat type. These Hamiltonian models allow a coherent interpretation of the diverse phenomena in the visual map formation with the help of relaxation dynamics of spin systems. In particular, we explain various phenomena of self-organization in orientation and ocular dominance map formation including the pinwheel annihilation and its dependency on the columnar wave vector and boundary conditions.
Misra, Anirban; Datta, Sambhu N
2005-08-08
An investigation of the relativistic dynamics of N+1 spin-12 particles placed in an external, homogeneous magnetic field is carried out. The system can represent an atom with a fermion nucleus and N electrons. Quantum electrodynamical interactions, namely, projected Briet and magnetic interactions, are chosen to formulate the relativistic Hamiltonian. The quasi-free-particle picture is retained here. The total pseudomomentum is conserved, and its components are distinct when the total charge is zero. Therefore, the center-of-mass motion can be separated from the Hamiltonian for a neutral (N+1)-fermion system, leaving behind a unitarily transformed, effective Hamiltonian H(0) at zero total pseudomomentum. The latter operator represents the complete relativistic dynamics in relative coordinates while interaction is chosen through order alpha4mc2. Each one-particle part in the effective Hamiltonian can be brought to a separable form for positive- and negative-energy states by replacing the odd operator in it through two successive unitary transformations, one due to Tsai [Phys. Rev. D 7, 1945 (1973)] and the other due to Weaver [J. Math. Phys. 18, 306 (1977)]. Consequently, the projector changes and the interaction that involves the concerned particle also becomes free from the corresponding odd operators. When this maneuver is applied only to the nucleus, and the non-Hermitian part of the transformed interaction is removed by another unitary transformation, a familiar form of the atomic relativistic Hamiltonian H(atom) emerges. This operator is equivalent to H(0). A good Hamiltonian for relativistic quantum chemical calculations, H(Qchem), is obtained by expanding the nuclear part of the atomic Hamiltonian through order alpha4mc2 for positive-energy states. The operator H(Qchem) is obviously an approximation to H(atom). When the same technique is used for all particles, and subsequently the non-Hermitian terms are removed by suitable unitary transformations, one
Su, Yongchao; Andreas, Loren; Griffin, Robert G
2015-01-01
Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins.
Molecular dynamics in rod-like liquid crystals probed by muon spin resonance spectroscopy.
McKenzie, Iain; Scheuermann, Robert; Sedlak, Kamil; Stoykov, Alexey
2011-08-04
Muoniated spin probes were produced by the addition of muonium (Mu) to two rod-like liquid crystals: N-(4-methoxybenzylidene)-4'-n-butylaniline (MBBA) and cholesteryl nonanoate (CN). Avoided level crossing muon spin resonance spectroscopy was used to characterize the muoniated spin probes and to probe dynamics at the molecular level. In MBBA Mu adds predominantly to the carbon of the bridging imine group and the muon and methylene proton hyperfine coupling constants (hfccs) of the resulting radical shift in the nematic phase due to the dipolar hyperfine coupling, the ordering of the molecules along the applied magnetic field and fluctuations about the local director. The amplitude of these fluctuations in in the nematic phase of MBBA is determined from the temperature dependence of the methylene proton hfcc. Mu adds to the double bond of the steroidal ring system of CN and the temperature dependence of the Δ(1) line width provides information about the amplitude of the fluctuations about the local director in the chiral nematic phase and the slow isotropic reorientation in the isotropic phase.
NASA Astrophysics Data System (ADS)
Khaneja, Navin
2017-03-01
In this paper, we study some control problems related to the control of coupled spin dynamics in the presence of relaxation and decoherence in nuclear magnetic resonance spectroscopy. The decoherence is modelled through a master equation. We study some model problems, whereby, through an appropriate choice of state variables, the system is reduced to a control system, where the state enters linearly and controls quadratically. We study this quadratic control system. Study of this system gives us explicit bounds on how close a coupled spin system can be driven to its target state and how much coherence and polarization can be transferred between coupled spins. Optimal control for the quadratic control system can be understood as the separation of closed cones, and we show how the derived results on optimal efficiency can be interpreted in this formulation. Finally, we study some finite-time optimal control problems for the quadratic control system. This article is part of the themed issue 'Horizons of cybernetical physics'.
Dynamics of extended bodies with spin-induced quadrupole in Kerr spacetime: generic orbits
NASA Astrophysics Data System (ADS)
Han, Wen-Biao; Cheng, Ran
2017-03-01
We discuss motions of extended bodies in Kerr spacetime by using Mathisson-Papapetrou-Dixon equations. We firstly solve the conditions for circular orbits, and calculate the orbital frequency shift due to the mass quadrupoles. The results show that we need not consider the spin-induced quadrupoles in extreme-mass-ratio inspirals for space-based gravitational wave detectors. We quantitatively investigate the temporal variation of rotational velocity of the extended body due to the coupling of quadrupole and background gravitational field. For generic orbits, we numerically integrate the Mathisson-Papapetrou-Dixon equations for evolving the motion of an extended body orbiting a Kerr black hole. By comparing with the monopole-dipole approximation, we reveal the influences of quadrupole moments of extended bodies on the orbital motion and chaotic dynamics of extreme-mass-ratio systems. We do not find any chaotic orbits for the extended bodies with physical spins and spin-induced quadrupoles. Possible implications for gravitational wave detection and pulsar timing observation are outlined.
Khaneja, Navin
2017-03-06
In this paper, we study some control problems related to the control of coupled spin dynamics in the presence of relaxation and decoherence in nuclear magnetic resonance spectroscopy. The decoherence is modelled through a master equation. We study some model problems, whereby, through an appropriate choice of state variables, the system is reduced to a control system, where the state enters linearly and controls quadratically. We study this quadratic control system. Study of this system gives us explicit bounds on how close a coupled spin system can be driven to its target state and how much coherence and polarization can be transferred between coupled spins. Optimal control for the quadratic control system can be understood as the separation of closed cones, and we show how the derived results on optimal efficiency can be interpreted in this formulation. Finally, we study some finite-time optimal control problems for the quadratic control system.This article is part of the themed issue 'Horizons of cybernetical physics'.
Spin Dynamics and Quantum Tunneling in Fe8 Nanomagnet and in AFM Rings by NMR
Ho-Baek, Seung
2004-01-01
In this thesis, our main interest has been to investigate the spin dynamics and quantum tunneling in single molecule magnets (SMMs), For this we have selected two different classes of SMMs: a ferrimagnetic total high spin S = 10 cluster Fe8 and antiferromagnetic (AFM) ring-type clusters. For Fe8, our efforts have been devoted to the investigation of the quantum tunneling of magnetization in the very low temperature region. The most remarkable experimental finding in Fe8 is that the nuclear spin-lattice relaxation rate (1/T{sub l}) at low temperatures takes place via strong collision mechanism, and thus it allows to measure directly the tunneling rate vs T and H for the first time. For AFM rings, we have shown that 1/T{sub l} probes the thermal fluctuations of the magnetization in the intermediate temperature range. We find that the fluctuations are dominated by a single characteristic frequency which has a power law T-dependence indicative of fluctuations due to electron-acoustic phonon interactions.
Cyclotron dynamics of a Kondo singlet in a spin-orbit-coupled alkaline-earth-metal atomic gas
NASA Astrophysics Data System (ADS)
Jiang, Bo-Nan; Lv, Hao; Wang, Wen-Li; Du, Juan; Qian, Jun; Wang, Yu-Zhu
2014-11-01
We propose a scheme to investigate the interplay between the Kondo-exchange interaction and the quantum spin Hall effect with ultracold fermionic alkaline-earth-metal atoms trapped in two-dimensional optical lattices using ultracold collision and laser-assisted tunneling. In the strong Kondo-coupling regime, although the loop trajectory of the mobile atom disappears, collective dynamics of an atom pair in two clock states can exhibit an unexpected spin-dependent cyclotron orbit in a plaquette, realizing the quantum spin Hall effect of the Kondo singlet. We demonstrate that the collective cyclotron dynamics of the spin-zero Kondo singlet is governed by an effective Harper-Hofstadter model in addition to second-order diagonal tunneling.
Wieser, R
2017-05-04
A self-consistent mean field theory is introduced and used to investigate the thermodynamics and spin dynamics of an S = 1 quantum spin system with a magnetic Skyrmion. The temperature dependence of the Skyrmion profile as well as the phase diagram are calculated. In addition, the spin dynamics of a magnetic Skyrmion is described by solving the time dependent Schrödinger equation with additional damping term. The Skyrmion annihilation process driven by an electric field is used to compare the trajectories of the quantum mechanical simulation with a semi-classical description for the spin expectation values using a differential equation similar to the classical Landau-Lifshitz-Gilbert equation.
Minority-spin dynamics in the nonhomogeneous Ising model: Diverging time scales and exponents.
Mullick, Pratik; Sen, Parongama
2016-05-01
We investigate the dynamical behavior of the Ising model under a zero-temperature quench with the initial fraction of up spins 0≤x≤1. In one dimension, the known results for persistence probability are verified; it shows algebraic decay for both up and down spins asymptotically with different exponents. It is found that the conventional finite-size scaling is valid here. In two dimensions, however, the persistence probabilities are no longer algebraic; in particular for x≤0.5, persistence for the up (minority) spins shows the behavior P_{min}(t)∼t^{-γ}exp[-(t/τ)^{δ}] with time t, while for the down (majority) spins, P_{maj}(t) approaches a finite value. We find that the timescale τ diverges as (x_{c}-x)^{-λ}, where x_{c}=0.5 and λ≃2.31. The exponent γ varies as θ_{2d}+c_{0}(x_{c}-x)^{β} where θ_{2d}≃0.215 is very close to the persistence exponent in two dimensions; β≃1. The results in two dimensions can be understood qualitatively by studying the exit probability, which for different system size is found to have the form E(x)=f[(x-x_{c}/x_{c})L^{1/ν}], with ν≈1.47. This result suggests that τ∼L^{z[over ̃]}, where z[over ̃]=λ/ν=1.57±0.11 is an exponent not explored earlier.
Out-of-equilibrium dynamics and extended textures of topological defects in spin ice
NASA Astrophysics Data System (ADS)
Udagawa, M.; Jaubert, L. D. C.; Castelnovo, C.; Moessner, R.
2016-09-01
Memory effects have been observed across a wide range of geometrically frustrated magnetic materials, possibly including Pr2Ir2O7 where a spontaneous Hall effect has been observed. Frustrated magnets are also famous for the emergence of topological defects. Here we explore how the interaction between these defects can be responsible for a rich diversity of out-of-equilibrium dynamics, dominated by topological bottlenecks and multiscale energy barriers. Our model is an extension of the spinice model on the pyrochlore lattice, where farther-neighbor spin interactions give rise to a nearest-neighbor coupling between topological defects. This coupling can be chosen to be "unnatural" or not, i.e., attractive or repulsive between defects carrying the same topological charge. After applying a field quench, our model supports, for example, long-lived magnetization plateaux, and allows for the metastability of a "fragmented" spin liquid, an unconventional phase of matter where long-range order co-exists with a spin liquid. Perhaps most strikingly, the attraction between same-sign charges produces clusters of these defects in equilibrium, whose stability is due to a combination of energy and topological barriers. These clusters may take the form of a "jellyfish" spin texture, centered on a hexagonal ring with branches of arbitrary length. The ring carries a clockwise or counterclockwise circular flow of magnetization. This emergent toroidal degrees of freedom provide a possibility for time-reversal symmetry breaking with potential relevance to the spontaneous Hall effect observed in Pr2Ir2O7 .
NASA Astrophysics Data System (ADS)
Ma, Hong; Jin, Zuanming; Ma, Guohong; Liu, Weiming; Hai Tang, Sing
2009-06-01
Excitation photon energy and carrier density dependence of spin dynamics in bulk CdTe crystal was studied by time resolved pump-probe reflectivity technique at room temperature. The results show that spin relaxation time decreases monotonously. While with increasing excitation carrier density, the time constants increases initially then decreases after reaching a maximum value. Our experimental results reveal that both D'yakonov-Perel' [M. I. D'yakonov and V. I. Perel', Sov. Phys. JETP 38, 177 (1974)] and Elliot-Yafet [R. J. Elliott, Phys. Rev. 96, 266 (1954); Y. Yafet, Solid State Phys. 14, 1 (1963)] mechanisms dominate the spin relaxation process in CdTe crystal.
Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids
NASA Astrophysics Data System (ADS)
Sharma, Ishan; Jenkins, James T.; Burns, Joseph A.
2009-03-01
Many asteroids are thought to be particle aggregates held together principally by self-gravity. Here we study — for static and dynamical situations — the equilibrium shapes of spinning asteroids that are permitted for rubble piles. As in the case of spinning fluid masses, not all shapes are compatible with a granular rheology. We take the asteroid to always be an ellipsoid with an interior modeled as a rigid-plastic, cohesion-less material with a Drucker-Prager yield criterion. Using an approximate volume-averaged procedure, based on the classical method of moments, we investigate the dynamical process by which such objects may achieve equilibrium. We first collapse our dynamical approach to its statical limit to derive regions in spin-shape parameter space that allow equilibrium solutions to exist. At present, only a graphical illustration of these solutions for a prolate ellipsoid following the Drucker-Prager failure law is available [Sharma, I., Jenkins, J.T., Burns, J.A., 2005a. Bull. Am. Astron. Soc. 37, 643; Sharma, I., Jenkins, J.T., Burns, J.A., 2005b. Equilibrium shapes of ellipsoidal soil asteroids. In: García-Rojo, R., Hermann, H.J., McNamara, S. (Eds.), Proceedings of the 5th International Conference on Micromechanics of Granular Media, vol. 1. A.A. Balkema, UK; Holsapple, K.A., 2007. Icarus 187, 500-509]. Here, we obtain the equilibrium landscapes for general triaxial ellipsoids, as well as provide the requisite governing formulae. In addition, we demonstrate that it may be possible to better interpret the results of Richardson et al. [Richardson, D.C., Elankumaran, P., Sanderson, R.E., 2005. Icarus 173, 349-361] within the context of a Drucker-Prager material. The graphical result for prolate ellipsoids in the static limit is the same as those of Holsapple [Holsapple, K.A., 2007. Icarus 187, 500-509] because, when worked out, his final equations will match ours. This is because, though the formalisms to reach these expressions differ, in statics
Spin Dynamics and Low Energy Vibrations: Insights from Vanadyl-Based Potential Molecular Qubits.
Atzori, Matteo; Tesi, Lorenzo; Benci, Stefano; Lunghi, Alessandro; Righini, Roberto; Taschin, Andrea; Torre, Renato; Sorace, Lorenzo; Sessoli, Roberta
2017-03-15
Here we report the investigation of the magnetization dynamics of a vanadyl complex with diethyldithiocarbamate (Et2dtc(-)) ligands, namely [VO(Et2dtc)2] (1), in both solid-state and frozen solution. This showed an anomalous and unprecedentedly observed field dependence of the relaxation time, which was modeled with three contributions to the relaxation mechanism. The temperature dependence of the weight of the two processes dominating at low fields was found to well correlate with the low energy vibrations as determined by THz spectroscopy. This detailed experimental comparative study represents a fundamental step to understand the spin dynamics of potential molecular quantum bits, and enriches the guidelines to design molecule-based systems with enhanced quantum coherence.
Application of a system modification technique to dynamic tuning of a spinning rotor blade
NASA Technical Reports Server (NTRS)
Spain, C. V.
1987-01-01
An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.
Spin-Orbit Coupling Drives Femtosecond Nonadiabatic Dynamics in a Transition Metal Compound.
Carbery, William P; Verma, Archana; Turner, Daniel B
2017-03-16
Transient absorption measurements conducted using broadband, 6 fs laser pulses reveal unexpected femtosecond dynamics in the [IrBr6](2-) model system. Vibrational spectra and the X-ray crystal structure indicate that these dynamics are not induced by a Jahn-Teller distortion, a type of conical intersection typically associated with the spectral features of transition metal compounds. Two-dimensional electronic spectra of [IrBr6](2-) contain 23 cross peaks, which necessarily arise from spin-orbit coupling. Real-valued 2D spectra support a spectroscopic basis where strong nonadiabatic coupling, ascribed to multiple conical intersections, mediates rapid energy relaxation to the lowest-energy excited state. Subsequent analysis gives rise to a more generalized description of a conical intersection as a degeneracy between two adiabatic states having the same total angular momentum.
Nonlinear dynamics of a strongly driven single spin solid state qubit
NASA Astrophysics Data System (ADS)
Coppersmith, S. N.; Jullien, Thibaut; Scarlino, P.; Kawakami, E.; Ward, D. R.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Eriksson, M. A.; Vandersypen, L. M. K.
This talk will discuss how dynamical systems theory can yield new insight into some exotic behavior found in experiments on strongly driven quantum spins in silicon/silicon-germanium heterostructures. Spin resonance experiments were performed by using ac voltages to drive an electron wavefunction in a strong magnetic field gradient. Nontrivial dependence of the resonance frequency on applied power, including the observation of multiple resonant frequencies at one power, are shown to be consistent with frequency-dependent attenuation in the high-frequency lines. The method of analysis is very similar to that presented in the course on nonlinear dynamics that Leo Kadanoff developed at the University of Chicago in the early 1990's. This work was supported in part by ARO (W911NF-12-0607). Development and maintenance of the growth facilities used for fabricating samples is supported by DOE (DE-FG02-03ER46028). This research utilized NSF-supported shared facilities at UW-Madison.
NASA Astrophysics Data System (ADS)
Jaris, M.; Yahagi, Y.; Mahato, B. K.; Dhuey, S.; Cabrini, S.; Nikitin, V.; Stout, J.; Hawkins, A. R.; Schmidt, H.
2016-11-01
We report the all-optical observation of intrinsic spin dynamics and extraction of magnetic material parameters from arrays of sub-100 nm spin-transfer torque magnetic random access memory (STT-MRAM) devices with a CoFeB/MgO interface. To this end, the interference of surface acoustic waves with time-resolved magneto-optic signals via magneto-elastic coupling was suppressed using a dielectric coating. The efficacy of this method is demonstrated experimentally and via modeling on a nickel nanomagnet array. The magnetization dynamics for both coated nickel and STT-MRAM arrays shows a restored field-dependent Kittel mode from which the effective damping can be extracted. We observe an increased low-field damping due to extrinsic contributions from magnetic inhomogeneities and variations in the nanomagnet shape, while the intrinsic Gilbert damping remains unaffected by patterning. The data are in excellent agreement with a local resonance model and have direct implications for the design of STT-MRAM devices as well as other nanoscale spintronic technologies.
NASA Astrophysics Data System (ADS)
Acevedo, Óscar L.; Quiroga, Luis; Rodríguez, Ferney J.; Johnson, Neil F.
2014-03-01
Dynamical quantum phase crossings of spin networks have recently received increased attention thanks to their relation to adiabatic quantum computing, and their feasible realizations using ultra-cold atomic and molecular systems with a highly tunable degree of connectivity. Dynamical scaling of spatially distributed systems like Ising models have been widely studied, and successfully related to well-known theories like the Kibble-Zurek mechanism. The case of totally connected networks such as the Dicke Model and Lipkin-Meshkov-Glick Model, however, is known to exhibit a breakdown of these frameworks. Our analysis overcomes the lack of spatial correlation structure by developing a general approach which (i) is valid regardless the connectivity of the system, (ii) goes beyond critical exponents, and (iii) provides a time-resolved picture of dynamical scaling. By treating these models as a method for macroscopic quantum control of their subsystems, we have found microscopic signatures of the dynamical scaling as well as instances of dynamical enhancement of distinctive quantum properties such as entanglement and coherence. Our results yield novel prescriptions for the fields of quantum simulations and quantum control, and deepen our fundamental understanding of phase transitions.
Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field
NASA Astrophysics Data System (ADS)
Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.
2015-10-01
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field.
Carmelo, J M P; Sacramento, P D; Machado, J D P; Campbell, D K
2015-10-14
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the 'pseudofermion dynamical theory' (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζ(τ)(k) controlling the singularities for both the longitudinal (τ = l) and transverse (τ = t) dynamical structure factors for the whole momentum range k ∈ ]0,π[, in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Schanda, Paul; Ernst, Matthias
2016-01-01
Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043
NASA Astrophysics Data System (ADS)
Yu, Guoqiang; Akyol, Mustafa; Upadhyaya, Pramey; Li, Xiang; He, Congli; Fan, Yabin; Montazeri, Mohammad; Alzate, Juan G.; Lang, Murong; Wong, Kin L.; Khalili Amiri, Pedram; Wang, Kang L.
2016-04-01
Current-induced spin-orbit torques (SOTs) in structurally asymmetric multilayers have been used to efficiently manipulate magnetization. In a structure with vertical symmetry breaking, a damping-like SOT can deterministically switch a perpendicular magnet, provided an in-plane magnetic field is applied. Recently, it has been further demonstrated that the in-plane magnetic field can be eliminated by introducing a new type of perpendicular field-like SOT via incorporating a lateral structural asymmetry into the device. Typically, however, when a current is applied to such devices with combined vertical and lateral asymmetries, both the perpendicular field-like torque and the damping-like torque coexist, hence jointly affecting the magnetization switching behavior. Here, we study perpendicular magnetization switching driven by the combination of the perpendicular field-like and the damping-like SOTs, which exhibits deterministic switching mediated through domain wall propagation. It is demonstrated that the role of the damping-like SOT in the deterministic switching is highly dependent on the magnetization direction in the domain wall. By contrast, the perpendicular field-like SOT is solely determined by the relative orientation between the lateral structural asymmetry and the current direction, regardless of the magnetization direction in the domain wall. The experimental results further the understanding of SOTs-induced switching, with implications for spintronic devices.
Yu, Guoqiang; Akyol, Mustafa; Upadhyaya, Pramey; Li, Xiang; He, Congli; Fan, Yabin; Montazeri, Mohammad; Alzate, Juan G.; Lang, Murong; Wong, Kin L.; Khalili Amiri, Pedram; Wang, Kang L.
2016-01-01
Current-induced spin-orbit torques (SOTs) in structurally asymmetric multilayers have been used to efficiently manipulate magnetization. In a structure with vertical symmetry breaking, a damping-like SOT can deterministically switch a perpendicular magnet, provided an in-plane magnetic field is applied. Recently, it has been further demonstrated that the in-plane magnetic field can be eliminated by introducing a new type of perpendicular field-like SOT via incorporating a lateral structural asymmetry into the device. Typically, however, when a current is applied to such devices with combined vertical and lateral asymmetries, both the perpendicular field-like torque and the damping-like torque coexist, hence jointly affecting the magnetization switching behavior. Here, we study perpendicular magnetization switching driven by the combination of the perpendicular field-like and the damping-like SOTs, which exhibits deterministic switching mediated through domain wall propagation. It is demonstrated that the role of the damping-like SOT in the deterministic switching is highly dependent on the magnetization direction in the domain wall. By contrast, the perpendicular field-like SOT is solely determined by the relative orientation between the lateral structural asymmetry and the current direction, regardless of the magnetization direction in the domain wall. The experimental results further the understanding of SOTs-induced switching, with implications for spintronic devices. PMID:27050160
NASA Astrophysics Data System (ADS)
Riest, Jonas; Naegele, Gerhard
2015-03-01
The dynamic clustering of globular particle suspensions exhibiting competing short-range attraction and long-range repulsion such as protein solutions has gained a lot of interest in the last years. We investigate the influence of clustering on the phase behavior, and in particular on the dynamics of globular particle systems. To this end, we explore various pair potential models by a combination of static and dynamic analytic calculation methods in conjunction with Molecular Dynamics and Monte Carlo simulations. Our results show that the cluster peak (intermediate-range-order peak) is present also in the hydrodynamic function characterizing the short-time dynamics. Moreover, an enhanced short-range attraction leads to a larger sedimentation velocity and a smaller self-diffusion coefficient. Our results are useful also for technical applications, such as in the ultrafiltration of proteins.