Sample records for competitive binding curves

  1. Differences in the binding mechanism of RU486 and progesterone to the progesterone receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skafar, D.F.

    1991-11-12

    The binding mechanism of the antagonist RU486 to the progesterone receptor was compared with that of the agonists progesterone and R5020. Both progesterone and RU486 bound to the receptor with a Hill coefficient of 1.2, indicating the binding of each ligand is positive cooperative. However, when each ligand was used to compete with ({sup 3}H)progesterone for binding to the receptor at receptor concentrations near 8 nM, at which the receptor is likely a dimer, the competition curve for RU486 was significantly steeper than the curves for progesterone and R5020. This indicated that a difference in the binding mechanism of RU486more » and progesterone can be detected when both ligands are present. In contrast, at receptor concentrations near 1 nM, at which the receptor is likely a monomer, the competition curves for all three ligands were indistinguishable. These results indicate that RU486 and agonists have different binding mechanisms for the receptor and further suggest that this difference may be related to site-site interactions within the receptor.« less

  2. Avoiding false positives and optimizing identification of true ...

    EPA Pesticide Factsheets

    The potential for chemicals to affect endocrine signaling is commonly evaluated via in vitro receptor binding and gene activation, but these assays, especially antagonism assays, have potential artifacts that must be addressed for accurate interpretation. Results are presented from screening 94 chemicals from 54 chemical groups for estrogen receptor (ER) activation in a competitive rainbow trout ER (rtER) binding assay and a trout liver slice vitellogenin mRNA expression assay. Results from true competitive agonists and antagonists, and inactive chemicals with little or no indication of ER binding or gene activation were easily interpreted. However, results for numerous industrial chemicals were more challenging to interpret, including chemicals with: (1) apparent competitive binding curves but no gene activation, (2) apparent binding and gene inhibition with evidence of either cytotoxicity or changes in assay media pH, (3) apparent binding but non-competitive gene inhibition of unknown cause, or (4) no rtER binding and gene inhibition not due to competitive ER interaction but due to toxicity, pH change, or some unknown cause. The use of endpoints such as toxicity, pH, precipitate formation, and determination of inhibitor dissociation constants (Ki) for interpreting the results of antagonism and binding assays for diverse chemicals is presented. Of the 94 chemicals tested for antagonism only two, tamoxifen and ICI-182,780, were found to be true competitive

  3. 3- and 4-O-sulfoconjugated and methylated dopamine: highly reduced binding affinity to dopamine D2 receptors in rat striatal membranes.

    PubMed

    Werle, E; Lenz, T; Strobel, G; Weicker, H

    1988-07-01

    The binding properties of 3- and 4-O-sulfo-conjugated dopamine (DA-3-O-S, DA-4-O-S) as well as 3-O-methylated dopamine (MT) to rat striatal dopamine D2 receptors were investigated. 3H-spiperone was used as a radioligand in the binding studies. In saturation binding experiments (+)butaclamol, which has been reported to bind to dopaminergic D2 and serotoninergic 5HT2 receptors, was used in conjunction with ketanserin and sulpiride, which preferentially label 5HT2 and D2 receptors, respectively, in order to discriminate between 3H-spiperone binding to D2 and to 5HT2 receptors. Under our particular membrane preparation and assay conditions, 3H-spiperone binds to D2 and 5HT2 receptors with a maximal binding capacity (Bmax) of 340 fmol/mg protein in proportions of about 75%:25% with similar dissociation constants KD (35 pmol/l; 43 pmol/l). This result was verified by the biphasic competition curve of ketanserin, which revealed about 20% high (KD = 24 nmol/l) and 80% low (KD = 420 nmol/l) affinity binding sites corresponding to 5HT2 and D2 receptors, respectively. Therefore, all further competition experiments at a tracer concentration of 50 pmol/l were performed in the presence of 0.1 mumol/l ketanserin to mask the 5HT2 receptors. DA competition curves were best fitted assuming two binding sites, with high (KH = 0.12 mumol/l) and low (KL = 18 mumol/l) affinity, present in a ratio of 3:1. The high affinity binding sites were interconvertible by 100 mumol/l guanyl-5-yl imidodiphosphate [Gpp(NH)p], resulting in a homogenous affinity state of DA receptors (KD = 2.8 mumol/l).2+ off

  4. Automated data processing and radioassays.

    PubMed

    Samols, E; Barrows, G H

    1978-04-01

    Radioassays include (1) radioimmunoassays, (2) competitive protein-binding assays based on competition for limited antibody or specific binding protein, (3) immunoradiometric assay, based on competition for excess labeled antibody, and (4) radioreceptor assays. Most mathematical models describing the relationship between labeled ligand binding and unlabeled ligand concentration have been based on the law of mass action or the isotope dilution principle. These models provide useful data reduction programs, but are theoretically unfactory because competitive radioassay usually is not based on classical dilution principles, labeled and unlabeled ligand do not have to be identical, antibodies (or receptors) are frequently heterogenous, equilibrium usually is not reached, and there is probably steric and cooperative influence on binding. An alternative, more flexible mathematical model based on the probability or binding collisions being restricted by the surface area of reactive divalent sites on antibody and on univalent antigen has been derived. Application of these models to automated data reduction allows standard curves to be fitted by a mathematical expression, and unknown values are calculated from binding data. The vitrues and pitfalls are presented of point-to-point data reduction, linear transformations, and curvilinear fitting approaches. A third-order polynomial using the square root of concentration closely approximates the mathematical model based on probability, and in our experience this method provides the most acceptable results with all varieties of radioassays. With this curvilinear system, linear point connection should be used between the zero standard and the beginning of significant dose response, and also towards saturation. The importance is stressed of limiting the range of reported automated assay results to that portion of the standard curve that delivers optimal sensitivity. Published methods for automated data reduction of Scatchard plots for radioreceptor assay are limited by calculation of a single mean K value. The quality of the input data is generally the limiting factor in achieving good precision with automated as it is with manual data reduction. The major advantages of computerized curve fitting include: (1) handling large amounts of data rapidly and without computational error; (2) providing useful quality-control data; (3) indicating within-batch variance of the test results; (4) providing ongoing quality-control charts and between assay variance.

  5. Homogeneous bioluminescence competitive binding assay for folate based on a coupled glucose-6-phosphate dehydrogenase--bacterial luciferase enzyme system.

    PubMed

    Huang, W; Feltus, A; Witkowski, A; Daunert, S

    1996-05-01

    A homogeneous bioluminescence competitive binding assay for folate was developed by using a coupled enzyme system of glucose-6-phosphate dehydrogenase (G6PDH) and bacterial luciferase. A highly substituted G6PDH-folate conjugate was prepared by employing an N-hydroxysuccinimide/carbodiimide method. Folate binding protein inhibits the activity of the conjugate. In the presence of folate, there is a competition between folate and the G6PDH-folate conjugate for the binding site of the folate binding protein, and the activity of the conjugate is recovered. Thus, the concentration of folate can be related to the activity of the G6PDH-folate conjugate, which is directly related to the bioluminescence produced by the coupled enzyme reaction. Using this assay, dose-response curves with a detection limit of 2.5 x 10(-8) M folate were obtained, which is an improvement of an order of magnitude with respect to an assay that monitors G6PDH activity spectrophotometrically. The assay was validated using vitamin tablets and a cell culture medium.

  6. Putative melatonin receptors in a human biological clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reppert, S.M.; Weaver, D.R.; Rivkees, S.A.

    In vitro autoradiography with /sup 125/I-labeled melatonin was used to examine melatonin binding sites in human hypothalamus. Specific /sup 125/I-labeled melatonin binding was localized to the suprachiasmatic nuclei, the site of a putative biological clock, and was not apparent in other hypothalamic regions. Specific /sup 125/I-labeled melatonin binding was consistently found in the suprachiasmatic nuclei of hypothalami from adults and fetuses. Densitometric analysis of competition experiments with varying concentrations of melatonin showed monophasic competition curves, with comparable half-maximal inhibition values for the suprachiasmatic nuclei of adults (150 picomolar) and fetuses (110 picomolar). Micromolar concentrations of the melatonin agonist 6-chloromelatonin completelymore » inhibited specific /sup 125/I-labeled melatonin binding, whereas the same concentrations of serotonin and norepinephrine caused only a partial reduction in specific binding. The results suggest that putative melatonin receptors are located in a human biological clock.« less

  7. Fluorescence analysis of competition of phenylbutazone and methotrexate in binding to serum albumin in combination treatment in rheumatology

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2009-04-01

    Combination of several drugs is often necessary especially during long-them therapy. The competition between drugs can cause a decrease of the amount of a drug bound to albumin. This results in an increase of the free, biological active fraction of the drug. The aim of the presented study was to describe the competition between phenylbutazone (Phe) and methotrexate (MTX), two drugs recommended for the treatment of rheumatology in binding to bovine (BSA) and human (HSA) serum albumin in the high affinity binding site. Fluorescence analysis was used to estimate the effect of drugs on the protein fluorescence and to define the binding and quenching properties of drugs-serum albumin complexes. The effect of the displacement of one drug from the complex of the other with serum albumin has been described on the basis of the comparison of the quenching curves and binding constants for the binary and ternary systems. The conclusion that both Phe and MTX form a binding site in the same subdomain (IIA) points to the necessity of using a monitoring therapy owning to the possible increase of the uncontrolled toxic effects.

  8. Analysis of molecular determinants of affinity and relative efficacy of a series of R- and S-2-(dipropylamino)tetralins at the 5-HT1A serotonin receptor

    PubMed Central

    Alder, J Tracy; Hacksell, Uli; Strange, Philip G

    2003-01-01

    Factors influencing agonist affinity and relative efficacy have been studied for the 5-HT1A serotonin receptor using membranes of CHO cells expressing the human form of the receptor and a series of R-and S-2-(dipropylamino)tetralins (nonhydroxylated and monohydroxylated (5-OH, 6-OH, 7-OH, 8-OH) species). Ligand binding studies were used to determine dissociation constants for agonist binding to the 5-HT1A receptor: Ki values for agonists were determined in competition versus the binding of the agonist [3H]-8-OH DPAT. Competition data were all fitted best by a one-binding site model.Ki values for agonists were also determined in competition versus the binding of the antagonist [3H]-NAD-199. Competition data were all fitted best by a two-binding site model, and agonist affinities for the higher (Kh) and lower affinity (Kl) sites were determined. The ability of the agonists to activate the 5-HT1A receptor was determined using stimulation of [35S]-GTPγS binding. Maximal effects of agonists (Emax) and their potencies (EC50) were determined from concentration/response curves for stimulation of [35S]-GTPγS binding. Kl/Kh determined from ligand binding assays correlated with the relative efficacy (relative Emax) of agonists determined in [35S]-GTPγS binding assays. There was also a correlation between Kl/Kh and Kl/EC50 for agonists determined from ligand binding and [35S]-GTPγS binding assays. Simulations of agonist binding and effect data were performed using the Ternary Complex Model in order to assess the use of Kl/Kh for predicting the relative efficacy of agonists. PMID:12684269

  9. Biochemical Study of Anti-Inflammatory Proteins vCCI and vMIP-II

    DTIC Science & Technology

    2014-07-17

    protein ), where we showed that vCCI is able to bind so many different chemokines due to its general negatively charged surface , allowing it to bind...sample of these competition curves. Our conclusion from the data in Table 1 and Figure 1 is that the negatively charged surface of vCCI allows it to...Similar to our mutagenesis results, the overall data indicate that vCCI uses a negatively charged surface to bind positive charges on the chemokine

  10. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

    PubMed Central

    Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V

    2011-01-01

    BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor. KEY RESULTS Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins. CONCLUSIONS AND IMPLICATIONS These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding. PMID:20958290

  11. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    PubMed

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  12. Malathion-induced inhibition of human plasma cholinesterase studied by the fluorescence spectroscopy method

    NASA Astrophysics Data System (ADS)

    Pavelkić, V. M.; Krinulović, K. S.; Savić, J. Z.; Ilić, M. A.

    2008-05-01

    The in vitro effect of technical grade malathion was assessed via the kinetic parameters of human plasma butyrylcholinesterase (BChE) using N-methylindoxyl acetate as a substrate for BChE. An inhibitor kinetics study demonstrated the existence of a biphasic inhibition curve, indicating high-and low-affinity binding sites of malathion. The IC 50 values as calculated from the experimental inhibition curves were 1.33 × 10-9 and 1.48 × 10-5 M for the high-and low-affinity binding sites, respectively; Hill’s analysis gave 1.29 × 10-9 and 1.38 × 10-6 M. The Cornish-Bowden plots and their secondary plots indicated that the nature of inhibition was of mixed type with the predominant competitive character of both affinity binding sites.

  13. Interaction of berberine with human platelet. alpha. sub 2 adrenoceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Ka Kit; Yu, Jun Liang; Chan, Wai Fong A.

    1991-01-01

    Berberine was found to inhibit competitively the specific binding of ({sup 3}H)-yohimbine. The displacement curve was parallel to those of clonidine, epinephrine, norepinephrine, with the rank order of potency (IC{sub 50}) being clonidine {gt} epinephrine {gt} norepinephrine (14.5 {mu}M) = berberine. Increasing concentrations of berberine from 0.1 {mu}M to 10 {mu}M inhibited ({sup 3}H)-yohimbine binding, shifting the saturation binding curve to the right without decreasing the maximum binding capacity. In platelet cyclic AMP accumulation experiments, berberine at concentrations of 0.1 {mu}M to 0.1 mM inhibited the cAMP accumulation induced by 10 {mu}M prostaglandin E{sub 1} in a dose dependent manner,more » acting as an {alpha}{sub 2} adrenoceptor agonist. In the presence of L-epinephrine, berberine blocked the inhibitory effect of L-epinephrine behaving as an {alpha}{sub 2} adrenoceptor antagonist.« less

  14. A model of high-affinity antibody binding to type III group B Streptococcus capsular polysaccharide.

    PubMed

    Wessels, M R; Muñoz, A; Kasper, D L

    1987-12-01

    We recently reported that the single repeating-unit pentasaccharide of type III group B Streptococcus (GBS) capsular polysaccharide is only weakly reactive with type III GBS antiserum. To further elucidate the relationship between antigen-chain length and antigenicity, tritiated oligosaccharides derived from type III capsular polysaccharide were used to generate detailed saturation binding curves with a fixed concentration of rabbit antiserum in a radioactive antigen-binding assay. A graded increase in affinity of antigen-antibody binding was seen as oligosaccharide size increased from 2.6 repeating units to 92 repeating units. These differences in affinity of antibody binding to oligosaccharides of different molecular size were confirmed by immunoprecipitation and competitive ELISA, two independent assays of antigen-antibody binding. Analysis of the saturation binding experiment indicated a difference of 300-fold in antibody-binding affinity for the largest versus the smallest tested oligosaccharides. Unexpectedly, the saturation binding values approached by the individual curves were inversely related to oligosaccharide chain length on a molar basis but equivalent on a weight basis. This observation is compatible with a model in which binding of an immunoglobulin molecule to an antigenic site on the polysaccharide facilitates subsequent binding of antibody to that antigen.

  15. Mechanisms of inverse agonist action at D2 dopamine receptors

    PubMed Central

    Roberts, David J; Strange, Philip G

    2005-01-01

    Mechanisms of inverse agonist action at the D2(short) dopamine receptor have been examined. Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [3H]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. Competition of inverse agonists versus [3H]NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. Ki values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. Kcoupled and Kuncoupled were statistically different for the set of compounds tested (ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. These observations were supported by simulations of these competition experiments according to the extended ternary complex model. Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [35S]GTPγS binding to varying degrees in concentration–response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (−)-sulpiride was unaffected. These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism. PMID:15735658

  16. 3H[2-(2-benzofuranyl)-2-imidazoline] (BFI) binding in human platelets: modulation by tranylcypromine.

    PubMed

    Wiest, S A; Steinberg, M I

    1999-08-01

    2-(2-Benzofuranyl)-2-imidazoline (BFI) is a highly selective ligand for imidazoline-type 2 (I2) binding sites that are known to be associated with monoamine oxidase (MAO). Recently we demonstrated a potentiation of 3H-BFI binding in human but not in rat brain by the nonselective MAO inhibitor tranylcypromine. In the present studies, we evaluated the effect of tranylcypromine on the binding of 3H-BFI to human platelet inner membranes. Membranes were incubated with 3H-BFI at 22 degrees C in 50 mM Tris, 1.5 mM EDTA, pH 7.5. Saturation experiments with 3H-BFI (0.5-80 nM) were analyzed using non-linear curve fitting. Addition of tranylcypromine (0.1 mM) increased the number of 3H-BFI binding sites (Bmax=0.35+/-0.06 vs. 1.87+/-0.15 pmol/mg protein for vehicle and tranylcypromine, respectively) and increased 3H-BFI affinity slightly (KD =16.0+/-4.1 vs. 6.5+/-0.3 nM for vehicle and tranylcypromine, respectively). In competitive binding experiments using the less selective I2 ligand, 3H-idazoxan, tranylcypromine only weakly inhibited binding. Preincubation of platelet membranes with tranylcypromine (1 nM-10 microM) enhanced the Bmax of 3H-BFI binding in a concentration-dependent manner peaking at 1 microM (13 x control) and returning to near baseline at 100 microM. 3H-BFI binding was displaced monophasically (in order of decreasing potency) by BFI > or = 2-(4,5-dihydroimidazol-2-yl)quinoline (BU224) > or = cirazoline >idazoxan >(1,4-benzodioxan-2-methoxy-2-yl)-2-imidazoline (RX821002)= moxonidine. Amiloride, clorgyline, guanabenz and clonidine displayed biphasic curves with nanomolar high affinity components. Tranylcypromine altered the competition curves for all ligands (except BFI) by increasing the affinities for clonidine and RX821002 and decreasing affinities for BU224, cirazoline, guanabenz, idazoxan, clorgyline, moxonidine, and amiloride. Thus, in human platelets tranylcypromine exposes a high capacity 3H-BFI binding site distinct from previously described I2 sites that retains high affintiy for BFI but not other I2 ligands. Our results suggest that 3H-BFI and 3H-idazoxan may not be considered as interchangeable probes for the I2 binding site.

  17. Radioimmunoassays and 2-site immunoradiometric "sandwich" assays: basic principles.

    PubMed

    Rodbard, D

    1988-10-01

    The "sandwich" or noncompetitive reagent-excess, 2-site immunoradiometric assay (2-site IRMA), ELISA, USERIA, and related techniques, have several advantages compared with the traditional or competitive radioimmunoassays. IRMAs can provide improved sensitivity and specificity. However, IRMAs present some practical problems with nonspecific binding, increased consumption of antibody, biphasic dose response curve, (high dose hook effect), and may require special techniques for dose response curve analysis. We anticipate considerable growth in the popularity and importance of 2-site IRMA.

  18. Titration ELISA as a Method to Determine the Dissociation Constant of Receptor Ligand Interaction.

    PubMed

    Eble, Johannes A

    2018-02-15

    The dissociation constant describes the interaction between two partners in the binding equilibrium and is a measure of their affinity. It is a crucial parameter to compare different ligands, e.g., competitive inhibitors, protein isoforms and mutants, for their binding strength to a binding partner. Dissociation constants are determined by plotting concentrations of bound versus free ligand as binding curves. In contrast, titration curves, in which a signal that is proportional to the concentration of bound ligand is plotted against the total concentration of added ligand, are much easier to record. The signal can be detected spectroscopically and by enzyme-linked immunosorbent assay (ELISA). This is exemplified in a protocol for a titration ELISA that measures the binding of the snake venom-derived rhodocetin to its immobilized target domain of α2β1 integrin. Titration ELISAs are versatile and widely used. Any pair of interacting proteins can be used as immobilized receptor and soluble ligand, provided that both proteins are pure, and their concentrations are known. The difficulty so far has been to determine the dissociation constant from a titration curve. In this study, a mathematical function underlying titration curves is introduced. Without any error-prone graphical estimation of a saturation yield, this algorithm allows processing of the raw data (signal intensities at different concentrations of added ligand) directly by mathematical evaluation via non-linear regression. Thus, several titration curves can be recorded simultaneously and transformed into a set of characteristic parameters, among them the dissociation constant and the concentration of binding-active receptor, and they can be evaluated statistically. When combined with this algorithm, titration ELISAs gain the advantage of directly presenting the dissociation constant. Therefore, they may be used more efficiently in the future.

  19. Choline+ is a low-affinity ligand for alpha 1-adrenoceptors.

    PubMed

    Unelius, L; Cannon, B; Nedergaard, J

    1994-10-07

    The effect of choline+, a commonly used Na+ substitute, on ligand binding to alpha 1-adrenoceptors was investigated. It was found that replacement of 25% of the Na+ in a Krebs-Ringer bicarbonate buffer with choline+ led to a 3-fold decrease in the apparent affinity of [3H]prazosin for its binding site (i.e. the alpha 1-receptor) in a membrane preparation from brown adipose tissue, while no decrease in the total number of binding sites was observed. Similar effects were seen in membrane preparations from liver and brain. In competition experiments, it was found that choline+ could inhibit [3H]prazosin binding; from the inhibition curve, an affinity (Ki) of 31 mM choline+ for the [3H]prazosin-binding site could be calculated. In fully choline(+)-substituted buffers, where the level of [3H]prazosin binding was substantially reduced, both phentolamine and norepinephrine could still compete with [3H]prazosin for its binding site, with virtually unaltered affinity; thus choline+ did not substantially affect the characteristics of those receptors to which it did not bind. Choline+ did not affect the binding characteristics of the beta 1/beta 2 radioligand [3H]CGP-12177; thus, the effect on alpha 1-receptors was not due to general, unspecific effects on the membrane preparations. It is concluded that choline+ possesses characteristics similar to those of a competitive ligand for the alpha 1-adrenoceptor; it has a low affinity but the competitive type of interaction of choline may nonetheless under experimental conditions interfere with agonist interaction with the alpha 1-receptor.

  20. Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro.

    PubMed

    Dietz, Birgit M; Mahady, Gail B; Pauli, Guido F; Farnsworth, Norman R

    2005-08-18

    Insomnia is the most frequently encountered sleep complaint worldwide. While many prescription drugs are used to treat insomnia, extracts of valerian (Valeriana officinalis L., Valerianaceae) are also used for the treatment of insomnia and restlessness. To determine novel mechanisms of action, radioligand binding studies were performed with valerian extracts (100% methanol, 50% methanol, dichloromethane [DCM], and petroleum ether [PE]) at the melatonin, glutamate, and GABA(A) receptors, and 8 serotonin receptor subtypes. Both DCM and PE extracts had strong binding affinity to the 5-HT(5a) receptor, but only weak binding affinity to the 5-HT(2b) and the serotonin transporter. Subsequent binding studies focused on the 5-HT(5a) receptor due to the distribution of this receptor in the suprachiasmatic nucleus of the brain, which is implicated in the sleep-wake cycle. The PE extract inhibited [(3)H]lysergic acid diethylamide (LSD) binding to the human 5-HT(5a) receptor (86% at 50 microg/ml) and the DCM extract inhibited LSD binding by 51%. Generation of an IC(50) curve for the PE extract produced a biphasic curve, thus GTP shift experiments were also performed. In the absence of GTP, the competition curve was biphasic (two affinity sites) with an IC(50) of 15.7 ng/ml for the high-affinity state and 27.7 microg/ml for the low-affinity state. The addition of GTP (100 microM) resulted in a right-hand shift of the binding curve with an IC(50) of 11.4 microg/ml. Valerenic acid, the active constituent of both extracts, had an IC(50) of 17.2 microM. These results indicate that valerian and valerenic acid are new partial agonists of the 5-HT(5a) receptor.

  1. Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro

    PubMed Central

    Dietz, Birgit M.; Mahady, Gail B.; Pauli, Guido F.; Farnsworth, Norman R.

    2018-01-01

    Insomnia is the most frequently encountered sleep complaint worldwide. While many prescription drugs are used to treat insomnia, extracts of valerian (Valeriana officinalis L., Valerianaceae) are also used for the treatment of insomnia and restlessness. To determine novel mechanisms of action, radioligand binding studies were performed with valerian extracts (100% methanol, 50% methanol, dichloromethane [DCM], and petroleum ether [PE]) at the melatonin, glutamate, and GABAA receptors, and 8 serotonin receptor subtypes. Both DCM and PE extracts had strong binding affinity to the 5-HT5a receptor, but only weak binding affinity to the 5-HT2b and the serotonin transporter. Subsequent binding studies focused on the 5-HT5a receptor due to the distribution of this receptor in the suprachiasmatic nucleus of the brain, which is implicated in the sleep–wake cycle. The PE extract inhibited [3H]lysergic acid diethylamide (LSD) binding to the human 5-HT5a receptor (86% at 50 μg/ml) and the DCM extract inhibited LSD binding by 51%. Generation of an IC50 curve for the PE extract produced a biphasic curve, thus GTP shift experiments were also performed. In the absence of GTP, the competition curve was biphasic (two affinity sites) with an IC50 of 15.7 ng/ml for the high-affinity state and 27.7 μg/ml for the low-affinity state. The addition of GTP (100 AM) resulted in a right-hand shift of the binding curve with an IC50 of 11.4 μg/ml. Valerenic acid, the active constituent of both extracts, had an IC50 of 17.2 AM. These results indicate that valerian and valerenic acid are new partial agonists of the 5-HT5a receptor. PMID:15921820

  2. Competition effects in cation binding to humic acid: Conditional affinity spectra for fixed total metal concentration conditions

    NASA Astrophysics Data System (ADS)

    David, Calin; Mongin, Sandrine; Rey-Castro, Carlos; Galceran, Josep; Companys, Encarnació; Garcés, José Luis; Salvador, José; Puy, Jaume; Cecilia, Joan; Lodeiro, Pablo; Mas, Francesc

    2010-09-01

    Information on the Pb and Cd binding to a purified Aldrich humic acid (HA) is obtained from the influence of different fixed total metal concentrations on the acid-base titrations of this ligand. NICA (Non-Ideal Competitive Adsorption) isotherm has been used for a global quantitative description of the binding, which has then been interpreted by plotting the Conditional Affinity Spectra of the H + binding at fixed total metal concentrations (CAScTM). This new physicochemical tool, here introduced, allows the interpretation of binding results in terms of distributions of proton binding energies. A large increase in the acidity of the phenolic sites as the total metal concentration increases, especially in presence of Pb, is revealed from the shift of the CAScTM towards lower affinities. The variance of the CAScTM distribution, which can be used as a direct measure of the heterogeneity, also shows a significant dependence on the total metal concentration. A discussion of the factors that influence the heterogeneity of the HA under the conditions of each experiment is provided, so that the smoothed pattern exhibited by the titration curves can be justified.

  3. Simulation of a model nanopore sensor: Ion competition underlies device behavior.

    PubMed

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-28

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  4. Simulation of a model nanopore sensor: Ion competition underlies device behavior

    NASA Astrophysics Data System (ADS)

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-01

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  5. Local anesthetics QX 572 and benzocaine act at separate sites on the batrachotoxin-activated sodium channel

    PubMed Central

    1981-01-01

    We have studied the effect of local anesthetics QX 572, which is permanently charged, and benzocaine, which is neutral, on batrachotoxin- activated sodium channels in mouse neuroblastoma N18 cells. The dose- response curves for each drug suggest that QX 752 and benzocaine each act on a single class of binding sites. The dissociation constants are 3.15 X 10(-5) M for QX 572 and 2.65 X 10(-4) M for benzocaine. Equilibrium and kinetic experiments indicate that both drugs are competitive inhibitors of batrachotoxin. When benzocaine and QX 572 are present with batrachotoxin, they are much more effective at inhibiting Na+ flux than would be predicted by a one-site model. Our results indicate that QX 572 and benzocaine bind to separate sites, each of which interacts competitively with batrachotoxin. PMID:6267160

  6. Identification and quantification of human kidney atrial natriuretic peptide receptors.

    PubMed

    Kahana, L; Yechiely, H; Mecz, Y; Lurie, A

    1995-04-01

    The present study determined 125I-label atrial natriuretic peptide (ANP) binding sites in human kidney glomerular and papillary membranes. The membranes were prepared from non-malignant renal tissue obtained at nephrectomy of patients with renal carcinoma. To evaluate the proportion of ANP receptor classes ANP-R1 (ANPR-A, -B) versus ANP-R2 (ANPR-C), competitive binding studies were performed using [125I]-ANP in the presence of increasing concentrations of ANP or an internally ring-deleted analog, des(Gln116, Ser117, Gly118, Leu119, Gly120)ANP(102-121), called C-ANP, which binds selectively to ANPR-C receptors. Analysis of the competitive binding curve with ANP in glomerular membranes suggested the presence of one group of high-affinity receptors with dissociation constant Kd = 26 +/- 12 pmol/l and density Bmax = 101 +/- 47 nmol/kg protein. A decrease of 10-30% in Bmax with no change in Kd was obtained in the presence of excess (10(-6) mol/l) C-ANP, suggesting the existence of a small amount of a second class of receptors, the ANPR-C class. The densities of ANPR-A, -B versus ANPR-C receptors in human glomeruli, calculated from competitive inhibition experiments, were 75 +/- 42 and 22 +/- 16 nmol/kg protein (N = 8). Autoradiography of the sodium dodecyl sulfate polyacrylamide gel electrophoresis under reducing conditions showed two bands: a highly labeled 130kD band and a weakly labeled 66 kD band, both displaced by ANP. Only the 66-kD band was displaced by the C-ANP analog. Human papilla membrane, as shown by competition binding studies and SDS gel electrophoresis, presented only one class of receptors with Kd = 40 +/- 23 pmol/l (mean +/- SD, N = 3) and Bmax = 17 +/- 6.3 nmol/kg protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Minfei; Li, Yue; Wyborny, Shane

    ATG14 binding to BECN/Beclin homologs is essential for autophagy, a critical catabolic homeostasis pathway. Here, we show that the α-helical, coiled-coil domain (CCD) of BECN2, a recently identified mammalian BECN1 paralog, forms an antiparallel, curved homodimer with seven pairs of nonideal packing interactions, while the BECN2 CCD and ATG14 CCD form a parallel, curved heterodimer stabilized by multiple, conserved polar interactions. Compared to BECN1, the BECN2 CCD forms a weaker homodimer, but binds more tightly to the ATG14 CCD. Mutation of nonideal BECN2 interface residues to more ideal pairs improves homodimer self-association and thermal stability. Unlike BECN1, all BECN2 CCDmore » mutants bind ATG14, although more weakly than wild type. Thus, polar BECN2 CCD interface residues result in a metastable homodimer, facilitating dissociation, but enable better interactions with polar ATG14 residues stabilizing the BECN2:ATG14 heterodimer. These structure-based mechanistic differences in BECN1 and BECN2 homodimerization and heterodimerization likely dictate competitive ATG14 recruitment.« less

  8. ‘Partial’ competition of heterobivalent ligand binding may be mistaken for allosteric interactions: a comparison of different target interaction models

    PubMed Central

    Vauquelin, Georges; Hall, David; Charlton, Steven J

    2015-01-01

    Background and Purpose Non-competitive drugs that confer allosteric modulation of orthosteric ligand binding are of increasing interest as therapeutic agents. Sought-after advantages include a ceiling level to drug effect and greater receptor-subtype selectivity. It is thus important to determine the mode of interaction of newly identified receptor ligands early in the drug discovery process and binding studies with labelled orthosteric ligands constitute a traditional approach for this. According to the general allosteric ternary complex model, allosteric ligands that exhibit negative cooperativity may generate distinctive ‘competition’ curves: they will not reach baseline levels and their nadir will increase in par with the orthosteric ligand concentration. This behaviour is often considered a key hallmark of allosteric interactions. Experimental Approach The present study is based on differential equation-based simulations. Key Results The differential equation-based simulations revealed that the same ‘competition binding’ pattern was also obtained when a monovalent ligand binds to one of the target sites of a heterobivalent ligand, even if this process is exempt of allosteric interactions. This pattern was not strictly reciprocal when the binding of each of the ligands was recorded. The prominence of this phenomenon may vary from one heterobivalent ligand to another and we suggest that this phenomenon may take place with ligands that have been proposed to bind according to ‘two-domain’ and ‘charnière’ models. Conclusions and Implications The present findings indicate a familiar experimental situation where bivalency may give rise to observations that could inadvertently be interpreted as allosteric binding. Yet, both mechanisms could be differentiated based on alternative experiments and structural considerations. PMID:25537684

  9. Despite irreversible binding, PET tracer [11C]-SA5845 is suitable for imaging of drug competition at sigma receptors-the cases of ketamine and haloperidol.

    PubMed

    Kortekaas, Rudie; Maguire, R Paul; van Waarde, Aren; Leenders, Klaus L; Elsinga, Philip H

    2008-07-01

    Many psychotropic compounds bind to sigma receptors and several new sigma ligands are in development for psychiatric indications such as anxiety, attention deficit hyperactivity disorder, depression and psychosis. Of special interest for drug development are tomographic methods that can quantify the binding of promising sigma ligands in a regional manner. Here we present the development of such a method and the first evaluation of sigma ligand [11C]-SA5845 in a primate. Extensive pharmacokinetic modeling was done on tissue curves and a heart lumen curve. The effects of pretreatment and challenge with haloperidol were studied as well as those of pretreatment with +/- -ketamine. The tracer had a plasma half-life of 77+/-1.7min and was rapidly taken up by all brain areas. The binding pattern was consistent with binding to sigma receptors and compartment modeling showed there was considerable specific binding that was irreversible. We therefore calculated the net influx rate, Ki, with the Gjedde-Patlak linearization, as a measure of free receptors. As expected, Ki was very sensitive to the presence of competing ligands - -ketamine and/or haloperidol. Summarizing, the tracer is well suited for visualizing sigma receptors in the brain and moreover, the presented method is able to quantify, on a regional basis, specific binding of unlabeled ligands to sigma receptors.

  10. Demonstration of four immunoassay formats using the array biosensor

    NASA Technical Reports Server (NTRS)

    Sapsford, Kim E.; Charles, Paul T.; Patterson, Charles H Jr; Ligler, Frances S.

    2002-01-01

    The ability of a fluorescence-based array biosensor to measure and quantify the binding of an antigen to an immobilized antibody has been demonstrated using the four different immunoassay formats: direct, competitive, displacement, and sandwich. A patterned array of antibodies specific for 2,4,6-trinitrotoluene (TNT) immobilized onto the surface of a planar waveguide and used to measure signals from different antigen concentrations simultaneously. For direct, competitive, and displacement assays, which are one-step assays, measurements were obtained in real time. Dose-response curves were calculated for all four assay formats, demonstrating the array biosensor's ability to quantify the amount of antigen present in solution.

  11. Interaction of immobilized avidin with an aequorin-biotin conjugate: an aequorin-linked assay for biotin.

    PubMed

    Feltus, A; Ramanathan, S; Daunert, S

    1997-12-01

    Biotinylated recombinant aequorin was used in the development of a heterogeneous bioluminescence binding assay for biotin. This assay is based on a competition between a biotinylated aequorin conjugate and biotin for the binding sites of avidin immobilized on solid particles. Dose-response curves were obtained that relate solid-phase aequorin activity to the concentration of biotin. Under certain experimental conditions these curves were biphasic; i.e., as the biotin concentration increased, the solid-phase aequorin activity first increased reaching a maximum and then decreased at higher biotin concentrations. This "hook" effect was observed with four different types of immobilization supports. The effect was more pronounced when low concentrations of aequorin-biotin conjugate were used, and diminished at a high conjugate concentration. This behavior indicates a possible positive cooperativity in the interaction between the immobilized avidin and biotin. Scatchard plot analysis was also consistent with a positive cooperativity mechanism. By using the ascending portion of the dose-response curve, the detection limit of the assay for biotin was 1 x 10(-15) M (100 zmol of biotin in the sample). Copyright 1997 Academic Press.

  12. International Validation of Two Human Recombinant Estrogen ...

    EPA Pesticide Factsheets

    An international validation study has been successfully completed for 2 competitive binding assays using human recombinant ERa. Assays evaluated included the Freyberger-Wilson (FW) assay using a full length human ER, and the Chemical Evaluation and Research Institute (CERI) assay using a ligand-binding domain of the human ER. Twenty three compounds were tested in 6 laboratories for the FW assay and 5 for the CERJ assay, which included three controls (used with every run), 9 uncoded, and 14 coded chemicals across 3 subtasks. The overall goal of this validation study was to demonstrate the ability of each of the two assays to reliably classify the test chemicals as binders or non-binders. Laboratories had little trouble with the ER binders that produced a full binding curve when using either the CERI or FW assays. As is typical with all ER competitive binding assays, the weak binders proved to be more challenging. However, overall results from both the FW and CERI assays were consistent and in agreement with expected classifications regardless of the form of the hrER (i.e., full length ER versus an ER ligand binding domain) or the subtle differences in the protocols for conducting each assay. The reproducibility and accuracy for classification of chemicals as potential ER binders and non- binders using the FW and CERI hrER binding assays were comparable to that of the U.S.EPA’s existing ER binding test guideline OPPTS 890.1250, while providing an improved, highe

  13. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible competitive inhibitor, tested by simulated progress curves.

    PubMed

    Moruno-Dávila, M A; Garrido-del Solo, C; García-Moreno, M; Havsteen, B H; Garcia-Sevilla, F; Garcia-Cánovas, F; Varón, R

    2001-02-01

    The use of suicide substrates remains a very important and useful method in enzymology for studying enzyme mechanisms and designing potential drugs. Suicide substrates act as modified substrates for the target enzymes and bind to the active site. Therefore the presence of a competitive reversible inhibitor decreases the rate of substrate-induced inactivation and protects the enzyme from this inactivation. This lowering on the inactivation rate has evident physiological advantages, since it allows the easy acquisition of experimental data and facilitates kinetic data analysis by providing another variable (inhibitor concentration). However despite the importance of the simultaneous action of a suicide substrate and a competitive reversible inhibition, to date no corresponding kinetic analysis has been carried out. Therefore we present a general kinetic analysis of a Michaelis-Menten reaction mechanism with double inhibition caused by both, a suicide substrate and a competitive reversible inhibitor. We assume rapid equilibrium of the reversible reaction steps involved, while the time course equations for the reaction product have been derived with the assumption of a limiting enzyme. The goodness of the analytical solutions has been tested by comparison with the simulated curves obtained by numerical integration. A kinetic data analysis to determine the corresponding kinetic parameters from the time progress curve of the product is suggested. In conclusion, we present a complete kinetic analysis of an enzyme reaction mechanism as described above in an attempt to fill a gap in the theoretical treatment of this type of system.

  14. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: Coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, B.T.

    1989-06-01

    Adenosine receptors in a spontaneously contracting atrial myocyte culture from 14-day chick embryos were characterized by radioligand binding studies and by examining the involvement of G-protein in coupling these receptors to a high-affinity state and to the adenylate cyclase and the myocyte contractility. Binding of the antagonist radioligand (3H)-8-cyclopentyl-1,3-diproylxanthine ((3H)CPX) was rapid, reversible and saturable and was to a homogeneous population of sites with a Kd value of 2.1 +/- 0.2 nM and an apparent maximum binding of 26.2 +/- 3 fmol/mg of protein (n = 10, +/- S.E.). Guanyl-5-yl-(beta, gamma-imido)diphosphate had no effect on either the Kd or themore » maximum binding and CPX reversed the N6-R-phenyl-2-propyladenosine-induced inhibition of adenylate cyclase activity and contractility, indicating that (3H) CPX is an antagonist radioligand. Competition curves for (3H) CPX binding by a series of reference adenosine agonists were consistent with labeling of an A1 adenosine receptor and were better fit by a two-site model than by a one-site model. ADP-ribosylation of the G-protein by the endogenous NAD+ in the presence of pertussis toxin shifted the competition curves from bi to monophasic with Ki values similar to those of the KL observed in the absence of prior pertussis intoxication. The adenosine agonists were capable of inhibiting both the adenylate cyclase activity and myocyte contractility in either the absence or the presence of isoproterenol. The A1 adenosine receptor-selective antagonist CPX reversed these agonist effects. The order of ability of the reference adenosine receptor agonists in causing these inhibitory effects was similar to the order of potency of the same agonists in inhibiting the specific (3H)CPX binding (N6-R-phenyl-2-propyladenosine greater than N6-S-phenyl-2-propyladenosine or N-ethyladenosine-5'-uronic acid).« less

  15. Harmaline competitively inhibits [3H]MK-801 binding to the NMDA receptor in rabbit brain.

    PubMed

    Du, W; Aloyo, V J; Harvey, J A

    1997-10-03

    Harmaline, a beta-carboline derivative, is known to produce tremor through a direct activation of cells in the inferior olive. However, the receptor(s) through which harmaline acts remains unknown. It was recently reported that the tremorogenic actions of harmaline could be blocked by the noncompetitive NMDA channel blocker, MK-801. This study examined whether the blockade of harmaline's action, in the rabbit, by MK-801 was due to a pharmacological antagonism at the MK-801 binding site. This was accomplished by measurement of [3H]MK-801 binding in membrane fractions derived from tissue containing the inferior olivary nucleus and from cerebral cortex. Harmaline completely displaced saturable [3H]MK-801 binding in both the inferior olive and cortex with apparent IC50 values of 60 and 170 microM, respectively. These IC50 values are consistent with the high doses of harmaline required to produce tremor, e.g., 10-30 mg/kg. Non-linear curve fitting analysis of [3H]MK-801 saturation experiments indicated that [3H]MK-801 bound to a single site and that harmaline's displacement of [3H]MK-801 binding to the NMDA receptor was competitive as indicated by a shift in Kd but not in Bmax. In addition, a Schild plot gave a slope that was not significantly different from 1 indicating that harmaline was producing a displacement of [3H]MK-801 from its binding site within the NMDA cation channel and not through an action at the glutamate or other allosteric sites on the NMDA receptor. These findings provide in vitro evidence that the competitive blockade of harmaline-induced tremor by MK-801 occurs within the calcium channel coupled to the NMDA receptor. Our hypothesis is that harmaline produces tremor by acting as an inverse agonist at the MK-801 binding site and thus opening the cation channel.

  16. Kinetic mechanism of Escherichia coli isocitrate dehydrogenase and its inhibition by glyoxylate and oxaloacetate.

    PubMed Central

    Nimmo, H G

    1986-01-01

    The inhibition of Escherichia coli isocitrate dehydrogenase by glyoxylate and oxaloacetate was examined. The shapes of the progress curves in the presence of the inhibitors depended on the order of addition of the assay components. When isocitrate dehydrogenase or NADP+ was added last, the rate slowly decreased until a new, inhibited, steady state was obtained. When isocitrate was added last, the initial rate was almost zero, but the rate increased slowly until the same steady-state value was obtained. Glyoxylate and oxaloacetate gave competitive inhibition against isocitrate and uncompetitive inhibition against NADP+. Product-inhibition studies showed that isocitrate dehydrogenase obeys a compulsory-order mechanism, with coenzyme binding first. Glyoxylate and oxaloacetate bind to and dissociate from isocitrate dehydrogenase slowly. These observations can account for the shapes of the progress curves observed in the presence of the inhibitors. Condensation of glyoxylate and oxaloacetate produced an extremely potent inhibitor of isocitrate dehydrogenase. Analysis of the reaction by h.p.l.c. showed that this correlated with the formation of oxalomalate. This compound decomposed spontaneously in assay mixtures, giving 4-hydroxy-2-oxoglutarate, which was a much less potent inhibitor of the enzyme. Oxalomalate inhibited isocitrate dehydrogenase competitively with respect to isocitrate and was a very poor substrate for the enzyme. The data suggest that the inhibition of isocitrate dehydrogenase by glyoxylate and oxaloacetate is not physiologically significant. PMID:3521584

  17. [3H]MK-801 binding sites in post-mortem human frontal cortex.

    PubMed

    Kornhuber, J; Mack-Burkhardt, F; Kornhuber, M E; Riederer, P

    1989-03-29

    The binding of [3H]MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate) was investigated in extensively washed homogenates of post-mortem human frontal cortex. The association of [3H]MK-801 proceeded slowly (t1/2 = 553 min) and reached equilibrium only after a prolonged incubation (greater than 24 h). The dissociation of [3H]MK-801 from the binding site was also slow (t1/2 = 244 min). Glutamate, glycine and magnesium markedly increased the rate of association (t1/2 = 14.8 min) and dissociation (t1/2 = 36.5 min). At equilibrium, the binding was not altered by these substances. Specific binding was linear with protein concentration, was saturable, reversible, stereoselective, heat-labile and was nearly absent in the white matter. Scatchard analysis of the saturation curves obtained at equilibrium indicated that there was a high-affinity (Kd1 1.39 +/- 0.21 nM, Bmax1 0.483 +/- 0.084 pmol/mg protein) and a low-affinity (Kd2 116.25 +/- 50.79 nM, Bmax2 3.251 +/- 0.991 pmol/mg protein) binding site. All competition curves obtained with (+)-MK-801, (-)-MK-801, phencyclidine and ketamine had Hill coefficients of less than unity and were best explained by a two-site model. Thus, our results demonstrate the presence of binding sites for MK-801 in post-mortem human brains and provide evidence for binding site heterogeneity. Furthermore, glutamate, glycine and magnesium accelerate the association and dissociation of [3H]MK-801 to and from its binding sites. The results add support to the hypothesis that MK-801, glutamate, glycine and magnesium all bind to different sites on the NMDA receptor-ion channel complex.

  18. Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel.

    PubMed

    Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter

    2006-04-15

    We study theoretically the transport and kinetic processes underlying the operation of a biosensor (particularly the surface plasmon sensor "Biacore") used to study the surface binding kinetics of biomolecules in solution to immobilized receptors. Unlike previous studies, we concentrate mainly on the modeling of system-specific phenomena rather than on the influence of mass transport limitations on the intrinsic kinetic rate constants determined from binding data. In the first problem, the case of two-site binding where each receptor unit on the surface can accommodate two analyte molecules on two different sites is considered. One analyte molecule always binds first to a specific site. Subsequently, the second analyte molecule can bind to the adjacent unoccupied site. In the second problem, two different analytes compete for one binding site on the same surface receptor. Finally, the third problem considers the case of positive cooperativity among bound molecules in the hydrogel using a simple mean-field approach. The transport in both the flow channel and the hydrogel phases of the biosensor is taken into account in this case (with few exceptions, most previous studies assume a simpler model in which the hydrogel is treated as a planar surface with the receptors). We consider simultaneously diffusion and convection through the flow channel together with diffusion and cooperativity binding on the surface and in the hydrogel. In each case, typical results for the concentration contours of the free and bound molecules in the flow channel and hydrogel regions are presented together with the time-dependent association/dissociation curves and reaction rates. For binding site competition, the analysis predicts overshoot phenomena.

  19. Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Song, Daqian; Kan, Yuhe; Xu, Dong; Tian, Yuan; Zhou, Xin; Zhang, Hanqi

    2005-11-01

    The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 °C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the Föster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.

  20. Characterization of the [125I]-neurokinin A binding site in the circular muscle of human colon

    PubMed Central

    Warner, Fiona J; Comis, Alfio; Miller, Robert C; Burcher, Elizabeth

    1999-01-01

    Neurokinin A (NKA) is a potent contractile agonist of human colon circular muscle. These responses are mediated predominantly through tachykinin NK2 receptors. In the present study, the NK2 receptor radioligand [125I]-NKA has been used to characterize binding sites in this tissue, using tachykinin agonists and antagonists. 125INKA labelled a single, high affinity binding site. Specific binding (95% of total binding) of [125I]-NKA was saturable (KD 0.47±0.05 nM), of high capacity (Bmax 2.1±0.1 fmol mg−1 wet weight tissue) and reversible (kinetically derived KD 0.36±0.07 nM). The rank order of agonists competing for the [125I]-NKA binding site was neuropeptide γ (NPγ)≥NKA≥[Lys5,MeLeu9,Nle10]NKA (4–10) (NK2 agonist)>>substance P (SP)>neurokinin B (NKB)≥[Pro9]SP (NK1 agonist)>>senktide (NK3 agonist), indicating binding to an NK2 site. The nonpeptide selective NK2 antagonist SR48968 showed higher affinity for the [125I]-NKA site than selective peptide NK2 antagonists. The rank order of potency for NK2 antagonists was SR48968≥MEN11420>GR94800≥MEN10627>MEN10376≥R396. The NK1 antagonist SR140333 was a weak competitor. The competition curve for SP could be resolved into two sites. When experiments were repeated in the presence of SR140333 (0.1 μM), the curve for SP became monophasic and showed a significant shift to the right, whereas curves to NKA and NKB were unaffected. In conclusion, binding of the radioligand [125I]-NKA to membranes from circular muscle is predominantly to the NK2 receptor. There may be a small component of binding to the NK1 receptor. The NK2 receptor mediates circular muscle contraction, whereas the role of the NK1 receptor in circular muscle is unclear. PMID:10455255

  1. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/supmore » 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.« less

  2. Acid-base and copper-binding properties of three organic matter fractions isolated from a forest floor soil solution

    NASA Astrophysics Data System (ADS)

    van Schaik, Joris W. J.; Kleja, Dan B.; Gustafsson, Jon Petter

    2010-02-01

    Vast amounts of knowledge about the proton- and metal-binding properties of dissolved organic matter (DOM) in natural waters have been obtained in studies on isolated humic and fulvic (hydrophobic) acids. Although macromolecular hydrophilic acids normally make up about one-third of DOM, their proton- and metal-binding properties are poorly known. Here, we investigated the acid-base and Cu-binding properties of the hydrophobic (fulvic) acid fraction and two hydrophilic fractions isolated from a soil solution. Proton titrations revealed a higher total charge for the hydrophilic acid fractions than for the hydrophobic acid fraction. The most hydrophilic fraction appeared to be dominated by weak acid sites, as evidenced by increased slope of the curve of surface charge versus pH at pH values above 6. The titration curves were poorly predicted by both Stockholm Humic Model (SHM) and NICA-Donnan model calculations using generic parameter values, but could be modelled accurately after optimisation of the proton-binding parameters (pH ⩽ 9). Cu-binding isotherms for the three fractions were determined at pH values of 4, 6 and 9. With the optimised proton-binding parameters, the SHM model predictions for Cu binding improved, whereas the NICA-Donnan predictions deteriorated. After optimisation of Cu-binding parameters, both models described the experimental data satisfactorily. Iron(III) and aluminium competed strongly with Cu for binding sites at both pH 4 and pH 6. The SHM model predicted this competition reasonably well, but the NICA-Donnan model underestimated the effects significantly at pH 6. Overall, the Cu-binding behaviour of the two hydrophilic acid fractions was very similar to that of the hydrophobic acid fraction, despite the differences observed in proton-binding characteristics. These results show that for modelling purposes, it is essential to include the hydrophilic acid fraction in the pool of 'active' humic substances.

  3. Spectroscopic and electrochemical studies of the interaction between oleuropein, the major bio-phenol in olives, and salmon sperm DNA

    NASA Astrophysics Data System (ADS)

    Mohamadi, Maryam; Afzali, Daryoush; Esmaeili-Mahani, Saeed; Mostafavi, Ali; Torkzadeh-Mahani, Masoud

    2015-09-01

    Interaction of oleuropein, the major bio-phenol in olive leaf and fruit, with salmon sperm double-stranded DNA was investigated by employing electronic absorption titrations, fluorescence quenching spectroscopy, competitive fluorescence spectroscopy, thermal denaturation and voltammetric studies. Titration of oleuropein with the DNA caused a hypochromism accompanied with a red shift indicating an intercalative mode of interaction. Binding constant of 1.4 × 104 M-1 was obtained for this interaction. From the curves of fluorescence titration of oleuropein with the DNA, binding constant and binding sites were calculated to be 8.61 × 103 M-1 and 1.05, respectively. Competitive studies with ethidium bromide (a well-known DNA intercalator) showed that the bio-phenol could take the place of ethidium bromide in the DNA intercalation sites. The interaction of oleuropein with DNA was also studied electrochemically. In the presence of the DNA, the anodic and cathodic peak currents of oleuropein decreased accompanied with increases in peak-to-peak potential separation and formal potential, indicating the intercalation of oleuropein into the DNA double helix. Moreover, melting temperature of the DNA was found to increase in the presence of oleuropein, indicating the stabilization of the DNA double helix due to an intercalative interaction.

  4. Quadratic canonical transformation theory and higher order density matrices.

    PubMed

    Neuscamman, Eric; Yanai, Takeshi; Chan, Garnet Kin-Lic

    2009-03-28

    Canonical transformation (CT) theory provides a rigorously size-extensive description of dynamic correlation in multireference systems, with an accuracy superior to and cost scaling lower than complete active space second order perturbation theory. Here we expand our previous theory by investigating (i) a commutator approximation that is applied at quadratic, as opposed to linear, order in the effective Hamiltonian, and (ii) incorporation of the three-body reduced density matrix in the operator and density matrix decompositions. The quadratic commutator approximation improves CT's accuracy when used with a single-determinant reference, repairing the previous formal disadvantage of the single-reference linear CT theory relative to singles and doubles coupled cluster theory. Calculations on the BH and HF binding curves confirm this improvement. In multireference systems, the three-body reduced density matrix increases the overall accuracy of the CT theory. Tests on the H(2)O and N(2) binding curves yield results highly competitive with expensive state-of-the-art multireference methods, such as the multireference Davidson-corrected configuration interaction (MRCI+Q), averaged coupled pair functional, and averaged quadratic coupled cluster theories.

  5. ( sup 3 H)-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and ( sup 3 H) ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branchek, T.; Adham, N.; Macchi, M.

    1990-11-01

    The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to (3H)ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding themore » serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both (3H)DOB and (3H)ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate (Gpp(NH)p) to this system caused a rightward shift and steepening of agonist competition curves for (3H) ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity (3H)DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that (3H)DOB and (3H)ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein.« less

  6. Analysis of oxidative stress biomarkers using a simultaneous competitive/non-competitive micromosaic immunoassay.

    PubMed

    Murphy, Brian M; Dandy, David S; Henry, Charles S

    2009-04-27

    Immunoassays represent a core workhorse methodology for many applications ranging from clinical diagnostics to environmental monitoring. In traditional formats such as the enzyme linked immunosorbent assay (ELISA), analytes are measured singly or in small sets. As more biomarkers are identified for disease states, there is a need to develop methods that can measure multiple markers simultaneously. Immunoaffinity arrays are one such chemistry that can achieve multi-marker screening. Most arrays are performed in either competitive or non-competitive formats, where the former are used predominantly for small molecules and the later for macromolecules. To date, ELISA and immunoaffinity array methods have relied exclusively on one of these formats and not the other. Here an immunoaffinity array method capable of performing simultaneous competitive and non-competitive analysis generated using micromosaic immunoassay techniques is introduced for the analysis of metabolites and proteins. In this report, three markers of oxidative stress were used as a model system. The method described here demonstrates the simultaneous analysis of 3-nitrotyrosine, by indirect competitive immunoassay while the enzymes catalase and superoxide dismutase are analyzed by non-competitive sandwich immunoassay. The method requires less than 1 microL sample and 45 min for completion. Logistic curve fits and LOD (limits of detection) statistical analysis of the binding results are presented and show good agreement with published data for these antibody-antigen systems.

  7. Comparative effectiveness of Calabadion and sugammadex to reverse non-depolarizing neuromuscular blocking agents

    PubMed Central

    Haerter, Friederike; Simons, Jeroen Cedric Peter; Foerster, Urs; Duarte, Ingrid Moreno; Diaz-Gil, Daniel; Ganapati, Shweta; Eikermann-Haerter, Katharina; Ayata, Cenk; Zhang, Ben; Blobner, Manfred; Isaacs, Lyle; Eikermann, Matthias

    2015-01-01

    Background We evaluated the comparative effectiveness of calabadion 2 to reverse non-depolarizing neuromuscular blocking agents (NMBAs) by binding and inactivation. Methods The dose-response relationship of drugs to reverse vecuronium, rocuronium, and cisatracurium-induced neuromuscular block (NMB) was evaluated in vitro (competition binding assays and urine analysis), ex vivo (n=34; phrenic nerve hemidiaphragm preparation) and in vivo (n=108; quadriceps femoris muscle of the rat). Cumulative dose-response curves of calabadions, neostigmine, or sugammadex were created ex vivo at steady-state deep NMB. In living rats, we studied the dose-response relationship of the test drugs to reverse deep block under physiological conditions and we measured the amount of calabadion 2 excreted in the urine. Results In vitro experiments showed that calabadion 2 binds rocuronium with 89 times the affinity of sugammadex (Ka = 3.4 × 109 M−1 and Ka = 3.8 × 107 M−1). Urine analysis (proton nuclear magnetic resonance), competition binding assays and ex vivo study results obtained in the absence of metabolic deactivation are in accordance with an 1:1 binding ratio of sugammadex and calabadion 2 toward rocuronium. In living rats, calabadion 2 dose-dependently and rapidly reversed all NMBAs tested. The molar potency of calabadion 2 to reverse vecuronium and rocuronium was higher compared to sugammadex. Calabadion 2 was eliminated renally, and did not affect blood pressure or heart rate. Conclusion Calabadion 2 reverses NMB-induced by benzylisoquinolines and steroidal NMBAs in rats more effectively, i.e. faster, than sugammadex. Calabadion 2 is eliminated in the urine and well tolerated in rats. PMID:26418697

  8. Fate of wastewater effluent hER-agonists and hER-antagonists during soil aquifer treatment.

    PubMed

    Otakuye, Conroy; Quanrud, David M; Ela, Wendell P; Wicke, Daniel; Lansey, Kevin E; Arnold, Robert G

    2005-04-01

    Estrogen activity was measured in wastewater effluent before and after polishing via soil-aquifer treatment (SAT) using both a (hER-beta) competitive binding assay and a transcriptional activation (yeast estrogen screen, YES) assay. From the competitive binding assay, the equivalent 17alpha-ethinylestradiol (EE2) concentration in secondary effluent was 4.7 nM but decreased to 0.22 nM following SAT. The YES assay indicated that the equivalent EE2 concentration in the same effluent sample was below the method-detection limit (<2.5 x 10(-3) nM) but increased to 0.68 nM in effluent polished via SAT processes. It was hypothesized thattest-dependent differences arose because the competitive binding assay responds positively to both estrogen mimics and anti-estrogens; the YES assay responds to estrogen mimics, but test response is inhibited by anti-estrogens. The hypothesis was supported when organics extracted from wastewater effluent inhibited the YES test response to EE2 (anti-estrogenic effect). A similar extract prepared from SAT-polished effluent augmented the EE2 curve (agonist response). When hydrophobic organics in secondary effluent were fractionated, assay results indicated that several physically distinct anti-estrogens were present in the sample. From this work, it is evident that transcription-activation bioassays alone should not be relied upon to measure estrogenic activity in complex environmental samples because the simultaneous presence of both agonists and antagonist compounds can yield false negatives. Multiple in vitro bioassays, sample fractionation or tests designed to measure anti-estrogenic activity can be used to overcome this problem. It is also clear that there are circumstances under which SAT does not completely remove estrogenic activity during municipal wastewater effluent polishing.

  9. Simultaneous ultramicroanalysis of both 17-keto-and 17beta-hydroxy androgens in biological fluids.

    PubMed

    Ganjam, V K

    1976-11-01

    Sensitive methods for quantifying androgens were lacking. Therefore, a relatively simple procedure for separating steroids was combined with highly specific assay methods so that eight androgens could be measured with high accuracy, precision and sensitivity. Semi-automated separations on Sephadex LH-20 columns used heptane:methylene chloride:ethanol:water (50:50:1:0.12) and a flow rate of 17.0 min/ml. The six peaks eluted contained androstenedine; androsterone, epiandrosterone and dihydrotestosterone; testosterone and dehydroepiandrosterone; 3alpha-androstanediol; 3beta-androstanediol; and androstenediol. Androstenedione, dehydroepiandrosterone and androstenediol were quantified using specific antisera (sensitivity less than or equal to 75 pg). Testosterone and dihydrotestosterone were measured by competitive protein-binding assays using rabbit TeBG (sensitivity less than or equal to 150 pg). 3alpha- and 3beta-androstanediol were similarly assayed using human TeBG (sensitivity approximately 150 pg). Androsterone was reduced with NaBH4 and the resulting 3alpha-androstanediol was assayed using human TeBG (sensitivity approximately 200 pg). Inter- and intra-assay variations were less than 10% for radioimmunoassays and less than 16% for competitive protein-binding assays over the entire dose response curve.

  10. Protein Binding and Astringent Taste of a Polymeric Procyanidin, 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose, Castalagin and Grandinin

    PubMed Central

    Hofmann, Thomas; Glabasnia, Arne; Schwarz, Bernd; Wisman, Kimberly N.; Gangwer, Kelly A.; Hagerman, Ann E.

    2008-01-01

    The objective of the present investigation was to examine oral astringency and protein binding activity of four structurally well-defined tannins, namely procyanidin (epicatechin16(4→8)catechin), pentagalloyl glucose (1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose), castalagin, and grandinin, representing the three main structural categories of tannins, the proanthocyanidins, the gallotannins, and the ellagitannins. Astringency threshold and dose response were determined by the half-tongue test using a trained human panel. Protein binding stoichiometry and relative affinity were determined using radioiodinated bovine serum albumin in precipitation or competitive binding assays. Procyanidin and pentagalloyl glucose were perceived as highly astringent compounds and had relatively steep dose response curves but castalagin and grandinin had a lower mass threshold for detection. In vitro, procyanidin was the most effective protein precipitating agent, and grandinin the least. Increasing the temperature increased protein precipitation by the hydrolysable tannins, especially grandinin. All four polyphenols had higher relative affinity for proline-rich proteins than for bovine serum albumin. PMID:17147439

  11. Insulin receptor in mouse neuroblastoma cell line N18TG2: binding properties and visualization with colloidal gold.

    PubMed

    Sartori, C; Stefanini, S; Bernardo, A; Augusti-Tocco, G

    1992-08-01

    Insulin function in the nervous system is still poorly understood. Possible roles as a neuromodulator and as a growth factor have been proposed (Baskin et al., 1987, Ann. Rev. Physiol. 49, 335-347). Stable cell lines may provide an appropriate experimental system for the analysis of insulin action on the various cellular components of the central nervous system. We report here a study to investigate the presence and the properties of insulin specific binding sites in the murine neuroblastoma line, N18TG2, together with insulin action on cell growth and metabolism. Also, receptor internalization has been studied. Binding experiments, carried out in standard conditions at 20 degrees C, enabled us to demonstrate that these cells bind insulin in a specific manner, thus confirming previous findings on other cell lines. Saturation curves showed the presence of two binding sites with Kd 0.3 and 9.7 nM. Competition experiments with porcine and bovine insulin showed an IC50 of 1 and 10 nM, respectively. Competition did not occur in the presence of the unrelated hormones ACTH and FSH. Dissociation experiments indicated the existence of an internalization process of the ligand-receptor complex; this was confirmed by an ultrastructural study using gold conjugated insulin. As far as the insulin action in N18TG2 cells is concerned, physiological concentrations stimulate cell proliferation, whereas no stimulation of glucose uptake was observed, indicating that insulin action in these cells is not mediated by general metabolic effects. On the basis of these data, N18TG2 line appears to be a very suitable model for further studies of the neuronal type insulin receptors, and possibly insulin specific action on the nervous system.

  12. A novel and sensitive radioreceptor assay for serum melatonin levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenn, C.; Niles, L.

    A simple and sensitive radioreceptor assay (RRA) has been developed to measure melatonin levels in serum. The assay is based on competition between 2-({sup 125}I)iodomelatonin (({sup 125}I)MEL) and melatonin for binding to high-affinity binding sites in chick forebrain. To measure the amount of melatonin present in a serum sample, it was extracted with dichloromethane and added to the assay medium. The percentage inhibition of radioligand binding in the presence of the extracted serum was determined and compared to the percent displacement by known amounts of melatonin in a standard curve. There was little or no cross-reactivity with other structurally relatedmore » compounds. The sensitivity of the assay is {approximately}1.5pg/0.15 mL and the intra- and inter-assay variations are approximately 8%. Since the RRA results are comparable to that of an established radioimmunoassay (RIA), it provides a sensitive and rapid alternative to the more time consuming RIA.« less

  13. Ca sup 2+ binding capacity of cytoplasmic proteins from rod photoreceptors is mainly due to arrestin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huppertz, B.; Weyand, I.; Bauer, P.J.

    1990-06-05

    Arrestin (also called S-antigen or 48-kDa protein) binds to photoexcited and phosphorylated rhodopsin and, thereby, blocks competitively the activation of transducin. Using Ca{sup 2+} titration in the presence of the indicator arsenazo III and {sup 45}Ca{sup 2+} autoradiography, we show that arrestin is a Ca2(+)-binding protein. The Ca{sup 2+} binding capacity of arresting-containing protein extracts from bovine rod outer segments is about twice as high as that of arrestin-depleted extracts. The difference in the Ca{sup 2+} binding of arrestin-containing and arrestin-depleted protein extracts was attributed to arrestin. Both, these difference-measurements of protein extracts and the measurements of purified arrestin yieldmore » dissociation constants for the Ca{sup 2+} binding of arrestin between 2 and 4 microM. The titration curves are consistent with a molar ratio of one Ca{sup 2+} binding site per arrestin. No Ca{sup 2+} binding in the micromolar range was found in extracts containing mainly transducin and cGMP-phosphodiesterase. Since arrestin is one of the most abundant proteins in rod photoreceptors occurring presumably up to millimolar concentrations in rod outer segments, we suggest that aside from its function to prevent the activation of transducin, arrestin acts probably as an intracellular Ca{sup 2+} buffer.« less

  14. Kinetics and Mechanism Study of Competitive Inhibition of Jack-Bean Urease by Baicalin

    PubMed Central

    Tan, Lirong; Su, Jiyan; Wu, Dianwei; Yu, Xiaodan; Su, Zuqing; Wu, Xiaoli; Kong, Songzhi; Lai, Xiaoping; Lin, Ji; Su, Ziren

    2013-01-01

    Baicalin (BA) is the principal component of Radix Scutellariae responsible for its pharmacological activity. In this study, kinetics and mechanism of inhibition by BA against jack-bean urease were investigated for its therapeutic potential. It was revealed that the IC50 of BA against jack-bean urease was 2.74 ± 0.51 mM, which was proved to be a competitive and concentration-dependent inhibition with slow-binding progress curves. The rapid formation of initial BA-urease complex with an inhibition constant of K i = 3.89 × 10−3 mM was followed by a slow isomerization into the final complex with an overall inhibition constant of K i* = 1.47 × 10−4 mM. High effectiveness of thiol protectors against BA inhibition indicated that the strategic role of the active-site sulfhydryl group of the urease was involved in the blocking process. Moreover, the inhibition of BA was proved to be reversible due to the fact that urease could be reactivated by dithiothreitol but not reactant dilution. Molecular docking assay suggested that BA made contacts with the important activating sulfhydryl group Cys-592 residues and restricted the mobility of the active-site flap. Taken together, it could be deduced that BA was a competitive inhibitor targeting thiol groups of urease in a slow-binding manner both reversibly and concentration-dependently, serving as a promising urease inhibitor for treatments on urease-related diseases. PMID:24198731

  15. Non-competitive inhibition by active site binders.

    PubMed

    Blat, Yuval

    2010-06-01

    Classical enzymology has been used for generations to understand the interactions of inhibitors with their enzyme targets. Enzymology tools enabled prediction of the biological impact of inhibitors as well as the development of novel, more potent, ones. Experiments designed to examine the competition between the tested inhibitor and the enzyme substrate(s) are the tool of choice to identify inhibitors that bind in the active site. Competition between an inhibitor and a substrate is considered a strong evidence for binding of the inhibitor in the active site, while the lack of competition suggests binding to an alternative site. Nevertheless, exceptions to this notion do exist. Active site-binding inhibitors can display non-competitive inhibition patterns. This unusual behavior has been observed with enzymes utilizing an exosite for substrate binding, isomechanism enzymes, enzymes with multiple substrates and/or products and two-step binding inhibitors. In many of these cases, the mechanisms underlying the lack of competition between the substrate and the inhibitor are well understood. Tools like alternative substrates, testing the enzyme reaction in the reverse direction and monitoring inhibition time dependence can be applied to enable distinction between 'badly behaving' active site binders and true exosite inhibitors.

  16. The Welfare Effects of Monopoly versus Competition: A Clarification of Textbook Presentations.

    ERIC Educational Resources Information Center

    Lamdin, Douglas J.

    1992-01-01

    Addresses effects of monopoly and competition on societal welfare. Discusses inadequacy of economics textbooks. Concludes that most texts fail to explain the shape of monopolists' underlying cost curves. Argues that the monopolist's long run marginal cost curve cannot be obtained by horizontal summation of the long run marginal cost curves of…

  17. The structure of binding curves and practical identifiability of equilibrium ligand-binding parameters

    PubMed Central

    Middendorf, Thomas R.

    2017-01-01

    A critical but often overlooked question in the study of ligands binding to proteins is whether the parameters obtained from analyzing binding data are practically identifiable (PI), i.e., whether the estimates obtained from fitting models to noisy data are accurate and unique. Here we report a general approach to assess and understand binding parameter identifiability, which provides a toolkit to assist experimentalists in the design of binding studies and in the analysis of binding data. The partial fraction (PF) expansion technique is used to decompose binding curves for proteins with n ligand-binding sites exactly and uniquely into n components, each of which has the form of a one-site binding curve. The association constants of the PF component curves, being the roots of an n-th order polynomial, may be real or complex. We demonstrate a fundamental connection between binding parameter identifiability and the nature of these one-site association constants: all binding parameters are identifiable if the constants are all real and distinct; otherwise, at least some of the parameters are not identifiable. The theory is used to construct identifiability maps from which the practical identifiability of binding parameters for any two-, three-, or four-site binding curve can be assessed. Instructions for extending the method to generate identifiability maps for proteins with more than four binding sites are also given. Further analysis of the identifiability maps leads to the simple rule that the maximum number of structurally identifiable binding parameters (shown in the previous paper to be equal to n) will also be PI only if the binding curve line shape contains n resolved components. PMID:27993951

  18. Detection of Naja atra Cardiotoxin Using Adenosine-Based Molecular Beacon.

    PubMed

    Shi, Yi-Jun; Chen, Ying-Jung; Hu, Wan-Ping; Chang, Long-Sen

    2017-01-07

    This study presents an adenosine (A)-based molecular beacon (MB) for selective detection of Naja atra cardiotoxin (CTX) that functions by utilizing the competitive binding between CTX and the poly(A) stem of MB to coralyne. The 5'- and 3'-end of MB were labeled with a reporter fluorophore and a non-fluorescent quencher, respectively. Coralyne induced formation of the stem-loop MB structure through A₂-coralyne-A₂ coordination, causing fluorescence signal turn-off due to fluorescence resonance energy transfer between the fluorophore and quencher. CTX3 could bind to coralyne. Moreover, CTX3 alone induced the folding of MB structure and quenching of MB fluorescence. Unlike that of snake venom α-neurotoxins, the fluorescence signal of coralyne-MB complexes produced a bell-shaped concentration-dependent curve in the presence of CTX3 and CTX isotoxins; a turn-on fluorescence signal was noted when CTX concentration was ≤80 nM, while a turn-off fluorescence signal was noted with a further increase in toxin concentrations. The fluorescence signal of coralyne-MB complexes yielded a bell-shaped curve in response to varying concentrations of N. atra crude venom but not those of Bungarus multicinctus and Protobothrops mucrosquamatus venoms. Moreover, N. nigricollis venom also functioned as N. atra venom to yield a bell-shaped concentration-dependent curve of MB fluorescence signal, again supporting that the hairpin-shaped MB could detect crude venoms containing CTXs. Taken together, our data validate that a platform composed of coralyne-induced stem-loop MB structure selectively detects CTXs.

  19. Competitive Protein-binding assay-based Enzyme-immunoassay Method, Compared to High-pressure Liquid Chromatography, Has a Very Lower Diagnostic Value to Detect Vitamin D Deficiency in 9-12 Years Children.

    PubMed

    Zahedi Rad, Maliheh; Neyestani, Tirang Reza; Nikooyeh, Bahareh; Shariatzadeh, Nastaran; Kalayi, Ali; Khalaji, Niloufar; Gharavi, Azam

    2015-01-01

    The most reliable indicator of Vitamin D status is circulating concentration of 25-hydroxycalciferol (25(OH) D) routinely determined by enzyme-immunoassays (EIA) methods. This study was performed to compare commonly used competitive protein-binding assays (CPBA)-based EIA with the gold standard, high-pressure liquid chromatography (HPLC). Concentrations of 25(OH) D in sera from 257 randomly selected school children aged 9-11 years were determined by two methods of CPBA and HPLC. Mean 25(OH) D concentration was 22 ± 18.8 and 21.9 ± 15.6 nmol/L by CPBA and HPLC, respectively. However, mean 25(OH) D concentrations of the two methods became different after excluding undetectable samples (25.1 ± 18.9 vs. 29 ± 14.5 nmol/L, respectively; P = 0.04). Based on predefined Vitamin D deficiency as 25(OH) D < 12.5 nmol/L, CPBA sensitivity and specificity were 44.2% and 60.6%, respectively, compared to HPLC. In receiver operating characteristic curve analysis, the best cut-offs for CPBA was 5.8 nmol/L, which gave 82% sensitivity, but specificity was 17%. Though CPBA may be used as a screening tool, more reliable methods are needed for diagnostic purposes.

  20. Synthesis and characterization of time-resolved fluorescence probes for evaluation of competitive binding to melanocortin receptors.

    PubMed

    Alleti, Ramesh; Vagner, Josef; Dehigaspitiya, Dilani Chathurika; Moberg, Valerie E; Elshan, N G R D; Tafreshi, Narges K; Brabez, Nabila; Weber, Craig S; Lynch, Ronald M; Hruby, Victor J; Gillies, Robert J; Morse, David L; Mash, Eugene A

    2013-09-01

    Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these MSH(4) constructs than was previously reported. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effects of nano red elemental selenium on sodium currents in rat dorsal root ganglion neurons.

    PubMed

    Yuan, Huijun; Lin, Jiarui; Lan, Tonghan

    2006-01-01

    Nano red elemental selenium (Nano-Se), was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Se on sodium currents on rat dorsal root ganglion neurons (DRG), using the whole-cell patch clamp method. Nano-Se reversibly decrease the I(Na)(TTX-S) in a concentration-dependent, time-dependent and open-channel block manners without affecting I(Na)(TTX-R). It shifted the steady-state activation and inactivation curves for I(Na) to more negative potentials. In the research of recovery from inactivation, the recovery time constant is longer in the present of Nano-Se. Nano-Se had a weaker inhibitory effect on I(Na), compared with marked decrease caused by selenite which indicated that Nano-Se is less neurotoxic than selenite in short-term/large dose treatments and had similar bio availability to sodium selenite. The results of interaction between the effects of Nano-Se and selenite on sodium currents indicated a negative allosteric interaction between the selenite binding site and the Nano-Se binding site or that they have the same competitive binding site.

  2. Efficient elimination of nonstoichiometric enzyme inhibitors from HTS hit lists.

    PubMed

    Habig, Michael; Blechschmidt, Anke; Dressler, Sigmar; Hess, Barbara; Patel, Viral; Billich, Andreas; Ostermeier, Christian; Beer, David; Klumpp, Martin

    2009-07-01

    High-throughput screening often identifies not only specific, stoichiometrically binding inhibitors but also undesired compounds that unspecifically interfere with the targeted activity by nonstoichiometrically binding, unfolding, and/or inactivating proteins. In this study, the effect of such unwanted inhibitors on several different enzyme targets was assessed based on screening results for over a million compounds. In particular, the shift in potency on variation of enzyme concentration was used as a means to identify nonstoichiometric inhibitors among the screening hits. These potency shifts depended on both compound structure and target enzyme. The approach was confirmed by statistical analysis of thousands of dose-response curves, which showed that the potency of competitive and therefore clearly stoichiometric inhibitors was not affected by increasing enzyme concentration. Light-scattering measurements of thermal protein unfolding further verified that compounds that stabilize protein structure by stoichiometric binding show the same potency irrespective of enzyme concentration. In summary, measuring inhibitor IC(50) values at different enzyme concentrations is a simple, cost-effective, and reliable method to identify and eliminate compounds that inhibit a specific target enzyme via nonstoichiometric mechanisms.

  3. Agonist activation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site

    PubMed Central

    Gill, JasKiran K.; Savolainen, Mari; Young, Gareth T.; Zwart, Ruud; Sher, Emanuele; Millar, Neil S.

    2011-01-01

    Conventional nicotinic acetylcholine receptor (nAChR) agonists, such as acetylcholine, act at an extracellular “orthosteric” binding site located at the interface between two adjacent subunits. Here, we present evidence of potent activation of α7 nAChRs via an allosteric transmembrane site. Previous studies have identified a series of nAChR-positive allosteric modulators (PAMs) that lack agonist activity but are able to potentiate responses to orthosteric agonists, such as acetylcholine. It has been shown, for example, that TQS acts as a conventional α7 nAChR PAM. In contrast, we have found that a compound with close chemical similarity to TQS (4BP-TQS) is a potent allosteric agonist of α7 nAChRs. Whereas the α7 nAChR antagonist metyllycaconitine acts competitively with conventional nicotinic agonists, metyllycaconitine is a noncompetitive antagonist of 4BP-TQS. Mutation of an amino acid (M253L), located in a transmembrane cavity that has been proposed as being the binding site for PAMs, completely blocks agonist activation by 4BP-TQS. In contrast, this mutation had no significant effect on agonist activation by acetylcholine. Conversely, mutation of an amino acid located within the known orthosteric binding site (W148F) has a profound effect on agonist potency of acetylcholine (resulting in a shift of ∼200-fold in the acetylcholine dose-response curve), but had little effect on the agonist dose-response curve for 4BP-TQS. Computer docking studies with an α7 homology model provides evidence that both TQS and 4BP-TQS bind within an intrasubunit transmembrane cavity. Taken together, these findings provide evidence that agonist activation of nAChRs can occur via an allosteric transmembrane site. PMID:21436053

  4. How actin binds and assembles onto plasma membranes from Dictyostelium discoideum

    PubMed Central

    1988-01-01

    We have shown previously (Schwartz, M. A., and E. J. Luna. 1986. J. Cell Biol. 102: 2067-2075) that actin binds with positive cooperativity to plasma membranes from Dictyostelium discoideum. Actin is polymerized at the membrane surface even at concentrations well below the critical concentration for polymerization in solution. Low salt buffer that blocks actin polymerization in solution also prevents actin binding to membranes. To further explore the relationship between actin polymerization and binding to membranes, we prepared four chemically modified actins that appear to be incapable of polymerizing in solution. Three of these derivatives also lost their ability to bind to membranes. The fourth derivative (EF actin), in which histidine-40 is labeled with ethoxyformic anhydride, binds to membranes with reduced affinity. Binding curves exhibit positive cooperativity, and cross- linking experiments show that membrane-bound actin is multimeric. Thus, binding and polymerization are tightly coupled, and the ability of these membranes to polymerize actin is dramatically demonstrated. EF actin coassembles weakly with untreated actin in solution, but coassembles well on membranes. Binding by untreated actin and EF actin are mutually competitive, indicating that they bind to the same membrane sites. Hill plots indicate that an actin trimer is the minimum assembly state required for tight binding to membranes. The best explanation for our data is a model in which actin oligomers assemble by binding to clustered membrane sites with successive monomers on one side of the actin filament bound to the membrane. Individual binding affinities are expected to be low, but the overall actin-membrane avidity is high, due to multivalency. Our results imply that extracellular factors that cluster membrane proteins may create sites for the formation of actin nuclei and thus trigger actin polymerization in the cell. PMID:3392099

  5. Competitive tuning: Competition's role in setting the frequency-dependence of Ca2+-dependent proteins

    PubMed Central

    Patel, Neal M.; Kinzer-Ursem, Tamara L.

    2017-01-01

    A number of neurological disorders arise from perturbations in biochemical signaling and protein complex formation within neurons. Normally, proteins form networks that when activated produce persistent changes in a synapse’s molecular composition. In hippocampal neurons, calcium ion (Ca2+) flux through N-methyl-D-aspartate (NMDA) receptors activates Ca2+/calmodulin signal transduction networks that either increase or decrease the strength of the neuronal synapse, phenomena known as long-term potentiation (LTP) or long-term depression (LTD), respectively. The calcium-sensor calmodulin (CaM) acts as a common activator of the networks responsible for both LTP and LTD. This is possible, in part, because CaM binding proteins are “tuned” to different Ca2+ flux signals by their unique binding and activation dynamics. Computational modeling is used to describe the binding and activation dynamics of Ca2+/CaM signal transduction and can be used to guide focused experimental studies. Although CaM binds over 100 proteins, practical limitations cause many models to include only one or two CaM-activated proteins. In this work, we view Ca2+/CaM as a limiting resource in the signal transduction pathway owing to its low abundance relative to its binding partners. With this view, we investigate the effect of competitive binding on the dynamics of CaM binding partner activation. Using an explicit model of Ca2+, CaM, and seven highly-expressed hippocampal CaM binding proteins, we find that competition for CaM binding serves as a tuning mechanism: the presence of competitors shifts and sharpens the Ca2+ frequency-dependence of CaM binding proteins. Notably, we find that simulated competition may be sufficient to recreate the in vivo frequency dependence of the CaM-dependent phosphatase calcineurin. Additionally, competition alone (without feedback mechanisms or spatial parameters) could replicate counter-intuitive experimental observations of decreased activation of Ca2+/CaM-dependent protein kinase II in knockout models of neurogranin. We conclude that competitive tuning could be an important dynamic process underlying synaptic plasticity. PMID:29107982

  6. Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive-Allostery Mechanism.

    PubMed

    Singh, Appu Kumar; Ekka, Mary Krishna; Kaushik, Abhishek; Pandya, Vaibhav; Singh, Ravi P; Banerjee, Shrijita; Mittal, Monica; Singh, Vijay; Kumaran, S

    2017-09-19

    By classical competitive antagonism, a substrate and competitive inhibitor must bind mutually exclusively to the active site. The competitive inhibition of O-acetyl serine sulfhydrylase (OASS) by the C-terminus of serine acetyltransferase (SAT) presents a paradox, because the C-terminus of SAT binds to the active site of OASS with an affinity that is 4-6 log-fold (10 4 -10 6 ) greater than that of the substrate. Therefore, we employed multiple approaches to understand how the substrate gains access to the OASS active site under physiological conditions. Single-molecule and ensemble approaches showed that the active site-bound high-affinity competitive inhibitor is actively dissociated by the substrate, which is not consistent with classical views of competitive antagonism. We employed fast-flow kinetic approaches to demonstrate that substrate-mediated dissociation of full length SAT-OASS (cysteine regulatory complex) follows a noncanonical "facilitated dissociation" mechanism. To understand the mechanism by which the substrate induces inhibitor dissociation, we resolved the crystal structures of enzyme·inhibitor·substrate ternary complexes. Crystal structures reveal a competitive allosteric binding mechanism in which the substrate intrudes into the inhibitor-bound active site and disengages the inhibitor before occupying the site vacated by the inhibitor. In summary, here we reveal a new type of competitive allosteric binding mechanism by which one of the competitive antagonists facilitates the dissociation of the other. Together, our results indicate that "competitive allostery" is the general feature of noncanonical "facilitated/accelerated dissociation" mechanisms. Further understanding of the mechanistic framework of "competitive allosteric" mechanism may allow us to design a new family of "competitive allosteric drugs/small molecules" that will have improved selectivity and specificity as compared to their competitive and allosteric counterparts.

  7. Specific binding of nicergoline on an alpha1-like adrenoreceptor in the rat retina.

    PubMed

    Lograno, M D; Tricarico, D; Masciopinto, V; Scuderl, A C

    2000-02-01

    Systemic treatment with nicergoline, an ergoline derivative showing alpha1-antagonist properties, causes vasodilatation in the eye without apparent untoward cardiovascular effects. In the present work we investigated the ability of nicergoline to inhibit the binding of radiolabelled prazosin in the rat retina and cortex. We found that nicergoline inhibited [3H]prazosin binding in both tissues, being more potent than unlabelled prazosin in the retinal tissue. The competition curves of the ergoline derivative were well fitted by a one-site model in the cortical tissue, with an IC50 (concentration of the drugs needed to inhibit the binding of labelled prazosin by 50%) of 2.54 x 10(-8) M, and by a two-site model in the retinal tissue, with IC50 values of 7.08 x 10(-12) M and 1.82 x 10(-5) M. 2-(2,6 dimetoxyphenoxyethyl) aminomethyl-1,4-benzodioxane hydrochloride (WB4101) and phentolamine, selective ligands for the high-affinity binding site for prazosin, in particular the alpha1A-site, fully inhibited prazosin binding in the cortex but only partially inhibited prazosin binding in the retina, being less potent in this tissue than either nicergoline or prazosin. Our results suggest that a binding component of alpha1-adrenoreceptors is expressed to a lesser extent in the retina than the cortex, leading to a reduced response of the retinal tissue to prazosin, and more particularly to WB4101 and phentolamine. The selective binding of the nicergoline on this retinal adrenoreceptor may explain the peculiar efficacy of the drug in ocular pathophysiology.

  8. Two active molecular phenotypes of the tachykinin NK1 receptor revealed by G-protein fusions and mutagenesis.

    PubMed

    Holst, B; Hastrup, H; Raffetseder, U; Martini, L; Schwartz, T W

    2001-06-08

    The NK1 neurokinin receptor presents two non-ideal binding phenomena, two-component binding curves for all agonists and significant differences between agonist affinity determined by homologous versus heterologous competition binding. Whole cell binding with fusion proteins constructed between either Galpha(s) or Galpha(q) and the NK1 receptor with a truncated tail, which secured non-promiscuous G-protein interaction, demonstrated monocomponent agonist binding closely corresponding to either of the two affinity states found in the wild-type receptor. High affinity binding of both substance P and neurokinin A was observed in the tail-truncated Galpha(s) fusion construct, whereas the lower affinity component was displayed by the tail-truncated Galpha(q) fusion. The elusive difference between the affinity determined in heterologous versus homologous binding assays for substance P and especially for neurokinin A was eliminated in the G-protein fusions. An NK1 receptor mutant with a single substitution at the extracellular end of TM-III-(F111S), which totally uncoupled the receptor from Galpha(s) signaling, showed binding properties that were monocomponent and otherwise very similar to those observed in the tail-truncated Galpha(q) fusion construct. Thus, the heterogenous pharmacological phenotype displayed by the NK1 receptor is a reflection of the occurrence of two active conformations or molecular phenotypes representing complexes with the Galpha(s) and Galpha(q) species, respectively. We propose that these molecular forms do not interchange readily, conceivably because of the occurrence of microdomains or "signal-transductosomes" within the cell membrane.

  9. SB265610 is an allosteric, inverse agonist at the human CXCR2 receptor

    PubMed Central

    Bradley, ME; Bond, ME; Manini, J; Brown, Z; Charlton, SJ

    2009-01-01

    Background and purpose: In several previous studies, the C-X-C chemokine receptor (CXCR)2 antagonist 1-(2-bromo-phenyl)-3-(7-cyano-3H-benzotriazol-4-yl)-urea (SB265610) has been described as binding competitively with the endogenous agonist. This is in contrast to many other chemokine receptor antagonists, where the mechanism of antagonism has been described as allosteric. Experimental approach: To determine whether it displays a unique mechanism among the chemokine receptor antagonists, the mode of action of SB265610 was investigated at the CXCR2 receptor using radioligand and [35S]-GTPγS binding approaches in addition to chemotaxis of human neutrophils. Key results: In equilibrium saturation binding studies, SB265610 depressed the maximal binding of [125I]-interleukin-8 ([125I]-IL-8) without affecting the Kd. In contrast, IL-8 was unable to prevent binding of [3H]-SB265610. Kinetic binding experiments demonstrated that this was not an artefact of irreversible or slowly reversible binding. In functional experiments, SB265610 caused a rightward shift of the concentration-response curves to IL-8 and growth-related oncogene α, but also a reduction in maximal response elicited by each agonist. Fitting these data to an operational allosteric ternary complex model suggested that, once bound, SB265610 completely blocks receptor activation. SB265610 also inhibited basal [35S]-GTPγS binding in this preparation. Conclusions and implications: Taken together, these data suggest that SB265610 behaves as an allosteric inverse agonist at the CXCR2 receptor, binding at a region distinct from the agonist binding site to prevent receptor activation, possibly by interfering with G protein coupling. PMID:19422399

  10. Towards enhanced and interpretable clustering/classification in integrative genomics

    PubMed Central

    Lu, Yang Young; Lv, Jinchi; Fuhrman, Jed A.

    2017-01-01

    Abstract High-throughput technologies have led to large collections of different types of biological data that provide unprecedented opportunities to unravel molecular heterogeneity of biological processes. Nevertheless, how to jointly explore data from multiple sources into a holistic, biologically meaningful interpretation remains challenging. In this work, we propose a scalable and tuning-free preprocessing framework, Heterogeneity Rescaling Pursuit (Hetero-RP), which weighs important features more highly than less important ones in accord with implicitly existing auxiliary knowledge. Finally, we demonstrate effectiveness of Hetero-RP in diverse clustering and classification applications. More importantly, Hetero-RP offers an interpretation of feature importance, shedding light on the driving forces of the underlying biology. In metagenomic contig binning, Hetero-RP automatically weighs abundance and composition profiles according to the varying number of samples, resulting in markedly improved performance of contig binning. In RNA-binding protein (RBP) binding site prediction, Hetero-RP not only improves the prediction performance measured by the area under the receiver operating characteristic curves (AUC), but also uncovers the evidence supported by independent studies, including the distribution of the binding sites of IGF2BP and PUM2, the binding competition between hnRNPC and U2AF2, and the intron–exon boundary of U2AF2 [availability: https://github.com/younglululu/Hetero-RP]. PMID:28977511

  11. Competitive Protein-binding assay-based Enzyme-immunoassay Method, Compared to High-pressure Liquid Chromatography, Has a Very Lower Diagnostic Value to Detect Vitamin D Deficiency in 9–12 Years Children

    PubMed Central

    Zahedi Rad, Maliheh; Neyestani, Tirang Reza; Nikooyeh, Bahareh; Shariatzadeh, Nastaran; Kalayi, Ali; Khalaji, Niloufar; Gharavi, Azam

    2015-01-01

    Background: The most reliable indicator of Vitamin D status is circulating concentration of 25-hydroxycalciferol (25(OH) D) routinely determined by enzyme-immunoassays (EIA) methods. This study was performed to compare commonly used competitive protein-binding assays (CPBA)-based EIA with the gold standard, high-pressure liquid chromatography (HPLC). Methods: Concentrations of 25(OH) D in sera from 257 randomly selected school children aged 9–11 years were determined by two methods of CPBA and HPLC. Results: Mean 25(OH) D concentration was 22 ± 18.8 and 21.9 ± 15.6 nmol/L by CPBA and HPLC, respectively. However, mean 25(OH) D concentrations of the two methods became different after excluding undetectable samples (25.1 ± 18.9 vs. 29 ± 14.5 nmol/L, respectively; P = 0.04). Based on predefined Vitamin D deficiency as 25(OH) D < 12.5 nmol/L, CPBA sensitivity and specificity were 44.2% and 60.6%, respectively, compared to HPLC. In receiver operating characteristic curve analysis, the best cut-offs for CPBA was 5.8 nmol/L, which gave 82% sensitivity, but specificity was 17%. Conclusions: Though CPBA may be used as a screening tool, more reliable methods are needed for diagnostic purposes. PMID:26330983

  12. How much of virus-specific CD8 T cell reactivity is detected with a peptide pool when compared to individual peptides?

    PubMed

    Zhang, Wenji; Moldovan, Ioana; Targoni, Oleg S; Subbramanian, Ramu A; Lehmann, Paul V

    2012-10-29

    Immune monitoring of T cell responses increasingly relies on the use of peptide pools. Peptides, when restricted by the same HLA allele, and presented from within the same peptide pool, can compete for HLA binding sites. What impact such competition has on functional T cell stimulation, however, is not clear. Using a model peptide pool that is comprised of 32 well-defined viral epitopes from Cytomegalovirus, Epstein-Barr virus, and Influenza viruses (CEF peptide pool), we assessed peptide competition in PBMC from 42 human subjects. The magnitude of the peptide pool-elicited CD8 T cell responses was a mean 79% and a median 77% of the sum of the CD8 T cell responses elicited by the individual peptides. Therefore, while the effect of peptide competition was evident, it was of a relatively minor magnitude. By studying the dose-response curves for individual CEF peptides, we show that several of these peptides are present in the CEF-pool at concentrations that are orders of magnitude in excess of what is needed for the activation threshold of the CD8 T cells. The presence of such T cells with very high functional avidity for the viral antigens can explain why the effect of peptide competition is relatively minor within the CEF-pool.

  13. Constitutive activity of the δ-opioid receptor expressed in C6 glioma cells: identification of non-peptide δ-inverse agonists

    PubMed Central

    Neilan, Claire L; Akil, Huda; Woods, James H; Traynor, John R

    1999-01-01

    G-protein coupled receptors can exhibit constitutive activity resulting in the formation of active ternary complexes in the absence of an agonist. In this study we have investigated constitutive activity in C6 glioma cells expressing either the cloned δ-(OP1) receptor (C6δ), or the cloned μ-(OP3) opioid receptor (C6μ).Constitutive activity was measured in the absence of Na+ ions to provide an increased signal. The degree of constitutive activity was defined as the level of [35S]-GTPγS binding that could be inhibited by pre-treatment with pertussis toxin (PTX). In C6δ cells the level of basal [35S]-GTPγS binding was reduced by 51.9±6.1 fmols mg−1 protein, whereas in C6μ and C6 wild-type cells treatment with PTX reduced basal [35S]-GTPγS binding by only 10.0±3.5 and 8.6±3.1 fmols mg−1 protein respectively.The δ-antagonists N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI 174,864), 7-benzylidenenaltrexone (BNTX) and naltriben (NTB), in addition to clocinnamox (C-CAM), acted as δ-opioid receptor inverse agonists. Naloxone, buprenorphine, and naltrindole were neutral antagonists. Furthermore, naltrindole blocked the reduction in [35S]-GTPγS binding caused by the inverse agonists. The inverse agonists did not inhibit basal [35S]-GTPγS binding in C6μ or C6 wild-type cell membranes.Competition binding assays in C6δ cell membranes revealed a leftward shift in the displacement curve of [3H]-naltrindole by ICI 174,864 and C-CAM in the presence of NaCl and the GTP analogue, GppNHp. There was no change in the displacement curve for BNTX or NTB under these conditions.These data confirm the presence of constitutive activity associated with the δ-opioid receptor and identify three novel, non-peptide, δ-opioid inverse agonists. PMID:10516632

  14. Binding properties of food colorant allura red with human serum albumin in vitro.

    PubMed

    Wang, Langhong; Zhang, Guowen; Wang, Yaping

    2014-05-01

    Allura red (AR) is a widely used colorant in food industry, but may have a potential security risk. In this study, the properties of interaction between AR and human serum albumin (HSA) in vitro were determined by fluorescence, UV-Vis absorption and circular dichroism (CD) spectroscopy combining with multivariate curve resolution-alternating least squares (MCR-ALS) chemometrics and molecular modeling approaches. An expanded UV-Vis data matrix was resolved by MCR-ALS method, and the concentration profiles and pure spectra for the three reaction components (AR, HSA, and AR-HSA complex) of the system were then successfully obtained to evaluate the progress interaction of AR with HSA. The calculated thermodynamic parameters indicated that hydrogen binding and hydrophobic interactions played major roles in the binding process, and the interaction induced a decrease in the protein surface hydrophobicity. The competitive experiments revealed that AR mainly located in Sudlow's site I of HSA, and this result was further supported by molecular modeling studies. Analysis of CD spectra found that the addition of AR induced the conformational changes of HSA. This study have provided new insight into the mechanism of interaction between AR and HSA.

  15. Paracetamol and cytarabine binding competition in high affinity binding sites of transporting protein

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2006-07-01

    Paracetamol (acetaminophen, AA) the most popular analgesic drug is commonly used in the treatment of pain in patients suffering from cancer. In our studies, we evaluated the competition in binding with serum albumin between paracetamol (AA) and cytarabine, antyleukemic drug (araC). The presence of one drug can alter the binding affinity of albumin towards the second one. Such interaction can result in changing of the free fraction of the one of these drugs in blood. Two spectroscopic methods were used to determine high affinity binding sites and the competition of the drugs. Basing on the change of the serum albumin fluorescence in the presence of either of the drugs the quenching ( KQ) constants for the araC-BSA and AA-BSA systems were calculated. Analysis of UV difference spectra allowed us to describe the changes in drug-protein complexes (araC-albumin and AA-albumin) induced by the presence of the second drug (AA and araC, respectively). The mechanism of competition between araC and AA has been proposed.

  16. Competitive counterion complexation allows the true host : guest binding constants from a single titration by ionic receptors.

    PubMed

    Pessêgo, Márcia; Basílio, Nuno; Muñiz, M Carmen; García-Río, Luis

    2016-07-06

    Counterion competitive complexation is a background process currently ignored by using ionic hosts. Consequently, guest binding constants are strongly affected by the design of the titration experiments in such a way that the results are dependent on the guest concentration and on the presence of added salts, usually buffers. In the present manuscript we show that these experimental difficulties can be overcome by just considering the counterion competitive complexation. Moreover a single titration allows us to obtain not only the true binding constants but also the stoichiometry of the complex showing the formation of 1 : 1 : 1 (host : guest : counterion) complexes. The detection of high stoichiometry complexes is not restricted to a single titration experiment but also to a displacement assay where both competitive and competitive-cooperative complexation models are taken into consideration.

  17. beta-Endorphin-induced analgesia is inhibited by synthetic analogs of beta-endorphin.

    PubMed

    Nicolas, P; Hammonds, R G; Li, C H

    1984-05-01

    Competitive antagonism of human beta-endorphin (beta h-EP)-induced analgesia by synthetic beta h-EP analogs with high in vitro opiate receptor binding to in vivo analgesic potency ratio has been demonstrated. A parallel shift of the dose-response curve for analgesia to the right was observed when either beta h-EP or [ Trp27 ] -beta h-EP was coinjected with various doses of [Gln8, Gly31 ]-beta h-EP-Gly-Gly-NH2, [Arg9,19,24,28,29]-beta h-EP, or [ Cys11 ,26, Phe27 , Gly31 ]-beta h-EP. It was estimated that the most potent antagonist, [Gln8, Gly31 ]-beta h-EP-Gly-NH2, is at least 200 times more potent than naloxone.

  18. Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades

    USGS Publications Warehouse

    Reddy, M.M.; Aiken, G.R.

    2001-01-01

    Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.

  19. Analysis of solute-protein interactions and solute-solute competition by zonal elution affinity chromatography.

    PubMed

    Tao, Pingyang; Poddar, Saumen; Sun, Zuchen; Hage, David S; Chen, Jianzhong

    2018-02-02

    Many biological processes involve solute-protein interactions and solute-solute competition for protein binding. One method that has been developed to examine these interactions is zonal elution affinity chromatography. This review discusses the theory and principles of zonal elution affinity chromatography, along with its general applications. Examples of applications that are examined include the use of this method to estimate the relative extent of solute-protein binding, to examine solute-solute competition and displacement from proteins, and to measure the strength of these interactions. It is also shown how zonal elution affinity chromatography can be used in solvent and temperature studies and to characterize the binding sites for solutes on proteins. In addition, several alternative applications of zonal elution affinity chromatography are discussed, which include the analysis of binding by a solute with a soluble binding agent and studies of allosteric effects. Other recent applications that are considered are the combined use of immunoextraction and zonal elution for drug-protein binding studies, and binding studies that are based on immobilized receptors or small targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Characterization of nicotine binding to the rat brain P/sub 2/ preparation: the identification of multiple binding sites which include specific up-regulatory site(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloan, J.W.

    1984-01-01

    These studies show that nicotine binds to the rat brain P/sub 2/ preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) havemore » been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-(/sup 3/H)nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-(/sup 3/H)nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine.« less

  1. The Role of Competitive Inhibition and Top-Down Feedback in Binding during Object Recognition

    PubMed Central

    Wyatte, Dean; Herd, Seth; Mingus, Brian; O’Reilly, Randall

    2012-01-01

    How does the brain bind together visual features that are processed concurrently by different neurons into a unified percept suitable for processes such as object recognition? Here, we describe how simple, commonly accepted principles of neural processing can interact over time to solve the brain’s binding problem. We focus on mechanisms of neural inhibition and top-down feedback. Specifically, we describe how inhibition creates competition among neural populations that code different features, effectively suppressing irrelevant information, and thus minimizing illusory conjunctions. Top-down feedback contributes to binding in a similar manner, but by reinforcing relevant features. Together, inhibition and top-down feedback contribute to a competitive environment that ensures only the most appropriate features are bound together. We demonstrate this overall proposal using a biologically realistic neural model of vision that processes features across a hierarchy of interconnected brain areas. Finally, we argue that temporal synchrony plays only a limited role in binding – it does not simultaneously bind multiple objects, but does aid in creating additional contrast between relevant and irrelevant features. Thus, our overall theory constitutes a solution to the binding problem that relies only on simple neural principles without any binding-specific processes. PMID:22719733

  2. Discovery of novel urokinase plasminogen activator (uPA) inhibitors using ligand-based modeling and virtual screening followed by in vitro analysis.

    PubMed

    Al-Sha'er, Mahmoud A; Khanfar, Mohammad A; Taha, Mutasem O

    2014-01-01

    Urokinase plasminogen activator (uPA)-a serine protease-is thought to play a central role in tumor metastasis and angiogenesis and, therefore, inhibition of this enzyme could be beneficial in treating cancer. Toward this end, we explored the pharmacophoric space of 202 uPA inhibitors using seven diverse sets of inhibitors to identify high-quality pharmacophores. Subsequently, we employed genetic algorithm-based quantitative structure-activity relationship (QSAR) analysis as a competition arena to select the best possible combination of pharmacophoric models and physicochemical descriptors that can explain bioactivity variation within the training inhibitors (r (2) 162 = 0.74, F-statistic = 64.30, r (2) LOO = 0.71, r (2) PRESS against 40 test inhibitors = 0.79). Three orthogonal pharmacophores emerged in the QSAR equation suggesting the existence of at least three binding modes accessible to ligands within the uPA binding pocket. This conclusion was supported by receiver operating characteristic (ROC) curve analyses of the QSAR-selected pharmacophores. Moreover, the three pharmacophores were comparable with binding interactions seen in crystallographic structures of bound ligands within the uPA binding pocket. We employed the resulting pharmacophoric models and associated QSAR equation to screen the national cancer institute (NCI) list of compounds. The captured hits were tested in vitro. Overall, our modeling workflow identified new low micromolar anti-uPA hits.

  3. Virus Neutralisation: New Insights from Kinetic Neutralisation Curves

    PubMed Central

    Magnus, Carsten

    2013-01-01

    Antibodies binding to the surface of virions can lead to virus neutralisation. Different theories have been proposed to determine the number of antibodies that must bind to a virion for neutralisation. Early models are based on chemical binding kinetics. Applying these models lead to very low estimates of the number of antibodies needed for neutralisation. In contrast, according to the more conceptual approach of stoichiometries in virology a much higher number of antibodies is required for virus neutralisation by antibodies. Here, we combine chemical binding kinetics with (virological) stoichiometries to better explain virus neutralisation by antibody binding. This framework is in agreement with published data on the neutralisation of the human immunodeficiency virus. Knowing antibody reaction constants, our model allows us to estimate stoichiometrical parameters from kinetic neutralisation curves. In addition, we can identify important parameters that will make further analysis of kinetic neutralisation curves more valuable in the context of estimating stoichiometries. Our model gives a more subtle explanation of kinetic neutralisation curves in terms of single-hit and multi-hit kinetics. PMID:23468602

  4. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing

    PubMed Central

    Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric

    2017-01-01

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457

  5. Characterization of (/sup 3/H)pirenzepine binding to muscarinic cholinergic receptors solubilized from rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luthin, G.R.; Wolfe, B.B.

    Membranes prepared from rat cerebral cortex were solubilized in buffer containing 1% digitonin. Material present in the supernatant after centrifugation at 147,000 X g was shown to contain binding sites for both (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) and (/sup 3/H)pirenzepine ((/sup 3/H)PZ). Recovery of binding sites was approximately 25% of the initial membrane-bound (/sup 3/H)QNB binding sites. The Kd values for (/sup 3/H)QNB and (/sup 3/H)PZ binding to solubilized receptors were 0.3 nM and 0.1 microM, respectively. As has been observed previously in membrane preparations, (/sup 3/H)PZ appeared to label fewer solubilized binding sites than did (/sup 3/H)QNB. Maximum bindingmore » values for (/sup 3/H)PZ and (/sup 3/H)QNB binding to solubilized receptors were approximately 400 and 950 fmol/mg of protein, respectively. Competition curves for PZ inhibiting the binding of (/sup 3/H)QNB, however, had Hill slopes of 1, with a Ki value of 0.24 microM. The k1 and k-1 for (/sup 3/H)PZ binding were 3.5 X 10(6) M-1 min-1 and 0.13 min-1, respectively. The muscarinic receptor antagonists atropine, scopolamine and PZ inhibited the binding of (/sup 3/H)QNB and (/sup 3/H)PZ to solubilized receptors with Hill slopes of 1, as did the muscarinic receptor agonist oxotremorine. The muscarinic receptor agonist carbachol competed for (/sup 3/H)QNB and (/sup 3/H)PZ binding with a Hill slope of less than 1 in cerebral cortex, but not in cerebellum. GTP did not alter the interactions of carbachol or oxotremorine with the solubilized receptor. Together, these data suggest that muscarinic receptor sites solubilized from rat brain retain their abilities to interact selectively with muscarinic receptor agonists and antagonists.« less

  6. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor: a study based on biosensor technology.

    PubMed

    List, K; Høyer-Hansen, G; Rønne, E; Danø, K; Behrendt, N

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interference with conformational properties of the receptor critical for ligand binding. This distinction is central when employing the antibodies as tools in the elucidation of the structure-function relationship of the protein in question. We have studied the effect of monoclonal antibodies against the urokinase plasminogen activator receptor (uPAR), a protein located on the surface of various types of malignant and normal cells which is involved in the direction of proteolytic degradation reactions in the extracellular matrix. We show that surface plasmon resonance/biomolecular interaction analysis (BIA) can be employed as a highly useful tool to characterize the inhibitory mechanism of specific antagonist antibodies. Two inhibitory antibodies against uPAR, mAb R3 and mAb R5, were shown to exhibit competitive and non-competitive inhibition, respectively, of ligand binding to the receptor. The former antibody efficiently blocked the receptor against subsequent ligand binding but was unable to promote the dissociation of a preformed receptor-ligand complex. The latter antibody was capable of binding the preformed complex, forming a transient trimolecular assembly, and promoting the dissociation of the uPA/uPAR complex. The continuous recording of binding and dissociation, obtained in BIA, is central in characterizing these phenomena. The identification of a non-competitive inhibitory mechanism against this receptor reveals the presence of a determinant which influences the binding properties of a remote site in the molecular structure and which could be an important target for a putative synthetic antagonist.

  7. Determining ERβ Binding Affinity to Singly Mutant ERE Using Dual Polarization Interferometry

    NASA Astrophysics Data System (ADS)

    Song, Hong Yan; Su, Xiaodi

    In a classic mode of estrogen action, estrogen receptors (ERs) bind to estrogen responsive element (ERE) to activate gene transcription. A perfect ERE contains a 13-base pair sequence of a palindromic repeat separated by a three-base spacer, 5‧-GGTCAnnnTGACC-3‧. In addition to the consensus or wild-type ERE (wtERE), naturally occurring EREs often have one or two base pairs’ alternation. Based on the newly constructed Thermodynamic Modeling of ChIP-seq (TherMos) model, binding energy between ERβ and a series of 34-bp mutant EREs (mutERE) was simulated to predict the binding affinity between ERs and EREs with single base pair deviation at different sites of the 13-bp inverted sequence. Experimentally, dual polarization interferometry (DPI) method was developed to measure ERβ-mutEREs binding affinity. On a biotin-NeutrAvidin (NA)-biotin treated DPI chip, wtERE is immobilized. In a direct binding assay, ERβ-wtERE binding affinity is determined. In a competition assay, ERβ was preincubated with mutant EREs before being added for competitive binding to the immobilized wtERE. This competition strategy provided a successful platform to evaluate the binding affinity variation among large number of ERE with different base mutations. The experimental result correlates well with the mathematically predicted binding energy with a Spearman correlation coefficient of 0.97.

  8. Early stages of clathrin aggregation at a membrane in coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Giani, M.; den Otter, W. K.; Briels, W. J.

    2017-04-01

    The self-assembly process of clathrin coated pits during endocytosis has been simulated by combining and extending coarse grained models of the clathrin triskelion, the adaptor protein AP2, and a flexible network membrane. The AP2's core, upon binding to membrane and cargo, releases a motif that can bind clathrin. In conditions where the core-membrane-cargo binding is weak, the binding of this motif to clathrin can result in a stable complex. We characterize the conditions and mechanisms resulting in the formation of clathrin lattices that curve the membrane, i.e., clathrin coated pits. The mechanical properties of the AP2 β linker appear crucial to the orientation of the curved clathrin lattice relative to the membrane, with wild-type short linkers giving rise to the inward curving buds enabling endocytosis while long linkers produce upside-down cages and outward curving bulges.

  9. An ensemble model of competitive multi-factor binding of the genome

    PubMed Central

    Wasson, Todd; Hartemink, Alexander J.

    2009-01-01

    Hundreds of different factors adorn the eukaryotic genome, binding to it in large number. These DNA binding factors (DBFs) include nucleosomes, transcription factors (TFs), and other proteins and protein complexes, such as the origin recognition complex (ORC). DBFs compete with one another for binding along the genome, yet many current models of genome binding do not consider different types of DBFs together simultaneously. Additionally, binding is a stochastic process that results in a continuum of binding probabilities at any position along the genome, but many current models tend to consider positions as being either binding sites or not. Here, we present a model that allows a multitude of DBFs, each at different concentrations, to compete with one another for binding sites along the genome. The result is an “occupancy profile,” a probabilistic description of the DNA occupancy of each factor at each position. We implement our model efficiently as the software package COMPETE. We demonstrate genome-wide and at specific loci how modeling nucleosome binding alters TF binding, and vice versa, and illustrate how factor concentration influences binding occupancy. Binding cooperativity between nearby TFs arises implicitly via mutual competition with nucleosomes. Our method applies not only to TFs, but also recapitulates known occupancy profiles of a well-studied replication origin with and without ORC binding. Importantly, the sequence preferences our model takes as input are derived from in vitro experiments. This ensures that the calculated occupancy profiles are the result of the forces of competition represented explicitly in our model and the inherent sequence affinities of the constituent DBFs. PMID:19720867

  10. The Effect of Salts in Promoting Specific and Competitive Interactions between Zinc Finger Proteins and Metals

    NASA Astrophysics Data System (ADS)

    Li, Gongyu; Yuan, Siming; Zheng, Shihui; Chen, Yuting; Zheng, Zhen; Liu, Yangzhong; Huang, Guangming

    2017-12-01

    Specific protein-metal interactions (PMIs) fulfill essential functions in cells and organic bodies, and activation of these functions in vivo are mostly modulated by the complex environmental factors, including pH value, small biomolecules, and salts. Specifically, the role of salts in promoting specific PMIs and their competition among various metals has remained untapped mainly due to the difficulty to distinguish nonspecific PMIs from specific PMIs by classic spectroscopic techniques. Herein, we report Hofmeister salts differentially promote the specific PMIs by combining nanoelectrospray ionization mass spectrometry and spectroscopic techniques (fluorescence measurement and circular dichroism). Furthermore, to explore the influence of salts in competitive binding between metalloproteins and various metals, we designed a series of competitive experiments and applied to a well-defined model system, the competitive binding of zinc (II) and arsenic (III) to holo-promyelocytic leukemia protein (PML). These experiments not only provided new insights at the molecular scale as complementary to previous NMR and spectroscopic results, but also deduced the relative binding ability between zinc finger proteins and metals at the molecular scale, which avoids the mass spectrometric titration-based determination of binding constants that is frequently affected and often degraded by variable solution conditions including salt contents. [Figure not available: see fulltext.

  11. beta-Endorphin-induced analgesia is inhibited by synthetic analogs of beta-endorphin.

    PubMed Central

    Nicolas, P; Hammonds, R G; Li, C H

    1984-01-01

    Competitive antagonism of human beta-endorphin (beta h-EP)-induced analgesia by synthetic beta h-EP analogs with high in vitro opiate receptor binding to in vivo analgesic potency ratio has been demonstrated. A parallel shift of the dose-response curve for analgesia to the right was observed when either beta h-EP or [ Trp27 ] -beta h-EP was coinjected with various doses of [Gln8, Gly31 ]-beta h-EP-Gly-Gly-NH2, [Arg9,19,24,28,29]-beta h-EP, or [ Cys11 ,26, Phe27 , Gly31 ]-beta h-EP. It was estimated that the most potent antagonist, [Gln8, Gly31 ]-beta h-EP-Gly-NH2, is at least 200 times more potent than naloxone. PMID:6328494

  12. Systematic Interpolation Method Predicts Antibody Monomer-Dimer Separation by Gradient Elution Chromatography at High Protein Loads.

    PubMed

    Creasy, Arch; Reck, Jason; Pabst, Timothy; Hunter, Alan; Barker, Gregory; Carta, Giorgio

    2018-05-29

    A previously developed empirical interpolation (EI) method is extended to predict highly overloaded multicomponent elution behavior on a cation exchange (CEX) column based on batch isotherm data. Instead of a fully mechanistic model, the EI method employs an empirically modified multicomponent Langmuir equation to correlate two-component adsorption isotherm data at different salt concentrations. Piecewise cubic interpolating polynomials are then used to predict competitive binding at intermediate salt concentrations. The approach is tested for the separation of monoclonal antibody monomer and dimer mixtures by gradient elution on the cation exchange resin Nuvia HR-S. Adsorption isotherms are obtained over a range of salt concentrations with varying monomer and dimer concentrations. Coupled with a lumped kinetic model, the interpolated isotherms predict the column behavior for highly overloaded conditions. Predictions based on the EI method showed good agreement with experimental elution curves for protein loads up to 40 mg/mL column or about 50% of the column binding capacity. The approach can be extended to other chromatographic modalities and to more than two components. This article is protected by copyright. All rights reserved.

  13. Development of a noncompetitive phage anti-immunocomplex assay for brominated diphenyl ether 47

    PubMed Central

    Kim, Hee-Joo; Rossotti, Martin A.; Ahn, Ki Chang; González-Sapienza, Gualberto G.; Gee, Shirley J.; Musker, Ruthie; Hammock, Bruce D.

    2010-01-01

    We present a new application of the noncompetitive phage anti-immunocomplex assay (PHAIA) by converting an existing competitive assay to a versatile noncompetitive sandwich-type format using immunocomplex binding phage-borne peptides to detect the brominated flame retardant, brominated diphenyl ether 47 (BDE 47). Three phage-displayed 9-mer disulfide-constrained peptides that recognize the BDE 47–polyclonal antibody immunocomplex were isolated. The resulting PHAIAs showed variable sensitivities, and the most sensitive peptide had a dose–response curve with an SC50 (concentration of analyte producing 50% saturation of the signal) of 0.7 ng/ml BDE 47 and a linear range of 0.3–2 ng/ml, which was nearly identical to the best heterologous competitive format (IC50 of 1.8 ng/ml, linear range of 0.4–8.5/ml). However, the PHAIA was 1400-fold better than homologous competitive assay. The validation of the PHAIA with extracts of house furniture foam as well as human and calf sera spiked with BDE 47 showed overall recovery of 80–113%. The PHAIA was adapted to a dipstick format (limit of detection of 3.0 ng/ml), and a blind test with six random extracts of local house furniture foams showed that the results of the PHAIA and dipstick assay were consistent, giving the same positive and negative detection. PMID:20152791

  14. Pharmacological characterization of the cysteinyl-leukotriene antagonists CGP 45715A (iralukast) and CGP 57698 in human airways in vitro

    PubMed Central

    Capra, Valérie; Bolla, Manlio; Angelo Belloni, Pier; Mezzetti, Maurizio; Carlo Folco, G; Nicosia, Simonetta; Enrico Rovati, G

    1998-01-01

    Cysteinyl-leukotrienes (cysteinyl-LTs) are important mediators in the pathogenesis of asthma. They cause bronchoconstriction, mucus hypersecretion, increase in microvascular permeability, plasma extravasation and eosinophil recruitment. We investigated the pharmacological profile of the cysteinyl-LT antagonists CGP 45715A (iralukast), a structural analogue of LTD4 and CGP 57698, a quinoline type antagonist, in human airways in vitro, by performing binding studies on human lung parenchyma membranes and functional studies on human isolated bronchial strips. Competition curves vs [3H]-LTD4 on human lung parenchyma membranes demonstrated that: (a) both antagonists were able to compete for the two sites labelled by [3H]-LTD4; (b) as in all the G-protein coupled receptors, iralukast and CGP 57698 did not discriminate between the high and the low affinity states of the CysLT receptor labelled by LTD4 (Ki1=Ki2=16.6 nM±36% CV and Ki1= Ki2=5.7 nM±19% CV, respectively); (c) iralukast, but not CGP 57698, displayed a slow binding kinetic, because preincubation (15 min) increased its antagonist potency. In functional studies: (a) iralukast and CGP 57698 antagonized LTD4-induced contraction of human bronchi, with pA2 values of 7.77±4.3% CV and 8.51±1.6% CV, respectively, and slopes not significantly different from unity; (b) the maximal LTD4 response in the presence of CGP 57698 was actually increased, thus clearly deviating from apparent simple competition. Both antagonists significantly inhibited antigen-induced contraction of human isolated bronchial strips in a concentration-dependent manner, lowering the upper plateau of the anti-IgE curves. In conclusion, the results of the present in vitro investigation indicate that iralukast and CGP 57698 are potent antagonists of LTD4 in human airways, with affinities in the nanomolar range, similar to those obtained for ICI 204,219 and ONO 1078, two of the most clinically advanced CysLT receptor antagonists. Thus, these compounds might be useful drugs for the therapy of asthma and other allergic diseases. PMID:9504401

  15. A novel injection strategy of flurbiprofen axetil by inhibiting protein binding with 6-methoxy-2-naphthylacetic acid.

    PubMed

    Ogata, Kenji; Takamura, Norito; Tokunaga, Jin; Ikeda, Tetsuya; Setoguchi, Nao; Tanda, Kazuhiro; Yamasaki, Tetsuo; Nishio, Toyotaka; Kawai, Keiichi

    2016-04-01

    Flurbiprofen axetil (FPA) is an injection product and a prodrug of a non-steroidal anti-inflammatory drug (NSAID). After injection, it is rapidly hydrolyzed to the active form, flurbiprofen (FP). Since frequent injections of FPA can lead to abnormal physiology, an administration strategy is necessary to ensure there is enhancement of the analgesic efficiency of FP after a single dose and to reduce the total number of doses. FP strongly binds to site II of albumin, and thus the free (unbound) FP concentration is low. This study focused on 6-methoxy-2-naphthylacetic acid (6-MNA), the active metabolite of nabumetone (a prodrug of NSAID). We performed ultrafiltration experiments and pharmacokinetics analysis in rats to investigate whether the inhibitory effect of 6-MNA on FP binding to albumin increased the free FP concentration in vitro and in vivo. Results indicated that 6-MNA inhibited the binding of FP to albumin competitively. When 6-MNA was injected in rats, there was a significant increase in the free FP concentration and the area under concentration-time curve (AUC) calculated from the free FP concentration, while there was a significant decrease in the total (bound + free) FP concentration and the AUC calculated from the total FP concentration. These findings indicate that 6-MNA inhibits the protein binding of FP in vivo. This suggests that the frequency of FPA injections can be reduced when administered with nabumetone, as there is increase in the free FP concentration associated with pharmacological effect.

  16. Receptor binding kinetics equations: Derivation using the Laplace transform method.

    PubMed

    Hoare, Sam R J

    Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time-dependent pharmacological activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Competitive Binding Assay for the G-Protein-Coupled Receptor 30 (GPR30) or G-Protein-Coupled Estrogen Receptor (GPER).

    PubMed

    Thekkumkara, Thomas; Snyder, Russell; Karamyan, Vardan T

    2016-01-01

    The role of 2-methoxyestradiol is becoming a major area of investigation because of its therapeutic utility, though its mechanism is not fully explored. Recent studies have identified the G-protein-coupled receptor 30 (GPR30, GPER) as a high-affinity membrane receptor for 2-methoxyestradiol. However, studies aimed at establishing the binding affinities of steroid compounds for specific targets are difficult, as the tracers are highly lipophilic and often result in nonspecific binding in lipid-rich membrane preparations with low-level target receptor expression. 2-Methoxyestradiol binding studies are essential to elucidate the underlying effects of this novel estrogen metabolite and to validate its targets; therefore, this competitive receptor-binding assay protocol was developed in order to assess the membrane receptor binding and affinity of 2-methyoxyestradiol.

  18. Pyrethroid insecticides and radioligand displacement from the GABA receptor chloride ionophore complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crofton, K.M.; Reiter, L.W.; Mailman, R.B.

    1987-01-01

    Radioligand binding displacement studies were conducted to determine the effects of Type I and II pyrethroids on /sup 3/H-flunitrazepam (FLU), /sup 3/H-muscimol (MUS), and (/sup 35/S-t-butylbicyclophosphorothionate (TBPS) binding. Competition experiments with /sup 3/H-FLU and /sup 3/H-MUS indicate a lack of competition for binding by the pyrethroids. Type I pyrethroids failed to compete for the binding of (/sup 35/S-TBPS at concentrations as high as 50 pM. Type II pyrethroids inhibited (/sup 35/S-TBPS binding to rat brain synaptosomes with Ki values ranging from 5-10 pM. The data presented suggest that the interaction of Type II pyrethroids with the GABA receptor-ionophore complex ismore » restricted to a site near the TBPS/picrotoxinin binding site.« less

  19. Highly sensitive microfluidic competitive enzyme immunoassay based on chemiluminescence resonance energy transfer for the detection of neuron-specific enolase.

    PubMed

    Yang, Tingzhen; Vdovenko, Marina; Jin, Xue; Sakharov, Ivan Yu; Zhao, Shulin

    2014-07-01

    A microfluidic competitive enzyme immunoassay based on chemiluminescence resonance energy transfer (CRET) was developed for highly sensitive detection of neuron-specific enolase (NSE). The CRET system consisted of horseradish peroxidase (HRP)/luminol as a light donor and fluorescein isothiocyanate as an acceptor. When fluorescein isothiocyanate-labeled antibody binds with HRP-labeled antigen to form immunocomplex, the donor and acceptor are brought close each other and CRET occurs in the immunocomplex. In the MCE, the immunocomplex and excess HRP-NSE were separated, and the chemiluminescense intensity of immunocomplex was used to estimate NSE concentration. The calibration curve showed a linearity in the range of NSE concentrations from 9.0 to 950 pM with a correlation coefficient of 0.9964. Based on a S/N of 3, the detection limit for NSE determination was estimated to be 4.5 pM, which is two-order magnitude lower than that of without CRET detection. This assay was applied for NSE quantification in human serum. The obtained results demonstrated that the proposed immunoassay may serve as an alternative tool for clinical analysis of NSE. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ap4A and ADP-beta-S binding to P2 purinoceptors present on rat brain synaptic terminals.

    PubMed Central

    Pintor, J.; Díaz-Rey, M. A.; Miras-Portugal, M. T.

    1993-01-01

    1. Diadenosine tetraphosphate (Ap4A) a dinucleotide stored and released from rat brain synaptic terminals presents two types of affinity binding sites in synaptosomes. When [3H]-Ap4A was used for binding studies a Kd value of 0.10 +/- 0.014 nM and a Bmax value of 16.6 +/- 1.2 fmol mg-1 protein were obtained for the high affinity binding site from the Scatchard analysis. The second binding site, obtained by displacement studies, showed a Ki value of 0.57 +/- 0.09 microM. 2. Displacement of [3H]-Ap4A by non-labelled Ap4A and P2-purinoceptor ligands showed a displacement order of Ap4A > adenosine 5'-O-(2-thiodiphosphate) (ADP-beta-S) > 5'-adenylyl-imidodiphosphate (AMP-PNP) > alpha,beta-methylene adenosine 5'-triphosphate (alpha,beta-MeATP) in both sites revealed by the Ki values of 0.017 nM, 0.030 nM, 0.058 nM and 0.147 nM respectively for the high affinity binding site and values of 0.57 microM, 0.87 microM, 2.20 microM and 4.28 microM respectively for the second binding site. 3. Studies of the P2-purinoceptors present in synaptosomes were also performed with [35S]-ADP-beta-S. This radioligand showed two binding sites the first with Kd and Bmax values of 0.11 +/- 0.022 nM and 3.9 +/- 2.1 fmol mg-1 of protein respectively for the high affinity binding site obtained from the Scatchard plot. The second binding site showed a Ki of 0.018 +/- 0.0035 microM obtained from displacement curves. 4. Competition studies with diadenosine polyphosphates of [35S]-ADP-beta-S binding showed a displacement order of Ap4A > Ap5A > Ap6A in the high affinity binding site and Ki values of 0.023 nM, 0.081 nM and 5.72 nM respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8485620

  1. 78 FR 6120 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ..., including immunoprecipitation, western blot analysis, immunohistochemistry, ELISA, etc. Competitive... immunoprecipitation, western blot analysis, immunohistochemistry, ELISA, etc. Competitive Advantages: Binding of a new...

  2. Affinity and Efficacy Studies of Tetrahydrocannabinolic Acid A at Cannabinoid Receptor Types One and Two.

    PubMed

    McPartland, John M; MacDonald, Christa; Young, Michelle; Grant, Phillip S; Furkert, Daniel P; Glass, Michelle

    2017-01-01

    Introduction: Cannabis biosynthesizes Δ 9 -tetrahydrocannabinolic acid (THCA-A), which decarboxylates into Δ 9 -tetrahydrocannabinol (THC). There is growing interest in the therapeutic use of THCA-A, but its clinical application may be hampered by instability. THCA-A lacks cannabimimetic effects; we hypothesize that it has little binding affinity at cannabinoid receptor 1 (CB 1 ). Materials and Methods: Purity of certified reference standards were tested with high performance liquid chromatography (HPLC). Binding affinity of THCA-A and THC at human (h) CB 1 and hCB 2 was measured in competition binding assays, using transfected HEK cells and [ 3 H]CP55,940. Efficacy at hCB 1 and hCB 2 was measured in a cyclic adenosine monophosphase (cAMP) assay, using a Bioluminescence Resonance Energy Transfer (BRET) biosensor. Results: The THCA-A reagent contained 2% THC. THCA-A displayed small but measurable binding at both hCB 1 and hCB 2 , equating to approximate K i values of 3.1μM and 12.5μM, respectively. THC showed 62-fold greater affinity at hCB 1 and 125-fold greater affinity at hCB 2 . In efficacy tests, THCA-A (10μM) slightly inhibited forskolin-stimulated cAMP at hCB 1 , suggestive of weak agonist activity, and no measurable efficacy at hCB 2 . Discussion: The presence of THC in our THCA-A certified standard agrees with decarboxylation kinetics (literature reviewed herein), which indicate contamination with THC is nearly unavoidable. THCA-A binding at 10μM approximated THC binding at 200nM. We therefore suspect some of our THCA-A binding curve was artifact-from its inevitable decarboxylation into THC-and the binding affinity of THCA-A is even weaker than our estimated values. We conclude that THCA-A has little affinity or efficacy at CB 1 or CB 2 .

  3. Free-energy relationships in ion channels activated by voltage and ligand

    PubMed Central

    Chowdhury, Sandipan

    2013-01-01

    Many ion channels are modulated by multiple stimuli, which allow them to integrate a variety of cellular signals and precisely respond to physiological needs. Understanding how these different signaling pathways interact has been a challenge in part because of the complexity of underlying models. In this study, we analyzed the energetic relationships in polymodal ion channels using linkage principles. We first show that in proteins dually modulated by voltage and ligand, the net free-energy change can be obtained by measuring the charge-voltage (Q-V) relationship in zero ligand condition and the ligand binding curve at highly depolarizing membrane voltages. Next, we show that the voltage-dependent changes in ligand occupancy of the protein can be directly obtained by measuring the Q-V curves at multiple ligand concentrations. When a single reference ligand binding curve is available, this relationship allows us to reconstruct ligand binding curves at different voltages. More significantly, we establish that the shift of the Q-V curve between zero and saturating ligand concentration is a direct estimate of the interaction energy between the ligand- and voltage-dependent pathway. These free-energy relationships were tested by numerical simulations of a detailed gating model of the BK channel. Furthermore, as a proof of principle, we estimate the interaction energy between the ligand binding and voltage-dependent pathways for HCN2 channels whose ligand binding curves at various voltages are available. These emerging principles will be useful for high-throughput mutagenesis studies aimed at identifying interaction pathways between various regulatory domains in a polymodal ion channel. PMID:23250866

  4. Improved diagnostic performance of a commercial anaplasma antibody competitive enzyme-linked immunosorbent assay using recombinant major surface protein 5–glutathione S-transferase fusion protein as antigen

    USDA-ARS?s Scientific Manuscript database

    This study tested the hypothesis that removal of maltose binding protein from recombinant antigen used for plate coating would improve the specificity of Anaplasma antibody competitive ELISA. Three hundred and eight sera with significant MBP antibody binding (=30%I) in Anaplasma negative herds was 1...

  5. Functional studies of ATP sulfurylase from Penicillium chrysogenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seubert, P.A.

    1985-01-01

    ATP sulfurylase from Penicillium chrysogenum has a specific activity (V/sub max/) of 6-7 units x mg protein/sup -1/ determined with the physiological substrates of MgATP and SO/sub 4//sup 2 -/ and assayed by (A) initial velocity measurements with APS kinase and inorganic pyrophosphatase present and (B) analysis of nonlinear reaction progress curves. The fact both assays give the same results show the intrinsic activity of ATP sulfurylase is much higher than previously reported. In initial velocity dead-end inhibition studies, the sulfate analog S/sub 2/O/sub 3//sup 2 -/ is a competitive inhibitor of SO/sub 42/..sqrt.. and a noncompetitive inhibitor of MgATP.more » Monovalent oxyanions such as NO/sub 3//sup -/, ClO/sub 3//sup -/, ClO/sub 4//sup -/, and FSO/sub 3//sup -/ behave as uncompetitive inhibitors of MgATP and thus seem not to be true sulfate analogs. The reverse reaction was assayed by the pyrophosphate dependent release of /sup 35/SO/sub 4//sup 2 -/ from AP/sup 35/S. Product inhibition by MgATP or SO/sub 4//sup 2 -/ is competitive with APS and mixed-type with PP/sub i/. Imidodiphosphate can serve as an alternative substrate for PP/sub i/. ATP sulfurylase binds (but does not hydrolyze) APS. A Scatchard plot of the APS binding is nonlinear, suggesting at least two types of sites. The cumulative results are qualitatively consistent with the random addition of MgATP and SO/sub 4//sup 2 -/ and the ordered release of first MgPP/sub i/ then APS, with APS release being partially rate limiting. Certain quantitative discrepancies suggest either an unknown variable (e.g. enzyme concentration) complicates the analysis or, in light of binding studies that the actual mechanism is more complicated (e.g. alternating sites) than any of the conventional models examined.« less

  6. Estrogenic and anti-estrogenic activity of 23 commercial textile dyes.

    PubMed

    Bazin, Ingrid; Ibn Hadj Hassine, Aziza; Haj Hamouda, Yosra; Mnif, Wissem; Bartegi, Ahgleb; Lopez-Ferber, Miguel; De Waard, Michel; Gonzalez, Catherine

    2012-11-01

    The presence of dyes in wastewater effluent of textile industry is well documented. In contrast, the endocrine disrupting effects of these dyes and wastewater effluent have been poorly investigated. Herein, we studied twenty-three commercial dyes, usually used in the textile industry, and extracts of blue jean textile wastewater samples were evaluated for their agonistic and antagonistic estrogen activity. Total estrogenic and anti-estrogenic activities were measured using the Yeast Estrogen Screen bioassay (YES) that evaluates estrogen receptor binding-dependent transcriptional and translational activities. The estrogenic potencies of the dyes and wastewater samples were evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. The dose-dependent anti-estrogenic activities of the dyes and wastewater samples were normalized to the known antagonistic effect of 4-hydroxytamoxifen (4-OHT) on the induction of the lac Z reporter gene by E2. About half azo textile dyes have anti-estrogenic activity with the most active being Blue HFRL. Most azo dyes however have no or weak estrogenic activity. E2/dye or E2/waste water ER competitive binding assays show activity of Blue HFRL, benzopurpurine 4B, Everzol Navy Blue FBN, direct red 89 BNL 200% and waste water samples indicating a mechanism of action common to E2. Our results indicate that several textile dyes are potential endocrine disrupting agents. The presence of some of these dyes in textile industry wastewater may thus impact the aquatic ecosystem. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Competition-based cellular peptide binding assays for 13 prevalent HLA class I alleles using fluorescein-labeled synthetic peptides.

    PubMed

    Kessler, Jan H; Mommaas, Bregje; Mutis, Tuna; Huijbers, Ivo; Vissers, Debby; Benckhuijsen, Willemien E; Schreuder, Geziena M Th; Offringa, Rienk; Goulmy, Els; Melief, Cornelis J M; van der Burg, Sjoerd H; Drijfhout, Jan W

    2003-02-01

    We report the development, validation, and application of competition-based peptide binding assays for 13 prevalent human leukocyte antigen (HLA) class I alleles. The assays are based on peptide binding to HLA molecules on living cells carrying the particular allele. Competition for binding between the test peptide of interest and a fluorescein-labeled HLA class I binding peptide is used as read out. The use of cell membrane-bound HLA class I molecules circumvents the need for laborious biochemical purification of these molecules in soluble form. Previously, we have applied this principle for HLA-A2 and HLA-A3. We now describe the assays for HLA-A1, HLA-A11, HLA-A24, HLA-A68, HLA-B7, HLA-B8, HLA-B14, HLA-B35, HLA-B60, HLA-B61, and HLA-B62. Together with HLA-A2 and HLA-A3, these alleles cover more than 95% of the Caucasian population. Several allele-specific parameters were determined for each assay. Using these assays, we identified novel HLA class I high-affinity binding peptides from HIVpol, p53, PRAME, and minor histocompatibility antigen HA-1. Thus these convenient and accurate peptide-binding assays will be useful for the identification of putative cytotoxic T lymphocyte epitopes presented on a diverse array of HLA class I molecules.

  8. Competitive binding of (-)-epigallocatechin-3-gallate and 5-fluorouracil to human serum albumin: A fluorescence and circular dichroism study

    NASA Astrophysics Data System (ADS)

    Yuan, Lixia; Liu, Min; Liu, Guiqin; Li, Dacheng; Wang, Zhengping; Wang, Bingquan; Han, Jun; Zhang, Min

    2017-02-01

    Combination therapy with more than one therapeutic agent can improve therapeutic efficiency and decrease drug resistance. In this study, the interactions of human serum albumin (HSA) with individual or combined anticancer drugs, (-)-epigallocatechin-3-gallate (EGCG) and 5-fluorouracil (FU), were investigated by fluorescence and circular dichroism (CD) spectroscopy. The results demonstrated that the interaction of EGCG or FU with HSA is a process of static quenching and EGCG formed a more stable complex. The competitive experiments of site markers suggested that both anti-carcinogens mainly bound to site I (subdomain IIA). The interaction forces which play important roles in the binding process were discussed based on enthalpy and entropy changes. Moreover, the competition binding model for a ternary system was proposed so as to precisely calculate the binding parameters. The results demonstrated that one drug decreased the binding affinity of another drug with HSA, resulting in the increasing free drug concentration at the action sites. CD studies indicated that there was an alteration in HSA secondary structure due to the binding of EGCG and FU. It can be concluded that the combination of EGCG with FU may enhance anticancer efficacy. This finding may provide a theoretical basis for clinical treatments.

  9. Binding of Signal Recognition Particle Gives Ribosome/Nascent Chain Complexes a Competitive Advantage in Endoplasmic Reticulum Membrane Interaction

    PubMed Central

    Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.

    1998-01-01

    Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994

  10. Competitive folding of RNA structures at a termination–antitermination site

    PubMed Central

    Ait-Bara, Soraya; Clerté, Caroline; Declerck, Nathalie; Margeat, Emmanuel

    2017-01-01

    Antitermination is a regulatory process based on the competitive folding of terminator–antiterminator structures that can form in the leader region of nascent transcripts. In the case of the Bacillus subtilis licS gene involved in β-glucosides utilization, the binding of the antitermination protein LicT to a short RNA hairpin (RAT) prevents the formation of an overlapping terminator and thereby allows transcription to proceed. Here, we monitored in vitro the competition between termination and antitermination by combining bulk and single-molecule fluorescence-based assays using labeled RNA oligonucleotide constructs of increasing length that mimic the progressive transcription of the terminator invading the antiterminator hairpin. Although high affinity binding is abolished as soon as the antiterminator basal stem is disrupted by the invading terminator, LicT can still bind and promote closing of the partially unfolded RAT hairpin. However, binding no longer occurs once the antiterminator structure has been disrupted by the full-length terminator. Based on these findings, we propose a kinetic competition model for the sequential events taking place at the termination–antitermination site, where LicT needs to capture its RAT target before completion of the terminator to remain tightly bound during RNAP pausing, before finally dissociating irreversibly from the elongated licS transcript. PMID:28235843

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shizhong; White, Michael G.; Liu, Ping

    Here, we report a detailed mechanistic study of the oxygen reduction reaction (ORR) on Pt(111) in alkaline solution, combining density functional theory and kinetic Monte Carlo simulations. A complex reaction network including four possible pathways via either 2e – or 4e – transfer is established and is able to reproduce the experimental measured polarization curve at both low- and high-potential regions. Our results show that it is essential to account for solvation by water and the dynamic coverage of *OH to describe the reaction kinetics well. In addition, a chemisorbed water (*H 2O)-mediated mechanism including 4e – transfers is identified,more » where the reduction steps via *H 2O on the surface are potential-independent and only the final removal of *OH from the surface in the form of OH –(aq) contributes to the current. For the ORR in alkaline solutions, such a mechanism is more competitive than the associative and dissociative mechanisms typically used to describe the ORR in acid solution. Finally, *OH and **O 2 intermediates are found to be critically important for tuning the ORR activity of Pt in alkaline solution. To enhance the activity, the binding of Pt should be tuned in such a way that *OH binding is weak enough to release more surface sites under working conditions, while **O 2 binding is strong enough to enable the ORR via the 4e – transfer mechanism.« less

  12. Competitive interactions of anti-carcinogens with serum albumin: a spectroscopic study of bendamustine and dexamethasone with the aid of chemometrics.

    PubMed

    Wang, Yong; Zhu, Ruirui; Ni, Yongnian; Kokot, Serge

    2014-04-05

    Interactions between the anti-carcinogens, bendamustine (BDM) and dexamethasone (DXM), with bovine serum albumin (BSA) were investigated with the use of fluorescence and UV-vis spectroscopies under pseudo-physiological conditions (Tris-HCl buffer, pH 7.4). The static mechanism was responsible for the fluorescence quenching during the interactions; the binding formation constant of the BSA-BDM complex and the binding number were 5.14×10(5)Lmol(-1) and 1.0, respectively. Spectroscopic studies for the formation of BDM-BSA complex were interpreted with the use of multivariate curve resolution - alternating least squares (MCR-ALS), which supported the complex formation. The BSA samples treated with site markers (warfarin - site I and ibuprofen - site II) were reacted separately with BDM and DXM; while both anti-carcinogens bound to site I, the binding constants suggested that DXM formed a more stable complex. Relative concentration profiles and the fluorescence spectra associated with BDM, DXM and BSA, were recovered simultaneously from the full fluorescence excitation-emission data with the use of the parallel factor analysis (PARAFAC) method. The results confirmed that on addition of DXM to the BDM-BSA complex, the BDM was replaced and the DXM-BSA complex formed; free BDM was released. This finding may have consequences for the transport of these drugs during any anti-cancer treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Competitive Inhibition Mechanism of Acetylcholinesterase without Catalytic Active Site Interaction: Study on Functionalized C60 Nanoparticles via in Vitro and in Silico Assays.

    PubMed

    Liu, Yanyan; Yan, Bing; Winkler, David A; Fu, Jianjie; Zhang, Aiqian

    2017-06-07

    Acetylcholinesterase (AChE) activity regulation by chemical agents or, potentially, nanomaterials is important for both toxicology and pharmacology. Competitive inhibition via direct catalytic active sites (CAS) binding or noncompetitive inhibition through interference with substrate and product entering and exiting has been recognized previously as an AChE-inhibition mechanism for bespoke nanomaterials. The competitive inhibition by peripheral anionic site (PAS) interaction without CAS binding remains unexplored. Here, we proposed and verified the occurrence of a presumed competitive inhibition of AChE without CAS binding for hydrophobically functionalized C 60 nanoparticles (NPs) by employing both experimental and computational methods. The kinetic inhibition analysis distinguished six competitive inhibitors, probably targeting the PAS, from the pristine and hydrophilically modified C 60 NPs. A simple quantitative nanostructure-activity relationship (QNAR) model relating the pocket accessible length of substituent to inhibition capacity was then established to reveal how the geometry of the surface group decides the NP difference in AChE inhibition. Molecular docking identified the PAS as the potential binding site interacting with the NPs via a T-shaped plug-in mode. Specifically, the fullerene core covered the enzyme gorge as a lid through π-π stacking with Tyr72 and Trp286 in the PAS, while the hydrophobic ligands on the fullerene surface inserted into the AChE active site to provide further stability for the complexes. The modeling predicted that inhibition would be severely compromised by Tyr72 and Trp286 deletions, and the subsequent site-directed mutagenesis experiments proved this prediction. Our results demonstrate AChE competitive inhibition of NPs without CAS participation to gain further understanding of both the neurotoxicity and the curative effect of NPs.

  14. Piezoelectric affinity sensors for cocaine and cholinesterase inhibitors.

    PubMed

    Halámek, Jan; Makower, Alexander; Knösche, Kristina; Skládal, Petr; Scheller, Frieder W

    2005-01-30

    We report here the development of piezoelectric affinity sensors for cocaine and cholinesterase inhibitors based on the formation of affinity complexes between an immobilized cocaine derivative and an anti-cocaine antibody or cholinesterase. For both binding reactions benzoylecgonine-1,8-diamino-3,4-dioxaoctane (BZE-DADOO) was immobilized on the surface of the sensor. For immobilization, pre-conjugated BZE-DADOO with 11-mercaptomonoundecanoic acid (MUA) via 2-(5-norbornen-2,3-dicarboximide)-1,1,3,3-tetramethyluronium-tetrafluoroborate (TNTU) allowed the formation of a chemisorbed monolayer on the piezosensor surface. The detection of cocaine was based on a competitive assay. The change of frequency measured after 300s of the binding reaction was used as the signal. The maximum binding of the antibody resulted in a frequency decrease of 35Hz (with an imprecision 3%, n = 3) while the presence of 100pmoll(-1) cocaine decreased the binding by 11%. The limit of detection was consequently below 100pmoll(-1) for cocaine. The total time of one analysis was 15min. This BZE-DADOO-modified sensor was adapted for the detection of organophosphates. BZE-DADOO - a competitive inhibitor - served as binding element for cholinesterase in a competitive assay.

  15. Intrinsic mineralocorticoid agonist activity of some nonsteroidal anti-inflammatory drugs. A postulated mechanism for sodium retention.

    PubMed Central

    Feldman, D; Couropmitree, C

    1976-01-01

    Because some nonsteroidal anti-inflammatory drugs (NSAID) induce salt and water retention and exhibit other steroid-like actions, studies were performed to ascertain whether these drugs possess intrinsic mineralocorticoid agonist activity. In vitro competitive binding assays utilizing tissue from adrenalectomized rats demonstrated that some NSAID can displace [3H]-aldosterone from renal cytoplasmic mineralocorticoid receptors. Displacement potency for these sites was in the sequence: aldosterone greater than spironolactone greater than phenylbutazone (PBZ) greater than aspirin (ASA) greater than indomethacin (IDM). Concentration ratios required to obtain significant displacement of [3H]aldosterone were high but clearly within the therapeutic range for PBZ and ASA but not IDM. The analogues oxyphenbutazone (OBZ) and sodium salicylate (SS) were similar in binding activity to PBZ and ASA, respectively. Lineweaver-Burk analysis revealed that the inhibition of [3H]aldosterone binding was competitive in nature. In addition, PBZ was shown to prevent the nuclear binding of [3H]aldosterone. In vivo injection of PBZ and ASA resulted in competition for [3H]aldosterone renal binding comparable to the in vitro studies. Administration of PBZ and OBZ to adrenalectomized rats resulted in significant salt retention whereas ASA and SS did not differ significantly from controls. Salt retention elicited by PBZ and OBZ was inhibited by spironolactone, a competitive mineralocorticoid antagonist. These data suggest that, despite nonsteroidal structures, PBZ and OBZ induce salt retention via a receptor-mediated mineralocorticoid pathway analogous to aldosterone action. PMID:173739

  16. Interaction of H+ and Zn2+ on recombinant and native rat neuronal GABAA receptors

    PubMed Central

    Krishek, Belinda J; Moss, Stephen J; Smart, Trevor G

    1998-01-01

    The interaction of Zn2+ and H+ ions with GABAA receptors was examined using Xenopus laevis oocytes expressing recombinant GABAA receptors composed of subunits selected from α1, β1, γ2S and δ types, and by using cultured rat cerebellar granule neurones. The potency of Zn2+ as a non-competitive antagonist of GABA-activated responses on α1β1 receptors was reduced by lowering the external pH from 7.4 to 5.4, increasing the Zn2+ IC50 value from 1.2 to 58.3 μm. Zinc-induced inhibition was largely unaffected by alkaline pH up to pH 9.4. For α1β1δ subunits, concentration-response curves for GABA were displaced laterally by Zn2+ in accordance with a novel mixed/competitive-type inhibition. The Zn2+ IC50 at pH 7.4 was 16.3 μm. Acidification of Ringer solution resulted in a reduced antagonism by Zn2+ (IC50, 49.0 μm) without affecting the type of inhibition. At pH 9.4, Zn2+ inhibition remained unaffected. The addition of the γ2S subunit to the α1β1δ construct caused a marked reduction in the potency of Zn2+ (IC50, 615 μm), comparable to that observed with α1β1γ2S receptors (IC50 639 μm). GABA concentration-response curves were depressed in a mixed/non-competitive fashion. In cultured cerebellar granule neurones, Zn2+ inhibited responses to GABA in a concentration-dependent manner. Lowering external pH from 7.4 to 6.4 increased the IC50 from 139 to 253 μm. The type of inhibition exhibited by Zn2+ on cerebellar granule neurones, previously grown in high K+-containing culture media, was complex, with the GABA concentration-response curves shifting laterally with reduced slopes and similar maxima. The Zn2+-induced shift in the GABA EC50 values was reduced by lowering the external pH from 7.4 to 6.4. The interaction of H+ and Zn2+ ions on GABAA receptors suggests that they share either a common regulatory pathway or coincident binding sites on the receptor protein. The apparent competitive mode of block induced by Zn2+ on α1β1δ receptors is shared by GABAA receptors on cerebellar granule neurones, which are known to express δ-subunit-containing receptors. This novel mechanism is masked when a γ2 subunit is incorporated into the receptor complex, revealing further diversity in the response of native GABAA receptors to endogenous cations. PMID:9508826

  17. Rate constants of agonist binding to muscarinic receptors in rat brain medulla. Evaluation by competition kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, G.; Henis, Y.I.; Sokolovsky, M.

    The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-(TH)piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. Our findings also suggest that isomerization ofmore » the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.« less

  18. Discrete persistent-chain model for protein binding on DNA.

    PubMed

    Lam, Pui-Man; Zhen, Yi

    2011-04-01

    We describe and solve a discrete persistent-chain model of protein binding on DNA, involving an extra σ(i) at a site i of the DNA. This variable takes the value 1 or 0, depending on whether or not the site is occupied by a protein. In addition, if the site is occupied by a protein, there is an extra energy cost ɛ. For a small force, we obtain analytic expressions for the force-extension curve and the fraction of bound protein on the DNA. For higher forces, the model can be solved numerically to obtain force-extension curves and the average fraction of bound proteins as a function of applied force. Our model can be used to analyze experimental force-extension curves of protein binding on DNA, and hence deduce the number of bound proteins in the case of nonspecific binding. ©2011 American Physical Society

  19. Competitive Binding of Natural Amphiphiles with Graphene Derivatives

    NASA Astrophysics Data System (ADS)

    Radic, Slaven; Geitner, Nicholas K.; Podila, Ramakrishna; Käkinen, Aleksandr; Chen, Pengyu; Ke, Pu Chun; Ding, Feng

    2013-07-01

    Understanding the transformation of graphene derivatives by natural amphiphiles is essential for elucidating the biological and environmental implications of this emerging class of engineered nanomaterials. Using rapid discrete-molecular-dynamics simulations, we examined the binding of graphene and graphene oxide with peptides, fatty acids, and cellulose, and complemented our simulations by experimental studies of Raman spectroscopy, FTIR, and UV-Vis spectrophotometry. Specifically, we established a connection between the differential binding and the conformational flexibility, molecular geometry, and hydrocarbon content of the amphiphiles. Importantly, our dynamics simulations revealed a Vroman-like competitive binding of the amphiphiles for the graphene oxide substrate. This study provides a mechanistic basis for addressing the transformation, evolution, transport, biocompatibility, and toxicity of graphene derivatives in living systems and the natural environment.

  20. Competitive Binding of Natural Amphiphiles with Graphene Derivatives

    PubMed Central

    Radic, Slaven; Geitner, Nicholas K.; Podila, Ramakrishna; Käkinen, Aleksandr; Chen, Pengyu; Ke, Pu Chun; Ding, Feng

    2013-01-01

    Understanding the transformation of graphene derivatives by natural amphiphiles is essential for elucidating the biological and environmental implications of this emerging class of engineered nanomaterials. Using rapid discrete-molecular-dynamics simulations, we examined the binding of graphene and graphene oxide with peptides, fatty acids, and cellulose, and complemented our simulations by experimental studies of Raman spectroscopy, FTIR, and UV-Vis spectrophotometry. Specifically, we established a connection between the differential binding and the conformational flexibility, molecular geometry, and hydrocarbon content of the amphiphiles. Importantly, our dynamics simulations revealed a Vroman-like competitive binding of the amphiphiles for the graphene oxide substrate. This study provides a mechanistic basis for addressing the transformation, evolution, transport, biocompatibility, and toxicity of graphene derivatives in living systems and the natural environment. PMID:23881402

  1. Peroxidative oxidation of halides catalysed by myeloperoxidase. Effect of fluoride on halide oxidation.

    PubMed

    Zgliczyński, J M; Stelmaszyńska, T; Olszowska, E; Krawczyk, A; Kwasnowska, E; Wróbel, J T

    1983-01-01

    It was found that all halides can compete with cyanide for binding with myeloperoxidase. The lower is the pH, the higher is the affinity of halides. The apparent dissociation constants (Kd) of myeloperoxidase-cyanide complex were determined in the presence of F-, Cl-, Br- and I- in the pH range of 4 to 7. In slightly acidic pH (4 - 6) fluoride and chloride exhibit a higher affinity towards the enzyme than bromide and iodide. Taking into account competition between cyanide and halides for binding with myeloperoxidase the dissociation constants of halide-myeloperoxidase complexes were calculated. All halides except fluoride can be oxidized by H2O2 in the presence of myeloperoxidase. However, since fluoride can bind with myeloperoxidase, it can competitively inhibit the oxidation of other halides. Fluoride was a competitive inhibitor with respect to other halides as well as to H2O2. Inhibition constants (Ki) for fluoride as a competitive inhibitor with respect to H2O2 increased from iodide oxidation through bromide to chloride oxidation.

  2. May the Best Molecule Win: Competition ESI Mass Spectrometry

    PubMed Central

    Laughlin, Sarah; Wilson, W. David

    2015-01-01

    Electrospray ionization mass spectrometry has become invaluable in the characterization of macromolecular biological systems such as nucleic acids and proteins. Recent advances in the field of mass spectrometry and the soft conditions characteristic of electrospray ionization allow for the investigation of non-covalent interactions among large biomolecules and ligands. Modulation of genetic processes through the use of small molecule inhibitors with the DNA minor groove is gaining attention as a potential therapeutic approach. In this review, we discuss the development of a competition method using electrospray ionization mass spectrometry to probe the interactions of multiple DNA sequences with libraries of minor groove binding molecules. Such an approach acts as a high-throughput screening method to determine important information including the stoichiometry, binding mode, cooperativity, and relative binding affinity. In addition to small molecule-DNA complexes, we highlight other applications in which competition mass spectrometry has been used. A competitive approach to simultaneously investigate complex interactions promises to be a powerful tool in the discovery of small molecule inhibitors with high specificity and for specific, important DNA sequences. PMID:26501262

  3. Radioligand binding, autoradiographic and functional studies demonstrate tachykinin NK-2 receptors in dog urinary bladder.

    PubMed

    Mussap, C J; Stamatakos, C; Burcher, E

    1996-10-01

    Tachykinin receptors in the dog bladder were characterized using radioligand binding, functional and autoradiographic techniques. In detrusor muscle homogenates, specific binding of [125l]iodohistidyl neurokinin A (INKA) and [125l]Bolton Hunter eledoisin was reversible, saturable and, to a single class of sites of Kd, 3,6 and 27 nM, respectively. No specific binding of [125l]Bolton Hunter[Sar9, Met (O2)11] substance P occurred. INKA binding was reduced by the peptidase inhibitor bacitracin. The rank potency order of agonists competing for binding of both radioligands indicated interaction at NK-2 sites. NK-2-selective antagonists also competed for INKA binding, with SR 48968, GR 94800, MDL 29913 and the selective agonist [Lys5, MeLeu9, Nle10]-NKA(4-10) showing biphasic binding profiles. Autoradiographic studies revealed specific binding of INKA and [125l]Bolton Hunter eledoisin over detrusor muscle and small arteries. [125l]Bolton Hunter [Sar9, Met (O2)11] SP labeled the intima of arteries and arterioles, but not the detrusor muscle. Tachykinins contracted detrusor muscle strips, with potency order at the carbachol EC15 NKA = kassinin > [Lys5, MeLeu9, Nle10]-NKA(4-10) = neuropeptide gamma = neuropeptide K = NKB > > MDL 28564, with [Sar9, Met(O2)11]-SP ineffective. Shallow concentration-response curves, variable efficacies and inhibition by atropine and mepyramine suggest that other mechanisms may influence contractile responses. Responses to [Lys5, MeLeu9, Nle10]-NKA(4-10) were inhibited competitively by MDL 29913 and MEN 10207 (pA2 values: 6.4 and 5.3, respectively). Antagonism by SR 48968 and GR 94800 was noncompetitive (both pK8 values 8.9). In summary, NK-2-preferring ligands showed superior potency as both binding competitors and contractile agonists, demonstrating that NK-2 receptors mediate detrusor muscle contraction, similar to the human detrusor. Tachykinins may play important roles in the micturition reflex and in regulating detrusor muscle blood flow in the dog.

  4. Binding Selectivity of Methanobactin from Methylosinus trichosporium OB3b for Copper(I), Silver(I), Zinc(II), Nickel(II), Cobalt(II), Manganese(II), Lead(II), and Iron(II)

    NASA Astrophysics Data System (ADS)

    McCabe, Jacob W.; Vangala, Rajpal; Angel, Laurence A.

    2017-12-01

    Methanobactin (Mb) from Methylosinus trichosporium OB3b is a member of a class of metal binding peptides identified in methanotrophic bacteria. Mb will selectively bind and reduce Cu(II) to Cu(I), and is thought to mediate the acquisition of the copper cofactor for the enzyme methane monooxygenase. These copper chelating properties of Mb make it potentially useful as a chelating agent for treatment of diseases where copper plays a role including Wilson's disease, cancers, and neurodegenerative diseases. Utilizing traveling wave ion mobility-mass spectrometry (TWIMS), the competition for the Mb copper binding site from Ag(I), Pb(II), Co(II), Fe(II), Mn(II), Ni(II), and Zn(II) has been determined by a series of metal ion titrations, pH titrations, and metal ion displacement titrations. The TWIMS analyses allowed for the explicit identification and quantification of all the individual Mb species present during the titrations and measured their collision cross-sections and collision-induced dissociation patterns. The results showed Ag(I) and Ni(II) could irreversibly bind to Mb and not be effectively displaced by Cu(I), whereas Ag(I) could also partially displace Cu(I) from the Mb complex. At pH ≈ 6.5, the Mb binding selectivity follows the order Ag(I)≈Cu(I)>Ni(II)≈Zn(II)>Co(II)>>Mn(II)≈Pb(II)>Fe(II), and at pH 7.5 to 10.4 the order is Ag(I)>Cu(I)>Ni(II)>Co(II)>Zn(II)>Mn(II)≈Pb(II)>Fe(II). Breakdown curves of the disulfide reduced Cu(I) and Ag(I) complexes showed a correlation existed between their relative stability and their compact folded structure indicated by their CCS. Fluorescence spectroscopy, which allowed the determination of the binding constant, compared well with the TWIMS analyses, with the exception of the Ni(II) complex. [Figure not available: see fulltext.

  5. Binding Selectivity of Methanobactin from Methylosinus trichosporium OB3b for Copper(I), Silver(I), Zinc(II), Nickel(II), Cobalt(II), Manganese(II), Lead(II), and Iron(II).

    PubMed

    McCabe, Jacob W; Vangala, Rajpal; Angel, Laurence A

    2017-12-01

    Methanobactin (Mb) from Methylosinus trichosporium OB3b is a member of a class of metal binding peptides identified in methanotrophic bacteria. Mb will selectively bind and reduce Cu(II) to Cu(I), and is thought to mediate the acquisition of the copper cofactor for the enzyme methane monooxygenase. These copper chelating properties of Mb make it potentially useful as a chelating agent for treatment of diseases where copper plays a role including Wilson's disease, cancers, and neurodegenerative diseases. Utilizing traveling wave ion mobility-mass spectrometry (TWIMS), the competition for the Mb copper binding site from Ag(I), Pb(II), Co(II), Fe(II), Mn(II), Ni(II), and Zn(II) has been determined by a series of metal ion titrations, pH titrations, and metal ion displacement titrations. The TWIMS analyses allowed for the explicit identification and quantification of all the individual Mb species present during the titrations and measured their collision cross-sections and collision-induced dissociation patterns. The results showed Ag(I) and Ni(II) could irreversibly bind to Mb and not be effectively displaced by Cu(I), whereas Ag(I) could also partially displace Cu(I) from the Mb complex. At pH ≈ 6.5, the Mb binding selectivity follows the order Ag(I)≈Cu(I)>Ni(II)≈Zn(II)>Co(II)>Mn(II)≈Pb(II)>Fe(II), and at pH 7.5 to 10.4 the order is Ag(I)>Cu(I)>Ni(II)>Co(II)>Zn(II)>Mn(II)≈Pb(II)>Fe(II). Breakdown curves of the disulfide reduced Cu(I) and Ag(I) complexes showed a correlation existed between their relative stability and their compact folded structure indicated by their CCS. Fluorescence spectroscopy, which allowed the determination of the binding constant, compared well with the TWIMS analyses, with the exception of the Ni(II) complex. Graphical abstract ᅟ.

  6. Plant Photosynthesis-Irradiance Curve Responses to Pollution Show Non-Competitive Inhibited Michaelis Kinetics

    PubMed Central

    Lin, Maozi; Wang, Zhiwei; He, Lingchao; Xu, Kang; Cheng, Dongliang; Wang, Genxuan

    2015-01-01

    Photosynthesis-irradiance (PI) curves are extensively used in field and laboratory research to evaluate the photon-use efficiency of plants. However, most existing models for PI curves focus on the relationship between the photosynthetic rate (Pn) and photosynthetically active radiation (PAR), and do not take account of the influence of environmental factors on the curve. In the present study, we used a new non-competitive inhibited Michaelis-Menten model (NIMM) to predict the co-variation of Pn, PAR, and the relative pollution index (I). We then evaluated the model with published data and our own experimental data. The results indicate that the Pn of plants decreased with increasing I in the environment and, as predicted, were all fitted well by the NIMM model. Therefore, our model provides a robust basis to evaluate and understand the influence of environmental pollution on plant photosynthesis. PMID:26561863

  7. In silico investigation into the interactions between murine 5-HT3 receptor and the principle active compounds of ginger (Zingiber officinale).

    PubMed

    Lohning, Anna E; Marx, Wolfgang; Isenring, Liz

    2016-11-01

    Gingerols and shogaols are the primary non-volatile actives within ginger (Zingiber officinale). These compounds have demonstrated in vitro to exert 5-HT 3 receptor antagonism which could benefit chemotherapy-induced nausea and vomiting (CINV). The site and mechanism of action by which these compounds interact with the 5-HT 3 receptor is not fully understood although research indicates they may bind to a currently unidentified allosteric binding site. Using in silico techniques, such as molecular docking and GRID analysis, we have characterized the recently available murine 5-HT 3 receptor by identifying sites of strong interaction with particular functional groups at both the orthogonal (serotonin) site and a proposed allosteric binding site situated at the interface between the transmembrane region and the extracellular domain. These were assessed concurrently with the top-scoring poses of the docked ligands and included key active gingerols, shogaols and dehydroshogaols as well as competitive antagonists (e.g. setron class of pharmacologically active drugs), serotonin and its structural analogues, curcumin and capsaicin, non-competitive antagonists and decoys. Unexpectedly, we found that the ginger compounds and their structural analogs generally outscored other ligands at both sites. Our results correlated well with previous site-directed mutagenesis studies in identifying key binding site residues. We have identified new residues important for binding the ginger compounds. Overall, the results suggest that the ginger compounds and their structural analogues possess a high binding affinity to both sites. Notwithstanding the limitations of such theoretical analyses, these results suggest that the ginger compounds could act both competitively or non-competitively as has been shown for palonosetron and other modulators of CYS loop receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. (+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine] hydrochloride, hemihydrate (SNI-2011, cevimeline hydrochloride) induces saliva and tear secretions in rats and mice: the role of muscarinic acetylcholine receptors.

    PubMed

    Iga, Y; Arisawa, H; Ogane, N; Saito, Y; Tomizuka, T; Nakagawa-Yagi, Y; Masunaga, H; Yasuda, H; Miyata, N

    1998-11-01

    We investigated effects of (+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine] hydrochloride, hemihydrate (SNI-2011, cevimeline hydrochloride), a rigid analogue of acetylcholine, on saliva and tear secretions in rats and mice to evaluate its therapeutical efficacy for xerostomia and xerophthalmia in patients with Sjogren's syndrome and X-ray exposure in the head and neck. Intraduodenal administrations of SNI-2011 increased saliva secretion in a dose-dependent manner at doses ranging from 3 to 30 mg/kg in normal rats and mice, two strains of autoimmune disease mice and X-irradiated saliva secretion defective rats. The salivation elicited by SNI-2011 was completely inhibited by atropine. A similar atropine-sensitive response was observed in tear secretion. In rat submandibular/sublingual gland membranes, [3H]quinuclidinyl benzilate (QNB) binding was saturable, and Scatchard plot analysis revealed a single population of binding sites with a Kd of 22 pM and a maximal binding capacity of 60 fmol/mg protein. The competitive inhibition curve of the [3H]QNB binding by SNI-2011 was obtained, and its dissociation constant value calculated from IC50 was 1-2 microM. These results suggest that SNI-2011 increases saliva and tear secretions through a direct stimulation to muscarinic receptors in salivary and lacrimal glands, and they suggest that SNI-2011 should be beneficial to patients with Sjögren's syndrome and X-ray exposure in the head and neck.

  9. Localization of basic fibroblast growth factor binding sites in the chick embryonic neural retina.

    PubMed

    Cirillo, A; Arruti, C; Courtois, Y; Jeanny, J C

    1990-12-01

    We have investigated the localization of basic fibroblast growth factor (bFGF) binding sites during the development of the neural retina in the chick embryo. The specificity of the affinity of bFGF for its receptors was assessed by competition experiments with unlabelled growth factor or with heparin, as well as by heparitinase treatment of the samples. Two different types of binding sites were observed in the neural retina by light-microscopic autoradiography. The first type, localized mainly to basement membranes, was highly sensitive to heparitinase digestion and to competition with heparin. It was not developmentally regulated. The second type of binding site, resistant to heparin competition, appeared to be associated with retinal cells from the earliest stages studied (3-day-old embryo, stages 21-22 of Hamburger and Hamilton). Its distribution was found to vary during embryonic development, paralleling layering of the neural retina. Binding of bFGF to the latter sites was observed throughout the retinal neuroepithelium at early stages but displayed a distinct pattern at the time when the inner and outer plexiform layers were formed. During the development of the inner plexiform layer, a banded pattern of bFGF binding was observed. These bands, lying parallel to the vitreal surface, seemed to codistribute with the synaptic bands existing in the inner plexiform layer. The presence of intra-retinal bFGF binding sites whose distribution varies with embryonic development suggests a regulatory mechanism involving differential actions of bFGF on neural retinal cells.

  10. Site Identification by Ligand Competitive Saturation (SILCS) simulations for fragment-based drug design.

    PubMed

    Faller, Christina E; Raman, E Prabhu; MacKerell, Alexander D; Guvench, Olgun

    2015-01-01

    Fragment-based drug design (FBDD) involves screening low molecular weight molecules ("fragments") that correspond to functional groups found in larger drug-like molecules to determine their binding to target proteins or nucleic acids. Based on the principle of thermodynamic additivity, two fragments that bind nonoverlapping nearby sites on the target can be combined to yield a new molecule whose binding free energy is the sum of those of the fragments. Experimental FBDD approaches, like NMR and X-ray crystallography, have proven very useful but can be expensive in terms of time, materials, and labor. Accordingly, a variety of computational FBDD approaches have been developed that provide different levels of detail and accuracy.The Site Identification by Ligand Competitive Saturation (SILCS) method of computational FBDD uses all-atom explicit-solvent molecular dynamics (MD) simulations to identify fragment binding. The target is "soaked" in an aqueous solution with multiple fragments having different identities. The resulting computational competition assay reveals what small molecule types are most likely to bind which regions of the target. From SILCS simulations, 3D probability maps of fragment binding called "FragMaps" can be produced. Based on the probabilities relative to bulk, SILCS FragMaps can be used to determine "Grid Free Energies (GFEs)," which provide per-atom contributions to fragment binding affinities. For essentially no additional computational overhead relative to the production of the FragMaps, GFEs can be used to compute Ligand Grid Free Energies (LGFEs) for arbitrarily complex molecules, and these LGFEs can be used to rank-order the molecules in accordance with binding affinities.

  11. Universal binding energy relations in metallic adhesion

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1981-01-01

    Scaling relations which map metallic adhesive binding energy onto a single universal binding energy curve are discussed in relation to adhesion, friction, and wear in metals. The scaling involved normalizing the energy to the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. The universal curve was found to be accurately represented by E*(A*)= -(1+beta A) exp (-Beta A*) where E* is the normalized binding energy, A* is the normalized separation, and beta is the normalized decay constant. The calculated cohesive energies of potassium, barium, copper, molybdenum, and samarium were also found to scale by similar relations, suggesting that the universal relation may be more general than for the simple free electron metals.

  12. High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors.

    PubMed

    Lecker, Irene; Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Mazer, C David; Orser, Beverley A

    2017-07-01

    The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.

  13. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na{sup +}, Cl{sup {minus}} and K{sup +} to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na{sup +}. Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na{sup +} and Cl{sup {minus}}, the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized,more » purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na{sup +} binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl{sup {minus}}. Cl{sup {minus}} enhances the transporters affinity for imipramine, as well as for Na{sup +}. At concentrations in the range of its K{sub M} for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na{sup +}-independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both ({sup 3}H)imipramine binding and ({sup 3}H)serotonin transport.« less

  14. A High-Throughput TNP-ATP Displacement Assay for Screening Inhibitors of ATP-Binding in Bacterial Histidine Kinases

    PubMed Central

    Guarnieri, Michael T.; Blagg, Brian S. J.

    2011-01-01

    Abstract Bacterial histidine kinases (HK) are members of the GHKL superfamily, which share a unique adenosine triphosphate (ATP)-binding Bergerat fold. Our previous studies have shown that Gyrase, Hsp90, MutL (GHL) inhibitors bind to the ATP-binding pocket of HK and may provide lead compounds for the design of novel antibiotics targeting these kinases. In this article, we developed a competition assay using the fluorescent ATP analog, 2′,3′-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate. The method can be used for high-throughput screening of compound libraries targeting HKs or other ATP-binding proteins. We utilized the assay to screen a library of GHL inhibitors targeting the bacterial HK PhoQ, and discuss the applications of the 2′,3′-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate competition assay beyond GHKL inhibitor screening. PMID:21050069

  15. An analytical model of stand dynamics as a function of tree growth, mortality and recruitment: the shade tolerance-stand structure hypothesis revisited.

    PubMed

    Zavala, Miguel A; Angulo, Oscar; Bravo de la Parra, Rafael; López-Marcos, Juan C

    2007-02-07

    Light competition and interspecific differences in shade tolerance are considered key determinants of forest stand structure and dynamics. Specifically two main stand diameter distribution types as a function of shade tolerance have been proposed based on empirical observations. All-aged stands of shade tolerant species tend to have steeply descending, monotonic diameter distributions (inverse J-shaped curves). Shade intolerant species in contrast typically exhibit normal (unimodal) tree diameter distributions due to high mortality rates of smaller suppressed trees. In this study we explore the generality of this hypothesis which implies a causal relationship between light competition or shade tolerance and stand structure. For this purpose we formulate a partial differential equation system of stand dynamics as a function of individual tree growth, recruitment and mortality which allows us to explore possible individual-based mechanisms--e.g. light competition-underlying observed patterns of stand structure--e.g. unimodal or inverse J-shaped equilibrium diameter curves. We find that contrary to expectations interspecific differences in growth patterns can result alone in any of the two diameter distributions types observed in the field. In particular, slow growing species can present unimodal equilibrium curves even in the absence of light competition. Moreover, light competition and shade intolerance evaluated both at the tree growth and mortality stages did not have a significant impact on stand structure that tended to converge systematically towards an inverse J-shaped curves for most tree growth scenarios. Realistic transient stand dynamics for even aged stands of shade intolerant species (unimodal curves) were only obtained when recruitment was completely suppressed, providing further evidence on the critical role played by juvenile stages of tree development (e.g. the sampling stage) on final forest structure and composition. The results also point out the relevance of partial differential equations systems as a tool for exploring the individual-level mechanisms underpinning forest structure, particularly in relation to more complex forest simulation models that are more difficult to analyze and to interpret from a biological point of view.

  16. Photonic crystal borax competitive binding carbohydrate sensing motif†

    PubMed Central

    Cui, Qingzhou; Muscatello, Michelle M. Ward; Asher, Sanford A.

    2009-01-01

    We developed a photonic crystal sensing method for diol containing species such as carbohydrates based on a poly(vinyl alcohol) (PVA) hydrogel containing an embedded crystalline colloidal array (CCA). The polymerized CCA (PCCA) diffracts visible light. We show that in the presence of borax the diffraction wavelength shifts as the concentration of glucose changes. The diffraction shifts result from the competitive binding of glucose to borate, which reduces the concentration of borate bound to the PVA diols. PMID:19381378

  17. Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations

    PubMed Central

    Liu, Lu Tian; Xu, Yan; Tang, Pei

    2010-01-01

    Inhibition of N-methyl-D-aspartate (NMDA) receptors has been viewed as a primary cause of xenon anesthesia, yet the mechanism is unclear. Here, we investigated interactions between xenon and the ligand-binding domain (LBD) of a NMDA receptor and examined xenon-induced structural and dynamical changes that are relevant to functional changes of the NMDA receptor. Several comparative molecular dynamics simulations were performed on two X-ray structures representing the open- and closed-cleft LBD of the NMDA receptor. We identified plausible xenon action sites in the LBD, including those nearby agonist sites, in the hinge region, and at the interface between two subunits. The xenon binding energy varies from −5.3 to −0.7 kcal/mol. Xenon's effect on the NMDA receptor is conformation-dependent and is produced through both competitive and non-competitive mechanisms. Xenon can promote cleft opening in the absence of agonists and consequently stabilizes the closed channel. Xenon can also bind at the interface of two subunits, alter the inter-subunit interaction, and lead to a reduction of the distance between GT-links. This reduction corresponds to a rearrangement of the channel toward a direction of pore size decreasing, implying a closed or desensitized channel. In addition to these non-competitive actions, xenon was found to weaken the glutamate binding, which could lead to low agonist efficacy and appear as competitive inhibition. PMID:20560662

  18. Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry.

    PubMed

    Yan, Peng; Xia, Jia-Shuai; Chen, You-Peng; Liu, Zhi-Ping; Guo, Jin-Song; Shen, Yu; Zhang, Cheng-Cheng; Wang, Jing

    2017-05-01

    Extracellular polymeric substances (EPS) play a crucial role in heavy metal bio-adsorption using activated sludge, but the interaction mechanism between heavy metals and EPS remains unclear. Isothermal titration calorimetry was employed to illuminate the mechanism in this study. The results indicate that binding between heavy metals and EPS is spontaneous and driven mainly by enthalpy change. Extracellular proteins in EPS are major participants in the binding process. Environmental conditions have significant impact on the adsorption performance. Divalent and trivalent cations severely impeded the binding of heavy metal ions to EPS. Electrostatic interaction mainly attributed to competition between divalent cations and heavy metal ions; trivalent cations directly competed with heavy metal ions for EPS binding sites. Trivalent cations were more competitive than divalent cations for heavy metal ion binding because they formed complexing bonds. This study facilitates a better understanding about the interaction between heavy metals and EPS in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Adherence of oral streptococci: evidence for nonspecific adsorption to saliva-coated hydroxylapatite surfaces.

    PubMed Central

    Staat, R H; Peyton, J C

    1984-01-01

    It is proposed that binding of oral streptococci to saliva-coated hydroxylapatite (SHA) surfaces is a multifactorial process involving both specific and nonspecific receptors. In this context, specific binding is described as a high-affinity, saturable interaction between the cell and binding surface. Conversely, nonspecific binding is considered to be a nonsaturable, generalized, low-affinity reaction. Experimental differentiation of specific binding from nonspecific binding was achieved with a competition assay which utilized a large excess of nonradiolabeled bacteria to compete with the 3H-labeled cells for attachment to receptors on 1.5 mg of SHA crystals. Competition assays of Streptococcus sanguis and Streptococcus mitis adhesion clearly demonstrated that the total binding isotherm was composed of a saturable specific binding reaction and a minor nonspecific binding component. This was further substantiated by analysis of nonlinear Scatchard plots of the total binding data. The competition data for Streptococcus mutans binding indicated that ca. 50% of the S. mutans binding appeared to be specific, although saturation of the SHA surfaces with bacterial cells could not be demonstrated. Experiments measuring desorption of radiolabeled cells from SHA crystals into buffer showed that ca. 50% of the bound S. mutans cells were removed after 4 h, whereas less than 5% of the S. sanguis cells were eluted from the SHA surfaces. The kinetics of attachment were studied by using an extract of Persea americana as a noncompetitive inhibitor of adherence. The total cell binding data for these experiments suggested a very rapid binding reaction followed by a slower rate of attachment. It was concluded from these three different experimental approaches that adherence of selected oral streptococci to SHA surfaces involves specific, high-affinity and nonspecific, low-affinity binding reactions. The concept is developed that in vitro streptococcal attachment to SHA can be described as a two-reaction process in which the low-affinity interaction of the cell with the SHA surface precedes the establishment of the stronger, specific bonds needed for the maintenance of streptococci in the oral cavity. PMID:6327530

  20. Bacillus thuringiensis delta-endotoxin binding to brush border membrane vesicles of rice stem borers.

    PubMed

    Alcantara, Edwin P; Aguda, Remedios M; Curtiss, April; Dean, Donald H; Cohen, Michael B

    2004-04-01

    The receptor binding step in the molecular mode of action of five delta-endotoxins (Cry1Ab, Cry1Ac, Cry1C, Cry2A, and Cry9C) from Bacillus thuringiensis was examined to find toxins with different receptor sites in the midgut of the striped stem borer (SSB) Chilo suppressalis (Walker) and yellow stem borer (YSB) Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae). Homologous competition assays were used to estimate binding affinities (K(com)) of (125)I-labelled toxins to brush border membrane vesicles (BBMV). The SSB BBMV affinities in decreasing order was: Cry1Ab = Cry1Ac > Cry9C > Cry2A > Cry1C. In YSB, the order of decreasing affinities was: Cry1Ac > Cry1Ab > Cry9C = Cry2A > Cry1C. The number of binding sites (B(max)) estimated by homologous competition binding among the Cry toxins did not affect toxin binding affinity (K(com)) to both insect midgut BBMVs. Results of the heterologous competition binding assays suggest that Cry1Ab and Cry1Ac compete for the same binding sites in SSB and YSB. Other toxins bind with weak (Cry1C, Cry2A) or no affinity (Cry9C) to Cry1Ab and Cry1Ac binding sites in both species. Cry2A had the lowest toxicity to 10-day-old SSB and Cry1Ab and Cry1Ac were the most toxic. Taken together, the results of this study show that Cry1Ab or Cry1Ac could be combined with either Cry1C, Cry2A, or Cry9C for more durable resistance in transgenic rice. Cry1Ab should not be used together with Cry1Ac because a mutation in one receptor site could diminish binding of both toxins. Copyright 2004 Wiley-Liss, Inc.

  1. Selective regulation of beta 1- and beta 2-adrenoceptors in the human heart by chronic beta-adrenoceptor antagonist treatment.

    PubMed Central

    Michel, M. C.; Pingsmann, A.; Beckeringh, J. J.; Zerkowski, H. R.; Doetsch, N.; Brodde, O. E.

    1988-01-01

    1. In 44 patients undergoing coronary artery bypass grafting, the effect of chronic administration of the beta-adrenoceptor antagonists sotalol, propranolol, pindolol, metoprolol and atenolol on beta-adrenoceptor density in right atria (containing 70% beta 1- and 30% beta 2-adrenoceptors) and in lymphocytes (having only beta 2-adrenoceptors) was studied. 2. beta-Adrenoceptor density in right atrial membranes and in intact lymphocytes was assessed by (-)-[125I]-iodocyanopindolol (ICYP) binding; the relative amount of right atrial beta 1- and beta 2-adrenoceptors was determined by inhibition of ICYP binding by the selective beta 2-adrenoceptor antagonist ICI 118,551 and analysis of the resulting competition curves by the iterative curve fitting programme LIGAND. 3. With the exception of pindolol, all beta-adrenoceptor antagonists increased right atrial beta-adrenoceptor density compared to that observed in atria from patients not treated with beta-adrenoceptor antagonists. 4. All beta-adrenoceptor antagonists increased right atrial beta 1-adrenoceptor density; on the other hand, only sotalol and propranolol also increased right atrial beta 2-adrenoceptor density, whereas metoprolol and atenolol did not affect it and pindolol decreased it. 5. Similarly, in corresponding lymphocytes, only sotalol or propranolol increased beta 2-adrenoceptor density, while metoprolol and atenolol did not affect it and pindolol decreased it. 6. It is concluded that beta-adrenoceptor antagonists subtype-selectively regulate cardiac and lymphocyte beta-adrenoceptor subtypes. The selective increase in cardiac beta 1-adrenoceptor density evoked by metoprolol and atenolol may be one of the reasons for the beneficial effects observed in patients with end-stage congestive cardiomyopathy following intermittent treatment with low doses of selective beta 1-adrenoceptor antagonists. PMID:2902891

  2. Two-track virtual screening approach to identify both competitive and allosteric inhibitors of human small C-terminal domain phosphatase 1

    NASA Astrophysics Data System (ADS)

    Park, Hwangseo; Lee, Hye Seon; Ku, Bonsu; Lee, Sang-Rae; Kim, Seung Jun

    2017-08-01

    Despite a wealth of persuasive evidence for the involvement of human small C-terminal domain phosphatase 1 (Scp1) in the impairment of neuronal differentiation and in Huntington's disease, small-molecule inhibitors of Scp1 have been rarely reported so far. This study aims to the discovery of both competitive and allosteric Scp1 inhibitors through the two-track virtual screening procedure. By virtue of the improvement of the scoring function by implementing a new molecular solvation energy term and by reoptimizing the atomic charges for the active-site Mg2+ ion cluster, we have been able to identify three allosteric and five competitive Scp1 inhibitors with low-micromolar inhibitory activity. Consistent with the results of kinetic studies on the inhibitory mechanisms, the allosteric inhibitors appear to be accommodated in the peripheral binding pocket through the hydrophobic interactions with the nonpolar residues whereas the competitive ones bind tightly in the active site with a direct coordination to the central Mg2+ ion. Some structural modifications to improve the biochemical potency of the newly identified inhibitors are proposed based on the binding modes estimated with docking simulations.

  3. Site Identification by Ligand Competitive Saturation (SILCS) Simulations for Fragment-Based Drug Design

    PubMed Central

    Faller, Christina E.; Raman, E. Prabhu; MacKerell, Alexander D.; Guvench, Olgun

    2015-01-01

    Fragment-based drug design (FBDD) involves screening low molecular weight molecules (“fragments”) that correspond to functional groups found in larger drug-like molecules to determine their binding to target proteins or nucleic acids. Based on the principle of thermodynamic additivity, two fragments that bind non-overlapping nearby sites on the target can be combined to yield a new molecule whose binding free energy is the sum of those of the fragments. Experimental FBDD approaches, like NMR and X-ray crystallography, have proven very useful but can be expensive in terms of time, materials, and labor. Accordingly, a variety of computational FBDD approaches have been developed that provide different levels of detail and accuracy. The Site Identification by Ligand Competitive Saturation (SILCS) method of computational FBDD uses all-atom explicit-solvent molecular dynamics (MD) simulations to identify fragment binding. The target is “soaked” in an aqueous solution with multiple fragments having different identities. The resulting computational competition assay reveals what small molecule types are most likely to bind which regions of the target. From SILCS simulations, 3D probability maps of fragment binding called “FragMaps” can be produced. Based on the probabilities relative to bulk, SILCS FragMaps can be used to determine “Grid Free Energies (GFEs),” which provide per-atom contributions to fragment binding affinities. For essentially no additional computational overhead relative to the production of the FragMaps, GFEs can be used to compute Ligand Grid Free Energies (LGFEs) for arbitrarily complex molecules, and these LGFEs can be used to rank-order the molecules in accordance with binding affinities. PMID:25709034

  4. [Studying specific effects of nootropic drugs on glutamate receptors in the rat brain].

    PubMed

    Firstova, Iu Iu; Vasil'eva, E V; Kovalev, G I

    2011-01-01

    The influence of nootropic drugs of different groups (piracetam, phenotropil, nooglutil, noopept, semax, meclofenoxate, pantocalcine, and dimebon) on the binding of the corresponding ligands to AMPA, NMDA, and mGlu receptors of rat brain has been studied by the method of radio-ligand binding in vitro. It is established that nooglutil exhibits pharmacologically significant competition with a selective agonist of AMPA receptors ([G-3H]Ro 48-8587) for the receptor binding sites (with IC50 = 6.4 +/- 0.2 microM), while the competition of noopept for these receptor binding sites was lower by an order of magnitude (IC50 = 80 +/- 5.6 microM). The heptapeptide drug semax was moderately competitive with [G-3H]LY 354740 for mGlu receptor sites (IC50 = 33 +/- 2.4 microM). Dimebon moderately influenced the specific binding of the ligand of NMDA receptor channel ([G-3H]MK-801) at IC50 = 59 +/- 3.6 microM. Nootropic drugs of the pyrrolidone group (piracetam, phenotropil) as well as meclofenoxate, pantocalcine (pantogam) in a broad rage of concentrations (10(-4)-10(-10) M) did not affect the binding of the corresponding ligands to glutamate receptors (IC50 100 pM). Thus, the direct neurochemical investigation was used for the first time to qualitatively characterize the specific binding sites for nooglutil and (to a lower extent) noopept on AMPA receptors, for semax on metabotropic glutamate receptors, and for dimebon on the channel region of NMDA receptors. The results are indicative of a selective action of some nootropes on the glutamate family.

  5. Label-Free, LC-MS-Based Assays to Quantitate Small-Molecule Antagonist Binding to the Mammalian BLT1 Receptor.

    PubMed

    Chen, Xun; Stout, Steven; Mueller, Uwe; Boykow, George; Visconti, Richard; Siliphaivanh, Phieng; Spencer, Kerrie; Presland, Jeremy; Kavana, Michael; Basso, Andrea D; McLaren, David G; Myers, Robert W

    2017-08-01

    We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.

  6. Interaction of fenoterol stereoisomers with β2-adrenoceptor-G sα fusion proteins: antagonist and agonist competition binding.

    PubMed

    Reinartz, Michael T; Kälble, Solveig; Wainer, Irving W; Seifert, Roland

    2015-05-01

    The specific interaction between G-protein-coupled receptors and ligand is the starting point for downstream signaling. Fenoterol stereoisomers were successfully used to probe ligand-specific activation (functional selectivity) of the β2-adrenoceptor (β2AR) (Reinartz et al. 2015). In the present study, we extended the pharmacological profile of fenoterol stereoisomers using β2AR-Gsα fusion proteins in agonist and antagonist competition binding assays. Dissociations between binding affinities and effector potencies were found for (R,S')- and (S,S')-isomers of 4'-methoxy-1-naphthyl-fenoterol. Our data corroborate former studies on the importance of the aminoalkyl moiety of fenoterol derivatives for functional selectivity.

  7. Measurement of monomolecular binding constants of neutral phenols into the beta-cyclodextrin by continuous frontal analysis in capillary and microchip electrophoresis via a competitive assay.

    PubMed

    Le Saux, Thomas; Hisamoto, Hideaki; Terabe, Shigeru

    2006-02-03

    Measurement of binding constant by chip electrophoresis is a very promising technique for the high throughput screening of non-covalent interactions. Among the different electrophoretic methods available that yield the binding parameters, continuous frontal analysis is the most appropriate for a transposition from capillary electrophoresis (CE) to microchip electrophoresis. Implementation of this methodology in microchip was exemplified by the measurement of inclusion constants of 2-naphtalenesulfonate and neutral phenols (phenol, 4-chlorophenol and 4-nitrophenol) into beta-cyclodextrin by competitive assays. The issue of competitor choice is discussed in relation to its appropriateness for proper monitoring of the interaction.

  8. Comparison of Relative Binding Affinities for Trout and Human Estrogen Receptor Based upon Different Competitive Binding Assays

    EPA Science Inventory

    The development of a predictive model based upon a single aquatic species inevitably raises the question of whether this information is valid for other species. To partially address this question, relative binding affinities (RBA) for six alkylphenols (para-substituted, n- and b...

  9. High glucose disrupts oligosaccharide recognition function via competitive inhibition: a potential mechanism for immune dysregulation in diabetes mellitus.

    PubMed

    Ilyas, Rebecca; Wallis, Russell; Soilleux, Elizabeth J; Townsend, Paul; Zehnder, Daniel; Tan, Bee K; Sim, Robert B; Lehnert, Hendrik; Randeva, Harpal S; Mitchell, Daniel A

    2011-01-01

    Diabetic complications include infection and cardiovascular disease. Within the immune system, host-pathogen and regulatory host-host interactions operate through binding of oligosaccharides by C-type lectin. A number of C-type lectins recognise oligosaccharides rich in mannose and fucose - sugars with similar structures to glucose. This raises the possibility that high glucose conditions in diabetes affect protein-oligosaccharide interactions via competitive inhibition. Mannose-binding lectin, soluble DC-SIGN and DC-SIGNR, and surfactant protein D, were tested for carbohydrate binding in the presence of glucose concentrations typical of diabetes, via surface plasmon resonance and affinity chromatography. Complement activation assays were performed in high glucose. DC-SIGN and DC-SIGNR expression in adipose tissues was examined via immunohistochemistry. High glucose inhibited C-type lectin binding to high-mannose glycoprotein and binding of DC-SIGN to fucosylated ligand (blood group B) was abrogated in high glucose. Complement activation via the lectin pathway was inhibited in high glucose and also in high trehalose - a nonreducing sugar with glucoside stereochemistry. DC-SIGN staining was seen on cells with DC morphology within omental and subcutaneous adipose tissues. We conclude that high glucose disrupts C-type lectin function, potentially illuminating new perspectives on susceptibility to infectious and inflammatory disease in diabetes. Mechanisms involve competitive inhibition of carbohydrate binding within sets of defined proteins, in contrast to broadly indiscriminate, irreversible glycation of proteins. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. Discovery of a Potent BTK Inhibitor with a Novel Binding Mode by Using Parallel Selections with a DNA-Encoded Chemical Library.

    PubMed

    Cuozzo, John W; Centrella, Paolo A; Gikunju, Diana; Habeshian, Sevan; Hupp, Christopher D; Keefe, Anthony D; Sigel, Eric A; Soutter, Holly H; Thomson, Heather A; Zhang, Ying; Clark, Matthew A

    2017-05-04

    We have identified and characterized novel potent inhibitors of Bruton's tyrosine kinase (BTK) from a single DNA-encoded library of over 110 million compounds by using multiple parallel selection conditions, including variation in target concentration and addition of known binders to provide competition information. Distinct binding profiles were observed by comparing enrichments of library building block combinations under these conditions; one enriched only at high concentrations of BTK and was competitive with ATP, and another enriched at both high and low concentrations of BTK and was not competitive with ATP. A compound representing the latter profile showed low nanomolar potency in biochemical and cellular BTK assays. Results from kinetic mechanism of action studies were consistent with the selection profiles. Analysis of the co-crystal structure of the most potent compound demonstrated a novel binding mode that revealed a new pocket in BTK. Our results demonstrate that profile-based selection strategies using DNA-encoded libraries form the basis of a new methodology to rapidly identify small molecule inhibitors with novel binding modes to clinically relevant targets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Apo-states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain

    PubMed Central

    Findeisen, Felix; Rumpf, Christine; Minor, Daniel L.

    2013-01-01

    In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation (CDI) and limits calcium entry, whereas CaBP1 blocks CDI and allows sustained calcium influx. Here, we combine isothermal titration calorimetry (ITC) with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca2+/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium binding properties. The observation that the apo-forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity. PMID:23811053

  12. Mechanism of oxygen reduction reaction on Pt(111) in alkaline solution: Importance of chemisorbed water on surface

    DOE PAGES

    Liu, Shizhong; White, Michael G.; Liu, Ping

    2016-06-30

    Here, we report a detailed mechanistic study of the oxygen reduction reaction (ORR) on Pt(111) in alkaline solution, combining density functional theory and kinetic Monte Carlo simulations. A complex reaction network including four possible pathways via either 2e – or 4e – transfer is established and is able to reproduce the experimental measured polarization curve at both low- and high-potential regions. Our results show that it is essential to account for solvation by water and the dynamic coverage of *OH to describe the reaction kinetics well. In addition, a chemisorbed water (*H 2O)-mediated mechanism including 4e – transfers is identified,more » where the reduction steps via *H 2O on the surface are potential-independent and only the final removal of *OH from the surface in the form of OH –(aq) contributes to the current. For the ORR in alkaline solutions, such a mechanism is more competitive than the associative and dissociative mechanisms typically used to describe the ORR in acid solution. Finally, *OH and **O 2 intermediates are found to be critically important for tuning the ORR activity of Pt in alkaline solution. To enhance the activity, the binding of Pt should be tuned in such a way that *OH binding is weak enough to release more surface sites under working conditions, while **O 2 binding is strong enough to enable the ORR via the 4e – transfer mechanism.« less

  13. Evidence of paired M2 muscarinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, L.T.; Ballesteros, L.A.; Bichajian, L.H.

    Binding assays involving various antagonists, including N-(3H) methylscopolamine, (3H)quinuclidinyl benzilate, AFDX-116, pirenzepine, and propylbenzilylcholine mustard, disclosed only a single population of M2 muscarinic receptors in membranes from the rat brainstem (medulla, pons, and colliculi). However, competition curves between N-(3H)methylscopolamine and various agonists, including oxotremorine, cis-dioxolane, and acetylethylcholine mustard, showed approximately equal numbers of guanine nucleotide-sensitive high affinity (H) sites and guanine nucleotide-insensitive low affinity (L) sites. This 50% H phenomenon persisted in different buffers, at different temperatures, after the number of receptors was halved (and, thus, the remaining receptor to guanine nucleotide-binding protein ratio was doubled), after membrane solubilization withmore » digitonin, and when rabbit cardiac membranes were used instead of rat brainstem membranes. Preferential occupation of H sites with acetylethylcholine mustard, and of L sites with quinuclidinyl benzilate or either mustard, yielded residual free receptor populations showing predominantly L and H sites, respectively. Low concentrations of (3H)-oxotremorine-M labeled only H sites, and the Bmax for these sites was 49% of the Bmax found with (3H)quinuclidinyl benzilate plus guanine nucleotide. These and other results are most consistent with the idea that H and L receptor sites exist on separate but dimeric receptor molecules and with the hypothesis that only the H receptors cycle between high and low affinity, depending upon interactions between this receptor molecule and a guanine nucleotide-binding protein.« less

  14. Rapid solid-phase immunoassay for 6-keto prostaglandin F1 alpha on microplates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schramm, W.; Smith, R.H.; Jackson, T.M.

    1990-03-01

    We describe, for the measurement of 6-keto prostaglandin F1 alpha in biological media, a solid-phase immunoassay with immobilized antibodies that requires a total processing time of less than 2 h with hands-on time less than 30 min for 40 samples. The method combines the convenience of the microplate format with the sensitivity of radiolabeled prostaglandin derivatives as tracers in a competitive immunoassay. The intra- and interassay variations at 50% displacement of the radiolabeled prostaglandin derivative as tracer were 9.0% and 11.8%, respectively. At 50% displacement of the radiolabeled tracer, the sensitivity is about 20 pg per well. Optimal incubation timemore » is between 60 and 90 min. Nonspecific binding was less than 1% if about 8 pg of tracer (approximately 25,000 counts/min per well) was used. Inhibition curves of samples in different dilutions were parallel to standard curves. The variation of bound radiolabeled prostaglandin derivative within the wells of one microplate (n = 96) was less than 3%. Human plasma samples and medium from tissue culture assayed for 6-keto prostaglandin F1 alpha correlated well with results obtained with a solid-phase assay based on use of magnetic particles (r = 0.99, n = 24) for culture-medium samples; r = 0.99; n = 26 for plasma samples.« less

  15. Alchemical and structural distribution based representation for universal quantum machine learning

    NASA Astrophysics Data System (ADS)

    Faber, Felix A.; Christensen, Anders S.; Huang, Bing; von Lilienfeld, O. Anatole

    2018-06-01

    We introduce a representation of any atom in any chemical environment for the automatized generation of universal kernel ridge regression-based quantum machine learning (QML) models of electronic properties, trained throughout chemical compound space. The representation is based on Gaussian distribution functions, scaled by power laws and explicitly accounting for structural as well as elemental degrees of freedom. The elemental components help us to lower the QML model's learning curve, and, through interpolation across the periodic table, even enable "alchemical extrapolation" to covalent bonding between elements not part of training. This point is demonstrated for the prediction of covalent binding in single, double, and triple bonds among main-group elements as well as for atomization energies in organic molecules. We present numerical evidence that resulting QML energy models, after training on a few thousand random training instances, reach chemical accuracy for out-of-sample compounds. Compound datasets studied include thousands of structurally and compositionally diverse organic molecules, non-covalently bonded protein side-chains, (H2O)40-clusters, and crystalline solids. Learning curves for QML models also indicate competitive predictive power for various other electronic ground state properties of organic molecules, calculated with hybrid density functional theory, including polarizability, heat-capacity, HOMO-LUMO eigenvalues and gap, zero point vibrational energy, dipole moment, and highest vibrational fundamental frequency.

  16. Principles for designing proteins with cavities formed by curved β sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcos, Enrique; Basanta, Benjamin; Chidyausiku, Tamuka M.

    Active sites and ligand-binding cavities in native proteins are often formed by curved β sheets, and the ability to control β-sheet curvature would allow design of binding proteins with cavities customized to specific ligands. Toward this end, we investigated the mechanisms controlling β-sheet curvature by studying the geometry of β sheets in naturally occurring protein structures and folding simulations. The principles emerging from this analysis were used to design, de novo, a series of proteins with curved β sheets topped with α helices. Nuclear magnetic resonance and crystal structures of the designs closely match the computational models, showing that β-sheetmore » curvature can be controlled with atomic-level accuracy. Our approach enables the design of proteins with cavities and provides a route to custom design ligand-binding and catalytic sites.« less

  17. Use of Protein G Microcolumns in Chromatographic Immunoassays: A Comparison of Competitive Binding Formats

    PubMed Central

    Pfaunmiller, Erika L.; Anguizola, Jeanethe A.; Milanuk, Mitchell L.; Carter, NaTasha; Hage, David S.

    2016-01-01

    Affinity microcolumns containing protein G were used as general platforms for creating chromatographic-based competitive binding immunoassays. Human serum albumin (HSA) was used as a model target for this work and HSA tagged with a near infrared fluorescent dye was utilized as the label. The protein G microcolumns were evaluated for use in several assay formats, including both solution-based and column-based competitive binding immunoassays and simultaneous or sequential injection formats. All of these methods were characterized by using the same amounts of labeled HSA and anti-HSA antibodies per sample, as chosen for the analysis of a protein target in the low-to-mid ng/mL range. The results were used to compare these formats in terms of their response, precision, limits of detection, and analysis time. All these methods gave detection limits in the range of 8–19 ng/mL and precisions ranging from ± 5% to ± 10% when using an injection flow rate of 0.10 mL/min. The column-based sequential injection immunoassay provided the best limit of detection and the greatest change in response at low target concentrations, while the solution-based simultaneous injection method had the broadest linear and dynamic ranges. These results provided valuable guidelines that can be employed to develop and extend the use of protein G microcolumns and these competitive binding formats to other protein biomarkers or biological agents of clinical or pharmaceutical interest. PMID:26777776

  18. Rapid characterization of a novel taspine derivative-HMQ1611 binding to EGFR by a cell membrane chromatography method.

    PubMed

    Du, Hui; Lv, Nan; Wang, Sicen; He, Langchong

    2013-05-01

    A new high-expression endothelial growth factor receptor (EGFR) cell membrane chromatography (CMC) method was applied to recognize the ligands acting on EGFR specifically, and investigate the affinity of gefitinib/HMQ1611 to EGFR. In the self and direct competitive assay, gefitinib/HMQ1611 was used as a competitor in the mobile phase to evaluate the effect of the competitor's concentrations on the retention of the ligands, respectively, and the competition between gefitinib and HMQ1611 binding to EGFR was also been examined. The retention behavior indicated that gefitinib had one type of binding sites on the EGFR, and the equilibrium dissociation constant (K(D)) was (9.11 ± 1.89) × 10(-6) M; HMQ1611 had two major binding regions on the EGFR, and the K(D) values obtained from the model were (2.39 ± 0.33) × 10(-7) and (3.87 ± 0.93) × 10(-5) M for HMQ1611 at the high- and low-affinity sites, respectively. The competition between gefitinib and HMQ1611 occurred at the low-affinity sites on the EGFR. The low-affinity sites were of higher concentrations and contributed to a much larger part of retention of HMQ1611. The results suggested that gefitinib and HMQ1611 competed for the common binding sites on the EGFR, no matter the ligand was used as an analyte or a competitor.

  19. Differential transcriptional regulation by alternatively designed mechanisms: A mathematical modeling approach.

    PubMed

    Yildirim, Necmettin; Aktas, Mehmet Emin; Ozcan, Seyma Nur; Akbas, Esra; Ay, Ahmet

    2017-01-01

    Cells maintain cellular homeostasis employing different regulatory mechanisms to respond external stimuli. We study two groups of signal-dependent transcriptional regulatory mechanisms. In the first group, we assume that repressor and activator proteins compete for binding to the same regulatory site on DNA (competitive mechanisms). In the second group, they can bind to different regulatory regions in a noncompetitive fashion (noncompetitive mechanisms). For both competitive and noncompetitive mechanisms, we studied the gene expression dynamics by increasing the repressor or decreasing the activator abundance (inhibition mechanisms), or by decreasing the repressor or increasing the activator abundance (activation mechanisms). We employed delay differential equation models. Our simulation results show that the competitive and noncompetitive inhibition mechanisms exhibit comparable repression effectiveness. However, response time is fastest in the noncompetitive inhibition mechanism due to increased repressor abundance, and slowest in the competitive inhibition mechanism by increased repressor level. The competitive and noncompetitive inhibition mechanisms through decreased activator abundance show comparable and moderate response times, while the competitive and noncompetitive activation mechanisms by increased activator protein level display more effective and faster response. Our study exemplifies the importance of mathematical modeling and computer simulation in the analysis of gene expression dynamics.

  20. Mechanistic study of manganese-substituted glycerol dehydrogenase using a kinetic and thermodynamic analysis.

    PubMed

    Fang, Baishan; Niu, Jin; Ren, Hong; Guo, Yingxia; Wang, Shizhen

    2014-01-01

    Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH) from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA) and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.

  1. Assessment of the binding of hydroxylated polybrominated diphenyl ethers to thyroid hormone transport proteins using a site-specific fluorescence probe.

    PubMed

    Ren, Xiao M; Guo, Liang-Hong

    2012-04-17

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions on experimental animals, and one of the proposed disruption mechanisms is the competitive binding of PBDE metabolites to TH transport proteins. In this report, a nonradioactive, site-specific fluorescein-thyroxine (F-T4) conjugate was designed and synthesized as a fluorescence probe to study the binding interaction of hydroxylated PBDEs to thyroxine-binding globulin (TBG) and transthyretin (TTR), two major TH transport proteins in human plasma. Compared with free F-T4, the fluorescence intensity of TTR-bound conjugate was enhanced by as much as 2-fold, and the fluorescence polarization value of TBG-bound conjugate increased by more than 20-fold. These changes provide signal modulation mechanisms for F-T4 as a fluorescence probe. Based on fluorescence quantum yield and lifetime measurements, the fluorescence intensity enhancement was likely due to the elimination of intramolecular fluorescence quenching of fluorescein by T4 after F-T4 was bound to TTR. In circular dichroism and intrinsic tryptophan fluorescence measurements, F-T4 induced similar spectroscopic changes of the proteins as T4 did, suggesting that F-T4 bound to the proteins at the T4 binding site. By using F-T4 as the fluorescence probe in competitive binding assays, 11 OH-PBDEs with different levels of bromination and different hydroxylation positions were assessed for their binding affinity with TBG and TTR, respectively. The results indicate that the binding affinity generally increased with bromine number and OH position also played an important role. 3-OH-BDE-47 and 3'-OH-BDE-154 bound to TTR and TBG even stronger, respectively, than T4. With rising environmental level and high bioaccumulation capability, PBDEs have the potential to disrupt thyroid homeostasis by competitive binding with TH transport proteins.

  2. Natural flavonoids as antidiabetic agents. The binding of gallic and ellagic acids to glycogen phosphorylase b.

    PubMed

    Kyriakis, Efthimios; Stravodimos, George A; Kantsadi, Anastassia L; Chatzileontiadou, Demetra S M; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2015-07-08

    We present a study on the binding of gallic acid and its dimer ellagic acid to glycogen phosphorylase (GP). Ellagic acid is a potent inhibitor with Kis of 13.4 and 7.5 μM, in contrast to gallic acid which displays Kis of 1.7 and 3.9 mM for GPb and GPa, respectively. Both compounds are competitive inhibitors with respect to the substrate, glucose-1-phoshate, and non-competitive to the allosteric activator, AMP. However, only ellagic acid functions with glucose in a strongly synergistic mode. The crystal structures of the GPb-gallic acid and GPb-ellagic acid complexes were determined at high resolution, revealing that both ligands bind to the inhibitor binding site of the enzyme and highlight the structural basis for the significant difference in their inhibitory potency. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Endogenous miRNA and Target Concentrations Determine Susceptibility to Potential ceRNA Competition

    PubMed Central

    Bosson, Andrew D.; Zamudio, Jesse R.; Sharp, Phillip A.

    2016-01-01

    SUMMARY Target competition (ceRNA crosstalk) within miRNA-regulated gene networks has been proposed to influence biological systems. To assess target competition, we characterize and quantitate miRNA networks in two cell types. Argonaute iCLIP reveals that hierarchical binding of high- to low-affinity miRNA targets is a key characteristic of in vivo activity. Quantification of cellular miRNA and mRNA/ncRNA target pool levels indicates that miRNA:target pool ratios and an affinity partitioned target pool accurately predict in vivo Ago binding profiles and miRNA susceptibility to target competition. Using single-cell reporters, we directly test predictions and estimate that ~3,000 additional high-affinity target sites can affect active miRNA families with low endogenous miRNA:target ratios, such as miR-92/25. In contrast, the highly expressed miR-294 and let-7 families are not susceptible to increases of nearly 10,000 sites. These results show differential susceptibility based on endogenous miRNA:target pool ratios and provide a physiological context for ceRNA competition in vivo. PMID:25449132

  4. Binding characteristics of levetiracetam to synaptic vesicle protein 2A (SV2A) in human brain and in CHO cells expressing the human recombinant protein.

    PubMed

    Gillard, Michel; Chatelain, Pierre; Fuks, Bruno

    2006-04-24

    A specific binding site for the antiepileptic drug levetiracetam (2S-(oxo-1-pyrrolidinyl)butanamide, Keppra) in rat brain, referred to as the levetiracetam binding site, was discovered several years ago. More recently, this binding site has been identified as the synaptic vesicle protein 2A (SV2A), a protein present in synaptic vesicles [Lynch, B., Lambeng, N., Nocka, K., Kensel-Hammes, P., Bajjalieh, S.M., Matagne, A., Fuks, B., 2004. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl. Acad. Sci. USA, 101, 9861-9866.]. In this study, we characterized the binding properties of levetiracetam in post-mortem human brain and compared them to human SV2A expressed in Chinese hamster ovary (CHO) cells. The results showed that the binding properties of levetiracetam and [3H]ucb 30889, an analogue that was previously characterized as a suitable ligand for levetiracetam binding site/SV2A in rat brain [Gillard, M., Fuks, B., Michel, P., Vertongen, P., Massingham, R. Chatelain, P., 2003. Binding characteristics of [3H]ucb 30889 to levetiracetam binding sites in rat brain. Eur. J. Pharmacol. 478, 1-9.], are almost identical in human brain samples (cerebral cortex, hippocampus and cerebellum) and in CHO cell membranes expressing the human SV2A protein. Moreover, the results are also similar to those previously obtained in rat brain. [3H]ucb 30889 binding in human brain and to SV2A was saturable and reversible. At 4 degrees C, its binding kinetics were best fitted assuming a two-phase model in all tissues. The half-times of association for the fast component ranged between 1 to 2 min and represent 30% to 36% of the sites whereas the half-times for the slow component ranged from 20 to 29 min. In dissociation experiments, the half-times were from 2 to 4 min for the fast component (33% to 49% of the sites) and 20 to 41 min for the slow component. Saturation binding curves led to Kd values for [3H]ucb 30889 of 53+/-7, 55+/-9, 70+/-11 and 75+/-33 nM in human cerebral cortex, hippocampus, cerebellum and CHO cells expressing SV2A respectively. Bmax values around 3-4 pmol/mg protein were calculated in all brain regions. Some of the saturation curves displayed curvilinear Scatchard plots indicating the presence of high and low affinity binding sites. When this was the case, Kd values from 25 to 30 nM for the high affinity sites (24% to 34% of total sites) and from 200 to 275 nM for the low affinity sites were calculated. This was observed in all brain regions and in CHO cell membranes expressing the SV2A protein. It cannot be explained by putative binding of [3H]ucb 30889 to SV2B or C isoforms but may reflect different patterns of SV2A glycosylation or the formation of SV2A oligomers. Competition experiments were performed to determine the affinities for SV2A of a variety of compounds including levetiracetam, some of its analogues and other molecules known to interact with levetiracetam binding sites in rat brain such as bemegride, pentylenetetrazol and chlordiazepoxide. We found an excellent correlation between the affinities of these compounds measured in human brain, rat brain and CHO cells expressing human SV2A. In conclusion, we report for the first time that the binding characteristics of native levetiracetam binding sites/SV2A in human brain and rat brain share very similar properties with human recombinant SV2A expressed in CHO cells.

  5. Selective binding of the fluorescent dye 1-anilinonaphthalene-8-sulfonic acid to peroxisome proliferator-activated receptor gamma allows ligand identification and characterization.

    PubMed

    Zorrilla, Silvia; Garzón, Beatriz; Pérez-Sala, Dolores

    2010-04-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily involved in insulin sensitization, atherosclerosis, inflammation, and carcinogenesis. PPARgamma transcriptional activity is modulated by specific ligands that promote conformational changes allowing interaction with coactivators. Here we show that the fluorophore 1-anilinonaphthalene-8-sulfonic acid (ANS) binds to PPARgamma-LBD (ligand binding domain), displaying negligible interaction with other nuclear receptors such as PPARalpha and retinoid X receptor alpha (RXRalpha). ANS binding is competed by PPARgamma agonists such as rosiglitazone, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), and 9,10-dihydro-15-deoxy-Delta(12,14)-prostaglandin J(2) (CAY10410). Moreover, the affinity of PPARgamma for these ligands, determined through ANS competition titrations, is within the range of that reported previously, thereby suggesting that ANS competition could be useful in the screening and characterization of novel PPARgamma agonists. In contrast, gel-based competition assays showed limited performance with noncovalently bound ligands. We applied the ANS binding assay to characterize a biotinylated analog of 15d-PGJ(2) that does not activate PPAR in cells. We found that although this compound bound to PPARgamma with low affinity, it failed to promote PPARgamma interaction with a fluorescent SRC-1 peptide, indicating a lack of receptor activation. Therefore, combined approaches using ANS and fluorescent coactivator peptides to monitor PPARgamma binding and interactions may provide valuable strategies to fully understand the role of PPARgamma ligands. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Contributions of Torpedo nicotinic acetylcholine receptor gamma Trp-55 and delta Trp-57 to agonist and competitive antagonist function.

    PubMed

    Xie, Y; Cohen, J B

    2001-01-26

    Results of affinity-labeling studies and mutational analyses provide evidence that the agonist binding sites of the nicotinic acetylcholine receptor (nAChR) are located at the alpha-gamma and alpha-delta subunit interfaces. For Torpedo nAChR, photoaffinity-labeling studies with the competitive antagonist d-[(3)H]tubocurarine (dTC) identified two tryptophans, gammaTrp-55 and deltaTrp-57, as the primary sites of photolabeling in the non-alpha subunits. To characterize the importance of gammaTrp-55 and deltaTrp-57 to the interactions of agonists and antagonists, Torpedo nAChRs were expressed in Xenopus oocytes, and equilibrium binding assays and electrophysiological recordings were used to examine the functional consequences when either or both tryptophans were mutated to leucine. Neither substitution altered the equilibrium binding of dTC. However, the deltaW57L and gammaW55L mutations decreased acetylcholine (ACh) binding affinity by 20- and 7,000-fold respectively. For the wild-type, gammaW55L, and deltaW57L nAChRs, the concentration dependence of channel activation was characterized by Hill coefficients of 1.8, 1.1, and 1.7. For the gammaW55L mutant, dTC binding at the alpha-gamma site acts not as a competitive antagonist but as a coactivator or partial agonist. These results establish that interactions with gamma Trp-55 of the Torpedo nAChR play a crucial role in agonist binding and in the agonist-induced conformational changes that lead to channel opening.

  7. The role of enzyme and substrate concentration in the evaluation of serum angiotensin converting enzyme (ACE) inhibition by enalaprilat in vitro.

    PubMed

    Weisser, K; Schloos, J

    1991-10-09

    The relationship between serum angiotensin converting enzyme (ACE) activity and concentration of the ACE inhibitor enalaprilat was determined in vitro in the presence of different concentrations (S = 4-200 mM) of the substrate Hip-Gly-Gly. From Henderson plots, a competitive tight-binding relationship between enalaprilat and serum ACE was found yielding a value of approximately 5 nM for serum ACE concentration (Et) and an inhibition constant (Ki) for enalaprilat of approximately 0.1 nM. A plot of reaction velocity (Vi) versus total inhibitor concentration (It) exhibited a non-parallel shift of the inhibition curve to the right with increasing S. This was reflected by apparent Hill coefficients greater than 1 when the commonly used inhibitory sigmoid concentration-effect model (Emax model) was applied to the data. Slopes greater than 1 were obviously due to discrepancies between the free inhibitor concentration (If) present in the assay and It plotted on the abscissa and could, therefore, be indicators of tight-binding conditions. Thus, the sigmoid Emax model leads to an overestimation of Ki. Therefore, a modification of the inhibitory sigmoid Emax model (called "Emax tight model") was applied, which accounts for the depletion of If by binding, refers to It and allows estimation of the parameters Et and IC50f (free concentration of inhibitor when 50% inhibition occurs) using non-linear regression analysis. This model could describe the non-symmetrical shape of the inhibition curves and the results for Ki and Et correlated very well with those derived from the Henderson plots. The latter findings confirm that the degree of ACE inhibition measured in vitro is, in fact, dependent on the concentration of substrate and enzyme present in the assay. This is of importance not only for the correct evaluation of Ki but also for the interpretation of the time course of serum ACE inhibition measured ex vivo. The non-linear model has some advantages over the linear Henderson equation: it is directly applicable without conversion of the data and avoids the stochastic dependency of the variables, allowing non-linear regression of all data points contributing with the same weight.

  8. In vitro DNA binding studies of Aspartame, an artificial sweetener.

    PubMed

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Kheirdoosh, Fahimeh

    2013-03-05

    A number of small molecules bind directly and selectively to DNA, by inhibiting replication, transcription or topoisomerase activity. In this work the interaction of native calf thymus DNA (CT-DNA) with Aspartame (APM), an artificial sweeteners was studied at physiological pH. DNA binding study of APM is useful to understand APM-DNA interaction mechanism and to provide guidance for the application and design of new and safer artificial sweeteners. The interaction was investigated using spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD). Hypochromism and red shift are shown in UV absorption band of APM. A strong fluorescence quenching reaction of DNA to APM was observed and the binding constants (Kf) of DNA with APM and corresponding number of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be +181kJmol(-1) and +681Jmol(-1)K(-1) according to Van't Hoff equation, which indicated that reaction is predominantly entropically driven. Moreover, spectrofluorometric competition experiment and circular dichroism (CD) results are indicative of non-intercalative DNA binding nature of APM. We suggest that APM interacts with calf thymus DNA via groove binding mode with an intrinsic binding constant of 5×10(+4)M(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Characterization of bradykinin receptors in human lung fibroblasts using the binding of 3[H][Des-Arg10,Leu9]kallidin and [3H]NPC17731.

    PubMed

    Zhang, S P; Codd, E E

    1998-01-01

    Bradykinin (BK) receptors are involved in pain and inflammation. Two BK receptor subtypes, B1 and B2, have been defined based on their pharmacological properties. Both B1 and B2 receptors are G-protein coupled membrane receptors. B1 receptors are present in smooth muscle tissue, whereas B2 receptors are found in both smooth muscle tissue and neurons. [Des-Arg10,Leu9]kallidin (DALKD) is a selective B1 receptor antagonist, and NPC17731 is a selective B2 receptor antagonist. To develop binding assays for the two known BK receptor subtypes, [3H]DALKD and [3H]NPC17731 were used as selective ligands for B1 and B2 receptors respectively. Both ligands bound to the CCD-16 human lung fibroblast membranes reaching equilibrium at 25 degrees C within 30 min. Binding was stable for at least 60 min. The Kd of [3H]DALKD was 0.33 nM and Bmax was 52 fmol/mg membrane protein. The Kd of [3H]NPC17731 was 0.39 nM and Bmax was 700 fmol/mg membrane protein. Competition for [3H]DALKD binding with BK receptor agonists was in the order: [des-Arg10]KD (DAKD) > KD > [des-Arg9]BK (DABK) > BK, and competition for [3H]DALKD binding with BK receptor antagonists was in the order: DALKD > [des-Arg10]Hoe 140 (DAHoe 140) > [des-Arg9,Leu8]BK (DALBK) > NPC17731 > Hoe 140 > DNMFBK, suggesting that [3H]DALKD bound selectively to B1 receptors. By contrast, competition for [3H]NPC17731 binding by BK agonists was in the order: BK > KD > DAKD > DABK, and competition for [3H]NPC17731 binding by BK antagonists was in the order: NPC17731 = Hoe 140 > DNMFBK > DAHoe 140 > DALBK > DALKD, indicating that [3H]NPC17731 labeled B2 receptors selectively. These results demonstrate that [3H]DALKD and [3H]NPC17731 can be used with CCD-16 human lung fibroblast membranes to provide a pair of binding assays for the simultaneous evaluation of B1 and B2 BK receptor subtypes.

  10. Apo states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain.

    PubMed

    Findeisen, Felix; Rumpf, Christine H; Minor, Daniel L

    2013-09-09

    In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation and limits calcium entry, whereas CaBP1 blocks calcium-dependent inactivation (CDI) and allows sustained calcium influx. Here, we combine isothermal titration calorimetry with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca(2+)/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium-binding properties. The observation that the apo forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Effects of competitive red blood cell binding and reduced hematocrit on the blood and plasma levels of (/sup 14/C)Indapamide in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettieri, J.T.; Portelli, S.T.

    1983-02-01

    The effects of chlorthalidone and acetazolamide on the red blood cell binding of indapamide were investigated. Both drugs caused a substantial decrease in the amount of indapamide bound to the erythrocytes in vitro. This effect was demonstrated by a change in the indapamide blood/plasma ratio from approximately 6 in control samples, to a value of 1 when either of the displacing agents was added. Coadministration of acetazolamide with /sup 14/C-labeled indapamide to rats, resulted in a 5-fold drop in the blood levels of total radioactivity, relative to rats dosed with (/sup 14/C)indapamide alone. Concomitantly, there was a 2-fold increase inmore » the plasma levels of total radioactivity after acetazolamide coadministration. In rats whose hematocrits had been reduced by extensive bleeding, there were only minor alterations in the blood/plasma partitioning of (/sup 14/C)indapamide. Thus, chlorthalidone and acetazolamide were able to displace indapamide from erythrocytes in vitro and in vivo, possibly by competition at a carbonic anhydrase binding site. The pharmacokinetics of drugs which are extensively bound to erythrocytes may be significantly altered by the presence of other agents capable of competitive binding.« less

  12. Binding specificity of the juvenile hormone carrier protein from the hemolymph of the tobacco hornworm Manduca sexta Johannson (Lepidoptera: Sphingidae).

    PubMed

    Peterson, R C; Reich, M F; Dunn, P E; Law, J H; Katzenellnbogen, J A

    1977-05-17

    A series of analogues of insect juvenile hormone (four geometric isomers of methyl epoxyfarnesenate, several para-substituted epoxygeranyl phenyl ethers, and epoxyfarnesol and its acetate and haloacetate derivatives) was prepared to investigate the binding specificity of the hemolymph juvenile hormone binding protein from the tobacco hornworm Manduct sexta. The relative binding affinities were determined by a competition assay against radiolabeled methyl (E,E)-3,11-dimethyl-7-ethyl-cis-10,11-epoxytrideca-2,6-dienoate (JH I). The ratio of dissociation constants was estimated by plotting competitor data according to a linear transformation of the dissociation equations describing competition of two ligands for a binding protein. The importance of the geometry of the sesquiterpene hydrocarbon chain is indicated by the fact that the binding affinity is decreased as Z (cis) double bonds are substituted for E (trans) double bonds in the methyl epoxyfarnesenate series; the unepoxidized analogues do not bind. A carboxylic ester function is important although its orientation can be reversed, as indicated by the good binding of epoxyfarnesyl acetate. In the monoterpene series, methyl epoxygeranoate shows no affinity for the binding protein, but substitution of a phenyl or p-carbomethoxyphenyl ether for the ester function imparts a low, but significant affinity. These data taken together with earlier results indicate that the binding site for juvenile hormone in the hemolymph binding protein is characterized by a sterically defined hydrophobic region with polar sites that recognize the epoxide and the ester functions.

  13. Competitive fluorescent pseudo-immunoassay exploiting molecularly imprinted polymers for the detection of biogenic amines in fish matrix.

    PubMed

    Mattsson, Leena; Xu, Jingjing; Preininger, Claudia; Tse Sum Bui, Bernadette; Haupt, Karsten

    2018-05-01

    We developed a competitive fluorescent molecularly imprinted polymer (MIP) assay to detect biogenic amines in fish samples. MIPs synthesized by precipitation polymerization using histamine as template were used in a batch binding assay analogous to competitive fluoroimmunoassays. Introducing a complex sample matrix, such as fish extract, into the assay changes the environment and the binding conditions, therefore the importance of the sample preparation is extensively discussed. Several extraction and purification methods for fish were comprehensively studied, and an optimal clean-up procedure for fish samples using liquid-liquid extraction was developed. The feasibility of the competitive MIP assay was shown in the purified fish extract over a broad histamine range (1 - 430µM). The MIP had the highest affinity towards histamine, but recognized also the structurally similar biogenic amines tyramine and tryptamine, as well as spermine and spermidine, providing simultaneous analysis and assessment of the total amount of biogenic amines. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Activation of Hsp90/NOS and increased NO generation does not impair mitochondrial respiratory chain by competitive binding at cytochrome C Oxidase in low oxygen concentrations

    PubMed Central

    Presley, Tennille; Vedam, Kaushik; Liu, Xiaoping; Zweier, Jay L.

    2009-01-01

    Nitric oxide (NO) is known to regulate mitochondrial respiration, especially during metabolic stress and disease, by nitrosation of the mitochondrial electron transport chain (ETC) complexes (irreversible) and by a competitive binding at O2 binding site of cytochrome c oxidase (CcO) in complex IV (reversible). In this study, by using bovine aortic endothelial cells, we demonstrate that the inhibitory effect of endogenously generated NO by nitric oxide synthase (NOS) activation, by either NOS stimulators or association with heat shock protein 90 (Hsp90), is significant only at high prevailing pO2 through nitrosation of mitochondrial ETC complexes, but it does not inhibit the respiration by competitive binding at CcO at very low pO2. ETC complexes activity measurements confirmed that significant reduction in complex IV activity was noticed at higher pO2, but it was unaffected at low pO2 in these cells. This was further extended to heat-shocked cells, where NOS was activated by the induction/activation of (Hsp90) through heat shock at an elevated temperature of 42°C. From these results, we conclude that the entire attenuation of respiration by endogenous NO is due to irreversible inhibition by nitrosation of ETC complexes but not through reversible inhibition by competing with O2 binding at CcO at complex IV. PMID:19412660

  15. From non-covalent binding to irreversible DNA lesions: nile blue and nile red as photosensitizing agents

    PubMed Central

    Gattuso, Hugo; Besancenot, Vanessa; Grandemange, Stéphanie; Marazzi, Marco; Monari, Antonio

    2016-01-01

    We report a molecular modeling study, coupled with spectroscopy experiments, on the behavior of two well known organic dyes, nile blue and nile red, when interacting with B-DNA. In particular, we evidence the presence of two competitive binding modes, for both drugs. However their subsequent photophysical behavior is different and only nile blue is able to induce DNA photosensitization via an electron transfer mechanism. Most notably, even in the case of nile blue, its sensitization capabilities strongly depend on the environment resulting in a single active binding mode: the minor groove. Fluorescence spectroscopy confirms the presence of competitive interaction modes for both sensitizers, while the sensitization via electron transfer, is possible only in the case of nile blue. PMID:27329409

  16. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with boundmore » ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity.« less

  17. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    PubMed Central

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia; Pomper, Martin G.; De Micheli, Carlo; Conti, Paola; Pinto, Andrea

    2017-01-01

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with bound ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity. PMID:28760974

  18. Structural Transformation Detection Contributes to Screening of Behaviorally Active Compounds: Dynamic Binding Process Analysis of DhelOBP21 from Dastarcus helophoroides.

    PubMed

    Yang, Rui-Nan; Li, Dong-Zhen; Yu, Guangqiang; Yi, Shan-Cheng; Zhang, Yinan; Kong, De-Xin; Wang, Man-Qun

    2017-12-01

    In light of reverse chemical ecology, the fluorescence competitive binding assays of functional odorant binding proteins (OBPs) is a recent advanced approach for screening behaviorally active compounds of insects. Previous research on Dastareus helophoroides identified a minus-C OBP, DhelOBP21, which preferably binds to several ligands. In this study, only (+)-β-pinene proved attractive to unmated adult beetles. To obtain a more in-depth explanation of the lack of behavioral activity of other ligands we selected compounds with high (camphor) and low (β-caryophyllene) binding affinities. The structural transformation of OBPs was investigated using well-established approaches for studying binding processes, such as fluorescent quenching assays, circular dichroism, and molecular dynamics. The dynamic binding process revealed that the flexibility of DhelOBP21 seems conducive to binding specific ligands, as opposed to broad substrate binding. The compound (+)-β-pinene and DhelOBP21 formed a stable complex through a secondary structural transformation of DhelOBP21, in which its amino-terminus transformed from random coil to an α-helix to cover the binding pocket. On the other hand, camphor could not efficiently induce a stable structural transformation, and its high binding affinities were due to strong hydrogen-bonding, compromising the structure of the protein. The other compound, β-caryophyllene, only collided with DhelOBP21 and could not be positioned in the binding pocket. Studying structural transformation of these proteins through examining the dynamic binding process rather than using approaches that just measure binding affinities such as fluorescence competitive binding assays can provide a more efficient and reliable approach for screening behaviorally active compounds.

  19. [125I]2-(2-chloro-4-iodo-phenylamino)-5-methyl-pyrroline (LNP 911), a high-affinity radioligand selective for I1 imidazoline receptors.

    PubMed

    Greney, Hugues; Urosevic, Dragan; Schann, Stephan; Dupuy, Laurence; Bruban, Véronique; Ehrhardt, Jean-Daniel; Bousquet, Pascal; Dontenwill, Monique

    2002-07-01

    The I1 subtype of imidazoline receptors (I1R) is a plasma membrane protein that is involved in diverse physiological functions. Available radioligands used so far to characterize the I(1)R were able to bind with similar affinities to alpha2-adrenergic receptors (alpha2-ARs) and to I1R. This feature was a major drawback for an adequate characterization of this receptor subtype. New imidazoline analogs were therefore synthesized and the present study describes one of these compounds, 2-(2-chloro-4-iodo-phenylamino)-5-methyl-pyrroline (LNP 911), which was of high affinity and selectivity for the I1R. LNP 911 was radioiodinated and its binding properties characterized in different membrane preparations. Saturation experiments with [125I]LNP 911 revealed a single high affinity binding site in PC-12 cell membranes (K(D) = 1.4 nM; B(max) = 398 fmol/mg protein) with low nonspecific binding. [125I]LNP 911 specific binding was inhibited by various imidazolines and analogs but was insensitive to guanosine-5'-O-(3-thio)triphosphate. The rank order of potency of some competing ligands [LNP 911, PIC, rilmenidine, 4-chloro-2-(imidazolin-2-ylamino)-isoindoline (BDF 6143), lofexidine, and clonidine] was consistent with the definition of [125I]LNP 911 binding sites as I1R. However, other high-affinity I1R ligands (moxonidine, efaroxan, and benazoline) exhibited low affinities for these binding sites in standard binding assays. In contrast, when [125I]LNP 911 was preincubated at 4 degrees C, competition curves of moxonidine became biphasic. In this case, moxonidine exhibited similar high affinities on [125I]LNP 911 binding sites as on I1R defined with [125I]PIC. Moxonidine proved also able to accelerate the dissociation of [125I]LNP 911 from its binding sites. These results suggest the existence of an allosteric modulation at the level of the I1R, which seems to be corroborated by the dose-dependent enhancement by LNP 911 of the agonist effects on the adenylate cyclase pathway associated to I1R. Because [125I]LNP 911 was unable to bind to the I2 binding site and alpha2AR, our data indicate that [125I]LNP 911 is the first highly selective radioiodinated probe for I1R with a nanomolar affinity. This new tool should facilitate the molecular characterization of the I1 imidazoline receptor.

  20. Small molecule antagonists of the urokinase (uPA): urokinase receptor (uPAR) interaction with high reported potencies show only weak effects in cell-based competition assays employing the native uPAR ligand.

    PubMed

    De Souza, Melissa; Matthews, Hayden; Lee, Jodi A; Ranson, Marie; Kelso, Michael J

    2011-04-15

    Binding of the urokinase-type plasminogen activator (uPA) to its cell-surface-bound receptor uPAR and upregulation of the plasminogen activation system (PAS) correlates with increased metastasis and poor prognosis in several tumour types. Disruptors of the uPA:uPAR interaction represent promising anti-tumour/metastasis agents and several approaches have been explored for this purpose, including the use of small molecule antagonists. Two highly potent non-peptidic antagonists 1 and 2 (IC(50)1=0.8 nM, IC(50)2=33 nM) from the patent literature were reportedly identified using competition assays employing radiolabelled uPAR-binding uPA fragments and appeared as useful pharmacological tools for studying the PAS. Before proceeding to such studies, confirmation was sought that 1 and 2 retained their potencies in physiologically relevant cell-based competition assays employing uPAR's native binding partner high molecular weight uPA (HMW-uPA). This study describes a new solution phase synthesis of 1, a mixed solid/solution phase synthesis of 2 and reports the activities of 1 and 2 in semi-quantitative competition flow cytometry assays and quantitative cell-based uPA activity assays that employed HMW-uPA as the competing ligand. The flow cytometry experiments revealed that high concentrations of 2 (10-100 μM) are required to compete with HMW-uPA for uPAR binding and that 1 shows no antagonist effects at 100 μM. The cell-based enzyme activity assays similarly revealed that 1 and 2 are poor inhibitors of cell surface-bound HMW-uPA activity (IC(50) >100 μM for 1 and 2). The report highlights the dangers of identifying false-positive lead uPAR antagonists from competition assays employing labelled competing ligands other than the native HMW-uPA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. A novel thromboxane receptor antagonist, nstpbp5185, inhibits platelet aggregation and thrombus formation in animal models.

    PubMed

    Huang, Shiu-Wen; Kuo, Heng-Lan; Hsu, Ming-Tsung; Tseng, Yufeng Jane; Lin, Shu-Wha; Kuo, Sheng-Chu; Peng, Hui-Chin; Lien, Jin-Cherng; Huang, Tur-Fu

    2016-08-01

    A novel benzimidazole derivative, nstpbp5185, was discovered through in vitro and in vivo evaluations for antiplatelet activity. Thromaboxane receptor (TP) is important in vascular physiology, haemostasis and pathophysiological thrombosis. Nstpbp5185 concentration-dependently inhibited human platelet aggregation caused by collagen, arachidonic acid and U46619. Nstpbp5185 caused a right-shift of the concentration-response curve of U46619 and competitively inhibited the binding of 3H-SQ-29548 to TP receptor expressed on HEK-293 cells, with an IC50 of 0.1 µM, indicating that nstpbp5185 is a TP antagonist. In murine thrombosis models, nstpbp5185 significantly prolonged the latent period in triggering platelet plug formation in mesenteric and FeCl3-induced thrombi formation, and increased the survival rate in pulmonary embolism model with less bleeding than aspirin. This study suggests nstpbp5185, an orally selective anti-thrombotic agent, acting through blockade of TXA2 receptor, may be efficacious for prevention or treatment of pathologic thrombosis.

  2. Complement C5a receptor antagonism by protamine and poly-L-Arg on human leukocytes.

    PubMed

    Olsen, U B; Selmer, J; Kahl, J U

    1988-01-01

    It is shown that protamine selectively and dose-dependently inhibits complement C5a-induced leukocyte responses such as histamine release from basophils, chemiluminescence and beta-glucuronidase release from neutrophils. Protamine produces parallel rightward displacements of the C5a dose-response curves. The inhibitory capacity of the polypeptide is reversible and disappears following repeated washing of exposed cells. In neutrophils poly-L-Arg similarly and specifically antagonizes C5a-induced chemiluminescence and enzyme release. This polymer alone, however, degranulates basophils and neutrophils, leading to histamine and enzyme release, respectively. It is concluded that on human neutrophils the arginine-rich polycations protamine and poly-L-Arg exhibit a competitive C5a receptor antagonism. In addition, protamine inhibits the C5a receptors on basophils. It is hypothesized that molecular conformations of the arginine-rich polycations might bind reversibly to, and block negatively charged groups at the C5a-receptor sites.

  3. Selected wheat seed defense proteins exhibit competitive binding to model microbial lipid interfaces.

    PubMed

    Sanders, Michael R; Clifton, Luke A; Neylon, Cameron; Frazier, Richard A; Green, Rebecca J

    2013-07-17

    Puroindolines (Pins) and purothionins (Pths) are basic, amphiphilic, cysteine-rich wheat proteins that play a role in plant defense against microbial pathogens. This study examined the co-adsorption and sequential addition of Pins (Pin-a, Pin-b, and a mutant form of Pin-b with Trp-44 to Arg-44 substitution) and β-purothionin (β-Pth) model anionic lipid layers using a combination of surface pressure measurements, external reflection FTIR spectroscopy, and neutron reflectometry. Results highlighted differences in the protein binding mechanisms and in the competitive binding and penetration of lipid layers between respective Pins and β-Pth. Pin-a formed a blanket-like layer of protein below the lipid surface that resulted in the reduction or inhibition of β-Pth penetration of the lipid layer. Wild-type Pin-b participated in co-operative binding with β-Pth, whereas the mutant Pin-b did not bind to the lipid layer in the presence of β-Pth. The results provide further insight into the role of hydrophobic and cationic amino acid residues in antimicrobial activity.

  4. Multi-Laboratory Study of Five Methods for the Determination of Brevetoxins in Shellfish Tissue Extracts.

    PubMed

    Dickey, Robert W; Plakas, Steven M; Jester, Edward L E; El Said, Kathleen R; Johannessen, Jan N; Flewelling, Leanne J; Scott, Paula; Hammond, Dan G; Van Dolah, Frances M; Leighfield, Tod A; Bottein Dachraoui, Marie-Yasmine; Ramsdell, John S; Pierce, Richard H; Henry, Mike S; Poli, Mark A; Walker, Calvin; Kurtz, Jan; Naar, Jerome; Baden, Daniel G; Musser, Steve M; White, Kevin D; Truman, Penelope; Miller, Aaron; Hawryluk, Timothy P; Wekell, Marleen M; Stirling, David; Quilliam, Michael A; Lee, Jung K

    A thirteen-laboratory comparative study tested the performance of four methods as alternatives to mouse bioassay for the determination of brevetoxins in shellfish. The methods were N2a neuroblastoma cell assay, two variations of the sodium channel receptor binding assay, competitive ELISA, and LC/MS. Three to five laboratories independently performed each method using centrally prepared spiked and naturally incurred test samples. Competitive ELISA and receptor binding (96-well format) compared most favorably with mouse bioassay. Between-laboratory relative standard deviations (RSDR) ranged from 10 to 20% for ELISA and 14 to 31% for receptor binding. Within-laboratory (RSDr) ranged from 6 to 15% for ELISA, and 5 to 31% for receptor binding. Cell assay was extremely sensitive but data variation rendered it unsuitable for statistical treatment. LC/MS performed as well as ELISA on spiked test samples but was inordinately affected by lack of toxin-metabolite standards, uniform instrumental parameters, or both, on incurred test samples. The ELISA and receptor binding assay are good alternatives to mouse bioassay for the determination of brevetoxins in shellfish.

  5. Modification of Herbicide Binding to Photosystem II in Two Biotypes of Senecio vulgaris L

    PubMed Central

    Pfister, Klaus; Radosevich, Steven R.; Arntzen, Charles J.

    1979-01-01

    The present study compares the binding and inhibitory activity of two photosystem II inhibitors: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron [DCMU]) and 2-chloro-4-(ethylamine)-6-(isopropyl amine)-S-triazene (atrazine). Chloroplasts isolated from naturally occurring triazine-susceptible and triazine-resistant biotypes of common groundsel (Senecio vulgaris L.) showed the following characteristics. (a) Diuron strongly inhibited photosynthetic electron transport from H2O to 2,6-dichlorophenolindophenol in both biotypes. Strong inhibition by atrazine was observed only with the susceptible chloroplasts. (b) Hill plots of electron transport inhibition data indicate a noncooperative binding of one inhibitor molecule at the site of action for both diuron and atrazine. (c) Susceptible chloroplasts show a strong diuron and atrazine binding (14C-radiolabel assays) with binding constants (K) of 1.4 × 10−8 molar and 4 × 10−8 molar, respectively. In the resistant chloroplasts the diuron binding was slightly decreased (K = 5 × 10−8 molar), whereas no specific atrazine binding was detected. (d) In susceptible chloroplasts, competitive binding between radioactively labeled diuron and non-labeled atrazine was observed. This competition was absent in the resistant chloroplasts. We conclude that triazine resistance of both intact plants and isolated chloroplasts of Senecio vulgaris L. is based upon a minor modification of the protein in the photosystem II complex which is responsible for herbicide binding. This change results in a specific loss of atrazine (triazine)-binding capacity. PMID:16661120

  6. International Validation of Two Human Recombinant Estrogen Receptor (ERa) Binding Assays

    EPA Science Inventory

    An international validation study has been successfully completed for 2 competitive binding assays using human recombinant ERa. Assays evaluated included the Freyberger-Wilson (FW) assay using a full length human ER, and the Chemical Evaluation and Research Institute (CERI) assay...

  7. A Model for Aryl Hydrocarbon Receptor-Activated Gene Expression Shows Potency and Efficacy Changes and Predicts Squelching Due to Competition for Transcription Co-Activators

    PubMed Central

    Simon, Ted W.; Budinsky, Robert A.; Rowlands, J. Craig

    2015-01-01

    A stochastic model of nuclear receptor-mediated transcription was developed based on activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and subsequent binding the activated AHR to xenobiotic response elements (XREs) on DNA. The model was based on effects observed in cells lines commonly used as in vitro experimental systems. Following ligand binding, the AHR moves into the cell nucleus and forms a heterodimer with the aryl hydrocarbon nuclear translocator (ARNT). In the model, a requirement for binding to DNA is that a generic coregulatory protein is subsequently bound to the AHR-ARNT dimer. Varying the amount of coregulator available within the nucleus altered both the potency and efficacy of TCDD for inducing for transcription of CYP1A1 mRNA, a commonly used marker for activation of the AHR. Lowering the amount of available cofactor slightly increased the EC50 for the transcriptional response without changing the efficacy or maximal response. Further reduction in the amount of cofactor reduced the efficacy and produced non-monotonic dose-response curves (NMDRCs) at higher ligand concentrations. The shapes of these NMDRCs were reminiscent of the phenomenon of squelching. Resource limitations for transcriptional machinery are becoming apparent in eukaryotic cells. Within single cells, nuclear receptor-mediated gene expression appears to be a stochastic process; however, intercellular communication and other aspects of tissue coordination may represent a compensatory process to maintain an organism’s ability to respond on a phenotypic level to various stimuli within an inconstant environment. PMID:26039703

  8. Localization in human interleukin 2 of the binding site to the alpha chain (p55) of the interleukin 2 receptor.

    PubMed Central

    Sauvé, K; Nachman, M; Spence, C; Bailon, P; Campbell, E; Tsien, W H; Kondas, J A; Hakimi, J; Ju, G

    1991-01-01

    Human interleukin 2 (IL-2) analogs with defined amino acid substitutions were used to identify specific residues that interact with the 55-kDa subunit (p55) or alpha chain of the human IL-2 receptor. Analog proteins containing specific substitutions for Lys-35, Arg-38, Phe-42, or Lys-43 were inactive in competitive binding assays for p55. All of these analogs retained substantial competitive binding to the intermediate-affinity p70 subunit (beta chain) of the receptor complex. The analogs varied in ability to interact with the high-affinity p55/p70 receptor. Despite the lack of binding to p55, all analogs exhibited significant biological activity, as assayed on the murine CTLL cell line. The dissociation constants of Arg-38 and Phe-42 analogs for p70 were consistent with intermediate-affinity binding; the Kd values were not significantly affected by the presence of p55 in binding to the high-affinity IL-2 receptor complex. These results confirm the importance of the B alpha-helix in IL-2 as the locus for p55-receptor binding and support a revised model of IL-2-IL-2 receptor interaction. PMID:2052547

  9. Quantitative pharmacological analysis of antagonist binding kinetics at CRF1 receptors in vitro and in vivo

    PubMed Central

    Ramsey, Simeon J; Attkins, Neil J; Fish, Rebecca; van der Graaf, Piet H

    2011-01-01

    BACKGROUND AND PURPOSE A series of novel non-peptide corticotropin releasing factor type-1 receptor (CRF1) antagonists were found to display varying degrees of insurmountable and non-competitive behaviour in functional in vitro assays. We describe how we attempted to relate this behaviour to ligand receptor-binding kinetics in a quantitative manner and how this resulted in the development and implementation of an efficient pharmacological screening method based on principles described by Motulsky and Mahan. EXPERIMENTAL APPROACH A non-equilibrium binding kinetic assay was developed to determine the receptor binding kinetics of non-peptide CRF1 antagonists. Nonlinear, mixed-effects modelling was used to obtain estimates of the compounds association and dissociation rates. We present an integrated pharmacokinetic–pharmacodynamic (PKPD) approach, whereby the time course of in vivo CRF1 receptor binding of novel compounds can be predicted on the basis of in vitro assays. KEY RESULTS The non-competitive antagonist behaviour appeared to be correlated to the CRF1 receptor off-rate kinetics. The integrated PKPD model suggested that, at least in a qualitative manner, the in vitro assay can be used to triage and select compounds for further in vivo investigations. CONCLUSIONS AND IMPLICATIONS This study provides evidence for a link between ligand offset kinetics and insurmountable/non-competitive antagonism at the CRF1 receptor. The exact molecular pharmacological nature of this association remains to be determined. In addition, we have developed a quantitative framework to study and integrate in vitro and in vivo receptor binding kinetic behaviour of CRF1 receptor antagonists in an efficient manner in a drug discovery setting. PMID:21449919

  10. Periplasmic binding protein-based detection of maltose using liposomes: a new class of biorecognition elements in competitive assays.

    PubMed

    Edwards, Katie A; Baeumner, Antje J

    2013-03-05

    A periplasmic binding protein (PBP) was investigated as a novel binding species in a similar manner to an antibody in a competitive enzyme linked immunosorbent assay (ELISA), resulting in a highly sensitive and specific assay utilizing liposome-based signal amplification. PBPs are located at high concentrations (10(-4) M) between the inner and outer membranes of gram negative bacteria and are involved in the uptake of solutes and chemotaxis of bacteria toward nutrient sources. Previous sensors relying on PBPs took advantage of the change in local environment or proximity of site-specific fluorophore labels resulting from the significant conformational shift of these proteins' two globular domains upon target binding. Here, rather than monitoring conformational shifts, we have instead utilized the maltose binding protein (MBP) in lieu of an antibody in an ELISA. To our knowledge, this is the first PBP-based sensor without the requirement for engineering site-specific modifications within the protein. MBP conjugated fluorescent dye-encapsulating liposomes served to provide recognition and signal amplification in a competitive assay for maltose using amylose magnetic beads in a microtiter plate-based format. The development of appropriate binding buffers and competitive surfaces are described, with general observations expected to extend to PBPs for other analytes. The resulting assay was specific for d-(+)-maltose versus other sugar analogs including d-(+)-raffinose, sucrose, d-trehalose, d-(+)-xylose, d-fructose, 1-thio-β-d-glucose sodium salt, d-(+)-galactose, sorbitol, glycerol, and dextrose. Cross-reactivity with d-lactose and d-(+)-glucose occurred only at concentrations >10(4)-fold greater than d-(+)-maltose. The limit of detection was 78 nM with a dynamic range covering over 3 orders of magnitude. Accurate detection of maltose as an active ingredient in a pharmaceutical preparation was demonstrated. This method offers a significant improvement over existing enzymatic detection approaches that cannot discriminate between maltose and glucose and over existing fluorescence resonance energy transfer (FRET)-based detection methods that are sensitivity limited. In addition, it opens up a new strategy for the development of biosensors to difficult analytes refractory to immunological detection.

  11. p-( sup 125 I)iodoclonidine is a partial agonist at the alpha 2-adrenergic receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhardt, M.A.; Wade, S.M.; Neubig, R.R.

    1990-08-01

    The binding properties of p-(125I)iodoclonidine (( 125I)PIC) to human platelet membranes and the functional characteristics of PIC are reported. (125I)PIC bound rapidly and reversibly to platelet membranes, with a first-order association rate constant (kon) at room temperature of 8.0 +/- 2.7 x 10(6) M-1 sec-1 and a dissociation rate constant (koff) of 2.0 +/- 0.8 x 10(-3) sec-1. Scatchard plots of specific (125I)PIC binding (0.1-5 nM) were linear, with a Kd of 1.2 +/- 0.1 nM. (125I)PIC bound to the same number of high affinity sites as the alpha 2-adrenergic receptor (alpha 2-AR) full agonist (3H) bromoxidine (UK14,304), which representedmore » approximately 40% of the sites bound by the antagonist (3H)yohimbine. Guanosine 5'-(beta, gamma-imido)triphosphate greatly reduced the amount of (125I)PIC bound (greater than 80%), without changing the Kd of the residual binding. In competition experiments, the alpha 2-AR-selective ligands yohimbine, bromoxidine, oxymetazoline, clonidine, p-aminoclonidine, (-)-epinephrine, and idazoxan all had Ki values in the low nanomolar range, whereas prazosin, propranolol, and serotonin yielded Ki values in the micromolar range. Epinephrine competition for (125I)PIC binding was stereoselective. Competition for (3H)bromoxidine binding by PIC gave a Ki of 1.0 nM (nH = 1.0), whereas competition for (3H)yohimbine could be resolved into high and low affinity components, with Ki values of 3.7 and 84 nM, respectively. PIC had minimal agonist activity in inhibiting adenylate cyclase in platelet membranes, but it potentiated platelet aggregation induced by ADP with an EC50 of 1.5 microM. PIC also inhibited epinephrine-induced aggregation, with an IC50 of 5.1 microM. Thus, PIC behaves as a partial agonist in a human platelet aggregation assay. (125I)PIC binds to the alpha 2B-AR in NG-10815 cell membranes with a Kd of 0.5 +/- 0.1 nM.« less

  12. Evidence for the lack of spare high-affinity insulin receptors in skeletal muscle.

    PubMed Central

    Camps, M; Gumà, A; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1992-01-01

    In this study, the relationship between the concentration of extracellular insulin, insulin binding and insulin action was evaluated in skeletal muscle. Initially we investigated the dose-response relationship of insulin action using three different experimental models that are responsive to insulin, i.e. the isolated perfused rat hindquarter, incubated strips of soleus muscle, and insulin receptors partially affinity-purified from skeletal muscle. We selected as insulin-sensitive parameters glucose uptake in the perfused hindquarter, lactate production in the incubated muscle preparation, and tyrosine receptor kinase activity in the purified receptor preparation. Our results showed that the dose-response curves obtained in the perfused hindquarter and in the incubated muscle were superimposable. In contrast, the dose-response curve for insulin-stimulated receptor tyrosine kinase activity in partially purified receptors was displaced to the left compared with the curves obtained in the perfused hindquarter and in the incubated muscle. The differences between the dose-response curve for receptor tyrosine kinase and those for glucose uptake and lactate production were not explained by a substantial insulin concentration gradient between medium and interstitial space. Thus the medium/interstitial insulin concentration ratio, when assayed in the incubated intact muscle at 5 degrees C, was close to 1. We also compared the dose-response curve of insulin-stimulated receptor tyrosine kinase with the pattern of insulin-binding-site occupancy. The curve of insulin-stimulated receptor kinase activity fitted closely with the occupancy of high-affinity binding sites. In summary, assuming that the estimation of the medium/interstitial insulin concentration ratio obtained at 5 degrees C reflects the actual ratio under more physiological conditions, our results suggest that maximal insulin action is obtained in skeletal muscle at insulin concentrations which do allow full occupancy of high-affinity binding sites. Therefore our data provide evidence for a lack of spare high-affinity insulin receptors in skeletal muscle. PMID:1323279

  13. Evidence for the lack of spare high-affinity insulin receptors in skeletal muscle.

    PubMed

    Camps, M; Gumà, A; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1992-08-01

    In this study, the relationship between the concentration of extracellular insulin, insulin binding and insulin action was evaluated in skeletal muscle. Initially we investigated the dose-response relationship of insulin action using three different experimental models that are responsive to insulin, i.e. the isolated perfused rat hindquarter, incubated strips of soleus muscle, and insulin receptors partially affinity-purified from skeletal muscle. We selected as insulin-sensitive parameters glucose uptake in the perfused hindquarter, lactate production in the incubated muscle preparation, and tyrosine receptor kinase activity in the purified receptor preparation. Our results showed that the dose-response curves obtained in the perfused hindquarter and in the incubated muscle were superimposable. In contrast, the dose-response curve for insulin-stimulated receptor tyrosine kinase activity in partially purified receptors was displaced to the left compared with the curves obtained in the perfused hindquarter and in the incubated muscle. The differences between the dose-response curve for receptor tyrosine kinase and those for glucose uptake and lactate production were not explained by a substantial insulin concentration gradient between medium and interstitial space. Thus the medium/interstitial insulin concentration ratio, when assayed in the incubated intact muscle at 5 degrees C, was close to 1. We also compared the dose-response curve of insulin-stimulated receptor tyrosine kinase with the pattern of insulin-binding-site occupancy. The curve of insulin-stimulated receptor kinase activity fitted closely with the occupancy of high-affinity binding sites. In summary, assuming that the estimation of the medium/interstitial insulin concentration ratio obtained at 5 degrees C reflects the actual ratio under more physiological conditions, our results suggest that maximal insulin action is obtained in skeletal muscle at insulin concentrations which do allow full occupancy of high-affinity binding sites. Therefore our data provide evidence for a lack of spare high-affinity insulin receptors in skeletal muscle.

  14. Development of a Competitive Binding Assay System with Recombinant Estrogen Receptors from Multiple Species

    EPA Science Inventory

    ABSTRACT In the current study, we developed a new system using full-length recombinant baculovirus-expressed estrogen receptors which allows for direct comparison of binding across species. Estrogen receptors representing five vertebrate classes were compared: human (hERα), quai...

  15. The mass-action law based algorithms for quantitative econo-green bio-research.

    PubMed

    Chou, Ting-Chao

    2011-05-01

    The relationship between dose and effect is not random, but rather governed by the unified theory based on the median-effect equation (MEE) of the mass-action law. Rearrangement of MEE yields the mathematical form of the Michaelis-Menten, Hill, Henderson-Hasselbalch and Scatchard equations of biochemistry and biophysics, and the median-effect plot allows linearization of all dose-effect curves regardless of potency and shape. The "median" is the universal common-link and reference-point for the 1st-order to higher-order dynamics, and from single-entities to multiple-entities and thus, it allows the all for one and one for all unity theory to "integrate" simple and complex systems. Its applications include the construction of a dose-effect curve with a theoretical minimum of only two data points if they are accurately determined; quantification of synergism or antagonism at all dose and effect levels; the low-dose risk assessment for carcinogens, toxic substances or radiation; and the determination of competitiveness and exclusivity for receptor binding. Since the MEE algorithm allows the reduced requirement of the number of data points for small size experimentation, and yields quantitative bioinformatics, it points to the deterministic, efficient, low-cost biomedical research and drug discovery, and ethical planning for clinical trials. It is concluded that the contemporary biomedical sciences would greatly benefit from the mass-action law based "Green Revolution".

  16. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos

    PubMed Central

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-01-01

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo. DOI: http://dx.doi.org/10.7554/eLife.23326.001 PMID:28425915

  17. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos.

    PubMed

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-04-20

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo.

  18. The High-Affinity Binding Site for Tricyclic Antidepressants Resides in the Outer Vestibule of the Serotonin TransporterⓈ

    PubMed Central

    Sarker, Subhodeep; Weissensteiner, René; Steiner, Ilka; Sitte, Harald H.; Ecker, Gerhard F.; Freissmuth, Michael; Sucic, Sonja

    2015-01-01

    The structure of the bacterial leucine transporter from Aquifex aeolicus (LeuTAa) has been used as a model for mammalian Na+/Cl−-dependent transporters, in particular the serotonin transporter (SERT). The crystal structure of LeuTAa liganded to tricyclic antidepressants predicts simultaneous binding of inhibitor and substrate. This is incompatible with the mutually competitive inhibition of substrates and inhibitors of SERT. We explored the binding modes of tricyclic antidepressants by homology modeling and docking studies. Two approaches were used subsequently to differentiate between three clusters of potential docking poses: 1) a diagnostic SERTY95F mutation, which greatly reduced the affinity for [3H]imipramine but did not affect substrate binding; 2) competition binding experiments in the presence and absence of carbamazepine (i.e., a tricyclic imipramine analog with a short side chain that competes with [3H]imipramine binding to SERT). Binding of releasers (para-chloroamphetamine, methylene-dioxy-methamphetamine/ecstasy) and of carbamazepine were mutually exclusive, but Dixon plots generated in the presence of carbamazepine yielded intersecting lines for serotonin, MPP+, paroxetine, and ibogaine. These observations are consistent with a model, in which 1) the tricyclic ring is docked into the outer vestibule and the dimethyl-aminopropyl side chain points to the substrate binding site; 2) binding of amphetamines creates a structural change in the inner and outer vestibule that precludes docking of the tricyclic ring; 3) simultaneous binding of ibogaine (which binds to the inward-facing conformation) and of carbamazepine is indicative of a second binding site in the inner vestibule, consistent with the pseudosymmetric fold of monoamine transporters. This may be the second low-affinity binding site for antidepressants. PMID:20829432

  19. The effects of pargyline and 2-phenylethylamine on D1-like dopamine receptor binding.

    PubMed

    Berry, Mark D

    2011-07-01

    2-Phenylethylamine (PE) potentiates neuronal responses to dopamine by an unknown post-synaptic mechanism. Here, whether PE modifies D1-like receptor binding was examined. An unexpected effect of the monoamine oxidase inhibitor pargyline was observed, which did not involve competition for ligand binding. PE did not affect ligand binding in the presence or absence of pargyline. It is concluded that the effect of pargyline does not involve elevation of endogenous PE, and PE effects on dopaminergic neurotransmission are not due to altered D1-like receptor binding.

  20. Engineered proteins as specific binding reagents.

    PubMed

    Binz, H Kaspar; Plückthun, Andreas

    2005-08-01

    Over the past 30 years, monoclonal antibodies have become the standard binding proteins and currently find applications in research, diagnostics and therapy. Yet, monoclonal antibodies now face strong competition from synthetic antibody libraries in combination with powerful library selection technologies. More recently, an increased understanding of other natural binding proteins together with advances in protein engineering, selection and evolution technologies has also triggered the exploration of numerous other protein architectures for the generation of designed binding molecules. Valuable protein-binding scaffolds have been obtained and represent promising alternatives to antibodies for biotechnological and, potentially, clinical applications.

  1. Inhibition of /sup 3/H-leukotriene D4 binding to guinea pig lung receptors by the novel leukotriene antagonist ICI 198,615

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharony, D.; Falcone, R.C.; Krell, R.D.

    1987-12-01

    The specific binding of (/sup 3/H)5(S)hydroxy-6(R)-S-cysteinylglycyl -7(E),9(E),11(Z),14(Z)-eicosatetraenoic acid ((/sup 3/H)LTD4) to receptors on guinea pig lung parenchymal membranes and its inhibition by ICI 198,615, a representative example of a new class of leukotriene antagonists, was characterized by a receptor-ligand binding assay. (/sup 3/H)LTD4 bound specifically and rapidly (Kon = 0.29 +/- 0.6 nM-1.min-1) reaching equilibrium within 15 min. The rate of binding was greatly inhibited in the presence of ICI 198,615. Excess LTD4 or ICI 198,615 slowly (t1/2 = 20 min) dissociated about 70% of the receptor-bound (/sup 3/H)LTD4, whereas in combination with GTP analogs, both induced a rapid (t1/2more » less than 5 min) and full dissociation. Equilibrium saturation analysis of (/sup 3/H)LTD4 binding demonstrated a saturable (Bmax = 1014 +/- 174 fmol/mg) and high affinity (Kd = 0.43 +/- 0.09 nM) binding site. A high degree of stereoselectivity was demonstrated with inhibition of binding by the stereoisomers of LTD4: S,R much greater than R,R greater than R,S much greater than S,S. The rank order for inhibition of binding by peptide leukotriene was: LTD4 greater than 5(S)-hydroxy-6(R)-S-cysteinyl-7(E),9(E),11(Z),14(Z)-eicosatetraenoic acid much greater than 5(S)hydroxy-6(R)-S-glutathionyl-7(E),9(E),11(Z),14(Z)-eicosatetraenoic acid (potency ratios were: 1:4:590). In competition assays, ICI 198,615 competitively inhibited binding of (/sup 3/H)LTD4 (Ki = 0.27 +/- 0.16 nM) and was 2300-fold and 3100-fold more potent than LY171883 or FPL55712. These data, together with results obtained previously in functional receptor assays, illustrate that this new class of leukotriene antagonists are the most potent and selective competitive antagonists of LTD4 receptors yet described.« less

  2. Competition for DNA binding sites using Promega DNA IQ™ paramagnetic beads.

    PubMed

    Frégeau, Chantal J; De Moors, Anick

    2012-09-01

    The Promega DNA IQ™ system is easily amenable to automation and has been an integral part of standard operating procedures for many forensic laboratories including those of the Royal Canadian Mounted Police (RCMP) since 2004. Due to some failure to extract DNA from samples that should have produced DNA using our validated automated DNA IQ™-based protocol, the competition for binding sites on the DNA IQ™ magnetic beads was more closely examined. Heme from heavily blooded samples interfered slightly with DNA binding. Increasing the concentration of Proteinase K during lysis of these samples did not enhance DNA recovery. However, diluting the sample lysate following lysis prior to DNA extraction overcame the reduction in DNA yield and preserved portions of the lysates for subsequent manual or automated extraction. Dye/chemicals from black denim lysates competed for binding sites on the DNA IQ™ beads and significantly reduced DNA recovery. Increasing the size or number of black denim cuttings during lysis had a direct adverse effect on DNA yield from various blood volumes. The dilution approach was successful on these samples and permitted the extraction of high DNA yields. Alternatively, shortening the incubation time for cell lysis to 30 min instead of the usual overnight at 56 °C prevented competition from black denim dye/chemicals and increased DNA yields. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain.

    PubMed Central

    Stevenson, S C; Rollence, M; White, B; Weaver, L; McClelland, A

    1995-01-01

    The adenovirus fiber protein is responsible for attachment of the virion to cell surface receptors. The identity of the cellular receptor which mediates binding is unknown, although there is evidence suggesting that two distinct adenovirus receptors interact with the group C (adenovirus type 5 [Ad5]) and the group B (Ad3) adenoviruses. In order to define the determinants of adenovirus receptor specificity, we have carried out a series of competition binding experiments using recombinant native fiber polypeptides from Ad5 and Ad3 and chimeric fiber proteins in which the head domains of Ad5 and Ad3 were exchanged. Specific binding of fiber to HeLa cell receptors was assessed with radiolabeled protein synthesized in vitro, and by competition analysis with baculovirus-expressed fiber protein. Fiber produced in vitro was found as both monomer and trimer, but only the assembled trimers had receptor binding activity. Competition data support the conclusion that Ad5 and Ad3 interact with different cellular receptors. The Ad5 receptor distribution on several cell lines was assessed with a fiber binding flow cytometric assay. HeLa cells were found to express high levels of receptor, while CHO and human diploid fibroblasts did not. A chimeric fiber containing the Ad5 fiber head domain blocked the binding of Ad5 fiber but not Ad3 fiber. Similarly, a chimeric fiber containing the Ad3 fiber head blocked the binding of labeled Ad3 fiber but not Ad5 fiber. In addition, the isolated Ad3 fiber head domain competed effectively with labeled Ad3 fiber for binding to HeLa cell receptors. These results demonstrate that the determinants of receptor binding are located in the head domain of the fiber and that the isolated head domain is capable of trimerization and binding to cellular receptors. Our results also show that it is possible to change the receptor specificity of the fiber protein by manipulation of sequences contained in the head domain. Modification or replacement of the fiber head domain with novel ligands may permit adenovirus vectors with new receptor specificities which could be useful for targeted gene delivery in vivo to be engineered. PMID:7707507

  4. Competitive binding experiments can reduce the false positive results of affinity-based ultrafiltration-HPLC: A case study for identification of potent xanthine oxidase inhibitors from Perilla frutescens extract.

    PubMed

    Wang, Zhiqiang; Kwon, Shin Hwa; Hwang, Seung Hwan; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2017-03-24

    The purpose of this study was to assess the possibility of using competitive binding experiments with ultrafiltration-HPLC analysis to identify potent xanthine oxidase (XO) inhibitors from the Perilla frutescens extract as an attempt to reduce the number of false positive results. To isolate the enzyme-ligand complex from unbound compounds, the P. frutescens extract was either incubated in the absence of XO, in the presence of XO, or with the active site blocked XO before the ultrafiltration was performed. Allopurinaol was used as the XO active site blocker. The unbound compounds were subjected to HPLC analysis. The degree of total binding (TBD) and degree of specific binding (SBD) of each compound were calculated using the peak areas. TBD represents the binding affinities of compounds from the P. frutescens extract for the XO binding site. SBD represents the XO competitive binding between allopurinol and ligands from the extract samples. Two criteria were applied to select putative targets that could help avoid false positives. These include TBD>30% and SBD>10%. Using that approach, kaempferol-3-O-rutinoside, rosmarinic acid, methyl-rosmarinic acid, apigenin, and 4',5,7-trimethoxyflavone were identified, from total 11 compounds, as potent XO inhibitors. Finally, apigenin, 4',5,7-trimethoxyflavone, and luteolin were XO inhibitors verified through an XO inhibition assay and structural simulation of the complex. These results showed that the newly developed strategy has the advantage that the number of targets identified via ultrafiltration-HPLC can be narrowed from many false positives. However, not all false positives can be eliminated with this approach. Some potent inhibitors might also be excluded with the use of this method. The limitations of this method are also discussed herein. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist

    PubMed Central

    Wilson, Richard J; Giblin, Gerard M P; Roomans, Susan; Rhodes, Sharron A; Cartwright, Kerri-Ann; Shield, Vanessa J; Brown, Jason; Wise, Alan; Chowdhury, Jannatara; Pritchard, Sara; Coote, Jim; Noel, Lloyd S; Kenakin, Terry; Burns-Kurtis, Cynthia L; Morrison, Valerie; Gray, David W; Giles, Heather

    2006-01-01

    N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl}benzene sulphonamide (GW627368X) is a novel, potent and selective competitive antagonist of prostanoid EP4 receptors with additional human TP receptor affinity. At recombinant human prostanoid EP4 receptors expressed in HEK293 cells, GW627368X produced parallel rightward shifts of PGE2 concentration–effect (E/[A]) curves resulting in an affinity (pKb) estimate of 7.9±0.4 and a Schild slpoe not significantly different from unity. The affinity was independent of the agonist used. In rings of phenylephrine precontracted piglet saphenous vein, GW627368X (30–300 nM) produced parallel rightward displacement of PGE2 E/[A] curves (pKb=9.2±0.2; slope=1). GW627368X appears to bind to human prostanoid TP receptors but not the TP receptors of other species. In human washed platelets, GW627368X (10 μM) produced 100% inhibition of U-46619 (EC100)-induced aggregation (approximate pA2 ∼7.0). However, in rings of rabbit and piglet saphenous vein and of guinea-pig aorta GW627368X (10 μM) did not displace U-46619 E/[A] curves indicating an affinity of <5.0 for rabbit and guinea-pig prostanoid TP receptors. In functional assays GW627368X is devoid of both agonism and antagonist affinity for prostanoid CRTH2, EP2, EP3, IP and FP receptors. At prostanoid EP1 receptors, GW627368X was an antagonist with a pA2 of 6.0, and at prostanoid IP receptors the compound increased the maximum effect of iloprost by 55%. At rabbit prostanoid EP2 receptors the pA2 of GW627368X was <5.0. In competition radioligand bioassays, GW627368X had affinity for human prostanoid EP4 and TP receptors (pKi=7.0±0.2 (n=10) and 6.8 (n=2), respectively). Affinity for all other human prostanoid receptors was <5.3. GW627368X will be a valuable tool to explore the role of the prostanoid EP4 receptor in many physiological and pathological settings. PMID:16604093

  6. Effect of buffer at nanoscale molecular recognition interfaces - electrostatic binding of biological polyanions.

    PubMed

    Rodrigo, Ana C; Laurini, Erik; Vieira, Vânia M P; Pricl, Sabrina; Smith, David K

    2017-10-19

    We investigate the impact of an over-looked component on molecular recognition in water-buffer. The binding of a cationic dye to biological polyanion heparin is shown by isothermal calorimetry to depend on buffer (Tris-HCl > HEPES > PBS). The heparin binding of self-assembled multivalent (SAMul) cationic micelles is even more buffer dependent. Multivalent electrostatic molecular recognition is buffer dependent as a result of competitive interactions between the cationic binding interface and anions present in the buffer.

  7. Slow-binding inhibition of carboxylesterase and other serine hydrolases by chlorodifluoroacetaldehyde.

    PubMed

    Yin, H; Jones, J P; Anders, M W

    1993-01-01

    The chlorofluorocarbon substitute 1,2-dichloro-1,1-difluoroethane (HCFC-132b) undergoes oxidative metabolism in rats to give a range of metabolites, including chlorodifluoroacetaldehyde [Harris and Anders (1991) Chem. Res. Toxicol. 4, 180]. The present experiments were undertaken after studies to characterize an unidentified metabolite of HCFC-132b revealed that chlorodifluoroacetaldehyde was toxic in vivo: rats given chlorodifluoroacetaldehyde died showing signs of cholinergic stimulation. Because some fluoroketones are known inhibitors of hydrolases, including acetylcholinesterase, the inhibitory effects of chlorodifluoroacetaldehyde on acetylcholinesterase (electric eel and human erythrocyte), on pseudocholinesterase (horse serum), on carboxylesterase (pig liver), and on alpha-chymotrypsin (bovine pancreas) were studied. In aqueous solution, the ratio chlorodifluoroacetaldehyde:chlorodifluroacetaldehyde hydrate, as determined by 1H nuclear magnetic resonance spectroscopy, was 1:157. Chlorodifluoroacetaldehyde was a slow-binding inhibitor of both acetylcholinesterases, of pseudocholinesterase, and of carboxylesterase; the Ki values, corrected for the aldehyde:hydrate ratio, were 150 nM, 1.7 nM, 3.7 nM, and 23 pM, respectively, as determined by final velocity of the progress curves; the kon values were 9.1 x 10(4), 1.1 x 10(5), 3.2 x 10(4), and 9.2 x 10(5) M-1 min-1, respectively. Chlorodifluoroacetaldehyde did not inhibit alpha-chymotrypsin. Acetaldehyde and trichloroacetaldehyde were classical competitive inhibitors of acetylcholinesterase. These results show that hydrochlorofluorocarbon metabolites may exert significant biological effects.

  8. Biosorption of heavy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volesky, B.; Holan, Z.R.

    1995-05-01

    Only within the past decade has the potential of metal biosorption by biomass materials been well established. For economic reasons, of particular interest are abundant biomass types generated as a waste byproduct of large-scale industrial fermentations or certain metal-binding algae found in large quantities in the sea. These biomass types serve as a basis for newly developed metal biosorption processes foreseen particularly as a very competitive means for the detoxification of metal-bearing industrial effluents. The assessment of the metal-building capacity of some new biosorbents is discussed. Lead and cadmium, for instance, have been effectively removed from very dilute solutions bymore » the dried biomass of some ubiquitous species of brown marine algae such as Ascophyllum and Sargassum, which accumulate more than 30% of biomass dry weight in the metal. Mycelia of the industrial steroid-transforming fungi Rhizopus and Absidia are excellent biosorbents for lead, cadmium, copper, zinc, and uranium and also bind other heavy metals up to 25% of the biomass dry weight. Biosorption isotherm curves, derived from equilibrium batch sorption experiments, are used in the evaluation of metal uptake by different biosorbents. Further studies are focusing on the assessment of biosorbent performance in dynamic continuous-flow sorption systems. In the course of this work, new methodologies are being developed that are aimed at mathematical modeling of biosorption systems and their effective optimization. 115 refs., 7 figs., 3 tabs.« less

  9. Sodium and potassium competition in potassium-selective and non-selective channels

    NASA Astrophysics Data System (ADS)

    Sauer, David B.; Zeng, Weizhong; Canty, John; Lam, Yeeling; Jiang, Youxing

    2013-11-01

    Potassium channels selectively conduct K+, primarily to the exclusion of Na+, despite the fact that both ions can bind within the selectivity filter. Here we perform crystallographic titration and single-channel electrophysiology to examine the competition of Na+ and K+ binding within the filter of two NaK channel mutants; one is the potassium-selective NaK2K mutant and the other is the non-selective NaK2CNG, a CNG channel pore mimic. With high-resolution structures of these engineered NaK channel constructs, we explicitly describe the changes in K+ occupancy within the filter upon Na+ competition by anomalous diffraction. Our results demonstrate that the non-selective NaK2CNG still retains a K+-selective site at equilibrium, whereas the NaK2K channel filter maintains two high-affinity K+ sites. A double-barrier mechanism is proposed to explain K+ channel selectivity at low K+ concentrations.

  10. Verifying the competition between haloperidol and biperiden in serum albumin through a model based on spectrofluorimetry

    NASA Astrophysics Data System (ADS)

    Muniz da Silva Fragoso, Viviane; Patrícia de Morais e Coura, Carla; Paulino, Erica Tex; Valdez, Ethel Celene Narvaez; Silva, Dilson; Cortez, Celia Martins

    2017-11-01

    The aim of this work was to apply mathematical-computational modeling to study the interactions of haloperidol (HLP) and biperiden (BPD) with human (HSA) and bovine (BSA) serum albumin in order to verify the competition of these drugs for binding sites in HSA, using intrinsic tryptophan fluorescence quenching data. The association constants estimated for HPD-HSA was 2.17(±0.05) × 107 M-1, BPD-HSA was 2.01(±0.03) × 108 M-1 at 37 °C. Results have shown that drugs do not compete for the same binding sites in albumin.

  11. A competitive binding model predicts the response of mammalian olfactory receptors to mixtures

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Murphy, Nicolle; Mainland, Joel; Balasubramanian, Vijay

    Most natural odors are complex mixtures of many odorants, but due to the large number of possible mixtures only a small fraction can be studied experimentally. To get a realistic understanding of the olfactory system we need methods to predict responses to complex mixtures from single odorant responses. Focusing on mammalian olfactory receptors (ORs in mouse and human), we propose a simple biophysical model for odor-receptor interactions where only one odor molecule can bind to a receptor at a time. The resulting competition for occupancy of the receptor accounts for the experimentally observed nonlinear mixture responses. We first fit a dose-response relationship to individual odor responses and then use those parameters in a competitive binding model to predict mixture responses. With no additional parameters, the model predicts responses of 15 (of 18 tested) receptors to within 10 - 30 % of the observed values, for mixtures with 2, 3 and 12 odorants chosen from a panel of 30. Extensions of our basic model with odorant interactions lead to additional nonlinearities observed in mixture response like suppression, cooperativity, and overshadowing. Our model provides a systematic framework for characterizing and parameterizing such mixing nonlinearities from mixture response data.

  12. Hapten syntheses and antibody generation for the development of a polybrominated flame retardant ELISA.

    PubMed

    Shelver, Weilin L; Keum, Young-Soo; Kim, Hee-Joo; Rutherford, Drew; Hakk, Heldur H; Bergman, Ake; Li, Qing X

    2005-05-18

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants that are increasingly an environmental concern. Several antibodies were developed for the polybrominated diphenyl ether flame retardant BDE-47 (1), often found in the highest concentration in human milk, plasma, and adipose tissue. Four haptens with different bromine and linker substitution patterns were synthesized and utilized to generate five polyclonal antibodies from goats and two polyclonal antibodies from rabbits. Competition was assessed using four different coating antigens for all seven antibodies. The coating antigen showed marked effects on competition. When the same hapten was used for antibody and the coating antigen less competition was observed. The effect of BDE structure on competition was evaluated by using BDE-47 (1), BDE-99 (2), BDE-100 (3), BDE-153 (4), and BDE-183 (5). None of the compounds showed high competition with antibody I-KLH, presumably because steric hindrance prevented formation of an efficient binding site. As predicted from structural considerations, BDE-47 (1) competed well with the remaining antibodies, whereas BDE-100 (3) competed well with only II-KLH. The remaining congeners (BDE-99 (2), BDE-153 (4), and BDE-183 (5)) contain bromines that cannot be positioned in binding sites and thus cross-react poorly. The competition study demonstrated that a bromine substitution on the congener could occupy a position analogous to the linker's position.

  13. Relative Chemical Binding Affinities for Trout and Human Estrogen Receptor Using Different Competitive Binding Assays

    EPA Science Inventory

    Rainbow trout-based assays for estrogenicity are currently being used for development of predictive models based upon quantitative structure activity relationships. A predictive model based on a single species raises the question of whether this information is valid for other spe...

  14. CONSTANTS FOR MERCURY BINDING BY DISSOLVED ORGANIC MATTER ISOLATES FROM THE FLORIDA EVERGLADES. (R827653)

    EPA Science Inventory

    Dissolved organic matter (DOM) has been implicated as an important complexing agent for Hg that can affect its mobility and bioavailability in aquatic ecosystems. However, binding constants for natural Hg-DOM complexes are not well known. We employed a competitive ligand appro...

  15. In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors.

    PubMed

    Nongonierma, Alice B; Mooney, Catherine; Shields, Denis C; FitzGerald, Richard J

    2014-07-01

    Molecular docking of a library of all 8000 possible tripeptides to the active site of DPP-IV was used to determine their binding potential. A number of tripeptides were selected for experimental testing, however, there was no direct correlation between the Vina score and their in vitro DPP-IV inhibitory properties. While Trp-Trp-Trp, the peptide with the best docking score, was a moderate DPP-IV inhibitor (IC50 216μM), Lineweaver and Burk analysis revealed its action to be non-competitive. This suggested that it may not bind to the active site of DPP-IV as assumed in the docking prediction. Furthermore, there was no significant link between DPP-IV inhibition and the physicochemical properties of the peptides (molecular mass, hydrophobicity, hydrophobic moment (μH), isoelectric point (pI) and charge). LIGPLOTs indicated that competitive inhibitory peptides were predicted to have both hydrophobic and hydrogen bond interactions with the active site of DPP-IV. DPP-IV inhibitory peptides generally had a hydrophobic or aromatic amino acid at the N-terminus, preferentially a Trp for non-competitive inhibitors and a broader range of residues for competitive inhibitors (Ile, Leu, Val, Phe, Trp or Tyr). Two of the potent DPP-IV inhibitors, Ile-Pro-Ile and Trp-Pro (IC50 values of 3.5 and 44.2μM, respectively), were predicted to be gastrointestinally/intestinally stable. This work highlights the needs to test the assumptions (i.e. competitive binding) of any integrated strategy of computational and experimental screening, in optimizing screening. Future strategies targeting allosteric mechanisms may need to rely more on structure-activity relationship modeling, rather than on docking, in computationally selecting peptides for screening. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The investigation of the binding of 6-mercaptopurine to site I on human serum albumin.

    PubMed

    Sochacka, Jolanta; Baran, Wojciech

    2012-12-01

    6-Mercaptopurine (6-MP) is one of a large series of purine analogues which has been found active against human leukemias. The equilibrium dialysis, circular dichroism (CD) and molecular docking were employed to study the binding of 6-MP to human serum albumin (HSA). The binding of 6-MP to HSA in the equilibrium dialysis experiment was detected by measuring the displacement of 6-MP by specific markers for site I on HSA, warfarin (RWF), phenylbutazone (PhB) and n-butyl p-aminobenzoate (ABE). It was shown, according to CD data, that binding of 6-MP to HSA leads to alteration of HSA secondary structure. Based on the findings from displacement experiment and molecular docking simulation it was found that 6-MP was located within binding cavity of subdomain IIA and the space occupied by site markers overlapped with that of 6-MP. Displacement of 6-MP by the RWF or PhB was not up the level expected for a competitive mechanism, therefore displacement of 6-MP was rather by non-cooperative than that the direct competition. Instead, in case of the interaction between ABE and 6-MP, when the little enhancement of the binding of ABE by 6-MP was found, the interaction could be via a positively cooperative mechanism.

  17. A Sphingosine 1-phosphate receptor 2 selective allosteric agonist

    PubMed Central

    Satsu, Hideo; Schaeffer, Marie-Therese; Guerrero, Miguel; Saldana, Adrian; Eberhart, Christina; Hodder, Peter; Cayanan, Charmagne; Schürer, Stephan; Bhhatarai, Barun; Roberts, Ed; Rosen, Hugh; Brown, Steven J.

    2013-01-01

    Molecular probe tool compounds for the Sphingosine 1-phosphate receptor 2 (S1PR2) are important for investigating the multiple biological processes in which the S1PR2 receptor has been implicated. Amongst these are NF-κB-mediated tumor cell survival and fibroblast chemotaxis to fibronectin. Here we report our efforts to identify selective chemical probes for S1PR2 and their characterization. We employed high throughput screening to identify two compounds which activate the S1PR2 receptor. SAR optimization led to compounds with high nanomolar potency. These compounds, XAX-162 and CYM-5520, are highly selective and do not activate other S1P receptors. Binding of CYM-5520 is not competitive with the antagonist JTE-013. Mutation of receptor residues responsible for binding to the zwitterionic headgroup of sphingosine 1-phosphate (S1P) abolishes S1P activation of the receptor, but not activation by CYM-5520. Competitive binding experiments with radiolabeled S1P demonstrate that CYM-5520 is an allosteric agonist and does not displace the native ligand. Computational modeling suggests that CYM-5520 binds lower in the orthosteric binding pocket, and that co-binding with S1P is energetically well tolerated. In summary, we have identified an allosteric S1PR2 selective agonist compound. PMID:23849205

  18. In Vivo and In Vitro Binding of Vip3Aa to Spodoptera frugiperda Midgut and Characterization of Binding Sites by 125I Radiolabeling

    PubMed Central

    Chakroun, Maissa

    2014-01-01

    Bacillus thuringiensis vegetative insecticidal proteins (Vip3A) have been recently introduced in important crops as a strategy to delay the emerging resistance to the existing Cry toxins. The mode of action of Vip3A proteins has been studied in Spodoptera frugiperda with the aim of characterizing their binding to the insect midgut. Immunofluorescence histological localization of Vip3Aa in the midgut of intoxicated larvae showed that Vip3Aa bound to the brush border membrane along the entire apical surface. The presence of fluorescence in the cytoplasm of epithelial cells seems to suggest internalization of Vip3Aa or a fragment of it. Successful radiolabeling and optimization of the binding protocol for the 125I-Vip3Aa to S. frugiperda brush border membrane vesicles (BBMV) allowed the determination of binding parameters of Vip3A proteins for the first time. Heterologous competition using Vip3Ad, Vip3Ae, and Vip3Af as competitor proteins showed that they share the same binding site with Vip3Aa. In contrast, when using Cry1Ab and Cry1Ac as competitors, no competitive binding was observed, which makes them appropriate candidates to be used in combination with Vip3A proteins in transgenic crops. PMID:25002420

  19. Interaction of phenylbutazone and colchicine in binding to serum albumin in rheumatoid therapy: 1H NMR study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Sułkowski, W. W.

    2009-09-01

    The monitoring of drug concentration in blood serum is necessary in multi-drug therapy. Mechanism of drug binding with serum albumin (SA) is one of the most important factors which determine drug concentration and its transport to the destination tissues. In rheumatoid diseases drugs which can induce various adverse effects are commonly used in combination therapy. Such proceeding may result in the enhancement of those side effects due to drug interaction. Interaction of phenylbutazone and colchicine in binding to serum albumin and competition between them in gout has been studied by proton nuclear magnetic resonance ( 1H NMR) technique. The aim of the study was to determine the low affinity binding sites, the strength and kind of interaction between serum albumin and drugs used in combination therapy. The study of competition between phenylbutazone and colchicine in binding to serum albumin points to the change of their affinity to serum albumin in the ternary systems. This should be taken into account in multi-drug therapy. This work is a subsequent part of the spectroscopic study on Phe-COL-SA interactions [A. Sułkowska, et al., J. Mol. Struct. 881 (2008) 97-106].

  20. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, R.E.; Cohen, J.B.

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with highmore » affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.« less

  1. Human serum albumin binding assay based on displacement of a non selective fluorescent inhibitor.

    PubMed

    Thorarensen, Atli; Sarver, Ronald W; Tian, Fang; Ho, Andrea; Romero, Donna L; Marotti, Keith R

    2007-08-15

    In this paper, we describe a fluorescent antibacterial analog, 6, with utility as a competition probe to determine affinities of other antibacterial analogs for human serum albumin (HSA). Analog 6 bound to HSA with an affinity of 400+/-100 nM and the fluorescence was environmentally sensitive. With 370 nm excitation, environmental sensitivity was indicated by a quenching of the 530 nm emission when the probe bound to HSA. Displacement of dansylsarcosine from HSA by 6 indicated it competed with compounds that bound at site II (ibuprofen binding site) on HSA. Analog 6 also shifted the NMR peaks of an HSA bound oleic acid molecule that itself was affected by compounds that bound at site II. In addition to binding at site II, 6 interacted at site I (warfarin binding site) as indicated by displacement of dansylamide and the shifting of NMR peaks of an HSA bound oleic acid molecule affected by warfarin site binding. Additional evidence for multiple site interaction was discovered when a percentage of 6 could be displaced by either ibuprofen or phenylbutazone. A competition assay was established using 6 to determine relative affinities of other antibacterial inhibitors for HSA.

  2. The action of stress hormones on the structure and function of erythrocyte membrane.

    PubMed

    Mokrushnikov, Pavel V; Panin, Lev E; Zaitsev, Boris N

    2015-07-01

    The action of a mixture of hormones (cortisol and adrenaline) on erythrocyte membrane during their binding was investigated. Changes in the membrane structure were elucidated by atomic force microscopy; microviscosity of the lipid bilayer and changes in the activity of Na(+),K(+)-ATPase at different concentrations of the hormones in erythrocyte suspension were estimated by the fluorescence method. Cortisol and adrenaline were shown to compete for the binding sites. A hormone that managed to bind nonspecifically to the membrane hindered the binding of another hormone. In a mixture of these hormones, cortisol won a competition for the binding sites; therewith, microviscosity of the membranes increased by 25%, which corresponds to a change in microviscosity produced by the action of cortisol alone. The competitive relationships affected also the Na(+),K(+)-ATPase activity, which was indicated by appearance of the second maximum of enzyme activity. It is assumed that an increase in microviscosity of erythrocyte membrane first raises the Na(+),K(+)-ATPase activity due to a growth of the maximum energy of membrane phonons, and then decreases the activity due to hindering of conformational transitions in the enzyme molecule.

  3. Genetically Encoded Fragment-Based Discovery of Glycopeptide Ligands for Carbohydrate-Binding Proteins

    DOE PAGES

    Ng, Simon; Lin, Edith; Kitov, Pavel I.; ...

    2015-04-10

    Here we describe an approach to accelerate the search for competitive inhibitors for carbohydrate-recognition domains (CRDs). Genetically encoded fragment-based-discovery (GE-FBD) uses selection of phagedisplayed glycopeptides to dock a glycan fragment at the CRD and guide selection of Synergistic peptide motifs adjacent to the CRD. Starting from concanavalin A (ConA), a mannose (Man)-binding protein, as a bait, we narrowed a library of 10 8 glycopeptides to 86 leads that share a consensus motif, Man-WYD. Validation of synthetic leads yielded Man-WYDLF that exhibited 40 50-fold enhancement in affinity over methyl α-D-mannopyranoside (MeMan). Lectin array Suggested specificity: Man-WYD derivative bound only to 3more » out of 17 proteins-ConA, LcH, and PSA-that bind to Man. An X-ray structure of ConA.:Man-WYD proved that the trimannoside core and Man-WYD exhibit identical CRD docking; but their extra-CRD binding modes are significantly. different. Still, they have comparable affinity and selectivity for various Man-binding proteins. The intriguing observation provides new insight into functional mimicry :of carbohydrates by peptide ligands. GE-FBD may provide an alternative to rapidly search for competitive inhibitors for lectins.« less

  4. Genetically Encoded Fragment-Based Discovery of Glycopeptide Ligands for Carbohydrate-Binding Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Simon; Lin, Edith; Kitov, Pavel I.

    Here we describe an approach to accelerate the search for competitive inhibitors for carbohydrate-recognition domains (CRDs). Genetically encoded fragment-based-discovery (GE-FBD) uses selection of phagedisplayed glycopeptides to dock a glycan fragment at the CRD and guide selection of Synergistic peptide motifs adjacent to the CRD. Starting from concanavalin A (ConA), a mannose (Man)-binding protein, as a bait, we narrowed a library of 10 8 glycopeptides to 86 leads that share a consensus motif, Man-WYD. Validation of synthetic leads yielded Man-WYDLF that exhibited 40 50-fold enhancement in affinity over methyl α-D-mannopyranoside (MeMan). Lectin array Suggested specificity: Man-WYD derivative bound only to 3more » out of 17 proteins-ConA, LcH, and PSA-that bind to Man. An X-ray structure of ConA.:Man-WYD proved that the trimannoside core and Man-WYD exhibit identical CRD docking; but their extra-CRD binding modes are significantly. different. Still, they have comparable affinity and selectivity for various Man-binding proteins. The intriguing observation provides new insight into functional mimicry :of carbohydrates by peptide ligands. GE-FBD may provide an alternative to rapidly search for competitive inhibitors for lectins.« less

  5. Copper speciation and binding by organic matter in copper-contaminated streamwater

    USGS Publications Warehouse

    Breault, R.F.; Colman, J.A.; Aiken, G.R.; McKnight, D.

    1996-01-01

    Fulvic acid binding sites (1.3-70 ??M) and EDTA (0.0017-0.18 ??M) accounted for organically bound Cu in seven stream samples measured by potentiometric titration. Cu was 84-99% organically bound in filtrates with 200 nM total Cu. Binding of Cu by EDTA was limited by competition from other trace metals. Water hardness was inversely related to properties of dissolved organic carbon (DOC) that enhance fulvic acid binding: DOC concentration, percentage of DOC that is fulvic acid, and binding sites per fulvic acid carbon. Dissolved trace metals, stabilized by organic binding, occurred at increased concentration in soft water as compared to hard water.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedynyshyn, J.P.

    The opioid binding characteristics of the rat (PAG) and the signal transduction mechanisms of the opioid receptors were examined with in vitro radioligand binding, GTPase, adenylyl cyclase, and inositol phosphate assays. The nonselective ligand {sup 3}H-ethylketocyclazocine (EKC), the {mu} and {delta} selective ligand {sup 3}H-(D-Ala{sup 2}, D-Leu{sup 5}) enkephalin (DADLE), the {mu} selective ligand {sup 3}H-(D-Ala{sup 2}, N-methyl Phe{sup 4}, Glyol{sup 5}) enkephalin (DAGO), and the {delta} selective ligand {sup 3}H-(D-Pen{sup 2}, D-Pen{sup 5}) enkephalin (DPDPE) were separately used as tracer ligands to label opioid binding sites in rat PAG enriched P{sub 2} membrane in competition with unlabeled DADLE, DAGO,more » DPDPE, or the {kappa} selective ligand trans-3,4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide, methane sulfonate, hydrate (U50, 488H). Only {mu} selective high affinity opioid binding was observed. No high affinity {delta} or {kappa} selective binding was detected. {sup 3}H-DAGO was used as a tracer ligand to label {mu} selective high affinity opioid binding sites in PAG enriched P{sub 2} membrane in competition with unlabeled {beta}-endorphin, dynorphin A (1-17), BAM-18, methionine enkephalin, dynorphin A (1-8), and leucine enkephalin. Of these endogenous opioid peptides only those with previously reported high affinity {mu} type opioid binding activity competed with {sup 3}H-DAGO for binding sites in rat PAG enriched P{sub 2} membrane with affinities similar to that of unlabeled DAGO.« less

  7. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase

    NASA Astrophysics Data System (ADS)

    Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian

    2016-08-01

    Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2‧,3‧-O-(2,4,6-trinitrophenyl)adenosine 5‧-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase.

  8. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase.

    PubMed

    Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian

    2016-08-05

    Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Gallium as a Therapeutic Agent: A Thermodynamic Evaluation of the Competition between Ga(3+) and Fe(3+) Ions in Metalloproteins.

    PubMed

    Nikolova, Valia; Angelova, Silvia; Markova, Nikoleta; Dudev, Todor

    2016-03-10

    Gallium has been employed (in the form of soluble salts) to fight various forms of cancer, infectious, and inflammatory diseases. The rationale behind this lies in the ability of Ga(3+) cation to mimic closely in appearance the native ferric ion, Fe(3+), thus interfering with the biological processes requiring ferric cofactors. However, Ga(3+) ion cannot participate in redox reactions and, when substituting for the "native" Fe(3+) ion in the enzyme active site, renders it inactive. Although a significant body of information on the Ga(3+)-Fe(3+) competition in biological systems has been accumulated, the intimate mechanism of the process is still not well understood and several questions remain: What are the basic physical principles governing the competition between the two trivalent cations in proteins? What type of metal centers are the most likely targets for gallium therapy? To what extent are the Fe(3+)-binding sites in the key enzyme ribonucleotide reductase vulnerable to Ga(3+) substitution? Here, we address these questions by studying the competition between Ga(3+) and Fe(3+) ions in model metal binding sites of various compositions and charge states. The results obtained are in line with available experimental data and shed light on the intimate mechanism of the Ga(3+)/Fe(3+) selectivity in various model metal binding sites and biological systems such as serum transferrin and ribonucleotide reductase.

  10. Prostate cell membrane chromatography-liquid chromatography-mass spectrometry for screening of active constituents from Uncaria rhynchophylla.

    PubMed

    He, Jianyu; Han, Shengli; Yang, Fangfang; Zhou, Nan; Wang, Sicen

    2013-01-01

    Uncaria rhynchophylla is a traditional Chinese medicinal herb used to treat hypertension and convulsive disorders such as epilepsy. Rat prostate cell membrane chromatography combined with liquid chromatography-mass spectrometry (LC-MS) was used to identify active constituents from U. rhynchophylla extracts. Four compounds (corynoxeine, isorhynchophylline, isocorynoxeine and rhynchophylline) were discovered. Competitive binding assay results indicated that the four compounds were in direct competition at a single common binding site and interacted with α1A adrenergic receptors (α1A-AR) in a manner similar to tamsulosin. Affinity constant values of the four compounds binding with α1A-AR were also measured using rat prostate cell membrane chromatography (CMC). Finally, their pharmacodynamic effects were tested on rat caudal arteries. This CMC combined LC-MS system offers a means of drug discovery by screening natural medicinal herbs for new pharmacologically active molecules targeting specific receptors.

  11. Effects of Competition and Mode of Fire on Physiological Responses, Psychological Stress Reactions, and Shooting Performance

    DTIC Science & Technology

    1991-07-01

    Alterations in serum cortisol and its binding characteristics in anorexia nervosa . J.urnal o•f Q n1raI £ndcrinaloag and M -bo.liam, Ui, 406-411. Clement...91 43. Comparison of Mean Pre-stress MAACL-R Depression Scores for SS Competition and SS Control Groups on Record-Fire Day With Those for Subjects in...independent non-stress contzol condition) .................. 92 5 44. Comparison of Mean Post-stress MAACL-R Depression Scores for SS Competition and SS

  12. Inhibition in movement plan competition: reach trajectories curve away from remembered and task-irrelevant present but not from task-irrelevant past visual stimuli.

    PubMed

    Moehler, Tobias; Fiehler, Katja

    2017-11-01

    The current study investigated the role of automatic encoding and maintenance of remembered, past, and present visual distractors for reach movement planning. The previous research on eye movements showed that saccades curve away from locations actively kept in working memory and also from task-irrelevant perceptually present visual distractors, but not from task-irrelevant past distractors. Curvature away has been associated with an inhibitory mechanism resolving the competition between multiple active movement plans. Here, we examined whether reach movements underlie a similar inhibitory mechanism and thus show systematic modulation of reach trajectories when the location of a previously presented distractor has to be (a) maintained in working memory or (b) ignored, or (c) when the distractor is perceptually present. Participants performed vertical reach movements on a computer monitor from a home to a target location. Distractors appeared laterally and near or far from the target (equidistant from central fixation). We found that reaches curved away from the distractors located close to the target when the distractor location had to be memorized and when it was perceptually present, but not when the past distractor had to be ignored. Our findings suggest that automatically encoding present distractors and actively maintaining the location of past distractors in working memory evoke a similar response competition resolved by inhibition, as has been previously shown for saccadic eye movements.

  13. Quantification of HER2/neu gene amplification by competitive pcr using fluorescent melting curve analysis.

    PubMed

    Lyon, E; Millson, A; Lowery, M C; Woods, R; Wittwer, C T

    2001-05-01

    Molecular detection methods for HER2/neu gene amplification include fluorescence in situ hybridization (FISH) and competitive PCR. We designed a quantitative PCR system utilizing fluorescent hybridization probes and a competitor that differed from the HER2/neu sequence by a single base change. Increasing twofold concentrations of competitor were coamplified with DNA from cell lines with various HER2/neu copy numbers at the HER2/neu locus. Competitor DNA was distinguished from the HER2/neu sequence by a fluorescent hybridization probe and melting curve analysis on a fluorescence-monitoring thermal cycler. The percentages of competitor to target peak areas on derivative fluorescence vs temperature curves were used to calculate copy number. Real-time monitoring of the PCR reaction showed comparable relative areas throughout the log phase and during the PCR plateau, indicating that only end-point detection is necessary. The dynamic range was over two logs (2000-250 000 competitor copies) with CVs < 20%. Three cell lines (MRC-5, T-47D, and SK-BR-3) were determined to have gene doses of 1, 3, and 11, respectively. Gene amplification was detected in 3 of 13 tumor samples and was correlated with conventional real-time PCR and FISH analysis. Use of relative peak areas allows gene copy numbers to be quantified against an internal competitive control in < 1 h.

  14. Pseudo-magnetic fields of strongly-curved graphene nanobubbles

    NASA Astrophysics Data System (ADS)

    Liu, Li-Chi

    2018-04-01

    We use the π-orbital axis vector (POAV) analysis to deal with large curvature effect of graphene in the tight-binding model. To test the validities of pseudo-magnetic fields (PMFs) derived from the tight-binding model and the model with Dirac equation coupled to a curved surface, we propose two types of spatially constant-field topographies for strongly-curved graphene nanobubbles, which correspond to these two models, respectively. It is shown from the latter model that the PMF induced by any spherical graphene nanobubble is always equivalent to the magnetic field caused by one magnetic monopole charge distributed on a complete spherical surface with the same radius. Such a PMF might be attributed to the isometry breaking of a graphene layer attached conformably to a spherical substrate with adhesion.

  15. Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor.

    PubMed

    Fleischli, Christoph; Sirena, Dominique; Lesage, Guillaume; Havenga, Menzo J E; Cattaneo, Roberto; Greber, Urs F; Hemmi, Silvio

    2007-11-01

    We recently characterized the domains of the human cofactor protein CD46 involved in binding species B2 adenovirus (Ad) serotype 35. Here, the CD46 binding determinants are mapped for the species B1 Ad serotypes 3 and 7 and for the species B2 Ad11. Ad3, 7 and 11 bound and transduced CD46-positive rodent BHK cells at levels similar to Ad35. By using antibody-blocking experiments, hybrid CD46-CD4 receptor constructs and CD46 single point mutants, it is shown that Ad3, 7 and 11 share many of the Ad35-binding features on CD46. Both CD46 short consensus repeat domains SCR I and SCR II were necessary and sufficient for optimal binding and transgene expression, provided that they were positioned at an appropriate distance from the cell membrane. Similar to Ad35, most of the putative binding residues of Ad3, 7 and 11 were located on the same glycan-free, solvent-exposed face of the SCR I or SCR II domains, largely overlapping with the binding surface of the recently solved fiber knob Ad11-SCR I-II three-dimensional structure. Differences between species B1 and B2 Ads were documented with competition experiments based on anti-CD46 antibodies directed against epitopes flanking the putative Ad-binding sites, and with competition experiments based on soluble CD46 protein. It is concluded that the B1 and B2 species of Ad engage CD46 through similar binding surfaces.

  16. CD44-mediated hyaluronan binding marks proliferating hematopoietic progenitor cells and promotes bone marrow engraftment

    PubMed Central

    Lee-Sayer, Sally S. M.; Dougan, Meghan N.; Cooper, Jesse; Sanderson, Leslie; Dosanjh, Manisha; Maxwell, Christopher A.

    2018-01-01

    CD44 is a widely expressed cell adhesion molecule that binds to the extracellular matrix component, hyaluronan. However, this interaction is not constitutive in most immune cells at steady state, as the ability of CD44 to engage hyaluronan is highly regulated. While activated T cells and macrophages gain the ability to bind hyaluronan by CD44, the status in other immune cells is less studied. Here we found a percentage of murine eosinophils, natural killer and natural killer T cells were capable of interacting with hyaluronan at steady state. To further investigate the consequences of hyaluronan binding by CD44 in the hematopoietic system, point mutations of CD44 that either cannot bind hyaluronan (LOF-CD44) or have an increased affinity for hyaluronan (GOF-CD44) were expressed in CD44-deficient bone marrow. Competitive bone marrow reconstitution of irradiated mice revealed an early preference for GOF-CD44 over WT-CD44 expressing cells, and for WT-CD44 over LOF-CD44 expressing cells, in the hematopoietic progenitor cell compartment. The advantage of the hyaluronan-binding cells was observed in the hematopoietic stem and progenitor populations, and was maintained throughout the immune system. Hematopoietic stem cells bound minimal hyaluronan at steady state, and this was increased when the cells were induced to proliferate whereas multipotent progenitors had an increased ability to bind hyaluronan at steady state. In vitro, the addition of hyaluronan promoted their proliferation. Thus, proliferating hematopoietic progenitors bind hyaluronan, and hyaluronan binding cells have a striking competitive advantage in bone marrow engraftment. PMID:29684048

  17. Common mechanisms of inhibition for the Na+/glucose (hSGLT1) and Na+/Cl−/GABA (hGAT1) cotransporters

    PubMed Central

    Hirayama, Bruce A; Díez-Sampedro, Ana; Wright, Ernest M

    2001-01-01

    Electrophysiological methods were used to investigate the interaction of inhibitors with the human Na+/glucose (hSGLT1) and Na+/Cl−/GABA (hGAT1) cotransporters. Inhibitor constants were estimated from both inhibition of substrate-dependent current and inhibitor-induced changes in cotransporter conformation. The competitive, non-transported inhibitors are substrate derivatives with inhibition constants from 200 nM (phlorizin) to 17 mM (esculin) for hSGLT1, and 300 nM (SKF89976A) to 10 mM (baclofen) for hGAT1. At least for hSGLT1, values determined using either method were proportional over 5-orders of magnitude. Correlation of inhibition to structure of the inhibitors resulted in a pharmacophore for glycoside binding to hSGLT1: the aglycone is coplanar with the pyranose ring, and binds to a hydrophobic/aromatic surface of at least 7×12Å. Important hydrogen bond interactions occur at five positions bordering this surface. In both hSGLT1 and hGAT1 the data suggests that there is a large, hydrophobic inhibitor binding site ∼8Å from the substrate binding site. This suggests an architectural similarity between hSGLT1 and hGAT1. There is also structural similarity between non-competitive and competitive inhibitors, e.g., phloretin is the aglycone of phlorizin (hSGLT1) and nortriptyline resembles SKF89976A without nipecotic acid (hGAT1). Our studies establish that measurement of the effect of inhibitors on presteady state currents is a valid non-radioactive method for the determination of inhibitor binding constants. Furthermore, analysis of the presteady state currents provide novel insights into partial reactions of the transport cycle and mode of action of the inhibitors. PMID:11588102

  18. An ATP Binding Cassette Transporter Mediates the Uptake of α-(1,6)-Linked Dietary Oligosaccharides in Bifidobacterium and Correlates with Competitive Growth on These Substrates*

    PubMed Central

    Fredslund, Folmer; Vujičić Žagar, Andreja; Andersen, Thomas Lars; Svensson, Birte; Slotboom, Dirk Jan

    2016-01-01

    The molecular details and impact of oligosaccharide uptake by distinct human gut microbiota (HGM) are currently not well understood. Non-digestible dietary galacto- and gluco-α-(1,6)-oligosaccharides from legumes and starch, respectively, are preferentially fermented by mainly bifidobacteria and lactobacilli in the human gut. Here we show that the solute binding protein (BlG16BP) associated with an ATP binding cassette (ABC) transporter from the probiotic Bifidobacterium animalis subsp. lactis Bl-04 binds α-(1,6)-linked glucosides and galactosides of varying size, linkage, and monosaccharide composition with preference for the trisaccharides raffinose and panose. This preference is also reflected in the α-(1,6)-galactoside uptake profile of the bacterium. Structures of BlG16BP in complex with raffinose and panose revealed the basis for the remarkable ligand binding plasticity of BlG16BP, which recognizes the non-reducing α-(1,6)-diglycoside in its ligands. BlG16BP homologues occur predominantly in bifidobacteria and a few Firmicutes but lack in other HGMs. Among seven bifidobacterial taxa, only those possessing this transporter displayed growth on α-(1,6)-glycosides. Competition assays revealed that the dominant HGM commensal Bacteroides ovatus was out-competed by B. animalis subsp. lactis Bl-04 in mixed cultures growing on raffinose, the preferred ligand for the BlG16BP. By comparison, B. ovatus mono-cultures grew very efficiently on this trisaccharide. These findings suggest that the ABC-mediated uptake of raffinose provides an important competitive advantage, particularly against dominant Bacteroides that lack glycan-specific ABC-transporters. This novel insight highlights the role of glycan transport in defining the metabolic specialization of gut bacteria. PMID:27502277

  19. A Computational Model for Docking of Noncompetitive Neuraminidase Inhibitors and Probing their Binding Interactions with Neuraminidase of Influenza Virus H5N1.

    PubMed

    Chintakrindi, Anand S; Martis, Elvis A F; Gohil, Devanshi J; Kothari, Sweta T; Chowdhary, Abhay S; Coutinho, Evans C; Kanyalkar, Meena A

    2016-01-01

    With cases of emergence of drug resistance to the current competitive inhibitors of neuraminidase (NA) such as oseltamivir and zanamavir, there is a present need for an alternative approach in the treatment of avian influenza. With this in view, some flavones and chalcones were designed based on quercetin, the most active naturally occurring noncompetitive inhibitor. We attempt to understand the binding of quercetin to H5N1-NA, and synthetic analogs of quercetin namely flavones and its precursors the chalcones using computational tools. Molecular docking was done using Libdock. Molecular dynamics (MD) simulations were performed using Amber14. We synthesized the two compounds; their structures were confirmed by infrared spectroscopy, 1H-NMR, and mass spectrometry. These molecules were then tested for H5N1-NA inhibition and kinetics of inhibition. Molecular docking studies yielded two compounds i.e., 4'-methoxyflavone and 2'-hydroxy-4-methoxychalcone, as promising leads which identified them as binders of the 150-cavity of NA. Furthermore, MD simulation studies revealed that quercetin and the two compounds bind and hold the 150 loop in its open conformation, which ultimately perturbs the binding of sialic acid in the catalytic site. Estimation of the free energy of binding by MM-PBSA portrays quercetin as more potent than chalcone and flavone. These molecules were then determined as non-competitive inhibitors from the Lineweaver-Burk plots rendered from the enzyme kinetic studies. We conclude that non-competitive type of inhibition, as shown in this study, can serve as an effective method to block NA and evade the currently seen drug resistance.

  20. Profiles of alpha-melanocyte-stimulating hormone in the Japanese flounder as revealed by a newly developed time-resolved fluoroimmunoassay and immunohistochemistry.

    PubMed

    Amiya, Noriko; Amano, Masafumi; Takahashi, Akiyoshi; Yamanome, Takeshi; Yamamori, Kunio

    2007-03-01

    Profiles of alpha-melanocyte-stimulating hormone (alpha-MSH) in the Japanese flounder were examined by a newly developed time-resolved fluoroimmunoassay (TR-FIA) and immunohistochemistry. A TR-FIA for alpha-MSH was newly developed, and its levels in the pituitary gland and plasma of Japanese flounder reared in a white or black tank for 5 months were compared. A competitive assay using two antibodies was performed among secondary antibodies in the solid phase, alpha-MSH antibodies, samples, and europium-labeled Des-Ac-alpha-MSH. The sensitivity of the assay, defined as twice the standard deviation at a zero dose, was 0.98 ng/ml (49 pg/well). The intra- and interassay coefficients of variation of the assay were 8.8% (n=8) and 17.3% (n=5), respectively, at about 50% binding. Cross-reactivities of Des-Ac-alpha-MSH and Di-Ac-alpha-MSH were about 100%. Cross-reactivities of adrenocorticotropic hormone, salmon gonadotropin-releasing hormone (sGnRH), and chicken GnRH-II were less than 0.2%, and that of melanin-concentrating hormone was less than 2.0% at 50% binding. Displacement curves of serially twofold-diluted hypothalamus extract, pituitary gland extract, and plasma extract of Japanese flounder with the assay buffer were parallel to the alpha-MSH standard curve. Moreover, displacement curves of serially twofold-diluted hypothalamus and/or pituitary gland extract of masu salmon, goldfish, red seabream, Japanese eel, tiger puffer, and barfin flounder with the assay buffer were also parallel to the alpha-MSH standard. In Japanese flounder, total immunoreactive (ir)-alpha-MSH levels in the pituitary gland were lower in the black tank, whereas those in the plasma tended to be higher in the black tank, suggesting that the synthesis and release of alpha-MSH are higher in the black tank. alpha-MSH-ir cells were detected in the pars intermedia and a small part of the pars distalis of the pituitary gland. alpha-MSH-ir cell bodies were located in the basal hypothalamus and alpha-MSH-ir fibers were distributed not only in the hypothalamus but also in the telencephalon, midbrain, cerebellum, and medulla oblongata, suggesting that alpha-MSH functions as a neuromodulator in the brain.

  1. Guanosine 5'-triphosphate binding protein (G/sub i/) and two additional pertussis toxin substrates associated with muscarinic receptors in rat heart myocytes: characterization and age dependency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moscona-Amir, E.; Henis, Y.I.; Sokolovsky, M.

    1988-07-12

    The coupling of muscarinic receptors with G-proteins was investigated in cultured myocytes prepared from the hearts of newborn rats. The coupling was investigated in both young (5 days after plating) and aged (14 days after plating) cultures, in view of the completely different effects of 5'-guanylyl imidodiphosphate (Gpp(NH)p) on muscarinic agonist binding to homogenates from young vs aged cultures. Pretreatment of cultures from both ages by Bordetella pertussis toxin (IAP) was found to eliminate any Gpp(NH)p effect on carbamylcholine binding. IAP by itself induced a rightward shift in the carbamylcholine competition curve in homogenates from aged cultures, but no suchmore » effect was observed in homogenates from young cultures. IAP-catalyzed (/sup 32/P)ADP-ribosylation of membrane preparations from young and aged cultures revealed major differences between them. Young cultures exhibited a major IAP substrate at 40 kDa, which was also recognized by anti-..cap alpha../sub i/ antibodies, and two novel IAP substrates at 28 and 42 kDa, which were weakly ADP-ribosylated by the toxin and were not recognized with either anti-..cap alpha../sub i/ or anti-..cap alpha../sub 0/ antibodies. In aged cultures, only the 40-kDa band (ribosylated to a lower degree) was detected. The parallel age-dependent changes in the three IAP substrates (28, 40, and 42 kDa) and in the interactions of the G-protein(s) with the muscarinic receptors strongly suggest close association between the two phenomena. All of these age-dependent changes in the G-protein related parameters were prevented by phosphatidylcholine-liposome treatment of the aged cultures. The role of the membrane lipid composition in these phenomena is discussed.« less

  2. Sequential Proton Loss Electron Transfer in Deactivation of Iron(IV) Binding Protein by Tyrosine Based Food Components.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2017-08-02

    The iron(IV) binding protein ferrylmyoglobin, MbFe(IV)═O, was found to be reduced by tyrosine based food components in aqueous solution through a sequential proton loss electron transfer reaction mechanism without binding to the protein as confirmed by isothermal titration calorimetry. Dopamine and epinephrine are the most efficient food components reducing ferrylmyoglobin to oxymyoglobin, MbFe(II)O 2 , and metmyoglobin, MbFe(III), as revealed by multivariate curve resolution alternating least-squares with second order rate constants of 33.6 ± 2.3 L/mol/s (ΔH ⧧ of 19 ± 5 kJ/mol, ΔS ⧧ of -136 ± 18 J/mol K) and 228.9 ± 13.3 L/mol/s (ΔH ⧧ of 110 ± 7 kJ/mol, ΔS ⧧ of 131 ± 25 J/mol K), respectively, at pH 7.4 and 25 °C. The other tyrosine based food components were found to reduce ferrylmyoglobin to metmyoglobin with similar reduction rates at pH 7.4 and 25 °C. These reduction reactions were enhanced by protonation of ferrylmyoglobin and facilitated proton transfer at acidic conditions. Enthalpy-entropy compensation effects were observed for the activation parameters (ΔH ⧧ and ΔS ⧧ ), indicating the common reaction mechanism. Moreover, principal component analysis combined with heat map were performed to understand the relationship between density functional theory calculated molecular descriptors and kinetic data, which was further modeled by partial least squares for quantitative structure-activity relationship analysis. In addition, a three tyrosine residue containing protein, lysozyme, was also found to be able to reduce ferrylmyoglobin with a second order rate constant of 66 ± 28 L/mol/s as determined by a competitive kinetic method.

  3. Characterization of a new muscarinic toxin from the venom of the Brazilian coral snake Micrurus lemniscatus in rat hippocampus.

    PubMed

    da Silva, Daniel Coelho; de Medeiros, Wyara Aparecida Araújo; Batista, Isabel de Fátima Correia; Pimenta, Daniel Carvalho; Lebrun, Ivo; Abdalla, Fernando Maurício Francis; Sandoval, Maria Regina Lopes

    2011-12-19

    We have isolated a new muscarinic protein (MT-Mlα) from the venom of the Brazilian coral snake Micrurus lemniscatus. This small protein, which had a molecular mass of 7,048Da, shared high sequence homology with three-finger proteins that act on cholinergic receptors. The first 12 amino acid residues of the N-terminal sequence were determined to be: Leu-Ile-Cys-Phe-Ile-Cys-Phe-Ser-Pro-Thr-Ala-His. The MT-Mlα was able to displace the [(3)H]QNB binding in the hippocampus of rats. The binding curve in competition experiments with MT-Mlα was indicative of two types of [(3)H]QNB-binding site with pK(i) values of 9.08±0.67 and 6.17±0.19, n=4, suggesting that various muscarinic acetylcholine receptor (mAChR) subtypes may be the target proteins of MT-Mlα. The MT-Mlα and the M(1) antagonist pirenzepine caused a dose-dependent block on total [(3)H]inositol phosphate accumulation induced by carbachol. The IC(50) values for MT-Mlα and pirenzepine were, respectively, 33.1 and 2.26 nM. Taken together, these studies indicate that the MT-Mlα has antagonist effect on mAChRs in rat hippocampus. The results of the present study show, for the first time, that mAChRs function is drastically affected by MT-Mlα since it not only has affinity for mAChRs but also has the ability to inhibit mAChRs. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Dialysis, Albumin Binding, and Competitive Binding: A Laboratory Lesson Relating Three Chemical Concepts to Healthcare

    ERIC Educational Resources Information Center

    Domingo, Jennifer P.; Abualia, Mohammed; Barragan, Diana; Schroeder, Lianne; Wink, Donald J.; King, Maripat; Clark, Ginevra A.

    2017-01-01

    Introductory Chemistry laboratories must go beyond "cookbook" methods to illustrate how chemistry concepts apply to complex, real-world problems. In our case, we are preparing students to use their chemistry knowledge in the healthcare profession. The experiment described here explicitly models three important chemical concepts: dialysis…

  5. Substitution of synthetic chimpanzee androgen receptor for human androgen receptor in competitive binding and transcriptional activation assays for EDC screening

    EPA Science Inventory

    The potential effect of receptor-mediated endocrine modulators across species is of increasing concern. In attempts to address these concerns we are developing androgen and estrogen receptor binding assays using recombinant hormone receptors from a number of species across differ...

  6. Comparison of Relative Binding Affinities for Trout and Human Estrogen Receptor Based upon Different Competitive Binding Assays, oral

    EPA Science Inventory

    The US EPA has been mandated to screen industrial chemicals and pesticides for potential endocrine activity. To evaluate the potential for chemicals to cause endocrine disruption in fish we have previously measured the affinity of a number of chemicals for the rainbow trout estr...

  7. Cyclic AMP Inhibits the Activity and Promotes the Acetylation of Acetyl-CoA Synthetase through Competitive Binding to the ATP/AMP Pocket.

    PubMed

    Han, Xiaobiao; Shen, Liqiang; Wang, Qijun; Cen, Xufeng; Wang, Jin; Wu, Meng; Li, Peng; Zhao, Wei; Zhang, Yu; Zhao, Guoping

    2017-01-27

    The high-affinity biosynthetic pathway for converting acetate to acetyl-coenzyme A (acetyl-CoA) is catalyzed by the central metabolic enzyme acetyl-coenzyme A synthetase (Acs), which is finely regulated both at the transcriptional level via cyclic AMP (cAMP)-driven trans-activation and at the post-translational level via acetylation inhibition. In this study, we discovered that cAMP directly binds to Salmonella enterica Acs (SeAcs) and inhibits its activity in a substrate-competitive manner. In addition, cAMP binding increases SeAcs acetylation by simultaneously promoting Pat-dependent acetylation and inhibiting CobB-dependent deacetylation, resulting in enhanced SeAcs inhibition. A crystal structure study and site-directed mutagenesis analyses confirmed that cAMP binds to the ATP/AMP pocket of SeAcs, and restrains SeAcs in an open conformation. The cAMP contact residues are well conserved from prokaryotes to eukaryotes, suggesting a general regulatory mechanism of cAMP on Acs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Competition between Anion Binding and Dimerization Modulates Staphylococcus aureus Phosphatidylinositol-specific Phospholipase C Enzymatic Activity*

    PubMed Central

    Cheng, Jiongjia; Goldstein, Rebecca; Stec, Boguslaw; Gershenson, Anne; Roberts, Mary F.

    2012-01-01

    Staphylococcus aureus phosphatidylinositol-specific phospholipase C (PI-PLC) is a secreted virulence factor for this pathogenic bacterium. A novel crystal structure shows that this PI-PLC can form a dimer via helix B, a structural feature present in all secreted, bacterial PI-PLCs that is important for membrane binding. Despite the small size of this interface, it is critical for optimal enzyme activity. Kinetic evidence, increased enzyme specific activity with increasing enzyme concentration, supports a mechanism where the PI-PLC dimerization is enhanced in membranes containing phosphatidylcholine (PC). Mutagenesis of key residues confirm that the zwitterionic phospholipid acts not by specific binding to the protein, but rather by reducing anionic lipid interactions with a cationic pocket on the surface of the S. aureus enzyme that stabilizes monomeric protein. Despite its structural and sequence similarity to PI-PLCs from other Gram-positive pathogenic bacteria, S. aureus PI-PLC appears to have a unique mechanism where enzyme activity is modulated by competition between binding of soluble anions or anionic lipids to the cationic sensor and transient dimerization on the membrane. PMID:23038258

  9. Sandwich enzyme-linked immunosorbent assay for naringin.

    PubMed

    Qu, Huihua; Wang, Xueqian; Qu, Baoping; Kong, Hui; Zhang, Yue; Shan, Wenchao; Cheng, Jinjun; Wang, Qingguo; Zhao, Yan

    2016-01-15

    Among the currently used immunoassay techniques, sandwich ELISA exhibits higher specificity, lower cross-reactivity, and a wider working range compared to the corresponding competitive assays. However, it is difficult to obtain a pair of antibodies that can simultaneously bind to two epitopes of a molecule with a molecular weight of less than 1000 Da. Naringin (Nar) is a flavonoid with a molecular mass of 580 Da. The main aim of this study was to develop a sandwich ELISA for detecting Nar. Two hybridomas secreting anti-Nar monoclonal antibodies (mAbs) were produced by fusing splenocytes from a mouse immunised against Nar-bovine serum albumin (BSA) conjugated with a hypoxanthine-aminopterin-thymidine (HAT)-sensitive mouse myeloma cell line; a sandwich ELISA for detecting Nar was developed using these two well-characterised anti-Nar mAbs. The performance of the sandwich assay was further evaluated by limit of detection (LOD), limit of quantification (LOQ), recovery, and interference analyses. A dose-response curve to Nar was obtained with an LOD of 6.78 ng mL(-1) and an LOQ of 13.47 ng mL(-1). The inter-assay and intra-assay coefficients of variation were 4.32% and 7.48%, respectively. The recovery rate of Nar from concentrated Fructus aurantii granules was 83.63%. A high correlation was obtained between HPLC and sandwich ELISA. These results demonstrate that the sandwich ELISA method has higher specificity for Nar than indirect competitive ELISA. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Human antibody recognition of antigenic site IV on Pneumovirus fusion proteins.

    PubMed

    Mousa, Jarrod J; Binshtein, Elad; Human, Stacey; Fong, Rachel H; Alvarado, Gabriela; Doranz, Benjamin J; Moore, Martin L; Ohi, Melanie D; Crowe, James E

    2018-02-01

    Respiratory syncytial virus (RSV) is a major human pathogen that infects the majority of children by two years of age. The RSV fusion (F) protein is a primary target of human antibodies, and it has several antigenic regions capable of inducing neutralizing antibodies. Antigenic site IV is preserved in both the pre-fusion and post-fusion conformations of RSV F. Antibodies to antigenic site IV have been described that bind and neutralize both RSV and human metapneumovirus (hMPV). To explore the diversity of binding modes at antigenic site IV, we generated a panel of four new human monoclonal antibodies (mAbs) and competition-binding suggested the mAbs bind at antigenic site IV. Mutagenesis experiments revealed that binding and neutralization of two mAbs (3M3 and 6F18) depended on arginine (R) residue R429. We discovered two R429-independent mAbs (17E10 and 2N6) at this site that neutralized an RSV R429A mutant strain, and one of these mAbs (17E10) neutralized both RSV and hMPV. To determine the mechanism of cross-reactivity, we performed competition-binding, recombinant protein mutagenesis, peptide binding, and electron microscopy experiments. It was determined that the human cross-reactive mAb 17E10 binds to RSV F with a binding pose similar to 101F, which may be indicative of cross-reactivity with hMPV F. The data presented provide new concepts in RSV immune recognition and vaccine design, as we describe the novel idea that binding pose may influence mAb cross-reactivity between RSV and hMPV. Characterization of the site IV epitope bound by human antibodies may inform the design of a pan-Pneumovirus vaccine.

  11. System and method for detecting components of a mixture including a valving scheme for competition assays

    DOEpatents

    Koh, Chung-Yan; Piccini, Matthew E.; Singh, Anup K.

    2017-09-19

    Examples are described including measurement systems for conducting competition assays. A first chamber of an assay device may be loaded with a sample containing a target antigen. The target antigen in the sample may be allowed to bind to antibody-coated beads in the first chamber. A control layer separating the first chamber from a second chamber may then be opened to allow a labeling agent loaded in a first portion of the second chamber to bind to any unoccupied sites on the antibodies. A centrifugal force may then be applied to transport the beads through a density media to a detection region for measurement by a detection unit.

  12. System and method for detecting components of a mixture including a valving scheme for competition assays

    DOEpatents

    Koh, Chung-Yan; Piccini, Matthew E.; Singh, Anup K.

    2017-07-11

    Examples are described including measurement systems for conducting competition assays. A first chamber of an assay device may be loaded with a sample containing a target antigen. The target antigen in the sample may be allowed to bind to antibody-coated beads in the first chamber. A control layer separating the first chamber from a second chamber may then be opened to allow a labeling agent loaded in a first portion of the second chamber to bind to any unoccupied sites on the antibodies. A centrifugal force may then be applied to transport the beads through a density media to a detection region for measurement by a detection unit.

  13. Antagonistic Rgg regulators mediate quorum sensing via competitive DNA binding in Streptococcus pyogenes.

    PubMed

    Lasarre, Breah; Aggarwal, Chaitanya; Federle, Michael J

    2013-01-02

    Recent studies have established the fact that multiple members of the Rgg family of transcriptional regulators serve as key components of quorum sensing (QS) pathways that utilize peptides as intercellular signaling molecules. We previously described a novel QS system in Streptococcus pyogenes which utilizes two Rgg-family regulators (Rgg2 and Rgg3) that respond to neighboring signaling peptides (SHP2 and SHP3) to control gene expression and biofilm formation. We have shown that Rgg2 is a transcriptional activator of target genes, whereas Rgg3 represses expression of these genes, and that SHPs function to activate the QS system. The mechanisms by which Rgg proteins regulate both QS-dependent and QS-independent processes remain poorly defined; thus, we sought to further elucidate how Rgg2 and Rgg3 mediate gene regulation. Here we provide evidence that S. pyogenes employs a unique mechanism of direct competition between the antagonistic, peptide-responsive proteins Rgg2 and Rgg3 for binding at target promoters. The highly conserved, shared binding sites for Rgg2 and Rgg3 are located proximal to the -35 nucleotide in the target promoters, and the direct competition between the two regulators results in concentration-dependent, exclusive occupation of the target promoters that can be skewed in favor of Rgg2 in vitro by the presence of SHP. These results suggest that exclusionary binding of target promoters by Rgg3 may prevent Rgg2 binding under SHP-limiting conditions, thereby preventing premature induction of the quorum sensing circuit. Rgg-family transcriptional regulators are widespread among low-G+C Gram-positive bacteria and in many cases contribute to bacterial physiology and virulence. Only recently was it discovered that several Rgg proteins function in cell-to-cell communication (quorum sensing [QS]) via direct interaction with signaling peptides. The mechanism(s) by which Rgg proteins mediate regulation is poorly understood, and further insight into Rgg function is anticipated to be of great importance for the understanding of both regulatory-network architecture and intercellular communication in Rgg-containing species. The results of this study on the Rgg2/3 QS circuit of S. pyogenes demonstrate that DNA binding of target promoters by the activator Rgg2 is directly inhibited by competitive binding by the repressor Rgg3, thereby preventing transcriptional activation of the target genes and premature induction of the QS circuit. This is a unique regulatory mechanism among Rgg proteins and other peptide-responsive QS regulators.

  14. Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host.

    PubMed

    Lang, Julien; Vigouroux, Armelle; Planamente, Sara; El Sahili, Abbas; Blin, Pauline; Aumont-Nicaise, Magali; Dessaux, Yves; Moréra, Solange; Faure, Denis

    2014-10-01

    By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour), a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP) NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate) and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (K(D) of 0.6 µM) greater than that for nopaline (KD of 3.7 µM). Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to support the niche construction paradigm in bacterial pathogens.

  15. Receptor binding mode and pharmacological characterization of a potent and selective dual CXCR1/CXCR2 non-competitive allosteric inhibitor

    PubMed Central

    Bertini, R; Barcelos, LS; Beccari, AR; Cavalieri, B; Moriconi, A; Bizzarri, C; Di Benedetto, P; Di Giacinto, C; Gloaguen, I; Galliera, E; Corsi, MM; Russo, RC; Andrade, SP; Cesta, MC; Nano, G; Aramini, A; Cutrin, JC; Locati, M; Allegretti, M; Teixeira, MM

    2012-01-01

    BACKGROUND AND PURPOSE DF 2156A is a new dual inhibitor of IL-8 receptors CXCR1 and CXCR2 with an optimal pharmacokinetic profile. We characterized its binding mode, molecular mechanism of action and selectivity, and evaluated its therapeutic potential. EXPERIMENTAL APPROACH The binding mode, molecular mechanism of action and selectivity were investigated using chemotaxis of L1.2 transfectants and human leucocytes, in addition to radioligand and [35S]-GTPγS binding approaches. The therapeutic potential of DF 2156A was evaluated in acute (liver ischaemia and reperfusion) and chronic (sponge-induced angiogenesis) experimental models of inflammation. KEY RESULTS A network of polar interactions stabilized by a direct ionic bond between DF 2156A and Lys99 on CXCR1 and the non-conserved residue Asp293 on CXCR2 are the key determinants of DF 2156A binding. DF 2156A acted as a non-competitive allosteric inhibitor blocking the signal transduction leading to chemotaxis without altering the binding affinity of natural ligands. DF 2156A effectively and selectively inhibited CXCR1/CXCR2-mediated chemotaxis of L1.2 transfectants and leucocytes. In a murine model of sponge-induced angiogenesis, DF 2156A reduced leucocyte influx, TNF-α production and neovessel formation. In vitro, DF 2156A prevented proliferation, migration and capillary-like organization of HUVECs in response to human IL-8. In a rat model of liver ischaemia and reperfusion (I/R) injury, DF 2156A decreased PMN and monocyte-macrophage infiltration and associated hepatocellular injury. CONCLUSION AND IMPLICATIONS DF 2156A is a non-competitive allosteric inhibitor of both IL-8 receptors CXCR1 and CXCR2. It prevented experimental angiogenesis and hepatic I/R injury in vivo and, therefore, has therapeutic potential for acute and chronic inflammatory diseases. PMID:21718305

  16. Agrobacterium Uses a Unique Ligand-Binding Mode for Trapping Opines and Acquiring A Competitive Advantage in the Niche Construction on Plant Host

    PubMed Central

    Planamente, Sara; El Sahili, Abbas; Blin, Pauline; Aumont-Nicaise, Magali; Dessaux, Yves; Moréra, Solange; Faure, Denis

    2014-01-01

    By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour), a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP) NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate) and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (KD of 0.6 µM) greater than that for nopaline (KD of 3.7 µM). Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to support the niche construction paradigm in bacterial pathogens. PMID:25299655

  17. Binding of purified and radioiodinated capsular polysaccharides from Cryptococcus neoformans serotype A strains to capsule-free mutants.

    PubMed Central

    Small, J M; Mitchell, T G

    1986-01-01

    Strains 6, 15, 98, 110, and 145 of Cryptococcus neoformans serotype A vary in capsule size, animal virulence, and susceptibility to in vitro phagocytosis. The isolated capsular polysaccharides (CPSs) differ in monosaccharide composition ratios and molecular size, as determined by gel filtration. The purpose of this investigation was to characterize the binding of CPSs to capsule-free mutants of C. neoformans and to examine CPSs from these strains for differences in their ability to bind, to determine whether such differences might explain the variation in the pathobiology of these strains. CPSs were partially periodate oxidized, tyraminated, iodinated with 125I, and used in binding studies with two capsule-free mutants of C. neoformans, strain 602 and Cap59. Binding was specific for yeast species and for polysaccharide and was saturable, which is consistent with a receptor-mediated mechanism of attachment. Binding occurred rapidly and was only slowly reversible. Binding was also independent of pH from pH 5.5 to 8, of cation concentrations, and of competition by sugars up to 1.0 M concentrations. Only a portion of CPS was capable of binding, and strains varied in the extent to which their CPS bound. CPS-15-IV (peak IV was the major polysaccharide peak on DEAE-cellulose chromatography of CPS from strain 15) had the highest proportion of binding (40%), followed by CPS from strains 98, 6, 145, 110, and 15-III (peak III was an earlier eluting fraction of CPS from strain 15). The CPSs differed similarly in their ability to competitively inhibit binding. Treatment of CPS, but not yeast cells, with proteinase XIV abolished binding without altering the CPS gross structure. Treatment of yeast cells with proteases, heat, or formaldehyde did not alter binding, and both strain 602 and Cap59 bound CPS similarly. Binding to encapsulated yeast cells was minimal. PMID:3536747

  18. Binding of purified and radioiodinated capsular polysaccharides from Cryptococcus neoformans serotype A strains to capsule-free mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, J.M.; Mitchell, T.G.

    Strains 6, 15, 98, 110, and 145 of Cryptococcus neoformans serotype A vary in capsule size, animal virulence, and susceptibility to in vitro phagocytosis. The isolated capsular polysaccharides (CPSs) differ in monosaccharide composition ratios and molecular size, as determined by gel filtration. The purpose of this investigation was to characterize the binding of CPSs to capsule-free mutants of C. neoformans and to examine CPSs from these strains for differences in their ability to bind, to determine whether such differences might explain the variation in the pathobiology of these strains. CPSs were partially periodate oxidized, tyraminated, iodinated with /sup 125/I, andmore » used in binding studies with two capsule-free mutants of C. neoformans, strain 602 and Cap59. Binding was specific for yeast species and for polysaccharide and was saturable, which is consistent with a receptor-mediated mechanism of attachment. Binding occurred rapidly and was only slowly reversible. Binding was also independent of pH from pH 5.5 to 8, of cation concentrations, and of competition by sugars up to 1.0 M concentrations. Only a portion of CPS was capable of binding, and strains varied in the extent to which their CPS bound. CPS-15-IV (peak IV was the major polysaccharide peak on DEAE-cellulose chromatography of CPS from strain 15) had the highest proportion of binding (40%), followed by CPS from strains 98, 6, 145, 110, and 15-III (peak III was an earlier eluting fraction of CPS from strain 15). The CPSs differed similarly in their ability to competitively inhibit binding. Treatment of CPS, but not yeast cells, with proteinase XIV abolished binding without altering the CPS gross structure. Treatment of yeast cells with proteases, heat, or formaldehyde did not alter binding, and both strain 602 and Cap59 bound CPS similarly. Binding to encapsulated yeast cells was minimal.« less

  19. Myocardin-Related Transcription Factor A Activation by Competition with WH2 Domain Proteins for Actin Binding

    PubMed Central

    Weissbach, Julia; Schikora, Franziska; Weber, Anja; Kessels, Michael

    2016-01-01

    The myocardin-related transcription factors (MRTFs) are coactivators of serum response factor (SRF)-mediated gene expression. Activation of MRTF-A occurs in response to alterations in actin dynamics and critically requires the dissociation of repressive G-actin–MRTF-A complexes. However, the mechanism leading to the release of MRTF-A remains unclear. Here we show that WH2 domains compete directly with MRTF-A for actin binding. Actin nucleation-promoting factors, such as N-WASP and WAVE2, as well as isolated WH2 domains, including those of Spire2 and Cobl, activate MRTF-A independently of changes in actin dynamics. Simultaneous inhibition of Arp2-Arp3 or mutation of the CA region only partially reduces MRTF-A activation by N-WASP and WAVE2. Recombinant WH2 domains and the RPEL domain of MRTF-A bind mutually exclusively to cellular and purified G-actin in vitro. The competition by different WH2 domains correlates with MRTF-SRF activation. Following serum stimulation, nonpolymerizable actin dissociates from MRTF-A, and de novo formation of the G-actin–RPEL complex is impaired by a transferable factor. Our work demonstrates that WH2 domains activate MRTF-A and contribute to target gene regulation by a competitive mechanism, independently of their role in actin filament formation. PMID:26976641

  20. Characterization of 12 GnRH peptide agonists - a kinetic perspective.

    PubMed

    Nederpelt, Indira; Georgi, Victoria; Schiele, Felix; Nowak-Reppel, Katrin; Fernández-Montalván, Amaury E; IJzerman, Adriaan P; Heitman, Laura H

    2016-01-01

    Drug-target residence time is an important, yet often overlooked, parameter in drug discovery. Multiple studies have proposed an increased residence time to be beneficial for improved drug efficacy and/or longer duration of action. Currently, there are many drugs on the market targeting the gonadotropin-releasing hormone (GnRH) receptor for the treatment of hormone-dependent diseases. Surprisingly, the kinetic receptor-binding parameters of these analogues have not yet been reported. Therefore, this project focused on determining the receptor-binding kinetics of 12 GnRH peptide agonists, including many marketed drugs. A novel radioligand-binding competition association assay was developed and optimized for the human GnRH receptor with the use of a radiolabelled peptide agonist, [(125) I]-triptorelin. In addition to radioligand-binding studies, a homogeneous time-resolved FRET Tag-lite™ method was developed as an alternative assay for the same purpose. Two novel competition association assays were successfully developed and applied to determine the kinetic receptor-binding characteristics of 12 high-affinity GnRH peptide agonists. Results obtained from both methods were highly correlated. Interestingly, the binding kinetics of the peptide agonists were more divergent than their affinities with residence times ranging from 5.6 min (goserelin) to 125 min (deslorelin). Our research provides new insights by incorporating kinetic, next to equilibrium, binding parameters in current research and development that can potentially improve future drug discovery targeting the GnRH receptor. © 2015 The British Pharmacological Society.

  1. Characterization of 12 GnRH peptide agonists – a kinetic perspective

    PubMed Central

    Nederpelt, Indira; Georgi, Victoria; Schiele, Felix; Nowak‐Reppel, Katrin; Fernández‐Montalván, Amaury E.; IJzerman, Adriaan P.

    2015-01-01

    Background and Purpose Drug‐target residence time is an important, yet often overlooked, parameter in drug discovery. Multiple studies have proposed an increased residence time to be beneficial for improved drug efficacy and/or longer duration of action. Currently, there are many drugs on the market targeting the gonadotropin‐releasing hormone (GnRH) receptor for the treatment of hormone‐dependent diseases. Surprisingly, the kinetic receptor‐binding parameters of these analogues have not yet been reported. Therefore, this project focused on determining the receptor‐binding kinetics of 12 GnRH peptide agonists, including many marketed drugs. Experimental Approach A novel radioligand‐binding competition association assay was developed and optimized for the human GnRH receptor with the use of a radiolabelled peptide agonist, [125I]‐triptorelin. In addition to radioligand‐binding studies, a homogeneous time‐resolved FRET Tag‐lite™ method was developed as an alternative assay for the same purpose. Key Results Two novel competition association assays were successfully developed and applied to determine the kinetic receptor‐binding characteristics of 12 high‐affinity GnRH peptide agonists. Results obtained from both methods were highly correlated. Interestingly, the binding kinetics of the peptide agonists were more divergent than their affinities with residence times ranging from 5.6 min (goserelin) to 125 min (deslorelin). Conclusions and Implications Our research provides new insights by incorporating kinetic, next to equilibrium, binding parameters in current research and development that can potentially improve future drug discovery targeting the GnRH receptor. PMID:26398856

  2. Nickel-quinolones interaction. Part 4. Structure and biological evaluation of nickel(II)-enrofloxacin complexes compared to zinc(II) analogues.

    PubMed

    Skyrianou, Kalliopi C; Psycharis, Vassilis; Raptopoulou, Catherine P; Kessissoglou, Dimitris P; Psomas, George

    2011-01-01

    The nickel(II) complexes with the second-generation quinolone antibacterial agent enrofloxacin in the presence or absence of the nitrogen-donor heterocyclic ligands 1,10-phenanthroline, 2,2'-bipyridine or pyridine have been synthesized and characterized. Enrofloxacin acts as bidentate ligand coordinated to Ni(II) ion through the ketone oxygen and a carboxylato oxygen. The crystal structure of (1,10-phenanthroline)bis(enrofloxacinato)nickel(II) has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA and bis(pyridine)bis(enrofloxacinato)nickel(II) exhibits the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the complexes have been evaluated in comparison to the corresponding Zn(II) enrofloxacinato complexes as well as Ni(II) complexes with the first-generation quinolone oxolinic acid. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques.

    PubMed

    Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui

    2017-03-30

    Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 10 5  M -1 ) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA.

  4. Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques

    PubMed Central

    Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui

    2017-01-01

    Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 105 M−1) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA. PMID:28358124

  5. Sparteine monooxygenase in brain and liver: Identified by the dopamine uptake blocker ( sup 3 H)GBR-12935

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalow, W.; Tyndale, R.F.; Niznik, H.B.

    1990-02-26

    P450IID6 (human sparteine monooxygenase) metabolizes many drugs including neuroleptics, antidepressants, and beta-blockers. The P450IID6 exists in human, bovine, rat and canine brains, but in very low quantities causing methodological difficulties in its assessment. Work with ({sup 3}H)GBR-12935; 1-(2-(diphenylmethoxy) ethyl)-4-(3-phenyl propyl) piperazine has shown that it binds a neuronal/hepatic protein with high affinity ({approximately}7nM) and a rank order of inhibitory potency suggesting that the binding protein is cytochrome P450IID6. The binding was used to predict that d-amphetamine and methamphetamine would interact with P450IID6. Inhibition studies indicated that these compounds were competitive inhibitors of P450IID6. Haloperidol (HAL) and it's metabolite hydroxy-haloperidol (RHAL)more » are both competitive inhibitors of P450IID6 activity and were found to inhibit ({sup 3}H)GBR-12935 binding. K{sub i} values of twelve compounds (known to interact with the DA transporter or P450IID6) for ({sup 3}H)GRB-12935 binding and P450IID6 activity. The techniques are now available for measurements of cytochrome P450IID6 in healthy and diseased brain/liver tissue using radio-receptor binding assay techniques with ({sup 3}H)GBR-12935.« less

  6. Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques

    NASA Astrophysics Data System (ADS)

    Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui

    2017-03-01

    Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 105 M-1) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA.

  7. Integrated Summary Report: Validation of Two Binding Assays ...

    EPA Pesticide Factsheets

    This Integrated Summary Report (ISR) summarizes, in a single document, the results from an international multi-laboratory validation study conducted for two in vitro estrogen receptor (ER) binding assays. These assays both use human recombinant estrogen receptor, alpha subtype (hrERα), to identify chemicals that may impact estrogen signaling through binding to the ER. The purpose of the ISR is to support the peer review of the findings obtained during the validation process.The two assays evaluated during this validation process are: The Freyberger-Wilson Assay (FW) using a full length human ER, and The Chemical Evaluation and Research Institute (CERI) Assay using a ligand-binding domain of the human ER.The two assays are mechanistically and functionally similar in that each measures the ability of a test chemical to competitively inhibit binding of [3H]17β-estradiol to the human recombinant ER. The essential elements of the FW and the CERI assays were developed at the laboratories of Bayer Pharma AG, Wuppertal, Germany (Freyberger et al., 2010) and CERI, Tokyo, Japan (Akahori et al., 2008), respectively.The ER competitive binding assay has long been in use, and is a well characterized approach, but historically uses rodent or other animal tissues as a source of the ER. Validation of the FW and CERI assays using human recombinant estrogen receptors ( subtype) will provide an updated alternative for the Agency’s current test guideline (OPPTS 89

  8. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin.

    PubMed

    Gao, Shunxiang; Zheng, Xin; Hu, Bo; Sun, Mingjuan; Wu, Jihong; Jiao, Binghua; Wang, Lianghua

    2017-03-15

    In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Binding Mode Analyses and Pharmacophore Model Development for Stilbene Derivatives as a Novel and Competitive Class of α-Glucosidase Inhibitors

    PubMed Central

    Kim, Jun Young; Arooj, Mahreen; Kim, Siu; Hwang, Swan; Kim, Byeong-Woo; Park, Ki Hun; Lee, Keun Woo

    2014-01-01

    Stilbene urea derivatives as a novel and competitive class of non-glycosidic α-glucosidase inhibitors are effective for the treatment of type II diabetes and obesity. The main purposes of our molecular modeling study are to explore the most suitable binding poses of stilbene derivatives with analyzing the binding affinity differences and finally to develop a pharmacophore model which would represents critical features responsible for α-glucosidase inhibitory activity. Three-dimensional structure of S. cerevisiae α-glucosidase was built by homology modeling method and the structure was used for the molecular docking study to find out the initial binding mode of compound 12, which is the most highly active one. The initial structure was subjected to molecular dynamics (MD) simulations for protein structure adjustment at compound 12-bound state. Based on the adjusted conformation, the more reasonable binding modes of the stilbene urea derivatives were obtained from molecular docking and MD simulations. The binding mode of the derivatives was validated by correlation analysis between experimental Ki value and interaction energy. Our results revealed that the binding modes of the potent inhibitors were engaged with important hydrogen bond, hydrophobic, and π-interactions. With the validated compound 12-bound structure obtained from combining approach of docking and MD simulation, a proper four featured pharmacophore model was generated. It was also validated by comparison of fit values with the Ki values. Thus, these results will be helpful for understanding the relationship between binding mode and bioactivity and for designing better inhibitors from stilbene derivatives. PMID:24465730

  10. SP transcription factor paralogs and DNA-binding sites coevolve and adaptively converge in mammals and birds.

    PubMed

    Yokoyama, Ken Daigoro; Pollock, David D

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins.

  11. SP Transcription Factor Paralogs and DNA-Binding Sites Coevolve and Adaptively Converge in Mammals and Birds

    PubMed Central

    Yokoyama, Ken Daigoro; Pollock, David D.

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins. PMID:23019068

  12. Sex-differences in elite-performance track and field competition from 1983 to 2015.

    PubMed

    Ospina Betancurt, Jonathan; Zakynthinaki, Maria S; Martínes-Patiño, Maria Jose; Cordente Martinez, Carlos; Rodríguez Fernández, Carmen

    2018-06-01

    The purpose of this study was to assess the veracity of the Court of Arbitration for Sport's assertion that sex-differences in athletic performance in elite-standard track and field competition is of the order of 10-12%. Exponential curves were fitted to the data of selected track and field events of the finals of all IAAF World Championships and Olympic Games from 1983 to 2016. For each curve, the coefficient of determination R 2 was calculated, in combination the corresponding 95% confidence intervals for the curve constants. Sex-differences were evaluated via differences in the fitted curves between men and women. Mean performances of winners, as well as overall performance means of all participants, were also analyzed. The calculated sex-difference was 8.2 ± 1.0% - 11.8 ± 2.1% for sprints, 10.3 ± 3.3% - 12.8 ± 4.0% for middle and long-distance events, 9.7 ± 2.9% - 13.1 ± 2.9% for relays and 14.2 ± 2.2% - 25.0 ± 4.4% for jumps. This study therefore confirms that the percentage difference accepted by the CAS is appropriate for elite-standard track and field events.

  13. Oxygen binding by alpha(Fe2+)2beta(Ni2+)2 hemoglobin crystals.

    PubMed Central

    Bruno, S.; Bettati, S.; Manfredini, M.; Mozzarelli, A.; Bolognesi, M.; Deriu, D.; Rosano, C.; Tsuneshige, A.; Yonetani, T.; Henry, E. R.

    2000-01-01

    Oxygen binding by hemoglobin fixed in the T state either by crystallization or by encapsulation in silica gels is apparently noncooperative. However, cooperativity might be masked by different oxygen affinities of alpha and beta subunits. Metal hybrid hemoglobins, where the noniron metal does not bind oxygen, provide the opportunity to determine the oxygen affinities of alpha and beta hemes separately. Previous studies have characterized the oxygen binding by alpha(Ni2+)2beta(Fe2+)2 crystals. Here, we have determined the three-dimensional (3D) structure and oxygen binding of alpha(Fe2+)2beta(Ni2+)2 crystals grown from polyethylene glycol solutions. Polarized absorption spectra were recorded at different oxygen pressures with light polarized parallel either to the b or c crystal axis by single crystal microspectrophotometry. The oxygen pressures at 50% saturation (p50s) are 95 +/- 3 and 87 +/- 4 Torr along the b and c crystal axes, respectively, and the corresponding Hill coefficients are 0.96 +/- 0.06 and 0.90 +/- 0.03. Analysis of the binding curves, taking into account the different projections of the alpha hemes along the optical directions, indicates that the oxygen affinity of alpha1 hemes is 1.3-fold lower than alpha2 hemes. Inspection of the 3D structure suggests that this inequivalence may arise from packing interactions of the Hb tetramer within the monoclinic crystal lattice. A similar inequivalence was found for the beta subunits of alpha(Ni2+)2beta(Fe2+)2 crystals. The average oxygen affinity of the alpha subunits (p50 = 91 Torr) is about 1.2-fold higher than the beta subunits (p50 = 110 Torr). In the absence of cooperativity, this heterogeneity yields an oxygen binding curve of Hb A with a Hill coefficient of 0.999. Since the binding curves of Hb A crystals exhibit a Hill coefficient very close to unity, these findings indicate that oxygen binding by T-state hemoglobin is noncooperative, in keeping with the Monod, Wyman, and Changeux model. PMID:10794410

  14. The antimalarial drugs quinine, chloroquine and mefloquine are antagonists at 5-HT3 receptors

    PubMed Central

    Thompson, A J; Lochner, M; Lummis, S C R

    2007-01-01

    Background and Purpose: The antimalarial compounds quinine, chloroquine and mefloquine affect the electrophysiological properties of Cys-loop receptors and have structural similarities to 5-HT3 receptor antagonists. They may therefore act at 5-HT3 receptors. Experimental Approach: The effects of quinine, chloroquine and mefloquine on electrophysiological and ligand binding properties of 5-HT3A receptors expressed in HEK 293 cells and Xenopus oocytes were examined. The compounds were also docked into models of the binding site. Key Results: 5-HT3 responses were blocked with IC 50 values of 13.4 μM, 11.8 μM and 9.36 μM for quinine, chloroquine and mefloquine. Schild plots indicated quinine and chloroquine behaved competitively with pA 2 values of 4.92 (K B=12.0 μM) and 4.97 (K B=16.4 μM). Mefloquine displayed weakly voltage-dependent, non-competitive inhibition consistent with channel block. On and off rates for quinine and chloroquine indicated a simple bimolecular reaction scheme. Quinine, chloroquine and mefloquine displaced [3H]granisetron with K i values of 15.0, 24.2 and 35.7 μ M. Docking of quinine into a homology model of the 5-HT3 receptor binding site located the tertiary ammonium between W183 and Y234, and the quinoline ring towards the membrane, stabilised by a hydrogen bond with E129. For chloroquine, the quinoline ring was positioned between W183 and Y234 and the tertiary ammonium stabilised by interactions with F226. Conclusions and Implications: This study shows that quinine and chloroquine competitively inhibit 5-HT3 receptors, while mefloquine inhibits predominantly non-competitively. Both quinine and chloroquine can be docked into a receptor binding site model, consistent with their structural homology to 5-HT3 receptor antagonists. PMID:17502851

  15. Modeling of breakthrough curves of single and quaternary mixtures of ethanol, glucose, glycerol and acetic acid adsorption onto a microporous hyper-cross-linked resin.

    PubMed

    Zhou, Jingwei; Wu, Jinglan; Liu, Yanan; Zou, Fengxia; Wu, Jian; Li, Kechun; Chen, Yong; Xie, Jingjing; Ying, Hanjie

    2013-09-01

    The adsorption of quaternary mixtures of ethanol/glycerol/glucose/acetic acid onto a microporous hyper-cross-linked resin HD-01 was studied in fixed beds. A mass transport model based on film solid linear driving force and the competitive Langmuir isotherm equation for the equilibrium relationship was used to develop theoretical fixed bed breakthrough curves. It was observed that the outlet concentration of glucose and glycerol exceeded the inlet concentration (c/c0>1), which is an evidence of competitive adsorption. This phenomenon can be explained by the displacement of glucose and glycerol by ethanol molecules, owing to more intensive interactions with the resin surface. The model proposed was validated using experimental data and can be capable of foresee reasonably the breakthrough curve of specific component under different operating conditions. The results show that HD-01 is a promising adsorbent for recovery of ethanol from the fermentation broth due to its large capacity, high selectivity, and rapid adsorption rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Prediction of the binding mode of N2-phenylguanine derivative inhibitors to herpes simplex virus type 1 thymidine kinase

    NASA Astrophysics Data System (ADS)

    Gaudio, Anderson Coser; Takahata, Yuji; Richards, William Graham

    1998-01-01

    The probable binding mode of the herpes simplex virus thymidine kinase (HSV1 TK) N2-[substituted]-phenylguanine inhibitors is proposed. A computational experiment was designed to check some qualitative binding parameters and to calculate the interaction binding energies of alternative binding modes of N2-phenylguanines. The known binding modes of the HSV1 TK natural substrate deoxythymidine and one of its competitive inhibitors ganciclovir were used as templates. Both the qualitative and quantitative parts of the computational experiment indicated that the N2-phenylguanine derivatives bind to the HSV1 TK active site in the deoxythymidine-like binding mode. An experimental observation that N2-phenylguanosine derivatives are not phosphorylated during the interaction with the HSV1 TK gives support to the proposed binding mode.

  17. Competition between Hydrogen Bonding and Proton Transfer during Specific Anion Recognition by Dihomooxacalix[4]arene Bidentate Ureas.

    PubMed

    Martínez-González, Eduardo; González, Felipe J; Ascenso, José R; Marcos, Paula M; Frontana, Carlos

    2016-08-05

    Competition between hydrogen bonding and proton transfer reactions was studied for systems composed of electrogenerated dianionic species from dinitrobenzene isomers and substituted dihomooxacalix[4]arene bidentate urea derivatives. To analyze this competition, a second-order ErCrCi mechanism was considered where the binding process is succeeded by proton transfer and the voltammetric responses depend on two dimensionless parameters: the first related to hydrogen bonding reactions, and the second one to proton transfer processes. Experimental results indicated that, upon an increase in the concentration of phenyl-substituted dihomooxacalix[4]arene bidentate urea, voltammetric responses evolve from diffusion-controlled waves (where the binding process is at chemical equilibrium) into irreversible kinetic responses associated with proton transfer. In particular, the 1,3-dinitrobenzene isomer showed a higher proton transfer rate constant (∼25 M(-1) s(-1)) compared to that of the 1,2-dinitrobenzene (∼5 M(-1) s(-1)), whereas the 1,4-dinitrobenzene did not show any proton transfer effect in the experimental conditions employed.

  18. A kinetic model to explain the maximum in alpha-amylase activity measurements in the presence of small carbohydrates.

    PubMed

    Baks, Tim; Janssen, Anja E M; Boom, Remko M

    2006-06-20

    The effect of the presence of several small carbohydrates on the measurement of the alpha-amylase activity was determined over a broad concentration range. At low carbohydrate concentrations, a distinct maximum in the alpha-amylase activity versus concentration curves was observed in several cases. At higher concentrations, all carbohydrates show a decreasing alpha-amylase activity at increasing carbohydrate concentrations. A general kinetic model has been developed that can be used to describe and explain these phenomena. This model is based on the formation of a carbohydrate-enzyme complex that remains active. It is assumed that this complex is formed when a carbohydrate binds to alpha-amylase without blocking the catalytic site and its surrounding subsites. Furthermore, the kinetic model incorporates substrate inhibition and substrate competition. Depending on the carbohydrate type and concentration, the measured alpha-amylase activity can be 75% lower than the actual alpha-amylase activity. The model that has been developed can be used to correct for these effects in order to obtain the actual amount of active enzyme. 2006 Wiley Periodicals, Inc.

  19. Competitive folding of anti-terminator/terminator hairpins monitored by single molecule FRET.

    PubMed

    Clerte, Caroline; Declerck, Nathalie; Margeat, Emmanuel

    2013-02-01

    The control of transcription termination by RNA-binding proteins that modulate RNA-structures is an important regulatory mechanism in bacteria. LicT and SacY from Bacillus subtilis prevent the premature arrest of transcription by binding to an anti-terminator RNA hairpin that overlaps an intrinsic terminator located in the 5'-mRNA leader region of the gene to be regulated. In order to investigate the molecular determinants of this anti-termination/termination balance, we have developed a fluorescence-based nucleic acids system that mimics the competition between the LicT or SacY anti-terminator targets and the overlapping terminators. Using Förster Resonance Energy Transfer on single diffusing RNA hairpins, we could monitor directly their opening or closing state, and thus investigate the effects on this equilibrium of the binding of anti-termination proteins or terminator-mimicking oligonucleotides. We show that the anti-terminator hairpins adopt spontaneously a closed structure and that their structural dynamics is mainly governed by the length of their basal stem. The induced stability of the anti-terminator hairpins determines both the affinity and specificity of the anti-termination protein binding. Finally, we show that stabilization of the anti-terminator hairpin, by an extended basal stem or anti-termination protein binding can efficiently counteract the competing effect of the terminator-mimic.

  20. Uncertainty analysis of the nonideal competitive adsorption-donnan model: effects of dissolved organic matter variability on predicted metal speciation in soil solution.

    PubMed

    Groenenberg, Jan E; Koopmans, Gerwin F; Comans, Rob N J

    2010-02-15

    Ion binding models such as the nonideal competitive adsorption-Donnan model (NICA-Donnan) and model VI successfully describe laboratory data of proton and metal binding to purified humic substances (HS). In this study model performance was tested in more complex natural systems. The speciation predicted with the NICA-Donnan model and the associated uncertainty were compared with independent measurements in soil solution extracts, including the free metal ion activity and fulvic (FA) and humic acid (HA) fractions of dissolved organic matter (DOM). Potentially important sources of uncertainty are the DOM composition and the variation in binding properties of HS. HS fractions of DOM in soil solution extracts varied between 14 and 63% and consisted mainly of FA. Moreover, binding parameters optimized for individual FA samples show substantial variation. Monte Carlo simulations show that uncertainties in predicted metal speciation, for metals with a high affinity for FA (Cu, Pb), are largely due to the natural variation in binding properties (i.e., the affinity) of FA. Predictions for metals with a lower affinity (Cd) are more prone to uncertainties in the fraction FA in DOM and the maximum site density (i.e., the capacity) of the FA. Based on these findings, suggestions are provided to reduce uncertainties in model predictions.

  1. Fast pressure jumps can perturb calcium and magnesium binding to troponin C F29W.

    PubMed

    Pearson, David S; Swartz, Darl R; Geeves, Michael A

    2008-11-18

    We have used rapid pressure jump and stopped-flow fluorometry to investigate calcium and magnesium binding to F29W chicken skeletal troponin C. Increased pressure perturbed calcium binding to the N-terminal sites in the presence and absence of magnesium and provided an estimate for the volume change upon calcium binding (-12 mL/mol). We observed a biphasic response to a pressure change which was characterized by fast and slow reciprocal relaxation times of the order 1000/s and 100/s. Between pCa 8-5.4 and at troponin C concentrations of 8-28 muM, the slow relaxation times were invariant, indicating that a protein isomerization was rate-limiting. The fast event was only detected over a very narrow pCa range (5.6-5.4). We have devised a model based on a Monod-Wyman-Changeux cooperative mechanism with volume changes of -9 and +6 mL/mol for the calcium binding to the regulatory sites and closed to open protein isomerization steps, respectively. In the absence of magnesium, we discovered that calcium binding to the C-terminal sites could be detected, despite their position distal to the calcium-sensitive tryptophan, with a volume change of +25 mL/mol. We used this novel observation to measure competitive magnesium binding to the C-terminal sites and deduced an affinity in the range 200-300 muM (and a volume change of +35 mL/mol). This affinity is an order of magnitude tighter than equilibrium fluorescence data suggest based on a model of direct competitive binding. Magnesium thus indirectly modulates binding to the N-terminal sites, which may act as a fine-tuning mechanism in vivo.

  2. Fast Pressure Jumps Can Perturb Calcium and Magnesium Binding to Troponin C F29W

    PubMed Central

    Pearson, David S.; Swartz, Darl R.; Geeves, Michael A.

    2009-01-01

    We have used rapid pressure jump and stopped-flow fluorimetry to investigate calcium and magnesium binding to F29W chicken skeletal troponin C. Increased pressure perturbed calcium binding to the N-terminal sites in the presence and absence of magnesium and provided an estimate for the volume change upon calcium binding (-12 mL.mol-1). We observed a biphasic response to a pressure change which was characterized by fast and slow reciprocal relaxation times of the order 1000 s-1 and 100 s-1. Between pCa 8-5.4 and at troponin C concentrations of 8-28 μM, the slow relaxation times were invariant indicating that a protein isomerization was rate-limiting. The fast event was only detected over a very narrow pCa range (5.6-5.4). We have devised a model based on a Monod-Wyman-Changeux cooperative mechanism with volume changes of -9 and +6 mL/mol for the calcium binding to the regulatory sites and closed to open protein isomerization steps respectively. In the absence of magnesium, we discovered that calcium binding to the C-terminal sites could be detected, despite their position distal to the calcium sensitive tryptophan, with a volume change of +25 mL/mol. We used this novel observation to measure competitive magnesium binding to the C-terminal sites and deduced an affinity in the range 200 - 300 μM (and a volume change of +35 mL/mol). This affinity is an order of magnitude tighter than equilibrium fluorescence data suggest based on a model of direct competitive binding. Magnesium thus indirectly modulates binding to the N-terminal sites, which may act as a fine-tuning mechanism in vivo. PMID:18942859

  3. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site.

    PubMed

    Ojelabi, Ogooluwa A; Lloyd, Kenneth P; Simon, Andrew H; De Zutter, Julie K; Carruthers, Anthony

    2016-12-23

    WZB117 (2-fluoro-6-(m-hydroxybenzoyloxy) phenyl m-hydroxybenzoate) inhibits passive sugar transport in human erythrocytes and cancer cell lines and, by limiting glycolysis, inhibits tumor growth in mice. This study explores how WZB117 inhibits the erythrocyte sugar transporter glucose transport protein 1 (GLUT1) and examines the transporter isoform specificity of inhibition. WZB117 reversibly and competitively inhibits erythrocyte 3-O-methylglucose (3MG) uptake with K i (app) = 6 μm but is a noncompetitive inhibitor of sugar exit. Cytochalasin B (CB) is a reversible, noncompetitive inhibitor of 3MG uptake with K i (app) = 0.3 μm but is a competitive inhibitor of sugar exit indicating that WZB117 and CB bind at exofacial and endofacial sugar binding sites, respectively. WZB117 inhibition of GLUTs expressed in HEK293 cells follows the order of potency: insulin-regulated GLUT4 ≫ GLUT1 ≈ neuronal GLUT3. This may explain WZB117-induced murine lipodystrophy. Molecular docking suggests the following. 1) The WZB117 binding envelopes of exofacial GLUT1 and GLUT4 conformers differ significantly. 2) GLUT1 and GLUT4 exofacial conformers present multiple, adjacent glucose binding sites that overlap with WZB117 binding envelopes. 3) The GLUT1 exofacial conformer lacks a CB binding site. 4) The inward GLUT1 conformer presents overlapping endofacial WZB117, d-glucose, and CB binding envelopes. Interrogating the GLUT1 mechanism using WZB117 reveals that subsaturating WZB117 and CB stimulate erythrocyte 3MG uptake. Extracellular WZB117 does not affect CB binding to GLUT1, but intracellular WZB117 inhibits CB binding. These findings are incompatible with the alternating conformer carrier for glucose transport but are consistent with either a multisubunit, allosteric transporter, or a transporter in which each subunit presents multiple, interacting ligand binding sites. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site*

    PubMed Central

    Ojelabi, Ogooluwa A.; Lloyd, Kenneth P.; Simon, Andrew H.; De Zutter, Julie K.; Carruthers, Anthony

    2016-01-01

    WZB117 (2-fluoro-6-(m-hydroxybenzoyloxy) phenyl m-hydroxybenzoate) inhibits passive sugar transport in human erythrocytes and cancer cell lines and, by limiting glycolysis, inhibits tumor growth in mice. This study explores how WZB117 inhibits the erythrocyte sugar transporter glucose transport protein 1 (GLUT1) and examines the transporter isoform specificity of inhibition. WZB117 reversibly and competitively inhibits erythrocyte 3-O-methylglucose (3MG) uptake with Ki(app) = 6 μm but is a noncompetitive inhibitor of sugar exit. Cytochalasin B (CB) is a reversible, noncompetitive inhibitor of 3MG uptake with Ki(app) = 0.3 μm but is a competitive inhibitor of sugar exit indicating that WZB117 and CB bind at exofacial and endofacial sugar binding sites, respectively. WZB117 inhibition of GLUTs expressed in HEK293 cells follows the order of potency: insulin-regulated GLUT4 ≫ GLUT1 ≈ neuronal GLUT3. This may explain WZB117-induced murine lipodystrophy. Molecular docking suggests the following. 1) The WZB117 binding envelopes of exofacial GLUT1 and GLUT4 conformers differ significantly. 2) GLUT1 and GLUT4 exofacial conformers present multiple, adjacent glucose binding sites that overlap with WZB117 binding envelopes. 3) The GLUT1 exofacial conformer lacks a CB binding site. 4) The inward GLUT1 conformer presents overlapping endofacial WZB117, d-glucose, and CB binding envelopes. Interrogating the GLUT1 mechanism using WZB117 reveals that subsaturating WZB117 and CB stimulate erythrocyte 3MG uptake. Extracellular WZB117 does not affect CB binding to GLUT1, but intracellular WZB117 inhibits CB binding. These findings are incompatible with the alternating conformer carrier for glucose transport but are consistent with either a multisubunit, allosteric transporter, or a transporter in which each subunit presents multiple, interacting ligand binding sites. PMID:27836974

  5. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    PubMed Central

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of cold competitor. Fourth, nonspecific binding of a heterologous competitor changed estimates of high and low inhibition constants but did not change the ratio of those estimates. Conclusions Investigating the low affinity site of α4β2 nAChR with equilibrium binding when ligand depletion and nonspecific binding are present likely needs special attention to experimental design and data interpretation beyond fitting total binding data. Manipulation of maximum ligand and receptor concentrations and intentionally increasing ligand depletion are potentially helpful approaches. PMID:22112852

  6. X-ray absorption spectroscopic evidence for binding of the competitive inhibitor 2-mercaptoethanol to the nickel sites of Jack bean urease. A new Ni-Ni interaction in the inhibited enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, P.A.; Wilcox, D.E.; Scott, R.A.

    The enzyme Jack bean urease has been identified as the first nickel-containing metalloenzyme to catalyze the hydrolysis of urea to carbon dioxide and ammonia. Competitive inhibitors such as 2-mercaptoethanol (2-ME) have been shown to dramatically affect the ground-state electronic properties of the urease Ni(II) ions. Results of preliminary structural investigations using x-ray absorption spectroscopy of the nickel salts of urease in its native and 2-ME bound forms are presented. The binding of 2-ME to Ni(II) through the thiolate sulfur is confirmed by the results of this study. 17 refs., 2 figs., 2 tabs.

  7. Effects of flow changes on radiotracer binding: Simultaneous measurement of neuroreceptor binding and cerebral blood flow modulation.

    PubMed

    Sander, Christin Y; Mandeville, Joseph B; Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M; Rosen, Bruce R

    2017-01-01

    The potential effects of changes in blood flow on the delivery and washout of radiotracers has been an ongoing question in PET bolus injection studies. This study provides practical insight into this topic by experimentally measuring cerebral blood flow (CBF) and neuroreceptor binding using simultaneous PET/MRI. Hypercapnic challenges (7% CO 2 ) were administered to non-human primates in order to induce controlled increases in CBF, measured with pseudo-continuous arterial spin labeling. Simultaneously, dopamine D 2 /D 3 receptor binding of [ 11 C]raclopride or [ 18 F]fallypride was monitored with dynamic PET. Experiments showed that neither time activity curves nor quantification of binding through binding potentials ( BP ND ) were measurably affected by CBF increases, which were larger than two-fold. Simulations of experimental procedures showed that even large changes in CBF should have little effect on the time activity curves of radiotracers, given a set of realistic assumptions. The proposed method can be applied to experimentally assess the flow sensitivity of other radiotracers. Results demonstrate that CBF changes, which often occur due to behavioral tasks or pharmacological challenges, do not affect PET [ 11 C]raclopride or [ 18 F]fallypride binding studies and their quantification. The results from this study suggest flow effects may have limited impact on many PET neuroreceptor tracers with similar properties.

  8. Structure-based multiscale approach for identification of interaction partners of PDZ domains.

    PubMed

    Tiwari, Garima; Mohanty, Debasisa

    2014-04-28

    PDZ domains are peptide recognition modules which mediate specific protein-protein interactions and are known to have a complex specificity landscape. We have developed a novel structure-based multiscale approach which identifies crucial specificity determining residues (SDRs) of PDZ domains from explicit solvent molecular dynamics (MD) simulations on PDZ-peptide complexes and uses these SDRs in combination with knowledge-based scoring functions for proteomewide identification of their interaction partners. Multiple explicit solvent simulations ranging from 5 to 50 ns duration have been carried out on 28 PDZ-peptide complexes with known binding affinities. MM/PBSA binding energy values calculated from these simulations show a correlation coefficient of 0.755 with the experimental binding affinities. On the basis of the SDRs of PDZ domains identified by MD simulations, we have developed a simple scoring scheme for evaluating binding energies for PDZ-peptide complexes using residue based statistical pair potentials. This multiscale approach has been benchmarked on a mouse PDZ proteome array data set by calculating the binding energies for 217 different substrate peptides in binding pockets of 64 different mouse PDZ domains. Receiver operating characteristic (ROC) curve analysis indicates that, the area under curve (AUC) values for binder vs nonbinder classification by our structure based method is 0.780. Our structure based method does not require experimental PDZ-peptide binding data for training.

  9. Which model based on fluorescence quenching is suitable to study the interaction between trans-resveratrol and BSA?

    NASA Astrophysics Data System (ADS)

    Wei, Xin Lin; Xiao, Jian Bo; Wang, Yuanfeng; Bai, Yalong

    2010-01-01

    There are several models by means of quenching fluorescence of BSA to determine the binding parameters. The binding parameters obtained from different models are quite different from each other. Which model is suitable to study the interaction between trans-resveratrol and BSA? Herein, twelve models based fluorescence quenching of BSA were compared. The number of binding sites increasing with increased binding constant for similar compounds binding to BSA maybe one approach to resolve this question. For example, here eleven flavonoids were tested to illustrate that the double logarithm regression curve is suitable to study binding polyphenols to BSA.

  10. Analysis of in vitro interactions of protein tyrosine phosphatase 1B with insulin receptors.

    PubMed

    Wang, X Y; Bergdahl, K; Heijbel, A; Liljebris, C; Bleasdale, J E

    2001-02-28

    One strategy to treat the insulin resistance that is central to type II diabetes mellitus may be to maintain insulin receptors (IR) in the active (tyrosine phosphorylated) form. Because protein tyrosine phosphatase 1B (PTP1B) binds and subsequently dephosphorylates IR, inhibitors of PTP1B-IR binding are potential insulin 'sensitizers.' A Scintillation Proximity Assay (SPA) was developed to characterize and quantitate PTP1B-IR binding. Human IR were solubilized and captured on wheat germ agglutinin (WGA)-coated SPA beads. Subsequent binding of human, catalytically inactive [35S] PTP1B Cys(215)/Ser (PTP1B(C215S)) to the lectin-anchored IR results in scintillation from the SPA beads that can be quantitated. Binding of PTP1B to IR was pH- and divalent cation-sensitive. Ca(2+) and Mn(2+), but not Mg(2+), dramatically attenuated the loss of PTP1B-IR binding observed when pH was raised from 6.2 to 7.8. PTP1B binding to IR from insulin-stimulated cells was much greater than to IR from unstimulated cells and was inhibited by either an antiphosphotyrosine antibody or treatment of IR with alkaline phosphatase, suggesting that tyrosine phosphorylation of IR is required for PTP1B binding. Phosphopeptides modeled after various IR phosphotyrosine domains each only partially inhibited PTP1B-IR binding, indicating that multiple domains of IR are likely involved in binding PTP1B. However, competitive displacement of [35S]PTP1B(C215S) by PTP1B(C215S) fitted best to a single binding site with a K(d) in the range 100-1000 nM, depending upon pH and divalent cations. PNU-200898, a potent and selective inhibitor of PTP1B whose orientation in the active site of PTP1B has been solved, competitively inhibited catalysis and PTP1B-IR binding with equal potency. The results of this novel assay for PTP1B-IR binding suggest that PTP1B binds preferentially to tyrosine phosphorylated IR through its active site and that binding may be susceptible to therapeutic disruption by small molecules.

  11. Dynamic intramolecular regulation of the histone chaperone nucleoplasmin controls histone binding and release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Christopher; Matsui, Tsutomu; Karp, Jerome M.

    Here, nucleoplasmin (Npm) is a highly conserved histone chaperone responsible for the maternal storage and zygotic release of histones H2A/H2B. Npm contains a pentameric N-terminal core domain and an intrinsically disordered C-terminal tail domain. Though intrinsically disordered regions are common among histone chaperones, their roles in histone binding and chaperoning remain unclear. Using an NMR-based approach, here we demonstrate that the Xenopus laevis Npm tail domain controls the binding of histones at its largest acidic stretch (A2) via direct competition with both the C-terminal basic stretch and basic nuclear localization signal. NMR and small-angle X-ray scattering (SAXS) structural analyses allowedmore » us to construct models of both the tail domain and the pentameric complex. Functional analyses demonstrate that these competitive intramolecular interactions negatively regulate Npm histone chaperone activity in vitro. Together these data establish a potentially generalizable mechanism of histone chaperone regulation via dynamic and specific intramolecular shielding of histone interaction sites.« less

  12. Dynamic intramolecular regulation of the histone chaperone nucleoplasmin controls histone binding and release

    DOE PAGES

    Warren, Christopher; Matsui, Tsutomu; Karp, Jerome M.; ...

    2017-12-20

    Here, nucleoplasmin (Npm) is a highly conserved histone chaperone responsible for the maternal storage and zygotic release of histones H2A/H2B. Npm contains a pentameric N-terminal core domain and an intrinsically disordered C-terminal tail domain. Though intrinsically disordered regions are common among histone chaperones, their roles in histone binding and chaperoning remain unclear. Using an NMR-based approach, here we demonstrate that the Xenopus laevis Npm tail domain controls the binding of histones at its largest acidic stretch (A2) via direct competition with both the C-terminal basic stretch and basic nuclear localization signal. NMR and small-angle X-ray scattering (SAXS) structural analyses allowedmore » us to construct models of both the tail domain and the pentameric complex. Functional analyses demonstrate that these competitive intramolecular interactions negatively regulate Npm histone chaperone activity in vitro. Together these data establish a potentially generalizable mechanism of histone chaperone regulation via dynamic and specific intramolecular shielding of histone interaction sites.« less

  13. Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A.

    PubMed

    Canela, Núria; Orzáez, Mar; Fucho, Raquel; Mateo, Francesca; Gutierrez, Ricardo; Pineda-Lucena, Antonio; Bachs, Oriol; Pérez-Payá, Enrique

    2006-11-24

    The protein-protein complexes formed between different cyclins and cyclin-dependent kinases (CDKs) are central to cell cycle regulation. These complexes represent interesting points of chemical intervention for the development of antineoplastic molecules. Here we describe the identification of an all d-amino acid hexapeptide, termed NBI1, that inhibits the kinase activity of the cyclin-dependent kinase 2 (cdk2)-cyclin A complex through selective binding to cyclin A. The mechanism of inhibition is non-competitive for ATP and non-competitive for protein substrates. In contrast to the existing CDKs peptide inhibitors, the hexapeptide NBI1 interferes with the formation of the cdk2-cyclin A complex. Furthermore, a cell-permeable derivative of NBI1 induces apoptosis and inhibits proliferation of tumor cell lines. Thus, the NBI1-binding site on cyclin A may represent a new target site for the selective inhibition of activity cdk2-cyclin A complex.

  14. Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase.

    PubMed

    de Ávila, Maurício Boff; de Azevedo, Walter Filgueira

    2018-04-20

    In this study, we describe the development of new machine learning models to predict inhibition of the enzyme 3-dehydroquinate dehydratase (DHQD). This enzyme is the third step of the shikimate pathway and is responsible for the synthesis of chorismate, which is a natural precursor of aromatic amino acids. The enzymes of shikimate pathway are absent in humans, which make them protein targets for the design of antimicrobial drugs. We focus our study on the crystallographic structures of DHQD in complex with competitive inhibitors, for which experimental inhibition constant data is available. Application of supervised machine learning techniques was able to elaborate a robust DHQD-targeted model to predict binding affinity. Combination of high-resolution crystallographic structures and binding information indicates that the prevalence of intermolecular electrostatic interactions between DHQD and competitive inhibitors is of pivotal importance for the binding affinity against this enzyme. The present findings can be used to speed up virtual screening studies focused on the DHQD structure. © 2018 John Wiley & Sons A/S.

  15. Linear scaffolds for multivalent targeting of melanocortin receptors.

    PubMed

    Dehigaspitiya, Dilani Chathurika; Anglin, Bobbi L; Smith, Kara R; Weber, Craig S; Lynch, Ronald M; Mash, Eugene A

    2015-12-21

    Molecules bearing one, two, three, or four copies of the tetrapeptide His-dPhe-Arg-Trp were attached to scaffolds based on ethylene glycol, glycerol, and d-mannitol by means of the copper-assisted azide-alkyne cyclization. The abilities of these compounds to block binding of a probe at the melanocortin 4 receptor were evaluated using a competitive binding assay. All of the multivalent molecules studied exhibited 30- to 40-fold higher apparent affinites when compared to a monovalent control. These results are consistent with divalent binding to receptor dimers. No evidence for tri- or tetravalent binding was obtained. Differences in the interligand spacing required for divalent binding, as opposed to tri- or tetravalent binding, may be responsible for these results.

  16. The Parallel Episodic Processing (PEP) model 2.0: A single computational model of stimulus-response binding, contingency learning, power curves, and mixing costs.

    PubMed

    Schmidt, James R; De Houwer, Jan; Rothermund, Klaus

    2016-12-01

    The current paper presents an extension of the Parallel Episodic Processing model. The model is developed for simulating behaviour in performance (i.e., speeded response time) tasks and learns to anticipate both how and when to respond based on retrieval of memories of previous trials. With one fixed parameter set, the model is shown to successfully simulate a wide range of different findings. These include: practice curves in the Stroop paradigm, contingency learning effects, learning acquisition curves, stimulus-response binding effects, mixing costs, and various findings from the attentional control domain. The results demonstrate several important points. First, the same retrieval mechanism parsimoniously explains stimulus-response binding, contingency learning, and practice effects. Second, as performance improves with practice, any effects will shrink with it. Third, a model of simple learning processes is sufficient to explain phenomena that are typically (but perhaps incorrectly) interpreted in terms of higher-order control processes. More generally, we argue that computational models with a fixed parameter set and wider breadth should be preferred over those that are restricted to a narrow set of phenomena. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Traction curves for the decohesion of covalent crystals

    NASA Astrophysics Data System (ADS)

    Enrique, Raúl A.; Van der Ven, Anton

    2017-01-01

    We study, by first principles, the energy versus separation curves for the cleavage of a family of covalent crystals with the diamond and zincblende structure. We find that there is universality in the curves for different materials which is chemistry independent but specific to the geometry of the particular cleavage plane. Since these curves do not strictly follow the universal binding energy relationship (UBER), we present a derivation of an extension to this relationship that includes non-linear force terms. This extended form of UBER allows for a flexible and practical mathematical description of decohesion curves that can be applied to the quantification of cohesive zone models.

  18. Noni as an anxiolytic and sedative: a mechanism involving its gamma-aminobutyric acidergic effects.

    PubMed

    Deng, S; West, B J; Palu, A K; Zhou, B-N; Jensen, C J

    2007-08-01

    Noni (Morinda citrifolia) is increasing in worldwide popularity as a food or dietary supplement with versatile health benefits. The aim of this study was to investigate the effects of Noni fruit on anxiety symptoms in vitro. To this end, a competitive GABAa receptor-binding assay was developed. Our preliminary study indicates that the methanol crude extract of Noni fruit showed significant affinity to the gamma-aminobutyric acid A (GABAa) inhibitory neurotransmitter receptors, and displayed 75% binding inhibition of the agonist radioligand [3H] muscimol at a concentration of 100 microg/ml. Further experiments demonstrated that the MeOH extract, and its BuOH and H2O partitions, exhibited IC50 values of 22.8, 27.2, and 17.1 microg/ml, respectively, in the GABAa-binding assay. Experimental results with Noni fruit indicate the presence of competitive ligand(s), which may bind to the GABAa receptor as an agonist, and thus induce its anxiolytic and sedative effects. The study provides an in vitro rationale for one of Noni's versatile and traditional uses. In addition, an HPLC fingerprint profile of the methanolic extract of Noni fruit has been established for quality control purpose.

  19. Spectroscopic and molecular docking studies on the interaction of antiviral drug nevirapine with calf thymus DNA.

    PubMed

    Moghadam, Neda Hosseinpour; Salehzadeh, Sadegh; Shahabadi, Nahid

    2017-09-02

    The interaction of calf thymus DNA with nevirapine at physiological pH was studied by using absorption, circular dichroism, viscosity, differential pulse voltammetry, fluorescence techniques, salt effect studies and computational methods. The drug binds to ct-DNA in a groove binding mode, as shown by slight variation in the viscosity of ct-DNA. Furthermore, competitive fluorimetric studies with Hoechst 33258 indicate that nevirapine binds to DNA via groove binding. Moreover, the structure of nevirapine was optimized by DFT calculations and was used for the molecular docking calculations. The molecular docking results suggested that nevirapine prefers to bind on the minor groove of ct-DNA.

  20. Semiquantitative determination of ergot alkaloids in seed, straw, and digesta samples using a competitive enzyme-linked immunosorbent assay.

    PubMed

    Schnitzius, J M; Hill, N S; Thompson, C S; Craig, A M

    2001-05-01

    Ergot alkaloids present in endophyte-infected (E+) tall fescue cause fescue toxicosis and other toxic effects in livestock that consume infected plant tissue, leading to significant financial losses in livestock production each year. The predominant method currently in use for quantifying ergot alkaloid content in plant tissue is through high-performance liquid chromatography (HPLC), which quantifies the amount of ergovaline, one of many ergot alkaloids in E+ plant tissue. The enzyme-linked immunosorbent assay (ELISA) method used in this study detects quantities of nonspecific ergot alkaloids and therefore accounts for greater amounts of the total ergot alkaloid content in E+ tissue than does HPLC. The ELISA can also be used to more expediently analyze a larger number of forage samples without sophisticated and costly analytical equipment and therefore could be more desirable in a diagnostic setting. The purpose of this study was to evaluate the between-day and within-run variability of the ELISA and to determine the binding efficiency of 6 ergot alkaloids to the 15F3.E5 antibody used in the competitive ELISA to ascertain its feasibility as a quick analysis tool for ergot alkaloids. Straw samples had an average coefficient of variation (CV) for concentration of 10.2% within runs and 18.4% between runs, and the seed samples had an average CV for concentration of 13.3% within runs and 24.5% between runs. The grass tissue-based lysergic acid standard curve calculated from the ELISA had an average r2 of 0.99, with a CV of 2.1%. Ergocryptine, ergocristine, ergocornine, and ergotamine tartrate did not bind strongly to the 15F3.E5 antibody because of the presence of large side groups on these molecules, which block their binding to the antibody, whereas ergonovine and ergonovine maleate were bound much more efficiently because of their structural similarity to lysergic acid. Clarified rumen fluid was tested as an additional matrix for use in the ergot alkaloid competitive ELISA to determine whether future livestock metabolism experiments on the postingestion fate of ergot alkaloids in ruminants could utilize this assay as a quick screening tool for the presence of nonspecific ergot alkaloids in rumen fluid. HPLC and ELISA procedures were compared for their ability in determining ergot alkaloid toxicity based on the repeatability of the procedures and on the specific compounds they measure. The ratio of ELISA concentration to HPLC concentration (ergovaline) varied from 2.00 to 2.81 in seed samples and from 0.62 to 8.66 in straw samples, showing no consistent pattern between the 2 methods. Based on the lack of data at present for the identity of the toxin causing endophyte toxicosis and the lack of agreement between the ergovaline HPLC and ELISA analyses for ergot alkaloids, each method is equally valid as an indicator of toxicityand is the best means for determining the quantity of the specific toxin(s) they measure.

  1. High Affinity Binding of Epibatidine to Serotonin Type 3 Receptors*

    PubMed Central

    Drisdel, Renaldo C.; Sharp, Douglas; Henderson, Tricia; Hales, Tim G.; Green, William N.

    2008-01-01

    Epibatidine and mecamylamine are ligands used widely in the study of nicotinic acetylcholine receptors (nAChRs) in the central and peripheral nervous systems. In the present study, we find that nicotine blocks only 75% of 125I-epibatidine binding to rat brain membranes, whereas ligands specific for serotonin type 3 receptors (5-HT3Rs) block the remaining 25%. 125I-Epibatidine binds with a high affinity to native 5-HT3Rs of N1E-115 cells and to receptors composed of only 5-HT3A subunits expressed in HEK cells. In these cells, serotonin, the 5-HT3R-specific antagonist MDL72222, and the 5-HT3R agonist chlorophenylbiguanide readily competed with 125I-epibatidine binding to 5-HT3Rs. Nicotine was a poor competitor for 125I-epibatidine binding to 5-HT3Rs. However, the noncompetitive nAChR antagonist mecamylamine acted as a potent competitive inhibitor of 125I-epibatidine binding to 5-HT3Rs. Epibatidine inhibited serotonin-induced currents mediated by endogenous 5-HT3Rs in neuroblastoma cell lines and 5-HT3ARs expressed in HEK cells in a competitive manner. Our results demonstrate that 5-HT3Rs are previously uncharacterized high affinity epibatidine binding sites in the brain and indicate that epibatidine and mecamylamine act as 5-HT3R antagonists. Previous studies that depended on epibatidine and mecamylamine as nAChR-specific ligands, in particular studies of analgesic properties of epibatidine, may need to be reinterpreted with respect to the potential role of 5-HT3Rs. PMID:17702741

  2. AmrZ Beta-Sheet Residues Are Essential for DNA Binding and Transcriptional Control of Pseudomonas aeruginosa Virulence Genes ▿ †

    PubMed Central

    Waligora, Elizabeth A.; Ramsey, Deborah M.; Pryor, Edward E.; Lu, Haiping; Hollis, Thomas; Sloan, Gina P.; Deora, Rajendar; Wozniak, Daniel J.

    2010-01-01

    AmrZ is a putative ribbon-helix-helix (RHH) transcriptional regulator. RHH proteins utilize residues within the β-sheet for DNA binding, while the α-helices promote oligomerization. AmrZ is of interest due to its dual roles as a transcriptional activator and as a repressor, regulating genes encoding virulence factors associated with both chronic and acute Pseudomonas aeruginosa infection. In this study, cross-linking revealed that AmrZ forms oligomers in solution but that the amino terminus, containing an unordered region and a β-sheet, were not required for oligomerization. The first 12 unordered residues (extended amino terminus) contributed minimally to DNA binding. Mutagenesis of the AmrZ β-sheet demonstrated that residues 18, 20, and 22 were essential for DNA binding at both activation and repressor sites, suggesting that AmrZ utilizes a similar mechanism for binding to these sites. Mice infected with amrZ mutants exhibited reduced bacterial burden, morbidity, and mortality. Direct in vivo competition assays showed a 5-fold competitive advantage for the wild type over an isogenic amrZ mutant. Finally, the reduced infection phenotype of the amrZ-null strain was similar to that of a strain expressing a DNA-binding-deficient AmrZ variant, indicating that DNA binding and transcriptional regulation by AmrZ is responsible for the in vivo virulence defect. These recent infection data, along with previously identified AmrZ-regulated virulence factors, suggest the necessity of AmrZ transcriptional regulation for optimal virulence during acute infection. PMID:20709902

  3. Mercury(II) sorption to two Florida Everglades peat--Evidence for strong and weak binding and competition by dissolved organic matter released from the peat

    USGS Publications Warehouse

    Drexel, R. Todd; Haitzer, Markus; Ryan, Joseph N.; Aiken, George R.; Nagy, Kathryn L.

    2002-01-01

    The binding of mercury(II) to two peats from Florida Everglades sites with different rates of mercury methylation was measured at pH 6.0 and 0.01 M ionic strength. The mercury(II) sorption isotherms, measured over a total mercury(II) range of 10-7.4 to 10-3.7 M, showed the competition for mercury(II) between the peat and dissolved organic matter released from the peat and the existence of strong and weak binding sites for mercury(II). Binding was portrayed by a model accounting for strong and weak sites on both the peat and the released DOM. The conditional binding constants (for which the ligand concentration was set as the concentration of reduced sulfur in the organic matter as measured by X-ray absorption near-edge structure spectroscopy) determined for the strong sites on the two peats were similar (Kpeat,s = 1021.8±0.1and 1022.0±0.1 M-1), but less than those determined for the DOM strong sites (Kdom,s = 1022.8±0.1and 1023.2±0.1 M-1), resulting in mercury(II) binding by the DOM at low mercury(II) concentrations. The magnitude of the strong site binding constant is indicative of mercury(II) interaction with organic thiol functional groups. The conditional binding constants determined for the weak peat sites (Kpeat,w = 1011.5±0.1 and 1011.8±0.1 M-1) and weak DOM sites (Kdom,w = 108.7±3.0 and 107.3±4.5 M-1) were indicative of mercury(II) interaction with carboxyl and phenol functional groups.

  4. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    PubMed Central

    Bisgaard, Heidi; Larsen, M. Andreas B.; Mazier, Sonia; Beuming, Thijs; Newman, Amy Hauck; Weinstein, Harel; Shi, Lei; Loland, Claus J.; Gether, Ulrik

    2013-01-01

    Analogues of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational modeling together with site-directed mutagenesis to characterize the binding site for BZTs in DAT. Docking into molecular models based on the structure of the bacterial homologue LeuT supported a BZT binding site that overlaps with the substrate binding pocket. In agreement, mutations of residues within the pocket, including Val1523.46* to Ala or Ile, Ser4228.60 to Ala and Asn1573.51 to Cys or Ala, resulted in decreased affinity for BZT and the analog JHW007, as assessed in [3H]dopamine uptake inhibition assays and/or [3H]CFT competition binding assay. A putative polar interaction of one of the phenyl ring fluorine substituents in JHW007 with Asn1573.51 was used as a criterion for determining likely binding poses and establish a structural context for the mutagenesis findings. The analysis positioned the other fluorine substituted phenyl ring of JHW007 in close proximity to Ala47910.51/Ala48010.52 in transmembrane segment (TM) 10. The lack of such an interaction for BZT led to a more tilted orientation, as compared to JHW007, bringing one of the phenyl rings even closer to Ala47910.51/Ala48010.52. Mutation of Ala47910.51 and Ala48010.52 to valines supported these predictions with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine. PMID:20816875

  5. Integrated delivery systems. Evolving oligopolies.

    PubMed

    Malone, T A

    1998-01-01

    The proliferation of Integrated Delivery Systems (IDSs) in regional health care markets has resulted in the movement of these markets from a monopolistic competitive model of behavior to an oligopoly. An oligopoly is synonymous with competition among the few, as a small number of firms supply a dominant share of an industry's total output. The basic characteristics of a market with competition among the few are: (1) A mutual interdependence among the actions and behaviors of competing firms; (2) competition tends to rely on the differentiation of products; (3) significant barriers to entering the market exist; (4) the demand curve for services may be kinked; and (5) firms can benefit from economies of scale. An understanding of these characteristics is essential to the survival of IDSs as regional managed care markets mature.

  6. Presynaptic imidazoline receptors and non-adrenoceptor[3H]-idazoxan binding sites in human cardiovascular tissues

    PubMed Central

    Molderings, G J; Likungu, J; Jakschik, J; Göthert, M

    1997-01-01

    In segments of human right atrial appendages and pulmonary arteries preincubated with [3H]-noradrenaline and superfused with physiological salt solution containing desipramine and corticosterone, the involvement of imidazoline receptors in the modulation of [3H]-noradrenaline release was investigated. In human atrial appendages, the guanidines aganodine and DTG (1,3-di(2-tolyl)guanidine) which activate presynaptic imidazoline receptors, inhibited electrically-evoked [3H]-noradrenaline release. The inhibition was not affected by blockade of α2-adrenoceptors with 1 μM rauwolscine, but antagonized by extremely high concentrations of this drug (10 and/or 30 μM; apparent pA2 against aganodine and DTG: 5.55 and 5.21, respectively). In the presence of 1 μM rauwolscine, [3H]-noradrenaline release in human atrial appendages was also inhibited by the imidazolines idazoxan and cirazoline, but not by agmatine and noradrenaline. The inhibitory effects of 100 μM idazoxan and 30 μM cirazoline were abolished by 30 μM rauwolscine. In the atrial appendages, the rank order of potency of all guanidines and imidazolines for their inhibitory effect on electrically-evoked [3H]-noradrenaline release in the presence of 1 μM rauwolscine was: aganodine⩾BDF 6143 [4-chloro-2-(2-imidazolin-2-yl-amino)-isoindoline]>DTG⩾clonidine>cirazoline>idazoxan (BDF 6143 and clonidine were previously studied under identical conditions). This potency order corresponded to that previously determined at the presynaptic imidazoline receptors in the rabbit aorta. When, in the experiments in the human pulmonary artery, rauwolscine was absent from the superfusion fluid, the concentration-response curve for BDF 6143 (a mixed α2-adrenoceptor antagonist/imidazoline receptor agonist) for its facilitatory effect on electrically-evoked [3H]-noradrenaline release was bell-shaped. In the presence of 1 μM rauwolscine, BDF 6143 and cirazoline concentration-dependently inhibited the evoked [3H]-noradrenaline release. In human atrial appendages, non-adrenoceptor [3H]-idazoxan binding sites were identified and characterized. The binding of [3H]-idazoxan was specific, reversible, saturable and of high affinity (KD: 25.5 nM). The specific binding of [3H]-idazoxan (defined by cirazoline 0.1 mM) to membranes of human atrial appendages was concentration-dependently inhibited by several imidazolines and guanidines, but not by rauwolscine and agmatine. In most cases, the competition curves were best fitted to a two-site model. The rank order of affinity for the high affinity site (in a few cases for the only detectable site; cirazoline=idazoxan>BDF 6143>DTG⩾clonidine) is compatible with the pharmacological properties of I2-imidazoline binding sites, but is clearly different from the rank order of potency for inhibiting evoked noradrenaline release from sympathetic nerves in the same tissue. It is concluded that noradrenaline release in the human atrium and, less well established, in the pulmonary artery is inhibited via presynaptic imidazoline receptors. These presynaptic imidazoline receptors appear to be related to those previously characterized in rabbit aorta and pulmonary artery, but differ clearly from I1 and I2 imidazoline binding sites. PMID:9298527

  7. The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters.

    PubMed

    Bulling, Simon; Schicker, Klaus; Zhang, Yuan-Wei; Steinkellner, Thomas; Stockner, Thomas; Gruber, Christian W; Boehm, Stefan; Freissmuth, Michael; Rudnick, Gary; Sitte, Harald H; Sandtner, Walter

    2012-05-25

    Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study.

  8. The Mechanistic Basis for Noncompetitive Ibogaine Inhibition of Serotonin and Dopamine Transporters*

    PubMed Central

    Bulling, Simon; Schicker, Klaus; Zhang, Yuan-Wei; Steinkellner, Thomas; Stockner, Thomas; Gruber, Christian W.; Boehm, Stefan; Freissmuth, Michael; Rudnick, Gary; Sitte, Harald H.; Sandtner, Walter

    2012-01-01

    Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study. PMID:22451652

  9. Androgen Receptor Antagonism By Divalent Ethisterone Conjugates In Castrate-Resistant Prostate Cancer Cells

    PubMed Central

    Levine, Paul M.; Lee, Eugine; Greenfield, Alex; Bonneau, Richard; Logan, Susan K.; Garabedian, Michael J.; Kirshenbaum, Kent

    2013-01-01

    Sustained treatment of prostate cancer with Androgen Receptor (AR) antagonists can evoke drug resistance, leading to castrate-resistant disease. Elevated activity of the AR is often associated with this highly aggressive disease state. Therefore, new therapeutic regimens that target and modulate AR activity could prove beneficial. We previously introduced a versatile chemical platform to generate competitive and non-competitive multivalent peptoid oligomer conjugates that modulate AR activity. In particular, we identified a linear and a cyclic divalent ethisterone conjugate that exhibit potent anti-proliferative properties in LNCaP-abl cells, a model of castrate-resistant prostate cancer. Here, we characterize the mechanism of action of these compounds utilizing confocal microscopy, time-resolved fluorescence resonance energy transfer, chromatin immunoprecipitation, flow cytometry, and microarray analysis. The linear conjugate competitively blocks AR action by inhibiting DNA binding. In addition, the linear conjugate does not promote AR nuclear localization or co-activator binding. In contrast, the cyclic conjugate promotes AR nuclear localization and induces cell-cycle arrest, despite its inability to compete against endogenous ligand for binding to AR in vitro. Genome-wide expression analysis reveals that gene transcripts are differentially affected by treatment with the linear or cyclic conjugate. Although the divalent ethisterone conjugates share extensive chemical similarities, we illustrate that they can antagonize the AR via distinct mechanisms of action, establishing new therapeutic strategies for potential applications in AR pharmacology. PMID:22871957

  10. Myocardin-Related Transcription Factor A Activation by Competition with WH2 Domain Proteins for Actin Binding.

    PubMed

    Weissbach, Julia; Schikora, Franziska; Weber, Anja; Kessels, Michael; Posern, Guido

    2016-05-15

    The myocardin-related transcription factors (MRTFs) are coactivators of serum response factor (SRF)-mediated gene expression. Activation of MRTF-A occurs in response to alterations in actin dynamics and critically requires the dissociation of repressive G-actin-MRTF-A complexes. However, the mechanism leading to the release of MRTF-A remains unclear. Here we show that WH2 domains compete directly with MRTF-A for actin binding. Actin nucleation-promoting factors, such as N-WASP and WAVE2, as well as isolated WH2 domains, including those of Spire2 and Cobl, activate MRTF-A independently of changes in actin dynamics. Simultaneous inhibition of Arp2-Arp3 or mutation of the CA region only partially reduces MRTF-A activation by N-WASP and WAVE2. Recombinant WH2 domains and the RPEL domain of MRTF-A bind mutually exclusively to cellular and purified G-actin in vitro The competition by different WH2 domains correlates with MRTF-SRF activation. Following serum stimulation, nonpolymerizable actin dissociates from MRTF-A, and de novo formation of the G-actin-RPEL complex is impaired by a transferable factor. Our work demonstrates that WH2 domains activate MRTF-A and contribute to target gene regulation by a competitive mechanism, independently of their role in actin filament formation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Binding Specificity of Two PBPs in the Yellow Peach Moth Conogethes punctiferalis (Guenée)

    PubMed Central

    Ge, Xing; Ahmed, Tofael; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2018-01-01

    Pheromone binding proteins (PBPs) play an important role in olfaction of insects by transporting sex pheromones across the sensillum lymph to odorant receptors. To obtain a better understanding of the molecular basis between PBPs and semiochemicals, we have cloned, expressed, and purified two PBPs (CpunPBP2 and CpunPBP5) from the antennae of Conogethes punctiferalis. Fluorescence competitive binding assays were used to investigate binding affinities of CpunPBP2 and CpunPBP5 to sex pheromone and volatiles. Results indicate both CpunPBP2 and CpunPBP5 bind sex pheromones E10-16:Ald, Z10-16:Ald and hexadecanal with higher affinities. In addition, CpunPBP2 and CpunPBP5 also could bind some odorants, such as 1-tetradecanol, trans-caryopyllene, farnesene, and β-farnesene. Homology modeling to predict 3D structure and molecular docking to predict key binding sites were used, to better understand interactions of CpunPBP2 and CpunPBP5 with sex pheromones E10-16:Ald and Z10-16:Ald. According to the results, Phe9, Phe33, Ser53, and Phe115 were key binding sites predicted for CpunPBP2, as were Ser9, Phe12, Val115, and Arg120 for CpunPBP5. Binding affinities of four mutants of CpunPBP2 and four mutants of CpunPBP5 with the two sex pheromones were investigated by fluorescence competitive binding assays. Results indicate that single nucleotides mutation may affect interactions between PBPs and sex pheromones. Expression levels of CpunPBP2 and CpunPBP5 in different tissues were evaluated using qPCR. Results show that CpunPBP2 and CpunPBP5 were largely amplified in the antennae, with low expression levels in other tissues. CpunPBP2 was expressed mainly in male antennae, whereas CpunPBP5 was expressed mainly in female antennae. These results provide new insights into understanding the recognition between PBPs and ligands. PMID:29666585

  12. STUDIES OF VERAPAMIL BINDING TO HUMAN SERUM ALBUMIN BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Mallik, Rangan; Yoo, Michelle J.; Chen, Sike; Hage, David S.

    2008-01-01

    The binding of verapamil to the protein human serum albumin (HSA) was examined by using high-performance affinity chromatography. Many previous reports have investigated the binding of verapamil with HSA, but the exact strength and nature of this interaction (e.g., the number and location of binding sites) is still unclear. In this study, frontal analysis indicated that at least one major binding site was present for R- and S-verapamil on HSA, with estimated association equilibrium constants on the order of 104 M−1 and a 1.4-fold difference in these values for the verapamil enantiomers at pH 7.4 and 37°C. The presence of a second, weaker group of binding sites on HSA was also suggested by these results. Competitive binding studies using zonal elution were carried out between verapamil and various probe compounds that have known interactions with several major and minor sites on HSA. R/S-Verapamil was found to have direct competition with S-warfarin, indicating that verapamil was binding to Sudlow site I (i.e., the warfarin-azapropazone site of HSA). The average association equilibrium constant for R- and S-verapamil at this site was 1.4 (±0.1) × 104 M−1. Verapamil did not have any notable binding to Sudlow site II of HSA but did appear to have some weak allosteric interactions with L-tryptophan, a probe for this site. An allosteric interaction between verapamil and tamoxifen (a probe for the tamoxifen site) was also noted, which was consistent with the binding of verapamil at Sudlow site I. No interaction was seen between verapamil and digitoxin, a probe for the digitoxin site of HSA. These results gave good agreement with previous observations made in the literature and help provide a more detailed description of how verapamil is transported in blood and of how it may interact with other drugs in the body. PMID:18980867

  13. Ondansetron and granisetron binding orientation in the 5-HT(3) receptor determined by unnatural amino acid mutagenesis.

    PubMed

    Duffy, Noah H; Lester, Henry A; Dougherty, Dennis A

    2012-10-19

    The serotonin type 3 receptor (5-HT(3)R) is a ligand-gated ion channel found in the central and peripheral nervous systems. The 5-HT(3)R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT(3)A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket.

  14. Ondansetron and Granisetron Binding Orientation in the 5-HT3 Receptor Determined by Unnatural Amino Acid Mutagenesis

    PubMed Central

    Duffy, Noah H.; Lester, Henry A.; Dougherty, Dennis A.

    2012-01-01

    The serotonin type 3 receptor (5-HT3R) is a ligand-gated ion channel that mediates fast synaptic transmission in the central and peripheral nervous systems. The 5-HT3R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT3A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket. PMID:22873819

  15. Force-time curve characteristics of dynamic and isometric muscle actions of elite women olympic weightlifters.

    PubMed

    Haff, G Gregory; Carlock, Jon M; Hartman, Michael J; Kilgore, J Lon; Kawamori, Naoki; Jackson, Janna R; Morris, Robert T; Sands, William A; Stone, Michael H

    2005-11-01

    Six elite women weightlifters were tested to evaluate force-time curve characteristics and intercorrelations of isometric and dynamic muscle actions. Subjects performed isometric and dynamic mid-thigh clean pulls at 30% of maximal isometric peak force and 100 kg from a standardized position on a 61.0 x 121.9 cm AMTI forceplate. Isometric peak force showed strong correlations to the athletes' competitive snatch, clean and jerk, and combined total (r = 0.93, 0.64, and 0.80 respectively). Isometric rate of force development showed moderate to strong relationships to the athletes' competitive snatch, clean and jerk, and combined total (r = 0.79, 0.69, and 0.80 respectively). The results of this study suggest that the ability to perform maximal snatch and clean and jerks shows some structural and functional foundation with the ability to generate high forces rapidly in elite women weightlifters.

  16. MODELING OF METAL BINDING ON HUMIC SUBSTANCES USING THE NIST DATABASE: AN A PRIORI FUNCTIONAL GROUP APPROACH

    EPA Science Inventory

    Various modeling approaches have been developed for metal binding on humic substances. However, most of these models are still curve-fitting exercises-- the resulting set of parameters such as affinity constants (or the distribution of them) is found to depend on pH, ionic stren...

  17. Fluorescent-responsive synthetic C1b domains of protein kinase Cδ as reporters of specific high-affinity ligand binding.

    PubMed

    Ohashi, Nami; Nomura, Wataru; Narumi, Tetsuo; Lewin, Nancy E; Itotani, Kyoko; Blumberg, Peter M; Tamamura, Hirokazu

    2011-01-19

    Protein kinase C (PKC) is a critical cell signaling pathway involved in many disorders such as cancer and Alzheimer-type dementia. To date, evaluation of PKC ligand binding affinity has been performed by competitive studies against radiolabeled probes that are problematic for high-throughput screening. In the present study, we have developed a fluorescent-based binding assay system for identifying ligands that target the PKC ligand binding domain (C1 domain). An environmentally sensitive fluorescent dye (solvatochromic fluorophore), which has been used in multiple applications to assess protein-binding interactions, was inserted in proximity to the binding pocket of a novel PKCδ C1b domain. These resultant fluorescent-labeled δC1b domain analogues underwent a significant change in fluorescent intensity upon ligand binding, and we further demonstrate that the fluorescent δC1b domain analogues can be used to evaluate ligand binding affinity.

  18. Competitive folding of anti-terminator/terminator hairpins monitored by single molecule FRET

    PubMed Central

    Clerte, Caroline; Declerck, Nathalie; Margeat, Emmanuel

    2013-01-01

    The control of transcription termination by RNA-binding proteins that modulate RNA-structures is an important regulatory mechanism in bacteria. LicT and SacY from Bacillus subtilis prevent the premature arrest of transcription by binding to an anti-terminator RNA hairpin that overlaps an intrinsic terminator located in the 5′-mRNA leader region of the gene to be regulated. In order to investigate the molecular determinants of this anti-termination/termination balance, we have developed a fluorescence-based nucleic acids system that mimics the competition between the LicT or SacY anti-terminator targets and the overlapping terminators. Using Förster Resonance Energy Transfer on single diffusing RNA hairpins, we could monitor directly their opening or closing state, and thus investigate the effects on this equilibrium of the binding of anti-termination proteins or terminator-mimicking oligonucleotides. We show that the anti-terminator hairpins adopt spontaneously a closed structure and that their structural dynamics is mainly governed by the length of their basal stem. The induced stability of the anti-terminator hairpins determines both the affinity and specificity of the anti-termination protein binding. Finally, we show that stabilization of the anti-terminator hairpin, by an extended basal stem or anti-termination protein binding can efficiently counteract the competing effect of the terminator-mimic. PMID:23303779

  19. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins.

    PubMed

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi

    2012-12-04

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility.

  20. Interaction of Diuron and Related Substituted Phenylureas with the Ah Receptor Pathway

    PubMed Central

    Zhao, Bin; Baston, David S.; Hammock, Bruce; Denison, Michael S.

    2011-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates many of the biological and toxicological actions of structurally diverse chemicals, including the ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Here, we have examined the ability of diuron, a widely used herbicide, and several structurally related substituted phenylureas to bind to and activate/inhibit the AhR and AhR signal transduction. Diuron induced CYP1A1 mRNA levels in mouse hepatoma (Hepa1c1c7) cells and AhR-dependent luciferase reporter gene expression in stably transfected mouse, rat, guinea pig, and human cell lines. In addition, ligand binding and gel retardation analysis demonstrated the ability of diuron to competitively bind to and stimulate AhR transformation and DNA binding in vitro and in intact cells. Several structurally related substituted phenylureas competitively bound to the guinea pig hepatic cytosolic AhR, inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced AhR-dependent luciferase reporter gene expression in a species-specific manner and stimulated AhR transformation and DNA binding, consistent with their role as partial AhR agonists. These results demonstrate not only that diuron and related substituted phenylureas are AhR ligands but also that exposure to these chemicals could induce/inhibit AhR-dependent biological effects. PMID:16788953

  1. Coupling the Torpedo Microplate-Receptor Binding Assay with Mass Spectrometry to Detect Cyclic Imine Neurotoxins

    PubMed Central

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M.; Zakarian, Armen; Molgó, Jordi

    2014-01-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  2. Inclusion complex formation of ionic liquids with 4-sulfonatocalixarenes studied by competitive binding of berberine alkaloid fluorescent probe

    NASA Astrophysics Data System (ADS)

    Miskolczy, Zsombor; Biczók, László

    2009-07-01

    A clinically important natural isoquinoline alkaloid, berberine, was used as a fluorescent probe to study the encapsulation of 1-alkyl-3-methylimidazolium (C nMIm +) type ionic liquids in 4-sulfonato-substituted calix[4]arene (SCX4) and calix[6]arene (SCX6) at pH 2. Addition of ionic liquids to the aqueous solution of berberine-SCXn inclusion complexes brought about considerable fluorescence intensity diminution due to the extrusion of berberine from the macrocycle into the aqueous phase by the competitive inclusion of C nMIm + cation. The lengthening of the aliphatic side chain of the imidazolium moiety diminished the equilibrium constant of complexation with SCX4, but enhanced the stability of SCX6 complexes. Larger binding strength was found for SCX4.

  3. Benzophenone based fluorophore for selective detection of Sn2+ ion: Experimental and theoretical study.

    PubMed

    Jadhav, Amol G; Shinde, Suvidha S; Lanke, Sandip K; Sekar, Nagaiyan

    2017-03-05

    Synthesis of novel benzophenone-based chemosensor is presented for the selective sensing of Sn 2+ ion. Screening of competitive metal ions was performed by competitive experiments. The specific cation recognition ability of chemosensor towards Sn 2+ was investigated by experimental (UV-visible, fluorescence spectroscopy, 1 H NMR, 13 C NMR, FTIR and HRMS) methods and further supported by Density Functional Theory study. The stoichiometric binding ratio and binding constant (K a ) for complex is found to be 1:1 and 1.50×10 4 , respectively. The detection limit of Sn 2+ towards chemosensor was found to be 0.3898ppb. Specific selectivity and superiority of chemosensor over another recently reported chemosensor is presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Anion complexation and the Hofmeister effect.

    PubMed

    Carnegie, Ryan S; Gibb, Corinne L D; Gibb, Bruce C

    2014-10-20

    The (1)H NMR spectroscopic analysis of the binding of the ClO4(-) anion to the hydrophobic, concave binding site of a deep-cavity cavitand is presented. The strength of association between the host and the ClO4(-) anion is controlled by both the nature and concentration of co-salts in a manner that follows the Hofmeister series. A model that partitions this trend into the competitive binding of the co-salt anion to the hydrophobic pocket of the host and counterion binding to its external carboxylate groups successfully accounts for the observed changes in ClO4(-) affinity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Identification of Cyclin A Binders with a Fluorescent Peptide Sensor.

    PubMed

    Pazos, Elena; Mascareñas, José L; Vázquez, M Eugenio

    2016-01-01

    A peptide sensor that integrates the 4-dimethylaminophthalimide (4-DMAP) fluorophore in a short cyclin A binding sequence displays a large fluorescence emission increase upon interacting with the cyclin A Binding Groove (CBG). Competitive displacement assays of this probe allow the straightforward identification of peptides that interact with the CBG, which could potentially block the recognition of CDK/cyclin A kinase substrates.

  6. STD-NMR experiments identify a structural motif with novel second-site activity against West Nile virus NS2B-NS3 protease.

    PubMed

    Schöne, Tobias; Grimm, Lena Lisbeth; Sakai, Naoki; Zhang, Linlin; Hilgenfeld, Rolf; Peters, Thomas

    2017-10-01

    West Nile virus (WNV) belongs to the genus Flavivirus of the family Flaviviridae. This mosquito-borne virus that is highly pathogenic to humans has been evolving into a global threat during the past two decades. Despite many efforts, neither antiviral drugs nor vaccines are available. The viral protease NS2B-NS3 pro is essential for viral replication, and therefore it is considered a prime drug target. However, success in the development of specific NS2B-NS3 pro inhibitors had been moderate so far. In the search for new structural motifs with binding affinity for NS2B-NS3 pro , we have screened a fragment library, the Maybridge Ro5 library, employing saturation transfer difference (STD) NMR experiments as readout. About 30% of 429 fragments showed binding to NS2B-NS3 pro . Subsequent STD-NMR competition experiments using the known active site fragment A as reporter ligand yielded 14 competitively binding fragments, and 22 fragments not competing with A. In a fluorophore-based protease assay, all of these fragments showed inhibition in the micromolar range. Interestingly, 10 of these 22 fragments showed a notable increase of STD intensities in the presence of compound A suggesting cooperative binding. The most promising non-competitive inhibitors 1 and 2 (IC 50 ∼ 500 μM) share a structural motif that may guide the development of novel second-site (potentially allosteric) inhibitors of NS2B-NS3 pro . To identify the matching protein binding site, chemical shift perturbation studies employing 1 H, 15 N-TROSY-HSQC experiments with uniformly 2 H, 15 N-labeled protease were performed in the presence of 1, and in the concomitant absence or presence of A. The data suggest that 1 interacts with Met 52* of NS2B, identifying a secondary site adjacent to the binding site of A. Therefore, our study paves the way for the synthesis of novel bidentate NS2B-NS3 pro inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Synthesis and in vitro characterization of a P2X7 radioligand [123I]TZ6019 and its response to neuroinflammation in a mouse model of Alzheimer disease.

    PubMed

    Jin, Hongjun; Han, Junbin; Resing, Derek; Liu, Hui; Yue, Xuyi; Miller, Rebecca L; Schoch, Kathleen M; Miller, Timothy M; Perlmutter, Joel S; Egan, Terrance M; Tu, Zhude

    2018-02-05

    The purinergic receptor P2X ligand-gated ion channel 7 (P2X7 receptor) is a promising imaging target to detect neuroinflammation. Herein, we report development of a potent iodinated radiotracer for P2X7 receptor, [ 123 I]TZ6019. The radiosynthesis of [ 123 I]TZ6019 was accomplished by allylic-tin precursor iodination using [ 123 I]NaI with good radiochemical yield of 85% and high radiochemical purity of > 99%. Human embryonic kidney 293 (HEK-293) cell line stably transfected with the human P2X7 receptor was used to characterize the binding affinity of TZ6019 by fluorescence, radioactive competitive, and saturation binding assays. A radioligand competitive binding assay with [ 123 I]TZ6019 demonstrated that the nonradioactive compound TZ6019 has an IC 50 value of 9.49 ± 1.4nM, and the known P2X7 receptor compound GSK1482160 has an IC 50 value of 4.30 ± 0.86nM, consistent with previous reports. The radioligand saturation binding assay and competitive assay revealed that [ 123 I]TZ6019 specifically bound to the human P2X7 receptor with high affinity (K i = 6.3 ± 0.9nM). In vitro autoradiography quantification with brain slices collected from 9-month old P301S tau transgenic mice along with wild type controls, revealed higher binding of [ 123 I]TZ6019 (35% increase) in the brain of P301S transgenic mice (n = 3, p = 0.04) compared to wild type controls. The immunofluorescence microscopy confirmed that expression of P2X7 receptor was colocalized with astrocytes in the tauopathy P301S transgenic mice. [ 123 I]TZ6019 has specific binding for P2X7 receptor and has great potential to be a radiotracer for screening new compounds and quantifying expression of P2X7 receptor in neuroinflammation related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Segregation of O2 and CO on the surface of dust grains determines the desorption energy of O2

    NASA Astrophysics Data System (ADS)

    Noble, J. A.; Diana, S.; Dulieu, F.

    2015-12-01

    Selective depletion towards pre-stellar cores is still not understood. The exchange between the solid and gas phases is central to this mystery. The aim of this paper is to show that the thermal desorption of O2 and CO from a submonolayer mixture is greatly affected by the composition of the initial surface population. We have performed thermally programmed desorption (TPD) experiments on various submonolayer mixtures of O2 and CO. Pure O2 and CO exhibit almost the same desorption behaviour, but their desorption differs strongly when mixed. Pure O2 is slightly less volatile than CO, while in mixtures, O2 desorbs earlier than CO. We analyse our data using a desorption law linking competition for binding sites with desorption, based on the assumption that the binding energy distribution of both molecules is the same. We apply Fermi-Dirac statistics in order to calculate the adsorption site population distribution, and derive the desorbing fluxes. Despite its simplicity, the model reproduces the observed desorption profiles, indicating that competition for adsorption sites is the reason for lower temperature O2 desorption. CO molecules push-out or `dislodge' O2 molecules from the most favourable binding sites, ultimately forcing their early desorption. It is crucial to consider the surface coverage of dust grains in any description of desorption. Competition for access to binding sites results in some important discrepancies between similar kinds of molecules, such as CO and O2. This is an important phenomenon to be investigated in order to develop a better understanding of the apparently selective depletion observed in dark molecular clouds.

  9. Attachment of UDP-hexosamines to the ribosomes isolated from rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopacz-Jodczyk, T.; Paszkiewicz-Gadek, A.; Galasinski, W.

    1988-06-01

    The binding of UDP-N-acetylhexosamines with purified ribosomes was studied and it was found that the radioactive nucleotides can be attached to these particles. The radioactivity of the purified ribosomal pellet depends on the amounts of ribosomes and UDP-N-acetylhexosamines. Some characteristics of the binding system indicate that the attachment of UDP-sugar to ribosome does not require the participation of glycosyltransferases. The results of the competition experiment would suggest that there are specific sites on ribosomes for the binding of UDP-N-acetylglucosamine.

  10. The attachment of UDP-hexosamines to the ribosomes isolated from rat liver.

    PubMed

    Kopacz-Jodczyk, T; Paszkiewicz-Gadek, A; Gałasiński, W

    1988-06-01

    The binding of UDP-N-acetylhexosamines with purified ribosomes was studied and it was found that the radioactive nucleotides can be attached to these particles. The radioactivity of the purified ribosomal pellet depends on the amounts of ribosomes and UDP-N-acetylhexosamines. Some characteristics of the binding system indicate that the attachment of UDP-sugar to ribosome does not require the participation of glycosyltransferases. The results of the competition experiment would suggest that there are specific sites on ribosomes for the binding of UDP-N-acetylglucosamine.

  11. Molecularly imprinted composite cryogel for albumin depletion from human serum.

    PubMed

    Andaç, Müge; Baydemir, Gözde; Yavuz, Handan; Denizli, Adil

    2012-11-01

    A new composite protein-imprinted macroporous cryogel was prepared for depletion of albumin from human serum prior to use in proteom applications. Polyhydroxyethyl-methacylate-based molecularly imprinted polymer (MIP) composite cryogel was prepared with high gel fraction yields up to 83%, and its morphology and porosity were characterized by Fourier transform infrared, scanning electron microscopy, swelling studies, flow dynamics, and surface area measurements. Selective binding experiments were performed in the presence of competitive proteins human transferrin (HTR) and myoglobin (MYB). MIP composite cryogel exhibited a high binding capacity and selectivity for human serum albumin (HSA) in the presence of HTR and MYB. The competitive adsorption amount for HSA in MIP composite cryogel is 722.1 mg/dL in the presence of competitive proteins (HTR and MYB). MIP composite cryogel column was successfully applied in the fast protein liquid chromatography system for selective depletion of albumin in human serum. The depletion ratio was highly increased by embedding beads into cryogel (85%). Finally, MIP composite cryogel can be reused many times with no apparent decrease in HSA adsorption capacity. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Receptors for VIP and PACAP in guinea pig cerebral cortex: effects on cyclic AMP synthesis and characterization by 125I-VIP binding.

    PubMed

    Zawilska, Jolanta B; Dejda, Agnieszka; Niewiadomski, Pawel; Gozes, Illana; Nowak, Jerzy Z

    2005-01-01

    Receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in guinea pig cerebral cortex were characterized by (1) radioreceptor binding of 125I-labeled VIP (human/rat/porcine), and (2) cyclic AMP (cAMP) formation. Saturation analysis of 125I-VIP binding to membranes of guinea pig cerebral cortex resulted in a linear Scatchard plot, suggesting the presence of a single class of high-affinity receptor-binding sites, with a Kd of 0.63 nM and a B(max) of 77 fmol/mg protein. Various peptides from the PACAP/VIP/secretin family displaced the specific binding of 125I-VIP to guinea pig cerebrum with the relative rank order of potency: chicken VIP (cVIP) > or = PACAP38 approximately PACAP27 approximately guinea pig VIP (gpVIP) > or = mammalian (human/rat/porcine) VIP (mVIP) > peptide histidine-methionine (PHM) > peptide histidine-isoleucine (PHI) > secretin. Analysis of the competition curves revealed displacement of 125I-VIP from high- and lower-affinity binding sites, with IC50 values in the picomolar and the nanomolar range, respectively. About 70% of the specific 125I-VIP-binding sites in guinea pig cerebral cortex were sensitive to Gpp(NH)p, a nonhydrolyzable analog of GTP. Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), PACAP27, cVIP, gpVIP, mVIP, PHM, and PHI stimulated cAMP production in [3H]adenine-prelabeled slices of guinea pig cerebral cortex in a concentration-dependent manner. Of the tested peptides, the most effective were PACAP38 and PACAP27, which at a 1 microM concentration produced a 17- to 19-fold rise in cAMP synthesis, increasing the nucleotide production to approx 11% conversion above the control value. The three forms of VIP (cVIP, mVIP, and gpVIP) at the highest concentration used, i.e., 3 microM, produced net increases in cAMP production in the range of 8-9% conversion, whereas 5 microM PHM and PHI, by, respectively, 6.7% and 4.9% conversion. It is concluded that cerebral cortex of guinea pig contains VPAC- type receptors positively linked to cAMP formation. In addition, the observed stronger action of PACAP (both PACAP38 and PACAP27), when compared to any form of VIP, on cAMP production in this tissue, suggests its interaction with both PAC1 and VPAC receptors.

  13. Study of the binding way between saxitoxin and its aptamer and a fluorescent aptasensor for detection of saxitoxin.

    PubMed

    Cheng, Sheng; Zheng, Bin; Yao, Dongbao; Kuai, Shenglong; Tian, Jingjing; Liang, Haojun; Ding, Yunsheng

    2018-06-11

    Aptamers could be used to construct simple and effective biosensor because the conformational switch of aptamer upon target binding is easy to be transferred to optical or electrochemical signals. Nevertheless, we found that the binding between saxitoxin (STX) and aptamer (M-30f) is not accompanied with conformational switch. Here, the circular dichroism spectra, fluorophore and quencher labeled aptamer, and crystal violet-based assays were used to identify the binding way between STX and aptamer. The results show that the conformation of aptamer is stabilized in PBS buffer (10 mM phosphate buffer, 2.7 mM KCl, 137 mM NaCl, pH 7.4) and this conformation may provide an exactly suitable cave for STX binding. Through the analysis of UV-melting curves and circular dichroism-melting curves, it is found that different concentrations of STX produce different unfolding extents of the aptamer under high temperature. Then, a simple temperature-assisted "turn-on" fluorescent aptasensor was developed to detect STX and the application in real sample detection demonstrates its feasibility. The proposed method provides not only an alternative for STX detection but also a strategy for simple aptasensor design using aptamers that do not switch conformation upon targets binding. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. (3H)WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-12-01

    In the presence of a 30 nM prazosin mask, (/sup 3/H)-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ((/sup 3/H)WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for (/sup 3/H) WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at (/sup 3/H)WB4101-binding sites in the presence of 30 nM prazosin and (/sup 3/H) lysergic acid diethylamide ((/sup 3/H)LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5more » mM MgSO4, the Bmax of (/sup 3/H)WB4101 is significantly lower than the Bmax of (/sup 3/H)LSD in various brain regions. WB4101 competition for (/sup 3/H) LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of (/sup 3/H)WB4101 binding derived from saturation experiments. This suggests that (/sup 3/H)WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by (/sup 3/H)LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for (/sup 3/H)WB4101 but compete for multiple (/sup 3/H)LSD 5-HT1 binding sites. These data indicate that (/sup 3/H)WB4101 selectively labels the 5-HT1A serotonin receptor, whereas (/sup 3/H) LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of (/sup 3/H)WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of (/sup 3/H)WB4101 binding.« less

  15. Patterns of Change in Psychological Variables Leading up to Competition in Superior Versus Inferior Performers.

    PubMed

    Boat, Ruth; Taylor, Ian M

    2015-06-01

    The study explored patterns of change in a number of potentially performance-related variables (i.e., fatigue, social support, self-efficacy, autonomous motivation, mental skills) during the lead-up to a competitive triathlon, and whether these patterns of change differed for relatively superior versus inferior performers. Forty-two triathletes completed an inventory measuring the study variables every other day during a 2-week period leading up to competition. Performance was assessed using participants' race time, and using a self-referenced relative score compared with personal best times. Multilevel growth curve analyses revealed significant differences in growth trajectories over the 2-week period in mental skills use, social support, and fatigue. The results provide novel insight into how athletes' fluctuating psychological state in the 2 weeks before competition may be crucial in determining performance.

  16. Structural basis for dual roles of Aar2p in U5 snRNP assembly

    PubMed Central

    Weber, Gert; Cristão, Vanessa F.; Santos, Karine F.; Jovin, Sina Mozaffari; Heroven, Anna C.; Holton, Nicole; Lührmann, Reinhard; Beggs, Jean D.; Wahl, Markus C.

    2013-01-01

    Yeast U5 small nuclear ribonucleoprotein particle (snRNP) is assembled via a cytoplasmic precursor that contains the U5-specific Prp8 protein but lacks the U5-specific Brr2 helicase. Instead, pre-U5 snRNP includes the Aar2 protein not found in mature U5 snRNP or spliceosomes. Aar2p and Brr2p bind competitively to a C-terminal region of Prp8p that comprises consecutive RNase H-like and Jab1/MPN-like domains. To elucidate the molecular basis for this competition, we determined the crystal structure of Aar2p in complex with the Prp8p RNase H and Jab1/MPN domains. Aar2p binds on one side of the RNase H domain and extends its C terminus to the other side, where the Jab1/MPN domain is docked onto a composite Aar2p–RNase H platform. Known Brr2p interaction sites of the Jab1/MPN domain remain available, suggesting that Aar2p-mediated compaction of the Prp8p domains sterically interferes with Brr2p binding. Moreover, Aar2p occupies known RNA-binding sites of the RNase H domain, and Aar2p interferes with binding of U4/U6 di-snRNA to the Prp8p C-terminal region. Structural and functional analyses of phospho-mimetic mutations reveal how phosphorylation reduces affinity of Aar2p for Prp8p and allows Brr2p and U4/U6 binding. Our results show how Aar2p regulates both protein and RNA binding to Prp8p during U5 snRNP assembly. PMID:23442228

  17. Multiple binding sites involved in the effect of choline esters on decarbamoylation of monomethylcarbamoyl- or dimethylcarbamoly-acetylcholinesterase.

    PubMed Central

    Sok, D E; Kim, Y B; Choi, S J; Jung, C H; Cha, S H

    1994-01-01

    Multiple binding sites for inhibitory choline esters in spontaneous decarbamoylation of dimethylcarbamoyl-acetylcholinesterase (AChE) were suggested from a wide range of IC50 values, in contrast with a limited range of AC50 values (concentration giving 50% of maximal activation) at a peripheral activatory site. Association of choline esters containing a long acyl chain (C7-C12) with the hydrophobic zone in the active site could be deduced from a linear relationship between the size of the acyl group and the inhibitory potency in either spontaneous decarbamoylation or acetylthiocholine hydrolysis. Direct support for laurylcholine binding to the active site might come from the competitive inhibition (Ki 33 microM) of choline-catalysed decarbamoylation by laurylcholine. Moreover, its inhibitory action was greater for monomethylcarbamoyl-AChE than for dimethylcarbamoyl-AChE, where there is a greater steric hindrance at the active centre. In further support, the inhibition of pentanoylthiocholine-induced decarbamoylation by laurylcholine was suggested to be due to laurylcholine binding to a central site rather than a peripheral site, similar to the inhibition of spontaneous decarbamoylation by laurylcholine. Supportive data for acetylcholine binding to the active site are provided by the results that acetylcholine is a competitive inhibitor (Ki 7.6 mM) of choline-catalysed decarbamoylation, and its inhibitory action was greater for monomethylcarbamoyl-AChE than for dimethylcarbamoyl-AChE. Meanwhile, choline esters with an acyl group of an intermediate size (C4-C6), more subject to steric exclusion at the active centre, and less associable with the hydrophobic zone, appear to bind preferentially to a peripheral activity site. Thus the multiple effects of choline esters may be governed by hydrophobicity and/or a steric effect exerted by the acyl moiety at the binding sites. PMID:8053896

  18. Use of multiple competitors for quantification of human immunodeficiency virus type 1 RNA in plasma.

    PubMed

    Vener, T; Nygren, M; Andersson, A; Uhlén, M; Albert, J; Lundeberg, J

    1998-07-01

    Quantification of human immunodeficiency virus type 1 (HIV-1) RNA in plasma has rapidly become an important tool in basic HIV research and in the clinical care of infected individuals. Here, a quantitative HIV assay based on competitive reverse transcription-PCR with multiple competitors was developed. Four RNA competitors containing identical PCR primer binding sequences as the viral HIV-1 RNA target were constructed. One of the PCR primers was fluorescently labeled, which facilitated discrimination between the viral RNA and competitor amplicons by fragment analysis with conventional automated sequencers. The coamplification of known amounts of the RNA competitors provided the means to establish internal calibration curves for the individual reactions resulting in exclusion of tube-to-tube variations. Calibration curves were created from the peak areas, which were proportional to the starting amount of each competitor. The fluorescence detection format was expanded to provide a dynamic range of more than 5 log units. This quantitative assay allowed for reproducible analysis of samples containing as few as 40 viral copies of HIV-1 RNA per reaction. The within- and between-run coefficients of variation were <24% (range, 10 to 24) and <36% (range, 27 to 36), respectively. The high reproducibility (standard deviation, <0.13 log) of the overall procedure for quantification of HIV-1 RNA in plasma, including sample preparation, amplification, and detection variations, allowed reliable detection of a 0.5-log change in RNA viral load. The assay could be a useful tool for monitoring HIV-1 disease progression and antiviral treatment and can easily be adapted to the quantification of other pathogens.

  19. Characterization of the Sterol and Phosphatidylinositol 4-Phosphate Binding Properties of Golgi-Associated OSBP-Related Protein 9 (ORP9)

    PubMed Central

    Liu, Xinwei; Ridgway, Neale D.

    2014-01-01

    Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus. PMID:25255026

  20. Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9).

    PubMed

    Liu, Xinwei; Ridgway, Neale D

    2014-01-01

    Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.

  1. Insights into the interaction of methotrexate and human serum albumin: A spectroscopic and molecular modeling approach.

    PubMed

    Cheng, Li-Yang; Fang, Min; Bai, Ai-Min; Ouyang, Yu; Hu, Yan-Jun

    2017-08-01

    In this study, fluorescence spectroscopy and molecular modeling approaches were employed to investigate the binding of methotrexate to human serum albumin (HSA) under physiological conditions. From the mechanism, it was demonstrated that fluorescence quenching of HSA by methotrexate results from the formation of a methotrexate/HSA complex. Binding parameters calculated using the Stern-Volmer method and the Scatchard method showed that methotrexate binds to HSA with binding affinities in the order 10 4  L·mol -1 . Thermodynamic parameter studies revealed that the binding reaction is spontaneous, and that hydrogen bonds and van der Waals interactions play a major role in the reaction. Site marker competitive displacement experiments and a molecular modeling approach demonstrated that methotrexate binds with appropriate affinity to site I (subdomain IIA) of HSA. Furthermore, we discuss some factors that influence methotrexate binding to HSA. Copyright © 2017 John Wiley & Sons, Ltd.

  2. The RCAN carboxyl end mediates calcineurin docking-dependent inhibition via a site that dictates binding to substrates and regulators

    PubMed Central

    Martínez-Martínez, Sara; Genescà, Lali; Rodríguez, Antonio; Raya, Alicia; Salichs, Eulàlia; Were, Felipe; López-Maderuelo, María Dolores; Redondo, Juan Miguel; de la Luna, Susana

    2009-01-01

    Specificity of signaling kinases and phosphatases toward their targets is usually mediated by docking interactions with substrates and regulatory proteins. Here, we characterize the motifs involved in the physical and functional interaction of the phosphatase calcineurin with a group of modulators, the RCAN protein family. Mutation of key residues within the hydrophobic docking-cleft of the calcineurin catalytic domain impairs binding to all human RCAN proteins and to the calcineurin interacting proteins Cabin1 and AKAP79. A valine-rich region within the RCAN carboxyl region is essential for binding to the docking site in calcineurin. Although a peptide containing this sequence compromises NFAT signaling in living cells, it does not inhibit calcineurin catalytic activity directly. Instead, calcineurin catalytic activity is inhibited by a motif at the extreme C-terminal region of RCAN, which acts in cis with the docking motif. Our results therefore indicate that the inhibitory action of RCAN on calcineurin-NFAT signaling results not only from the inhibition of phosphatase activity but also from competition between NFAT and RCAN for binding to the same docking site in calcineurin. Thus, competition by substrates and modulators for a common docking site appears to be an essential mechanism in the regulation of Ca2+-calcineurin signaling. PMID:19332797

  3. Intercalation of a Zn(II) complex containing ciprofloxacin drug between DNA base pairs.

    PubMed

    Shahabadi, Nahid; Asadian, Ali Ashraf; Mahdavi, Mryam

    2017-11-02

    In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV-Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (K b = 1.4 × 10 4 M -1 ) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 -4.8 × 10 4 M -1 . CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH < 0 and ΔS < 0) indicated that hydrogen bond and Van der Waals play main roles in this binding prose. Competitive fluorimetric studies with methylene blue (MB) dye have shown that Zn(II) complex exhibits the ability of this complex to displace with DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.

  4. The inhibition of mitochondrial calcium transport by lanthanides and Ruthenium Red

    PubMed Central

    Reed, Ken C.; Bygrave, Fyfe L.

    1974-01-01

    An EGTA (ethanedioxybis(ethylamine)tetra-acetic acid)-quench technique was developed for measuring initial rates of 45Ca2+ transport by rat liver mitochondria. This method was used in conjunction with studies of Ca2+-stimulated respiration to examine the mechanisms of inhibition of Ca2+ transport by the lanthanides and Ruthenium Red. Ruthenium Red inhibits Ca2+ transport non-competitively with Ki 3×10−8m; there are 0.08nmol of carrier-specific binding sites/mg of protein. The inhibition by La3+ is competitive (Ki=2×10−8m); the concentration of lanthanide-sensitive sites is less than 0.001nmol/mg of protein. A further difference between their modes of action is that lanthanide inhibition diminishes with time whereas that by Ruthenium Red does not. Binding studies showed that both classes of inhibitor bind to a relatively large number of external sites (probably identical with the `low-affinity' Ca2+-binding sites). La3+ competes with Ruthenium Red for most of these sites, but a small fraction of the bound Ruthenium Red (less than 2nmol/mg of protein) is not displaced by La3+. The results are discussed briefly in relation to possible models for a Ca2+ carrier. PMID:4375957

  5. Development of rapid and sensitive high throughput pharmacologic assays for marine phycotoxins.

    PubMed

    Van Dolah, F M; Finley, E L; Haynes, B L; Doucette, G J; Moeller, P D; Ramsdell, J S

    1994-01-01

    The lack of rapid, high throughput assays is a major obstacle to many aspects of research on marine phycotoxins. Here we describe the application of microplate scintillation technology to develop high throughput assays for several classes of marine phycotoxin based on their differential pharmacologic actions. High throughput "drug discovery" format microplate receptor binding assays developed for brevetoxins/ciguatoxins and for domoic acid are described. Analysis for brevetoxins/ciguatoxins is carried out by binding competition with [3H] PbTx-3 for site 5 on the voltage dependent sodium channel in rat brain synaptosomes. Analysis of domoic acid is based on binding competition with [3H] kainic acid for the kainate/quisqualate glutamate receptor using frog brain synaptosomes. In addition, a high throughput microplate 45Ca flux assay for determination of maitotoxins is described. These microplate assays can be completed within 3 hours, have sensitivities of less than 1 ng, and can analyze dozens of samples simultaneously. The assays have been demonstrated to be useful for assessing algal toxicity and for assay-guided purification of toxins, and are applicable to the detection of biotoxins in seafood.

  6. Staufen-mediated mRNA decay

    PubMed Central

    Park, Eonyoung; Maquat, Lynne E.

    2013-01-01

    Staufen1 (STAU1)-mediated mRNA decay (SMD) is an mRNA degradation process in mammalian cells that is mediated by the binding of STAU1 to a STAU1-binding site (SBS) within the 3'-untranslated region (3'UTR) of target mRNAs. During SMD, STAU1, a double-stranded (ds) RNA-binding protein, recognizes dsRNA structures formed either by intramolecular base-pairing of 3'UTR sequences or by intermolecular base-pairing of 3'UTR sequences with a long noncoding RNA (lncRNA) via partially complementary Alu elements. Recently, STAU2, a paralog of STAU1, has also been reported to mediate SMD. Both STAU1 and STAU2 interact directly with the ATP-dependent RNA helicase UPF1, a key SMD factor, enhancing its helicase activity to promote effective SMD. Moreover, STAU1 and STAU2 form homodimeric and heterodimeric interactions via domain-swapping. Since both SMD and the mechanistically related nonsense-mediated mRNA decay (NMD) employ UPF1, SMD and NMD are competitive pathways. Competition contributes to cellular differentiation processes, such as myogenesis and adipogenesis, placing SMD at the heart of various physiologically important mechanisms. PMID:23681777

  7. The lutheran/basal cell adhesion molecule promotes tumor cell migration by modulating integrin-mediated cell attachment to laminin-511 protein.

    PubMed

    Kikkawa, Yamato; Ogawa, Takaho; Sudo, Ryo; Yamada, Yuji; Katagiri, Fumihiko; Hozumi, Kentaro; Nomizu, Motoyoshi; Miner, Jeffrey H

    2013-10-25

    Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration. The attachment of Lu/B-CAM transfectants to LM-511 was slightly weaker than that of control cells, and this was because Lu/B-CAM disturbed integrin binding to laminin α5. Lu/B-CAM induced a spindle cell shape with pseudopods and promoted cell migration on LM-511. In addition, blocking with an anti-Lu/B-CAM antibody led to a flat cell shape and inhibited migration on LM-511, similar to the effects of an activating integrin β1 antibody. We conclude that tumor cell migration on LM-511 requires that Lu/B-CAM competitively modulates cell attachment through integrins. We suggest that this competitive interaction is involved in a balance between static and migratory cell behaviors.

  8. Cooperative interplay of let-7 mimic and HuR with MYC RNA.

    PubMed

    Gunzburg, Menachem J; Sivakumaran, Andrew; Pendini, Nicole R; Yoon, Je-Hyun; Gorospe, Myriam; Wilce, Matthew C J; Wilce, Jacqueline A

    2015-01-01

    Both RNA-binding proteins (RBP) and miRNA play important roles in the regulation of mRNA expression, often acting together to regulate a target mRNA. In some cases the RBP and miRNA have been reported to act competitively, but in other instances they function cooperatively. Here, we investigated HuR function as an enhancer of let-7-mediated translational repression of c-Myc despite the separation of their binding sites. Using an in vitro system, we determined that a let-7 mimic, consisting of single-stranded (ss)DNA complementary to the let-7 binding site, enhanced the affinity of HuR for a 122-nt MYC RNA encompassing both binding sites. This finding supports the biophysical principle of cooperative binding by an RBP and miRNA purely through interactions at distal mRNA binding sites.

  9. Experimental and computational studies on the effects of valganciclovir as an antiviral drug on calf thymus DNA.

    PubMed

    Shahabadi, Nahid; Pourfoulad, Mehdi; Moghadam, Neda Hosseinpour

    2017-01-02

    DNA-binding properties of an antiviral drug, valganciclovir (valcyte) was studied by using emission, absorption, circular dichroism, viscosity, differential pulse voltammetry, fluorescence techniques, and computational studies. The drug bound to calf thymus DNA (ct-DNA) in a groove-binding mode. The calculated binding constant of UV-vis, K a , is comparable to groove-binding drugs. Competitive fluorimetric studies with Hoechst 33258 showed that valcyte could displace the DNA-bound Hoechst 33258. The drug could not displace intercalated methylene blue from DNA double helix. Furthermore, the induced detectable changes in the CD spectrum of ct-DNA as well as changes in its viscosity confirm the groove-binding mode. In addition, an integrated molecular docking was employed to further investigate the binding interactions between valcyte and calf thymus DNA.

  10. Competitive interactions affect working memory performance for both simultaneous and sequential stimulus presentation.

    PubMed

    Ahmad, Jumana; Swan, Garrett; Bowman, Howard; Wyble, Brad; Nobre, Anna C; Shapiro, Kimron L; McNab, Fiona

    2017-07-06

    Competition between simultaneously presented visual stimuli lengthens reaction time and reduces both the BOLD response and neural firing. In contrast, conditions of sequential presentation have been assumed to be free from competition. Here we manipulated the spatial proximity of stimuli (Near versus Far conditions) to examine the effects of simultaneous and sequential competition on different measures of working memory (WM) for colour. With simultaneous presentation, the measure of WM precision was significantly lower for Near items, and participants reported the colour of the wrong item more often. These effects were preserved when the second stimulus immediately followed the first, disappeared when they were separated by 500 ms, and were partly recovered (evident for our measure of mis-binding but not WM precision) when the task was altered to encourage participants to maintain the sequentially presented items together in WM. Our results show, for the first time, that competition affects the measure of WM precision, and challenge the assumption that sequential presentation removes competition.

  11. From glue to gasoline: how competition turns perspective takers unethical.

    PubMed

    Pierce, Jason R; Kilduff, Gavin J; Galinsky, Adam D; Sivanathan, Niro

    2013-10-01

    Perspective taking is often the glue that binds people together. However, we propose that in competitive contexts, perspective taking is akin to adding gasoline to a fire: It inflames already-aroused competitive impulses and leads people to protect themselves from the potentially insidious actions of their competitors. Overall, we suggest that perspective taking functions as a relational amplifier. In cooperative contexts, it creates the foundation for prosocial impulses, but in competitive contexts, it triggers hypercompetition, leading people to prophylactically engage in unethical behavior to prevent themselves from being exploited. The experiments reported here establish that perspective taking interacts with the relational context--cooperative or competitive--to predict unethical behavior, from using insidious negotiation tactics to materially deceiving one's partner to cheating on an anagram task. In the context of competition, perspective taking can pervert the age-old axiom "do unto others as you would have them do unto you" into "do unto others as you think they will try to do unto you."

  12. Fragment screening using capillary electrophoresis (CEfrag) for hit identification of heat shock protein 90 ATPase inhibitors.

    PubMed

    Austin, Carol; Pettit, Simon N; Magnolo, Sharon K; Sanvoisin, Jonathan; Chen, Wenjie; Wood, Stephen P; Freeman, Lauren D; Pengelly, Reuben J; Hughes, Dallas E

    2012-08-01

    CEfrag is a new fragment screening technology based on affinity capillary electrophoresis (ACE). Here we report on the development of a mobility shift competition assay using full-length human heat shock protein 90α (Hsp90α), radicicol as the competitor probe ligand, and successful screening of the Selcia fragment library. The CEfrag assay was able to detect weaker affinity (IC(50) >500 µM) fragments than were detected by a fluorescence polarization competition assay using FITC-labeled geldanamycin. The binding site of selected fragments was determined by co-crystallization with recombinant Hsp90α N-terminal domain and X-ray analysis. The results of this study confirm that CEfrag is a sensitive microscale technique enabling detection of fragments binding to the biological target in near-physiological solution.

  13. Dual-Color Luciferase Complementation for Chemokine Receptor Signaling.

    PubMed

    Luker, Kathryn E; Luker, Gary D

    2016-01-01

    Chemokine receptors may share common ligands, setting up potential competition for ligand binding, and association of activated receptors with downstream signaling molecules such as β-arrestin. Determining the "winner" of competition for shared effector molecules is essential for understanding integrated functions of chemokine receptor signaling in normal physiology, disease, and response to therapy. We describe a dual-color click beetle luciferase complementation assay for cell-based analysis of interactions of two different chemokine receptors, CXCR4 and ACKR3, with the intracellular scaffolding protein β-arrestin 2. This assay provides real-time quantification of receptor activation and signaling in response to chemokine CXCL12. More broadly, this general imaging strategy can be applied to quantify interactions of any set of two proteins that interact with a common binding partner. © 2016 Elsevier Inc. All rights reserved.

  14. Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms

    PubMed Central

    Nazim, Mohammad; Masuda, Akio; Rahman, Mohammad Alinoor; Nasrin, Farhana; Takeda, Jun-ichi; Ohe, Kenji; Ohkawara, Bisei; Ito, Mikako

    2017-01-01

    Abstract Acetylcholinesterase (AChE), encoded by the ACHE gene, hydrolyzes the neurotransmitter acetylcholine to terminate synaptic transmission. Alternative splicing close to the 3΄ end generates three distinct isoforms of AChET, AChEH and AChER. We found that hnRNP H binds to two specific G-runs in exon 5a of human ACHE and activates the distal alternative 3΄ splice site (ss) between exons 5a and 5b to generate AChET. Specific effect of hnRNP H was corroborated by siRNA-mediated knockdown and artificial tethering of hnRNP H. Furthermore, hnRNP H competes for binding of CstF64 to the overlapping binding sites in exon 5a, and suppresses the selection of a cryptic polyadenylation site (PAS), which additionally ensures transcription of the distal 3΄ ss required for the generation of AChET. Expression levels of hnRNP H were positively correlated with the proportions of the AChET isoform in three different cell lines. HnRNP H thus critically generates AChET by enhancing the distal 3΄ ss and by suppressing the cryptic PAS. Global analysis of CLIP-seq and RNA-seq also revealed that hnRNP H competitively regulates alternative 3΄ ss and alternative PAS in other genes. We propose that hnRNP H is an essential factor that competitively regulates alternative splicing and alternative polyadenylation. PMID:28180311

  15. Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms.

    PubMed

    Nazim, Mohammad; Masuda, Akio; Rahman, Mohammad Alinoor; Nasrin, Farhana; Takeda, Jun-Ichi; Ohe, Kenji; Ohkawara, Bisei; Ito, Mikako; Ohno, Kinji

    2017-02-17

    Acetylcholinesterase (AChE), encoded by the ACHE gene, hydrolyzes the neurotransmitter acetylcholine to terminate synaptic transmission. Alternative splicing close to the 3΄ end generates three distinct isoforms of AChET, AChEH and AChER. We found that hnRNP H binds to two specific G-runs in exon 5a of human ACHE and activates the distal alternative 3΄ splice site (ss) between exons 5a and 5b to generate AChET. Specific effect of hnRNP H was corroborated by siRNA-mediated knockdown and artificial tethering of hnRNP H. Furthermore, hnRNP H competes for binding of CstF64 to the overlapping binding sites in exon 5a, and suppresses the selection of a cryptic polyadenylation site (PAS), which additionally ensures transcription of the distal 3΄ ss required for the generation of AChET. Expression levels of hnRNP H were positively correlated with the proportions of the AChET isoform in three different cell lines. HnRNP H thus critically generates AChET by enhancing the distal 3΄ ss and by suppressing the cryptic PAS. Global analysis of CLIP-seq and RNA-seq also revealed that hnRNP H competitively regulates alternative 3΄ ss and alternative PAS in other genes. We propose that hnRNP H is an essential factor that competitively regulates alternative splicing and alternative polyadenylation.

  16. Glucose Sensors Based on Microcapsules Containing an Orange/Red Competitive Binding Resonance Energy Transfer Assay

    PubMed Central

    CHINNAYELKA, SWETHA; McSHANE, and MICHAEL J.

    2015-01-01

    Fluorescent sensing systems offer the potential for noninvasive monitoring with implantable devices, but they require carrier technologies that provide suitable immobilization, accessibility, and biocompatibility while maintaining adequate response characteristics. A recent development towards this goal is a highly specific and sensitive competitive binding assay for glucose using apo-glucose oxidase (apo-GOx) as the recognition element and dextran as the competing ligand; this has been demonstrated as a glucose sensor system by encapsulating the competitive binding assay in semipermeable microcapsule carriers. This paper describes the extension of this sensor design to longer wavelengths in an attempt to increase the applicability to in vivo monitoring. The glucose sensitivity of the tetramethylrhodamine isothiocyanate-dextran (TD) and cyanine Cy5-apo-GOx (CAG) complexes showed five to 10 times greater specificity for β-D-glucose over other sugars. Microcapsules loaded with TD/CAG complexes exhibited a linear, totally reversible response in the range of 0–720 mg/dL, with a sensitivity (percent change in intensity ratio) of 0.06%/(mg/dL). The decrease in sensitivity observed with the use of longer-wavelength dyes is most likely to be compensated with the deeper penetration of light and reduced tissue scattering. These findings imply that the encapsulation of sensing assay elements in microcapsules is a simple and translatable method for the fabrication of stable biosensors, and optimization of resonance energy transfer pairs and assay component preparation will further improve the response to approach clinically relevant performance. PMID:16800748

  17. Cry1Ac and Vip3Aa proteins from Bacillus thuringiensis targeting Cry toxin resistance in Diatraea flavipennella and Elasmopalpus lignosellus from sugarcane

    PubMed Central

    2017-01-01

    The biological potential of Vip and Cry proteins from Bacillus is well known and widely established. Thus, it is important to look for new genes showing different modes of action, selecting those with differentiated entomotoxic activity against Diatraea flavipennella and Elasmopalpus lignosellus, which are secondary pests of sugarcane. Therefore, Cry1 and Vip3 proteins were expressed in Escherichia coli, and their toxicities were evaluated based on bioassays using neonate larvae. Of those, the most toxic were Cry1Ac and Vip3Aa considering the LC50 values. Toxins from E. coli were purified, solubilized, trypsinized, and biotinylated. Brush Border Membrane Vesicles (BBMVs) were prepared from intestines of the two species to perform homologous and heterologous competition assays. The binding assays demonstrated interactions between Cry1Aa, Cry1Ac, and Vip3Aa toxins and proteins from the BBMV of D. flavipennella and E. lignosellus. Homologous competition assays demonstrated that binding to one of the BBMV proteins was specific for each toxin. Heterologous competition assays indicated that Vip3Aa was unable to compete for Cry1Ac toxin binding. Our results suggest that Cry1Ac and Vip3Aa may have potential in future production of transgenic sugarcane for control of D. flavipennella and E. lignosellus, but more research is needed on the potential antagonism or synergism of the toxins in these pests. PMID:28123906

  18. Kinetic mechanism of Toxoplasma gondii adenosine kinase and the highly efficient utilization of adenosine

    PubMed Central

    Naguib, Fardos N. M.; Rais, Reem H.; Al Safarjalani, Omar N.; el Kouni, Mahmoud H.

    2015-01-01

    Toxoplasma gondii has an extraordinarily ability to utilize adenosine (Ado) as the primary source of all necessary purines in this parasite which lacks de novo purine biosynthesis. The activity of T. gondii adenosine kinase (TgAK, EC 2.7.1.20) is responsible for this efficient salvage of Ado in T. gondii. To fully understand this remarkable efficiency of TgAK in the utilization of Ado, complete kinetic parameters of this enzyme are necessary. Initial velocity and product inhibition studies of TgAK demonstrated that the basic mechanism of this enzyme is a hybrid random bi-uni ping-pong uni-bi. Initial velocity studies showed an intersecting pattern, consistent with substrate-enzyme-co-substrate complex formation and a binding pattern indicating that binding of the substrate interferes with the binding of the co-substrate and vice versa. Estimated kinetic parameters were KAdo = 0.002 ± 0.0002 mM, KATP = 0.05 ± 0.008 mM, and Vmax = 920 ± 35 μmol/min/mg protein. Ado exhibited substrate inhibition suggesting the presence of more than one binding site for Ado on the enzyme. ATP relieved substrate inhibition by Ado. Thus, Ado also binds to the ATP binding site. AMP was competitive with ATP, inferring that AMP binds to the same site as ATP. AMP, ADP and ATP were non-competitive with Ado, therefore, none of these nucleotides binds to the Ado binding site. Combining ATP with ADP was additive. Therefore, the binding of either ATP or ADP does not interfere with the binding of the other. It is concluded that for every ATP consumed, TgAK generates three new AMPs. These findings along with the fact that a wide range of nucleoside 5′-mono, di, and triphosphates could substitute for ATP as phosphate donors in this reaction may explain the efficient and central role played by TgAK in the utilization of Ado as the major source from which all other purines can be synthesized in T. gondii. PMID:26112826

  19. Characterization of Interactions between Heparin/Glycosaminoglycan and Adeno-associated Virus

    PubMed Central

    Zhang, Fuming; Aguilera, Javier; Beaudet, Julie M.; Xie, Qing; Lerch, Thomas F.; Davulcu, Omar; Colón, Wilfredo; Chapman, Michael S.; Linhardt, Robert J.

    2013-01-01

    Adeno-associated virus (AAV) is a key candidate in the development of gene therapy. In this report, we used surface plasmon resonance spectroscopy to study the interaction between AAV and heparin and other glycosaminoglycans. Surface plasmon resonance results revealed that heparin binds to AAV with extremely high affinity. Solution competition studies shows that AAV binding to heparin is chain length dependent. AAV prefers to bind full chain heparin. All sulfo groups (especially N-sulfo and 6-O-sulfo groups) on heparin are important for the AAV- heparin interaction. Higher levels of sulfo group substitution in GAGs enhance their binding affinities. Atomic force microscopy was also performed to image AAV-2 complexed with heparin. PMID:23952613

  20. The novel fluorescent CDP-analogue (Pbeta)MABA-CDP is a specific probe for the NMP binding site of UMP/CMP kinase.

    PubMed

    Rudolph, M G; Veit, T J; Reinstein, J

    1999-12-01

    Direct thermodynamic and kinetic investigations of the binding of nucleotides to the nucleoside monophosphate (NMP) site of NMP kinases have not been possible so far because a spectroscopic probe was not available. By coupling a fluorescent N-methylanthraniloyl- (mant) group to the beta-phosphate of CDP via a butyl linker, a CDP analogue [(Pbeta)MABA-CDP] was obtained that still binds specifically to the NMP site of UmpKdicty, because the base and the ribose moieties, which are involved in specific interactions, are not modified. This allows the direct determination of binding constants for its substrates in competition experiments.

  1. The novel fluorescent CDP-analogue (Pbeta)MABA-CDP is a specific probe for the NMP binding site of UMP/CMP kinase.

    PubMed Central

    Rudolph, M. G.; Veit, T. J.; Reinstein, J.

    1999-01-01

    Direct thermodynamic and kinetic investigations of the binding of nucleotides to the nucleoside monophosphate (NMP) site of NMP kinases have not been possible so far because a spectroscopic probe was not available. By coupling a fluorescent N-methylanthraniloyl- (mant) group to the beta-phosphate of CDP via a butyl linker, a CDP analogue [(Pbeta)MABA-CDP] was obtained that still binds specifically to the NMP site of UmpKdicty, because the base and the ribose moieties, which are involved in specific interactions, are not modified. This allows the direct determination of binding constants for its substrates in competition experiments. PMID:10631985

  2. Bone sialoprotein binding to matrix metalloproteinase-2 alters enzyme inhibition kinetics.

    PubMed

    Jain, Alka; Fisher, Larry W; Fedarko, Neal S

    2008-06-03

    Bone sialoprotein (BSP) is a secreted glycophosphoprotein normally restricted in expression to skeletal tissue that is also induced by multiple neoplasms in vivo. Previous work has shown that BSP can bind to matrix metalloproteinase-2 (MMP-2). Because of MMP-2 activity in promoting tumor progression, potential therapeutic inhibitors were developed, but clinical trials have been disappointing. The effect of BSP on MMP-2 modulation by inhibitors was determined with purified components and in cell culture. Enzyme inhibition kinetics were studied using a low-molecular weight freely diffusable substrate and purified MMP-2, BSP, and natural (tissue inhibitor of matrix metalloproteinase-2) and synthetic (ilomastat and oleoyl- N-hydroxylamide) inhibitors. We determined parameters of enzyme kinetics by varying substrate concentrations at different fixed inhibitor concentrations added to MMP-2 alone, MMP-2 and BSP, or preformed MMP-2-BSP complexes and solving a general linear mixed inhibition rate equation with a global curve fitting program. Two in vitro angiogenesis model systems employing human umbilical vein endothelial cells (HUVECs) were used to follow BSP modulation of MMP-2 inhibition and tubule formation. The presence of BSP increased the competitive K I values between 15- and 47-fold for natural and synthetic inhibitors. The extent of tubule formation by HUVECs cocultured with dermal fibroblasts was reduced in the presence of inhibitors, while the addition of BSP restored vessel formation. A second HUVEC culture system demonstrated that tubule formation by cells expressing BSP could be inhibited by an activity blocking antibody against MMP-2. BSP modulation of MMP-2 activity and inhibition may define its biological role in promoting tumor progression.

  3. Glyphosate sensitivity of 5-enol-pyruvylshikimate-3-phosphate synthase from Bacillus subtilis depends upon state of activation induced by monovalent cations.

    PubMed

    Fischer, R S; Rubin, J L; Gaines, C G; Jensen, R A

    1987-07-01

    The 5-enol-pyruvylshikimate-3-phosphate (EPSP) synthase from Bacillus subtilis was activated by monovalent cations, catalytic activity being negligible in the absence of monovalent cations. The order of cation effectiveness (NH4+ greater than K+ greater than Rb+ greater than Na+ = Cs+ = Li+) indicated that the extent of activation was directly related to the unhydrated cation radius. Ammonium salts, at physiological concentrations, were dramatically more effective than other cations. Activation by ammonium was instantaneous, was not influenced by the counter ion, and gave a hyperbolic saturation curve. Hill plots did not show detectable cooperativity in the binding of ammonium. Double-reciprocal plots indicated that ammonium increases the maximal velocity and decreases the apparent Michaelis constants of EPSP synthase with respect to both phosphoenol pyruvate (PEP) and shikimate 3-phosphate (S3P). A direct relationship between sensitivity to inhibition by glyphosate and the activation state of EPSP synthase was demonstrated. Hill plots indicated a single value for glyphosate binding throughout the range of ammonium activation. Double-reciprocal plots of substrate saturation data obtained with ammonium-activated enzyme in the presence of glyphosate showed glyphosate to behave as a competitive inhibitor with respect to PEP and as a mixed-type inhibitor relative to S3P. The increased glyphosate sensitivity of ammonium-activated EPSP synthase is attributed to a lowering of the inhibitor constant of glyphosate with respect to PEP. Erroneous underestimates of sensitivities of some bacterial EPSP synthases to inhibition by glyphosate may result from failure to recognize cation requirements of EPSP synthases.

  4. Biosorption of uranium by Pseudomonas aeruginosa strain CSU: Characterization and comparison studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, M.Z.C.; Norman, J.M.; Faison, B.D.

    1996-07-20

    Pseudomonas aeruginosa strain CSU, a nongenetically engineered bacterial strain known to bind dissolved hexavalent uranium (as UO{sub 2}{sup 2+} and/or its cationic hydroxo complexes) was characterized with respect to its sorptive activity. The uranium biosorption equilibrium could be described by the Langmuir isotherm. The rate of uranium adsorption increased following permeabilization of the outer and/or cytoplasmic membrane by organic solvents such as acetone. P. aeruginosa CSU biomass was significantly more sorptive toward uranium than certain novel, patented biosorbents derived from algal or fungal biomass sources. P. aeruginosa CSU biomass was also competitive with commercial cation-exchange resins, particularly in the presencemore » of dissolved transition metals. Uranium binding by P. aeruginosa CSU was clearly pH dependent. Uranium loading capacity increased with increasing pH under acidic conditions, presumably as a function of uranium speciation and due to the H{sup +} competition at some binding sites. Nevertheless, preliminary evidence suggests that this microorganism is also capable of binding anionic hexavalent uranium complexes. Ferric iron was a strong inhibitor of uranium binding to P. aeruginosa CSU biomass, and the presence of uranium also decreased the Fe{sup 3+} loading when the biomass was not saturated with Fe{sup 3+}. Thus, a two-state process in which iron and uranium are removed in consecutive steps was proposed for efficient use of the biomass as a biosorbent in uranium removal from mine wastewater, especially acidic leachates.« less

  5. A comparative analysis on the binding characteristics of various mammalian albumins towards a multitherapeutic agent, pinostrobin

    PubMed Central

    FEROZ, Shevin R.; SUMI, Rumana A.; MALEK, Sri N.A.; TAYYAB, Saad

    2014-01-01

    The interaction of pinostrobin (PS), a multitherapeutic agent with serum albumins of various mammalian species namely, goat, bovine, human, porcine, rabbit, sheep and dog was investigated using fluorescence quench titration and competitive drug displacement experiments. Analysis of the intrinsic fluorescence quenching data revealed values of the association constant, Ka in the range of 1.49 – 6.12 × 104 M−1, with 1:1 binding stoichiometry. Based on the PS–albumin binding characteristics, these albumins were grouped into two classes. Ligand displacement studies using warfarin as the site I marker ligand correlated well with the binding data. Albumins from goat and bovine were found to be closely similar to human albumin on the basis of PS binding characteristics. PMID:25519455

  6. The prognostic performance of the complement system in septic patients in emergency department: a cohort study.

    PubMed

    Zhao, Xin; Chen, Yun-Xia; Li, Chun-Sheng

    2015-01-01

    To investigate the prognostic performance of complement components in septic patients, complement 3, membrane attack complex (MAC) and mannose-binding lectin were measured and compared among adult patients with sepsis, severe sepsis and septic shock, as well as between in-hospital nonsurvivors and survivors. The prognostic value of complement components was compared with mortality in emergency department sepsis (MEDS) score. Median complement 3, MAC and mannose-binding lectin increased directly with the sepsis, severe sepsis and septic shock groups, and were significantly higher in nonsurvivors than in survivors. MEDS and MAC independently predicted in-hospital mortality. The prognostic performance of MAC was superior to MEDS as analyzed by receiver operating characteristic curve and area under the curve.

  7. Evaluation of quantification methods for real-time PCR minor groove binding hybridization probe assays.

    PubMed

    Durtschi, Jacob D; Stevenson, Jeffery; Hymas, Weston; Voelkerding, Karl V

    2007-02-01

    Real-time PCR data analysis for quantification has been the subject of many studies aimed at the identification of new and improved quantification methods. Several analysis methods have been proposed as superior alternatives to the common variations of the threshold crossing method. Notably, sigmoidal and exponential curve fit methods have been proposed. However, these studies have primarily analyzed real-time PCR with intercalating dyes such as SYBR Green. Clinical real-time PCR assays, in contrast, often employ fluorescent probes whose real-time amplification fluorescence curves differ from those of intercalating dyes. In the current study, we compared four analysis methods related to recent literature: two versions of the threshold crossing method, a second derivative maximum method, and a sigmoidal curve fit method. These methods were applied to a clinically relevant real-time human herpes virus type 6 (HHV6) PCR assay that used a minor groove binding (MGB) Eclipse hybridization probe as well as an Epstein-Barr virus (EBV) PCR assay that used an MGB Pleiades hybridization probe. We found that the crossing threshold method yielded more precise results when analyzing the HHV6 assay, which was characterized by lower signal/noise and less developed amplification curve plateaus. In contrast, the EBV assay, characterized by greater signal/noise and amplification curves with plateau regions similar to those observed with intercalating dyes, gave results with statistically similar precision by all four analysis methods.

  8. Synthesis, crystal structure, DFT calculation and DNA binding studies of new water-soluble derivatives of dppz

    NASA Astrophysics Data System (ADS)

    Aminzadeh, Mohammad; Eslami, Abbas; Kia, Reza; Aleeshah, Roghayeh

    2017-10-01

    Diquaternarization of dipyrido-[2,3-a:2‧,3‧-c]-phenazine,(dppz) and its analogous dipyrido-[2,3-a:2‧,3‧-c]-dimethylphenazine,(dppx) using 1,3-dibromopropane afford new water-soluble derivatives of phenazine, propylene-bipyridyldiylium-phenazine (1) and propylene-bipyridyldiylium-dimethylphenazine (2). The compounds have been characterized by means of FT-IR, NMR, elemental analysis and conductometric measurements and their structure were determined by X-ray crystallography. The experimental studies on the compounds have been accompanied computationally by Density Functional Theory (DFT) calculations. The DNA binding properties of both compounds to calf thymus DNA (ctDNA) were investigated by UV-Vis absorption and emission methods. The expanded UV-Vis spectral data matrix was analyzed by multivariate curve resolution-alternating least squares (MCR-ALS) technique to obtain the concentration profile and pure spectra of all reaction species which existed in the interaction procedure. Multivariate curve resolution may help us to give a better understanding of the 1(Cl)2-ctDNA and 2(Cl)2-ctDNA interaction mechanism. The results suggest that both compounds bind tightly to DNA through intercalation mechanism and the DNA binding affinity of 2 is slightly lower than that of 1 due to steric hindrance of the methyl group. Also, thermal denaturation studies reveal that these compounds show strong affinity for binding with calf thymus DNA. The thermodynamic parameters of the DNA binding process were obtained from the temperature dependence of the binding constants and the results showed that binding of both compounds to DNA is an enthalpically driven process that is in agreement with proposed DNA intercalation capability of these compounds.

  9. Acetone-butanol-ethanol competitive sorption simulation from single, binary, and ternary systems in a fixed-bed of KA-I resin.

    PubMed

    Wu, Jinglan; Zhuang, Wei; Ying, Hanjie; Jiao, Pengfei; Li, Renjie; Wen, Qingshi; Wang, Lili; Zhou, Jingwei; Yang, Pengpeng

    2015-01-01

    Separation of butanol based on sorption methodology from acetone-butanol-ethanol (ABE) fermentation broth has advantages in terms of biocompatibility and stability, as well as economy, and therefore gains much attention. In this work a chromatographic column model based on the solid film linear driving force approach and the competitive Langmuir isotherm equations was used to predict the competitive sorption behaviors of ABE single, binary, and ternary mixture. It was observed that the outlet concentration of weaker retained components exceeded the inlet concentration, which is an evidence of competitive adsorption. Butanol, the strongest retained component, could replace ethanol almost completely and also most of acetone. In the end of this work, the proposed model was validated by comparison of the experimental and predicted ABE ternary breakthrough curves using the real ABE fermentation broth as a feed solution. © 2014 American Institute of Chemical Engineers.

  10. The truncated metabolite GLP-2 (3-33) interacts with the GLP-2 receptor as a partial agonist.

    PubMed

    Thulesen, Jesper; Knudsen, Lotte Bjerre; Hartmann, Bolette; Hastrup, Sven; Kissow, Hannelouise; Jeppesen, Palle Bekker; Ørskov, Cathrine; Holst, Jens Juul; Poulsen, Steen Seier

    2002-01-15

    The therapeutic potential of the intestinotrophic mediator glucagon-like peptide-2 (1-33) [GLP-2 (1-33)] has increased interest in the pharmacokinetics of the peptide. This study was undertaken to investigate whether the primary degradation product GLP-2 (3-33) interacts with the GLP-2 receptor. Functional (cAMP) and binding in vitro studies were carried out in cells expressing the transfected human GLP-2 receptor. Furthermore, a biologic response of GLP-2 (3-33) was tested in vivo. Mice were allocated to groups treated for 10 days (twice daily) with: (1) 5 microg GLP-2 (1-33), (2) 25 microg GLP-2 (3-33), (3) 5 microg GLP-2 (1-33)+100 microg GLP-2 (3-33), or (4) 5 microg GLP-2 (1-33)+500 microg GLP-2 (3-33). The intestine was investigated for growth changes. GLP-2 (3-33) bound to the GLP-2 receptor with a binding affinity of 7.5% of that of GLP-2 (1-33). cAMP accumulation was stimulated with an efficacy of 15% and a potency more than two orders of magnitude lower than that of GLP-2 (1-33). Increasing doses of GLP-2 (3-33) (10(-7)-10(-5) M) caused a shift to the right in the dose-response curve of GLP-2 (1-33). Treatment of mice with either GLP-2 (1-33) or (3-33) induced significant growth responses in both the small and large intestines, but the response induced by GLP-2 (3-33) was much smaller. Co-administration of 500 microg of GLP-2 (3-33) and 5 microg GLP-2 (1-33) resulted in a growth response that was smaller than that of 5 microg GLP-2 (1-33) alone. Consistent with the observed in vivo activities, our functional studies and binding data indicate that GLP-2 (3-33) acts as a partial agonist with potential competitive antagonistic properties on the GLP-2 receptor.

  11. Molecular characterization and functional analysis of pheromone binding protein 1 from Cydia pomonella (L.).

    PubMed

    Tian, Z; Zhang, Y

    2016-12-01

    A full-length cDNA encoding Cydia pomonella pheromone binding protein 1 (CpomPBP1) was cloned and characterized. CpomPBP1, possessing the typical characteristics of lepidopteran odorant binding proteins, was detected to be specifically expressed in the antennae of male and female moths at the mRNA and protein level. Soluble recombinant CpomPBP1 was subjected to in vitro binding to analyse its binding properties and to search for potentially active semiochemicals. A competitive binding assay showed that three 12-carbon ligands, codlemone, 1-dodecanol and E,E-2,4-dodecadienal, were able to bind to CpomPBP1 in decreasing order of affinity. Moreover, unlike the wild-type CpomPBP1, the C-terminus truncated CpomPBP1 exhibited high affinity to ligands even in an acidic environment, suggesting that the C-terminus plays a role in preventing ligands from binding to CpomPBP1 in a lower pH environment. © 2016 The Royal Entomological Society.

  12. Decompression sickness in breath-hold diving, and its probable connection to the growth and dissolution of small arterial gas emboli.

    PubMed

    Goldman, Saul; Solano-Altamirano, J M

    2015-04-01

    We solved the Laplace equation for the radius of an arterial gas embolism (AGE), during and after breath-hold diving. We used a simple three-region diffusion model for the AGE, and applied our results to two types of breath-hold dives: single, very deep competitive-level dives and repetitive shallower breath-hold dives similar to those carried out by indigenous commercial pearl divers in the South Pacific. Because of the effect of surface tension, AGEs tend to dissolve in arterial blood when arteries remote from supersaturated tissue. However if, before fully dissolving, they reach the capillary beds that perfuse the brain and the inner ear, they may become inflated with inert gas that is transferred into them from these contiguous temporarily supersaturated tissues. By using simple kinetic models of cerebral and inner ear tissue, the nitrogen tissue partial pressures during and after the dive(s) were determined. These were used to theoretically calculate AGE growth and dissolution curves for AGEs lodged in capillaries of the brain and inner ear. From these curves it was found that both cerebral and inner ear decompression sickness are expected to occur occasionally in single competitive-level dives. It was also determined from these curves that for the commercial repetitive dives considered, the duration of the surface interval (the time interval separating individual repetitive dives from one another) was a key determinant, as to whether inner ear and/or cerebral decompression sickness arose. Our predictions both for single competitive-level and repetitive commercial breath-hold diving were consistent with what is known about the incidence of cerebral and inner ear decompression sickness in these forms of diving. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Studies on identifying the binding sites of folate and its derivatives in Lactobacillus casei thymidylate synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maley, F.; Maley, G.F.

    1983-01-01

    It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A preventsmore » the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte(/sup 14/C)GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH/sub 2/H/sub 4/PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two /sup 14/C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.« less

  14. Binding of ATP by pertussis toxin and isolated toxin subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L.

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner;more » however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.« less

  15. Predicting MHC-II binding affinity using multiple instance regression

    PubMed Central

    EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2011-01-01

    Reliably predicting the ability of antigen peptides to bind to major histocompatibility complex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering the amino acid sequence correlates of the binding affinity of MHC-II binding peptides is important for understanding pathogenesis and immune response. The task of predicting MHC-II binding peptides is complicated by the significant variability in their length. Most existing computational methods for predicting MHC-II binding peptides focus on identifying a nine amino acids core region in each binding peptide. We formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II peptides as multiple instance learning and multiple instance regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II binding affinity using multiple instance regression. We present results of experiments using several benchmark datasets that show that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An online web server that implements the MHCMIR method for MHC-II binding affinity prediction is freely accessible at http://ailab.cs.iastate.edu/mhcmir. PMID:20855923

  16. Cooperative interplay of let-7 mimic and HuR with MYC RNA

    PubMed Central

    Gunzburg, Menachem J; Sivakumaran, Andrew; Pendini, Nicole R; Yoon, Je-Hyun; Gorospe, Myriam; Wilce, Matthew Cj; Wilce, Jacqueline A

    2015-01-01

    Both RNA-binding proteins (RBP) and miRNA play important roles in the regulation of mRNA expression, often acting together to regulate a target mRNA. In some cases the RBP and miRNA have been reported to act competitively, but in other instances they function cooperatively. Here, we investigated HuR function as an enhancer of let-7-mediated translational repression of c-Myc despite the separation of their binding sites. Using an in vitro system, we determined that a let-7 mimic, consisting of single-stranded (ss)DNA complementary to the let-7 binding site, enhanced the affinity of HuR for a 122-nt MYC RNA encompassing both binding sites. This finding supports the biophysical principle of cooperative binding by an RBP and miRNA purely through interactions at distal mRNA binding sites. PMID:26177105

  17. Binding of the cyclic AMP receptor protein of Escherichia coli to RNA polymerase.

    PubMed Central

    Pinkney, M; Hoggett, J G

    1988-01-01

    Fluorescence polarization studies were used to study the interaction of a fluorescein-labelled conjugate of the Escherichia coli cyclic AMP receptor protein (F-CRP) and RNA polymerase. Under conditions of physiological ionic strength, F-CRP binds to RNA polymerase holoenzyme in a cyclic AMP-dependent manner; the dissociation constant was about 3 microM in the presence of cyclic AMP and about 100 microM in its absence. Binding to core RNA polymerase under the same conditions was weak (Kdiss. approx. 80-100 microM) and independent of cyclic AMP. Competition experiments established that native CRP and F-CRP compete for the same binding site on RNA polymerase holoenzyme and that the native protein binds about 3 times more strongly than does F-CRP. Analytical ultracentrifuge studies showed that CRP binds predominantly to the monomeric rather than the dimeric form of RNA polymerase. PMID:2839152

  18. Binding of the cyclic AMP receptor protein of Escherichia coli to RNA polymerase.

    PubMed

    Pinkney, M; Hoggett, J G

    1988-03-15

    Fluorescence polarization studies were used to study the interaction of a fluorescein-labelled conjugate of the Escherichia coli cyclic AMP receptor protein (F-CRP) and RNA polymerase. Under conditions of physiological ionic strength, F-CRP binds to RNA polymerase holoenzyme in a cyclic AMP-dependent manner; the dissociation constant was about 3 microM in the presence of cyclic AMP and about 100 microM in its absence. Binding to core RNA polymerase under the same conditions was weak (Kdiss. approx. 80-100 microM) and independent of cyclic AMP. Competition experiments established that native CRP and F-CRP compete for the same binding site on RNA polymerase holoenzyme and that the native protein binds about 3 times more strongly than does F-CRP. Analytical ultracentrifuge studies showed that CRP binds predominantly to the monomeric rather than the dimeric form of RNA polymerase.

  19. Interaction studies of resistomycin from Streptomyces aurantiacus AAA5 with calf thymus DNA and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Vijayabharathi, R.; Sathyadevi, P.; Krishnamoorthy, P.; Senthilraja, D.; Brunthadevi, P.; Sathyabama, S.; Priyadarisini, V. Brindha

    2012-04-01

    Resistomycin, a secondary metabolite produced by Streptomyces aurantiacus AAA5. The binding interaction of resistomycin with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) was investigated by spectrophotometry, spectrofluorimetry, circular dichroism (CD) and synchronous fluorescence techniques under physiological conditions in vitro. Absorption spectral studies along with the fluorescence competition with ethidium bromide measurements and circular dichroism clearly suggest that the resistomycin bind with CT DNA relatively strong via groove binding. BSA interaction results revealed that the drug was found to quench the fluorescence intensity of the protein through a static quenching mechanism. The number of binding sites 'n' and apparent binding constant 'K' calculated according to the Scatchard equation exhibit a good binding property to bovine serum albumin protein. In addition, the results observed from synchronous fluorescence measurements clearly demonstrate the occurrence of conformational changes of BSA upon addition of the test compound.

  20. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens.

    PubMed

    Bel, Yolanda; Sheets, Joel J; Tan, Sek Yee; Narva, Kenneth E; Escriche, Baltasar

    2017-06-01

    Anticarsia gemmatalis (velvetbean caterpillar) and Chrysodeixis includens (soybean looper, formerly named Pseudoplusia includens ) are two important defoliating insects of soybeans. Both lepidopteran pests are controlled mainly with synthetic insecticides. Alternative control strategies, such as biopesticides based on the Bacillus thuringiensis (Bt) toxins or transgenic plants expressing Bt toxins, can be used and are increasingly being adopted. Studies on the insect susceptibilities and modes of action of the different Bt toxins are crucial to determine management strategies to control the pests and to delay outbreaks of insect resistance. In the present study, the susceptibilities of both soybean pests to the Bt toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa have been investigated. Bioassays performed in first-instar larvae showed that both insects are susceptible to all these toxins. Competition-binding studies carried out with Cry1Ac and Cry1Fa 125 -iodine labeled proteins demonstrated the presence of specific binding sites for both of them on the midgut brush border membrane vesicles (BBMVs) of both A. gemmatalis and C. includens Competition-binding experiments and specific-binding inhibition studies performed with selected sugars and lectins indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites in the midguts of both insects. Also, the Cry1Ac- or Cry1Fa-binding sites were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity and midgut toxin binding sites in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops. IMPORTANCE In the present study, the toxicity and the mode of action of the Bacillus thuringiensis (Bt) toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa in Anticarsia gemmatalis and Chrysodeixis includens (important defoliating pests of soybeans) have been investigated. These studies are crucial for determining management strategies for pest control. Bioassays showed that both insects were susceptible to the toxins. Competition-binding studies demonstrated the presence of Cry1Fa- and Cry1Ac-specific binding sites in the midguts of both pests. These results, together with the results from binding inhibition studies performed with sugars and lectins, indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites, and that they were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops. Copyright © 2017 Bel et al.

  1. Biotin-Streptavidin Competition Mediates Sensitive Detection of Biomolecules in Enzyme Linked Immunosorbent Assay.

    PubMed

    Lakshmipriya, Thangavel; Gopinath, Subash C B; Tang, Thean-Hock

    2016-01-01

    Enzyme Linked Immunosorbent Assay (ELISA) is the gold standard assay for detecting and identifying biomolecules using antibodies as the probe. Improving ELISA is crucial for detecting disease-causing agents and facilitating diagnosis at the early stages of disease. Biotinylated antibody and streptavidin-conjugated horse radish peroxide (streptavidin-HRP) often are used with ELISA to enhance the detection of various kinds of targets. In the present study, we used a competition-based strategy in which we pre-mixed free biotin with streptavidin-HRP to generate high-performance system, as free biotin occupies some of the biotin binding sites on streptavidin, thereby providing more chances for streptavidin-HRP to bind with biotinylated antibody. ESAT-6, which is a protein secreted early during tuberculosis infection, was used as the model target. We found that 8 fM of free biotin mixed with streptavidin-HRP anchored the higher detection level of ESAT-6 by four-fold compared with detection without free biotin (only streptavidin-HRP), and the limit of detection of the new method was 250 pM. These results suggest that biotin-streptavidin competition can be used to improve the diagnosis of analytes in other types of sensors.

  2. Biotin-Streptavidin Competition Mediates Sensitive Detection of Biomolecules in Enzyme Linked Immunosorbent Assay

    PubMed Central

    Lakshmipriya, Thangavel; Gopinath, Subash C. B.; Tang, Thean-Hock

    2016-01-01

    Enzyme Linked Immunosorbent Assay (ELISA) is the gold standard assay for detecting and identifying biomolecules using antibodies as the probe. Improving ELISA is crucial for detecting disease-causing agents and facilitating diagnosis at the early stages of disease. Biotinylated antibody and streptavidin-conjugated horse radish peroxide (streptavidin-HRP) often are used with ELISA to enhance the detection of various kinds of targets. In the present study, we used a competition-based strategy in which we pre-mixed free biotin with streptavidin-HRP to generate high-performance system, as free biotin occupies some of the biotin binding sites on streptavidin, thereby providing more chances for streptavidin-HRP to bind with biotinylated antibody. ESAT-6, which is a protein secreted early during tuberculosis infection, was used as the model target. We found that 8 fM of free biotin mixed with streptavidin-HRP anchored the higher detection level of ESAT-6 by four-fold compared with detection without free biotin (only streptavidin-HRP), and the limit of detection of the new method was 250 pM. These results suggest that biotin-streptavidin competition can be used to improve the diagnosis of analytes in other types of sensors. PMID:26954237

  3. Detection of fumonisin b1 and ochratoxin a in grain products using microsphere-based fluid array immunoassays.

    PubMed

    Anderson, George P; Kowtha, Vasudha A; Taitt, Chris R

    2010-02-01

    Grain products are a staple of diets worldwide and therefore, the ability to accurately and efficiently detect foodborne contaminants such as mycotoxins is of importance to everyone. Here we describe an indirect competitive fluid array fluoroimmunoassay to quantify the mycotoxins, fumonisin B1 and ochratoxin A. Both toxins were immobilized to the surface of microspheres using a variety of intermediate molecules and binding of biotinylated "tracer" antibody tracers determined through flow cytometry using streptavidin-phycoerythrin conjugates and the Luminex100 flow cytometer. Competitive assays were developed where the binding of biotinylated monoclonal antibodies to fumonisin B and ochratoxin A was competitively inhibited by different concentrations of those toxins in solution. Concentrations of fumonisin giving 50% inhibition were 300 pg/mL in buffer, 100 ng/g in spiked oats, and 1 μg/g in spiked cornmeal; analogous concentrations for ochratoxin A were 30 ng/mL in buffer, 30 ng/g in spiked oats, and 10 ng/g in spiked corn. The future challenge will be to expand the number of mycotoxins tested both individually and in multiplexed format using this platform.

  4. The Role of Nitric Oxide in Modulating Retinal, Choroidal, and Anterior Uveal Blood Flows in the Domestic Piglet

    DTIC Science & Technology

    1993-11-17

    that are substituted at the quanidino nitrogens are competitive Inhibitors of nitric ox!de synthase in a dOS&<lependent and enantiomerically specific...by nitric oxide. We were able to reduce basal chorc»dal and ante nor wea blood 99 flOYI by 47% and 43%, respectively, by enantiomeric specific...Atthough competitive blockade of NOS by L-NAME is enantiomerically specKle, It Is possible that there Is an allosteric binding site for these arginine

  5. Resource competition induces heterogeneity and can increase cohort survivorship: selection-event duration matters.

    PubMed

    Gosselin, Jennifer L; Anderson, James J

    2013-12-01

    Determining when resource competition increases survivorship can reveal processes underlying population dynamics and reinforce the importance of heterogeneity among individuals in conservation. We ran an experiment mimicking the effects of competition in a growing season on survivorship during a selection event (e.g., overwinter starvation, drought). Using a model fish species (Poecilia reticulata), we studied how food availability and competition affect mass in a treatment stage, and subsequently survivorship in a challenge stage of increased temperature and starvation. The post-treatment mean mass was strongly related to the mean time to mortality and mass at mortality at all levels of competition. However, competition increased variance in mass and extended the right tail of the survivorship curve, resulting in a greater number of individuals alive beyond a critical temporal threshold ([Formula: see text]) than without competition. To realize the benefits from previously experienced competition, the duration of the challenge ([Formula: see text]) following the competition must exceed the critical threshold [Formula: see text] (i.e., competition increases survivorship when [Formula: see text]). Furthermore, this benefit was equivalent to increasing food availability by 20 % in a group without competition in our experiment. The relationship of [Formula: see text] to treatment and challenge conditions was modeled by characterizing mortality through mass loss in terms of the stochastic rate of loss of vitality (individual's survival capacity). In essence, when the duration of a selection event exceeds [Formula: see text], competition-induced heterogeneity buffers against mortality through overcompensation processes among individuals of a cohort. Overall, our study demonstrates an approach to quantify how early life stage heterogeneity affects survivorship.

  6. Involvement of sulfates from cruzipain, a major antigen of Trypanosoma cruzi, in the interaction with immunomodulatory molecule Siglec-E.

    PubMed

    Ferrero, Maximiliano R; Heins, Anja M; Soprano, Luciana L; Acosta, Diana M; Esteva, Mónica I; Jacobs, Thomas; Duschak, Vilma G

    2016-02-01

    In order to investigate the involvement of sulfated groups in the Trypanosoma cruzi host-parasite relationship, we studied the interaction between the major cysteine proteinase of T. cruzi, cruzipain (Cz), a sulfate-containing sialylated molecule and the sialic acid-binding immunoglobulin like lectin-E (Siglec-E). To this aim, ELISA, indirect immunofluorescence assays and flow cytometry, using mouse Siglec-E-Fc fusion molecules and glycoproteins of parasites, were performed. Competition assays verified that the lectins, Maackia amurensis II (Mal II) and Siglec-E-Fc, compete for the same binding sites. Taking into account that Mal II binding remains unaltered by sulfation, we established this lectin as sialylation degree control. Proteins of an enriched microsomal fraction showed the highest binding to Siglec-E as compared with those from the other parasite subcellular fractions. ELISA assays and the affinity purification of Cz by a Siglec-E column confirmed the interaction between both molecules. The significant decrease in binding of Siglec-E-Fc to Cz and to its C-terminal domain (C-T) after desulfation of these molecules suggests that sulfates contribute to the interaction between Siglec-E-Fc and these glycoproteins. Competitive ELISA assays confirmed the involvement of sulfated epitopes in the affinity between Siglec-E and Cz, probably modified by natural protein environment. Interestingly, data from flow cytometry of untreated and chlorate-treated parasites suggested that sulfates are not primary receptors, but enhance the binding of Siglec-E to trypomastigotic forms. Altogether, our findings support the notion that sulfate-containing sialylated glycoproteins interact with Siglec-E, an ortholog protein of human Siglec-9, and might modulate the immune response of the host, favoring parasitemia and persistence of the parasite.

  7. Supramolecular interaction of 6-shogaol, a therapeutic agent of Zingiber officinale with human serum albumin as elucidated by spectroscopic, calorimetric and molecular docking methods.

    PubMed

    Feroz, S R; Mohamad, S B; Lee, G S; Malek, S N A; Tayyab, S

    2015-06-01

    6-Shogaol, one of the main bioactive constituents of Zingiber officinale has been shown to possess various therapeutic properties. Interaction of a therapeutic compound with plasma proteins greatly affects its pharmacokinetic and pharmacodynamic properties. The present investigation was undertaken to characterize the interaction between 6-shogaol and the main in vivo transporter, human serum albumin (HSA). Various binding characteristics of 6-shogaol-HSA interaction were studied using fluorescence spectroscopy. Thermal stability of 6-shogaol-HSA system was determined by circular dichroism (CD) and differential scanning calorimetric (DSC) techniques. Identification of the 6-shogaol binding site on HSA was made by competitive drug displacement and molecular docking experiments. Fluorescence quench titration results revealed the association constant, Ka of 6-shogaol-HSA interaction as 6.29 ± 0.33 × 10(4) M(-1) at 25 ºC. Values of the enthalpy change (-11.76 kJ mol(-1)) and the entropy change (52.52 J mol(-1) K(-1)), obtained for the binding reaction suggested involvement of hydrophobic and van der Waals forces along with hydrogen bonds in the complex formation. Higher thermal stability of HSA was noticed in the presence of 6-shogaol, as revealed by DSC and thermal denaturation profiles. Competitive ligand displacement experiments along with molecular docking results suggested the binding preference of 6-shogaol for Sudlow's site I of HSA. All these results suggest that 6-shogaol binds to Sudlow's site I of HSA through moderate binding affinity and involves hydrophobic and van der Waals forces along with hydrogen bonds. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1.

    PubMed

    Hamilton, Kathryn E; Rekman, Janelle F; Gunnink, Leesha K; Busscher, Brianna M; Scott, Jordan L; Tidball, Andrew M; Stehouwer, Nathan R; Johnecheck, Grace N; Looyenga, Brendan D; Louters, Larry L

    2018-05-29

    Quercetin, a common dietary flavone, is a competitive inhibitor of glucose uptake and is also thought to be transported into cells by GLUT1. In this study, we confirm that quercetin is a competitive inhibitor of GLUT1 and also demonstrate that newly synthesized compounds, WZB-117 and BAY-876 are robust inhibitors of GLUT1 in L929 cells. To measure quercetin interaction with L929 cells, we develop a new fluorescent assay using flow cytometry. The binding of quercetin and its inhibitory effects on 2-deoxyglucose (2DG) uptake showed nearly identical dose dependent effects, with both having maximum effects between 50 and 100 μM and similar half maximum effects at 8.9 and 8.5 μM respectively. The interaction of quercetin was rapid with t 1/2 of 54 s and the onset and loss of its inhibitory effects on 2DG uptake were equally fast. This suggests that either quercetin is simply binding to surface GLUT1 or its transport in and out of the cell reaches equilibrium very quickly. If quercetin is transported, the co-incubation of quercetin with other glucose inhibitors should block quercetin uptake. However, we observed that WZB-117, an exofacial binding inhibitor of GLUT1 reduced quercetin interaction, while cytochalasin B, an endofacial binding inhibitor, enhanced quercetin interaction, and BAY-876 had no effect on quercetin interaction. Taken together, these data are more consistent with quercetin simply binding to GLUT1, but not actually being transported into L929 cells via the glucose channel in GLUT1. Copyright © 2018. Published by Elsevier B.V.

  9. Max-E47, a Designed Minimalist Protein that Targets the E-Box DNA Site In Vivo and In Vitro

    PubMed Central

    Xu, Jing; Chen, Gang; De Jong, Antonia T.; Shahravan, S. Hesam; Shin, Jumi A.

    2009-01-01

    Max-E47 is a designed hybrid protein comprising the Max DNA-binding basic region and E47 HLH dimerization subdomain. In the yeast one-hybrid system (Y1H), Max-E47 shows strong transcriptional activation from the E-box site, 5'-CACGTG, targeted by the Myc/Max/Mad network of transcription factors; two mutants, Max-E47Y and Max-E47YF, activate more weakly from the E-box in the Y1H. Quantitative fluorescence anisotropy titrations to gain free energies of protein:DNA binding gave low nM Kd values for the native MaxbHLHZ, Max-E47, and the Y and YF mutants binding to the E-box site (14 nM, 15 nM, 9 nM, and 6 nM, respectively), with no detectable binding to a nonspecific control duplex. Because these minimalist, E-box-binding hybrids have no activation domain and no interactions with the c-MycbHLHZ, as shown by the yeast two-hybrid assay, they can potentially serve as dominant-negative inhibitors that suppress activation of E-box-responsive genes targeted by transcription factors including the c-Myc/Max complex. As proof-of-principle, we used our modified Y1H, which allows direct competition between two proteins vying for a DNA target, to show that Max-E47 effectively outcompetes the native MaxbHLHZ for the E-box; weaker competition is observed from the two mutants, consistent with Y1H results. These hybrids provide a minimalist scaffold for further exploration of the relationship between protein structure and DNA-binding function and may have applications as protein therapeutics or biochemical probes capable of targeting the E-box site. PMID:19449889

  10. Determination of binding affinity upon mutation for type I dockerin-cohesin complexes from Clostridium thermocellum and Clostridium cellulolyticum using deep sequencing.

    PubMed

    Kowalsky, Caitlin A; Whitehead, Timothy A

    2016-12-01

    The comprehensive sequence determinants of binding affinity for type I cohesin toward dockerin from Clostridium thermocellum and Clostridium cellulolyticum was evaluated using deep mutational scanning coupled to yeast surface display. We measured the relative binding affinity to dockerin for 2970 and 2778 single point mutants of C. thermocellum and C. cellulolyticum, respectively, representing over 96% of all possible single point mutants. The interface ΔΔG for each variant was reconstructed from sequencing counts and compared with the three independent experimental methods. This reconstruction results in a narrow dynamic range of -0.8-0.5 kcal/mol. The computational software packages FoldX and Rosetta were used to predict mutations that disrupt binding by more than 0.4 kcal/mol. The area under the curve of receiver operator curves was 0.82 for FoldX and 0.77 for Rosetta, showing reasonable agreements between predictions and experimental results. Destabilizing mutations to core and rim positions were predicted with higher accuracy than support positions. This benchmark dataset may be useful for developing new computational prediction tools for the prediction of the mutational effect on binding affinities for protein-protein interactions. Experimental considerations to improve precision and range of the reconstruction method are discussed. Proteins 2016; 84:1914-1928. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Two classes of ouabain binding sites in ferret heart and two forms of Na+-K+-ATPase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Y.C.; Akera, T.

    1987-05-01

    In partially purified Na+-K+-adenosinetriphosphatase (ATPase) obtained from ferret heart, ouabain produced a monophasic inhibition curve; however, the curve spanned over 5 logarithmic units, indicating the presence of more than one classes of enzyme. (/sup 3/H)ouabain binding studies revealed high-and low-affinity binding sites in approximately equal abundance, with apparent dissociation constants of 10 and 230 nM, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of phosphoenzyme formed from (gamma-/sup 32/P)ATP showed two distinct K+-sensitive bands of approximately 100,000 molecular weight. Phosphoenzyme formation from the high-molecular-weight alpha(+) form was selectively inhibited by N-ethylmaleimide. Ouabain caused a 50% inhibition of phosphorylation of the alpha(+) formmore » at 40 nM and the lower-molecular-weight alpha form at 300 nM. In papillary muscle preparations, 1-30 nM ouabain produced a modest positive inotropic effect that reached an apparent plateau at 30 nM. Further increases in ouabain concentrations, however, produced additional and prominent inotropic effects at 0.1-10 microM. These results indicate for the first time in cardiac muscle that the high- and low-affinity ouabain binding sites are associated with the alpha(+) and alpha forms of the Na+-K+-ATPase, respectively, and that binding of ouabain to either of these sites causes enzyme inhibition and the positive inotropic effect.« less

  12. The role of competitive binding to human serum albumin on efavirenz-warfarin interaction: a nuclear magnetic resonance study.

    PubMed

    Wanke, Riccardo; Harjivan, Shrika G; Pereira, Sofia A; Marques, M Matilde; Antunes, Alexandra M M

    2013-11-01

    The potential for co-prescription of the anti-human immunodeficiency virus (anti-HIV) drug efavirenz (EFV) and the oral anticoagulant warfarin (WAR) is currently high as EFV is a drug of choice for HIV type 1 infection and because cardiovascular disease is increasing among HIV-infected individuals. However, clinical reports of EFV-WAR interaction, leading to WAR overdosing, call for elucidation of the mechanisms involved in this drug-drug interaction. Here we present the first report demonstrating competition of the two drugs for the same binding site of human serum albumin. Using ligand-based nuclear magnetic resonance experiments, this study proves that EFV has an effect on the concentration of free WAR. This previously unidentified EFV-WAR interaction represents a potential risk factor that should be taken into account when considering treatment options. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  13. Quantification of the interceptor action of caffeine on the in vitro biological effect of the anti-tumour agent topotecan.

    PubMed

    Evstigneev, M P; Mosunov, A A; Evstigneev, V P; Parkes, H G; Davies, D B

    2011-08-01

    Using published in vitro data on the dependence of the percentage of apoptosis induced by the anti-cancer drug topotecan in a leukaemia cell line on the concentration of added caffeine, and a general model of competitive binding in a system containing two aromatic drugs and DNA, it has been shown to be possible to quantify the relative change in the biological effect just using a set of component concentrations and equilibrium constants of the complexation of the drugs. It is also proposed that a general model of competitive binding and parameterization of that model may potentially be applied to any system of DNA-targeting aromatic drugs under in vitro conditions. The main reasons underpinning the proposal are the general feature of the complexation of aromatic drugs with DNA and their interaction in physiological media via hetero-association.

  14. Andrographolide sodium bisulphite-induced inactivation of urease: inhibitory potency, kinetics and mechanism.

    PubMed

    Mo, Zhi-Zhun; Wang, Xiu-Fen; Zhang, Xie; Su, Ji-Yan; Chen, Hai-Ming; Liu, Yu-Hong; Zhang, Zhen-Biao; Xie, Jian-Hui; Su, Zi-Ren

    2015-07-16

    The inhibitory effect of andrographolide sodium bisulphite (ASB) on jack bean urease (JBU) and Helicobacter pylori urease (HPU) was performed to elucidate the inhibitory potency, kinetics and mechanism of inhibition in 20 mM phosphate buffer, pH 7.0, 2 mM EDTA, 25 °C. The ammonia formations, indicator of urease activity, were examined using modified spectrophotometric Berthelot (phenol-hypochlorite) method. The inhibitory effect of ASB was characterized with IC50 values. Lineweaver-Burk and Dixon plots for JBU inhibition of ASB was constructed from the kinetic data. SH-blocking reagents and competitive active site Ni2+ binding inhibitors were employed for mechanism study. Molecular docking technique was used to provide some information on binding conformations as well as confirm the inhibition mode. The IC50 of ASB against JBU and HPU was 3.28±0.13 mM and 3.17±0.34 mM, respectively. The inhibition proved to be competitive and concentration- dependent in a slow-binding progress. The rapid formation of initial ASB-JBU complex with an inhibition constant of Ki=2.86×10(-3) mM was followed by a slow isomerization into the final complex with an overall inhibition constant of Ki*=1.33×10(-4) mM. The protective experiment proved that the urease active site is involved in the binding of ASB. Thiol reagents (L-cysteine and dithiothreithol) strongly protect the enzyme from the loss of enzymatic activity, while boric acid and fluoride show weaker protection, indicating that the active-site sulfhydryl group of JBU was potentially involved in the blocking process. Moreover, inhibition of ASB proved to be reversible since ASB-inactivated JBU could be reactivated by dithiothreitol application. Molecular docking assay suggested that ASB made contacts with the important sulfhydryl group Cys-592 residue and restricted the mobility of the active-site flap. ASB was a competitive inhibitor targeting thiol groups of urease in a slow-binding manner both reversibly and concentration-dependently, serving as a promising urease inhibitor for the treatment of urease-related diseases.

  15. The structural basis for function in diamond-like carbon binding peptides.

    PubMed

    Gabryelczyk, Bartosz; Szilvay, Géza R; Linder, Markus B

    2014-07-29

    The molecular structural basis for the function of specific peptides that bind to diamond-like carbon (DLC) surfaces was investigated. For this, a competition assay that provided a robust way of comparing relative affinities of peptide variants was set up. Point mutations of specific residues resulted in significant effects, but it was shown that the chemical composition of the peptide was not sufficient to explain peptide affinity. More significantly, rearrangements in the sequence indicated that the binding is a complex recognition event that is dependent on the overall structure of the peptide. The work demonstrates the unique properties of peptides for creating functionality at interfaces via noncovalent binding for potential applications in, for example, nanomaterials, biomedical materials, and sensors.

  16. In vitro assessment of phthalate acid esters-trypsin complex formation.

    PubMed

    Chi, Zhenxing; Zhao, Jing; Li, Weiguo; Araghi, Arash; Tan, Songwen

    2017-10-01

    In this work, interactions of three phthalate acid esters (PAEs), including dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP), with trypsin have been studied in vitro, under simulated physiological conditions using multi-spectroscopic techniques and molecular modeling. The results show that these PAEs can bind to the trypsin, forming trypsin-PAEs complexes, mainly via hydrophobic interactions, with the affinity order of DMP > DEP > DBP. Binding to the PAEs is found to result in molecular deformation of trypsin. The modeling results suggest that only DBP can bind with the amino acid residues of the catalytic triad and S1 binding pocket of trypsin, leading to potential competitive enzyme inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Flow cytometer measurement of binding assays

    DOEpatents

    Saunders, George C.

    1987-01-01

    A method of measuring the result of a binding assay that does not require separation of fluorescent smaller particles is disclosed. In a competitive binding assay the smaller fluorescent particles coated with antigen compete with antigen in the sample being analyzed for available binding sites on larger particles. In a sandwich assay, the smaller, fluorescent spheres coated with antibody attach themselves to molecules containing antigen that are attached to larger spheres coated with the same antibody. The separation of unattached, fluorescent smaller particles is made unnecessary by only counting the fluorescent events triggered by the laser of a flow cytometer when the event is caused by a particle with a light scatter measurement within a certain range corresponding to the presence of larger particles.

  18. Fluorometric titration approach for calibration of quantity of binding site of purified monoclonal antibody recognizing epitope/hapten nonfluorescent at 340 nm.

    PubMed

    Yang, Xiaolan; Hu, Xiaolei; Xu, Bangtian; Wang, Xin; Qin, Jialin; He, Chenxiong; Xie, Yanling; Li, Yuanli; Liu, Lin; Liao, Fei

    2014-06-17

    A fluorometric titration approach was proposed for the calibration of the quantity of monoclonal antibody (mcAb) via the quench of fluorescence of tryptophan residues. It applied to purified mcAbs recognizing tryptophan-deficient epitopes, haptens nonfluorescent at 340 nm under the excitation at 280 nm, or fluorescent haptens bearing excitation valleys nearby 280 nm and excitation peaks nearby 340 nm to serve as Förster-resonance-energy-transfer (FRET) acceptors of tryptophan. Titration probes were epitopes/haptens themselves or conjugates of nonfluorescent haptens or tryptophan-deficient epitopes with FRET acceptors of tryptophan. Under the excitation at 280 nm, titration curves were recorded as fluorescence specific for the FRET acceptors or for mcAbs at 340 nm. To quantify the binding site of a mcAb, a universal model considering both static and dynamic quench by either type of probes was proposed for fitting to the titration curve. This was easy for fitting to fluorescence specific for the FRET acceptors but encountered nonconvergence for fitting to fluorescence of mcAbs at 340 nm. As a solution, (a) the maximum of the absolute values of first-order derivatives of a titration curve as fluorescence at 340 nm was estimated from the best-fit model for a probe level of zero, and (b) molar quantity of the binding site of the mcAb was estimated via consecutive fitting to the same titration curve by utilizing such a maximum as an approximate of the slope for linear response of fluorescence at 340 nm to quantities of the mcAb. This fluorometric titration approach was proved effective with one mcAb for six-histidine and another for penicillin G.

  19. Characterization of ( sup 3 H)alprazolam binding to central benzodiazepine receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, R.T.; Mahan, D.R.; Smith, R.B.

    1990-10-01

    The binding of the triazolobenzodiazepine ({sup 3}H)alprazolam was studied to characterize the in vitro interactions with benzodiazepine receptors in membrane preparations of rat brain. Studies using nonequilibrium and equilibrium binding conditions for ({sup 3}H)alprazolam resulted in high specific to nonspecific (signal to noise) binding ratios. The binding of ({sup 3}H)alprazolam was saturable and specific with a low nanomolar affinity for benzodiazepine receptors in the rat brain. The Kd was 4.6 nM and the Bmax was 2.6 pmol/mg protein. GABA enhanced ({sup 3}H)alprazolam binding while several benzodiazepine receptor ligands were competitive inhibitors of this drug. Compounds that bind to other receptormore » sites had a very weak or negligible effect on ({sup 3}H)alprazolam binding. Alprazolam, an agent used as an anxiolytic and in the treatment of depression, acts in vitro as a selective and specific ligand for benzodiazepine receptors in the rat brain. The biochemical binding profile does not appear to account for the unique therapeutic properties which distinguish this compound from the other benzodiazepines in its class.« less

  20. Screening a fragment cocktail library using ultrafiltration

    PubMed Central

    Shibata, Sayaka; Zhang, Zhongsheng; Korotkov, Konstantin V.; Delarosa, Jaclyn; Napuli, Alberto; Kelley, Angela M.; Mueller, Natasha; Ross, Jennifer; Zucker, Frank H.; Buckner, Frederick S.; Merritt, Ethan A.; Verlinde, Christophe L. M. J.; Van Voorhis, Wesley C.; Hol, Wim G. J.; Fan, Erkang

    2011-01-01

    Ultrafiltration provides a generic method to discover ligands for protein drug targets with millimolar to micromolar Kd, the typical range of fragment-based drug discovery. This method was tailored to a 96-well format, and cocktails of fragment-sized molecules, with molecular masses between 150 and 300 Da, were screened against medical structural genomics target proteins. The validity of the method was confirmed through competitive binding assays in the presence of ligands known to bind the target proteins. PMID:21750879

  1. The mechanism of interactions between tea polyphenols and porcine pancreatic alpha‐amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry

    PubMed Central

    Sun, Lijun; Gidley, Michael J.

    2017-01-01

    Scope This study aims to use a combination of biochemical and biophysical methods to derive greater mechanistic understanding of the interactions between tea polyphenols and porcine pancreatic α‐amylase (PPA). Methods and results The interaction mechanism was studied through fluorescence quenching (FQ), differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) and compared with inhibition kinetics. The results showed that a higher quenching effect of polyphenols corresponded to a stronger inhibitory activity against PPA. The red‐shift of maximum emission wavelength of PPA bound with some polyphenols indicated a potential structural unfolding of PPA. This was also suggested by the decreased thermostability of PPA with these polyphenols in DSC thermograms. Through thermodynamic binding analysis of ITC and inhibition kinetics, the equilibrium of competitive inhibition was shown to result from the binding of particularly galloylated polyphenols with specific sites on PPA. There were positive linear correlations between the reciprocal of competitive inhibition constant (1/K ic), quenching constant (K FQ) and binding constant (K itc). Conclusion The combination of inhibition kinetics, FQ, DSC and ITC can reasonably characterize the interactions between tea polyphenols and PPA. The galloyl moiety is an important group in catechins and theaflavins in terms of binding with and inhibiting the activity of PPA. PMID:28618113

  2. Potent and efficacious inhibition of CXCR2 signaling by biparatopic nanobodies combining two distinct modes of action.

    PubMed

    Bradley, M E; Dombrecht, B; Manini, J; Willis, J; Vlerick, D; De Taeye, S; Van den Heede, K; Roobrouck, A; Grot, E; Kent, T C; Laeremans, T; Steffensen, S; Van Heeke, G; Brown, Z; Charlton, S J; Cromie, K D

    2015-02-01

    Chemokines and chemokine receptors are key modulators in inflammatory diseases and malignancies. Here, we describe the identification and pharmacologic characterization of nanobodies selectively blocking CXCR2, the most promiscuous of all chemokine receptors. Two classes of selective monovalent nanobodies were identified, and detailed epitope mapping showed that these bind to distinct, nonoverlapping epitopes on the CXCR2 receptor. The N-terminal-binding or class 1 monovalent nanobodies possessed potencies in the single-digit nanomolar range but lacked complete efficacy at high agonist concentrations. In contrast, the extracellular loop-binding or class 2 monovalent nanobodies were of lower potency but were more efficacious and competitively inhibited the CXCR2-mediated functional response in both recombinant and neutrophil in vitro assays. In addition to blocking CXCR2 signaling mediated by CXCL1 (growth-related oncogene α) and CXCL8 (interleukin-8), both classes of nanobodies displayed inverse agonist behavior. Bivalent and biparatopic nanobodies were generated, respectively combining nanobodies from the same or different classes via glycine/serine linkers. Interestingly, receptor mutation and competition studies demonstrated that the biparatopic nanobodies were able to avidly bind epitopes within one or across two CXCR2 receptor molecules. Most importantly, the biparatopic nanobodies were superior over their monovalent and bivalent counterparts in terms of potency and efficacy. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Biostable aptamers with antagonistic properties to the neuropeptide nociceptin/orphanin FQ

    PubMed Central

    FAULHAMMER, DIRK; ESCHGFÄLLER, BERND; STARK, SANDRA; BURGSTALLER, PETRA; ENGLBERGER, WERNER; ERFURTH, JEANNETTE; KLEINJUNG, FRANK; RUPP, JOHANNA; VULCU, SEBASTIAN DAN; SCHRÖDER, WERNER; VONHOFF, STEFAN; NAWRATH, HERMANN; GILLEN, CLEMENS; KLUSSMANN, SVEN

    2004-01-01

    The neuropeptide nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid receptor-like 1 (ORL1) receptor, has been shown to play a prominent role in the regulation of several biological functions such as pain and stress. Here we describe the isolation and characterization of N/OFQ binding biostable RNA aptamers (Spiegelmers) using a mirror-image in vitro selection approach. Spiegelmers are l-enantiomeric oligonucleotide ligands that display high affinity and specificity to their targets and high resistance to enzymatic degradation compared to d-oligonucleotides. A representative Spiegelmer from the selections performed was size-minimized to two distinct sequences capable of high affinity binding to N/OFQ. The Spiegelmers were shown to antagonize binding of N/OFQ to the ORL1 receptor in a binding-competition assay. The calculated IC50 values for the Spiegelmers NOX 2149 and NOX 2137a/b were 110 nM and 330 nM, respectively. The competitive antagonistic properties of these Spiegelmers were further demonstrated by their effective and specific inhibition of G-protein activation in two additional models. The Spiegelmers antagonized the N/OFQ-induced GTPγS incorporation into cell membranes of a CHO-K1 cell line expressing the human ORL1 receptor. In oocytes from Xenopus laevis, NOX 2149 showed an antagonistic effect to the N/OFQ-ORL 1 receptor system that was functionally coupled with G-protein-regulated inwardly rectifying K+ channels. PMID:14970396

  4. Deciphering the mechanism of interaction of edifenphos with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Ahmad, Ajaz; Ahmad, Masood

    2018-01-01

    Edifenphos is an important organophosphate pesticide with many antifungal and anti-insecticidal properties but it may cause potential hazards to human health. In this work, we have tried to explore the binding mode of action and mechanism of edifenphos to calf thymus DNA (CT-DNA). Several experiments such as ultraviolet-visible absorption spectra and emission spectroscopy showed complex formation between edifenphos and CT-DNA and low binding constant values supporting groove binding mode. These results were further confirmed by circular dichroism (CD), CT-DNA melting studies, viscosity measurements, density functional theory and molecular docking. CD study suggests that edifenphos does not alter native structure of CT-DNA. Isothermal calorimetry reveals that binding of edifenphos with CT-DNA is enthalpy driven process. Competitive binding assay and effect of ionic strength showed that edifenphos binds to CT-DNA via groove binding manner. Hence, edifenphos is a minor groove binder preferably interacting with A-T regions with docking score - 6.84 kJ/mol.

  5. Binding of alkylphenols and alkylated non-phenolics to the rainbow trout (Oncorhynchus mykiss) plasma sex steroid-binding protein.

    PubMed

    Tollefsen, K-E

    2007-09-01

    Alkylphenols are well-known endocrine disrupters, mediating effects through the estrogen receptor (ER). Although the estrogenic properties of the alkylphenols are well documented, alternative mechanisms of action are poorly described. In the present work, the interaction of a range of alkyl-substituted phenols and alkyl-substituted non-phenolics with the rainbow trout (Oncorhynchus mykiss) sex steroid-binding protein (rtSBP) were determined by competitive ligand-binding studies. The role of alkyl chain length and branching, substituent position, number of alkylated groups, and the requirement of a phenolic ring structure were assessed. The results showed that the rtSBP binds to most chemical structures tested, although the highest affinity was obtained for mono-substituted alkylphenols with a chain length of four to eight methyl groups. Interestingly, rtSBP binding was also observed for non-phenolic compounds such as 4-t-butylcyclohexanol and 4-t-butylnitrobenzene suggesting that the rtSBP has a broad binding specificity for alkylphenols and alkylated non-phenolics.

  6. The coastal environment affects lead and sodium uptake by the moss Hypnum cupressiforme used as an air pollution biomonitor.

    PubMed

    Renaudin, Marie; Leblond, Sébastien; Meyer, Caroline; Rose, Christophe; Lequy, Emeline

    2018-02-01

    Several studies suggest that potential competition exists between marine cations and heavy metals for binding sites on the cell wall of mosses. This competition would impact the heavy metal concentration measured in mosses by biomonitoring programs, which may underestimate air pollution by heavy metals in a coastal environment. In the present study, we aim to identify possible mechanisms affecting lead uptake by mosses in a coastal environment, specifically, the competition between lead (Pb 2+ ) and sodium (Na + ) for binding sites in Hypnum cupressiforme (Hc). We also compared the response of continental and coastal Hc populations to Pb 2+ exposure by immersing the moss samples in artificial solutions that comprised six experimental treatments and subsequently locating and quantifying Pb 2+ and Na + using the sequential elution technique and X-ray microanalyses with a scanning electron microscope. We demonstrated that high concentrations of Pb 2+ prevented Na + from binding to the cell wall. We also examined the effect of the salt acclimation of Hc on Pb 2+ and Na + accumulation. Coastal Hc populations accumulated more Na and less Pb than continental Hc populations in all treatments. Moreover, our results showed treatment effects on the intra/extracellular distribution of Na + , as well as site. This feedback on the influence of salt stress tolerance on Pb 2+ uptake by mosses requires further study and can be investigated for other heavy metals, leading to a better use of mosses as biomonitoring tools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A Raf-competitive K-Ras binder can fail to functionally antagonize signaling.

    PubMed

    Kauke, Monique J; Tisdale, Alison W; Kelly, Ryan L; Braun, Christian J; Hemann, Michael T; Wittrup, K Dane

    2018-05-02

    Mutated in approximately 30% of human cancers, Ras GTPases are the most common drivers of oncogenesis and render tumors unresponsive to many standard therapies. Despite decades of research, no drugs directly targeting Ras are currently available. We have previously characterized a small protein antagonist of K-Ras, R11.1.6, and demonstrated its direct competition with Raf for Ras binding. Here we evaluate the effects of R11.1.6 on Ras signaling and cellular proliferation in a panel of human cancer cell lines. Through lentiviral transduction, we generated cell lines that constitutively or through induction with doxycycline express R11.1.6 or a control protein YW1 and show specific binding by R11.1.6 to endogenous Ras through microscopy and co-immunoprecipitation experiments. Genetically-encoded intracellular expression of this high-affinity Ras antagonist, however, fails to measurably disrupt signaling through either the MAPK or PI3K pathway. Consistently, cellular proliferation was unaffected as well. To understand this lack of signaling inhibition, we quantified the number of molecules of R11.1.6 expressed by the inducible cell lines and developed a simple mathematical model describing the competitive binding of Ras by R11.1.6 and Raf. This model supports a potential mechanism for the lack of biological effects that we observed, suggesting stoichiometric and thermodynamic barriers that should be overcome in pharmacological efforts to directly compete with downstream effector proteins localized to membranes at very high effective concentrations. Copyright ©2018, American Association for Cancer Research.

  8. Macromolecular Competition Titration Method: Accessing Thermodynamics of the Unmodified Macromolecule–Ligand Interactions Through Spectroscopic Titrations of Fluorescent Analogs

    PubMed Central

    Bujalowski, Wlodzimierz; Jezewska, Maria J.

    2011-01-01

    Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand–macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein–nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein–nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein–nucleic acid interactions, it can generally be applied to any ligand–macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined. PMID:21195223

  9. Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiemstra, T.; Riemsdijk, W.H. van

    1999-02-01

    An important challenge in surface complexation models (SCM) is to connect the molecular microscopic reality to macroscopic adsorption phenomena. This study elucidates the primary factor controlling the adsorption process by analyzing the adsorption and competition of PO{sub 4}, AsO{sub 4}, and SeO{sub 3}. The authors show that the structure of the surface-complex acting in the dominant electrostatic field can be ascertained as the primary controlling adsorption factor. The surface species of arsenate are identical with those of phosphate and the adsorption behavior is very similar. On the basis of the selenite adsorption, The authors show that the commonly used 1pKmore » models are incapable to incorporate in the adsorption modeling the correct bidentate binding mechanism found by spectroscopy. The use of the bidentate mechanism leads to a proton-oxyanion ratio and corresponding pH dependence that are too large. The inappropriate intrinsic charge attribution to the primary surface groups and the condensation of the inner sphere surface complex to a point charge are responsible for this behavior of commonly used 2pK models. Both key factors are differently defined in the charge distributed multi-site complexation (CD-MUSIC) model and are based in this model on a surface structural approach. The CD-MUSIC model can successfully describe the macroscopic adsorption phenomena using the surface speciation and binding mechanisms as found by spectroscopy. The model is also able to predict the anion competition well. The charge distribution in the interface is in agreement with the observed structure of surface complexes.« less

  10. Binding of KATP channel modulators in rat cardiac membranes

    PubMed Central

    Löffler-Walz, Cornelia; Quast, Ulrich

    1998-01-01

    The binding of [3H]-P1075, a potent opener of adenosine-5′-triphosphate-(ATP)-sensitive K+ channels, was studied in a crude heart membrane preparation of the rat, at 37°C.Binding required MgATP. In the presence of an ATP-regenerating system, MgATP supported [3H]-P1075 binding with an EC50 value of 100 μM and a Hill coefficient of 1.4.In saturation experiments [3H]-P1075 binding was homogeneous with a KD value of 6±1 nM and a binding capacity (Bmax) of 33±3 fmol mg−1 protein.Upon addition of an excess of unlabelled P1075, the [3H]-P1075-receptor complex dissociated in a mono-exponential manner with a dissociation rate constant of 0.13±0.01 min−1. If a bi-molecular association mechanism was assumed, the dependence of the association kinetics on label concentration gave an association rate constant of 0.030±0.003 nM−1 min−1. From the kinetic experiments the KD value was calculated as 4.7±0.6 nM.Openers of the ATP-sensitive K+ channel belonging to different structural classes inhibited specific [3H]-P1075 binding in a monophasic manner to completion; an exception was minoxidil sulphate where maximum inhibition was 68%. The potencies of the openers in this assay agree with published values obtained in rat cardiocytes and are on average 3.5 times lower than those determined in rat aorta.Sulphonylureas, such as glibenclamide and glibornuride and the sulphonylurea-related carboxylate, AZ-DF 265, inhibited [3H]-P1075 binding with biphasic inhibition curves. The high affinity component comprised about 60% of the curves with the IC50 value of glibenclamide being ≈amp;90 nM; affinities for the low affinity component were in the μM concentration range. The fluorescein derivative, phloxine B, showed a monophasic inhibition curve with an IC50 value of 6 μM, a maximum inhibition of 94% and a Hill coefficient of 1.5.It is concluded that binding studies with [3H]-P1075 are feasible in rat heart membranes in the presence of MgATP and of an ATP-regenerating system. The pharmacological profile of the [3H]-P1075 binding sites in the cardiac preparation, which probably contains sulphonylurea receptors (SURs) from cardiac myocytes (SUR2A) and vascular smooth muscle cells (SUR2B), differs from that expected for SUR2A and SUR2B. PMID:9579735

  11. The prognostic and risk-stratified value of heart-type fatty acid-binding protein in septic patients in the emergency department.

    PubMed

    Chen, Yun-Xia; Li, Chun-Sheng

    2014-08-01

    To evaluate the prognostic and risk-stratified ability of heart-type fatty acid-binding protein (H-FABP) in septic patients in the emergency department (ED). From August to November 2012, 295 consecutive septic patients were enrolled. Circulating H-FABP was measured. The predictive value of H-FABP for 28-day mortality, organ dysfunction on ED arrival, and requirement for mechanical ventilation or a vasopressor within 6 hours after ED arrival was assessed by the receiver operating characteristic curve and logistic regression and was compared with Acute Physiology and Chronic Health Evaluation (APACHE) II score, Mortality in Emergency Department Sepsis (MEDS) score, and Sequential Organ Failure Assessment score. The 28-day mortality, APACHE II, MEDS, and Sequential Organ Failure Assessment scores were much higher in H-FABP-positive patients. The incidence of organ dysfunction at ED arrival and requirement for mechanical ventilation or a vasopressor within 6 hours after ED arrival was higher in H-FABP-positive patients. Heart-type fatty acid-binding protein was an independent predictor of 28-day mortality and organ dysfunction. The area under the receiver operating characteristic curve for H-FABP predicting 28-day mortality and organ dysfunction was 0.784 and 0.755, respectively. Combination of H-FABP and MEDS improved the performance of MEDS in predicting organ dysfunction, and the difference of AUC was statistically significant (P<.05). The combinations of H-FABP and MEDS or H-FABP and APACHE II also improved the prognostic value of MEDS and APACHE II, but the areas under the curve were not statistically different. Heart-type fatty acid-binding protein was helpful for prognosis and risk stratification of septic patients in the ED. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. [Regional anaesthesia as advantage in competition between hospitals. Strategic market analysis].

    PubMed

    Heller, A R; Bauer, K R; Eberlein-Gonska, M; Albrecht, D M; Koch, T

    2009-05-01

    The German Social Act V section sign 12 is aimed towards competition, efficiency and quality in healthcare. Because surgical departments are billing standard diagnosis-related group (DRG) case costs to health insurance companies, they claim best value for money for internal services. Thus, anaesthesia concepts are being closely scrutinized. The present analysis was performed to gain economic arguments for the strategic positioning of regional anaesthesia procedures into clinical pathways. Surgical procedures, which in 2005 had a relevant caseload in Germany, were chosen in which regional anaesthesia procedures (alone or in combination with general anaesthesia) could routinely be used. The structure of costs and earnings for hospital services, split by types and centres of cost, as well as by underlying procedures are contained in the annually updated public accessible dataset (DRG browser) of the German Hospital Reimbursement Institute (InEK). For the year 2005 besides own data, national anaesthesia staffing costs are available from the German Society of Anaesthesiology (DGAI). The curve of earnings per DRG can be calculated from the 2005 InEK browser. This curve intersects by the cost curve at the point of national mean length of stay. The cost curve was calculated by process-oriented distribution of cost centres over the length of stay and allows benchmarking within the national competitive environment. For comparison of process times data from our local database were used. While the InEK browser lacks process times, the cost positions 5.1-5.3 (staffing costs anaesthesia) and the national structure adjusted anaesthesia staffing costs 2005 as published by the DGAI, were used to calculate nationwide mean available anaesthesia times which were compared with own process times. Within the portfolio diagram of lengths of stay for each DRG and process times most procedures are located in the economic lower left, in particular those with high case mix (length of stay and anaesthesia times below reimbursement relevant national mean). The driver of increased earnings is shortening length of stay. Our use of regional anaesthesia is 5 to 10-fold higher than national benchmarks and may contribute to our advantageous position in national competition. The annual increases in profit per DRG range between EUR 1,706 and EUR 467,359 and compensate by far the investment of regional anaesthesia derived pain management, besides the advantage of increased patient satisfaction and avoidance of complications. Regional anaesthesia is a considerable value driver in clinical pathways by shortening length of stay. The present analysis further demonstrates that time for regional block performance is covered by anaesthesia reimbursement within the DRG costing schedule.

  13. Harmonic force spectroscopy reveals a force-velocity curve from a single human beta cardiac myosin motor

    NASA Astrophysics Data System (ADS)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian; Mortensen, Kim; Flyvbjerg, Henrik; Spudich, James

    2014-03-01

    A muscle contracts rapidly under low load, but slowly under high load. Its molecular mechanisms remain to be elucidated, however. During contraction, myosins in thick filaments interact with actin in thin filaments in the sarcomere, cycling between a strongly bound (force producing) state and a weakly bound (relaxed) state. Huxley et al. have previously proposed that the transition from the strong to the weak interaction can be modulated by a load. We use a new method we call ``harmonic force spectroscopy'' to extract a load-velocity curve from a single human beta cardiac myosin II motor. With a dual-beam optical trap, we hold an actin dumbbell over a myosin molecule anchored to the microscope stage that oscillates sinusoidally. Upon binding, the motor experiences an oscillatory load with a mean that is directed forward or backward, depending on binding location We find that the bound time at saturating [ATP] is exponentially correlated with the mean load, which is explained by Arrhenius transition theory. With a stroke size measurement, we obtained a load-velocity curve from a single myosin. We compare the curves for wild-type motors with mutants that cause hypertrophic cardiomyopathies, to understand the effects on the contractile cycle

  14. Staufen-mediated mRNA decay.

    PubMed

    Park, Eonyoung; Maquat, Lynne E

    2013-01-01

    Staufen1 (STAU1)-mediated mRNA decay (SMD) is an mRNA degradation process in mammalian cells that is mediated by the binding of STAU1 to a STAU1-binding site (SBS) within the 3'-untranslated region (3'-UTR) of target mRNAs. During SMD, STAU1, a double-stranded (ds) RNA-binding protein, recognizes dsRNA structures formed either by intramolecular base pairing of 3'-UTR sequences or by intermolecular base pairing of 3'-UTR sequences with a long-noncoding RNA (lncRNA) via partially complementary Alu elements. Recently, STAU2, a paralog of STAU1, has also been reported to mediate SMD. Both STAU1 and STAU2 interact directly with the ATP-dependent RNA helicase UPF1, a key SMD factor, enhancing its helicase activity to promote effective SMD. Moreover, STAU1 and STAU2 form homodimeric and heterodimeric interactions via domain-swapping. Because both SMD and the mechanistically related nonsense-mediated mRNA decay (NMD) employ UPF1; SMD and NMD are competitive pathways. Competition contributes to cellular differentiation processes, such as myogenesis and adipogenesis, placing SMD at the heart of various physiologically important mechanisms. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Interactions of L-3,5,3'-Triiodothyronine, Allopregnanolone, and Ivermectin with the GABAA Receptor: Evidence for Overlapping Intersubunit Binding Modes

    PubMed Central

    Westergard, Thomas; Salari, Reza; Martin, Joseph V.; Brannigan, Grace

    2015-01-01

    Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3’-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone. PMID:26421724

  16. Interactions of L-3,5,3'-Triiodothyronine [corrected], Allopregnanolone, and Ivermectin with the GABAA Receptor: Evidence for Overlapping Intersubunit Binding Modes.

    PubMed

    Westergard, Thomas; Salari, Reza; Martin, Joseph V; Brannigan, Grace

    2015-01-01

    Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3'-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone.

  17. Surface-enhanced Raman spectroscopy competitive binding biosensor development utilizing surface modification of silver nanocubes and a citrulline aptamer

    NASA Astrophysics Data System (ADS)

    Walton, Brian M.; Jackson, George W.; Deutz, Nicolaas; Cote, Gerard

    2017-07-01

    A point-of-care (PoC) device with the ability to detect biomarkers at low concentrations in bodily fluids would have an enormous potential for medical diagnostics outside the central laboratory. One method to monitor analytes at low concentrations is by using surface-enhanced Raman spectroscopy (SERS). In this preliminary study toward using SERS for PoC biosensing, the surface of colloidal silver (Ag) nanocubes has been modified to test the feasibility of a competitive binding SERS assay utilizing aptamers against citrulline. Specifically, Ag nanocubes were functionalized with mercaptobenzoic acid, as well as a heterobifunctional polyethylene glycol linker that forms an amide bond with the amino acid citrulline. After the functionalization, the nanocubes were characterized by zeta-potential, transmission electron microscopy images, ultraviolet/visible spectroscopy, and by SERS. The citrulline aptamers were developed and tested using backscattering interferometry. The data show that our surface modification method does work and that the functionalized nanoparticles can be detected using SERS down to a 24.5 picomolar level. Last, we used microscale thermophoresis to show that the aptamers bind to citrulline with at least a 50 times stronger affinity than other amino acids.

  18. Z-DNA binding protein from chicken blood nuclei

    NASA Technical Reports Server (NTRS)

    Herbert, A. G.; Spitzner, J. R.; Lowenhaupt, K.; Rich, A.

    1993-01-01

    A protein (Z alpha) that appears to be highly specific for the left-handed Z-DNA conformer has been identified in chicken blood nuclear extracts. Z alpha activity is measured in a band-shift assay by using a radioactive probe consisting of a (dC-dG)35 oligomer that has 50% of the deoxycytosines replaced with 5-bromodeoxycytosine. In the presence of 10 mM Mg2+, the probe converts to the Z-DNA conformation and is bound by Z alpha. The binding of Z alpha to the radioactive probe is specifically blocked by competition with linear poly(dC-dG) stabilized in the Z-DNA form by chemical bromination but not by B-form poly(dC-dG) or boiled salmon-sperm DNA. In addition, the binding activity of Z alpha is competitively blocked by supercoiled plasmids containing a Z-DNA insert but not by either the linearized plasmid or by an equivalent amount of the parental supercoiled plasmid without the Z-DNA-forming insert. Z alpha can be crosslinked to the 32P-labeled brominated probe with UV light, allowing us to estimate that the minimal molecular mass of Z alpha is 39 kDa.

  19. AZD8797 is an allosteric non-competitive modulator of the human CX3CR1 receptor.

    PubMed

    Cederblad, Linda; Rosengren, Birgitta; Ryberg, Erik; Hermansson, Nils-Olov

    2016-03-01

    The chemokine receptor CX3CR1 has been implicated as an attractive therapeutic target in several diseases, including atherosclerosis and diabetes. However, there has been a lack of non-peptide CX3CR1 inhibitors to substantiate these findings. A selective small-molecule inhibitor of CX3CR1, AZD8797, was recently reported and we present here an in-depth in vitro characterization of that molecule. In a flow adhesion assay, AZD8797 antagonized the natural ligand, fractalkine (CX3CL1), in both human whole blood (hWB) and in a B-lymphocyte cell line with IC50 values of 300 and 6 nM respectively. AZD8797 also prevented G-protein activation in a [(35)S]GTPγS (guanosine 5'-[γ-thio]triphosphate) accumulation assay. In contrast, dynamic mass redistribution (DMR) experiments revealed a weak Gαi-dependent AZD8797 agonism. Additionally, AZD8797 positively modulated the CX3CL1 response at sub-micromolar concentrations in a β-arrestin recruitment assay. In equilibrium saturation binding experiments, AZD8797 reduced the maximal binding of (125)I-CX3CL1 without affecting Kd. Kinetic experiments, determining the kon and koff of AZD8797, demonstrated that this was not an artefact of irreversible or insurmountable binding, thus a true non-competitive mechanism. Finally we show that both AZD8797 and GTPγS increase the rate with which CX3CL1 dissociates from CX3CR1 in a similar manner, indicating a connection between AZD8797 and the CX3CR1-bound G-protein. Collectively, these data show that AZD8797 is a non-competitive allosteric modulator of CX3CL1, binding CX3CR1 and effecting G-protein signalling and β-arrestin recruitment in a biased way. © 2016 Authors.

  20. Multi-Step Fibrinogen Binding to the Integrin αIIbβ3 Detected Using Force Spectroscopy

    PubMed Central

    Litvinov, Rustem I.; Bennett, Joel S.; Weisel, John W.; Shuman, Henry

    2005-01-01

    The regulated ability of integrin αIIbβ3 to bind fibrinogen plays a crucial role in platelet aggregation and hemostasis. We have developed a model system based on laser tweezers, enabling us to measure specific rupture forces needed to separate single receptor-ligand complexes. First of all, we performed a thorough and statistically representative analysis of nonspecific protein-protein binding versus specific αIIbβ3-fibrinogen interactions in combination with experimental evidence for single-molecule measurements. The rupture force distribution of purified αIIbβ3 and fibrinogen, covalently attached to underlying surfaces, ranged from ∼20 to 150 pN. This distribution could be fit with a sum of an exponential curve for weak to moderate (20–60 pN) forces, and a Gaussian curve for strong (>60 pN) rupture forces that peaked at 80–90 pN. The interactions corresponding to these rupture force regimes differed in their susceptibility to αIIbβ3 antagonists or Mn2+, an αIIbβ3 activator. Varying the surface density of fibrinogen changed the total binding probability linearly >3.5-fold but did not affect the shape of the rupture force distribution, indicating that the measurements represent single-molecule binding. The yield strength of αIIbβ3-fibrinogen interactions was independent of the loading rate (160–16,000 pN/s), whereas their binding probability markedly correlated with the duration of contact. The aggregate of data provides evidence for complex multi-step binding/unbinding pathways of αIIbβ3 and fibrinogen revealed at the single-molecule level. PMID:16040750

  1. Mating Disruption for the 21st Century: Matching Technology With Mechanism.

    PubMed

    Miller, James R; Gut, Larry J

    2015-06-01

    Progress toward proof of the principal cause of insect mating disruption under a particular set of conditions has been hindered by a lack of logical rigor and clean falsifications of possible explanations. Here we make the case that understanding of mating disruption and optimization of particular formulations can be significantly advanced by rigorous application of the principles of strong inference. To that end, we offer a dichotomous key for eight distinct categories of mating disruption and detail criteria and methodologies for differentiating among them. Mechanisms of mating disruption closely align with those established for enzyme inhibition, falling into two major categories-competitive and noncompetitive. Under competitive disruption, no impairments are experienced by males, females, or the signal of females. Therefore, males can respond to females and traps. Competitive disruption is entirely a numbers game where the ratio of dispensers to females and traps is highly consequential and renders the control pest-density-dependent. Under noncompetitive disruption, males, females, or the signal from females are already impaired when sexual activity commences. The control achieved noncompetitively offers the notable advantage of being pest-density-independent. Dosage-response curves are the best way to distinguish competitive from noncompetitive disruption. Purely competitive disruption produces: a smoothly concave curve when untransformed capture data are plotted on the y-axis against density of dispensers on the x-axis; a straight line with positive slope when the inverse of catch is plotted against density of pheromone dispensers; and, a straight line with negative slope when catch is plotted against density of pheromone dispensers × catch. Disruption operating only noncompetitively produces: a straight line with negative slope when untransformed capture data are plotted on the y-axis against density of dispensers on the x-axis; an upturning curve when the inverse of catch is plotted against density of pheromone dispensers; and, a recurving plot when catch is plotted against density of pheromone dispensers x catch. Hybrid profiles are possible when some males within the population begin the activity period already incapacitated, while those not preexposed have the capacity to respond either to traps or pheromone dispensers. Competitive mechanisms include competitive attraction, induced allopatry, and induced arrestment. Noncompetitive mechanisms include desensitization and inhibition, induced allochrony, suppressed calling and mating, camouflage, and sensory imbalance. Examples of the various disruption types within the two major categories and suggested tactics for differentiating among them are offered as seven case studies of the disruption of important pest species using various formulations are analyzed in depth. We point out how economic optimizations may be achieved once the principal and contributory causes of disruption are proven. Hopefully, these insights will pave the way to a broader and more reliable usage of this environmentally friendly pest management tactic. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. To curve or not to curve? The effect of college science grading policies on implicit theories of intelligence, perceived classroom goal structures, and self-efficacy

    NASA Astrophysics Data System (ADS)

    Haley, James M.

    There is currently a shortage of students graduating with STEM (science, technology, engineering, or mathematics) degrees, particularly women and students of color. Approximately half of students who begin a STEM major eventually switch out. Many switchers cite the competitiveness, grading curves, and weed-out culture of introductory STEM classes as reasons for the switch. Variables known to influence resilience include a student's implicit theory of intelligence and achievement goal orientation. Incremental theory (belief that intelligence is malleable) and mastery goals (pursuit of increased competence) are more adaptive in challenging classroom contexts. This dissertation investigates the role that college science grading policies and messages about the importance of effort play in shaping both implicit theories and achievement goal orientation. College students (N = 425) were randomly assigned to read one of three grading scenarios: (1) a "mastery" scenario, which used criterion-referenced grading, permitted tests to be retaken, and included a strong effort message; (2) a "norm" scenario, which used norm-referenced grading (grading on the curve); or (3) an "effort" scenario, which combined a strong effort message with the norm-referenced policies. The dependent variables included implicit theories of intelligence, perceived classroom goal structure, and self-efficacy. A different sample of students (N = 15) were randomly assigned a scenario to read, asked to verbalize their thoughts, and responded to questions in a semi-structured interview. Results showed that students reading the mastery scenario were more likely to endorse an incremental theory of intelligence, perceived greater mastery goal structure, and had higher self-efficacy. The effort message had no effect on self-efficacy, implicit theory, and most of the goal structure measures. The interviews revealed that it was the retake policy in the mastery scenario and the competitive atmosphere in the norm-referenced scenarios that were likely driving the results. Competitive grading policies appear to be incompatible with mastery goals, cooperative learning, and a belief in the efficacy of effort. Implications for college STEM instruction are discussed.

  3. Insulin-like growth factor-binding protein-5 (IGFBP-5) inhibits TNF-{alpha}-induced NF-{kappa}B activity by binding to TNFR1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jae Ryoung; Huh, Jae Ho; Lee, Yoonna

    2011-02-25

    Research highlights: {yields} Binding assays demonstrated that secreted- and cellular-IGFBP-5 interacted with TNFR1. {yields} The interaction between IGFBP-5 and TNFR1 was inhibited by TNF-{alpha} and was blocked TNF-{alpha}-activated NF-{kappa}B activity. {yields} IGFBP-5 interacted with TNFR1 through its N- and L-domains but the binding of L-domain to TNFR1 was blocked by TNF-{alpha}. {yields} Competition between the L-domain of IGFBP-5 and TNF-{alpha} blocked TNF-{alpha}-induced NF-{kappa}B activity. {yields} This study suggests that the L-domain of IGFBP-5 is a novel TNFR1 ligand that functions as a competitive TNF-{alpha} inhibitor. -- Abstract: IGFBP-5 is known to be involved in various cell phenomena such as proliferation,more » differentiation, and apoptosis. However, the exact mechanisms by which IGFBP-5 exerts its functions are unclear. In this study, we demonstrate for the first time that IGFBP-5 is a TNFR1-interacting protein. We found that ectopic expression of IGFBP-5 induced TNFR1 gene expression, and that IGFBP-5 interacted with TNFR1 in both an in vivo and an in vitro system. Secreted IGFBP-5 interacted with GST-TNFR1 and this interaction was blocked by TNF-{alpha}, demonstrating that IGFBP-5 might be a TNFR1 ligand. Furthermore, conditioned media containing secreted IGFBP-5 inhibited PMA-induced NF-{kappa}B activity and IL-6 expression in U-937 cells. Coimmunoprecipitation assays of TNFR1 and IGFBP-5 wild-type and truncation mutants revealed that IGFBP-5 interacts with TNFR1 through its N- and L-domains. However, only the interaction between the L-domain of IGFBP-5 and TNFR1 was blocked by TNF-{alpha} in a dose-dependent manner, suggesting that the L-domain of IGFBP-5 can function as a TNFR1 ligand. Competition between the L-domain of IGFBP-5 and TNF-{alpha} resulted in inhibition of TNF-{alpha}-induced NF-{kappa}{Beta} activity. Taken together, our results suggest that the L-domain of IGFBP-5 is a novel TNFR1 ligand that functions as a competitive TNF-{alpha} inhibitor.« less

  4. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase.

    PubMed

    Townley, Robert; Shapiro, Lawrence

    2007-03-23

    The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular ATP (adenosine triphosphate) and AMP concentrations. Here, we report crystal structures at 2.9 and 2.6 A resolution for ATP- and AMP-bound forms of a core alphabetagamma adenylate-binding domain from the fission yeast AMPK homolog. ATP and AMP bind competitively to a single site in the gamma subunit, with their respective phosphate groups positioned near function-impairing mutants. Unexpectedly, ATP binds without counterions, amplifying its electrostatic effects on a critical regulatory region where all three subunits converge.

  5. Comparative theoretical study of the binding of luciferyl-adenylate and dehydroluciferyl-adenylate to firefly luciferase

    NASA Astrophysics Data System (ADS)

    Pinto da Silva, Luís; Vieira, João; Esteves da Silva, Joaquim C. G.

    2012-08-01

    This is the first report of a study employing a computational approach to study the binding of (D/L)-luciferyl-adenlyates and dehydroluciferyl-adenylate to firefly luciferase. A semi-empirical/molecular mechanics methodology was used to study the interaction between these ligands and active site molecules. All adenylates are complexed with the enzyme, mostly due to electrostatic interactions with cationic residues. Dehydroluciferyl-adenylate is expected to be a competitive inhibitor of luciferyl-adenylate, as their binding mechanism and affinity to luciferase are very similar. Both luciferyl-adenylates adopt the L-orientation in the active site of luciferase.

  6. Expression of receptors for atrial natriuretic peptide on the murine bone marrow-derived stromal cells.

    PubMed

    Agui, T; Yamada, T; Legros, G; Nakajima, T; Clark, M; Peschel, C; Matsumoto, K

    1992-05-01

    Atrial natriuretic peptide (ANP) receptors were identified on both murine bone marrow-derived stromal cell lines A-3 and ALC and primary cultured cells using [125I]ANP binding assays and Northern blot analyses. The binding of [125I] ANP to the stromal cells was rapid, saturable, and of high affinity. The dissociation constants between ANP and its receptors on these cells showed no difference among cell types, while maximal binding capacity values were different among cell types. Competitive inhibition of [125I]ANP binding with C-atrial natriuretic factor, specific for ANP clearance receptor (ANPR-C), revealed that most of [125I]ANP-binding sites corresponded to ANPR-C. Northern blotting data corroborated that bone marrow-derived stromal cells expressed ANPR-C. However, in ALC cells, ANP biological receptors (either ANPR-A or ANPR-B), the mol wt of which is approximately 130K, were detected, and cGMP was accumulated after stimulation with ANP. On the other hand, in another stromal cell clone, A-3 cells, the expression of biological receptor was not detected in the affinity cross-linking and competitive inhibition experiments using [125I]ANP. However, A-3 cells accumulated cGMP by responding to ANPR-B-specific ligand, C-type natriuretic peptide. These results suggest that ALC cells equally express ANPR-A and ANPR-B, while A-3 cells express ANPR-B dominantly. Although the physiological roles of these receptors in the bone marrow is still not resolved, ANP is expected to play a role in the regulation of stromal cell functions in bone marrow.

  7. An affinity improved single-chain antibody from phage display of a library derived from monoclonal antibodies detects fumonisins by immunoassay.

    PubMed

    Hu, Zu-Quan; Li, He-Ping; Wu, Ping; Li, Ya-Bo; Zhou, Zhu-Qing; Zhang, Jing-Bo; Liu, Jin-Long; Liao, Yu-Cai

    2015-03-31

    Fumonisin B analogs, particularly FB1, FB2, and FB3, are major mycotoxins found in cereals. Single-chain fragment variable (scFv) antibodies represent a promising alternative immunoassay system. A phage-displayed antibody library derived from four monoclonal antibodies (mAbs) generated against FB1 was used to screen high binding affinity scFv antibodies; the best candidate was designated H2. Surface plasmon resonance measurements confirmed that the H2 scFv displayed a 82-fold higher binding affinity than its parent mAb. Direct competitive enzyme-linked immunosorbent assay demonstrated that the H2 antibody could competitively bind to free FB1, FB2, and FB3, with an IC50 of 0.11, 0.04, and 0.10 μM, respectively; it had no cross-reactivity to deoxynivalenol, nivalenol and aflatoxin. Validation assays with naturally contaminated samples revealed a linear relationship between the H2 antibody-based assay results and chemical analysis results, that could be expressed as y=1.7072x+5.5606 (R(2)=0.8883). Homology modeling of H2 revealed a favorable binding structure highly complementary to the three fumonisins. Molecular docking analyses suggested that the preferential binding of the H2 scFv to FB2 was due to the presence of a hydrogen radical in its R1 position, leading to a proper electrostatic matching and hydrophobic interaction. The H2 scFv antibody can be used for the rapid, accurate, and specific detection of fumonisin contamination in agricultural samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. [High non-specific binding of the beta(1) -selective radioligand 2-(125)I-ICI-H].

    PubMed

    Riemann, B; Law, M P; Kopka, K; Wagner, St; Luthra, S; Pike, V W; Neumann, J; Kirchhefer, U; Schmitz, W; Schober, O; Schäfers, M

    2003-08-01

    As results of cardiac biopsies suggest, myocardial beta(1) -adrenoceptor density is reduced in patients with chronic heart failure. However, changes in cardiac beta(2)-adrenoceptors vary. With suitable radiopharmaceuticals single photon emission computed tomography (SPECT) and positron emission tomography (PET) offer the opportunity to assess beta-adrenoceptors non-invasively. Among the novel racemic analogues of the established beta(1)-selective adrenoceptor antagonist ICI 89.406 the iodinated 2-I-ICI-H showed high affinity and selectivity to beta(1)-adrenoceptors in murine ventricular membranes. The aim of this study was its evaluation as a putative sub-type selective beta(1)-adrenergic radioligand in cardiac imaging. Competition studies in vitro and in vivo were used to investigate the kinetics of 2-I-ICI-H binding to cardiac beta-adrenoceptors in mice and rats. In addition, the radiosynthesis of 2-(125)I-ICI-H from the silylated precursor 2-SiMe(3)-ICI-H was established. The specific activity was 80 GBq/ micro mol, the radiochemical yield ranged from 70 to 80%. The unlabelled compound 2-I-ICI-H showed high beta(1)-selectivity and -affinity in the in vitro competition studies. In vivo biodistribution studies apparently showed low affinity to cardiac beta-adrenoceptors. The radiolabelled counterpart 2-(125)I-ICI-H showed a high degree of non-specific binding in vitro and no specific binding to cardiac beta(1)-adrenoceptors in vivo. Because of its high non-specific binding 2-(125)I-ICI-H is no suitable radiotracer for imaging in vivo.

  9. Hydrology beyond closing the water balance: energy conservative scaling of gradient flux relations

    NASA Astrophysics Data System (ADS)

    Zehe, Erwin; Loritz, Ralf; Jackisch, Conrad

    2017-04-01

    The value of physically-based models has been doubted since their idea was introduced by Freeze and Harlan. Physically-based models like typically rely on the Darcy-Richards concept for soil water dynamics, the Penman-Monteith equation for soil-vegetation-atmosphere exchange processes and hydraulic approaches for overland and stream flow. Each of these concepts is subject to limitations arising from our imperfect understanding of the related processes and is afflicted by the restricted transferability of process descriptions from idealized laboratory conditions to heterogeneous natural systems. Particularly the non-linearity of soil water characteristics in concert with the baffling heterogeneity subsurface properties is usually seen as the dead end for a meaningful application of physically based models outside of well observed research catchments and, more importantly, for an upscaling of point scale flux - gradient relation-ships. This study provides evidence that an energy conservative scaling of topographic gradients and soil water retention curves allows derivation of useful effective catchment scale topography and retention curve from distributed data, which allow successful simulations of the catchment water balance in two distinctly different landscapes. The starting point of our approach is that subsurface water fluxes are driven by differences in potential energy and chemical/capillary binding energy. The relief of a single hillslope controls the potential energy gradients driving downslope flows of free water, while catchment scale variability in hillslope relief is associated with differences in driving potential energy. It is more important to note that the soil water retention curve characterises the density of capillary binding energy of soil water (usually named soil water potential) at a given soil water content. Spatially variable soil water characteristics hence reflect fluctuations in capillary binding energy of soil water at a given soil water content among different sites. Essentially we propose that a meaning full effective representation of the driving topographic gradient needs to represent the mean distribution of geo-potential energy in a catchment, which leads us to the hypsometric integral. Similarly, we postulate that effective soil water characteristics should characterise the average relation between soil water content and capillary binding energy of soil water. For a given set of soil water retention curve derived from a set of undisturbed soil samples this can be achieved by grouping the observation points of all soil samples, averaging the soil water content at a given matric potential/binding energy density and fitting a parametric relation. We demonstrate that a single hillslope with the proposed effective topography and soil water retention curve is sufficient to simulate the water balance and runoff formation of two distinctly different catchments in the Attert experimental watershed.

  10. Binding of Pentachloroiridite to Plasma Polymerized Vinylpyridine Films and Electrocatalytic Oxidation of Ascorbic Acid

    DTIC Science & Technology

    1981-12-21

    anion. Voltametry in 1 M HC1 and in 1 M HC]O 4 is indis- tinguishable from that in Figure 2 except for a minor (10-20 mv.) potential shift in E rf...slope of Figure 9 agrees within a factor of 1.4 with that calculated from the irreversible potential sweep relation (36) using the known diffusion...Curve B. All in 1 M HSO4 2 ,4* Figure 9. Relationship of potential sweep rate and peak current for Curve B of Figure 6. Figure 10. Curve A: oxidation

  11. SNHG16 contributes to breast cancer cell migration by competitively binding miR-98 with E2F5.

    PubMed

    Cai, Chang; Huo, Qiang; Wang, Xiaolong; Chen, Bing; Yang, Qifeng

    2017-04-01

    Long noncoding RNAs (lncRNAs) have been proved to play important roles in cellular processes of cancer, including the development, proliferation, and migration of cancer cells. In the present study, we demonstrated small nucleolar RNA host gene 16 (SNHG16) as an oncogene on cell migration in breast cancer. Expression levels of SNHG16 were found to be frequently higher in breast cancer tissues than in the paired noncancerous tissues. Gain- and loss-of-function studies proved that SNHG16 significantly promoted breast cancer cell migration. We predicted SNHG16 as a competitive endogenous RNA (ceRNA) of E2F transcription factor 5 protein (E2F5) via competition for the shared miR-98 through bioinformatics analysis, and proved this regulation using relative quantitative real-time PCR (qRT-PCR), western blot, RNA immunoprecipitation (RIP) assay and luciferase reporter assay. In addition, we identified a positive correlation between SNHG16 and E2F5 in breast cancer tissues. Furthermore, we demonstrated that forced expression of miR-98 could partially abrogate SNHG16-mediated increase of breast cancer cells migration, suggesting that SNHG16 promoted cell migration in a miR-98 dependent manner. Taken together, our findings indicated that SNHG16 induces breast cancer cell migration by competitively binding miR-98 with E2F5, and SNHG16 can serve as a potential therapeutic target for breast cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Use of Multiple Competitors for Quantification of Human Immunodeficiency Virus Type 1 RNA in Plasma

    PubMed Central

    Vener, Tanya; Nygren, Malin; Andersson, AnnaLena; Uhlén, Mathias; Albert, Jan; Lundeberg, Joakim

    1998-01-01

    Quantification of human immunodeficiency virus type 1 (HIV-1) RNA in plasma has rapidly become an important tool in basic HIV research and in the clinical care of infected individuals. Here, a quantitative HIV assay based on competitive reverse transcription-PCR with multiple competitors was developed. Four RNA competitors containing identical PCR primer binding sequences as the viral HIV-1 RNA target were constructed. One of the PCR primers was fluorescently labeled, which facilitated discrimination between the viral RNA and competitor amplicons by fragment analysis with conventional automated sequencers. The coamplification of known amounts of the RNA competitors provided the means to establish internal calibration curves for the individual reactions resulting in exclusion of tube-to-tube variations. Calibration curves were created from the peak areas, which were proportional to the starting amount of each competitor. The fluorescence detection format was expanded to provide a dynamic range of more than 5 log units. This quantitative assay allowed for reproducible analysis of samples containing as few as 40 viral copies of HIV-1 RNA per reaction. The within- and between-run coefficients of variation were <24% (range, 10 to 24) and <36% (range, 27 to 36), respectively. The high reproducibility (standard deviation, <0.13 log) of the overall procedure for quantification of HIV-1 RNA in plasma, including sample preparation, amplification, and detection variations, allowed reliable detection of a 0.5-log change in RNA viral load. The assay could be a useful tool for monitoring HIV-1 disease progression and antiviral treatment and can easily be adapted to the quantification of other pathogens. PMID:9650926

  13. Insights from Hydrogen Refueling Station Manufacturing Competitiveness Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayyas, Ahmad

    2015-12-18

    In work for the Clean Energy Manufacturing Analysis Center (CEMAC), NREL is currently collaborating with Great Lakes Wind Network in conducting a comprehensive hydrogen refueling stations manufacturing competitiveness and supply chain analyses. In this project, CEMAC will be looking at several metrics that will facilitate understanding of the interactions between and within the HRS supply chain, such metrics include innovation potential, intellectual properties, learning curves, related industries and clustering, existing supply chains, ease of doing business, and regulations and safety. This presentation to Fuel Cell Seminar and Energy Exposition 2015 highlights initial findings from CEMAC's analysis.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiberi, M.; Magnan, J.

    The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid (3H)D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid (3H)D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid (3H)U69593 (Kd = 3.31 nM, Rmore » = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by (3H)U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan (3H)ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, (3H)ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of (3H)ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with (3H)U69593. Saturation studies using the nonselective opioid (3H)bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue).« less

  15. Complexes of lutein with bovine and caprine caseins and their impact on lutein chemical stability in emulsion systems: Effect of arabinogalactan.

    PubMed

    Mora-Gutierrez, A; Attaie, R; Núñez de González, M T; Jung, Y; Woldesenbet, S; Marquez, S A

    2018-01-01

    Lutein is an important xanthophyll carotenoid with many benefits to human health. Factors affecting the application of lutein as a functional ingredient in low-fat dairy-like beverages (pH 6.0-7.0) are not well understood. The interactions of bovine and caprine caseins with hydrophobic lutein were studied using UV/visible spectroscopy as well as fluorescence. Our studies confirmed that the aqueous solubility of lutein is improved after binding with bovine and caprine caseins. The rates of lutein solubilization by the binding to bovine and caprine caseins were as follows: caprine α S1 -II-casein 34%, caprine α S1 -I-casein 10%, and bovine casein 7% at 100 μM lutein. Fluorescence of the protein was quenched on binding supporting complex formation. The fluorescence experiments showed that the binding involves tryptophan residues and some nonspecific interactions. Scatchard plots of lutein binding to the caseins demonstrated competitive binding between the caseins and their sites of interaction with lutein. Competition experiments suggest that caprine α S1 -II casein will bind a larger number of lutein molecules with higher affinity than other caseins. The chemical stability of lutein was largely dependent on casein type and significant increases occurred in the chemical stability of lutein with the following pattern: caprine α S1 -II-casein > caprine α S1 -I-casein > bovine casein. Addition of arabinogalactan to lutein-enriched emulsions increases the chemical stability of lutein-casein complexes during storage under accelerated photo-oxidation conditions at 25°C. Therefore, caprine α S1 -II-casein alone and in combination with arabinogalactan can have important applications in the beverage industry as carrier of this xanthophyll carotenoid (lutein). Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Competition-cooperation relationship networks characterize the competition and cooperation between proteins

    PubMed Central

    Li, Hong; Zhou, Yuan; Zhang, Ziding

    2015-01-01

    By analyzing protein-protein interaction (PPI) networks, one can find that a protein may have multiple binding partners. However, it is difficult to determine whether the interactions with these partners occur simultaneously from binary PPIs alone. Here, we construct the yeast and human competition-cooperation relationship networks (CCRNs) based on protein structural interactomes to clearly exhibit the relationship (competition or cooperation) between two partners of the same protein. If two partners compete for the same interaction interface, they would be connected by a competitive edge; otherwise, they would be connected by a cooperative edge. The properties of three kinds of hubs (i.e., competitive, modest, and cooperative hubs) are analyzed in the CCRNs. Our results show that competitive hubs have higher clustering coefficients and form clusters in the human CCRN, but these tendencies are not observed in the yeast CCRN. We find that the human-specific proteins contribute significantly to these differences. Subsequently, we conduct a series of computational experiments to investigate the regulatory mechanisms that avoid competition between proteins. Our comprehensive analyses reveal that for most yeast and human protein competitors, transcriptional regulation plays an important role. Moreover, the human-specific proteins have a particular preference for other regulatory mechanisms, such as alternative splicing. PMID:26108281

  17. Understanding the reductions in US corn ethanol production costs: an experience curve approach

    USDA-ARS?s Scientific Manuscript database

    The US is currently the world's largest ethanol producer. An increasing percentage is used as transportation fuel, but debates continue on its cost competitiveness and energy balance. In this study, technological development of ethanol production and resulting cost reductions are investigated by usi...

  18. Novel 18F-Labeled κ-Opioid Receptor Antagonist as PET Radiotracer: Synthesis and In Vivo Evaluation of 18F-LY2459989 in Nonhuman Primates.

    PubMed

    Li, Songye; Cai, Zhengxin; Zheng, Ming-Qiang; Holden, Daniel; Naganawa, Mika; Lin, Shu-Fei; Ropchan, Jim; Labaree, David; Kapinos, Michael; Lara-Jaime, Teresa; Navarro, Antonio; Huang, Yiyun

    2018-01-01

    The κ-opioid receptor (KOR) has been implicated in depression, addictions, and other central nervous system disorders and, thus, is an important target for drug development. We previously developed several 11 C-labeled PET radiotracers for KOR imaging in humans. Here we report the synthesis and evaluation of 18 F-LY2459989 as the first 18 F-labeled KOR antagonist radiotracer in nonhuman primates and its comparison with 11 C-LY2459989. Methods: The novel radioligand 18 F-LY2459989 was synthesized by 18 F displacement of a nitro group or an iodonium ylide. PET scans in rhesus monkeys were obtained on a small-animal scanner to assess the pharmacokinetic and in vivo binding properties of the ligand. Metabolite-corrected arterial activity curves were measured and used as input functions in the analysis of brain time-activity curves and the calculation of binding parameters. Results: With the iodonium ylide precursor, 18 F-LY2459989 was prepared at high radiochemical yield (36% ± 7% [mean ± SD]), radiochemical purity (>99%), and mean molar activity (1,175 GBq/μmol; n = 6). In monkeys, 18 F-LY2459989 was metabolized at a moderate rate, with a parent fraction of approximately 35% at 30 min after injection. Fast and reversible kinetics were observed, with a regional peak uptake time of less than 20 min. Pretreatment with the selective KOR antagonist LY2456302 (0.1 mg/kg) decreased the activity level in regions with high levels of binding to that in the cerebellum, thus demonstrating the binding specificity and selectivity of 18 F-LY2459989 in vivo. Regional time-activity curves were well fitted by the multilinear analysis 1 kinetic model to derive reliable estimates of regional distribution volumes. With the cerebellum as the reference region, regional binding potentials were calculated and ranked as follows: cingulate cortex > insula > caudate/putamen > frontal cortex > temporal cortex > thalamus, consistent with the reported KOR distribution in the monkey brain. Conclusion: The evaluation of 18 F-LY2459989 in nonhuman primates demonstrated many attractive imaging properties: fast tissue kinetics, specific and selective binding to the KOR, and high specific binding signals. A side-by-side comparison of 18 F-LY2459989 and 11 C-LY2459989 indicated similar kinetic and binding profiles for the 2 radiotracers. Taken together, the results indicated that 18 F-LY2459989 appears to be an excellent PET radiotracer for the imaging and quantification of the KOR in vivo. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  19. Pharmacological characterization of CCKB receptors in human brain: no evidence for receptor heterogeneity.

    PubMed

    Kinze, S; Schöneberg, T; Meyer, R; Martin, H; Kaufmann, R

    1996-10-11

    In this paper, cholecystokinin (CCK) B-type binding sites were characterized with receptor binding studies in different human brain regions (various parts of cerebral cortex, basal ganglia, hippocampus, thalamus, cerebellar cortex) collected from 22 human postmortem brains. With the exception of the thalamus, where no specific CCK binding sites were found, a pharmacological characterization demonstrated a single class of high affinity CCK sites in all brain areas investigated. Receptor densities ranged from 0.5 fmol/mg protein (hippocampus) to 8.4 fmol/mg protein (nucleus caudatus). These CCK binding sites displayed a typical CCKA binding profile as shown in competition studies by using different CCK-related compounds and non peptide CCK antagonists discriminating between CCKA and CCKB sites. The rank order of agonist or antagonist potency in inhibiting specific sulphated [propionyl-3H]cholecystokinin octapeptide binding was similar and highly correlated for the brain regions investigated as demonstrated by a computer-assisted analysis. Therefore it is concluded that CCKB binding sites in human cerebral cortex, basal ganglia, cerebellar cortex share identical ligand binding characteristics.

  20. Binding modes of environmental endocrine disruptors to human serum albumin: insights from STD-NMR, ITC, spectroscopic and molecular docking studies.

    PubMed

    Yang, Hongqin; Huang, Yanmei; Liu, Jiuyang; Tang, Peixiao; Sun, Qiaomei; Xiong, Xinnuo; Tang, Bin; He, Jiawei; Li, Hui

    2017-09-11

    Given that bisphenols have an endocrine-disrupting effect on human bodies, thoroughly exposing their potential effects at the molecular level is important. Saturation transfer difference (STD) NMR-based binding studies were performed to investigate the binding potential of two bisphenol representatives, namely, bisphenol B (BPB) and bisphenol E (BPE), toward human serum albumin (HSA). The relative STD (%) suggested that BPB and BPE show similar binding modes and orientations, in which the phenolic rings were spatially close to HSA binding site. ITC analysis results showed that BPB and BPE were bound to HSA with moderately strong binding affinity through electrostatic interactions and hydrogen bonds. The order of binding affinity of HSA for two test bisphenols is as follows: BPE > BPB. The results of fluorescence competitive experiments using 5-dimethylaminonaphthalene-1-sulfonamide and dansylsarcosine as competitors, combined with molecular docking indicated that both bisphenols are prone to attach to the binding site II in HSA. Spectroscopic results (FT-IR, CD, synchronous and 3D fluorescence spectra) showed that BPB/BPE induces different degrees of microenvironmental and conformational changes to HSA.

  1. Specific ganglioside binding to receptor sites on T lymphocytes that couple to ganglioside-induced decrease of CD4 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, W.J.; Offner, H.; Vandenbark, A.A.

    1989-01-01

    The binding of different gangliosides to rat T-helper lymphocytes was characterized under conditions that decrease CD4 expression on different mammalian T-helper lymphoctyes. Saturation binding by monosialylated ({sub 3}H)-GM{sub 1} to rat T-lymphocytes was time- and temperature-dependent, had a dissociation constant (K{sub D}) of 2.2 {plus minus} 1.4 {mu}M and a binding capacity near 2 fmoles/cell. Competitive inhibition of ({sup 3}H)- GM{sub 1} binding demonstrated a structural-activity related to the number of unconstrained sialic acid moieties on GM{sub 1}-congeneric gangliosides. A comparison between the results of these binding studies and gangliosides-induced decrease of CD4 expression demonstrated that every aspect of ({supmore » 3}H)-GM{sub 1} binding concurs with ganglioside modulation of CD4 expression. It is concluded that the specific decrease of CD4 expression induced by pretreatment with gangliosides involves the initial process of gangliosides binding to specific sites on CD4{sup {double dagger}} T-helper lymphocytes.« less

  2. Targeted binding of the M13 bacteriophage to thiamethoxam organic crystals.

    PubMed

    Cho, Whirang; Fowler, Jeffrey D; Furst, Eric M

    2012-04-10

    Phage display screening with a combinatorial library was used to identify M13-type bacteriophages that express peptides with selective binding to organic crystals of thiamethoxam. The six most strongly binding phages exhibit at least 1000 times the binding affinity of wild-type M13 and express heptapeptide sequences that are rich in hydrophobic, hydrogen-bonding amino acids and proline. Among the peptide sequences identified, M13 displaying the pIII domain heptapeptide ASTLPKA exhibits the strongest binding to thiamethoxam in competitive binding assays. Electron and confocal microscopy confirm the specific binding affinity of ASTLPKA to thiamethoxam. Using atomic force microscope (AFM) probes functionalized with ASTLPKA expressing phage, we found that the average adhesion force between the bacteriophage and a thiamethoxam surface is 1.47 ± 0.80 nN whereas the adhesion force of wild-type M13KE phage is 0.18 ± 0.07 nN. Such a strongly binding bacteriophage could be used to modify the surface chemistry of thiamethoxam crystals and other organic solids with a high degree of specificity. © 2012 American Chemical Society

  3. A compact imaging spectroscopic system for biomolecular detections on plasmonic chips.

    PubMed

    Lo, Shu-Cheng; Lin, En-Hung; Wei, Pei-Kuen; Tsai, Wan-Shao

    2016-10-17

    In this study, we demonstrate a compact imaging spectroscopic system for high-throughput detection of biomolecular interactions on plasmonic chips, based on a curved grating as the key element of light diffraction and light focusing. Both the curved grating and the plasmonic chips are fabricated on flexible plastic substrates using a gas-assisted thermal-embossing method. A fiber-coupled broadband light source and a camera are included in the system. Spectral resolution within 1 nm is achieved in sensing environmental index solutions and protein bindings. The detected sensitivities of the plasmonic chip are comparable with a commercial spectrometer. An extra one-dimensional scanning stage enables high-throughput detection of protein binding on a designed plasmonic chip consisting of several nanoslit arrays with different periods. The detected resonance wavelengths match well with the grating equation under an air environment. Wavelength shifts between 1 and 9 nm are detected for antigens of various concentrations binding with antibodies. A simple, mass-productive and cost-effective method has been demonstrated on the imaging spectroscopic system for real-time, label-free, highly sensitive and high-throughput screening of biomolecular interactions.

  4. Complex high affinity interactions occur between MHCI and superantigens

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Herpich, A. R.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Staphylococcal enterotoxins A and C1 (SEA or SEC1) bound to major histocompatibility-I (MHCI) molecules with high affinity (binding constants ranging from 1.1 microM to 79 nM). SEA and SEC1 directly bound MHCI molecules that had been captured by monoclonal antibodies specific for H-2Kk, H-2Dk, or both. In addition, MHCI-specific antibodies inhibited the binding of SEC1 to LM929 cells and SEA competitively inhibited SEC1 binding; indicating that the superantigens bound to MHCI on the cell surface. The affinity and number of superantigen binding sites differed depending on whether MHCI was expressed in the membrane of LM929 cells or whether it was captured. These data support the hypothesis that MHCI molecules can serve as superantigen receptors.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unterberger, Claudia; Hanson, Steven; Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN

    Little is known about determinants regulating expression of Mannan-binding lectin associated serine protease-2 (MASP-2), the effector component of the lectin pathway of complement activation. Comparative bioinformatic analysis of the MASP2 promoter regions in human, mouse, and rat, revealed conservation of two putative Stat binding sites, termed StatA and StatB. Site directed mutagenesis specific for these sites was performed. Transcription activity was decreased 5-fold when StatB site was mutated in the wildtype reporter gene construct. Gel retardation and competition assays demonstrated that proteins contained in the nuclear extract prepared from HepG2 specifically bound double-stranded StatB oligonucleotides. Supershift analysis revealed Stat3 tomore » be the major specific binding protein. We conclude that Stat3 binding is important for MASP2 promoter activity.« less

  6. Distribution and density of substance P receptors in the feline gastrointestinal tract using autoradiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothstein, R.D.; Johnson, E.; Ouyang, A.

    1991-06-01

    Autoradiography was used to localize and quantify substance P receptors in the feline gastrointestinal tract. The specific binding of {sup 125}I-Bolton Hunter substance P was determined in the esophagus, lower esophageal sphincter, antrum, pylorus, duodenum, jejunum, ileum, ileocecal sphincter, and colon. Competitive binding studies indicated that substance P binding sites or NK-1 receptor sites were demonstrated. The concentration of NK-1 receptors was greatest in the distal half of the gastrointestinal tract, with the highest concentrations in the proximal colon. The circular muscle layer contained the greatest amount of substance P binding. The location and density of binding sites for substancemore » P may be important in understanding the relative importance of both the pharmacological responses to this neuropeptide and the immunohistochemical evidence of the peptide at different sites in the intestine.« less

  7. Binding of /sup 125/I-hCG to rainbow trout (Salmo gairdneri) testis in vitro. [Human Chorionic Gonadotropin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaghecke, R.

    1983-02-01

    Homogenates of maturing rainbow trout testes show specific binding sites for /sup 125/I-labeled hCG (. /sup 125/I-labeled hCG). The binding is competitively inhibited by unlabeled hCG and by a hypophyseal extract of rainbow trout. It could be demonstrated that the tissue /sup 125/I-hCG binding specificity is restricted to the gonadal preparation. The trout testis was characterized by determining affinity and capacity from Scatchard plot analysis giving a high constant of dissociation Kd 3.65 x 10(-10)/M and a low binding capacity of 0.88 x 10(-15) M/mg tissue. The test system is markedly dependent on temperature, incubation-time, and pH. The maximum bindingmore » was found at 37 degrees during 2 hr of incubation in a buffer of pH 7.5.« less

  8. Determination of the binding properties of p-cresyl glucuronide to human serum albumin.

    PubMed

    Yi, Dan; Monteiro, Elisa Bernardes; Chambert, Stéphane; Soula, Hédi A; Daleprane, Julio B; Soulage, Christophe O

    2018-04-26

    p-Cresyl glucuronide (p-CG) is a by-product of tyrosine metabolism that accumulates in patients with end-stage renal disease. p-CG binding to human serum albumin in physiological conditions (37°C, pH 7.40) was studied by ultrafiltration (MWCO 10 kDa) and data were analyzed assuming one binding site. The estimated value of the association constant was 2.77×10 3  M -1 and a maximal stoichiometry of 3.80 mol per mole. At a concentration relevant for end-stage renal patients, p-CG was 23% bound to albumin. Competition experiments, using fluorescent probes, demonstrated that p-CG did not bind to Sudlow's site I or site II. The p-CG did not interfere with the binding of p-cresyl-sulfate or indoxyl sulfate to serum albumin. Copyright © 2018. Published by Elsevier B.V.

  9. Retinoblastoma-binding Protein 4-regulated Classical Nuclear Transport Is Involved in Cellular Senescence*

    PubMed Central

    Tsujii, Akira; Miyamoto, Yoichi; Moriyama, Tetsuji; Tsuchiya, Yuko; Obuse, Chikashi; Mizuguchi, Kenji; Oka, Masahiro; Yoneda, Yoshihiro

    2015-01-01

    Nucleocytoplasmic trafficking is a fundamental cellular process in eukaryotic cells. Here, we demonstrated that retinoblastoma-binding protein 4 (RBBP4) functions as a novel regulatory factor to increase the efficiency of importin α/β-mediated nuclear import. RBBP4 accelerates the release of importin β1 from importin α via competitive binding to the importin β-binding domain of importin α in the presence of RanGTP. Therefore, it facilitates importin α/β-mediated nuclear import. We showed that the importin α/β pathway is down-regulated in replicative senescent cells, concomitant with a decrease in RBBP4 level. Knockdown of RBBP4 caused both suppression of nuclear transport and induction of cellular senescence. This is the first report to identify a factor that competes with importin β1 to bind to importin α, and it demonstrates that the loss of this factor can trigger cellular senescence. PMID:26491019

  10. (/sup 3/H)Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeal, E.T.; Lewandowski, G.A.; Daly, J.W.

    1985-03-01

    (/sup 3/H)Batrachotoxinin A benzoate ((/sup 3/H)BTX-B) binds with high affinity to sites on voltage-dependent sodium channels in a vesicular preparation from guinea pig cerebral cortex. In this preparation, local anesthetics competitively antagonize the binding of (/sup 3/H)BTX-B. The potencies of some 40 classical local anesthetics and a variety of catecholamine, histamine, serotonin, adenosine, GABA, glycine, acetylcholine, and calcium antagonists, tranquilizers, antidepressants, barbiturates, anticonvulsants, steroids, vasodilators, antiinflammatories, anticoagulants, analgesics, and other agents have been determined. An excellent correlation with the known local anesthetic activity of many of these agents indicate that antagonism of binding of (/sup 3/H)BTX-B binding provides a rapid,more » quantitative, and facile method for the screening and investigation of local anesthetic activity.« less

  11. Identification and characterization of a HeLa nuclear protein that specifically binds to the trans-activation-response (TAR) element of human immunodeficiency virus.

    PubMed Central

    Marciniak, R A; Garcia-Blanco, M A; Sharp, P A

    1990-01-01

    Human immunodeficiency virus type 1 RNAs contain a sequence, trans-activation-response (TAR) element, which is required for tat protein-mediated trans-activation of viral gene expression. We have identified a nuclear protein from extracts of HeLa cells that binds to the TAR element RNA in a sequence-specific manner. The binding of this 68-kDa polypeptide was detected by UV cross-linking proteins to TAR element RNA transcribed in vitro. Competition experiments were performed by using a partially purified preparation of the protein to quantify the relative binding affinities of TAR element RNA mutants. The binding affinity of the TAR mutants paralleled the reported ability of those mutants to support tat trans-activation in vivo. We propose that this cellular protein moderates TAR activity in vivo. Images PMID:2333305

  12. Ab initio molecular dynamics determination of competitive O₂ vs. N₂ adsorption at open metal sites of M₂(dobdc).

    PubMed

    Parkes, Marie V; Greathouse, Jeffery A; Hart, David B; Gallis, Dorina F Sava; Nenoff, Tina M

    2016-04-28

    The separation of oxygen from nitrogen using metal-organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. This unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.

  13. Bone sialoprotein binding to matrix metalloproteinase-2 alters enzyme inhibition kinetics†

    PubMed Central

    Jain, Alka; Fisher, Larry W.; Fedarko, Neal S.

    2008-01-01

    Bone sialoprotein (BSP) is a secreted glycophosphoprotein normally restricted in expression to skeletal tissue that is also induced by multiple neoplasms in vivo. Previous work has shown that BSP can bind to matrix metalloproteinase-2 (MMP-2). Because of MMP-2 activity in promoting tumor progression, potential therapeutic inhibitors were developed, but clinical trials have been disappointing. The effect of BSP on MMP-2 modulation by inhibitors was determined with purified components and in cell culture. Enzyme inhibition kinetics were studied using a low-molecular weight freely diffusable substrate and purified MMP-2, BSP, and natural (tissue inhibitor of matrix metalloproteinase-2) and synthetic (ilomastat and oleoyl-N-hydroxylamide) inhibitors. We determined parameters of enzyme kinetics by varying substrate concentrations at different fixed inhibitor concentrations added to MMP-2 alone, MMP-2 and BSP, or preformed MMP-2-BSP complexes and solving a general linear mixed inhibition rate equation with a global curve fitting program. Two in vitro angiogenesis model systems employing human umbilical vein endothelial cells (HUVECs) were used to follow BSP modulation of MMP-2 inhibition and tubule formation. The presence of BSP increased the competitive KI values between 15- and 47-fold for natural and synthetic inhibitors. The extent of tubule formation by HUVECs cocultured with dermal fibroblasts was reduced in the presence of inhibitors, while the addition of BSP restored vessel formation. A second HUVEC culture system demonstrated that tubule formation by cells expressing BSP could be inhibited by an activity blocking antibody against MMP-2. BSP modulation of MMP-2 activity and inhibition may define its biological role in promoting tumor progression. PMID:18465841

  14. Regulation of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) Activase

    PubMed Central

    Hazra, Suratna; Henderson, J. Nathan; Liles, Kevin; Hilton, Matthew T.; Wachter, Rebekka M.

    2015-01-01

    In many photosynthetic organisms, tight-binding Rubisco inhibitors are released by the motor protein Rubisco activase (Rca). In higher plants, Rca plays a pivotal role in regulating CO2 fixation. Here, the ATPase activity of 0.005 mm tobacco Rca was monitored under steady-state conditions, and global curve fitting was utilized to extract kinetic constants. The kcat was best fit by 22.3 ± 4.9 min−1, the Km for ATP by 0.104 ± 0.024 mm, and the Ki for ADP by 0.037 ± 0.007 mm. Without ADP, the Hill coefficient for ATP hydrolysis was extracted to be 1.0 ± 0.1, indicating noncooperative behavior of homo-oligomeric Rca assemblies. However, the addition of ADP was shown to introduce positive cooperativity between two or more subunits (Hill coefficient 1.9 ± 0.2), allowing for regulation via the prevailing ATP/ADP ratio. ADP-mediated activation was not observed, although larger amounts led to competitive product inhibition of hydrolytic activity. The catalytic efficiency increased 8.4-fold upon cooperative binding of a second magnesium ion (Hill coefficient 2.5 ± 0.5), suggesting at least three conformational states (ATP-bound, ADP-bound, and empty) within assemblies containing an average of about six subunits. The addition of excess Rubisco (24:1, L8S8/Rca6) and crowding agents did not modify catalytic rates. However, high magnesium provided for thermal Rca stabilization. We propose that magnesium mediates the formation of closed hexameric toroids capable of high turnover rates and amenable to allosteric regulation. We suggest that in vivo, the Rca hydrolytic activity is tuned by fluctuating [Mg2+] in response to changes in available light. PMID:26283786

  15. Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase: product inhibition, cooperativity, and magnesium activation.

    PubMed

    Hazra, Suratna; Henderson, J Nathan; Liles, Kevin; Hilton, Matthew T; Wachter, Rebekka M

    2015-10-02

    In many photosynthetic organisms, tight-binding Rubisco inhibitors are released by the motor protein Rubisco activase (Rca). In higher plants, Rca plays a pivotal role in regulating CO2 fixation. Here, the ATPase activity of 0.005 mm tobacco Rca was monitored under steady-state conditions, and global curve fitting was utilized to extract kinetic constants. The kcat was best fit by 22.3 ± 4.9 min(-1), the Km for ATP by 0.104 ± 0.024 mm, and the Ki for ADP by 0.037 ± 0.007 mm. Without ADP, the Hill coefficient for ATP hydrolysis was extracted to be 1.0 ± 0.1, indicating noncooperative behavior of homo-oligomeric Rca assemblies. However, the addition of ADP was shown to introduce positive cooperativity between two or more subunits (Hill coefficient 1.9 ± 0.2), allowing for regulation via the prevailing ATP/ADP ratio. ADP-mediated activation was not observed, although larger amounts led to competitive product inhibition of hydrolytic activity. The catalytic efficiency increased 8.4-fold upon cooperative binding of a second magnesium ion (Hill coefficient 2.5 ± 0.5), suggesting at least three conformational states (ATP-bound, ADP-bound, and empty) within assemblies containing an average of about six subunits. The addition of excess Rubisco (24:1, L8S8/Rca6) and crowding agents did not modify catalytic rates. However, high magnesium provided for thermal Rca stabilization. We propose that magnesium mediates the formation of closed hexameric toroids capable of high turnover rates and amenable to allosteric regulation. We suggest that in vivo, the Rca hydrolytic activity is tuned by fluctuating [Mg(2+)] in response to changes in available light. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Does anesthetic additivity imply a similar molecular mechanism of anesthetic action at N-methyl-D-aspartate receptors?

    PubMed

    Brosnan, Robert J; Pham, Trung L

    2011-03-01

    Isoflurane and carbon dioxide (CO(2)) negatively modulate N-methyl-d-aspartate (NMDA) receptors, but via different mechanisms. Isoflurane is a competitive antagonist at the NMDA receptor glycine binding site, whereas CO(2) inhibits NMDA receptor current through extracellular acidification. Isoflurane and CO(2) exhibit additive minimum alveolar concentration effects in rats, but we hypothesized that they would not additively inhibit NMDA receptor currents in vitro because they act at different molecular sites. NMDA receptors were expressed in frog oocytes and studied using 2-electrode voltage clamp techniques. A glycine concentration response for NMDA was measured in the presence and absence of CO(2). Concentration-response curves for isoflurane, H(+), CO(2), and ketamine as a function of NMDA inhibition were measured, and a Hill equation was used to calculate the EC(50) for each compound. Binary drug combinations containing ½ EC(50) were additive if NMDA current inhibition was not statistically different from 50%. The ½ EC(50) binary drug combinations decreased the percentage baseline NMDA receptor current as follows (mean ± SD, n = 5 to 6 oocytes each): CO(2)+ H(+) (51% ± 5%), CO(2 )+ isoflurane (54% ± 5%), H(+) + isoflurane (51% ± 3%), CO(2)+ ketamine (67% ± 8%), and H(+) + ketamine (64% ± 2%). In contrast to our hypothesis, NMDA receptor inhibition by CO(2) and isoflurane is additive. Possibly, CO(2) acidification modulates a pH-sensitive loop on the NMDA receptor that in turn alters glycine binding affinity on the GluN1 subunit. However, ketamine plus either CO(2) or H(+) synergistically inhibits NMDA receptor currents. Drugs acting via different mechanisms can thus exhibit additive or synergistic receptor effects. Additivity may not robustly indicate commonality between molecular anesthetic mechanisms.

  17. Characterization of digitalis-like factors in human plasma. Interactions with NaK-ATPase and cross-reactivity with cardiac glycoside-specific antibodies.

    PubMed

    Kelly, R A; O'Hara, D S; Canessa, M L; Mitch, W E; Smith, T W

    1985-09-25

    Much of the evidence for a physiologically important endogenous inhibitor of the sodium pump has been either contradictory or indirect. We have identified three discrete fractions in desalted deproteinized plasma from normal humans that resemble the digitalis glycosides in that they: are of low molecular weight; are resistant to acid and enzymatic proteolysis; inhibit NaK-ATPase activity; inhibit Na+ pump activity in human erythrocytes; displace [3H]ouabain bound to the enzyme; and cross-react with high-affinity polyclonal and monoclonal digoxin-specific antibodies but not with anti-ouabain or anti-digitoxin antibodies. An additional fraction cross-reacted with digoxin-specific antibodies but had no detectable activity against NaK-ATPase. The three inhibitory fractions differed from cardiac glycosides in that their concentration-effect curves in a NaK-ATPase inhibition and [3H]ouabain radioreceptor assays were steeper than unlabeled ouabain. This suggests that these inhibitors are not simple competitive ligands for binding to NaK-ATPase. In the presence of sodium, no fraction required ATP for binding to NaK-ATPase, and in the presence of potassium, only one fraction had the reduced affinity for the enzyme that is characteristic of cardiac glycosides. Unlike digitalis, all three NaK-ATPase inhibitory fractions stimulated the activity of skeletal muscle sarcoplasmic reticulum Ca-ATPase. The presence of at least three fractions in human plasma that inhibit NaK-ATPase and cross-react to a variable degree with different digoxin-specific antibody populations could explain much of the conflicting evidence for the existence of endogenous digitalis-like compounds in plasma.

  18. A longitudinal study of ice hockey in boys aged 8--12.

    PubMed

    MacNab, R B

    1979-03-01

    A group of fifteen boys (experimental or competitive) were studied over a five year period of competitive ice hockey beginning at age 8. The subjects were members of a team which averaged 66 games per year, ranging from 50 at age 8 to 78 at age 12. In addition, they practiced twice a week with heavy stress on skating and individual puck handling skills. A second group of eleven boys (control or less competitive) were studied from age 10 to 12. The latter subjects played an average of 25 games per year and practiced once a week. All subjects were measured each year on skating and puck control skills, fitness-performance tests, grip strength, physical work capacity as well as height and weight. The results demonstrate learning curves for skating and puck control tests which, while typical in nature, show extremely high levels of achievement. Fitness-Performance, grip strength and physical work capacity levels of the competitive group are extremely high in comparison with data from other countries.

  19. Simultaneous biosorption of chromium(VI) and copper(II) on Rhizopus arrhizus in packed column reactor: Application of the competitive Freundlich model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sag, Y.; Atacoglu, I.; Kutsal, T.

    1999-12-01

    The simultaneous biosorption of Cr(VI) and Cu(II) on free Rhizopus arrhizus in a packed column operated in the continuous mode was investigated and compared to the single metal ion situation. The breakthrough curves were measured as a function of feed flow rate, feed pH, and different combinations of metal ion concentrations in the feed solutions. Column competitive biosorption data were evaluated in terms of the maximum (equilibrium) capacity in the column, the amount of metal loading on the R. arrhizus surface, the adsorption yield, and the total adsorption yield. In the single-ion situation the adsorption isotherms were developed for optimummore » conditions, and it was seen that the adsorption equilibrium data fit the noncompetitive Freundlich model. For the multicomponent adsorption equilibrium the competitive adsorption isotherms were also developed. The competitive Freundlich model for binary metal mixtures represented most the column adsorption equilibrium data of Cr(VI) and Cu(II) on R. arrhizus satisfactorily.« less

  20. Structure-function relationships for the selective inhibition of human 3β-hydroxysteroid dehydrogenase type 1 by a novel androgen analog.

    PubMed

    Pham, Jenny H; Will, Catherine M; Mack, Vance L; Halbert, Matthew; Conner, Edward Alexander; Bucholtz, Kevin M; Thomas, James L

    2017-11-01

    3β-Hydroxysteroid dehydrogenase type 1 (3β-HSD1) is selectively expressed in human placenta, mammary glands and breast tumors in women. Human 3β-HSD2 is selectively expressed in adrenal glands and ovaries. Based on AutoDock 3 and 4 results, we have exploited key differences in the amino acid sequences of 3β-HSD1 (Ser194, Arg195) and 3β-HSD2 (Gly194, Pro195) by designing a selective inhibitor of 3β-HSD1. 2,16-Dicyano-4,5-epoxy-androstane-3,17-dione (16-cyano-17-keto-trilostane or DiCN-AND) was synthesized in a 4-step procedure from androstenedione. In purified 3β-HSD inhibition studies, DiCN-AND competitively inhibited 3β- HSD1 with K i =4.7μM and noncompetitively inhibited 3β-HSD2 with a 6.5-fold higher K i =30.7μM. We previously reported similar isoenzyme-specific inhibition profiles for trilostane. Based on our docking results, we created, expressed and purified the chimeric S194G-1 mutant of 3β-HSD1. Trilostane inhibited S194G-1 (K i =0.67μM) with a noncompetitive mode compared to its 6.7-fold higher affinity, competitive inhibition of 3β-HSD1 (K i =0.10μM). DiCN-AND inhibited S194G-1 with a 6.3-fold higher K i (29.5μM) than measured for 3β-HSD1 (K i =4.7μM) but with the same competitive mode for both enzyme species. Since DiCN-AND noncompetitively inhibits 3β-HSD2, which has the Gly194 and Pro195 of 3β-HSD2 in place of the Ser194 and Arg195 in 3β-HSD1, this suggests that Arg195 alone in 3β-HSD1 or S194G-1 is required to bind DiCN-AND in the substrate binding site (competitive inhibition). However, both Ser194 and Arg195 are required to bind trilostane in the 3β-HSD1 substrate site based on its noncompetitive inhibition of S194G-1 and 3β-HSD2. In support of this hypothesis, DiCN-AND inhibited our chimeric R195P-1 mutant noncompetitively with a K i =41.3μM (similar to the 3β-HSD2 inhibition profile). Since DiCN-AND competitively inhibited S194G-1 that still contains R195 but noncompetitively inhibited R195P-1 that still contains S194, our data provides strong evidence that the Arg195 being mutated to Pro195 (as present in 3β-HSD2) shifts the inhibition mode from competitive to noncompetitive in 3β-HSD1. This supports the key role of Arg195 in 3β-HSD1 for the high affinity, competitive binding of the trilostane analogs. Our new structure/function information for the design of targeted 3β-HSD1 inhibitors may lead to important new treatments for the prevention of spontaneous premature birth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Influence of N-ethylmaleimide on cholinoceptors and responses in longitudinal muscles from guinea-pig ileum.

    PubMed Central

    Aronstam, R. S.; Carrier, G. O.

    1982-01-01

    1 The binding of carbamylcholine to membranes prepared from the longitudinal muscle of guinea-pig ileum was determined from its inhibition of the binding of [3H]-3-quinuclidinyl benzilate. Carbamylcholine binding was resolved into high and low affinity components with apparent dissociation constants of 0.11 +/- 0.02 and 11 +/- 1 microM; 42% of the receptors displayed high affinity carbamylcholine binding. 2 Alkylation of longitudinal muscle membranes with N-ethylmaleimide increased muscarinic receptor affinity for carbamylcholine in a manner consistent with a conversion of low affinity to high affinity receptors. After exposure the muscle membrane fragments to 1 mM N-ethylmaleimide for 20 min at 35 degrees C, carbamylcholine binding was resolved into two components with apparent dissociation constants of 0.11 +/- 0.01 and 9 +/- 2 microM, with 74% of the receptors displaying the higher affinity. 3 Exposure of longitudinal membranes mounted in an organ chamber to 1 mM N-ethylmaleimide for 30s depressed isometric contractions in response to acetylcholine by 80%, while contractions induced by K+ and Ba2+ were reduced by less than 20% and 10%, respectively. Acetylcholine dose-response curves were shifted to the right while Ba2+ curves were unaffected. 4 It is suggested that N-ethylmaleimide has a selective effect on muscarinic responses in the longitudinal muscle by disrupting processes occurring after receptor occupancy but before the induction of phospholipid turnover or calcium influx in the postsynaptic membrane. PMID:7126999

  2. Differential Binding Models for Direct and Reverse Isothermal Titration Calorimetry.

    PubMed

    Herrera, Isaac; Winnik, Mitchell A

    2016-03-10

    Isothermal titration calorimetry (ITC) is a technique to measure the stoichiometry and thermodynamics from binding experiments. Identifying an appropriate mathematical model to evaluate titration curves of receptors with multiple sites is challenging, particularly when the stoichiometry or binding mechanism is not available. In a recent theoretical study, we presented a differential binding model (DBM) to study calorimetry titrations independently of the interaction among the binding sites (Herrera, I.; Winnik, M. A. J. Phys. Chem. B 2013, 117, 8659-8672). Here, we build upon our DBM and show its practical application to evaluate calorimetry titrations of receptors with multiple sites independently of the titration direction. Specifically, we present a set of ordinary differential equations (ODEs) with the general form d[S]/dV that can be integrated numerically to calculate the equilibrium concentrations of free and bound species S at every injection step and, subsequently, to evaluate the volume-normalized heat signal (δQ(V) = δq/dV) of direct and reverse calorimetry titrations. Additionally, we identify factors that influence the shape of the titration curve and can be used to optimize the initial concentrations of titrant and analyte. We demonstrate the flexibility of our updated DBM by applying these differentials and a global regression analysis to direct and reverse calorimetric titrations of gadolinium ions with multidentate ligands of increasing denticity, namely, diglycolic acid (DGA), citric acid (CIT), and nitrilotriacetic acid (NTA), and use statistical tests to validate the stoichiometries for the metal-ligand pairs studied.

  3. Effect of Protein Binding on the Activity of Penicillins in Combination with Gentamicin Against Enterococci

    PubMed Central

    Glew, Richard H.; Moellering, Robert C.

    1979-01-01

    To assess the effect of protein binding by human serum on the synergistic interaction of penicillins with gentamicin, time-kill curves were determined for four penicillins alone and in combination with gentamicin against 10 blood isolates of enterococci. Killing curves demonstrated synergism with penicillin G plus gentamicin against all 10 strains in either broth or 50% human serum. In broth the combinations of nafcillin plus gentamicin and oxacillin plus gentamicin were synergistic against 10 of 10 strains and 4 of 10 strains, respectively. However, in serum, nafcillin plus gentamicin was synergistically bactericidal against only two strains and oxacillin plus gentamicin against none. Methicillin plus gentamicin was synergistic against none of the enterococci in either medium. Thus, the semisynthetic, penicillinase-resistant penicillins are unlikely to be effective in the therapy of patients with enterococcal endocarditis. PMID:426508

  4. Characterization of Protein Tyrosine Phosphatase 1B Inhibition by Chlorogenic Acid and Cichoric Acid.

    PubMed

    Lipchock, James M; Hendrickson, Heidi P; Douglas, Bonnie B; Bird, Kelly E; Ginther, Patrick S; Rivalta, Ivan; Ten, Nicholas S; Batista, Victor S; Loria, J Patrick

    2017-01-10

    Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of the insulin and leptin signaling pathways and is an active target for the design of inhibitors for the treatment of type II diabetes and obesity. Recently, cichoric acid (CHA) and chlorogenic acid (CGA) were predicted by docking methods to be allosteric inhibitors that bind distal to the active site. However, using a combination of steady-state inhibition kinetics, solution nuclear magnetic resonance experiments, and molecular dynamics simulations, we show that CHA is a competitive inhibitor that binds in the active site of PTP1B. CGA, while a noncompetitive inhibitor, binds in the second aryl phosphate binding site, rather than the predicted benzfuran binding pocket. The molecular dynamics simulations of the apo enzyme and cysteine-phosphoryl intermediate states with and without bound CGA suggest CGA binding inhibits PTP1B by altering hydrogen bonding patterns at the active site. This study provides a mechanistic understanding of the allosteric inhibition of PTP1B.

  5. Leaf Photosynthesis and Plant Competitive Success in a Mixed-grass Prairie: With Reference to Exotic Grasses Invasion

    DOE PAGES

    Dong, Dr. Xuejun; Patton, J.; Gu, Lianhong; ...

    2014-11-26

    The widespread invasion of exotic cool-season grasses in mixed-grass rangeland is diminishing the hope of bringing back the natural native plant communities. However, ecophysiological mechanisms explaining the relative competitiveness of these invasive grasses over the native species generally are lacking. In this study, we used experimental data collected in south-central North Dakota, USA to address this issue. Photosynthetic potential was obtained from the net assimilation (A) vs. internal CO 2 (Ci) response curves from plants grown in a greenhouse. Plant success was defined as the average frequency measured over 25 years (1988 to 2012) on overflow range sites across fivemore » levels of grazing intensity. In addition, estimated leaf area index of individual species under field conditions was used to indicate plant success. The correlation between photosynthetic potential based on A/Ci curves and plant frequency was negative. The correlation between leaf photosynthesis and plant success (defined as leaf area within a unit land area) was also negative, although statistically weak. These results suggest that the two cool-season grasses, Poa pratensis and Bromus inermis, do not rely on superior leaf-level photosynthesis for competitive success. Instead, some other traits, such as early and late-season growth, may be more important for them to gain dominance in the mixed-grass prairie. We propose that the negative photosynthesis-frequency relation as observed in this study results from a strong competition for limited soil nutrients in the mixed-grass prairie. In conclusion, it has implications for the stability and productivity of the grassland under various human disruptions influencing the soil nutrient status.« less

  6. Leaf Photosynthesis and Plant Competitive Success in a Mixed-grass Prairie: With Reference to Exotic Grasses Invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Dr. Xuejun; Patton, J.; Gu, Lianhong

    The widespread invasion of exotic cool-season grasses in mixed-grass rangeland is diminishing the hope of bringing back the natural native plant communities. However, ecophysiological mechanisms explaining the relative competitiveness of these invasive grasses over the native species generally are lacking. In this study, we used experimental data collected in south-central North Dakota, USA to address this issue. Photosynthetic potential was obtained from the net assimilation (A) vs. internal CO 2 (Ci) response curves from plants grown in a greenhouse. Plant success was defined as the average frequency measured over 25 years (1988 to 2012) on overflow range sites across fivemore » levels of grazing intensity. In addition, estimated leaf area index of individual species under field conditions was used to indicate plant success. The correlation between photosynthetic potential based on A/Ci curves and plant frequency was negative. The correlation between leaf photosynthesis and plant success (defined as leaf area within a unit land area) was also negative, although statistically weak. These results suggest that the two cool-season grasses, Poa pratensis and Bromus inermis, do not rely on superior leaf-level photosynthesis for competitive success. Instead, some other traits, such as early and late-season growth, may be more important for them to gain dominance in the mixed-grass prairie. We propose that the negative photosynthesis-frequency relation as observed in this study results from a strong competition for limited soil nutrients in the mixed-grass prairie. In conclusion, it has implications for the stability and productivity of the grassland under various human disruptions influencing the soil nutrient status.« less

  7. Database-Centric Method for Automated High-Throughput Deconvolution and Analysis of Kinetic Antibody Screening Data.

    PubMed

    Nobrega, R Paul; Brown, Michael; Williams, Cody; Sumner, Chris; Estep, Patricia; Caffry, Isabelle; Yu, Yao; Lynaugh, Heather; Burnina, Irina; Lilov, Asparouh; Desroches, Jordan; Bukowski, John; Sun, Tingwan; Belk, Jonathan P; Johnson, Kirt; Xu, Yingda

    2017-10-01

    The state-of-the-art industrial drug discovery approach is the empirical interrogation of a library of drug candidates against a target molecule. The advantage of high-throughput kinetic measurements over equilibrium assessments is the ability to measure each of the kinetic components of binding affinity. Although high-throughput capabilities have improved with advances in instrument hardware, three bottlenecks in data processing remain: (1) intrinsic molecular properties that lead to poor biophysical quality in vitro are not accounted for in commercially available analysis models, (2) processing data through a user interface is time-consuming and not amenable to parallelized data collection, and (3) a commercial solution that includes historical kinetic data in the analysis of kinetic competition data does not exist. Herein, we describe a generally applicable method for the automated analysis, storage, and retrieval of kinetic binding data. This analysis can deconvolve poor quality data on-the-fly and store and organize historical data in a queryable format for use in future analyses. Such database-centric strategies afford greater insight into the molecular mechanisms of kinetic competition, allowing for the rapid identification of allosteric effectors and the presentation of kinetic competition data in absolute terms of percent bound to antigen on the biosensor.

  8. A novel anti-EGFR monoclonal antibody inhibiting tumor cell growth by recognizing different epitopes from cetuximab.

    PubMed

    Hong, Kwang-Won; Kim, Chang-Goo; Lee, Seung-Hyun; Chang, Ki-Hwan; Shin, Yong Won; Ryoo, Kyung-Hwan; Kim, Se-Ho; Kim, Yong-Sung

    2010-01-01

    The epidermal growth factor receptor (EGFR) overexpressed in many epithelial tumors is an attractive target for tumor therapy since numerous blocking agents of EGFR signaling have proven their anti-tumor activity. Here we report a novel monoclonal antibody (mAb), A13, which was generated from mice immunized with human cervical carcinoma A431 cells. In addition to binding to soluble EGFR with affinity of K(D) approximately 5.8nM, mAb A13 specifically bound to a variety of tumor cells and human placenta tissues expressing EGFR. A13 efficiently inhibited both EGF-dependant EGFR tyrosine phosphorylation in cervical and breast tumor cells and also in vitro colony formation of EGFR-overexpressing lung tumors. Competition and sandwich ELISAs, competitive surface plasmon resonance, and domain-level epitope mapping analyses demonstrated that mAb A13 competitively bound to the domain III (amino acids 302-503) of EGFR with EGF, but recognized distinct epitopes from those of cetuximab (Erbitux). Our results demonstrated that anti-EGFR mAb A13 interfered with EGFR proliferation signaling by blocking EGF binding to EGFR with different epitopes from those of cetuximab, suggesting that combination therapies of mAb A13 with cetuximab may prove beneficial for anti-tumor therapy.

  9. Two-colored fluorescence correlation spectroscopy screening for LC3-P62 interaction inhibitors.

    PubMed

    Tsuganezawa, Keiko; Shinohara, Yoshiyasu; Ogawa, Naoko; Tsuboi, Shun; Okada, Norihisa; Mori, Masumi; Yokoyama, Shigeyuki; Noda, Nobuo N; Inagaki, Fuyuhiko; Ohsumi, Yoshinori; Tanaka, Akiko

    2013-10-01

    The fluorescence correlation spectroscopy (FCS)-based competitive binding assay to screen for protein-protein interaction inhibitors is a highly sensitive method as compared with the fluorescent polarization assay used conventionally. However, the FCS assay identifies many false-positive compounds, which requires specifically designed orthogonal screenings. A two-colored application of the FCS-based screening was newly developed, and inhibitors of a protein-protein interaction, involving selective autophagy, were selected. We focused on the interaction of LC3 with the adaptor protein p62, because the interaction is crucial to degrade the specific target proteins recruited by p62. First, about 10,000 compounds were subjected to the FCS-based competitive assay using a TAMRA-labeled p62-derived probe, and 29 hit compounds were selected. Next, the obtained hits were evaluated by the second FCS assay, using an Alexa647-labeled p62-derived probe to remove the false-positive compounds, and six hit compounds inhibited the interaction. Finally, we tested all 29 compounds by surface plasmon resonance-based competitive binding assay to evaluate their inhibition of the LC3-p62 interaction and selected two inhibitors with IC50 values less than 2 µM. The two-colored FCS-based screening was shown to be effective to screen for protein-protein interaction inhibitors.

  10. Structural insights into human heme oxygenase-1 inhibition by potent and selective azole-based compounds

    PubMed Central

    Rahman, Mona N.; Vukomanovic, Dragic; Vlahakis, Jason Z.; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao

    2013-01-01

    The development of heme oxygenase (HO) inhibitors, especially those that are isozyme-selective, promises powerful pharmacological tools to elucidate the regulatory characteristics of the HO system. It is already known that HO has cytoprotective properties and may play a role in several disease states, making it an enticing therapeutic target. Traditionally, the metalloporphyrins have been used as competitive HO inhibitors owing to their structural similarity with the substrate, heme. However, given heme's important role in several other proteins (e.g. cytochromes P450, nitric oxide synthase), non-selectivity is an unfortunate side-effect. Reports that azalanstat and other non-porphyrin molecules inhibited HO led to a multi-faceted effort to develop novel compounds as potent, selective inhibitors of HO. This resulted in the creation of non-competitive inhibitors with selectivity for HO, including a subset with isozyme selectivity for HO-1. Using X-ray crystallography, the structures of several complexes of HO-1 with novel inhibitors have been elucidated, which provided insightful information regarding the salient features required for inhibitor binding. This included the structural basis for non-competitive inhibition, flexibility and adaptability of the inhibitor binding pocket, and multiple, potential interaction subsites, all of which can be exploited in future drug-design strategies. PMID:23097500

  11. Pressure reversal of the action of octanol on postsynaptic membranes from Torpedo.

    PubMed Central

    Braswell, L. M.; Miller, K. W.; Sauter, J. F.

    1984-01-01

    Octanol increases the binding of [3H]-acetylcholine to the desensitized state of the nicotinic receptor in postsynaptic membranes prepared from Torpedo californica. This increase in binding results from an increase in the affinity of [3H]-acetylcholine for its receptor without any change in the number of sites or the shape of the acetylcholine binding curve. High pressures of helium (300 atm) decrease [3H]-acetylcholine binding by a mechanism that changes only the affinity of acetylcholine binding. Helium pressure reverses the effect of octanol on the affinity of [3H]-acetylcholine for its receptor. This pressure reversal of the action of octanol at a postsynaptic membrane is consistent either with pressure counteracting an octanol-induced membrane expansion or with independent mechanisms for the actions of octanol and pressure. The data do not conform with a mechanism in which pressure displaces octanol from a binding site on the receptor protein. PMID:6487895

  12. Comprehensive insight into the binding of sunitinib, a multi-targeted anticancer drug to human serum albumin

    NASA Astrophysics Data System (ADS)

    Kabir, Md. Zahirul; Tee, Wei-Ven; Mohamad, Saharuddin B.; Alias, Zazali; Tayyab, Saad

    2017-06-01

    Binding studies between a multi-targeted anticancer drug, sunitinib (SU) and human serum albumin (HSA) were made using fluorescence, UV-vis absorption, circular dichroism (CD) and molecular docking analysis. Both fluorescence quenching data and UV-vis absorption results suggested formation of SU-HSA complex. Moderate binding affinity between SU and HSA was evident from the value of the binding constant (3.04 × 104 M-1), obtained at 298 K. Involvement of hydrophobic interactions and hydrogen bonds as the leading intermolecular forces in the formation of SU-HSA complex was predicted from the thermodynamic data of the binding reaction. These results were in good agreement with the molecular docking analysis. Microenvironmental perturbations around Tyr and Trp residues as well as secondary and tertiary structural changes in HSA upon SU binding were evident from the three-dimensional fluorescence and circular dichroism results. SU binding to HSA also improved the thermal stability of the protein. Competitive displacement results and molecular docking analysis revealed the binding locus of SU to HSA in subdomain IIA (Sudlow's site I). The influence of a few common ions on the binding constant of SU-HSA complex was also noticed.

  13. Human La binds mRNAs through contacts to the poly(A) tail.

    PubMed

    Vinayak, Jyotsna; Marrella, Stefano A; Hussain, Rawaa H; Rozenfeld, Leonid; Solomon, Karine; Bayfield, Mark A

    2018-05-04

    In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3'OH motif is well characterized, but the mechanism of La binding to coding RNAs is poorly understood. Using electromobility shift assays and cross-linking immunoprecipitation, we show that in addition to a sequence specific UUU-3'OH binding mode, human La exhibits a sequence specific and length dependent poly(A) binding mode. We demonstrate that this poly(A) binding mode uses the canonical nucleic acid interaction winged helix face of the eponymous La motif, previously shown to be vacant during uridylate binding. We also show that cytoplasmic, but not nuclear La, engages poly(A) RNA in human cells, that La entry into polysomes utilizes the poly(A) binding mode, and that La promotion of translation from the cyclin D1 internal ribosome entry site occurs in competition with cytoplasmic poly(A) binding protein (PABP). Our data are consistent with human La functioning in translation through contacts to the poly(A) tail.

  14. Universal aspects of adhesion and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Smith, John R.; Ferrante, John

    1990-01-01

    Adhesive energies are computed for flat and atomically sharp tips as a function of the normal distance to the substrate. The dependence of binding energies on tip shape is investigated. The magnitudes of the binding energies for the atomic force microscope are found to depend sensitively on tip material, tip shape and the sample site being probed. The form of the energy-distance curve, however, is universal and independent of these variables, including tip shape.

  15. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber.

  16. Dreading the boards: stress response to a competitive audition characterized by social-evaluative threat.

    PubMed

    Boyle, Neil Bernard; Lawton, Clare; Arkbage, Karin; Thorell, Lars; Dye, Louise

    2013-01-01

    The capacity of psychosocial stressors to provoke the hypothalamic-pituitary-adrenal axis has been demonstrated to vary depending upon a number of psychological factors. Laboratory stressors characterized by social-evaluative threat are proposed to be the most efficacious in the elicitation of a cortisol stress response. Salivary cortisol, cardiovascular, and subjective responses of 16 healthy adults facing a naturalistic stressor characterized by social-evaluative threat (competitive performance auditions) were examined. Audition exposure was sufficient to provoke significant cortisol, arterial blood pressure (systolic and diastolic), and subjective stress responses. Cortisol response reactivity (area under the curve with respect to increase [AUCi]) also correlated with participants' subjective rating of social-evaluative threat. The competitive performance audition context is therefore considered a promising context in which to further explore cortisol responsivity to social-evaluative threat.

  17. Evaluation of Cu(i) binding to the E2 domain of the amyloid precursor protein - a lesson in quantification of metal binding to proteins via ligand competition.

    PubMed

    Young, Tessa R; Wedd, Anthony G; Xiao, Zhiguang

    2018-01-24

    The extracellular domain E2 of the amyloid precursor protein (APP) features a His-rich metal-binding site (denoted as the M1 site). In conjunction with surrounding basic residues, the site participates in interactions with components of the extracellular matrix including heparins, a class of negatively charged polysaccharide molecules of varying length. This work studied the chemistry of Cu(i) binding to APP E2 with the probe ligands Bcs, Bca, Fz and Fs. APP E2 forms a stable Cu(i)-mediated ternary complex with each of these anionic ligands. The complex with Bca was selected for isolation and characterization and was demonstrated, by native ESI-MS analysis, to have the stoichiometry E2 : Cu(i) : Bca = 1 : 1 : 1. Formation of these ternary complexes is specific for the APP E2 domain and requires Cu(i) coordination to the M1 site. Mutation of the M1 site was consistent with the His ligands being part of the E2 ligand set. It is likely that interactions between the negatively charged probe ligands and a positively charged patch on the surface of APP E2 are one aspect of the generation of the stable ternary complexes. Their formation prevented meaningful quantification of the affinity of Cu(i) binding to the M1 site with these probe ligands. However, the ternary complexes are disrupted by heparin, allowing reliable determination of a picomolar Cu(i) affinity for the E2/heparin complex with the Fz or Bca probe ligands. This is the first documented example of the formation of stable ternary complexes between a Cu(i) binding protein and a probe ligand. The ready disruption of the complexes by heparin identified clear 'tell-tale' signs for diagnosis of ternary complex formation and allowed a systematic review of conditions and criteria for reliable determination of affinities for metal binding via ligand competition. This study also provides new insights into a potential correlation of APP functions regulated by copper binding and heparin interaction.

  18. Effects of nucleotides on [3H]bradykinin binding in guinea pig: further evidence for multiple B2 receptor subtypes.

    PubMed

    Seguin, L; Widdowson, P S

    1993-02-01

    We have suggested recently the existence of three subtypes of B2 bradykinin receptors in tissues of guinea pigs. We have classified these B2 bradykinin receptors into B2a, B2b, and B2c subtypes depending on their affinity for various bradykinin antagonists. Because the actions of bradykinin in different cell systems appear to be both dependent on and independent of G proteins, we sought to determine whether the binding of [3H]bradykinin to the B2 subtypes is sensitive to guanine nucleotides and, therefore, possibly coupled to G proteins. In the ileum, where we have demonstrated B2a and B2b subtypes, specific [3H]bradykinin binding was reduced with GDP (100 microM) and the nonmetabolized analogue of GTP, guanyl-5'-yl-imidodiphosphate (GppNHp; 100 microM). Competition studies with bradykinin and with [Hyp3]bradykinin, which shows approximately 20-fold greater selectivity for the B2a subtype than bradykinin, were performed in the presence or absence of GppNHp (100 microM). The competition experiments demonstrated that binding to the B2a subtype, which has higher affinity for [Hyp3]bradykinin and bradykinin than the B2b subtype, was lost in the presence of GppNHp, whereas binding to the B2b subtype was unaffected. In contrast, GppNHp (100 microM) and GDP (100 microM) failed to alter specific [3H]bradykinin binding to B2b and B2c subtypes in lung. [3H]Bradykinin binding was unaffected by AMP, ADP, ATP, and GMP (100 microM each). Based on this evidence, we suggest that the B2a bradykinin subtype is coupled to G proteins. The B2b and B2c subtypes are either not coupled to G proteins, or may be coupled to the Go-type GTP binding proteins, which have been suggested to be less sensitive to guanine nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. An evaluation of ferrihydrite- and Metsorb™-DGT techniques for measuring oxyanion species (As, Se, V, P): effective capacity, competition and diffusion coefficients.

    PubMed

    Price, Helen L; Teasdale, Peter R; Jolley, Dianne F

    2013-11-25

    This study investigated several knowledge gaps with respect to the diffusive gradients in thin films (DGT) technique for measurement of oxyanions (As(III), As(V), Se(IV), Se(VI), PO4(3-), and V(V)) using the ferrihydrite and Metsorb™ binding layers. Elution efficiencies for each binding layer were higher with 1:20 dilutions, as analytical interferences for ICP-MS were minimised. Diffusion coefficients measured by diffusion cell and by DGT time-series experiments were found to agree well and generally agreed with previously reported values, although a range of diffusion coefficients have been reported for inorganic As and Se species. The relative binding affinity for both ferrihydrite and Metsorb™ was PO4(3-) ≈ As(V)>V(V) ≈ As(III)>Se(IV) > Se(VI) and effective binding capacities were measured in single ion solutions, and spiked synthetic freshwater and seawater, advising practical decisions about DGT monitoring. Under the conditions tested the performance of both ferrihydrite and Metsorb™ binding layers was directly comparable for As(V), As(III) Se(IV), V(V) and PO4(3-) over a deployment spanning ≤ 2 days for both freshwater and seawater. In order to return quantitative data for several analytes we recommend that the DGT method using either ferrihydrite or Metsorb™ be deployed for a maximum of 2 days in marine waters likely to contain high levels of the most strongly adsorbing oxyanions contaminants. The high pH, the competitive ions present in seawater and the identity of co-adsorbing ions affect the capacity of each binding layer for the analytes of interest. In freshwaters, longer deployment times can be considered but the concentration and identity of co-adsorbing ions may impact on quantitative uptake of Se(IV). This study found ferrihydrite-DGT outperformed Metsorb-DGT while previous studies have found the opposite, with variation in binding materials masses used being a likely reason. Clearly, preparation of both binding layers should always be optimised to produce the highest capacity possible, especially for seawater deployments. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  20. Competitive Binding to Cuprous Ions of Protein and BCA in the Bicinchoninic Acid Protein Assay

    PubMed Central

    Huang, Tao; Long, Mian; Huo, Bo

    2010-01-01

    Although Bicinchoninic acid (BCA) has been widely used to determine protein concentration, the mechanism of interaction between protein, copper ion and BCA in this assay is still not well known. Using the Micro BCA protein assay kit (Pierce Company), we measured the absorbance at 562 nm of BSA solutions with different concentrations of protein, and also varied the BCA concentration. When the concentration of protein was increased, the absorbance exhibited the known linear and nonlinear increase, and then reached an unexpected plateau followed by a gradual decrease. We introduced a model in which peptide chains competed with BCA for binding to cuprous ions. Formation of the well-known chromogenic complex of BCA-Cu1+-BCA was competed with the binding of two peptide bonds (NTPB) to cuprous ion, and there is the possibility of the existence of two new complexes. A simple equilibrium equation was established to describe the correlations between the substances in solution at equilibrium, and an empirical exponential function was introduced to describe the reduction reaction. Theoretical predictions of absorbance from the model were in good agreement with the measurements, which not only validated the competitive binding model, but also predicted a new complex of BCA-Cu1+-NTPB that might exist in the final solution. This work provides a new insight into understanding the chemical bases of the BCA protein assay and might extend the assay to higher protein concentration. PMID:21625379

  1. Characterization of a novel non-peptide vasopressin V1 receptor antagonist (OPC-21268) in the rat.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-08-01

    A non-peptide, orally effective, vasopressin (AVP) V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy) benzoyl]-4-piperidyl)-3,4-dihydro-2(1H)-quinolinone (OPC-21268) has recently been described. This paper reports the in-vitro and in-vivo characterization of OPC-21268 binding to vasopressin receptors in rat liver and kidney. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, 125I-labelled [d(CH2)5,sarcosine7]AVP to V1 receptors in both rat liver and kidney medulla membranes. The concentration of OPC-21268 that displaced 50% of specific AVP binding (IC50) was 40 +/- 3 nmol/l for liver V1 and 15 +/- 2 nmol/l for kidney V1 receptors (mean +/- S.E.M.; n = 3). OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)]d(CH2)5,D-Ile2,Ile4] AVP binding to V2 receptors in renal medulla membranes (IC50 > 0.1 mmol/l). After oral administration to rats, OPC-21268 was an effective V1 antagonist in a time- and dose-dependent manner. Binding kinetic studies showed that OPC-21268 acted as a competitive antagonist at the liver V1 receptor in vitro and in vivo, in addition to its in-vitro competitive effects at the renal V1 receptor. OPC-21268 shows promise as an orally active V1 antagonist.

  2. Microsecond molecular dynamics simulations provide insight into the ATP-competitive inhibitor-induced allosteric protection of Akt kinase phosphorylation.

    PubMed

    Mou, Linkai; Cui, Tongwei; Liu, Weiguang; Zhang, Hong; Cai, Zhanxiu; Lu, Shaoyong; Gao, Guojun

    2017-05-01

    Akt is a serine/threonine protein kinase, a critical mediator of growth factor-induced survival in key cellular pathways. Allosteric signaling between protein intramolecular domains requires long-range communication mediated by hotspot residues, often triggered by ligand binding. Here, based on extensive 3 μs explicit solvent molecular dynamics (MD) simulations of Akt1 kinase domain in the unbound (apo) and ATP-competitive inhibitor, GDC-0068-bound states, we propose a molecular mechanism for allosteric regulation of Akt1 kinase phosphorylation by GDC-0068 binding to the ATP-binding site. MD simulations revealed that the apo Akt1 is flexible with two disengaged N- and C-lobes, equilibrated between the open and closed conformations. GDC-0068 occupancy of the ATP-binding site shifts the conformational equilibrium of Akt1 from the open conformation toward the closed conformation and stabilizes the closed state. This effect enables allosteric signal propagation from the GDC-0068 to the phosphorylated T308 (pT308) in the activation loop and restrains phosphatase access to pT308, thereby protecting the pT308 in the GDC-0068-bound Akt1. Importantly, functional hotspots involved in the allosteric communication from the GDC-0068 to the pT308 are identified. Our analysis of GDC-0068-induced allosteric protection of Akt kinase phosphorylation yields important new insights into the molecular mechanism of allosteric regulation of Akt kinase activity. © 2016 John Wiley & Sons A/S.

  3. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.

    PubMed

    Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P

    2016-03-01

    The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.

  4. Development of an enzyme-linked immunosorbent assay and a beta-1 adrenergic receptor-based assay for monitoring the drug atenolol.

    PubMed

    Sapir, A; Shalev, A Hariton; Skalka, N; Bronshtein, A; Altstein, M

    2013-03-01

    Two approaches for monitoring atenolol (ATL) were applied: an immunochemical assay and a competitive-binding assay, based on the interaction between ATL and its target receptor, β1 adrenergic receptor (β1AR). Polyclonal antibodies (Abs) for ATL were generated, and a highly specific microplate immunochemical assay, that is, an enzyme-linked immunosorbent assay (ELISA), for its detection was developed. The ATL ELISA exhibited I50 and limit of detection (I20) values of 0.15 ± 0.048 and 0.032 ± 0.016 ng/ml, respectively, and the Abs did not cross-react with any of the tested beta-blocker drugs. Furthermore, a human β1AR (h-β1AR) was stably expressed in Spodoptera frugiperda cells (Sf9). The receptor was employed to develop a competitive-binding assay that monitored binding of ATL in the presence of isoproteranol by quantification of secondary messenger, cyclic adenosine monophosphate (cAMP), levels in the transfected cells. The assay showed that the recombinant h-β1AR was functional, could bind the agonistic ligand isoproterenol as well as the antagonist ATL, as indicated by a dose-dependent elevation of cAMP in the presence of isoproteranol, and decrease after ATL addition. The highly efficient and sensitive ELISA and the receptor assay represent two methods suitable for efficient and cost-effective large-scale, high-throughput monitoring of ATL in environmental, agricultural, and biological samples. Copyright © 2012 SETAC.

  5. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches.

    PubMed

    Raman, E Prabhu; Lakkaraju, Sirish Kaushik; Denny, Rajiah Aldrin; MacKerell, Alexander D

    2017-06-05

    Accurate and rapid estimation of relative binding affinities of ligand-protein complexes is a requirement of computational methods for their effective use in rational ligand design. Of the approaches commonly used, free energy perturbation (FEP) methods are considered one of the most accurate, although they require significant computational resources. Accordingly, it is desirable to have alternative methods of similar accuracy but greater computational efficiency to facilitate ligand design. In the present study relative free energies of binding are estimated for one or two non-hydrogen atom changes in compounds targeting the proteins ACK1 and p38 MAP kinase using three methods. The methods include standard FEP, single-step free energy perturbation (SSFEP) and the site-identification by ligand competitive saturation (SILCS) ligand grid free energy (LGFE) approach. Results show the SSFEP and SILCS LGFE methods to be competitive with or better than the FEP results for the studied systems, with SILCS LGFE giving the best agreement with experimental results. This is supported by additional comparisons with published FEP data on p38 MAP kinase inhibitors. While both the SSFEP and SILCS LGFE approaches require a significant upfront computational investment, they offer a 1000-fold computational savings over FEP for calculating the relative affinities of ligand modifications once those pre-computations are complete. An illustrative example of the potential application of these methods in the context of screening large numbers of transformations is presented. Thus, the SSFEP and SILCS LGFE approaches represent viable alternatives for actively driving ligand design during drug discovery and development. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Crl binds to domain 2 of σ(S) and confers a competitive advantage on a natural rpoS mutant of Salmonella enterica serovar Typhi.

    PubMed

    Monteil, Véronique; Kolb, Annie; Mayer, Claudine; Hoos, Sylviane; England, Patrick; Norel, Françoise

    2010-12-01

    The RpoS sigma factor (σ(S)) is the master regulator of the bacterial response to a variety of stresses. Mutants in rpoS arise in bacterial populations in the absence of stress, probably as a consequence of a subtle balance between self-preservation and nutritional competence. We characterized here one natural rpoS mutant of Salmonella enterica serovar Typhi (Ty19). We show that the rpoS allele of Ty19 (rpoS(Ty19)) led to the synthesis of a σ(S)(Ty19) protein carrying a single glycine-to-valine substitution at position 282 in σ(S) domain 4, which was much more dependent than the wild-type σ(S) protein on activation by Crl, a chaperone-like protein that increases the affinity of σ(S) for the RNA polymerase core enzyme (E). We used the bacterial adenylate cyclase two-hybrid system to demonstrate that Crl bound to residues 72 to 167 of σ(S) domain 2 and that G282V substitution did not directly affect Crl binding. However, this substitution drastically reduced the ability of σ(S)(Ty19) to bind E in a surface plasmon resonance assay, a defect partially rescued by Crl. The modeled structure of the Eσ(S) holoenzyme suggested that substitution G282V could directly disrupt a favorable interaction between σ(S) and E. The rpoS(Ty19) allele conferred a competitive fitness when the bacterial population was wild type for crl but was outcompeted in Δcrl populations. Thus, these results indicate that the competitive advantage of the rpoS(Ty19) mutant is dependent on Crl and suggest that crl plays a role in the appearance of rpoS mutants in bacterial populations.

  7. Development of LSPR and SPR sensor for the detection of an anti-cancer drug for chemotherapy

    NASA Astrophysics Data System (ADS)

    Zhao, Sandy Shuo; Bolduc, Olivier R.; Colin, Damien Y.; Pelletier, Joelle N.; Masson, Jean-François

    2012-03-01

    The anti-cancer drug, methotrexate (MTX) as a strong inhibitor of human dihydrofolate reductase (hDHFR) has been studied in localized surface plasmon resonance (LSPR) and surface plasmon resonance (SPR) competitive binding assays with folic acid stabilized gold nanoparticles (FA AuNP). The latter with a diameter of 15 nm were prepared in a simple step with sequential characterization using UV-Vis, FTIR, and Raman. A LSPR competitive binding assay between different concentrations of MTX and FA AuNP for hDHFR in solution was designed to quantify MTX by using UV-Vis spectroscopy. Sensitivity of the assay was optimized with respect to both concentrations of the enzyme and FA. The detection and quantification of spiked MTX was demonstrated in phosphate buffer saline and in fetal bovine serum accompanied by solid-phase extraction treatment of the serum. In addition, this assay could also provide as a screening tool for potential inhibitors of hDHFR. In another perspective, MTX was measured in a competitive binding assay with FA AuNP for histidine-tagged hDHFR immobilized on a SPR sensitive surface. In this case, FA AuNP offer a secondary amplification of the analytical response which is indirectly proportional to the concentration of MTX. This alternative approach could contribute to the realization of direct detection of MTX in complex biological fluids. A comparison of characteristics and analytical parameters such as sensitivity, dynamic range and limit of detection between the LSPR and SPR sensing platforms will also be presented. Both assays offer potential in tackling real biological samples for the purpose of monitoring and validating anti-cancer drug levels in human serum during chemotherapy.

  8. New opioid receptor antagonist: Naltrexone-14-O-sulfate synthesis and pharmacology.

    PubMed

    Zádor, Ferenc; Király, Kornél; Váradi, András; Balogh, Mihály; Fehér, Ágnes; Kocsis, Dóra; Erdei, Anna I; Lackó, Erzsébet; Zádori, Zoltán S; Hosztafi, Sándor; Noszál, Béla; Riba, Pál; Benyhe, Sándor; Fürst, Susanna; Al-Khrasani, Mahmoud

    2017-08-15

    Opioid antagonists, naloxone and naltrexone have long been used in clinical practice and research. In addition to their low selectivity, they easily pass through the blood-brain barrier. Quaternization of the amine group in these molecules, (e.g. methylnaltrexone) results in negligible CNS penetration. In addition, zwitterionic compounds have been reported to have limited CNS access. The current study, for the first time gives report on the synthesis and the in vitro [competition binding, G-protein activation, isolated mouse vas deferens (MVD) and mouse colon assay] pharmacology of the zwitterionic compound, naltrexone-14-O-sulfate. Naltrexone, naloxone, and its 14-O-sulfate analogue were used as reference compounds. In competition binding assays, naltrexone-14-O-sulfate showed lower affinity for µ, δ or κ opioid receptor than the parent molecule, naltrexone. However, the μ/κ opioid receptor selectivity ratio significantly improved, indicating better selectivity. Similar tendency was observed for naloxone-14-O-sulfate when compared to naloxone. Naltrexone-14-O-sulfate failed to activate [ 35 S]GTPγS-binding but inhibit the activation evoked by opioid agonists (DAMGO, Ile 5,6 deltorphin II and U69593), similarly to the reference compounds. Schild plot constructed in MVD revealed that naltrexone-14-O-sulfate acts as a competitive antagonist. In mouse colon, naltrexone-14-O-sulfate antagonized the inhibitory effect of morphine with lower affinity compared to naltrexone and higher affinity when compared to naloxone or naloxone-14-O-sulfate. In vivo (mouse tail-flick test), subcutaneously injected naltrexone-14-O-sulfate antagonized morphine's antinociception in a dose-dependent manner, indicating it's CNS penetration, which was unexpected from such zwitter ionic structure. Future studies are needed to evaluate it's pharmacokinetic profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Development of [3H]2-Carboxy-4,6-dichloro-1H-indole-3-propionic Acid ([3H]PSB-12150): A Useful Tool for Studying GPR17

    PubMed Central

    2014-01-01

    The recently described synthetic GPR17 agonist 2-carboxy-4,6-dichloro-1H-indole-3-propionic acid (1) was prepared in tritium-labeled form by catalytic hydrogenation of the corresponding propenoic acid derivative 8 with tritium gas. The radioligand [3H]PSB-12150 (9) was obtained with a specific activity of 17 Ci/mmol (629 GBq/mmol). It showed specific and saturable binding to a single binding site in membrane preparations from Chinese hamster ovary cells recombinantly expressing the human GPR17. A competition assay procedure was established, which allows the determination of ligand binding affinities. PMID:24900835

  10. Development of [(3)H]2-Carboxy-4,6-dichloro-1H-indole-3-propionic Acid ([(3)H]PSB-12150): A Useful Tool for Studying GPR17.

    PubMed

    Köse, Meryem; Ritter, Kirsten; Thiemke, Katharina; Gillard, Michel; Kostenis, Evi; Müller, Christa E

    2014-04-10

    The recently described synthetic GPR17 agonist 2-carboxy-4,6-dichloro-1H-indole-3-propionic acid (1) was prepared in tritium-labeled form by catalytic hydrogenation of the corresponding propenoic acid derivative 8 with tritium gas. The radioligand [(3)H]PSB-12150 (9) was obtained with a specific activity of 17 Ci/mmol (629 GBq/mmol). It showed specific and saturable binding to a single binding site in membrane preparations from Chinese hamster ovary cells recombinantly expressing the human GPR17. A competition assay procedure was established, which allows the determination of ligand binding affinities.

  11. Three-dimensional structure of human serum albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; He, Xiao-Min; Twigg, Pamela D.; Casale, Elena

    1991-01-01

    The binding locations to human serum albumin (HSA) of several drug molecules were determined at low resolution using crystallographic methods. The principal binding sites are located within subdomains IIA and IIIA. Preliminary studies suggest that an approach to increasing the in vivo efficacy of drugs which are rendered less effective or ineffective by virtue of their interaction with HSA, would be the use of competitive displacement in drug therapies and/or the development of a general inhibitor to the site within subdomain IIIA. These findings also suggest that the facilitated transfer of various ligands across organ/circulatory interfaces such as liver, kidney, and brain may be associated with binding to the IIIA subdomain.

  12. Universal aspects of brittle fracture, adhesion, and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1989-01-01

    This universal relation between binding energy and interatomic separation was originally discovered for adhesion at bimetallic interfaces involving the simple metals Al, Zn, Mg, and Na. It is shown here that the same universal relation extends to adhesion at transition-metal interfaces. Adhesive energies have been computed for the low-index interfaces of Al, Ni, Cu, Ag, Fe, and W, using the equivalent-crystal theory (ECT) and keeping the atoms in each semiinfinite slab fixed rigidly in their equilibrium positions. These adhesive energy curves can be scaled onto each other and onto the universal adhesion curve. The effect of tip shape on the adhesive forces in the atomic-force microscope (AFM) is studied by computing energies and forces using the ECT. While the details of the energy-distance and force-distance curves are sensitive to tip shape, all of these curves can be scaled onto the universal adhesion curve.

  13. Single-laboratory validation of the microplate receptor binding assay for paralytic shellfish toxins in shellfish.

    PubMed

    Van Dolah, Frances M; Leighfield, Tod A; Doucette, Gregory J; Bean, Laurie; Niedzwiadek, Barbara; Rawn, Dorothea F K

    2009-01-01

    A single-laboratory validation (SLV) study was conducted for the microplate receptor binding assay (RBA) for paralytic shellfish poisoning (PSP) toxins in shellfish. The basis of the assay is the competition between [3H]saxitoxin (STX) and STX in a standard or sample for binding to the voltage dependent sodium channel. A calibration curve is generated by the addition of 0.01-1000 nM STX, which results in the concentration dependent decrease in [3H]STX-receptor complexes formed and serves to quantify STX in unknown samples. This study established the LOQ, linearity, recovery, accuracy, and precision of the assay for determining PSP toxicity in shellfish extracts, as performed by a single analyst on multiple days. The standard curve obtained on 5 independent days resulted in a half-maximal inhibition (IC50) of 2.3 nM STX +/- 0.3 (RSD = 10.8%) with a slope of 0.96 +/- 0.06 (RSD = 6.3%) and a dynamic range of 1.2-10.0 nM. The LOQ was 5.3 microg STX equivalents/100 g shellfish. Linearity, established by quantification of three levels of purified STX (1.5, 3, and 6 nM), yielded an r2 of 0.97. Recovery from mussels spiked with three levels (40, 80, and 120 microg STX/100 g) averaged 121%. Repeatability (RSD(r)), determined on six naturally contaminated shellfish samples on 5 independent days, was 17.7%. A method comparison with the AOAC mouse bioassay yielded r2 = 0.98 (slope = 1.29) in the SLV study. The effects of the extraction method on RBA-based toxicity values were assessed on shellfish extracted for PSP toxins using the AOAC mouse bioassay method (0.1 M HCI) compared to that for the precolumn oxidation HPLC method (0.1% acetic acid). The two extraction methods showed linear correlation (r2 = 0.99), with the HCl extraction method yielding slightly higher toxicity values (slope = 1.23). A similar relationship was observed between HPLC quantification of the HCI- and acetic acid-extracted samples (r2 = 0.98, slope 1.19). The RBA also had excellent linear correlation with HPLC analyses (r2 = 0.98 for HCl, r2 = 0.99 for acetic acid), but gave somewhat higher values than HPLC using either extraction method (slope = 1.39 for HCl extracts, slope = 1.32 for acetic acid). Overall, the excellent linear correlations with the both mouse bioassay and HPLC method and sufficient interassay repeatability suggest that the RBA can be effective as a high throughput screen for estimating PSP toxicity in shellfish.

  14. Cytochrome P450 3A4 in vivo ketoconazole competitive inhibition: determination of Ki and dangers associated with high clearance drugs in general.

    PubMed

    Boxenbaum, H

    1999-01-01

    Assuming complete hepatic substrate metabolism and system linearity, quantitative effects of in vivo competitive inhibition are investigated. Following oral administration of a substrate in the presence of a competitive inhibitor, determination of the inhibition constant (Ki) is possible when plasma concentration-time profiles of both substrate and inhibitor are available. When triazolam is the P450 3A4 substrate and ketoconazole the competitive inhibitor, Ki approximately 1.2 microg/mL in humans. The effects of competitive inhibition can be divided into two components: first-pass hepatic metabolism and systemic metabolism. For drugs with high hepatic extraction ratios, the impact of competitive inhibition on hepatic first-pass metabolism can be particularly dramatic. For example, human terfenadine hepatic extraction goes from 95% in the absence of a competitive inhibitor to 35% in the presence of one (ketoconazole, 200 mg po Q 12 h dosed to steady-state). First-pass extraction therefore goes from 5% in the absence of the inhibitor to 65% in its presence. The combined effect on first-pass and systemic metabolism produces an approximate 37 fold increase in terfenadine area under the plasma concentration-time curve. Assuming intact drug is active and/or toxic, development of metabolized drugs with extensive first-pass metabolism should be avoided if possible, since inhibition of metabolism may lead to profound increases in exposure.

  15. Maximum Entropy for the International Division of Labor.

    PubMed

    Lei, Hongmei; Chen, Ying; Li, Ruiqi; He, Deli; Zhang, Jiang

    2015-01-01

    As a result of the international division of labor, the trade value distribution on different products substantiated by international trade flows can be regarded as one country's strategy for competition. According to the empirical data of trade flows, countries may spend a large fraction of export values on ubiquitous and competitive products. Meanwhile, countries may also diversify their exports share on different types of products to reduce the risk. In this paper, we report that the export share distribution curves can be derived by maximizing the entropy of shares on different products under the product's complexity constraint once the international market structure (the country-product bipartite network) is given. Therefore, a maximum entropy model provides a good fit to empirical data. The empirical data is consistent with maximum entropy subject to a constraint on the expected value of the product complexity for each country. One country's strategy is mainly determined by the types of products this country can export. In addition, our model is able to fit the empirical export share distribution curves of nearly every country very well by tuning only one parameter.

  16. Maximum Entropy for the International Division of Labor

    PubMed Central

    Lei, Hongmei; Chen, Ying; Li, Ruiqi; He, Deli; Zhang, Jiang

    2015-01-01

    As a result of the international division of labor, the trade value distribution on different products substantiated by international trade flows can be regarded as one country’s strategy for competition. According to the empirical data of trade flows, countries may spend a large fraction of export values on ubiquitous and competitive products. Meanwhile, countries may also diversify their exports share on different types of products to reduce the risk. In this paper, we report that the export share distribution curves can be derived by maximizing the entropy of shares on different products under the product’s complexity constraint once the international market structure (the country-product bipartite network) is given. Therefore, a maximum entropy model provides a good fit to empirical data. The empirical data is consistent with maximum entropy subject to a constraint on the expected value of the product complexity for each country. One country’s strategy is mainly determined by the types of products this country can export. In addition, our model is able to fit the empirical export share distribution curves of nearly every country very well by tuning only one parameter. PMID:26172052

  17. Metal Binding Studies and EPR Spectroscopy of the Manganese Transport Regulator MntR†

    PubMed Central

    Golynskiy, Misha V.; Gunderson, William A.; Hendrich, Michael P.; Cohen, Seth M.

    2007-01-01

    Manganese transport regulator (MntR) is a member of the diphtheria toxin repressor (DtxR) family of transcription factors that is responsible for manganese homeostasis in Bacillus subtilis. Prior biophysical studies have focused on the metal-mediated DNA binding of MntR [Lieser, S. A., Davis, T. C., Helmann, J. D., and Cohen, S. M. (2003) Biochemistry 42, 12634-12642], as well as metal stabilization of the MntR structure [Golynskiy, M. V., Davis, T. C., Helmann, J. D., and Cohen, S. M. (2005) Biochemistry 44, 3380-3389], but only limited data on the metal-binding affinities for MntR are available. Herein, the metal-binding affinities of MntR were determined by using electron paramagnetic resonance (EPR) spectroscopy, as well as competition experiments with the fluorimetric dyes Fura-2 and Mag-fura-2. MntR was not capable of competing with Fura-2 for the binding of transition metal ions. Therefore, the metal-binding affinities and stoichiometries of Mag-fura-2 for Mn2+, Co2+, Ni2+, Zn2+, and Cd2+ were determined and utilized in MntR/Mag-fura-2 competition experiments. The measured Kd values for MntR metal binding are comparable to those reported for DtxR metal binding [Kd from 10-7 to 10-4 M; D’Aquino, J. A., et al. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 18408-18413], AntR [a homologue from Bacillus anthracis; Sen, K. I. et al. (2006) Biochemistry 45, 4295-4303], and generally follow the Irving-Williams series. Direct detection of the dinuclear Mn2+ site in MntR with EPR spectroscopy is presented, and the exchange interaction was determined, J = -0.2 cm-1. This value is lower in magnitude than most known dinuclear Mn2+ sites in proteins and synthetic complexes and is consistent with a dinuclear Mn2+ site with a longer Mn···Mn distance (4.4 Å) observed in some of the available crystal structures. MntR is found to have a surprisingly low binding affinity (∼160 μM) for its cognate metal ion Mn2+. Moreover, the results of DNA binding studies in the presence of limiting metal ion concentrations were found to be consistent with the measured metal-binding constants. The metal-binding affinities of MntR reported here help to elucidate the regulatory mechanism of this metal-dependent transcription factor. PMID:17176058

  18. Fab antibodies capable of blocking T cells by competitive binding have the identical specificity but a higher affinity to the MHC-peptide-complex than the T cell receptor.

    PubMed

    Neumann, Frank; Sturm, Christine; Hülsmeyer, Martin; Dauth, Nina; Guillaume, Philippe; Luescher, Immanuel F; Pfreundschuh, Michael; Held, Gerhard

    2009-08-15

    In transplant rejection, graft versus host or autoimmune diseases T cells are mediating the pathophysiological processes. Compared to unspecific pharmacological immune suppression specific inhibition of those T cells, that are involved in the disease, would be an alternative and attractive approach. T cells are activated after their T cell receptor (TCR) recognizes an antigenic peptide displayed by the Major Histocompatibility Complex (MHC). Molecules that interact with MHC-peptide-complexes in a specific fashion should block T cells with identical specificity. Using the model of the SSX2 (103-111)/HLA-A*0201 complex we investigated a panel of MHC-peptide-specific Fab antibodies for their capacity blocking specific T cell clones. Like TCRs all Fab antibodies reacted with the MHC complex only when the SSX2 (103-111) peptide was displayed. By introducing single amino acid mutations in the HLA-A*0201 heavy chain we identified the K66 residue as the most critical binding similar to that of TCRs. However, some Fab antibodies did not inhibit the reactivity of a specific T cell clone against peptide pulsed, artificial targets, nor cells displaying the peptide after endogenous processing. Measurements of binding kinetics revealed that only those Fab antibodies were capable of blocking T cells that interacted with an affinity in the nanomolar range. Fab antibodies binding like TCRs with affinities on the lower micromolar range did not inhibit T cell reactivity. These results indicate that molecules that block T cells by competitive binding with the TCR must have the same specificity but higher affinity for the MHC-peptide-complex than the TCR.

  19. GPER-targeted, 99mTc-labeled, nonsteroidal ligands demonstrate selective tumor imaging and in vivo estrogen binding

    PubMed Central

    Nayak, Tapan K.; Ramesh, Chinnasamy; Hathaway, Helen J.; Norenberg, Jeffrey P.; Arterburn, Jeffrey B.; Prossnitz, Eric R.

    2014-01-01

    Our understanding of estrogen (E2) receptor biology has evolved in recent years with the discovery and characterization of a 7-transmembrane-spanning G protein-coupled estrogen receptor (GPER1/GPER/GPR30) and the development of GPER-selective functional chemical probes. GPER is highly expressed in certain breast, endometrial and ovarian cancers, establishing the importance of non-invasive methods to evaluate GPER expression in vivo. Herein, we developed 99mTc-labeled GPER ligands to demonstrate the in vivo status of GPER as an estrogen receptor and for GPER visualization in whole animals. A series of 99mTc(I)-labeled non-steroidal tetrahydro-3H-cyclopenta[c]quinolone derivatives was synthesized utilizing pyridin-2-yl hydrazine and picolylamine chelates. Radioligand receptor binding studies revealed binding affinities in the 10–30 nM range. Cell signaling assays previously demonstrated that derivatives retaining a ketone functionality displayed agonist properties whereas those lacking such a hydrogen bond acceptor were antagonists. In vivo biodistribution and imaging studies performed on mice bearing human endometrial and breast cancer cell xenografts yielded significant tumor uptake (0.4–1.1 %ID/g). Blocking studies revealed specific uptake in multiple organs (adrenals, uterus, mammary tissue) as well as tumor uptake with similar levels of competition by E2 and G-1, a GPER-selective agonist. In conclusion, we synthesized and evaluated a series of first generation 99mTc-labeled GPER-specific radioligands, demonstrating GPER as an estrogen-binding receptor for the first time in vivo using competitive binding principles, and establishing the utility of such ligands as tumor imaging agents. These results warrant further investigation into the role of GPER in estrogen-mediated carcinogenesis and as a target for diagnostic/therapeutic/ image-guided drug delivery. PMID:25030373

  20. Multifunctional Nutrient-Binding Proteins Adapt Human Symbiotic Bacteria for Glycan Competition in the Gut by Separately Promoting Enhanced Sensing and Catalysis

    PubMed Central

    Cameron, Elizabeth A.; Kwiatkowski, Kurt J.; Lee, Byung-Hoo; Hamaker, Bruce R.; Koropatkin, Nicole M.

    2014-01-01

    ABSTRACT To compete for the dynamic stream of nutrients flowing into their ecosystem, colonic bacteria must respond rapidly to new resources and then catabolize them efficiently once they are detected. The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model for nutrient acquisition by symbiotic gut bacteria, which harbor thousands of related Sus-like systems. Structural investigation of the four Sus outer membrane proteins (SusD, -E, -F, and -G) revealed that they contain a total of eight starch-binding sites that we demonstrated, using genetic and biochemical approaches, to play distinct roles in starch metabolism in vitro and in vivo in gnotobiotic mice. SusD, whose homologs are abundant in the human microbiome, is critical for the initial sensing of available starch, allowing sus transcriptional activation at much lower concentrations than without this function. In contrast, seven additional binding sites across SusE, -F, and -G are dispensable for sus activation. However, they optimize the rate of growth on starch in a manner dependent on the expression of the bacterial polysaccharide capsule, suggesting that they have evolved to offset the diffusion barrier created by this structure. These findings demonstrate how proteins with similar biochemical behavior can serve orthogonal functions during different stages of cellular adaptation to nutrients. Finally, we demonstrated in gnotobiotic mice fed a starch-rich diet that the Sus binding sites confer a competitive advantage to B. thetaiotaomicron in vivo in a manner that is dependent on other colonizing microbes. This study reveals how numerically dominant families of carbohydrate-binding proteins in the human microbiome fulfill separate and sometimes cooperative roles to optimize gut commensal bacteria for nutrient acquisition. PMID:25205092

Top