Sympatric speciation by sexual selection alone is unlikely.
Arnegard, Matthew E; Kondrashov, Alexey S
2004-02-01
According to Darwin, sympatric speciation is driven by disruptive, frequency-dependent natural selection caused by competition for diverse resources. Recently, several authors have argued that disruptive sexual selection can also cause sympatric speciation. Here, we use hypergeometric phenotypic and individual-based genotypic models to explore sympatric speciation by sexual selection under a broad range of conditions. If variabilities of preference and display traits are each caused by more than one or two polymorphic loci, sympatric speciation requires rather strong sexual selection when females exert preferences for extreme male phenotypes. Under this kind of mate choice, speciation can occur only if initial distributions of preference and display are close to symmetric. Otherwise, the population rapidly loses variability. Thus, unless allele replacements at very few loci are enough for reproductive isolation, female preferences for extreme male displays are unlikely to drive sympatric speciation. By contrast, similarity-based female preferences that do not cause sexual selection are less destabilizing to the maintenance of genetic variability and may result in sympatric speciation across a broader range of initial conditions. Certain groups of African cichlids have served as the exclusive motivation for the hypothesis of sympatric speciation by sexual selection. Mate choice in these fishes appears to be driven by female preferences for extreme male phenotypes rather than similarity-based preferences, and the evolution of premating reproductive isolation commonly involves at least several genes. Therefore, differences in female preferences and male display in cichlids and other species of sympatric origin are more likely to have evolved as isolating mechanisms under disruptive natural selection.
Border, Shana E
2018-01-01
Abstract Natural selection has been shown to drive population differentiation and speciation. The role of sexual selection in this process is controversial; however, most of the work has centered on mate choice while the role of male–male competition in speciation is relatively understudied. Here, we outline how male–male competition can be a source of diversifying selection on male competitive phenotypes, and how this can contribute to the evolution of reproductive isolation. We highlight how negative frequency-dependent selection (advantage of rare phenotype arising from stronger male–male competition between similar male phenotypes compared with dissimilar male phenotypes) and disruptive selection (advantage of extreme phenotypes) drives the evolution of diversity in competitive traits such as weapon size, nuptial coloration, or aggressiveness. We underscore that male–male competition interacts with other life-history functions and that variable male competitive phenotypes may represent alternative adaptive options. In addition to competition for mates, aggressive interference competition for ecological resources can exert selection on competitor signals. We call for a better integration of male–male competition with ecological interference competition since both can influence the process of speciation via comparable but distinct mechanisms. Altogether, we present a more comprehensive framework for studying the role of male–male competition in speciation, and emphasize the need for better integration of insights gained from other fields studying the evolutionary, behavioral, and physiological consequences of agonistic interactions. PMID:29492042
Divergent sexual selection via male competition: ecology is key.
Lackey, A C R; Boughman, J W
2013-08-01
Sexual selection and ecological differences are important drivers of speciation. Much research has focused on female choice, yet the role of male competition in ecological speciation has been understudied. Here, we test how mating habitats impact sexual selection and speciation through male competition. Using limnetic and benthic species of threespine stickleback fish, we find that different mating habitats select differently on male traits through male competition. In mixed habitat with both vegetated and open areas, selection favours two trait combinations of male body size and nuptial colour: large with little colour and small with lots of colour. This matches what we see in reproductively isolated stickleback species, suggesting male competition could promote trait divergence and reproductive isolation. In contrast, when only open habitat exists, selection favours one trait combination, large with lots of colour, which would hinder trait divergence and reproductive isolation. Other behavioural mechanisms in male competition that might promote divergence, such as avoiding aggression with heterospecifics, are insufficient to maintain separate species. This work highlights the importance of mating habitats in male competition for both sexual selection and speciation. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Detailed Modelling of Kinetic Biodegradation Processes in a Laboratory Mmicrocosm
NASA Astrophysics Data System (ADS)
Watson, I.; Oswald, S.; Banwart, S.; Mayer, U.
2003-04-01
Biodegradation of organic contaminants in soil and groundwater usually takes places via different redox processes happening sequentially as well as simultaneously. We used numerical modelling of a long-term lab microcosm experiment to simulate the dynamic behaviour of fermentation and respiration in the aqueous phase in contact with the sandstone material, and to develop a conceptual model describing these processes. Aqueous speciation, surface complexation, mineral dissolution and precipitation were taken into account also. Fermentation can be the first step of the degradation process producing intermediate species, which are subsequently consumed by TEAPs. Microbial growth and substrate utilisation kinetics are coupled via a formulation that also includes aqueous speciation and other geochemical reactions including surface complexation, mineral dissolution and precipitation. Competitive exclusion between TEAPs is integral to the conceptual model of the simulation, and the results indicate that exclusion is not complete, but some overlap is found between TEAPs. The model was used to test approaches like the partial equilibrium approach that currently make use of hydrogen levels to diagnose prevalent TEAPs in groundwater. The observed pattern of hydrogen and acetate concentrations were reproduced well by the simulations, and the results show the relevance of kinetics, lag times and inhibition, and especially that intermediate products play a key role.
NASA Astrophysics Data System (ADS)
Szpunar, Joanna; McSheehy, Shona; Połeć, Kasia; Vacchina, Véronique; Mounicou, Sandra; Rodriguez, Isaac; Łobiński, Ryszard
2000-07-01
Recent advances in the coupling of gas chromatography (GC) and high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP MS) and their role in trace element speciation analysis of environmental materials are presented. The discussion is illustrated with three research examples concerning the following topics: (i) development and coupling of multicapillary microcolumn GC with ICP MS for speciation of organotin in sediment and biological tissue samples; (ii) speciation of arsenic in marine algae by size-exclusion-anion-exchange HPLC-ICP MS; and (iii) speciation of cadmium in plant cell cultures by size-exclusion HPLC-ICP MS. Particular attention is paid to the problem of signal identification in ICP MS chromatograms; the potential of electrospray MS/MS for this purpose is highlighted.
Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades
Reddy, M.M.; Aiken, G.R.
2001-01-01
Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.
Competition, virulence, host body mass and the diversification of macro-parasites
Rascalou, Guilhem; Gourbière, Sébastien
2014-01-01
Adaptive speciation has been much debated in recent years, with a strong emphasis on how competition can lead to the diversification of ecological and sexual traits. Surprisingly, little attention has been paid to this evolutionary process to explain intrahost diversification of parasites. We expanded the theory of competitive speciation to look at the effect of key features of the parasite lifestyle, namely fragmentation, aggregation and virulence, on the conditions and rate of sympatric speciation under the standard ‘pleiotropic scenario’. The conditions for competitive speciation were found similar to those for non-parasite species, but not the rate of diversification. Adaptive evolution proceeds faster in highly fragmented parasite populations and for weakly aggregated and virulent parasites. Combining these theoretical results with standard empirical allometric relationships, we showed that parasite diversification can be faster in host species of intermediate body mass. The increase in parasite load with body mass, indeed, fuels evolution by increasing mutants production, but because of the deleterious effect of virulence, it simultaneously weakens selection for resource specialization. Those two antagonistic effects lead to optimal parasite burden and host body mass for diversification. Data on the diversity of fishes' gills parasites were found consistent with the existence of such optimum. PMID:24522783
Incompatibility and competitive exclusion of genomic segments between sibling Drosophila species.
Fang, Shu; Yukilevich, Roman; Chen, Ying; Turissini, David A; Zeng, Kai; Boussy, Ian A; Wu, Chung-I
2012-06-01
The extent and nature of genetic incompatibilities between incipient races and sibling species is of fundamental importance to our view of speciation. However, with the exception of hybrid inviability and sterility factors, little is known about the extent of other, more subtle genetic incompatibilities between incipient species. Here we experimentally demonstrate the prevalence of such genetic incompatibilities between two young allopatric sibling species, Drosophila simulans and D. sechellia. Our experiments took advantage of 12 introgression lines that carried random introgressed D. sechellia segments in different parts of the D. simulans genome. First, we found that these introgression lines did not show any measurable sterility or inviability effects. To study if these sechellia introgressions in a simulans background contained other fitness consequences, we competed and genetically tracked the marked alleles within each introgression against the wild-type alleles for 20 generations. Strikingly, all marked D. sechellia introgression alleles rapidly decreased in frequency in only 6 to 7 generations. We then developed computer simulations to model our competition results. These simulations indicated that selection against D. sechellia introgression alleles was high (average s = 0.43) and that the marker alleles and the incompatible alleles did not separate in 78% of the introgressions. The latter result likely implies that most introgressions contain multiple genetic incompatibilities. Thus, this study reveals that, even at early stages of speciation, many parts of the genome diverge to a point where introducing foreign elements has detrimental fitness consequences, but which cannot be seen using standard sterility and inviability assays.
COMPETITIVE INFLUENCE OF PHOSPHORUS AND CALCIUM ON PB IN-VITRO BIOAVAILABILITY
The bioavailability of a metal is heavily related to the speciation of the particular metal. Further, the complexity of examining metal bioavailability is compounded by the presence of competitive ions. Thus, equally contaminated soils with varying concentrations of competitive e...
REE speciation in low-temperature acidic waters and the competitive effects of aluminum
Gimeno, Serrano M.J.; Auque, Sanz L.F.; Nordstrom, D. Kirk
2000-01-01
The effect of simultaneous competitive speciation of dissolved rare earth elements (REEs) in acidic waters (pH 3.3 to 5.2) has been evaluated by applying the PHREEQE code to the speciation of water analyses from Spain, Brazil, USA, and Canada. The main ions that might affect REE are Al3+, F-, SO42-, and PO43-. Fluoride, normally a significant complexer of REEs, is strongly associated with Al3+ in acid waters and consequently has little influence on REEs. The inclusion of aluminum concentrations in speciation calculations for acidic waters is essential for reliable speciation of REEs. Phosphate concentrations are too low (10-4 to 10-7 m) to affect REE speciation. Consequently, SO42- is the only important complexing ligand for REEs under these conditions. According to Millero [Millero, F.J., 1992. Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta, 56, 3123-3132], the lanthanide sulfate stability constants are nearly constant with increasing atomic number so that no REE fractionation would be anticipated from aqueous complexation in acidic waters. Hence, REE enrichments or depletions must arise from mass transfer reactions. (C) 2000 Elsevier Science B.V. All rights reserved.
Niche filling slows the diversification of Himalayan songbirds.
Price, Trevor D; Hooper, Daniel M; Buchanan, Caitlyn D; Johansson, Ulf S; Tietze, D Thomas; Alström, Per; Olsson, Urban; Ghosh-Harihar, Mousumi; Ishtiaq, Farah; Gupta, Sandeep K; Martens, Jochen; Harr, Bettina; Singh, Pratap; Mohan, Dhananjai
2014-05-08
Speciation generally involves a three-step process--range expansion, range fragmentation and the development of reproductive isolation between spatially separated populations. Speciation relies on cycling through these three steps and each may limit the rate at which new species form. We estimate phylogenetic relationships among all Himalayan songbirds to ask whether the development of reproductive isolation and ecological competition, both factors that limit range expansions, set an ultimate limit on speciation. Based on a phylogeny for all 358 species distributed along the eastern elevational gradient, here we show that body size and shape differences evolved early in the radiation, with the elevational band occupied by a species evolving later. These results are consistent with competition for niche space limiting species accumulation. Even the elevation dimension seems to be approaching ecological saturation, because the closest relatives both inside the assemblage and elsewhere in the Himalayas are on average separated by more than five million years, which is longer than it generally takes for reproductive isolation to be completed; also, elevational distributions are well explained by resource availability, notably the abundance of arthropods, and not by differences in diversification rates in different elevational zones. Our results imply that speciation rate is ultimately set by niche filling (that is, ecological competition for resources), rather than by the rate of acquisition of reproductive isolation.
The bioavailability of a metal is heavily related to the speciation of the particular metal. Further, the complexity of examining metal bioavailability is compounded by the presence of competitive ions. Thus, equally contaminated soils with varying concentrations of competitive e...
Kautt, Andreas F; Machado-Schiaffino, Gonzalo; Torres-Dowdall, Julian; Meyer, Axel
2016-08-01
Understanding how speciation can occur without geographic isolation remains a central objective in evolutionary biology. Generally, some form of disruptive selection and assortative mating are necessary for sympatric speciation to occur. Disruptive selection can arise from intraspecific competition for resources. If this competition leads to the differential use of habitats and variation in relevant traits is genetically determined, then assortative mating can be an automatic consequence (i.e., habitat isolation). In this study, we caught Midas cichlid fish from the limnetic (middle of the lake) and benthic (shore) habitats of Crater Lake Asososca Managua to test whether some of the necessary conditions for sympatric speciation due to intraspecific competition and habitat isolation are given. Lake As. Managua is very small (<900 m in diameter), extremely young (maximally 1245 years of age), and completely isolated. It is inhabited by, probably, only a single endemic species of Midas cichlids, Amphilophus tolteca. We found that fish from the limnetic habitat were more elongated than fish collected from the benthic habitat, as would be predicted from ecomorphological considerations. Stable isotope analyses confirmed that the former also exhibit a more limnetic lifestyle than the latter. Furthermore, split-brood design experiments in the laboratory suggest that phenotypic plasticity is unlikely to explain much of the observed differences in body elongation that we observed in the field. Yet, neutral markers (microsatellites) did not reveal any genetic clustering in the population. Interestingly, demographic inferences based on RAD-seq data suggest that the apparent lack of genetic differentiation at neutral markers could simply be due to a lack of time, as intraspecific competition may only have begun a few hundred generations ago.
Tran, Lucy A P
2016-04-01
Biotic and abiotic factors often are treated as mutually exclusive drivers of diversification processes. In this framework, ecological specialists are expected to have higher speciation rates than generalists if abiotic factors are the primary controls on species diversity but lower rates if biotic interactions are more important. Speciation rate is therefore predicted to positively correlate with ecological specialization in the purely abiotic model but negatively correlate in the biotic model. In this study, I show that the positive relationship between ecological specialization and speciation expected from the purely abiotic model is recovered only when a species-specific trait, digestive strategy, is modeled in the terrestrial, herbivorous mammals (Mammalia). This result suggests a more nuanced model in which the response of specialized lineages to abiotic factors is dependent on a biological trait. I also demonstrate that the effect of digestive strategy on the ecological specialization-speciation rate relationship is not due to a difference in either the degree of ecological specialization or the speciation rate between foregut- and hindgut-fermenting mammals. Together, these findings suggest that a biological trait, alongside historical abiotic events, played an important role in shaping mammal speciation at long temporal and large geographic scales.
Social selection parapatry in Afrotropical sunbirds.
McEntee, Jay P; Peñalba, Joshua V; Werema, Chacha; Mulungu, Elia; Mbilinyi, Maneno; Moyer, David; Hansen, Louis; Fjeldså, Jon; Bowie, Rauri C K
2016-06-01
The extent of range overlap of incipient and recent species depends on the type and magnitude of phenotypic divergence that separates them, and the consequences of phenotypic divergence on their interactions. Signal divergence by social selection likely initiates many speciation events, but may yield niche-conserved lineages predisposed to limit each others' ranges via ecological competition. Here, we examine this neglected aspect of social selection speciation theory in relation to the discovery of a nonecotonal species border between sunbirds. We find that Nectarinia moreaui and Nectarinia fuelleborni meet in a ∼6 km wide contact zone, as estimated by molecular cline analysis. These species exploit similar bioclimatic niches, but sing highly divergent learned songs, consistent with divergence by social selection. Cline analyses suggest that within-species stabilizing social selection on song-learning predispositions maintains species differences in song despite both hybridization and cultural transmission. We conclude that ecological competition between moreaui and fuelleborni contributes to the stabilization of the species border, but that ecological competition acts in conjunction with reproductive interference. The evolutionary maintenance of learned song differences in a hybrid zone recommend this study system for future studies on the mechanisms of learned song divergence and its role in speciation. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Hossain, M A; Furumai, H; Nakajima, F
2009-01-01
Accumulation of heavy metals at elevated concentration and potential of considerable amount of the accumulated heavy metals to reach the soil system was observed from earlier studies in soakaways sediments within an infiltration facility in Tokyo, Japan. In order to understand the competitive adsorption behaviour of heavy metals Zn, Ni and Cu in soil, competitive batch adsorption experiments were carried out using single metal and binary metal combinations on soil samples representative of underlying soil and surface soil at the site. Speciation analysis of the adsorbed metals was carried out through BCR sequential extraction method. Among the metals, Cu was not affected by competition while Zn and Ni were affected by competition of coexisting metals. The parameters of fitted 'Freundlich' and 'Langmuir' isotherms indicated more intense competition in underlying soil compared to surface soil for adsorption of Zn and Ni. The speciation of adsorbed metals revealed less selectivity of Zn and Ni to soil organic matter, while dominance of organic bound fraction was observed for Cu, especially in organic rich surface soil. Compared to underlying soil, the surface soil is expected to provide greater adsorption to heavy metals as well as provide greater stability to adsorbed metals, especially for Cu.
The evolution of conditional dispersal and reproductive isolation along environmental gradients
Payne, Joshua L.; Mazzucco, Rupert; Dieckmann, Ulf
2011-01-01
Dispersal modulates gene flow throughout a population’s spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels dramatically lower the speciation-enabling slope of the environmental gradient. PMID:21194533
The evolution of conditional dispersal and reproductive isolation along environmental gradients.
Payne, Joshua L; Mazzucco, Rupert; Dieckmann, Ulf
2011-03-21
Dispersal modulates gene flow throughout a population's spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels dramatically lower the speciation-enabling slope of the environmental gradient. Copyright © 2010 Elsevier Ltd. All rights reserved.
Competitions between prosocial exclusions and punishments in finite populations
NASA Astrophysics Data System (ADS)
Liu, Linjie; Chen, Xiaojie; Szolnoki, Attila
2017-04-01
Prosocial punishment has been proved to be a powerful mean to promote cooperation. Recent studies have found that social exclusion, which indeed can be regarded as a kind of punishment, can also support cooperation. However, if prosocial punishment and exclusion are both present, it is still unclear which strategy is more advantageous to curb free-riders. Here we first study the direct competition between different types of punishment and exclusion. We find that pool (peer) exclusion can always outperform pool (peer) punishment both in the optional and in the compulsory public goods game, no matter whether second-order sanctioning is considered or not. Furthermore, peer exclusion does better than pool exclusion both in the optional and in the compulsory game, but the situation is reversed in the presence of second-order exclusion. Finally, we extend the competition among all possible sanctioning strategies and find that peer exclusion can outperform all other strategies in the absence of second-order exclusion and punishment, while pool exclusion prevails when second-order sanctioning is possible. Our results demonstrate that exclusion is a more powerful strategy than punishment for the resolution of social dilemmas.
Color and behavior differently predict competitive outcomes for divergent stickleback color morphs
Lehto, Whitley R; Lierheimer, V Faith
2018-01-01
Abstract Our knowledge of how male competition contributes to speciation is dominated by investigations of competition between within-species morphs or closely related species that differ in conspicuous traits expressed during the breeding season (e.g. color, song). In such studies, it is important to consider the manner in which putatively sexually selected traits influence the outcome of competitive interactions within and between types because these traits can communicate information about competitor quality and may not be utilized by homotypic and heterotypic receivers in the same way. We studied the roles of breeding color and aggressive behaviors in competition within and between two divergent threespine stickleback Gasterosteus aculeatus color types. Our previous work in this system showed that the switch from red to black breeding coloration is associated with changes in male competition biases. Here, we find that red and black males also use different currencies in competition. Winners of both color types performed more aggressive behaviors than losers, regardless of whether the competitor was of the same or opposite color type. But breeding color differently predicted competitive outcomes for red and black males. Males who were redder at the start of competition were more likely to win when paired with homotypic competitors and less likely to win when paired with heterotypic competitors. In contrast, black color, though expressed in the breeding season and condition dependent, was unrelated to competitive outcomes. Placing questions about the role of male competition in speciation in a sexual signal evolution framework may provide insight into the “why and how” of aggression biases and asymmetries in competitive ability between closely related morphs and species. PMID:29492044
Liu, Baoyan; Alström, Per; Olsson, Urban; Fjeldså, Jon; Quan, Qing; Roselaar, Kees C S; Saitoh, Takema; Yao, Cheng-Te; Hao, Yan; Wang, Wenjuan; Qu, Yanhua; Lei, Fumin
2017-08-01
Our objective was to elucidate the biogeography and speciation patterns in an entire avian family, which shows a complex pattern of overlapping and nonoverlapping geographical distributions, and much variation in plumage, but less in size and structure. We estimated the phylogeny and divergence times for all of the world's species of Prunella based on multiple genetic loci, and analyzed morphometric divergence and biogeographical history. The common ancestor of Prunella was present in the Sino-Himalayan Mountains or these mountains and Central Asia-Mongolia more than 9 million years ago (mya), but a burst of speciations took place during the mid-Pliocene to early Pleistocene. The relationships among the six primary lineages resulting from that differentiation are unresolved, probably because of the rapid radiation. A general increase in sympatry with increasing time since divergence is evident. With one exception, species in clades younger than c. 3.7 my are allopatric. Species that are widely sympatric, including the most recently diverged (2.4 mya) sympatric sisters, are generally more divergent in size/structure than allo-/parapatric close relatives. The distributional pattern and inferred ages suggest divergence in allopatry and substantial waiting time until secondary contact, likely due to competitive exclusion. All sympatrically breeding species are ecologically segregated, as suggested by differences in size/structure and habitat. Colonizations of new areas were facilitated during glacial periods, followed by fragmentation during interglacials-contrary to the usual view that glacial periods resulted mainly in fragmentations.
USDA-ARS?s Scientific Manuscript database
Biological control of aflatoxin contamination by Aspergillus flavus is achieved by competitive exclusion of aflatoxin producers by atoxigenic strains. However, factors dictating the extent to which competitive displacement occurs during host infection are unknown. The role of preemptive exclusion in...
Postcopulatory sexual selection generates speciation phenotypes in Drosophila.
Manier, Mollie K; Lüpold, Stefan; Belote, John M; Starmer, William T; Berben, Kirstin S; Ala-Honkola, Outi; Collins, William F; Pitnick, Scott
2013-10-07
Identifying traits that reproductively isolate species, and the selective forces underlying their divergence, is a central goal of evolutionary biology and speciation research. There is growing recognition that postcopulatory sexual selection, which can drive rapid diversification of interacting ejaculate and female reproductive tract traits that mediate sperm competition, may be an engine of speciation. Conspecific sperm precedence (CSP) is a taxonomically widespread form of reproductive isolation, but the selective causes and divergent traits responsible for CSP are poorly understood. To test the hypothesis that postcopulatory sexual selection can generate reproductive isolation, we expressed GFP or RFP in sperm heads of recently diverged sister species, Drosophila simulans and D. mauritiana, to enable detailed resolution of species-specific sperm precedence mechanisms. Between-species divergence in sperm competition traits and mechanisms prompted six a priori predictions regarding mechanisms of CSP and degree of cross asymmetry in reproductive isolation. We resolved four distinct mechanisms of CSP that were highly consistent with predictions. These comprise interactions between multiple sex-specific traits, including two independent mechanisms by which females exert sophisticated control over sperm fate to favor the conspecific male. Our results confirm that reproductive isolation can quickly arise from diversifying (allopatric) postcopulatory sexual selection. This experimental approach to "speciation phenotypes" illustrates how knowledge of sperm precedence mechanisms can be used to predict the mechanisms and extent of reproductive isolation between populations and species. Copyright © 2013 Elsevier Ltd. All rights reserved.
2012-01-01
The theory of speciation is dominated by adaptationist thinking, with less attention to mechanisms that do not affect species adaptation. Degeneracy – the imperfect specificity of interactions between diverse elements of biological systems and their environments – is key to the adaptability of populations. A mathematical model was explored in which population and resource were distributed one-dimensionally according to trait value. Resource consumption was degenerate – neither strictly location-specific nor location-independent. As a result, the competition for resources among the elements of the population was non-local. Two modeling approaches, a modified differential-integral Verhulstian equation and a cellular automata model, showed similar results: narrower degeneracy led to divergent dynamics with suppression of intermediate forms, whereas broader degeneracy led to suppression of diversifying forms, resulting in population stasis with increasing phenotypic homogeneity. Such behaviors did not increase overall adaptation because they continued after the model populations achieved maximal resource consumption rates, suggesting that degeneracy-driven distributed competition for resources rather than selective pressure toward more efficient resource exploitation was the driving force. The solutions were stable in the presence of limited environmental stochastic variability or heritable phenotypic variability. A conclusion was made that both dynamic diversification and static homogeneity of populations may be outcomes of the same process – distributed competition for resource not affecting the overall adaptation – with the difference between them defined by the spread of trait degeneracy in a given environment. Thus, biological degeneracy is a driving force of both speciation and stasis in biology, which, by themselves, are not necessarily adaptive in nature. PMID:23268831
A solution to the biodiversity paradox by logical deterministic cellular automata.
Kalmykov, Lev V; Kalmykov, Vyacheslav L
2015-06-01
The paradox of biological diversity is the key problem of theoretical ecology. The paradox consists in the contradiction between the competitive exclusion principle and the observed biodiversity. The principle is important as the basis for ecological theory. On a relatively simple model we show a mechanism of indefinite coexistence of complete competitors which violates the known formulations of the competitive exclusion principle. This mechanism is based on timely recovery of limiting resources and their spatio-temporal allocation between competitors. Because of limitations of the black-box modeling there was a problem to formulate the exclusion principle correctly. Our white-box multiscale model of two-species competition is based on logical deterministic individual-based cellular automata. This approach provides an automatic deductive inference on the basis of a system of axioms, and gives a direct insight into mechanisms of the studied system. It is one of the most promising methods of artificial intelligence. We reformulate and generalize the competitive exclusion principle and explain why this formulation provides a solution of the biodiversity paradox. In addition, we propose a principle of competitive coexistence.
OPTIMIZATION OF MODERN DISPERSIVE RAMAN SPECTROMETERS FOR MOLECULAR SPECIATION OF ORGANICS IN WATER
Pesticides and industrial chemicals are typically complex organic molecules with multiple heteroatoms that can ionize in water. However, models for understanding the behavior of these chemicals in the environment typically assume that they exist exclusively as neutral species --...
Code of Federal Regulations, 2010 CFR
2010-10-01
... open competition in the acquisition process and to provide for full and open competition, full and open competition after exclusion of sources, other than full and open competition, and competition advocates. This...
NASA Astrophysics Data System (ADS)
Chandrasekhar, Anoop; Sander, Sylvia; Milnes, Angie; Boyd, Philip
2015-04-01
Iron plays a significant role in the ocean productivity as a micro nutrient that facilitates the growth of marine phytoplankton and microbes. The bioavailability of iron in the ocean depends on it speciation. Iron is bio available in its dissolved form and about 99.9% of dissolved iron in seawater is organically complexed with natural ligands. The competitive ligand equilibration - adsorptive cathodic stripping voltammetry (CLE-AdCSV) is the widely used technique to examine Fe speciation. The method has its own limitations. The analytical window employed in this technique has a distinct impact on Fe speciation results (Buck, Moffett et al. 2012). Recently, (Pizeta, Sander et al. in preparation) have shown that the accuracy of complexometric titrations improve if multiple analytical windows (MAW) are solved as a united dataset. Several programs are now available that enable this approach with the KMS (Kineteql.xls , Hudson 2014), which is based on an Excel application based on speciation calculation (Hudson, Rue et al. 2003, Sander, Hunter et al. 2011), being one of them. In the present work, the unified MAW data analysis method is applied to determine iron speciation by CLE-AdCSV with salicyl aldoxime (SA) (Abualhaija and van den Berg 2014) in real seawater samples from the Spring bloom FeCycle III voyage, which took place in an anticyclonic eddy in subtropical waters east of New Zealand in spring 2012. Two different analytical windows (5 and 15µM SA) were applied to samples from depth profiles taken during this cruise. The data obtained was analysed using the program KMS (Kineteql.xls). Most samples only returned one Fe-binding ligands class. Higher ligand concentrations were observed in the upper water column and the stability constants were above 22 (e.g. 22.25 ± 0.21 for station 63). Our results will be discussed in the context of microbial community distribution as well as other biogeochemical parameters. Abualhaija, M. M. and C. M. G. van den Berg (2014). "Chemical speciation of iron in seawater using catalytic cathodic stripping voltammetry with ligand competition against salicylaldoxime." Marine Chemistry 164(0): 60-74. Buck, K. N., J. Moffett, K. A. Barbeau, R. M. Bundy, Y. Kondo and J. Wu (2012). "The organic complexation of iron and copper: an intercomparison of competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) techniques " Limnology and Oceanography: Methods 10: 496-515. Hudson, R. J. M., E. L. Rue and K. W. Bruland (2003). "Modeling Complexometric Titrations of Natural Water Samples." Environ. Sci. Tech. 37: 1553-1562. Pizeta, I., S. G. Sander, O. Baars, K. Buck, R. Bundy, G. Carrasco, P. Croot, C. Garnier, L. Gerringa, M. Gledhill, K. Hirose, D. R. Hudson, Y. Kondo-Jacquot, L. Laglera, D. Omanovic, M. Rijkenberg, B. Twining and M. Wells (in preparation). "Intercomparison of estimating metal binding ligand parameters from simulated titration data using different fitting approaches." for Limnology and Oceanography: Methods. Sander, S. G., K. A. Hunter, H. Harms and M. Wells (2011). "Numerical approach to speciation and estimation of parameters used in modeling trace metal bioavailability." Environmental Science and Technology 45(15): 6388-6395.
NASA Technical Reports Server (NTRS)
Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.
2014-01-01
The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values attained at very low metal loading conditions are compared to existing literature data. Overall, experimental data suggest that the tetravalent transition metal/-actinide-humic acid complexation is important over a wide range of pH values, including mildly acidic conditions, and thus, these complexes should be included in speciation models.
Groenenberg, Jan E; Koopmans, Gerwin F; Comans, Rob N J
2010-02-15
Ion binding models such as the nonideal competitive adsorption-Donnan model (NICA-Donnan) and model VI successfully describe laboratory data of proton and metal binding to purified humic substances (HS). In this study model performance was tested in more complex natural systems. The speciation predicted with the NICA-Donnan model and the associated uncertainty were compared with independent measurements in soil solution extracts, including the free metal ion activity and fulvic (FA) and humic acid (HA) fractions of dissolved organic matter (DOM). Potentially important sources of uncertainty are the DOM composition and the variation in binding properties of HS. HS fractions of DOM in soil solution extracts varied between 14 and 63% and consisted mainly of FA. Moreover, binding parameters optimized for individual FA samples show substantial variation. Monte Carlo simulations show that uncertainties in predicted metal speciation, for metals with a high affinity for FA (Cu, Pb), are largely due to the natural variation in binding properties (i.e., the affinity) of FA. Predictions for metals with a lower affinity (Cd) are more prone to uncertainties in the fraction FA in DOM and the maximum site density (i.e., the capacity) of the FA. Based on these findings, suggestions are provided to reduce uncertainties in model predictions.
USDA-ARS?s Scientific Manuscript database
The administration of nonpathogenic microflora in neonatal poultry has been employed to reduce or eliminate the colonization of enteric pathogens. This concept, also called competitive exclusion (CE), although effective against Salmonella, has not consistently worked against Campylobacter. Most CE...
USDA-ARS?s Scientific Manuscript database
Biological control of foodborne pathogens may complement postharvest intervention measures to enhance food safety of minimally processed produce. The purpose of this research was to develop cost model estimates for application of competitive exclusion process (CEM) using Pseudomonas chlororaphis and...
USDA-ARS?s Scientific Manuscript database
Biocontrol measures may enhance postharvest interventions, however; published research on process-based models for biocontrol of foodborne pathogens on produce is limited. The aim of this research was to develop cost model estimates for competitive exclusion process using Pseudomonas fluorescens and...
Therese M. Poland; John H. Borden
1998-01-01
We tested the feasibility of competitive exclusion as a potential management tactic for the spruce beetle, Dendroctonus rufipennis Kirby, using pre-attack baiting with pheromones of 2 secondary species, Ips tridens Mannerheim and Dryocoetes affaber Mannerheim. Spruce beetle attack densities, gallery lengths per...
The anthropogenic and geological occurrence of arsenic (As) results in human exposure to a potentially carcinogenic element. The two predominant pathways to As exposure are drinking water (DW) and dietary ingestion (DI). DW exposures are almost exclusively toxic inorganic As. ...
X exceptionalism in Caenorhabditis speciation.
Cutter, Asher D
2017-11-13
Speciation genetics research in diverse organisms shows the X-chromosome to be exceptional in how it contributes to "rules" of speciation. Until recently, however, the nematode phylum has been nearly silent on this issue, despite the model organism Caenorhabditis elegans having touched most other topics in biology. Studies of speciation with Caenorhabditis accelerated with the recent discovery of species pairs showing partial interfertility. The resulting genetic analyses of reproductive isolation in nematodes demonstrate key roles for the X-chromosome in hybrid male sterility and inviability, opening up new understanding of the genetic causes of Haldane's rule, Darwin's corollary to Haldane's rule, and enabling tests of the large-X effect hypothesis. Studies to date implicate improper chromatin regulation of the X-chromosome by small RNA pathways as integral to hybrid male dysfunction. Sexual transitions in reproductive mode to self-fertilizing hermaphroditism inject distinctive molecular evolutionary features into the speciation process for some species. Caenorhabditis also provides unique opportunities for analysis in a system with XO sex determination that lacks a Y-chromosome, sex chromosome-dependent sperm competition differences and mechanisms of gametic isolation, exceptional accessibility to the development process and rapid experimental evolution. As genetic analysis of reproductive isolation matures with investigation of multiple pairs of Caenorhabditis species and new species discovery, nematodes will provide a powerful complement to more established study organisms for deciphering the genetic basis of and rules to speciation. © 2017 John Wiley & Sons Ltd.
Yackulic, Charles B.
2016-01-01
There is considerable debate about the role of competition in shaping species distributions over broad spatial extents. This debate has practical implications because predicting changes in species' geographic ranges in response to ongoing environmental change would be simpler if competition could be ignored. While this debate has been the subject of many reviews, recent literature has not addressed the rates of relevant processes. This omission is surprising in that ecologists hypothesized decades ago that regional competitive exclusion is a slow process. The goal of this review is to reassess the debate under the hypothesis that competitive exclusion over broad spatial extents is a slow process.Available evidence, including simulations presented for the first time here, suggests that competitive exclusion over broad spatial extents occurs slowly over temporal extents of many decades to millennia. Ecologists arguing against an important role for competition frequently study modern patterns and/or range dynamics over periods of decades, while much of the evidence for competition shaping geographic ranges at broad spatial extents comes from paleoecological studies over time scales of centuries or longer. If competition is slow, as evidence suggests, the geographic distributions of some, perhaps many species, would continue to change over time scales of decades to millennia, even if environmental conditions did not continue to change. If the distributions of competing species are at equilibrium it is possible to predict species distributions based on observed species–environment relationships. However, disequilibrium is widespread as a result of competition and many other processes. Studies whose goal is accurate predictions over intermediate time scales (decades to centuries) should focus on factors associated with range expansion (colonization) and loss (local extinction), as opposed to current patterns. In general, understanding of modern range dynamics would be enhanced by considering the rates of relevant processes.
Intraspecific competition favours niche width expansion in Drosophila melanogaster.
Bolnick, D I
2001-03-22
Ecologists have proposed that when interspecific competition is reduced, competition within a species becomes a potent evolutionary force leading to rapid diversification. This view reflects the observation that populations invading species-poor communities frequently evolve broader niches. Niche expansion can be associated with an increase in phenotypic variance (known as character release), with the evolution of polymorphisms, or with divergence into many species using distinct resources (adaptive radiation). The relationship between intraspecific competition and diversification is known from theory, and has been used as the foundation for some models of speciation. However, there has been little empirical proof that niches evolve in response to intraspecific competition. To test this hypothesis, I introduced cadmium-intolerant Drosophila melanogaster populations to environments containing both cadmium-free and cadmium-laced resources. Here I show that populations experiencing high competition adapted to cadmium more rapidly than low competition populations. This provides experimental confirmation that competition in a population can drive niche expansion onto new resources for which competition is less severe.
Thermodynamic behavior of a phase transition in a model for sympatric speciation
NASA Astrophysics Data System (ADS)
Luz-Burgoa, K.; Moss de Oliveira, S.; Schwämmle, Veit; Sá Martins, J. S.
2006-08-01
We investigate the macroscopic effects of the ingredients that drive the origin of species through sympatric speciation. In our model, sympatric speciation is obtained as we tune up the strength of competition between individuals with different phenotypes. As a function of this control parameter, we can characterize, through the behavior of a macroscopic order parameter, a phase transition from a nonspeciation to a speciation state of the system. The behavior of the first derivative of the order parameter with respect to the control parameter is consistent with a phase transition and exhibits a sharp peak at the transition point. For different resources distribution, the transition point is shifted, an effect similar to pressure in a PVT system. The inverse of the parameter related to a sexual selection strength behaves like an external field in the system and, as thus, is also a control parameter. The macroscopic effects of the biological parameters used in our model are a reminiscent of the behavior of thermodynamic quantities in a phase transition of an equilibrium physical system.
47 CFR 22.201 - Paging geographic area authorizations are subject to competitive bidding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Licensing Requirements and Procedures Competitive.... Mutually exclusive initial applications for paging geographic area licenses are subject to competitive...
Sexual selection accelerates signal evolution during speciation in birds.
Seddon, Nathalie; Botero, Carlos A; Tobias, Joseph A; Dunn, Peter O; Macgregor, Hannah E A; Rubenstein, Dustin R; Uy, J Albert C; Weir, Jason T; Whittingham, Linda A; Safran, Rebecca J
2013-09-07
Sexual selection is proposed to be an important driver of diversification in animal systems, yet previous tests of this hypothesis have produced mixed results and the mechanisms involved remain unclear. Here, we use a novel phylogenetic approach to assess the influence of sexual selection on patterns of evolutionary change during 84 recent speciation events across 23 passerine bird families. We show that elevated levels of sexual selection are associated with more rapid phenotypic divergence between related lineages, and that this effect is restricted to male plumage traits proposed to function in mate choice and species recognition. Conversely, we found no evidence that sexual selection promoted divergence in female plumage traits, or in male traits related to foraging and locomotion. These results provide strong evidence that female choice and male-male competition are dominant mechanisms driving divergence during speciation in birds, potentially linking sexual selection to the accelerated evolution of pre-mating reproductive isolation.
Omnivory in birds is a macroevolutionary sink
Burin, Gustavo; Kissling, W. Daniel; Guimarães, Paulo R.; Şekercioğlu, Çağan H.; Quental, Tiago B.
2016-01-01
Diet is commonly assumed to affect the evolution of species, but few studies have directly tested its effect at macroevolutionary scales. Here we use Bayesian models of trait-dependent diversification and a comprehensive dietary database of all birds worldwide to assess speciation and extinction dynamics of avian dietary guilds (carnivores, frugivores, granivores, herbivores, insectivores, nectarivores, omnivores and piscivores). Our results suggest that omnivory is associated with higher extinction rates and lower speciation rates than other guilds, and that overall net diversification is negative. Trait-dependent models, dietary similarity and network analyses show that transitions into omnivory occur at higher rates than into any other guild. We suggest that omnivory acts as macroevolutionary sink, where its ephemeral nature is retrieved through transitions from other guilds rather than from omnivore speciation. We propose that these dynamics result from competition within and among dietary guilds, influenced by the deep-time availability and predictability of food resources. PMID:27052750
NASA Astrophysics Data System (ADS)
Morra, Matthew J.; Fendorf, Scott E.; Brown, Paul D.
1997-02-01
Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils.
Fate of heavy metals during municipal solid waste incineration.
Abanades, S; Flamant, G; Gagnepain, B; Gauthier, D
2002-02-01
A thermodynamic analysis was performed to determine whether it is suitable to predict the heavy metal (HM) speciation during the Municipal Solid Waste Incineration process. The fate of several selected metals (Cd, Pb, Zn, Cr, Hg, As, Cu, Co, Ni) during incineration was theoretically investigated. The equilibrium analysis predicted the metal partitioning during incineration and determined the impact of operating conditions (temperature and gas composition) on their speciation. The study of the gas composition influence was based on the effects of the contents of oxygen (reducing or oxidising conditions) and chlorine on the HM partitioning. The theoretical HM speciation which was calculated in a complex system representing a burning sample of Municipal Solid Waste can explain the real partitioning (obtained from literature results) of all metals among the various ashes except for Pb. Then, the results of the thermodynamic study were compared with those of characterisation of real incinerator residues, using complementary techniques (chemical extraction series and X-ray micro-analyses). These analysis were performed to determine experimentally the speciation of the three representative metals Cr, Pb, and Zn. The agreement is good for Cr and Zn but not for Pb again, which mainly shows unleachable chemical speciations in the residues. Pb tends to remain in the bottom ash whereas thermodynamics often predicts its complete volatilisation under chlorides, and thus its presence exclusively in fly ash.
48 CFR 6.204 - Section 8(a) competition.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Section 8(a) competition. 6.204 Section 6.204 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 6.204...
48 CFR 6.200 - Scope of subpart.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 6.200 Scope of subpart. This subpart prescribes policies and procedures for providing for full and open competition after excluding one or more sources. ...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Exclusions. 19.1006 Section 19.1006 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Small Business Competitiveness Demonstration Program 19.1006 Exclusions...
Antipredator defenses predict diversification rates
Arbuckle, Kevin; Speed, Michael P.
2015-01-01
The “escape-and-radiate” hypothesis predicts that antipredator defenses facilitate adaptive radiations by enabling escape from constraints of predation, diversified habitat use, and subsequently speciation. Animals have evolved diverse strategies to reduce the direct costs of predation, including cryptic coloration and behavior, chemical defenses, mimicry, and advertisement of unprofitability (conspicuous warning coloration). Whereas the survival consequences of these alternative defenses for individuals are well-studied, little attention has been given to the macroevolutionary consequences of alternative forms of defense. Here we show, using amphibians as the first, to our knowledge, large-scale empirical test in animals, that there are important macroevolutionary consequences of alternative defenses. However, the escape-and-radiate hypothesis does not adequately describe them, due to its exclusive focus on speciation. We examined how rates of speciation and extinction vary across defensive traits throughout amphibians. Lineages that use chemical defenses show higher rates of speciation as predicted by escape-and-radiate but also show higher rates of extinction compared with those without chemical defense. The effect of chemical defense is a net reduction in diversification compared with lineages without chemical defense. In contrast, acquisition of conspicuous coloration (often used as warning signals or in mimicry) is associated with heightened speciation rates but unchanged extinction rates. We conclude that predictions based on the escape-and-radiate hypothesis must incorporate the effect of traits on both speciation and extinction, which is rarely considered in such studies. Our results also suggest that knowledge of defensive traits could have a bearing on the predictability of extinction, perhaps especially important in globally threatened taxa such as amphibians. PMID:26483488
Floor, Geerke H; Iglesías, Mònica; Román-Ross, Gabriela; Corvini, Philippe F X; Lenz, Markus
2011-09-01
Speciation plays a crucial role in elemental mobility. However, trace level selenium (Se) speciation analyses in aqueous samples from acidic environments are hampered due to adsorption of the analytes (i.e. selenate, selenite) on precipitates. Such solid phases can form during pH adaptation up till now necessary for chromatographic separation. Thermodynamic calculations in this study predicted that a pH<4 is needed to prevent precipitation of Al and Fe phases. Therefore, a speciation method with a low pH eluent that matches the natural sample pH of acid rain-soil interaction samples from Etna volcano was developed. With a mobile phase containing 20mM ammonium citrate at pH 3, selenate and selenite could be separated in different acidic media (spiked water, rain, soil leachates) in <10 min with a LOQ of 0.2 μg L(-1) using (78)Se for detection. Applying this speciation analysis to study acid rain-soil interaction using synthetic rain based on H(2)SO(4) and soil samples collected at the flanks of Etna volcano demonstrated the dominance of selenate over selenite in leachates from samples collected close to the volcanic craters. This suggests that competitive behavior with sulfate present in acid rain might be a key factor in Se mobilization. The developed speciation method can significantly contribute to understand Se cycling in acidic, Al/Fe rich environments. Copyright © 2011 Elsevier Ltd. All rights reserved.
47 CFR 80.1251 - Maritime communications subject to competitive bidding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Maritime communications subject to competitive... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Competitive Bidding Procedures § 80.1251 Maritime communications subject to competitive bidding. Mutually exclusive initial applications for VPCSA...
Considine, Michael J.; Wan, Yizhen; D'Antuono, Mario F.; Zhou, Qian; Han, Mingyu; Gao, Hua; Wang, Man
2012-01-01
Polyploidization results in genome duplication and is an important step in evolution and speciation. The Malus genome confirmed that this genus was derived through auto-polyploidization, yet the genetic and meiotic mechanisms for polyploidization, particularly for aneuploidization, are unclear in this genus or other woody perennials. In fact the contribution of aneuploidization remains poorly understood throughout Plantae. We add to this knowledge by characterization of eupolyploidization and aneuploidization in 27,542 F1 seedlings from seven diploid Malus populations using cytology and microsatellite markers. We provide the first evidence that aneuploidy exceeds eupolyploidy in the diploid crosses, suggesting aneuploidization is a leading cause of genome duplication. Gametes from diploid Malus had a unique combinational pattern; ova preserved euploidy exclusively, while spermatozoa presented both euploidy and aneuploidy. All non-reduced gametes were genetically heterozygous, indicating first-division restitution was the exclusive mode for Malus eupolyploidization and aneuploidization. Chromosome segregation pattern among aneuploids was non-uniform, however, certain chromosomes were associated for aneuploidization. This study is the first to provide molecular evidence for the contribution of heterozygous non-reduced gametes to fitness in polyploids and aneuploids. Aneuploidization can increase, while eupolyploidization may decrease genetic diversity in their newly established populations. Auto-triploidization is important for speciation in the extant Malus. The features of Malus polyploidization confer genetic stability and diversity, and present heterozygosity, heterosis and adaptability for evolutionary selection. A protocol using co-dominant markers was proposed for accelerating apple triploid breeding program. A path was postulated for evolution of numerically odd basic chromosomes. The model for Malus derivation was considerably revised. Impacts of aneuploidization on speciation and evolution, and potential applications of aneuploids and polyploids in breeding and genetics for other species were evaluated in depth. This study greatly improves our understanding of evolution, speciation, and adaptation of the Malus genus, and provides strategies to exploit polyploidization in other species. PMID:22253724
Considine, Michael J; Wan, Yizhen; D'Antuono, Mario F; Zhou, Qian; Han, Mingyu; Gao, Hua; Wang, Man
2012-01-01
Polyploidization results in genome duplication and is an important step in evolution and speciation. The Malus genome confirmed that this genus was derived through auto-polyploidization, yet the genetic and meiotic mechanisms for polyploidization, particularly for aneuploidization, are unclear in this genus or other woody perennials. In fact the contribution of aneuploidization remains poorly understood throughout Plantae. We add to this knowledge by characterization of eupolyploidization and aneuploidization in 27,542 F₁ seedlings from seven diploid Malus populations using cytology and microsatellite markers. We provide the first evidence that aneuploidy exceeds eupolyploidy in the diploid crosses, suggesting aneuploidization is a leading cause of genome duplication. Gametes from diploid Malus had a unique combinational pattern; ova preserved euploidy exclusively, while spermatozoa presented both euploidy and aneuploidy. All non-reduced gametes were genetically heterozygous, indicating first-division restitution was the exclusive mode for Malus eupolyploidization and aneuploidization. Chromosome segregation pattern among aneuploids was non-uniform, however, certain chromosomes were associated for aneuploidization. This study is the first to provide molecular evidence for the contribution of heterozygous non-reduced gametes to fitness in polyploids and aneuploids. Aneuploidization can increase, while eupolyploidization may decrease genetic diversity in their newly established populations. Auto-triploidization is important for speciation in the extant Malus. The features of Malus polyploidization confer genetic stability and diversity, and present heterozygosity, heterosis and adaptability for evolutionary selection. A protocol using co-dominant markers was proposed for accelerating apple triploid breeding program. A path was postulated for evolution of numerically odd basic chromosomes. The model for Malus derivation was considerably revised. Impacts of aneuploidization on speciation and evolution, and potential applications of aneuploids and polyploids in breeding and genetics for other species were evaluated in depth. This study greatly improves our understanding of evolution, speciation, and adaptation of the Malus genus, and provides strategies to exploit polyploidization in other species.
UK Higher Education: Competitive Forces in the 21st Century.
ERIC Educational Resources Information Center
Webber, G. C.
2000-01-01
Considers United Kingdom higher education in the context of Michael Porter's book, "Competitive Strategy," which discusses five forces governing competition. Focusing mainly, but not exclusively, on teaching, the monograph identifies critical factors that have influenced the balance of competitive forces in higher education and…
An ecocultural model predicts Neanderthal extinction through competition with modern humans.
Gilpin, William; Feldman, Marcus W; Aoki, Kenichi
2016-02-23
Archaeologists argue that the replacement of Neanderthals by modern humans was driven by interspecific competition due to a difference in culture level. To assess the cogency of this argument, we construct and analyze an interspecific cultural competition model based on the Lotka-Volterra model, which is widely used in ecology, but which incorporates the culture level of a species as a variable interacting with population size. We investigate the conditions under which a difference in culture level between cognitively equivalent species, or alternatively a difference in underlying learning ability, may produce competitive exclusion of a comparatively (although not absolutely) large local Neanderthal population by an initially smaller modern human population. We find, in particular, that this competitive exclusion is more likely to occur when population growth occurs on a shorter timescale than cultural change, or when the competition coefficients of the Lotka-Volterra model depend on the difference in the culture levels of the interacting species.
Li, Lina; Chesson, Peter
2016-08-01
Hutchinson's famous hypothesis for the "paradox of the plankton" has been widely accepted, but critical aspects have remained unchallenged. Hutchinson argued that environmental fluctuations would promote coexistence when the timescale for environmental change is comparable to the timescale for competitive exclusion. Using a consumer-resource model, we do find that timescales of processes are important. However, it is not the time to exclusion that must be compared with the time for environmental change but the time for resource depletion. Fast resource depletion, when resource consumption is favored for different species at different times, strongly promotes coexistence. The time for exclusion is independent of the rate of resource depletion. Therefore, the widely believed predictions of Hutchinson are misleading. Fast resource depletion, as determined by environmental conditions, ensures strong coupling of environmental processes and competition, which leads to enhancement over time of intraspecific competition relative to interspecific competition as environmental shifts favor different species at different times. This critical coupling is measured by the covariance between environment and competition. Changes in this quantity as densities change determine the stability of coexistence and provide the key to rigorous analysis, both theoretically and empirically, of coexistence in a variable environment. These ideas apply broadly to diversity maintenance in variable environments whether the issue is species diversity or genetic diversity and competition or apparent competition.
Toscano, Benjamin J; Hin, Vincent; Rudolf, Volker H W
2017-11-01
Predators often exert strong top-down regulation of prey, but in many systems, juvenile predators must compete with their future prey for a shared resource. In such life-history intraguild predation (LHIGP) systems, prey can therefore also regulate the recruitment and thus population dynamics of their predator via competition. Theory predicts that such stage-structured systems exhibit a wide range of dynamics, including alternative stable states. Here we show that cannibalism is an exceedingly common interaction within natural LHIGP systems that determines what coexistence states are possible. Using a modeling approach that simulates a range of ontogenetic diet shift scenarios along a productivity gradient, we demonstrate that only if the predator is competitively dominant can cannibalism promote coexistence by allowing prey to persist. If the prey is competitively dominant, cannibalism instead results in competitive exclusion of the predator and the loss of potential alternative stable states. Further, predator exclusion occurs at low cannibalistic preference relative to empirical estimates and is consistent across LHIGP systems in which the predator undergoes a complete diet shift or diet broadening over ontogeny. Given that prey is frequently competitively dominant in natural systems, our results demonstrate that even weak cannibalism can inhibit predator persistence, prompting exploration of mechanisms that reconcile theory with the common occurrence of such interactions in nature.
47 CFR 90.801 - 900 MHz SMR spectrum subject to competitive bidding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Competitive Bidding Procedures for 900 MHz Specialized Mobile Radio Service § 90.801 900 MHz SMR spectrum subject to competitive bidding. Mutually exclusive initial applications for 900 MHz SMR service licenses are subject to competitive bidding. The...
Code of Federal Regulations, 2010 CFR
2010-10-01
... without providing for full and open competition or full and open competition after exclusion of sources is... COMPETITION REQUIREMENTS Other Than Full and Open Competition 6.301 Policy. (a) 41 U.S.C. 253(c) and 10 U.S.C. 2304(c) each authorize, under certain conditions, contracting without providing for full and open...
Aschehoug, Erik T; Callaway, Ragan M
2015-10-01
A fundamental assumption of coexistence theory is that competition inevitably decreases species diversity. Consequently, in the quest to understand the ecological regulators of diversity, there has been a great deal of focus on processes with the potential to reduce competitive exclusion. However, the notion that competition must decrease diversity is largely based on the outcome of two-species interaction experiments and models, despite the fact that species rarely interact only in pairs in natural systems. In a field experiment, we found that competition among native perennial plants in multispecies assemblages was far weaker than competition between those same species in pairwise arrangements and that indirect interactions appeared to weaken direct competitive effects. These results suggest that community assembly theory based on pairwise approaches may overestimate the strength of competition and likelihood of competitive exclusion in species-rich communities. We also found that Centaurea stoebe, a North American invader, retained strong competitive effects when competing against North American natives in both pairwise and multispecies assemblages. Our experimental results support an emerging body of theory suggesting that complex networks of competing species may generate strong indirect interactions that can maintain diversity and that ecological differentiation may not be necessary to attenuate competition.
48 CFR 2406.202 - Establishing or maintaining alternative sources.
Code of Federal Regulations, 2011 CFR
2011-10-01
... maintaining alternative sources. 2406.202 Section 2406.202 Federal Acquisition Regulations System DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT COMPETITION AND ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 2406.202 Establishing or maintaining alternative...
Wegmann, Udo; Overweg, Karin; Horn, Nikki; Goesmann, Alexander; Narbad, Arjan; Gasson, Michael J; Shearman, Claire
2009-11-01
Lactobacillus johnsonii is a member of the acidophilus group of lactobacilli. Because of their probiotic properties, including attachment to epithelial cells, immunomodulation, and competitive exclusion of pathogens, representatives of this group are being intensively studied. Here we report the complete annotated genome sequence of Lactobacillus johnsonii FI9785, a strain which prevents the colonization of specific-pathogen-free chicks by Clostridium perfringens.
48 CFR 906.202 - Establishing or maintaining alternative sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... maintaining alternative sources. 906.202 Section 906.202 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 906.202 Establishing or maintaining alternative sources. (b)(1) Every proposed contract...
48 CFR 406.202 - Establishing or maintaining alternative sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... maintaining alternative sources. 406.202 Section 406.202 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE COMPETITION AND ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 406.202 Establishing or maintaining alternative sources. The Senior Procurement...
48 CFR 1406.202 - Establishing or maintaining alternative sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... maintaining alternative sources. 1406.202 Section 1406.202 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR COMPETITION AND ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 1406.202 Establishing or maintaining alternative sources. HCAs are...
48 CFR 1306.202 - Establishing or maintaining alternative sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... maintaining alternative sources. 1306.202 Section 1306.202 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE COMPETITION AND ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 1306.202 Establishing or maintaining alternative sources. The authority to...
Using SINEs to probe ancient explosive speciation: "hidden" radiation of African cichlids?
Terai, Yohey; Takahashi, Kazuhiko; Nishida, Mutsumi; Sato, Tetsu; Okada, Norihiro
2003-06-01
Cichlid fishes of the east African Great Lakes represent a paradigm of adaptive radiation. We conducted a phylogenetic analysis of cichlids including pan-African and west African species by using insertion patterns of short interspersed elements (SINEs) at orthologous loci. The monophyly of the east African cichlids was consistently supported by seven independent insertions of SINE sequences that are uniquely shared by these species. In addition, data from four other loci indicated that the genera Tilapia (pan-African) and Steatocranus (west African) are the closest relatives to east African cichlids. However, relationships among Tilapia, Steatocranus, and the east African clade were ambiguous because of incongruencies among topologies suggested by insertion patterns of SINEs at six other loci. One plausible explanation for this phenomenon is incomplete lineage sorting of alleles containing or missing a SINE insertion at these loci during ancestral speciation. Such incomplete sorting may have taken place earlier than 14 MYA, followed by random and stochastic fixation of the alleles in subsequent lineages. These observations prompted us to consider the possibility that cichlid speciation occurred at an accelerated rate during this period when the African Great Lakes did not exist. The SINE method could be useful for detecting ancient exclusive speciation events that tend to remain hidden during conventional sequence analyses because of accumulated point mutations.
48 CFR 2406.202 - Establishing or maintaining alternative sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... alternative sources. 2406.202 Section 2406.202 Federal Acquisition Regulations System DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT COMPETITION AND ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 2406.202 Establishing or maintaining alternative sources. (b)(1) The...
48 CFR 606.202 - Establishing or maintaining alternate sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... maintaining alternate sources. 606.202 Section 606.202 Federal Acquisition Regulations System DEPARTMENT OF STATE COMPETITION AND ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 606.202 Establishing or maintaining alternate sources. The Procurement Executive is the...
LIFE AFTER COMPETITIVE EXCLUSION: AN ALTERNATIVE STRATEGY FOR A COMPETITIVE INFERIOR
Experimental manipulations in the rocky intertidal have demonstrated that in the absence of predation (Paine 1966, 1974) or physical disturbance (Dayton 1971) a competitive dominant species can monopolize the primary space, thereby excluding competitors. he endpoint of this compe...
GALLIEN, Laure; MAZEL, Florent; LAVERGNE, Sébastien; RENAUD, Julien; DOUZET, Rolland; THUILLER, Wilfried
2015-01-01
Despite considerable efforts devoted to investigate the community assembly processes driving plant invasions, few general conclusions have been drawn so far. Three main processes, generally acting as successive filters, are thought to be of prime importance. The invader has to disperse (1st filter) into a suitable environment (2nd filter) and succeed in establishing in recipient communities through competitive interactions (3rd filter) using two strategies: competition avoidance by the use of different resources (resource opportunity), or competitive exclusion of native species. Surprisingly, despite the general consensus on the importance of investigating these three processes and their interplay, they are usually studied independently. Here we aim to analyse these three filters together, by including them all: abiotic environment, dispersal and biotic interactions, into models of invasive species distributions. We first propose a suite of indices (based on species functional dissimilarities) supposed to reflect the two competitive strategies (resource opportunity and competition exclusion). Then, we use a set of generalised linear models to explain the distribution of seven herbaceous invaders in natural communities (using a large vegetation database for the French Alps containing 5,000 community-plots). Finally, we measure the relative importance of competitive interaction indices, identify the type of coexistence mechanism involved and how this varies along environmental gradients. Adding competition indices significantly improved model’s performance, but neither resource opportunity nor competitive exclusion were common strategies among the seven species. Overall, we show that combining environmental, dispersal and biotic information to model invasions has excellent potential for improving our understanding of invader success. PMID:26290653
The contribution of post-copulatory mechanisms to incipient ecological speciation in sticklebacks.
Kaufmann, Joshka; Eizaguirre, Christophe; Milinski, Manfred; Lenz, Tobias L
2015-01-01
Ecology can play a major role in species diversification. As individuals are adapting to contrasting habitats, reproductive barriers may evolve at multiple levels. While pre-mating barriers have been extensively studied, the evolution of post-mating reproductive isolation during early stages of ecological speciation remains poorly understood. In diverging three-spined stickleback ecotypes from two lakes and two rivers, we observed differences in sperm traits between lake and river males. Interestingly, these differences did not translate into ecotype-specific gamete precedence for sympatric males in competitive in vitro fertilization experiments, potentially owing to antagonistic compensatory effects. However, we observed indirect evidence for impeded development of inter-ecotype zygotes, possibly suggesting an early stage of genetic incompatibility between ecotypes. Our results show that pre-zygotic post-copulatory mechanisms play a minor role during this first stage of ecotype divergence, but suggest that genetic incompatibilities may arise at early stages of ecological speciation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Oldham, V E; Swenson, M M; Buck, K N
2014-02-15
Total dissolved copper (Cu) and Cu speciation were examined from inshore waters of Bermuda, in October 2009 and July-August 2010, to determine the relationship between total dissolved Cu, Cu-binding ligands and bioavailable, free, hydrated Cu(2+) concentrations. Speciation was performed using competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV). Mean total dissolved Cu concentrations ranged from 1.4 nM to 19.2 nM, with lowest concentrations at sites further from shore, consistent with previous measurements in the Sargasso Sea, and localized Cu enrichment inshore in enclosed harbors. Ligand concentrations exceeded dissolved [Cu] at most sites, and [Cu(2+)] were correspondingly low at those sites, typically <10(-13) M. One site, Hamilton Harbour, was found to have [Cu] in excess of ligands, resulting in [Cu(2+)] of 10(-10.7) M, and indicating that Cu may be toxic to phytoplankton here. Copyright © 2013 Elsevier Ltd. All rights reserved.
47 CFR 73.5000 - Services subject to competitive bidding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... following broadcast services are subject to competitive bidding: AM; FM; FM translator; analog television; low-power television; television translator; and Class A television. Mutually exclusive applications...
Intraspecific competition reduces niche width in experimental populations
Parent, Christine E; Agashe, Deepa; Bolnick, Daniel I
2014-01-01
Intraspecific competition is believed to drive niche expansion, because otherwise suboptimal resources can provide a refuge from competition for preferred resources. Competitive niche expansion is well supported by empirical observations, experiments, and theory, and is often invoked to explain phenotypic diversification within populations, some forms of speciation, and adaptive radiation. However, some foraging models predict the opposite outcome, and it therefore remains unclear whether competition will promote or inhibit niche expansion. We conducted experiments to test whether competition changes the fitness landscape to favor niche expansion, and if competition indeed drives niche expansion as expected. Using Tribolium castaneum flour beetles fed either wheat (their ancestral resource), corn (a novel resource) or mixtures of both resources, we show that fitness is maximized on a mixed diet. Next, we show that at higher population density, the optimal diet shifts toward greater use of corn, favoring niche expansion. In stark contrast, when beetles were given a choice of resources, we found that competition caused niche contraction onto the ancestral resource. This presents a puzzling mismatch between how competition alters the fitness landscape, versus competition's effects on resource use. We discuss several explanations for this mismatch, highlighting potential reasons why optimality models might be misleading. PMID:25505525
Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana
Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. Even small structural differences result in significant differences in their environmental metal speciation, and likely impact metal uptake within the rhizosphere of calcareous soils.« less
48 CFR 6.202 - Establishing or maintaining alternative sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ACQUISITION REGULATION ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion... all necessary data to support their recommendation to exclude a particular source. (3) When the...
47 CFR 22.969 - Cellular RSA licenses subject to competitive bidding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.969 Cellular RSA licenses subject to competitive bidding. Mutually exclusive applications for initial authorization for the...
47 CFR 90.901 - 800 MHz SMR spectrum subject to competitive bidding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Competitive Bidding Procedures for 800 MHz Specialized Mobile Radio Service § 90.901 800 MHz SMR spectrum subject to competitive bidding. Mutually exclusive initial applications for 800 MHz band licenses in Spectrum Blocks A through V are subject to...
48 CFR 206.203 - Set-asides for small business concerns.
Code of Federal Regulations, 2010 CFR
2010-10-01
... REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 206.203 Set-asides for small business concerns. (b) Also no separate...
Dynamics of competitive systems with a single common limiting factor.
Kon, Ryusuke
2015-02-01
The concept of limiting factors (or regulating factors) succeeded in formulating the well-known principle of competitive exclusion. This paper shows that the concept of limiting factors is helpful not only to formulate the competitive exclusion principle, but also to obtain other ecological insights. To this end, by focusing on a specific community structure, we study the dynamics of Kolmogorov equations and show that it is possible to derive an ecologically insightful result only from the information about interactions between species and limiting factors. Furthermore, we find that the derived result is a generalization of the preceding work by Shigesada, Kawasaki, and Teramoto (1984), who examined a certain Lotka-Volterra equation in a different context.
48 CFR 6.206 - Set-asides for service-disabled veteran-owned small business concerns.
Code of Federal Regulations, 2010 CFR
2010-10-01
... FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 6.206 Set-asides for service-disabled veteran-owned small business concerns...
Both Geography and Ecology Contribute to Mating Isolation in Guppies
Schwartz, Amy K.; Weese, Dylan J.; Bentzen, Paul; Kinnison, Michael T.; Hendry, Andrew P.
2010-01-01
Local adaptation to different environments can promote mating isolation – either as an incidental by-product of trait divergence, or as a result of selection to avoid maladaptive mating. Numerous recent empirical examples point to the common influence of divergent natural selection on speciation based largely on evidence of strong pre-mating isolation between populations from different habitat types. Accumulating evidence for natural selection's influence on speciation is therefore no longer a challenge. The difficulty, rather, is in determining the mechanisms involved in the progress of adaptive divergence to speciation once barriers to gene flow are already present. Here, we present results of both laboratory and field experiments with Trinidadian guppies (Poecilia reticulata) from different environments, who do not show complete reproductive isolation despite adaptive divergence. We investigate patterns of mating isolation between populations that do and do not exchange migrants and show evidence for both by-product and reinforcement mechanisms depending on female ecology. Specifically, low-predation females discriminate against all high-predation males thus implying a by-product mechanism, whereas high-predation females only discriminate against low-predation males from further upstream in the same river, implying selection to avoid maladaptive mating. Our study thus confirms that mechanisms of adaptive speciation are not necessarily mutually exclusive and uncovers the complex ecology-geography interactions that underlie the evolution of mating isolation in nature. PMID:21179541
Gaudry, Kate S
2011-01-01
Government-provided exclusivity periods provide pharmaceutical companies with incentives to invest in new drugs. Meanwhile, encouraging competition serves another worthy goal of improving the affordability of medications. Decades ago, the Hatch-Waxman Act set forth provisions attempting to balance these objectives in the context of small-molecule drugs. Recently, the Biologics Price Competition and Innovation Act was enacted to meet similar aims in the context of biologic drugs. This article presents a detailed comparison of these two Acts. While the Acts share many global similarities (e.g., providing exclusivity terms and abbreviated approval processes), many differences are also apparent when analyzing details of the provisions. One area of great departure between the Acts is the requirements of how a generic or follow-on applicant must address patents covering a reference product. After describing these differences, the article presents predictions of how reference product sponsors will adapt their patent-prosecution strategies in view of the new Biologics Act.
Luyckx, K; Millet, S; Van Weyenberg, S; Herman, L; Heyndrickx, M; Dewulf, J; De Reu, K
2016-09-06
Colonisation of the environment of nursery units by pathogenic micro-organisms is an important factor in the persistence and spread of endemic diseases in pigs and zoonotic pathogens. These pathogens are generally controlled by the use of antibiotics and disinfectants. Since an increasing resistance against these measures has been reported in recent years, methods such as competitive exclusion (CE) are promoted as promising alternatives. This study showed that the infection pressure in CE units after microbial cleaning was not reduced to the same degree as in control units. Despite sufficient administration of probiotic-type spores, the analysed bacteria did not decrease in number after 3 production rounds in CE units, indicating no competitive exclusion. In addition, no differences in feed conversion were found between piglets raised in CE and control units in our study. Also, no differences in faecal consistency (indicator for enteric diseases) was noticed. These results indicate that the CE protocol is not a valuable alternative for classical C&D.
Mojsiewicz-Pieńkowska, Krystyna
2012-01-25
The pharmaceutical industry is one of the more important sectors for the use of polydimethylsiloxanes (PDMS), which belong to the organosilicon polymers. In drugs for internal use, they are used as an active pharmaceutical ingredient (API) called dimeticone or simeticone. Due to their specific chemical nature, PDMS can have different degrees of polymerization, which determine the molecular weight and viscosity. The Pharmacopoeial monographs for dimeticone and simeticone, only give the permitted polymerization and viscosity range. It is, however, essential to know also the degree of polymerization or the specific molecular weight of PDMS that are present in pharmaceutical formulations. In the literature there is information about the impact of particle size, and thus molecular weight, on the toxicity, absorption and migration in living organisms. This study focused on the use of a developed method - the exclusion chromatography with evaporative light scattering detector (SEC-ELSD) - for identification and determination of dimeticone and simeticone in various pharmaceutical formulations. The method had a high degree of specificity and was suitable for speciation analysis of these polymers. So far the developed method has not been used in the control of medicinal products containing dimeticone or simeticone. Copyright © 2011 Elsevier B.V. All rights reserved.
47 CFR 90.901 - 800 MHz SMR spectrum subject to competitive bidding.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false 800 MHz SMR spectrum subject to competitive... Specialized Mobile Radio Service § 90.901 800 MHz SMR spectrum subject to competitive bidding. Mutually exclusive initial applications for 800 MHz band licenses in Spectrum Blocks A through V are subject to...
47 CFR 90.901 - 800 MHz SMR spectrum subject to competitive bidding.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false 800 MHz SMR spectrum subject to competitive... Specialized Mobile Radio Service § 90.901 800 MHz SMR spectrum subject to competitive bidding. Mutually exclusive initial applications for 800 MHz band licenses in Spectrum Blocks A through V are subject to...
47 CFR 90.901 - 800 MHz SMR spectrum subject to competitive bidding.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false 800 MHz SMR spectrum subject to competitive... Specialized Mobile Radio Service § 90.901 800 MHz SMR spectrum subject to competitive bidding. Mutually exclusive initial applications for 800 MHz band licenses in Spectrum Blocks A through V are subject to...
47 CFR 90.901 - 800 MHz SMR spectrum subject to competitive bidding.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false 800 MHz SMR spectrum subject to competitive... Specialized Mobile Radio Service § 90.901 800 MHz SMR spectrum subject to competitive bidding. Mutually exclusive initial applications for 800 MHz band licenses in Spectrum Blocks A through V are subject to...
Mehl, H. L.; Cotty, P. J.
2011-01-01
Biological control of aflatoxin contamination by Aspergillus flavus is achieved through competitive exclusion of aflatoxin producers by atoxigenic strains. Factors dictating the extent to which competitive displacement occurs during host infection are unknown. The role of initial host contact in competition between pairs of A. flavus isolates coinfecting maize kernels was examined. Isolate success during tissue invasion and reproduction was assessed by quantification of isolate-specific single nucleotide polymorphisms using pyrosequencing. Isolates were inoculated either simultaneously or 1 h apart. Increased success during competition was conferred to the first isolate to contact the host independent of that isolate's innate competitive ability. The first-isolate advantage decreased with the conidial concentration, suggesting capture of limited resources on kernel surfaces contributes to competitive exclusion. Attempts to modify access to putative attachment sites by either coating kernels with dead conidia or washing kernels with solvents did not influence the success of the first isolate, suggesting competition for limited attachment sites on kernel surfaces does not mediate first-isolate advantage. The current study is the first to demonstrate an immediate competitive advantage conferred to A. flavus isolates upon host contact and prior to either germ tube emergence or host colonization. This suggests the timing of host contact is as important to competition during disease cycles as innate competitive ability. Early dispersal to susceptible crop components may allow maintenance within A. flavus populations of genetic types with low competitive ability during host tissue invasion. PMID:21216896
Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy
Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.
2000-01-01
Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis, is beneficial in the prioritization and remediation of mercury-contaminated mine sites. (C) 2000 Elsevier Science B.V.
Sexual selection predicts species richness across the animal kingdom.
Janicke, Tim; Ritchie, Michael G; Morrow, Edward H; Marie-Orleach, Lucas
2018-05-16
Our improving knowledge of the animal tree of life consistently demonstrates that some taxa diversify more rapidly than others, but what contributes to this variation remains poorly understood. An influential hypothesis proposes that selection arising from competition for mating partners plays a key role in promoting speciation. However, empirical evidence showing a link between proxies of this sexual selection and species richness is equivocal. Here, we collected standardized metrics of sexual selection for a broad range of animal taxa, and found that taxonomic families characterized by stronger sexual selection on males show relatively higher species richness. Thus, our data support the hypothesis that sexual selection elevates species richness. This could occur either by promoting speciation and/or by protecting species against extinction. © 2018 The Author(s).
Amaku, Marcos; Coutinho, Francisco Antonio Bezerra; Chaib, Eleazar; Massad, Eduardo
2013-01-01
We address the observation that, in some cases, patients infected with the hepatitis C virus (HCV) are cleared of HCV when super-infected with the hepatitis A virus (HAV). We hypothesise that this phenomenon can be explained by the competitive exclusion principle, including the action of the immune system, and show that the inclusion of the immune system explains both the elimination of one virus and the co-existence of both infections for a certain range of parameters. We discuss the potential clinical implications of our findings.
Contrasting impacts of competition on ecological and social trait evolution in songbirds
Tobias, Joseph A.; Burns, Kevin J.; Mason, Nicholas A.; Shultz, Allison J.; Morlon, Hélène
2018-01-01
Competition between closely related species has long been viewed as a powerful selective force that drives trait diversification, thereby generating phenotypic diversity over macroevolutionary timescales. However, although the impact of interspecific competition has been documented in a handful of iconic insular radiations, most previous studies have focused on traits involved in resource use, and few have examined the role of competition across large, continental radiations. Thus, the extent to which broad-scale patterns of phenotypic diversity are shaped by competition remain largely unclear, particularly for social traits. Here, we estimate the effect of competition between interacting lineages by applying new phylogenetic models that account for such interactions to an exceptionally complete dataset of resource-use traits and social signaling traits for the entire radiation of tanagers (Aves, Thraupidae), the largest family of songbirds. We find that interspecific competition strongly influences the evolution of traits involved in resource use, with a weaker effect on plumage signals, and very little effect on song. Our results provide compelling evidence that interspecific exploitative competition contributes to ecological trait diversification among coexisting species, even in a large continental radiation. In comparison, signal traits mediating mate choice and social competition seem to diversify under different evolutionary models, including rapid diversification in the allopatric stage of speciation. PMID:29385141
Contrasting impacts of competition on ecological and social trait evolution in songbirds.
Drury, Jonathan P; Tobias, Joseph A; Burns, Kevin J; Mason, Nicholas A; Shultz, Allison J; Morlon, Hélène
2018-01-01
Competition between closely related species has long been viewed as a powerful selective force that drives trait diversification, thereby generating phenotypic diversity over macroevolutionary timescales. However, although the impact of interspecific competition has been documented in a handful of iconic insular radiations, most previous studies have focused on traits involved in resource use, and few have examined the role of competition across large, continental radiations. Thus, the extent to which broad-scale patterns of phenotypic diversity are shaped by competition remain largely unclear, particularly for social traits. Here, we estimate the effect of competition between interacting lineages by applying new phylogenetic models that account for such interactions to an exceptionally complete dataset of resource-use traits and social signaling traits for the entire radiation of tanagers (Aves, Thraupidae), the largest family of songbirds. We find that interspecific competition strongly influences the evolution of traits involved in resource use, with a weaker effect on plumage signals, and very little effect on song. Our results provide compelling evidence that interspecific exploitative competition contributes to ecological trait diversification among coexisting species, even in a large continental radiation. In comparison, signal traits mediating mate choice and social competition seem to diversify under different evolutionary models, including rapid diversification in the allopatric stage of speciation.
47 CFR 27.1103 - 2000-2020 MHz and 2180-2200 MHz bands subject to competitive bidding.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false 2000-2020 MHz and 2180-2200 MHz bands subject... MHz, 2000-2020 MHz, and 2180-2200 MHz bands Licensing and Competitive Bidding Provisions § 27.1103 2000-2020 MHz and 2180-2200 MHz bands subject to competitive bidding. Mutually exclusive initial...
48 CFR 6.207 - Set-asides for local firms during a major disaster or emergency.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ACQUISITION REGULATION ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 6.207 Set-asides for local firms during a major disaster or emergency. (a) To fulfill the...
Competition among physicians. Avoiding anticompetitive activities.
Oliver, D
1988-12-01
Increases in both the cost of medical care and the numbers of providers have generated strong pressure for competition in the medical profession. The Federal Trade Commission strives to maintain such competition free from public and private restraints in order to maximize consumer welfare. The author describes the advantages of these types of competitive practices and discusses the competitive restraints that most concern the FTC: restrictions on ethical advertising, exclusion of competitors, restraints on dispensing drugs, and restrictions on commercial practice locations.
Micronutrient metal speciation is driven by competitive organic chelation in grassland soils.
NASA Astrophysics Data System (ADS)
Boiteau, R.; Shaw, J. B.; Paša-Tolić, L.; Koppenaal, D.; Jansson, J.
2017-12-01
Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population.
Klibansky, Lara K. J.; McCartney, Michael A.
2014-01-01
Reproductive isolation at the gamete stage has become a focus of speciation research because of its potential to evolve rapidly between closely related species. Conspecific sperm precedence (CSP), a type of gametic isolation, has been demonstrated in a number of taxa, both marine and terrestrial, with the potential to play an important role in speciation. Free-spawning marine invertebrates are ideal subjects for the study of CSP because of a likely central role for gametic barriers in reproductive isolation. The western Atlantic Mytilus blue mussel hybrid zone, ranging from the Atlantic Canada to eastern Maine, exhibits characteristics conducive to the study of CSP. Previous studies have shown that gametic incompatibility is incomplete, variable in strength and the genotype distribution is bimodal—dominated by the parental species, with a low frequency of hybrids. We conducted gamete crossing experiments using M. trossulus and M. edulis individuals collected from natural populations during the spring spawning season in order to detect the presence or absence of CSP within this hybrid zone. We detected CSP, defined here as a reduction in heterospecific offspring from competitive fertilizations in vitro compared to that seen in non-competitive fertilizations, in five of the twelve crosses in which conspecific crosses were detectable. This is the first finding of CSP in a naturally hybridizing population of a free-spawning marine invertebrate. Our findings support earlier predictions that CSP can promote assortative fertilization in bimodal hybrid zones, further advancing their hypothesized progression towards full speciation. Despite strong CSP numerous heterospecific fertilizations remain, reinforcing the hypothesis that compatible females are a source of hybrid offspring in mixed natural spawns. PMID:25268856
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Policy. 6.201 Section 6.201 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 6.201 Policy. Acquisitions made...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Policy. 6.201 Section 6.201 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 6.201 Policy. Acquisitions made...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Policy. 6.201 Section 6.201 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 6.201 Policy. Acquisitions made...
Juliano, Steven A.; Lounibos, L. Philip; O’Meara, George F.
2007-01-01
We tested whether interspecific competition from Aedes albopictus had measurable effects on A. aegypti at the typical numbers of larval mosquitoes found in cemetery vases in south Florida. We also tested whether the effect of interspecific competition from A. albopictus on A. aegypti differed between sites where A. aegypti either persists or went extinct following invasion by A. albopictus. Similar experiments manipulating numbers of A. albopictus in cemetery vases were conducted at three sites of A. aegypti persistence and three sites where A. aegypti was apparently extinct. The experiments were done using numbers of larvae that were determined by observed numbers of larvae for each site, and with resources (leaf detritus) that accumulated in experimental vases placed into each field site. In both the early rainy season (when number of mosquito larvae was low) and the late rainy season (when number of mosquito larvae was high), there was a significant effect of treatment on developmental progress of experimental A. aegypti. In the late rainy season, when numbers of larvae were high, there was also a significant effect of treatment on survivorship of A. aegypti. However, the competition treatment × site type (A. aegypti persists vs extinct) interaction was never significant, indicating that the competitive effect of A. albopictus on A. aegypti did not differ systematically between persistence versus extinction sites. Thus, although competition from A. albopictus is strong under field conditions at all sites, we find no evidence that variation in the impact of interspecific competition is associated with coexistence or exclusion. Interspecific competition among larvae is thus a viable explanation for exclusion or reduction of A. aegypti in south Florida, but variation in the persistence of A. aegypti following invasion does not seem to be primarily a product of variation in the conditions in the aquatic environments of cemetery vases. PMID:15024640
Complex food webs prevent competitive exclusion among producer species.
Brose, Ulrich
2008-11-07
Herbivorous top-down forces and bottom-up competition for nutrients determine the coexistence and relative biomass patterns of producer species. Combining models of predator-prey and producer-nutrient interactions with a structural model of complex food webs, I investigated these two aspects in a dynamic food-web model. While competitive exclusion leads to persistence of only one producer species in 99.7% of the simulated simple producer communities without consumers, embedding the same producer communities in complex food webs generally yields producer coexistence. In simple producer communities, the producers with the most efficient nutrient-intake rates increase in biomass until they competitively exclude inferior producers. In food webs, herbivory predominantly reduces the biomass density of those producers that dominated in producer communities, which yields a more even biomass distribution. In contrast to prior analyses of simple modules, this facilitation of producer coexistence by herbivory does not require a trade-off between the nutrient-intake efficiency and the resistance to herbivory. The local network structure of food webs (top-down effects of the number of herbivores and the herbivores' maximum consumption rates) and the nutrient supply (bottom-up effect) interactively determine the relative biomass densities of the producer species. A strong negative feedback loop emerges in food webs: factors that increase producer biomasses also increase herbivory, which reduces producer biomasses. This negative feedback loop regulates the coexistence and biomass patterns of the producers by balancing biomass increases of producers and biomass fluxes to herbivores, which prevents competitive exclusion.
Utility of EXAFS in characterization and speciation of mercury-bearing mine wastes
Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.
1999-01-01
Extensive mining of large mercury deposits located in the California Coast Range has resulted in mercury contamination of both the local environment and water supplies. The solubility, dispersal, and ultimate fate of mercury are all affected by its chemical speciation, which can be most readily determined in a direct fashion using EXAFS spectroscopy. EXAFS spectra of mine wastes collected from several mercury mines in the California Coast Range with mercury concentrations ranging from 230 to 1060 mg/kg (ppm) have been analyzed using a spectral database of mercury minerals and sorbed mercury complexes. While some calcines have been found to consist almost exclusively of mercuric sulfide, HgS, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. This experimental approach can provide a quantitative measurement of the mercury compounds present and may serve as an indicator of the bioavailability and toxicity levels of mercury mine wastes.
Competitive exclusion by autologous antibodies can prevent broad HIV-1 antibodies from arising
Luo, Shishi; Perelson, Alan S.
2015-08-31
The past decade has seen the discovery of numerous broad and potent monoclonal antibodies against HIV type 1 (HIV-1). Eliciting these antibodies via vaccination appears to be remarkably difficult, not least because they arise late in infection and are highly mutated relative to germline antibody sequences. Here, using a computational model, we show that broad antibodies could in fact emerge earlier and be less mutated, but that they may be prevented from doing so as a result of competitive exclusion by the autologous antibody response. We further find that this competitive exclusion is weaker in infections founded by multiple distinctmore » strains, with broadly neutralizing antibodies emerging earlier than in infections founded by a single strain. Our computational model simulates coevolving multitype virus and antibody populations. Broadly neutralizing antibodies may therefore be easier for the adaptive immune system to generate than previously thought. As a result, if less mutated broad antibodies exist, it may be possible to elicit them with a vaccine containing a mixture of diverse virus strains.« less
Cheating fosters species co-existence in well-mixed bacterial communities
Leinweber, Anne; Fredrik Inglis, R; Kümmerli, Rolf
2017-01-01
Explaining the enormous biodiversity observed in bacterial communities is challenging because ecological theory predicts that competition between species occupying the same niche should lead to the exclusion of less competitive community members. Competitive exclusion should be particularly strong when species compete for a single limiting resource or live in unstructured habitats that offer no refuge for weaker competitors. Here, we describe the ‘cheating effect’, a form of intra-specific competition that can counterbalance between-species competition, thereby fostering biodiversity in unstructured habitats. Using experimental communities consisting of the strong competitor Pseudomonas aeruginosa (PA) and its weaker counterpart Burkholderia cenocepacia (BC), we show that co-existence is impossible when the two species compete for a single limiting resource, iron. However, when introducing a PA cheating mutant, which specifically exploits the iron-scavenging siderophores produced by the PA wild type, we found that biodiversity was preserved under well-mixed conditions where PA cheats could outcompete the PA wild type. Cheating fosters biodiversity in our system because it creates strong intra-specific competition, which equalizes fitness differences between PA and BC. Our study identifies cheating – typically considered a destructive element – as a constructive force in shaping biodiversity. PMID:28060362
47 CFR 22.881 - Air-Ground Radiotelephone Service subject to competitive bidding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... competitive bidding. 22.881 Section 22.881 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air... exclusive initial applications for commercial Air-Ground Radiotelephone Service licenses are subject to...
47 CFR 90.165 - Procedures for mutually exclusive applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., the Commission may use competitive bidding, random selection, or comparative hearings, depending on... exclusive applications in a renewal filing group are designated for comparative consideration in a hearing... applications in the filing group for comparative consideration in a hearing. In this event, the result of the...
47 CFR 90.165 - Procedures for mutually exclusive applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., the Commission may use competitive bidding, random selection, or comparative hearings, depending on... exclusive applications in a renewal filing group are designated for comparative consideration in a hearing... applications in the filing group for comparative consideration in a hearing. In this event, the result of the...
47 CFR 90.165 - Procedures for mutually exclusive applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., the Commission may use competitive bidding, random selection, or comparative hearings, depending on... exclusive applications in a renewal filing group are designated for comparative consideration in a hearing... applications in the filing group for comparative consideration in a hearing. In this event, the result of the...
Fire modifies the phylogenetic structure of soil bacterial co-occurrence networks.
Pérez-Valera, Eduardo; Goberna, Marta; Faust, Karoline; Raes, Jeroen; García, Carlos; Verdú, Miguel
2017-01-01
Fire alters ecosystems by changing the composition and community structure of soil microbes. The phylogenetic structure of a community provides clues about its main assembling mechanisms. While environmental filtering tends to reduce the community phylogenetic diversity by selecting for functionally (and hence phylogenetically) similar species, processes like competitive exclusion by limiting similarity tend to increase it by preventing the coexistence of functionally (and phylogenetically) similar species. We used co-occurrence networks to detect co-presence (bacteria that co-occur) or exclusion (bacteria that do not co-occur) links indicative of the ecological interactions structuring the community. We propose that inspecting the phylogenetic structure of co-presence or exclusion links allows to detect the main processes simultaneously assembling the community. We monitored a soil bacterial community after an experimental fire and found that fire altered its composition, richness and phylogenetic diversity. Both co-presence and exclusion links were more phylogenetically related than expected by chance. We interpret such a phylogenetic clustering in co-presence links as a result of environmental filtering, while that in exclusion links reflects competitive exclusion by limiting similarity. This suggests that environmental filtering and limiting similarity operate simultaneously to assemble soil bacterial communities, widening the traditional view that only environmental filtering structures bacterial communities. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
48 CFR 6.203 - Set-asides for small business concerns.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Set-asides for small business concerns. 6.203 Section 6.203 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources...
Choice matters: incipient speciation in Gyrodactylus corydori (Monogenoidea: Gyrodactylidae).
Bueno-Silva, Marlus; Boeger, Walter A; Pie, Marcio R
2011-05-01
We investigated how Gyrodactylus corydoriBueno-Silva and Boeger, 2009 exploits two sympatric host species, Corydoras paleatus (Jenyns, 1842) and Corydoras ehrhardti Steindachner, 1910. Specimens of G. corydori were collected from the Piraquara and Miringuava Rivers, State of Paraná, Brazil, between 2005 and 2006. A total of 167 parasites was measured from both host species. Nine morphometric features of the haptoral sclerites were measured and analyzed by discriminant analysis, cluster analysis and multivariate analysis of variance. A fragment of the mitochondrial cytochrome oxidase I gene (COI) (∼740 bp) and the rDNA internal transcribed spacers (ITS) (∼1200 bp) of G. corydori were sequenced. Bayesian and parsimony analyses of COI recognized two genetically structured clades of G. corydori, which corresponded closely with the two species of Corydoras. Twenty-eight haplotypes were detected (18 were exclusive to C. ehrhardti and seven were exclusive to C. paleatus). The same general pattern between parasites and host species was observed in the morphometric analyses. Nevertheless, poor correlation of genetic and morphometric variation strongly supports the plastic nature of the morphological variation of haptoral sclerites. The existence of two clades with limited gene flow would suggest that G. corydori already represents two cryptic species. However, the morphometric and molecular data showed that there is insufficient evidence to support two valid species. The low COI (0.1-6.2%) and ITS (0.09-3.5%) divergence within G. corydori suggest a recent separation of the lineages between distinct host species (less than 1 million years). As the hypothesis of secondary contact of the parasite demographic history was rejected, our results point to the possibility of sympatric incipient ongoing speciation of G. corydori to form distinct parasite lineages adapted to C. ehrhardti and C. paleatus. This may be a common event within the Gyrodactylidae, adding a yet unreported mode of adaptive speciation that helps to understand its rate of diversification. Copyright © 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Molecular evidence for host-parasite co-speciation between lizards and Schellackia parasites.
Megía-Palma, Rodrigo; Martínez, Javier; Cuervo, José J; Belliure, Josabel; Jiménez-Robles, Octavio; Gomes, Verónica; Cabido, Carlos; Pausas, Juli G; Fitze, Patrick S; Martín, José; Merino, Santiago
2018-05-05
Current and past parasite transmission may depend on the overlap of host distributions, potentially affecting parasite specificity and co-evolutionary processes. Nonetheless, parasite diversification may take place in sympatry when parasites are transmitted by vectors with low mobility. Here, we test the co-speciation hypothesis between lizard final hosts of the Family Lacertidae, and blood parasites of the genus Schellackia, which are potentially transmitted by haematophagous mites. The effects of current distributional overlap of host species on parasite specificity are also investigated. We sampled 27 localities on the Iberian Peninsula and three in northern Africa, and collected blood samples from 981 individual lizards of seven genera and 18 species. The overall prevalence of infection by parasites of the genus Schellackia was ∼35%. We detected 16 Schellackia haplotypes of the 18S rRNA gene, revealing that the genus Schellackia is more diverse than previously thought. Phylogenetic analyses showed that Schellackia haplotypes grouped into two main monophyletic clades, the first including those detected in host species endemic to the Mediterranean region and the second those detected in host genera Acanthodactylus, Zootoca and Takydromus. All but one of the Schellackia haplotypes exhibited a high degree of host specificity at the generic level and 78.5% of them exclusively infected single host species. Some host species within the genera Podarcis (six species) and Iberolacerta (two species) were infected by three non-specific haplotypes of Schellackia, suggesting that host switching might have positively influenced past diversification of the genus. However, the results supported the idea that current host switching is rare because there existed a significant positive correlation between the number of exclusive parasite haplotypes and the number of host species with current sympatric distribution. This result, together with significant support for host-parasite molecular co-speciation, suggests that parasites of the genus Schellackia co-evolved with their lizard hosts. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Polygamy slows down population divergence in shorebirds
Jackson, Josephine D'Urban; dos Remedios, Natalie; Maher, Kathryn; Zefania, Sama; Haig, Susan M.; Oyler-McCance, Sara J.; Blomqvist, Donald; Burke, Terry; Bruford, Michael W.; Székely, Tamás; Küpper, Clemens
2017-01-01
Sexual selection may act as a promotor of speciation since divergent mate choice and competition for mates can rapidly lead to reproductive isolation. Alternatively, sexual selection may also retard speciation since polygamous individuals can access additional mates by increased breeding dispersal. High breeding dispersal should hence increase gene flow and reduce diversification in polygamous species. Here, we test how polygamy predicts diversification in shorebirds using genetic differentiation and subspecies richness as proxies for population divergence. Examining microsatellite data from 79 populations in 10 plover species (Genus: Charadrius) we found that polygamous species display significantly less genetic structure and weaker isolation-by-distance effects than monogamous species. Consistent with this result, a comparative analysis including 136 shorebird species showed significantly fewer subspecies for polygamous than for monogamous species. By contrast, migratory behavior neither predicted genetic differentiation nor subspecies richness. Taken together, our results suggest that dispersal associated with polygamy may facilitate gene flow and limit population divergence. Therefore, intense sexual selection, as occurs in polygamous species, may act as a brake rather than an engine of speciation in shorebirds. We discuss alternative explanations for these results and call for further studies to understand the relationships between sexual selection, dispersal, and diversification.
Polygamy slows down population divergence in shorebirds
D'Urban Jackson, Josephine; dos Remedios, Natalie; Maher, Kathryn H.; Zefania, Sama; Haig, Susan; Oyler‐McCance, Sara; Blomqvist, Donald; Burke, Terry; Bruford, Michael W.; Székely, Tamás; Küpper, Clemens
2017-01-01
Sexual selection may act as a promotor of speciation since divergent mate choice and competition for mates can rapidly lead to reproductive isolation. Alternatively, sexual selection may also retard speciation since polygamous individuals can access additional mates by increased breeding dispersal. High breeding dispersal should hence increase gene flow and reduce diversification in polygamous species. Here, we test how polygamy predicts diversification in shorebirds using genetic differentiation and subspecies richness as proxies for population divergence. Examining microsatellite data from 79 populations in 10 plover species (Genus: Charadrius) we found that polygamous species display significantly less genetic structure and weaker isolation‐by‐distance effects than monogamous species. Consistent with this result, a comparative analysis including 136 shorebird species showed significantly fewer subspecies for polygamous than for monogamous species. By contrast, migratory behavior neither predicted genetic differentiation nor subspecies richness. Taken together, our results suggest that dispersal associated with polygamy may facilitate gene flow and limit population divergence. Therefore, intense sexual selection, as occurs in polygamous species, may act as a brake rather than an engine of speciation in shorebirds. We discuss alternative explanations for these results and call for further studies to understand the relationships between sexual selection, dispersal, and diversification. PMID:28233288
48 CFR 3006.202 - Establishing or maintaining alternative sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 3006.202 Establishing or maintaining alternative sources. (b)(1) The HCA is delegated authority to approve a D&F in support of a... maintaining alternative sources. 3006.202 Section 3006.202 Federal Acquisition Regulations System DEPARTMENT...
48 CFR 6.205 - Set-asides for HUBZone small business concerns.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Set-asides for HUBZone small business concerns. 6.205 Section 6.205 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Troy A
2011-08-01
This dissertation explores lanthanide speciation in liquid solution systems related to separation schemes involving the acidic ligands: bis(2-ethylhexyl) phosphoric acid (HDEHP), lactate, and 8-hydroxyquinoline. Equilibrium speciation of neodymium (Nd 3+), sodium (Na+), HDEHP, water, and lactate in the TALSPEAK liquid-liquid extraction system was explored under varied Nd 3+ loading of HDEHP in the organic phase and through extraction from aqueous HCl and lactate media. System speciation was probed through vapor pressure osmometry, visible and Fourier Transform Infrared (FTIR) spectroscopy, 22Na and 13C labeled lactate radiotracer distribution measurements, Karl Fischer titrations, and equilibrium pH measurements. Distribution of Nd 3+, Na +,more » lactate, and equilibrium pH were modeled using the SXLSQI software to obtain logKNd and logKNa extraction constants under selected conditions. Results showed that high Nd 3+ loading of the HDEHP led to Nd 3+ speciation that departs from the ion exchange mechanism and includes formation of highly aggregated, polynuclear [NdLactate(DEHP) 2] x; (with x > 1). By substituting lanthanum (La 3+) for Nd 3+ in this system, NMR scoping experiments using 23Na, 31P nuclei and 13C labeled lactate were performed. Results indicated that this technique is sensitive to changes in system speciation, and that further experiments are warranted. In a homogeneous system representing the TALSPEAK aqueous phase, Lactate protonation behavior at various temperatures was characterized using a combination of potentiometric titration and modeling with the Hyperquad computer program. The temperature dependent deprotonation behavior of lactate showed little change with temperature at 2.0 M NaCl ionic strength. Cloud point extraction is a non-traditional separation technique that starts with a homogeneous phase that becomes heterogeneous by the micellization of surfactants through the increase of temperature. To better understand the behavior of europium (Eu 3+) and 8-hydroxyquinoline under cloud point extraction conditions, potentiometric and spectrophotometric titrations coupled with modeling with Hyperquad and SQUAD computer programs were performed to assess europium (Eu 3+) and 8-hydroxyquinoline speciation. Experiments in both water and a 1wt% Triton X-114/water mixed solvent were compared to understand the effect of Triton X-114 on the system speciation. Results indicated that increased solvation of 8-hydroxyquinoline by the mixed solvent lead to more stable complexes involving 8-hydroxyquinoline than in water, whereas competition between hydroxide and Triton X-114 for Eu 3+ led to lower stability hydrolysis complexes in the mixed solvent than in water. Lanthanide speciation is challenging due to the trivalent oxidation state that leads to multiple ligand complexes, including some mixed complexes. The complexity of the system demands well-designed and precise experiments that capture the nuances of the chemistry. This work increased the understanding of lanthanide speciation in the explored systems, but more work is required to produce a comprehensive understanding of the speciation involved.« less
Social exclusion: the interplay of group goals and individual characteristics.
Richardson, Cameron B; Hitti, Aline; Mulvey, Kelly Lynn; Killen, Melanie
2014-08-01
Past research has shown that adolescents justify social exclusion based on concerns for group functioning, and yet, to date, no study has evaluated whether group functioning justifications shift or remain stable across different exclusion contexts. In this study, we systematically manipulated exclusion context (i.e., competitive or noncompetitive soccer groups) and individual characteristics of the target of exclusion to test the nature of the interaction between these factors during exclusion judgments. Adolescents' (N = 201; 61% Female) exclusion judgments differed across contexts only when an individual's ability was under consideration. Intergroup (i.e., gender, nationality) and interpersonal (i.e., aggression, shyness) characteristics overwhelmed contextual considerations. Results indicate the complexity of factors weighed by adolescents when making exclusion judgments, and suggest the need for extension of the present findings to understand more fully the interaction between the context of exclusion and individual characteristics in exclusion judgments.
Napier, Joseph D; Mordecai, Erin A; Heckman, Robert W
2016-06-01
By altering the strength of intra- and interspecific competition, droughts may reshape plant communities. Furthermore, species may respond differently to drought when other influences, such as herbivory, are considered. To explore this relationship, we conducted a greenhouse experiment measuring responses to inter- and intraspecific competition for two grasses, Schedonorus arundinaceus and Paspalum dilatatum, while varying water availability and simulating herbivory via clipping. We then parameterized population growth models to examine the long-term outcome of competition under these conditions. Under drought, S. arundinaceus was less water stressed than P. dilatatum, which exhibited severe water stress; clipping alleviated this stress, increasing the competitive ability of P. dilatatum relative to S. arundinaceus. Although P. dilatatum competed weakly under drought, clipping reduced water stress in P. dilatatum, thereby enhancing its ability to compete with S. arundinaceus under drought. Supporting these observations, population growth models predicted that P. dilatatum would exclude S. arundinaceus when clipped under drought, while S. arundinaceus would exclude P. dilatatum when unclipped under drought. When the modeled environment varied temporally, environmental variation promoted niche differences that, though insufficient to maintain stable coexistence, prevented unconditional competitive exclusion by promoting priority effects. Our results suggest that it is important to consider how species respond not just to stable, but also to variable, environments. When species differ in their responses to drought, competition, and simulated herbivory, stable environments may promote competitive exclusion, while fluctuating environments may promote coexistence. These interactions are critical to understanding how species will respond to global change.
The Drosophila flavopilosa species group (Diptera, Drosophilidae)
Robe, Lizandra J.; De Ré, Francine Cenzi; Ludwig, Adriana; Loreto, Elgion L.S.
2013-01-01
The D. flavopilosa group encompasses an ecologically restricted set of species strictly adapted to hosting flowers of Cestrum (Solanaceae). This group presents potential to be used as a model to the study of different questions regarding ecologically restricted species macro and microevolutionary responses, geographical vs. ecological speciation and intra and interspecific competition. This review aims to revisit and reanalyze the patterns and processes that are subjacent to the interesting ecological and evolutionary properties of these species. Biotic and abiotic niche properties of some species were reanalyzed in face of ecological niche modeling approaches in order to get some insights into their ecological evolution. A test of the potential of DNA-Barcoding provided evidences that this technology may be a way of overcoming difficulties related to cryptic species differentiation. The new focus replenishes the scenario with new questions, presenting a case where neither geographical nor ecological speciation may be as yet suggested. PMID:23459119
10 CFR 781.52 - Exclusive and partially exclusive licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... subsidiaries and to affiliates within the corporate structure of which the licensee is a part, if any. However... on competition in the U.S.; (3) Projected market size; (4) The benefit to the U.S. Government, U.S... United States (including any Government agency), the States, and domestic municipal governments, unless...
Phillips, R A; Silk, J R D; Phalan, B; Catry, P; Croxall, J P
2004-06-22
Sexual segregation by micro- or macrohabitat is common in birds, and usually attributed to size-mediated dominance and exclusion of females by larger males, trophic niche divergence or reproductive role specialization. Our study of black-browed albatrosses, Thalassarche melanophrys, and grey-headed albatrosses, T. chrysostoma, revealed an exceptional degree of sexual segregation during incubation, with largely mutually exclusive core foraging ranges for each sex in both species. Spatial segregation was not apparent during brood-guard or post-guard chick rearing, when adults are constrained to feed close to colonies, providing no evidence for dominance-related competitive exclusion at the macrohabitat level. A comprehensive morphometric comparison indicated considerable species and sexual dimorphism in wing area and wing loading that corresponded, both within and between species, to broad-scale habitat preferences relating to wind strength. We suggest that seasonal sexual segregation in these two species is attributable to niche divergence mediated by differences in flight performance. Such sexual segregation may also have implications for conservation in relation to sex-specific overlap with commercial fisheries.
NASA Astrophysics Data System (ADS)
Hauffe, Torsten; Albrecht, Christian; Wilke, Thomas
2016-05-01
The Balkan Lake Ohrid is the oldest and most diverse freshwater lacustrine system in Europe. However, it remains unclear whether species community composition, as well as the diversification of its endemic taxa, is mainly driven by dispersal limitation, environmental filtering, or species interaction. This calls for a holistic perspective involving both evolutionary processes and ecological dynamics, as provided by the unifying framework of the "metacommunity speciation model".The current study used the species-rich model taxon Gastropoda to assess how extant communities in Lake Ohrid are structured by performing process-based metacommunity analyses. Specifically, the study aimed (1) to identifying the relative importance of the three community assembly processes and (2) to test whether the importance of these individual processes changes gradually with lake depth or discontinuously with eco-zone shifts.Based on automated eco-zone detection and process-specific simulation steps, we demonstrated that dispersal limitation had the strongest influence on gastropod community composition. However, it was not the exclusive assembly process, but acted together with the other two processes - environmental filtering and species interaction. The relative importance of the community assembly processes varied both with lake depth and eco-zones, though the processes were better predicted by the latter.This suggests that environmental characteristics have a pronounced effect on shaping gastropod communities via assembly processes. Moreover, the study corroborated the high importance of dispersal limitation for both maintaining species richness in Lake Ohrid (through its impact on community composition) and generating endemic biodiversity (via its influence on diversification processes). However, according to the metacommunity speciation model, the inferred importance of environmental filtering and biotic interaction also suggests a small but significant influence of ecological speciation. These findings contribute to the main goal of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) deep drilling initiative - inferring the drivers of biotic evolution - and might provide an integrative perspective on biological and limnological dynamics in ancient Lake Ohrid.
Aagaard, Jan E; George, Renee D; Fishman, Lila; Maccoss, Michael J; Swanson, Willie J
2013-01-01
Understanding the genetic basis of reproductive isolation promises insight into speciation and the origins of biological diversity. While progress has been made in identifying genes underlying barriers to reproduction that function after fertilization (post-zygotic isolation), we know much less about earlier acting pre-zygotic barriers. Of particular interest are barriers involved in mating and fertilization that can evolve extremely rapidly under sexual selection, suggesting they may play a prominent role in the initial stages of reproductive isolation. A significant challenge to the field of speciation genetics is developing new approaches for identification of candidate genes underlying these barriers, particularly among non-traditional model systems. We employ powerful proteomic and genomic strategies to study the genetic basis of conspecific pollen precedence, an important component of pre-zygotic reproductive isolation among yellow monkeyflowers (Mimulus spp.) resulting from male pollen competition. We use isotopic labeling in combination with shotgun proteomics to identify more than 2,000 male function (pollen tube) proteins within maternal reproductive structures (styles) of M. guttatus flowers where pollen competition occurs. We then sequence array-captured pollen tube exomes from a large outcrossing population of M. guttatus, and identify those genes with evidence of selective sweeps or balancing selection consistent with their role in pollen competition. We also test for evidence of positive selection on these genes more broadly across yellow monkeyflowers, because a signal of adaptive divergence is a common feature of genes causing reproductive isolation. Together the molecular evolution studies identify 159 pollen tube proteins that are candidate genes for conspecific pollen precedence. Our work demonstrates how powerful proteomic and genomic tools can be readily adapted to non-traditional model systems, allowing for genome-wide screens towards the goal of identifying the molecular basis of genetically complex traits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMPETITION REQUIREMENTS Full and Open Competition After Exclusion of Sources 1806.202 Establishing or maintaining alternative sources. (NASA supplements paragraphs (a) and (b)) (a) The authority of FAR 6.202 is... alternative sources. (NASA supplements paragraphs (a) and (b)) 1806.202 Section 1806.202 Federal Acquisition...
Boulyga, Sergei F; Loreti, Valeria; Bettmer, Jörg; Heumann, Klaus G
2004-09-01
Size exclusion chromatography (SEC) was coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS) for speciation study of trace metals in cancerous thyroid tissues in comparison to healthy thyroids aimed to estimation of changes in metalloprotein speciation in pathological tissue. The study showed a presence of species binding Cu, Zn, Cd and Pb in healthy thyroid tissue with a good reproducibility of chromatographic results, whereas the same species could not be detected in cancerous tissues. Thus, remarkable differences with respect to metal-binding species were revealed between healthy and pathological thyroid samples, pointing out a completely different distribution of trace metals in cancerous tissues. The metal-binding species could not be identified in the frame of this work because of a lack of appropriate standards. Nevertheless, the results obtained confirm the suitability of SEC-ICP-MS for monitoring of changes in trace metal distribution in cancerous tissue and will help to better understand the role of metal-containing species in thyroid pathology.
Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils
Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana; ...
2018-03-08
Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallophores within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrices. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) of soils from native tallgrass prairies in Kansas and Iowa. Both plant and fungal metallophores were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant Fe acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamines, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2–90 pmol/g soil). In contrast, the fungal siderophore ferricrocin was specific for trivalent Fe (7–32 pmol/g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. In conclusion, small structural modifications result in significant differences in metal ligand selectivity, and likely impact metal uptake within the rhizosphere of grassland soils.« less
Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana
Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallophores within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrices. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) of soils from native tallgrass prairies in Kansas and Iowa. Both plant and fungal metallophores were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant Fe acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamines, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2–90 pmol/g soil). In contrast, the fungal siderophore ferricrocin was specific for trivalent Fe (7–32 pmol/g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. In conclusion, small structural modifications result in significant differences in metal ligand selectivity, and likely impact metal uptake within the rhizosphere of grassland soils.« less
Coexistence of three specialist aphids on common milkweed, Asclepias syriaca.
Smith, R A; Mooney, K A; Agrawal, A A
2008-08-01
Coexistence of host-specific herbivores on plants is believed to be governed by interspecific interactions, but few empirical studies have systematically unraveled these dynamics. We investigated the role of several factors in promoting coexistence among the aphids Aphis nerii, Aphis asclepiadis, and Myzocallis asclepiadis that all specialize on common milkweed (Asclepias syriaca). Competitive exclusion is thought to occur when interspecific competition is stronger than intraspecific competition. Consequently, we investigated whether predators, mutualists, or resource quality affected the strength of intra- vs. interspecific competition among aphids in factorial manipulations of competition with exposure to predation, ants, and variable plant genotypes in three separate experiments. In the predation x competition experiment, predators reduced aphid per capita growth by 66%, but the strength of intra- and interspecific competition did not depend on predators. In the ants x competition experiment, ants reduced per capita growth of A. nerii and M. asclepiadis (neither of which were mutualists with ants) by approximately one-half. In so doing, ants ameliorated the negative effects of these competitors on ant-tended A. asclepiadis by two-thirds, representing a novel benefit of ant-aphid mutualism. Nevertheless, ants alone did not explain the persistence of competitively inferior A. asclepiadis as, even in the presence of ants, interspecific competition remained stronger than intraspecific competition. In the plant genotype x competition experiment, both A. asclepiadis and M. asclepiadis were competitively inferior to A. nerii, with the strength of interspecific competition exceeding that of intraspecific competition by 83% and 23%, respectively. Yet these effects differed among milkweed genotypes, and there were one or more plant genotypes for each aphid species where coexistence was predicted. A synthesis of our results shows that predators play little or no role in preferentially suppressing competitively dominant A. nerii. Nonetheless, A. asclepiadis benefits from ants, and A. asclepiadis and M. asclepiadis may escape competitive exclusion by A. nerii on select milkweed genotypes. Taken as a whole, the coexistence of three host-specific aphid species sharing the same resource was promoted by the dual action of ants as antagonists and mutualists and by genetic diversity in the plant population itself.
Gibson, A K; Hood, M E; Giraud, T
2012-06-01
Closely related species coexisting in sympatry provide critical insight into the mechanisms underlying speciation and the maintenance of genetic divergence. Selfing may promote reproductive isolation by facilitating local adaptation, causing reduced hybrid fitness in parental environments. Here, we propose a novel mechanism by which selfing can further impair interspecific gene flow: selfing may act to ensure that nonhybrid progeny systematically co-occur whenever hybrid genotypes are produced. Under a competition arena, the fitness differentials between nonhybrid and hybrid progeny are then magnified, preventing development of interspecific hybrids. We investigate whether this "sibling competition arena" can explain the coexistence in sympatry of closely related species of the plant fungal pathogens (Microbotryum) causing anther-smut disease. The probabilities of intrapromycelial mating (automixis), outcrossing, and sibling competition were manipulated in artificial inoculations to evaluate their contribution to reproductive isolation. We report that both intrapromycelial selfing and sibling competition significantly reduced rates of hybrid infection beyond that expected based solely upon selfing rates and noncompetitive fitness differentials between hybrid and nonhybrid progeny. Our results thus suggest that selfing and a sibling competition arena can combine to constitute a barrier to gene flow and diminish selection for additional barriers to gene flow in sympatry. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.
Qin, Rui-Min; Zheng, Yu-Long; Valiente-Banuet, Alfonso; Callaway, Ragan M; Barclay, Gregor F; Pereyra, Carlos Silva; Feng, Yu-Long
2013-02-01
There are many non-mutually exclusive mechanisms for exotic invasions but few studies have concurrently tested more than one hypothesis for the same species. Here, we tested the evolution of increased competitive ability (EICA) hypothesis in two common garden experiments in which Chromolaena odorata plants originating from native and nonnative ranges were grown in competition with natives from each range, and the novel weapons hypothesis in laboratory experiments with leachates from C. odorata. Compared with conspecifics originating from the native range, C. odorata plants from the nonnative range were stronger competitors at high nutrient concentrations in the nonnative range in China and experienced far more herbivore damage in the native range in Mexico. In both China and Mexico, C. odorata was more suppressed by species native to Mexico than by species native to China. Species native to China were much more inhibited by leaf extracts from C. odorata than species from Mexico, and this difference in allelopathic effects may provide a possible explanation for the biogeographic differences in competitive ability. Our results indicate that EICA, innate competitive advantages, and novel biochemical weapons may act in concert to promote invasion by C. odorata, and emphasize the importance of exploring multiple, non-mutually exclusive mechanisms for invasions. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Husemann, M; Tobler, M; McCauley, C; Ding, B; Danley, P D
2014-05-01
The cichlid fishes of Lake Malawi represent one of the most diverse adaptive radiations of vertebrates known. Among the rock-dwelling cichlids (mbuna), closely related sympatric congeners possess similar trophic morphologies (i.e. cranial and jaw structures), defend overlapping or adjacent territories, but can be easily distinguished based on male nuptial coloration. The apparent morphological similarity of congeners, however, leads to an ecological conundrum: theory predicts that ecological competition should lead to competitive exclusion. Hence, we hypothesized that slight, yet significant, ecological differences accompanied the divergence in sexual signals and that the divergence of ecological and sexual traits is correlated. To evaluate this hypothesis, we quantified body shape, a trait of known ecological importance, in populations of Maylandia zebra, a barred, widespread mbuna, and several sympatric nonbarred congeners. We found that the barred populations differ in body shape from their nonbarred sympatric congeners and that the direction of shape differences was consistent across all barred vs. nonbarred comparisons. Barred populations are generally deeper bodied which may be an adaptation to the structurally complex habitat they prefer, whereas the nonbarred species have a more fusiform body shape, which may be adaptive in their more open microhabitat. Furthermore, M. zebra populations sympatric with nonbarred congeners differ from populations where the nonbarred phenotype is absent and occupy less morphospace, indicating potential ecological character displacement. Mitochondrial DNA as well as published AFLP data indicated that the nonbarred populations are not monophyletic and therefore may have evolved multiple times independently. Overall our data suggest that the evolution of coloration and body shape may be coupled as a result of correlational selection. We hypothesize that correlated evolution of sexually selected and ecological traits may have contributed to rapid speciation as well as the maintenance of diversity in one of the most diverse adaptive radiations known. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Pavlaki, Maria D; Morgado, Rui G; van Gestel, Cornelis A M; Calado, Ricardo; Soares, Amadeu M V M; Loureiro, Susana
2017-11-01
mMarine and estuarine ecosystems are highly productive areas that often act as a final sink for several pollutants, such as cadmium. Environmental conditions in these habitats can affect metal speciation, as well as its uptake and depuration by living organisms. The aim of this study was to assess cadmium uptake and depuration rates in the euryhaline calanoid copepod Acartia tonsa under different pH, salinity and temperature conditions. Cadmium speciation did not vary with changing pH or temperature, but varied with salinity. Free Cd 2+ ion activity increased with decreasing salinities resulting in increased cadmium concentrations in A. tonsa. However, uptake rate, derived using free Cd 2+ ion activity, showed no significant differences at different salinities indicating a simultaneous combined effect of Cd 2+ speciation and metabolic rates for osmoregulation. Cadmium concentration in A. tonsa and uptake rate increased with increasing pH, showing a peak at the intermediate pH of 7.5, while depuration rate fluctuated, thus suggesting that both parameters are mediated by metabolic processes (to maintain homeostasis at pH levels lower than normal) and ion competition at membrane binding sites. Cadmium concentration in A. tonsa, uptake and depuration rates increased with increasing temperature, a trend that can be attributed to an increase in metabolic energy demand at higher temperatures. The present study shows that cadmium uptake and depuration rates in the marine copepod A. tonsa is mostly affected by biological processes, mainly driven by metabolic mechanisms, and to a lesser extent by metal speciation in the exposure medium. Copyright © 2017 Elsevier Inc. All rights reserved.
Tropics accelerate the evolution of hybrid male sterility in Drosophila.
Yukilevich, Roman
2013-06-01
Understanding the evolutionary mechanisms that facilitate speciation and explain global patterns of species diversity has remained a challenge for decades. The most general pattern of species biodiversity is the latitudinal gradient, whereby species richness increases toward the tropics. Although such a global pattern probably has a multitude of causes, recent attention has focused on the hypothesis that speciation and the evolution of reproductive isolation occur faster in the tropics. Here, I tested this prediction using a dataset on premating and postzygotic isolation between recently diverged Drosophila species. Results showed that while the evolution of premating isolation was not greater between tropical Drosophila relative to nontropical species, postzygotic isolation evolved faster in the tropics. In particular, hybrid male sterility was much greater among tropical Drosophila compared to nontropical species pairs of similar genetic age. Several testable explanations for the novel pattern are discussed, including greater role for sterility-inducing bacterial endosymbionts in the tropics and more intense sperm-sperm competition or sperm-egg sexual conflict in the tropics. The results imply that processes of speciation in the tropics may evolve at different rates or may even be somewhat different from those at higher latitudes. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Tang, Long; Wolf, Amelia A; Gao, Yang; Wang, Cheng Huan
2018-06-01
In an attempt to clarify the role of environmental and biotic interactions on plant growth, there has been a long-running ecological debate over whether the intensity and importance of competition stabilizes, increases or decreases across environmental gradients. We conducted an experiment in a Chinese estuary to investigate the effects of a non-resource stress gradient, soil salinity (from 1.4‰ to 19.0‰ salinity), on the competitive interactions between native Phragmites australis and invasive Spartina alterniflora. We linked these effects to measurements of photosynthetic activities to further elucidate the underlying physiological mechanism behind the competitive interactions and the driver of invasion. The experiments revealed that while biomass of both species decreased in the presence of the other, competition did not alter photosynthetic activity of either species over time. P. australis exhibited high photosynthetic activity, including low chlorophyllase activity, high chlorophyll content, high stomatal conductance and high net photosynthetic rate, at low salinity. Under these conditions, P. australis experienced low competitive intensity, leading to high biomass production and competitive exclusion of S. alterniflora. The opposite was observed for S. alterniflora: while competitive intensity experienced by P. australis increased with increasing salinity, and photosynthetic activity, biomass, competitive dominance and the importance of competition for P. australis growth decreased, those of S. alterniflora were stable. These findings demonstrate that S. alterniflora invasion driven by competitive exclusion are likely to occur and expand in high salinity zones. The change in the nature of competition along a non-resource stress gradient differs between competitors likely due to differences in photosynthetic tolerance to salinity. The driver of growth of the less-tolerant species changes from competition to non-resource stress factors with increasing stress levels, whereas competition is constantly important for growth of the more-tolerant species. Incorporating metrics of both competition intensity and importance, as well as linking these competitive outcomes with physiological mechanisms, is crucial to understanding, predicting, and mediating the effects of invasive species in the future. © 2018 by the Ecological Society of America.
Competitive intransitivity promotes species coexistence.
Laird, Robert A; Schamp, Brandon S
2006-08-01
Using a spatially explicit cellular automaton model with local competition, we investigate the potential for varied levels of competitive intransitivity (i.e., nonhierarchical competition) to promote species coexistence. As predicted, on average, increased levels of intransitivity result in more sustained coexistence within simulated communities, although the outcome of competition also becomes increasingly unpredictable. Interestingly, even a moderate degree of intransitivity within a community can promote coexistence, in terms of both the length of time until the first competitive exclusion and the number of species remaining in the community after 500 simulated generations. These results suggest that modest levels of intransitivity in nature, such as those that are thought to be characteristic of plant communities, can contribute to coexistence and, therefore, community-scale biodiversity. We explore a potential connection between competitive intransitivity and neutral theory, whereby competitive intransitivity may represent an important mechanism for "ecological equivalence."
Why Sexually Selected Weapons Are Not Ornaments.
McCullough, Erin L; Miller, Christine W; Emlen, Douglas J
2016-10-01
The elaboration and diversification of sexually selected weapons remain poorly understood. We argue that progress in this topic has been hindered by a strong bias in sexual selection research, and a tendency for weapons to be conflated with ornaments used in mate choice. Here, we outline how male-male competition and female choice are distinct mechanisms of sexual selection, and why weapons and ornaments are fundamentally different types of traits. We call for research on the factors contributing to weapon divergence, the potential for male-male competition to drive speciation, and the specific use of weapons in the context of direct fights versus displays. Given that weapons are first and foremost fighting structures, biomechanical approaches are an especially promising direction for understanding weapon design. Copyright © 2016 Elsevier Ltd. All rights reserved.
A pharyngeal jaw evolutionary innovation facilitated extinction in Lake Victoria cichlids.
McGee, Matthew D; Borstein, Samuel R; Neches, Russell Y; Buescher, Heinz H; Seehausen, Ole; Wainwright, Peter C
2015-11-27
Evolutionary innovations, traits that give species access to previously unoccupied niches, may promote speciation and adaptive radiation. Here, we show that such innovations can also result in competitive inferiority and extinction. We present evidence that the modified pharyngeal jaws of cichlid fishes and several marine fish lineages, a classic example of evolutionary innovation, are not universally beneficial. A large-scale analysis of dietary evolution across marine fish lineages reveals that the innovation compromises access to energy-rich predator niches. We show that this competitive inferiority shaped the adaptive radiation of cichlids in Lake Tanganyika and played a pivotal and previously unrecognized role in the mass extinction of cichlid fishes in Lake Victoria after Nile perch invasion. Copyright © 2015, American Association for the Advancement of Science.
Spatial variation and density-dependent dispersal in competitive coexistence.
Amarasekare, Priyanga
2004-01-01
It is well known that dispersal from localities favourable to a species' growth and reproduction (sources) can prevent competitive exclusion in unfavourable localities (sinks). What is perhaps less well known is that too much emigration can undermine the viability of sources and cause regional competitive exclusion. Here, I investigate two biological mechanisms that reduce the cost of dispersal to source communities. The first involves increasing the spatial variation in the strength of competition such that sources can withstand high rates of emigration; the second involves reducing emigration from sources via density-dependent dispersal. I compare how different forms of spatial variation and modes of dispersal influence source viability, and hence source-sink coexistence, under dominance and pre-emptive competition. A key finding is that, while spatial variation substantially reduces dispersal costs under both types of competition, density-dependent dispersal does so only under dominance competition. For instance, when spatial variation in the strength of competition is high, coexistence is possible (regardless of the type of competition) even when sources experience high emigration rates; when spatial variation is low, coexistence is restricted even under low emigration rates. Under dominance competition, density-dependent dispersal has a strong effect on coexistence. For instance, when the emigration rate increases with density at an accelerating rate (Type III density-dependent dispersal), coexistence is possible even when spatial variation is quite low; when the emigration rate increases with density at a decelerating rate (Type II density-dependent dispersal), coexistence is restricted even when spatial variation is quite high. Under pre-emptive competition, density-dependent dispersal has only a marginal effect on coexistence. Thus, the diversity-reducing effects of high dispersal rates persist under pre-emptive competition even when dispersal is density dependent, but can be significantly mitigated under dominance competition if density-dependent dispersal is Type III rather than Type II. These results lead to testable predictions about source-sink coexistence under different regimes of competition, spatial variation and dispersal. They identify situations in which density-independent dispersal provides a reasonable approximation to species' dispersal patterns, and those under which consideration of density-dependent dispersal is crucial to predicting long-term coexistence. PMID:15306322
Maguire, E F
1996-01-01
Managed care is, in reality, managed payment delivered through exclusive price-competitive contracts that require healthcare providers to reorganize to participate as equals in the division of premium dollars.
47 CFR 27.1103 - 2000-2020 MHz and 2180-2200 MHz bands subject to competitive bidding.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false 2000-2020 MHz and 2180-2200 MHz bands subject... Bidding Provisions § 27.1103 2000-2020 MHz and 2180-2200 MHz bands subject to competitive bidding. Mutually exclusive initial applications for 2000-2020 MHz and 2180-2200 MHz band licenses are subject to...
Food Web Assembly Rules for Generalized Lotka-Volterra Equations.
Haerter, Jan O; Mitarai, Namiko; Sneppen, Kim
2016-02-01
In food webs, many interacting species coexist despite the restrictions imposed by the competitive exclusion principle and apparent competition. For the generalized Lotka-Volterra equations, sustainable coexistence necessitates nonzero determinant of the interaction matrix. Here we show that this requirement is equivalent to demanding that each species be part of a non-overlapping pairing, which substantially constrains the food web structure. We demonstrate that a stable food web can always be obtained if a non-overlapping pairing exists. If it does not, the matrix rank can be used to quantify the lack of niches, corresponding to unpaired species. For the species richness at each trophic level, we derive the food web assembly rules, which specify sustainable combinations. In neighboring levels, these rules allow the higher level to avert competitive exclusion at the lower, thereby incorporating apparent competition. In agreement with data, the assembly rules predict high species numbers at intermediate levels and thinning at the top and bottom. Using comprehensive food web data, we demonstrate how omnivores or parasites with hosts at multiple trophic levels can loosen the constraints and help obtain coexistence in food webs. Hence, omnivory may be the glue that keeps communities intact even under extinction or ecological release of species.
Food Web Assembly Rules for Generalized Lotka-Volterra Equations
Haerter, Jan O.; Mitarai, Namiko; Sneppen, Kim
2016-01-01
In food webs, many interacting species coexist despite the restrictions imposed by the competitive exclusion principle and apparent competition. For the generalized Lotka-Volterra equations, sustainable coexistence necessitates nonzero determinant of the interaction matrix. Here we show that this requirement is equivalent to demanding that each species be part of a non-overlapping pairing, which substantially constrains the food web structure. We demonstrate that a stable food web can always be obtained if a non-overlapping pairing exists. If it does not, the matrix rank can be used to quantify the lack of niches, corresponding to unpaired species. For the species richness at each trophic level, we derive the food web assembly rules, which specify sustainable combinations. In neighboring levels, these rules allow the higher level to avert competitive exclusion at the lower, thereby incorporating apparent competition. In agreement with data, the assembly rules predict high species numbers at intermediate levels and thinning at the top and bottom. Using comprehensive food web data, we demonstrate how omnivores or parasites with hosts at multiple trophic levels can loosen the constraints and help obtain coexistence in food webs. Hence, omnivory may be the glue that keeps communities intact even under extinction or ecological release of species. PMID:26828363
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr; Bertron, Alexandra; Larreur-Cayol, Steeves
2015-03-15
Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelatingmore » effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.« less
Modeling the binding of fulvic acid by goethite: the speciation of adsorbed FA molecules
NASA Astrophysics Data System (ADS)
Filius, Jeroen D.; Meeussen, Johannes C. L.; Lumsdon, David G.; Hiemstra, Tjisse; van Riemsdijk, Willem H.
2003-04-01
Under natural conditions, the adsorption of ions at the solid-water interface may be strongly influenced by the adsorption of organic matter. In this paper, we describe the adsorption of fulvic acid (FA) by metal(hydr)oxide surfaces with a heterogeneous surface complexation model, the ligand and charge distribution (LCD) model. The model is a self-consistent combination of the nonideal competitive adsorption (NICA) equation and the CD-MUSIC model. The LCD model can describe simultaneously the concentration, pH, and salt dependency of the adsorption with a minimum of only three adjustable parameters. Furthermore, the model predicts the coadsorption of protons accurately for an extended range of conditions. Surface speciation calculations show that almost all hydroxyl groups of the adsorbed FA molecules are involved in outer sphere complexation reactions. The carboxylic groups of the adsorbed FA molecule form inner and outer sphere complexes. Furthermore, part of the carboxylate groups remain noncoordinated and deprotonated.
Disturbance and productivity interactions mediate stability of forest composition and structure.
O'Connor, Christopher D; Falk, Donald A; Lynch, Ann M; Swetnam, Thomas W; Wilcox, Craig P
2017-04-01
Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with similar historical fire regimes. This variability in plant community response to fire exclusion is not well understood; however, ecological mechanisms such as individual species' adaptations to disturbance or competition and underlying site characteristics that facilitate or impede establishment and growth have been proposed as potential drivers of assemblage response. We used spatially explicit dendrochronological reconstruction of tree population dynamics and fire regimes to examine the influence of historical disturbance frequency (a proxy for adaptation to disturbance or competition), and potential site productivity (a proxy for underlying site characteristics) on the stability of forest composition and structure along a continuous ecological gradient of pine, dry mixed-conifer, mesic mixed-conifer, and spruce-fir forests following fire exclusion. While average structural density increased in all forests, species composition was relatively stable in the lowest productivity pine-dominated and highest productivity spruce-fir-dominated sites immediately following fire exclusion and for the next 100 years, suggesting site productivity as a primary control on species composition and structure in forests with very different historical fire regimes. Species composition was least stable on intermediate productivity sites dominated by mixed-conifer forests, shifting from primarily fire-adapted species to competition-adapted, fire-sensitive species within 20 years of fire exclusion. Rapid changes to species composition and stand densities have been interpreted by some as evidence of high-severity fire. We demonstrate that the very different ecological process of fire exclusion can produce similar changes by shifting selective pressures from disturbance-mediated to productivity-mediated controls. Restoring disturbance-adapted species composition and structure to intermediate productivity forests may help to buffer them against projected increasing temperatures, lengthening fire seasons, and more frequent and prolonged moisture stress. Fewer management options are available to promote adaptation in forest assemblages historically constrained by underlying site productivity. © 2016 by the Ecological Society of America.
Pitteloud, Camille; Arrigo, Nils; Suchan, Tomasz; Mastretta-Yanes, Alicia; Dincă, Vlad; Hernández-Roldán, Juan; Brockmann, Ernst; Chittaro, Yannick; Kleckova, Irena; Fumagalli, Luca; Buerki, Sven; Pellissier, Loïc
2017-01-01
Understanding how speciation relates to ecological divergence has long fascinated biologists. It is assumed that ecological divergence is essential to sympatric speciation, as a mechanism to avoid competition and eventually lead to reproductive isolation, while divergence in allopatry is not necessarily associated with niche differentiation. The impact of the spatial context of divergence on the evolutionary rates of abiotic dimensions of the ecological niche has rarely been explored for an entire clade. Here, we compare the magnitude of climatic niche shifts between sympatric versus allopatric divergence of lineages in butterflies. By combining next-generation sequencing, parametric biogeography and ecological niche analyses applied to a genus-wide phylogeny of Palaearctic Pyrgus butterflies, we compare evolutionary rates along eight climatic dimensions across sister lineages that diverged in large-scale sympatry versus allopatry. In order to examine the possible effects of the spatial scale at which sympatry is defined, we considered three sets of biogeographic assignments, ranging from narrow to broad definition. Our findings suggest higher rates of niche evolution along all climatic dimensions for sister lineages that diverge in sympatry, when using a narrow delineation of biogeographic areas. This result contrasts with significantly lower rates of climatic niche evolution found in cases of allopatric speciation, despite the biogeographic regions defined here being characterized by significantly different climates. Higher rates in allopatry are retrieved when biogeographic areas are too widely defined—in such a case allopatric events may be recorded as sympatric. Our results reveal the macro-evolutionary significance of abiotic niche differentiation involved in speciation processes within biogeographic regions, and illustrate the importance of the spatial scale chosen to define areas when applying parametric biogeographic analyses. PMID:28404781
Interactions between arsenic species and marine algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, J.G.
The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surroundingmore » media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)« less
Savić, Ivo; Ćirović, Duško; Bugarski-Stanojević, Vanja
2017-10-25
Mole rats are exclusively subterranean and highly specialized rodents. Their long lifespans, remarkable anti-cancer mechanisms, and various distinctive adaptive features make them a useful research model. Moreover, opposing convergence of morphological traits, they have developed extremely high karyotype variability. Thus, 74 chromosomal forms have been described so far and new ones are being revealed continuously. These evolved during the process of rapid radiation and occur in different biogeographical regions. During research into their reproductive biology we have already provided substantial evidence for species-level separation of these taxa. Here, we review diverse chromosomal forms of the lesser blind mole rat, Mediterranean Nannospalax leucodon , distributed in South-eastern Europe, their karyotype records, biogeography, origin, and phylogeny from our extensive research. In the light of new data from molecular genetic studies, we question some former valuations and propose a cryptospecies rank for seven reproductively isolated chromosomal forms with sympatric and parapatric distribution and clear ecogeographical discrepances in their habitats, as well as new experimental and theoretical methods for understanding the courses of speciation of these unique fossorial mammals.
Savić, Ivo; Ćirović, Duško
2017-01-01
Mole rats are exclusively subterranean and highly specialized rodents. Their long lifespans, remarkable anti-cancer mechanisms, and various distinctive adaptive features make them a useful research model. Moreover, opposing convergence of morphological traits, they have developed extremely high karyotype variability. Thus, 74 chromosomal forms have been described so far and new ones are being revealed continuously. These evolved during the process of rapid radiation and occur in different biogeographical regions. During research into their reproductive biology we have already provided substantial evidence for species-level separation of these taxa. Here, we review diverse chromosomal forms of the lesser blind mole rat, Mediterranean Nannospalax leucodon, distributed in South-eastern Europe, their karyotype records, biogeography, origin, and phylogeny from our extensive research. In the light of new data from molecular genetic studies, we question some former valuations and propose a cryptospecies rank for seven reproductively isolated chromosomal forms with sympatric and parapatric distribution and clear ecogeographical discrepances in their habitats, as well as new experimental and theoretical methods for understanding the courses of speciation of these unique fossorial mammals. PMID:29068425
Competitive Exclusion of Heterologous Campylobacter spp. in Chicks
Chen, Hui-Cheng; Stern, Norman J.
2001-01-01
Chicken and human isolates of Campylobacter jejuni were used to provide oral challenge of day-old broiler chicks. The isolation ratio of the competing challenge strains was monitored and varied, depending upon the isolates used. A PCR-restriction fragment length polymorphism assay of the flagellin gene (flaA) was used to discriminate between the chick-colonizing isolates. Our observations indicated that the selected C. jejuni colonizers dominated the niche provided by the chicken ceca. Chicken isolates from the flaA type 7 grouping generally had numerical superiority over the human isolates when they were administered in our 1-day-old chick model. Our results suggest that it is possible to use combinations of C. jejuni chicken isolates as a defined bacterial preparation for the competitive exclusion of human-pathogenic C. jejuni in poultry. PMID:11157253
Within-host competitive exclusion among species of the anther smut pathogen
Gold, Alexander; Giraud, Tatiana; Hood, Michael E
2009-01-01
Background Host individuals represent an arena in which pathogens compete for resources and transmission opportunities, with major implications for the evolution of virulence and the structure of populations. Studies to date have focused on competitive interactions within pathogen species, and the level of antagonism tends to increase with the genetic distance between competitors. Anther-smut fungi, in the genus Microbotryum, have emerged as a tractable model for within-host competition. Here, using two pathogen species that are frequently found in sympatry, we investigated whether the antagonism seen among genotypes of the same species cascades up to influence competition among pathogen species. Results Sequential inoculation of hosts showed that a resident infection most often excludes a challenging pathogen genotype, which is consistent with prior studies. However, the challenging pathogen was significantly more likely to invade the already-infected host if the resident infection was a conspecific genotype compared to challenges involving a closely related species. Moreover, when inter-specific co-infection occurred, the pathogens were highly segregated within the host, in contrast to intra-specific co-infection. Conclusion We show evidence that competitive exclusion during infection can be greater among closely related pathogen species than among genotypes within species. This pattern follows from prior studies demonstrating that genetic distance and antagonistic interactions are positively correlated in Microbotryum. Fungal vegetative incompatibility is a likely mechanism of direct competitive interference, and has been shown in some fungi to be effective both within and across species boundaries. For systems where related pathogen species frequently co-occur in the same host populations, these competitive dynamics may substantially impact the spatial segregation of pathogen species. PMID:19422703
Hypotheses to explain the origin of species in Amazonia.
Haffer, J
2008-11-01
The main hypotheses proposed to explain barrier formation separating populations and causing the differentiation of species in Amazonia during the course of geological history are based on different factors, as follow: (1) Changes in the distribution of land and sea or in the landscape due to tectonic movements or sea level fluctuations (Paleogeography hypothesis), (2) the barrier effect of Amazonian rivers (River hypothesis), (3) a combination of the barrier effect of broad rivers and vegetational changes in northern and southern Amazonia (River-refuge hypothesis), (4) the isolation of humid rainforest blocks near areas of surface relief in the periphery of Amazonia separated by dry forests, savannas and other intermediate vegetation types during dry climatic periods of the Tertiary and Quaternary (Refuge hypothesis), (5) changes in canopy-density due to climatic reversals (Canopy-density hypothesis) (6) the isolation and speciation of animal populations in small montane habitat pockets around Amazonia due to climatic fluctuations without major vegetational changes (Museum hypothesis), (7) competitive species interactions and local species isolations in peripheral regions of Amazonia due to invasion and counterinvasion during cold/warm periods of the Pleistocene (Disturbance-vicariance hypothesis) and (8) parapatric speciation across steep environmental gradients without separation of the respective populations (Gradient hypothesis). Several of these hypotheses probably are relevant to a different degree for the speciation processes in different faunal groups or during different geological periods. The basic paleogeography model refers mainly to faunal differentiation during the Tertiary and in combination with the Refuge hypothesis. Milankovitch cycles leading to global main hypotheses proposed to explain barrier formation separating populations and causing the differentiation of species in Amazonia during the course of geological history are based on different factors, as follow: (1) Changes in the distribution of land and sea or in the landscape due to tectonic movements or sea level fluctuations (Paleogeography hypothesis), (2) the barrier effect of Amazonian rivers (River hypothesis), (3) a combination of the barrier effect of broad rivers and vegetational changes in northern and southern Amazonia (River-refuge hypothesis), (4) the isolation of humid rainforest blocks near areas of surface relief in the periphery of Amazonia separated by dry forests, savannas and other intermediate vegetation types during dry climatic periods of the Tertiary and Quaternary (Refuge hypothesis), (5) changes in canopy-density due to climatic reversals (Canopy-density hypothesis) (6) the isolation and speciation of animal populations in small montane habitat pockets around Amazonia due to climatic fluctuations without major vegetational changes (Museum hypothesis), (7) competitive species interactions and local species isolations in peripheral regions of Amazonia due to invasion and counterinvasion during cold/warm periods of the Pleistocene (Disturbance-vicariance hypothesis) and (8) parapatric speciation across steep environmental gradients without separation of the respective populations (Gradient hypothesis). Several of these hypotheses probably are relevant to a different degree for the speciation processes in different faunal groups or during different geological periods. The basic paleogeography model refers mainly to faunal differentiation during the Tertiary and in combination with the Refuge hypothesis. Milankovitch cycles leading to global climatic-vegetational changes affected the biomes of the world not only during the Pleistocene but also during the Tertiary and earlier geological periods. New geoscientific evidence for the effect of dry climatic periods in Amazonia supports the predictions of the Refuge hypothesis. The disturbance-vicariance hypothesis refers to the presumed effect of cold/warm climatic phases of the Pleistocene only and is of limited general relevance because most extant species originated earlier and probably through paleogeographic changes and the formation of ecological refuges during the Tertiary.
Determinants of Market Exclusivity for Prescription Drugs in the United States.
Kesselheim, Aaron S; Sinha, Michael S; Avorn, Jerry
2017-11-01
The high prices of brand-name prescription drugs are a growing source of controversy in the United States. Manufacturers of brand-name drugs can command high prices because they are protected from generic competition by two types of government-granted monopoly rights. The first are patents on the drugs that generally define the basic period of brand-name-only sales. The second is awarded at the time of US Food and Drug Administration (FDA) approval and usually defines the minimum time until a generic can be sold. The initial patents last for 20 years and may be extended to account for time spent in clinical trials and regulatory review; other laws prevent approval of other manufacturers' versions of new drugs for about 6 to 7 years, and for new biologics for 12 years. Overall, most new drugs receive about 12 to 16 years of market exclusivity from both kinds of monopoly protection combined. We reviewed the peer-reviewed medical and health policy literature to identify studies that described the different types of patent protection and regulatory exclusivities that shield brand-name prescription drugs from competition and thus help to sustain high drug prices. We also identified potential policy reforms intended to modify exclusivity periods to address public health needs by balancing drug affordability and industry revenue. The goal of policy in this area should be to ensure that drug market exclusivity periods provide for fair return on investment but do not indefinitely block availability of lower-cost generic drugs.
Market Exclusivity Time for Top Selling Originator Drugs in Canada: A Cohort Study.
Lexchin, Joel
2017-09-01
This study looks at market exclusivity time for the top selling originator drugs in Canada. Total sales for drugs without competition were also calculated. A list of the top selling originator drugs by dollar sales from 2009 to 2015 inclusive, except for 2010, was compiled along with their annual sales. Health Canada databases were used to extract the following information: generic name, date of Notice of Compliance (NOC, date of marketing authorization), whether the product was a small molecule drug or a biologic, and date of NOC for a generic or biosimilar. Market exclusivity time was calculated in days for drugs. A total of 121 drugs were identified. There were 96 small molecule drugs (63 with a generic competitor and 33 with no generic competitor) and 25 biologics (none with a biosimilar competitor). The 63 drugs with a competitor had a mean market exclusivity time of 4478 days (12.3 years) (95% CI 4159-4798). The 58 drugs without competition had total annual sales of Can$8.59 billion and were on the market for a median of 5357 days (14.7 years) (interquartile range 3291-6679) as of January 31, 2017. Top selling originator drugs in Canada have a considerably longer period of market exclusivity than the 8 to 10 years that the research-based pharmaceutical industry claims. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Rossetto, Maurizio; Allen, Chris B; Thurlby, Katie A G; Weston, Peter H; Milner, Melita L
2012-08-20
Four of the five species of Telopea (Proteaceae) are distributed in a latitudinal replacement pattern on the south-eastern Australian mainland. In similar circumstances, a simple allopatric speciation model that identifies the origins of genetic isolation within temporal geographic separation is considered as the default model. However, secondary contact between differentiated lineages can result in similar distributional patterns to those arising from a process of parapatric speciation (where gene flow between lineages remains uninterrupted during differentiation). Our aim was to use the characteristic distributional patterns in Telopea to test whether it reflected the evolutionary models of allopatric or parapatric speciation. Using a combination of genetic evidence and environmental niche modelling, we focused on three main questions: do currently described geographic borders coincide with genetic and environmental boundaries; are there hybrid zones in areas of secondary contact between closely related species; did species distributions contract during the last glacial maximum resulting in distributional gaps even where overlap and hybridisation currently occur? Total genomic DNA was extracted from 619 individuals sampled from 36 populations representing the four species. Seven nuclear microsatellites (nSSR) and six chloroplast microsatellites (cpSSR) were amplified across all populations. Genetic structure and the signature of admixture in overlap zones was described using the Bayesian clustering methods implemented in STUCTURE and NewHybrids respectively. Relationships between chlorotypes were reconstructed as a median-joining network. Environmental niche models were produced for all species using environmental parameters from both the present day and the last glacial maximum (LGM).The nSSR loci amplified a total of 154 alleles, while data for the cpSSR loci produced a network of six chlorotypes. STRUCTURE revealed an optimum number of five clusters corresponding to the four recognised species with the additional division of T. speciosissima into populations north and south of the Shoalhaven River valley. Unexpectedly, the northern disjunct population of T. oreades grouped with T. mongaensis and was identified as a hybrid swarm by the Bayesian assignment test implemented in NewHybrids. Present day and LGM environmental niche models differed dramatically, suggesting that distributions of all species had repeatedly expanded and contracted in response to Pleistocene climatic oscillations and confirming strongly marked historical distributional gaps among taxes. Genetic structure and bio-climatic modeling results are more consistent with a history of allopatric speciation followed by repeated episodes of secondary contact and localised hybridisation, rather than with parapatric speciation. This study on Telopea shows that the evidence for temporal exclusion of gene flow can be found even outside obvious geographical contexts, and that it is possible to make significant progress towards excluding parapatric speciation as a contributing evolutionary process.
Experimental demonstration of the importance of competition under disturbance.
Violle, Cyrille; Pu, Zhichao; Jiang, Lin
2010-07-20
Ecologists have long recognized the roles of competition and disturbance in shaping ecological communities, and the combinatorial effects of these two factors have been the subject of substantial ecological research. Nevertheless, it is still unclear whether competition remains as an important structuring force in habitats strongly influenced by disturbance. The conventional belief remains that the importance of competition decreases with increasing disturbance, but limited theory suggests otherwise. Using protist communities established in laboratory microcosms, we demonstrate that disturbance does not diminish the importance of competition. Interspecific competition significantly increased rates of species extinction over a broad disturbance gradient, and increasing disturbance intensities increased, rather than decreased, the tempo of competitive exclusion. This community-level pattern is linked to the species-level pattern that interspecific competition led to most frequent extinctions of each species at the highest level of disturbance that the species can tolerate. Consequently, despite a strong tradeoff between competitive ability and disturbance tolerance across the competing species, species diversity generally declined with disturbance. The consistent structuring role of competition throughout the disturbance gradient underscores the need to understand competitive interactions and their consequences even in highly disturbed habitats.
Picking battles wisely: plant behaviour under competition.
Novoplansky, Ariel
2009-06-01
Plants are limited in their ability to choose their neighbours, but they are able to orchestrate a wide spectrum of rational competitive behaviours that increase their prospects to prevail under various ecological settings. Through the perception of neighbours, plants are able to anticipate probable competitive interactions and modify their competitive behaviours to maximize their long-term gains. Specifically, plants can minimize competitive encounters by avoiding their neighbours; maximize their competitive effects by aggressively confronting their neighbours; or tolerate the competitive effects of their neighbours. However, the adaptive values of these non-mutually exclusive options are expected to depend strongly on the plants' evolutionary background and to change dynamically according to their past development, and relative sizes and vigour. Additionally, the magnitude of competitive responsiveness is expected to be positively correlated with the reliability of the environmental information regarding the expected competitive interactions and the expected time left for further plastic modifications. Concurrent competition over external and internal resources and morphogenetic signals may enable some plants to increase their efficiency and external competitive performance by discriminately allocating limited resources to their more promising organs at the expense of failing or less successful organs.
NASA Astrophysics Data System (ADS)
Salih, Bekir
2000-07-01
Poly(EGDMA-HEMA) microbeads were prepared by suspension copolymerization of ethyleneglycol dimethacrylate (EGDMA) and hydroxyethylmethacrylate (HEMA) using poly(vinylalcohol), benzoyl peroxide and toluene as the stabilizer, the initiator, and the diluent, respectively. A chelating ligand, diphenylthiocarbazone (dithizone), was then attached. The microbeads were characterized by FT-IR and elemental analysis. The affinity microbeads containing 118.9 μmol dithizone g -1 polymer were used in the adsorption/desorption of some selected lead species, Pb(II), (CH 3) 2PbCl 2, (C 2H 5) 2PbCl 2, (CH 3) 3PbCl, and (C 2H 5) 3PbCl from aqueous media containing different amounts of these species (5-200 mg l -1) at different pH values, 2.0-8.0. Adsorption rates were high, and adsorption equilibrium was reached in approximately 45 min. The detection limits of the lead species onto the dithizone-anchored affinity microbeads from solutions containing a single species was 0.28 ng ml -1 for Pb(II), 0.12 ng ml -1 for (CH 3) 3PbCl, 0.24 ng ml -1 for (C 2H 5) 3PbCl, 0.18 ng ml -1 for (CH 3) 2PbCl 2 and 0.30 ng ml -1 for (C 2H 5) 2PbCl 2 on a weight basis for lead. The same behavior was observed during competitive adsorption that is adsorption from a mixture. The affinity order of the lead species was Pb(II)>(CH 3) 2PbCl 2>(CH 3) 3PbCl>(C 2H 5) 3PbCl>(C 2H 5) 2PbCl 2 for competitive adsorption. Dithizone-anchored microbeads were found to be suitable for repeated use of more than five cycles, without noticeable loss of adsorption capacity. For the speciation of organolead compounds, ionic alkyllead compounds were derivatized by n-butyl Grignard reagent and the speciation was performed using a gas chromatography-atomic absorption spectrometry coupled system. Detection limits were improved at least 180-fold with this preconcentration approach using the dithizone-anchored microbeads.
Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why?
Ji, Xing; Verspagen, Jolanda M H; Stomp, Maayke; Huisman, Jef
2017-06-01
Traditionally, it has often been hypothesized that cyanobacteria are superior competitors at low CO2 and high pH in comparison with eukaryotic algae, owing to their effective CO2-concentrating mechanism (CCM). However, recent work indicates that green algae can also have a sophisticated CCM tuned to low CO2 levels. Conversely, cyanobacteria with the high-flux bicarbonate uptake system BicA appear well adapted to high inorganic carbon concentrations. To investigate these ideas we studied competition between three species of green algae and a bicA strain of the harmful cyanobacterium Microcystis aeruginosa at low (100 ppm) and high (2000 ppm) CO2. Two of the green algae were competitively superior to the cyanobacterium at low CO2, whereas the cyanobacterium increased its competitive ability with respect to the green algae at high CO2. The experiments were supported by a resource competition model linking the population dynamics of the phytoplankton species with dynamic changes in carbon speciation, pH and light. Our results show (i) that competition between phytoplankton species at different CO2 levels can be predicted from species traits in monoculture, (ii) that green algae can be strong competitors under CO2-depleted conditions, and (iii) that bloom-forming cyanobacteria with high-flux bicarbonate uptake systems will benefit from elevated CO2 concentrations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Trade-offs drive resource specialization and the gradual establishment of ecotypes
2014-01-01
Background Speciation is driven by many different factors. Among those are trade-offs between different ways an organism utilizes resources, and these trade-offs can constrain the manner in which selection can optimize traits. Limited migration among allopatric populations and species interactions can also drive speciation, but here we ask if trade-offs alone are sufficient to drive speciation in the absence of other factors. Results We present a model to study the effects of trade-offs on specialization and adaptive radiation in asexual organisms based solely on competition for limiting resources, where trade-offs are stronger the greater an organism’s ability to utilize resources. In this model resources are perfectly substitutable, and fitness is derived from the consumption of these resources. The model contains no spatial parameters, and is therefore strictly sympatric. We quantify the degree of specialization by the number of ecotypes evolved and the niche breadth of the population, and observe that these are sensitive to resource influx and trade-offs. Resource influx has a strong effect on the degree of specialization, with a clear transition between minimal diversification at high influx and multiple species evolving at low resource influx. At low resource influx the degree of specialization further depends on the strength of the trade-offs, with more ecotypes evolving the stronger trade-offs are. The specialized organisms persist through negative frequency-dependent selection. In addition, by analyzing one of the evolutionary radiations in greater detail we demonstrate that a single mutation alone is not enough to establish a new ecotype, even though phylogenetic reconstruction identifies that mutation as the branching point. Instead, it takes a series of additional mutations to ensure the stable coexistence of the new ecotype in the background of the existing ones. Conclusions Trade-offs are sufficient to drive the evolution of specialization in sympatric asexual populations. Without trade-offs to restrain traits, generalists evolve and diversity decreases. The observation that several mutations are required to complete speciation, even when a single mutation creates the new species, highlights the gradual nature of speciation and the importance of phyletic evolution. PMID:24885598
Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, B.D.; Amos, R.T.; Nico, P.S.
2010-03-15
Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates its partitioning between the aqueous- and solid-phases, and thus controls its dissolved concentration and, coupled with groundwater flow, its migration within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO{sub 2}{sup 2+} and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO{sub 2}. However, various factors within soils and sediments may limit biological reduction of U(VI), inclusive of alterations in U(VI) speciation and competitive electron acceptors. Here we elucidate themore » impact of U(VI) speciation on the extent and rate of reduction with specific emphasis on speciation changes induced by dissolved Ca, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite and hematite) varying in free energies of formation on U reduction. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% with no Ca or ferrihydrite present but only 24% (with ferrihydrite) and 14% (no ferrihydrite) were removed for systems with 0.8 mM Ca. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Dissimilatory reduction of Fe(III) and U(VI) can proceed through different enzyme pathways, even within a single organism, thus providing a potential second means by which Fe(III) bearing minerals may impact U(VI) reduction. We quantify rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concentration (0 to 0.8 mM), and using a mathematical construct implemented with the reactive transport code MIN3P, we reveal the predominant influence of uranyl speciation, specifically the formation of uranyl-calcium-carbonato complexes, and ferrihydrite on the rate and extent of uranium reduction in complex geochemical systems.« less
Van Campenhout, Karen; Goenaga Infante, Heidi; Goemans, Geert; Belpaire, Claude; Adams, Freddy; Blust, Ronny; Bervoets, Lieven
2008-05-15
The effect of metal exposure on the accumulation and cytosolic speciation of metals in livers of wild populations of European eel with special emphasis on metallothioneins (MT) was studied. Four sampling sites in Flanders showing different degrees of heavy metal contamination were selected for this purpose. An on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS) was used to study the cytosolic speciation of the metals. The distribution of the metals Cd, Cu, Ni, Pb and Zn among cytosolic fractions displayed strong differences. The cytosolic concentration of Cd, Ni and Pb increased proportionally with the total liver levels. However, the cytosolic concentrations of Cu and Zn only increased above a certain liver tissue threshold level. Cd, Cu and Zn, but not Pb and Ni, were largely associated with the MT pool in correspondence with the environmental exposure and liver tissue concentrations. Most of the Pb and Ni and a considerable fraction of Cu and Zn, but not Cd, were associated to High Molecular Weight (HMW) fractions. The relative importance of the Cu and Zn in the HMW fraction decreased with increasing contamination levels while the MT pool became progressively more important. The close relationship between the cytosolic metal load and the total MT levels or the metals bound on the MT pool indicates that the metals, rather than other stress factors, are the major factor determining MT induction.
NASA Astrophysics Data System (ADS)
Hauffe, T.; Albrecht, C.; Wilke, T.
2015-09-01
The Balkan Lake Ohrid is the oldest and most speciose freshwater lacustrine system in Europe. However, it remains unclear whether the diversification of its endemic taxa is mainly driven by neutral processes, environmental factors, or species interactions. This calls for a holistic perspective involving both evolutionary processes and ecological dynamics. Such a unifying framework - the metacommunity speciation model - considers how community assembly affects diversification and vice versa by assessing the relative contribution of the three main community assembly processes, dispersal limitation, environmental filtering, and species interaction. The current study therefore used the species-rich model taxon Gastropoda to assess how extant communities in Lake Ohrid are structured by performing process based metacommunity analyses. Specifically, the study aimed at (i) identifying the relative importance of the three community assembly processes and (ii) to test whether the importance of these individual processes changes gradually with lake depth or whether they are distinctively related to eco-zones. Based on specific simulation steps for each of the three processes, it could be demonstrated that dispersal limitation had the strongest influence on gastropod community structures in Lake Ohrid. However, it was not the exclusive assembly process but acted together with the other two processes - environmental filtering, and species interaction. In fact, the relative importance of the three community assembly processes varied both with lake depth and eco-zones, though the processes were better predicted by the latter. The study thus corroborated the high importance of dispersal limitation for both maintaining species richness in Lake Ohrid (through its impact on community structure) and generating endemic biodiversity (via its influence on diversification processes). However, according to the metacommunity speciation model, the inferred importance of environmental filtering and biotic interaction also suggests a small but significant influence of ecological speciation. These findings contribute to the main goal of the SCOPSCO initiative - inferring the drivers of biotic evolution - and might provide an integrative perspective on biological and limnological dynamics in ancient Lake Ohrid.
Spatial pattern affects diversity-productivity relationships in experimental meadow communities
NASA Astrophysics Data System (ADS)
Lamošová, Tereza; Doležal, Jiří; Lanta, Vojtěch; Lepš, Jan
2010-05-01
Plant species create aggregations of conspecifics as a consequence of limited seed dispersal, clonal growth and heterogeneous environment. Such intraspecific aggregation increases the importance of intraspecific competition relative to interspecific competition which may slow down competitive exclusion and promote species coexistence. To examine how spatial aggregation impacts the functioning of experimental assemblages of varying species richness, eight perennial grassland species of different growth form were grown in random and aggregated patterns in monocultures, two-, four-, and eight-species mixtures. In mixtures with an aggregated pattern, monospecific clumps were interspecifically segregated. Mixed model ANOVA was used to test (i) how the total productivity and productivity of individual species is affected by the number of species in a mixture, and (ii) how these relationships are affected by spatial pattern of sown plants. The main patterns of productivity response to species richness conform to other studies: non-transgressive overyielding is omnipresent (the productivity of mixtures is higher than the average of its constituent species so that the net diversity, selection and complementarity effects are positive), whereas transgressive overyielding is found only in a minority of cases (average of log(overyielding) being close to zero or negative). The theoretical prediction that plants in a random pattern should produce more than in an aggregated pattern (the distances to neighbours are smaller and consequently the competition among neighbours stronger) was confirmed in monocultures of all the eight species. The situation is more complicated in mixtures, probably as a consequence of complicated interplay between interspecific and intraspecific competition. The most productive species ( Achillea, Holcus, Plantago) were competitively superior and increased their relative productivity with mixture richness. The intraspecific competition of these species is stronger than that of most other species. The aggregated pattern in the full mixture increased the survival of subordinate species, and consequently, we conclude that an aggregated pattern can promote species coexistence (or at least postpone competitive exclusion), particularly in comparison with homogeneously sown mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Elaine D.; Catalano, Jeffrey G.
Iron oxides are ubiquitous in soils and sediments and play a critical role in the geochemical distribution of trace elements and heavy metals via adsorption and coprecipitation. The presence of organic acids may potentially alter how metals associate with iron oxide minerals through a series of cooperative or competitive processes: solution complexation, ternary surface complexation, and surface site competition. The macroscopic and molecular-scale effects of these processes were investigated for Ni adsorption to hematite and goethite at pH 7 in the presence of oxalate. The addition of this organic acid suppresses Ni uptake on both minerals. Aqueous speciation suggests thatmore » this is dominantly the result of oxalate complexing and solubilizing Ni. Comparison of the Ni surface coverage to the concentration of free (uncomplexed) Ni 2+ in solution suggests that the oxalate also alters Ni adsorption affinity. EXAFS and ATR-FTIR spectroscopies indicate that these changes in binding affinity are due to the formation of Ni–oxalate ternary surface complexes. These observations demonstrate that competition between dissolved oxalate and the mineral surface for Ni overwhelms the enhancement in adsorption associated with ternary complexation. Oxalate thus largely enhances Ni mobility, thereby increasing micronutrient bioavailability and inhibiting contaminant sequestration.« less
Schwer Iii, Donald R; McNear, David H
2011-01-01
Soils adjacent to chromated copper arsenate (CCA)-treated fence posts along a fence line transecting different soil series, parent material, drainage classes, and slope were used to determine which soil properties had the most influence on As spatial distribution and speciation. Metal distribution was evaluated at macroscopic (total metal concentration contour maps) and microscopic scales (micro-synchrotron X-ray fluorescence maps), As speciation was determined using extended X-ray absorption fine structure spectroscopy, and redox status and a myriad of other basic soil properties were elucidated. All geochemical parameters measured point to a condition in which the mobilization of As becomes more favorable moving down the topographic gradient, likely resulting through competition (Meh-P, SOM), neutral or slightly basic pH, and redox conditions that are favorable for As mobilization (higher Fe(II) and total-Fe concentrations in water extracts). On the landscape scale, with hundreds of kilometers of fence, the arsenic loading into the soil can be substantial (∼8-12 kg km). Although a significant amount of the As is stable, extended use of CCA-treated wood has resulted in elevated As concentrations in the local environment, increasing the risk of exposure and ecosystem perturbation. Therefore, a move toward arsenic-free alternatives in agricultural applications for which it is currently permitted should be considered. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Trait-based diversification shifts reflect differential extinction among fossil taxa.
Wagner, Peter J; Estabrook, George F
2014-11-18
Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models.
Follow-on biologics: data exclusivity and the balance between innovation and competition.
Grabowski, Henry
2008-06-01
Legislation to create a regulatory pathway for follow-on biologics is currently being considered by the United States Congress. A critical issue in this respect is the period of data exclusivity for innovator companies before a follow-on competitor can rely in part on data obtained for an original biologic for an abbreviated approval. Given the nature of patents on biologics, the period of data exclusivity is anticipated to have a key role in determining how quickly follow-on competitors emerge, and consequently also on the time available for originator companies to recoup their investment. With this issue in mind, this article discusses factors influencing return on investment on biologic research and development. A break-even analysis for a representative portfolio of biologics provides support for a substantial data exclusivity period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.
1997-08-01
A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS datamore » from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U{sup VI} to U{sup IV}.« less
Matoušek, Tomáš; Hernández-Zavala, Araceli; Svoboda, Milan; Langrová, Lenka; Adair, Blakely M.; Drobná, Zuzana; Thomas, David J.; Stýblo, Miroslav; Dědina, Jiří
2008-01-01
An automated system for hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer is described. Arsines are preconcentrated and separated in a Chromosorb filled U-tube. An automated cryotrapping unit, employing nitrogen gas formed upon heating in the detection phase for the displacement of the cooling liquid nitrogen, has been developed. The conditions for separation of arsines in a Chromosorb filled U-tube have been optimized. A complete separation of signals from arsine, methylarsine, dimethylarsine, and trimethylarsine has been achieved within a 60 s reading window. The limits of detection for methylated arsenicals tested were 4 ng l−1. Selective hydride generation is applied for the oxidation state specific speciation analysis of inorganic and methylated arsenicals. The arsines are generated either exclusively from trivalent or from both tri- and pentavalent inorganic and methylated arsenicals depending on the presence of L-cysteine as a prereductant and/or reaction modifier. A TRIS buffer reaction medium is proposed to overcome narrow optimum concentration range observed for the L-cysteine modified reaction in HCl medium. The system provides uniform peak area sensitivity for all As species. Consequently, the calibration with a single form of As is possible. This method permits a high-throughput speciation analysis of metabolites of inorganic arsenic in relatively complex biological matrices such as cell culture systems without sample pretreatment, thus preserving the distribution of tri- and pentavalent species. PMID:18521190
Coexistence and limiting similarity of consumer species competing for a linear array of resources.
Abrams, Peter A; Rueffler, Claus
2009-03-01
Consumer-resource systems with linear arrays of substitutable resources form the conceptual basis of much of present-day competition theory. However, most analyses of the limiting similarity of competitors have only employed consumer-resource models as a justification for using the Lotka-Volterra competition equations to represent the interaction. Unfortunately, Lotka-Volterra models cannot reflect resource exclusion via apparent competition and are poor approximations of systems with nonlogistic resource growth. We use consumer-resource models to examine the impact of exclusion of biotic resources or depletion of abiotic resources on the ability of three consumer species to coexist along a one-dimensional resource axis. For a wide range of consumer-resource models, coexistence conditions can become more restrictive with increasing niche separation of the two outer species. This occurs when the outer species are highly efficient; in this case they cause extinction or severe depletion of intermediate resources when their own niches have an intermediate level of separation. In many cases coexistence of an intermediate consumer species is prohibited when niche separation of the two outer species is moderately large, but not when it is small. Coexistence may be most likely when the intermediate species is closer to one of the two outer species, contrary to previous theory. These results suggest that competition may lead to uneven spacing of utilization curves. The implications and range of applicability of the models are discussed.
NASA Astrophysics Data System (ADS)
van den Brink, Anneke; Hutting, Samara
2017-10-01
Interaction between cohorts was investigated with juveniles of the native crab Carcinus maenas and adults of the exotic crab Hemigrapsus takanoi on artificial, intertidal oyster reefs. The reefs are occupied by C. maenas seasonally as a nursery habitat and consistently by adult H. takanoi. There was a distinct decrease in abundance of C. maenas of the same carapace width as most adult H. takanoi, suggesting competition at this size was occurring. Laboratory experiments indicated that H. takanoi was a more aggressive competitor for food and, with consistently high abundance on the reefs, may result in some exclusion of C. maenas from their nursery habitat. While total exclusion of C. maenas on the oyster reefs is unlikely, cohabitation may result in reduced population size or increased use of alternative nursery habitats.
Ropars, Jeanne; Lo, Ying‐Chu; Dumas, Emilie; Snirc, Alodie; Begerow, Dominik; Rollnik, Tanja; Lacoste, Sandrine; Dupont, Joëlle; Giraud, Tatiana; López‐Villavicencio, Manuela
2016-01-01
Genetic differentiation occurs when gene flow is prevented, due to reproductive barriers or asexuality. Investigating the early barriers to gene flow is important for understanding the process of speciation. Here, we therefore investigated reproductive isolation between different genetic clusters of the fungus Penicillium roqueforti, used for maturing blue cheeses, and also occurring as food spoiler or in silage. We investigated premating and postmating fertility between and within three genetic clusters (two from cheese and one from other substrates), and we observed sexual structures under scanning electron microscopy. All intercluster types of crosses showed some fertility, suggesting that no intersterility has evolved between domesticated and wild populations despite adaptation to different environments and lack of gene flow. However, much lower fertility was found in crosses within the cheese clusters than within the noncheese cluster, suggesting reduced fertility of cheese strains, which may constitute a barrier to gene flow. Such degeneration may be due to bottlenecks during domestication and/or to the exclusive clonal replication of the strains in industry. This study shows that degeneration has occurred rapidly and independently in two lineages of a domesticated species. Altogether, these results inform on the processes and tempo of degeneration and speciation. PMID:27470007
Han, Young Soo; Jeong, Hoon Young; Hyun, Sung Pil; Hayes, Kim F; Chon, Chul Min
2018-05-01
During X-ray absorption spectroscopy (XAS) measurements of arsenic (As), beam-induced redox transformation is often observed. In this study, the As species immobilized by poorly crystallized mackinawite (FeS) was assessed for the susceptibility to beam-induced redox reactions as a function of sample properties including the redox state of FeS and the solid-phase As speciation. The beam-induced oxidation of reduced As species was found to be mediated by the atmospheric O 2 and the oxidation products of FeS [e.g. Fe(III) (oxyhydr)oxides and intermediate sulfurs]. Regardless of the redox state of FeS, both arsenic sulfide and surface-complexed As(III) readily underwent the photo-oxidation upon exposure to the atmospheric O 2 during XAS measurements. With strict O 2 exclusion, however, both As(0) and arsenic sulfide were less prone to the photo-oxidation by Fe(III) (oxyhydr)oxides than NaAsO 2 and/or surface-complexed As(III). In case of unaerated As(V)-reacted FeS samples, surface-complexed As(V) was photocatalytically reduced during XAS measurements, but arsenic sulfide did not undergo the photo-reduction.
Gandhi, N.; Bhavsar, S.P.; Diamond, M.L.; Kuwabara, J.S.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.
2007-01-01
A mathematically linked mercury transport, speciation, kinetic, and simple biotic uptake (BIOTRANSPEC) model has been developed. An extension of the metal transport and speciation (TRANSPEC) model, BIOTRANSPEC estimates the fate and biotic uptake of inorganic (Hg(II)), elemental (Hg(0)) and organic (MeHg) forms of mercury and their species in the dissolved, colloidal (e.g., dissolved organic matter [DOM]), and particulate phases of surface aquatic systems. A pseudo-steady state version of the model was used to describe mercury dynamics in Lahontan Reservoir (near Carson City, NV, USA), where internal loading of the historically deposited mercury is remobilized, thereby maintaining elevated water concentrations. The Carson River is the main source of total mercury (THg), of which more than 90% is tightly bound in a gold-silver-mercury amalgam, to the system through loadings in the spring, with negligible input from the atmospheric deposition. The speciation results suggest that aqueous species are dominated by Hg-DOM, Hg(OH)2, and HgClOH. Sediment-to-water diffusion of MeHg and Hg-DOM accounts for approximately 10% of total loadings to the water column. The water column acts as a net sink for MeHg by reducing its levels through two competitive processes: Uptake by fish, and net MeHg demethylation. Although reservoir sediments produce significant amounts of MeHg (4 g/d), its transport from sediment to water is limited (1.6 g/d), possibly because of its adsorption on metal oxides of iron and manganese at the sediment-water interface. Fish accumulate approximately 45% of the total MeHg mass in the water column, and 9% of total MeHg uptake by fish leaves the system because of fishing. Results from this new model reiterate the previous conclusion that more than 90% of THg input is retained in sediment, which perpetuates elevated water concentrations. ?? 2007 SETAC.
Armistead, J. S.; Arias, J. R.; Nishimura, N.; Lounibos, L. P.
2008-01-01
Aedes albopictus (Skuse) and Aedes japonicus (Theobald) are two of the most recent and widespread invasive mosquito species to have become established in the United States. The two species co-occur in water-filled artificial containers, where crowding and limiting resources are likely to promote inter- or intraspecific larval competition. The performance of northern Virginia populations of Ae. japonicus and Ae. albopictus competing as larvae under field conditions was evaluated. Per capita rates of population increase for each species were estimated, and the effects of species composition and larval density were determined. In water-containing cups provided with oak leaves, Ae. albopictus larvae exhibited a competitive advantage over Ae. japonicus as a consequence of higher survivorship, shorter developmental time, and a significantly higher estimated population growth rate under conditions of interspecific competition. Intraspecific competition constrained population performance of Ae. albopictus significantly more than competition with Ae. japonicus. In the context of the Lotka-Volterra model of competition, these findings suggest competitive exclusion of Ae. japonicus in those habitats where this species co-occurs with Ae. albopictus. PMID:18714861
Armistead, J S; Arias, J R; Nishimura, N; Lounibos, L P
2008-07-01
Aedes albopictus (Skuse) and Aedes japonicus (Theobald) are two of the most recent and widespread invasive mosquito species to have become established in the United States. The two species co-occur in water-filled artificial containers, where crowding and limiting resources are likely to promote inter- or intraspecific larval competition. The performance of northern Virginia populations of Ae. japonicus and Ae. albopictus competing as larvae under field conditions was evaluated. Per capita rates of population increase for each species were estimated, and the effects of species composition and larval density were determined. In water-containing cups provided with oak leaves, Ae. albopictus larvae exhibited a competitive advantage over Ae. japonicus as a consequence of higher survivorship, shorter developmental time, and a significantly higher estimated population growth rate under conditions of interspecific competition. Intraspecific competition constrained population performance of Ae. albopictus significantly more than competition with Ae. japonicus. In the context of the Lotka-Volterra model of competition, these findings suggest competitive exclusion of Ae. japonicus in those habitats where this species co-occurs with Ae. albopictus.
Moran, Josephine C.; Crank, Emma L.; Ghabban, Hanaa A.; Horsburgh, Malcolm J.
2016-01-01
Competitive exclusion can occur in microbial communities when, for example, an inhibitor-producing strain outcompetes its competitor for an essential nutrient or produces antimicrobial compounds that its competitor is not resistant to. Here we describe a deferred growth inhibition assay, a method for assessing the ability of one bacterium to inhibit the growth of another through the production of antimicrobial compounds or through competition for nutrients. This technique has been used to investigate the correlation of nasal isolates with the exclusion of particular species from a community. This technique can also be used to screen for lantibiotic producers or potentially novel antimicrobials. The assay is performed by first culturing the test inhibitor-producing strain overnight on an agar plate, then spraying over the test competitor strain and incubating again. After incubation, the extent of inhibition can be measured quantitatively, through the size of the zone of clearing around the inhibitor-producing strain, and qualitatively, by assessing the clarity of the inhibition zone. Here we present the protocol for the deferred inhibition assay, describe ways to minimize variation between experiments, and define a clarity scale that can be used to qualitatively assess the degree of inhibition. PMID:27684443
21 CFR 529.469 - Competitive exclusion culture.
Code of Federal Regulations, 2010 CFR
2010-04-01
... for use. For early establishment of intestinal microflora in chickens to reduce Salmonella... this chapter. (c) [Reserved] (d) Conditions of use. Chickens—(1) Amount. Apply 25 milliliters of... administer antibiotics to treated chickens. [63 FR 25164, May 7, 1998] ...
21 CFR 529.469 - Competitive exclusion culture.
Code of Federal Regulations, 2012 CFR
2012-04-01
... for use. For early establishment of intestinal microflora in chickens to reduce Salmonella... this chapter. (c) [Reserved] (d) Conditions of use. Chickens—(1) Amount. Apply 25 milliliters of... administer antibiotics to treated chickens. [63 FR 25164, May 7, 1998] ...
21 CFR 529.469 - Competitive exclusion culture.
Code of Federal Regulations, 2011 CFR
2011-04-01
... for use. For early establishment of intestinal microflora in chickens to reduce Salmonella... this chapter. (c) [Reserved] (d) Conditions of use. Chickens—(1) Amount. Apply 25 milliliters of... administer antibiotics to treated chickens. [63 FR 25164, May 7, 1998] ...
The role of adaptations in two-strain competition for sylvatic Trypanosoma cruzi transmission.
Kribs-Zaleta, Christopher M; Mubayi, Anuj
2012-01-01
This study presents a continuous-time model for the sylvatic transmission dynamics of two strains of Trypanosoma cruzi enzootic in North America, in order to study the role that adaptations of each strain to distinct modes of transmission (classical stercorarian transmission on the one hand, and vertical and oral transmission on the other) may play in the competition between the two strains. A deterministic model incorporating contact process saturation predicts competitive exclusion, and reproductive numbers for the infection provide a framework for evaluating the competition in terms of adaptive trade-off between distinct transmission modes. Results highlight the importance of oral transmission in mediating the competition between horizontal (stercorarian) and vertical transmission; its presence as a competing contact process advantages vertical transmission even without adaptation to oral transmission, but such adaptation appears necessary to explain the persistence of (vertically-adapted) T. cruzi IV in raccoons and woodrats in the southeastern United States.
Competition in health insurance markets: limitations of current measures for policy analysis.
Scanlon, Dennis P; Chernew, Michael; Swaminathan, Shailender; Lee, Woolton
2006-12-01
Health care reform proposals often rely on increased competition in health insurance markets to drive improved performance in health care costs, access, and quality. We examine a range of data issues related to the measures of health insurance competition used in empirical studies published from 1994-2004. The literature relies exclusively on market structure and penetration variables to measure competition. While these measures are correlated, the degree of correlation is modest, suggesting that choice of measure could influence empirical results. Moreover, certain measurement issues such as the lack of data on PPO enrollment, the treatment of small firms, and omitted market characteristics also could affect the conclusions in empirical studies. Importantly, other types of measures related to competition (e.g., the availability of information on price and outcomes, degree of entry barriers, etc.) are important from both a theoretical and policy perspective, but their impact on market outcomes has not been widely studied.
1990-04-01
ultimately will be forced to Accordingly, when economic leave the market . 9 -Dual sources for spares will analysis shows competitive production Prices need...The revised game has a penalty of E 20 for cheating. A penalty exceeding R the gain from cheating of 15 makes 4 I cheating unprofitable. With a...Catherine M. Clark 11 Associate Editor Christopher N. Lee Esther M. Farria Production Competition D.snl.ism Lessons Learnedt- Does the exclusive reliance
Arunkumar, Ramesh; Josephs, Emily B; Williamson, Robert J; Wright, Stephen I
2013-11-01
Selection on the gametophyte can be a major force shaping plant genomes as 7-11% of genes are expressed only in that phase and 60% of genes are expressed in both the gametophytic and sporophytic phases. The efficacy of selection on gametophytic tissues is likely to be influenced by sexual selection acting on male and female functions of hermaphroditic plants. Moreover, the haploid nature of the gametophytic phase allows selection to be efficient in removing recessive deleterious mutations and fixing recessive beneficial mutations. To assess the importance of gametophytic selection, we compared the strength of purifying selection and extent of positive selection on gametophyte- and sporophyte-specific genes in the highly outcrossing plant Capsella grandiflora. We found that pollen-exclusive genes had a larger fraction of sites under strong purifying selection, a greater proportion of adaptive substitutions, and faster protein evolution compared with seedling-exclusive genes. In contrast, sperm cell-exclusive genes had a smaller fraction of sites under strong purifying selection, a lower proportion of adaptive substitutions, and slower protein evolution compared with seedling-exclusive genes. Observations of strong selection acting on pollen-expressed genes are likely explained by sexual selection resulting from pollen competition aided by the haploid nature of that tissue. The relaxation of selection in sperm might be due to the reduced influence of intrasexual competition, but reduced gene expression may also be playing an important role.
Carro, Leticia; Barriada, José L; Herrero, Roberto; Sastre de Vicente, Manuel E
2011-08-15
Biosorption processes constitute an effective technique for mercury elimination. Sorption properties of native and acid-treated Sargassum muticum have been studied. Effect of pH, initial mercury concentration and contact time studies provided fundamental information about the sorption process. This information was used as the reference values to analyse mercury sorption under competition conditions. Saline effect has shown little influence in sorption, when only electrostatic modifications took place upon salt addition. On the contrary, if mercury speciation dramatically changed owing to the addition of an electrolyte, such as in the case of chloride salt, very large modifications in mercury sorption were observed. Competition with other divalent cations or organic compounds has shown little or none effect on mercury, indicating that a different mechanism is taking place during the removal of these pollutants. Finally, continuous flow experiments have clearly shown that a reduction process is also taking place during mercury removal. This fact is not obvious to elucidate under batch sorption experiments. Scanning Electron Microscopy analysis of the surface of the materials show deposits of mercury(I) and metallic mercury which is indicative of the reduction process proposed. Copyright © 2011 Elsevier B.V. All rights reserved.
Pellet, Bastien; Geffard, Olivier; Lacour, Céline; Kermoal, Thomas; Gourlay-francé, Catherine; Tusseau-vuillemin, Marie-hélène
2009-11-01
Metal bioavailability depends on the presence of organic ligands in the water and on the concentrations of competitive cations. The present study aims at testing whether the diffusive gradient in thin films technique (DGT) could be used to take into account Cd speciation and its consequences on bioavailability in a bioaccumulation model and whether the influences of the Ca concentration and temperature also should be considered. Four kinetic experiments were conducted on Gammarus pulex: a calibration of Cd turnover rates and of the DGT lability in mineral water, a study of the influence f ethylenediaminetetraacetic acid (EDTA) and humic acids (HA) on uptake rates, and two experiments testing the influence of the Ca concentrations and temperature on Cd uptake clearance rates (ku). In mineral water, where Cd was considered fully labile, the ku was 0.46 L g⁻¹ d⁻¹, and the depuration rate was 0.032 d⁻¹. The initial Cd influxes were lowered significantly by additions of 10 μg L⁻¹ of EDTA or 10 mg L⁻¹ of HA in the water but not at 5 mg L⁻¹HA, even if DGT measurements proved that Cd formed Cd-HA complexes in that treatment. Increasing Ca concentrations lowered ku values, and a competitive inhibition model between Ca and Cd fitted the data. A 30% enhancement of k, values was observed when the temperature was increased by 8°C, which appeared comparatively as a weak effect. Thus, taking into account the metal speciation and the influence of the Ca concentration should improve Cd bioaccumulation modeling in amphipods. In freshwater, where metal bioavailability is reduced by the presence of dissolved organic matter, forecasting Cd waterborne uptake using the labile concentrations should allow robust comparisons between laboratory and field studies.
Food web structure and the evolution of ecological communities
NASA Astrophysics Data System (ADS)
Quince, Christopher; Higgs, Paul G.; McKane, Alan J.
Simulations of the coevolution of many interacting species are performed using the Webworld model. The model has a realistic set of predator-prey equations that describe the population dynamics of the species for any structure of the food web. The equations account for competition between species for the same resources, and for the diet choice of predators between alternative prey according to an evolutionarily stable strategy. The set of species present undergoes long-term evolution d ue to speciation and extinction events. We summarize results obtained on the macro-evolutionary dynamics of speciations and extinctions, and on the statistical properties of the food webs that are generated by the model. Simulations begin from small numbers of species and build up to larger webs with relatively constant species number on average. The rate of origination and extinction of species are relatively high, but remain roughly balanced throughout the simulations. When a 'parent' species undergoes sp eciation, the 'child' species usually adds to the same trophic level as the parent. The chance of the child species surviving is significantly higher if the parent is on the second or third trophic level than if it is on the first level, most likely due to a wider choice of possible prey for species on higher levels. Addition of a new species sometimes causes extinction of existing species. The parent species has a high probability of extinction because it has strong competition with the new species. Non-pa rental competitors of the new species also have a significantly higher extinction probability than average, as do prey of the new species. Predators of the new species are less likely than average to become extinct.
Zhang, Chenyang; Li, Maodong; Han, Xuze; Yan, Mingquan
2018-02-20
The recently developed three-step ternary halogenation model interprets the incorporation of chlorine, bromine, and iodine ions into natural organic matter (NOM) and formation of iodine-, bromine-, and chlorine-containing trihalomethanes (THMs) based on the competition of iodine, bromine, and chlorine species at each node of the halogenation sequence. This competition is accounted for using the dimensionless ratios (denoted as γ) of kinetic rates of reactions of the initial attack sites or halogenated intermediates with chlorine, bromine, and iodine ions. However, correlations between the model predictions made and mechanistic aspects of the incorporation of halogen species need to be ascertained in more detail. In this study, quantum chemistry calculations were first used to probe the formation mechanism of 10 species of Cl-/Br-/I- THMs. The HOMO energy (E HOMO ) of each mono-, bi-, or trihalomethanes were calculated by B3LYP method in Gaussian 09 software. Linear correlations were found to exist between the logarithms of experimentally determined kinetic preference coefficients γ reported in prior research and, on the other hand, differences of E HOMO values between brominated/iodinated and chlorinated halomethanes. One notable exception from this trend was that observed for the incorporation of iodine into mono- and di-iodinated intermediates. These observations confirm the three-step halogen incorporation sequence and the factor γ in the statistical model. The combined use of quantum chemistry calculations and the ternary sequential halogenation model provides a new insight into the microscopic nature of NOM-halogen interactions and the trends seen in the behavior of γ factors incorporated in the THM speciation models.
Tang, Hengxing; Hou, Xinying; Xue, Xiaofeng; Chen, Rui; Zhu, Xuexia; Huang, Yuan; Chen, Yafen
2017-08-31
Microcystis blooms are generally associated with zooplankton shifts by disturbing interspecific relationships. The influence of Microcystis on competitive dominance by different sized zooplanktons showed species-specific dependence. We evaluated the competitive responses of small Moina micrura and large Daphnia similoides to the presence of Microcystis using mixed diets comprising 0%, 20%, and 35% of toxic M. aeruginosa, and the rest of green alga Chlorella pyrenoidosa. No competitive exclusion occurred for the two species under the tested diet combinations. In the absence of M. aeruginosa, the biomasses of the two cladocerans were decreased by the competition between them. However, the Daphnia was less inhibited with the higher biomass, suggesting the competitive dominance of Daphnia. M. aeruginosa treatment suppressed the population growths of the two cladocerans, with the reduced carrying capacities. Nonetheless, the population inhibition of Daphnia by competition was alleviated by the increased Microcystis proportion in diet. As a result, the competitive advantage of Daphnia became more pronounced, as indicated by the higher Daphnia: Moina biomass ratio with increased Microcystis proportions. These results suggested that M. aeruginosa strengthens the advantage of D. similoides in competition with M. micrura, which contributes to the diversified zooplankton shifts observed in fields during cyanobacteria blooms.
Intestinal infections and prebiotics: the roles of oligosaccharides in promoting health
USDA-ARS?s Scientific Manuscript database
Prebiotic oligosaccharides exert activity against pathogens partly by stimulating the growth and/or activity of commensal bacteria that provide health benefits (lower pH, bacteriocin production, immune system modulation, competitive exclusion). This review describes alternative mechanisms of action...
Effect of uranium(VI) speciation on simultaneous microbial reduction of uranium(VI) and iron(III).
Stewart, Brandy D; Amos, Richard T; Fendorf, Scott
2011-01-01
Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates whether it will reside in the aqueous or solid phase and thus plays an integral role in the mobility of uranium within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO2(2+) and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO. However, various factors within soils and sediments, such as U(VI) speciation and the presence of competitive electron acceptors, may limit biological reduction of U(VI). Here we examine simultaneous dissimilatory reduction of Fe(III) and U(VI) in batch systems containing dissolved uranyl acetate and ferrihydrite-coated sand. Varying amounts of calcium were added to induce changes in aqueous U(VI) speciation. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% in absence of Ca or ferrihydrite, but only 24% (with ferrihydrite) and 14% (without ferrihydrite) were removed for systems with 0.8 mM Ca. Dissimilatory reduction of Fe(III) and U(VI) proceed through different enzyme pathways within one type of organism. We quantified the rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concecentration (0-0.8 mM). The mathematical construct, implemented with the reactive transport code MIN3P, reveals predominant factors controlling rates and extent of uranium reduction in complex geochemical systems.
Money, Cathryn; Braungardt, Charlotte B; Jha, Awadhesh N; Worsfold, Paul J; Achterberg, Eric P
2011-07-01
As part of the PREDICT Tamar Workshop, the toxicity of estuarine waters in the Tamar Estuary (southwest England) was assessed by integration of metal speciation determination with bioassays. High temporal resolution metal speciation analysis was undertaken in situ by deployment of a Voltammetric In situ Profiling (VIP) system. The VIP detects Cd (cadmium), Pb (lead) and Cu (copper) species smaller than 4 nm in size and this fraction is termed 'dynamic' and considered biologically available. Cadmium was mainly present in the dynamic form and constituted between 56% and 100% of the total dissolved concentration, which was determined subsequently in the laboratory in filtered discrete samples. In contrast, the dynamic Pb and Cu fractions were less important, with a much larger proportion of these metals associated with organic ligands and/or colloids (45-90% Pb and 46-85% Cu), which probably reduced the toxicological impact of these elements in this system. Static toxicity tests, based on the response of Crassostrea gigas larva exposed to discrete water samples showed a high level of toxicity (up to 100% abnormal development) at two stations in the Tamar, particularly during periods of the tidal cycle when the influence of more pristine coastal water was at its lowest. Competitive ligand-exchange Cu titrations showed that natural organic ligands reduced the free cupric ion concentration to levels that were unlikely to have been the sole cause of the observed toxicity. Nonetheless, it is probable that the combined effect of the metals determined in this work contributed significantly to the bioassay response. Copyright © 2011 Elsevier Ltd. All rights reserved.
Clarithromycin and tetracycline binding to soil humic acid in the absence and presence of calcium
NASA Astrophysics Data System (ADS)
Christl, Iso; Ruiz, Mercedes; Schmidt, J. R.; Pedersen, Joel A.
2017-04-01
Many organic micropollutants including antibiotics contain positively charged moieties and are present as organic cations or zwitterions at environmentally relevant pH conditions. In this study, we investigated the pH-, ionic strength-, and concentration-dependent binding of the two antibiotics clarithromycin and tetracycline to dissolved humic acid in the absence and presence of Ca2+. The investigated compounds strongly differ in their chemical speciation. Clarithromycin can be present as neutral and cationic species, only. But tetracycline can form cations, zwitterions as well as anions and is able to form various calcium complexes. The pH-dependence of binding to soil humic acid was observed to be strongly linked to the protonation behavior for both antibiotics. The presence of Ca2+ decreased clarithromycin binding to soil humic acid, but increased tetracycline binding with increasing Ca2+ concentration. The experimental observations were well described with the NICA-Donnan model considering the complete aqueous speciation of antibiotics and allowing for binding of cationic and zwitterionic species to soil humic acid. Our results indicate that clarithromycin is subject to competition with Ca2+ for binding to soil humic acid and that the electrostatic interaction of positively charged tetracycline-Ca complexes with humic acid enhances tetracycline binding in presence of Ca2+ rather than the formation of ternary complexes, except at very low tetracycline concentrations. We conclude that for the description of ionizable organic micropollutant binding to dissolved natural organic matter, the complete speciation of both sorbate and sorbent has to be considered.
Trait-based diversification shifts reflect differential extinction among fossil taxa
Wagner, Peter J.; Estabrook, George F.
2014-01-01
Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models. PMID:25331898
Quantitative inhibition of soil C and N cycling by ectomycorrhizal fungi under field condition
NASA Astrophysics Data System (ADS)
Averill, C.; Hawkes, C.
2014-12-01
Ectomycorrhizal (ECM) ecosystems store more carbon than non-ectomycorrhizal ecosystems at global scale. Recent theoretical and empirical work suggests the presence of ECM fungi allows plants to compete directly with decomposers for soil nitrogen (N) via exo-enzyme synthesis. Experimental ECM exclusion often results in a release from competition of saprotrophic decomposers, allowing for increased C-degrading enzyme production, increased microbial biomass, and eventually declines in soil C stocks. Our knowledge of this phenomenon is limited, however, to the presence or absence of ECM fungi. It remains unknown if competitive repression of saprotrophic microbes and soil C cycling by ECM fungi varies with ECM abundance. This is particularly relevant to global change experiments when manipulations alter plant C allocation to ECM symbionts. To test if variation in ECM abundance alters the competitive inhibition of saprotrophic soil microbes (quantitative inhibition) we established experimental ECM exclusion treatments along an ECM abundance gradient. We dug trenches to experimentally exclude ECM fungi, allowing us to test for competitive release of soil saprotrophs from competition. To control for disturbance we placed in-growth bags both inside and outside of trenches. Consistent with the quantitative inhibition hypothesis, sites with more ECM fungi had significantly less microbial biomass per unit soil C and lower rates of N mineralization. Consistent with a release from competition, C-degrading enzyme activities were higher and gross proteolytic rates were lower per unit microbial biomass inside compared to outside trenches. We interpret this to reflect increased microbial investment in C-acquisition and decreased investment in N-acquisition in the absence of ECM fungi. Furthermore, the increase in C-degrading enzymes per unit microbial biomass was significantly greater in sites with the most abundant ECM fungi. Based on these results, ECM-saprotroph competition does appear to slow soil C cycling and the effect is quantitative. Soil C cycling is at least partly controlled by interactions between ECM fungi and soil saprotrophs. Environmental change that alters ECM abundance may thus alter soil C stocks by ameliorating or exacerbating plant-decomposer competition for nitrogen.
Dick, Christopher W; Roubik, David W; Gruber, Karl F; Bermingham, Eldredge
2004-12-01
Euglossine bees (Apidae; Euglossini) exclusively pollinate hundreds of orchid species and comprise up to 25% of bee species richness in neotropical rainforests. As one of the first studies of comparative phylogeography in a neotropical insect group, we performed a mitochondrial DNA (mtDNA)-based analysis of 14 euglossine species represented by populations sampled across the Andes and/or across the Amazon basin. The mtDNA divergences within species were consistently low; across the 12 monophyletic species the mean intraspecific divergence among haplotypes was 0.9% (range of means, 0-1.9%). The cytochrome oxidase 1 (CO1) divergence among populations separated by the Andes (N = 11 species) averaged 1.1% (range 0.0-2.0%). The mtDNA CO1 data set displayed homogeneous rates of nucleotide substitution, permitting us to infer dispersal across the cordillera long after the final Andean uplift based on arthropod molecular clocks of 1.2-1.5% divergence per million years. Gene flow across the 3000-km breadth of the Amazon basin was inferred from identical cross-Amazon haplotypes found in five species. Although mtDNA haplotypes for 12 of the 14 euglossine species were monophyletic, a reticulate CO1 phylogeny was recovered in Euglossa cognata and E. mixta, suggesting large ancestral populations and recent speciation. Reference to closely related outgroups suggested recent speciation for the majority of species. Phylogeographical structure across a broad spatial scale is weaker in euglossine bees than in any neotropical group previously examined, and may derive from a combination of Quaternary speciation, population expansion and/or long-distance gene flow.
Cadena, Carlos Daniel; Zapata, Felipe; Jiménez, Iván
2018-03-01
Progress in the development and use of methods for species delimitation employing phenotypic data lags behind conceptual and practical advances in molecular genetic approaches. The basic evolutionary model underlying the use of phenotypic data to delimit species assumes random mating and quantitative polygenic traits, so that phenotypic distributions within a species should be approximately normal for individuals of the same sex and age. Accordingly, two or more distinct normal distributions of phenotypic traits suggest the existence of multiple species. In light of this model, we show that analytical approaches employed in taxonomic studies using phenotypic data are often compromised by three issues: 1) reliance on graphical analyses that convey little information on phenotype frequencies; 2) exclusion of characters potentially important for species delimitation following reduction of data dimensionality; and 3) use of measures of central tendency to evaluate phenotypic distinctiveness. We outline approaches to overcome these issues based on statistical developments related to normal mixture models (NMMs) and illustrate them empirically with a reanalysis of morphological data recently used to claim that there are no morphologically distinct species of Darwin's ground-finches (Geospiza). We found negligible support for this claim relative to taxonomic hypotheses recognizing multiple species. Although species limits among ground-finches merit further assessments using additional sources of information, our results bear implications for other areas of inquiry including speciation research: because ground-finches have likely speciated and are not trapped in a process of "Sisyphean" evolution as recently argued, they remain useful models to understand the evolutionary forces involved in speciation. Our work underscores the importance of statistical approaches grounded on appropriate evolutionary models for species delimitation. We discuss how NMMs offer new perspectives in the kind of inferences available to systematists, with significant repercussions on ideas about the phenotypic structure of biodiversity.
The invisible hand: how British American Tobacco precluded competition in Uzbekistan
Gilmore, Anna B; McKee, Martin; Collin, Jeff
2007-01-01
Background Tobacco industry documents provide a unique opportunity to explore the role transnational corporations (TNCs) played in shaping the poor outcomes of privatisation in the former Soviet Union (FSU). This paper examines British American Tobacco's (BAT's) business conduct in Uzbekistan where large‐scale smuggling of BAT's cigarettes, BAT's reversal of tobacco control legislation and its human rights abuses of tobacco farmers have been documented previously. This paper focuses, instead, on BAT's attitude to competition, compares BAT's conduct with international standards and assesses its influence on the privatisation process. Methods Analysis of BAT documents released through litigation. Results BAT secured sole negotiator status precluding the Uzbekistan government from initiating discussions with other parties. Recognising that a competitive tender would greatly increase the cost of investment, BAT went to great lengths to avoid one, ultimately securing President Karimov's support and negotiating a monopoly position in a closed deal. It simultaneously secured exclusion from the monopolies committee, ensuring freedom to set prices, on the basis of a spurious argument that competition would exist from imports. Other anticompetitive moves comprised including all three plants in the deal despite intending to close down two, exclusive dealing and implementing measures designed to prevent market entry by competitors. BAT also secured a large number of exemptions and privileges that further reduced the government's revenue both on a one‐off and ongoing basis. Conclusions BAT's corporate misbehaviour included a wide number of anticompetitive practices, contravened Organisation of Economic Cooperation and Development's and BAT's own business standards on competition and restricted revenue arising from privatisation. This suggests that TNCs have contributed to the failure of privatisation in the FSU. Conducting open tenders and using enforceable codes to regulate corporate conduct would help deal with some of the problems identified. PMID:17652239
48 CFR 235.016 - Broad agency announcement.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Broad agency announcement..., DEPARTMENT OF DEFENSE SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.016 Broad... contained in broad agency announcements for exclusive competition among historically black colleges and...
48 CFR 235.016 - Broad agency announcement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Broad agency announcement..., DEPARTMENT OF DEFENSE SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.016 Broad... contained in broad agency announcements for exclusive competition among historically black colleges and...
48 CFR 235.016 - Broad agency announcement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Broad agency announcement..., DEPARTMENT OF DEFENSE SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.016 Broad... contained in broad agency announcements for exclusive competition among historically black colleges and...
48 CFR 235.016 - Broad agency announcement.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Broad agency announcement..., DEPARTMENT OF DEFENSE SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.016 Broad... contained in broad agency announcements for exclusive competition among historically black colleges and...
48 CFR 235.016 - Broad agency announcement.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Broad agency announcement..., DEPARTMENT OF DEFENSE SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.016 Broad... contained in broad agency announcements for exclusive competition among historically black colleges and...
Limiting similarity of competitive species and demographic stochasticity
NASA Astrophysics Data System (ADS)
Zheng, Xiu-Deng; Deng, Ling-Ling; Qiang, Wei-Ya; Cressman, Ross; Tao, Yi
2017-04-01
The limiting similarity of competitive species and its relationship with the competitive exclusion principle is still one of the most important concepts in ecology. In the 1970s, May [R. M. May, Stability and Complexity in Model Ecosystems (Princeton University, Princeton, NJ, 1973)] developed a concise theoretical framework to investigate the limiting similarity of competitive species. His theoretical results show that no limiting similarity threshold of competitive species can be identified in the deterministic model system whereby species more similar than this threshold never coexist. Theoretically, for competitive species coexisting in an unvarying environment, deterministic interspecific interactions and demographic stochasticity can be considered two sides of a coin. To investigate how the "tension" between these two forces affects the coexistence of competing species, a simple two-species competitive system based only on May's model system is transformed into an equivalent replicator equation. The effect of demographic stochasticity on the system stability is measured by the expected drift of the Lyapunov function. Our main results show that the limiting similarity of competitive species should not be considered to be an absolute measure. Specifically, very similar competitive species should be able to coexist in an environment with a high productivity level but big differences between competitive species should be necessary in an ecosystem with a low productivity level.
Neighbour tolerance, not suppression, provides competitive advantage to non-native plants.
Golivets, Marina; Wallin, Kimberly F
2018-05-01
High competitive ability has often been invoked as a key determinant of invasion success and ecological impacts of non-native plants. Yet our understanding of the strategies that non-natives use to gain competitive dominance remains limited. Particularly, it remains unknown whether the two non-mutually exclusive competitive strategies, neighbour suppression and neighbour tolerance, are equally important for the competitive advantage of non-native plants. Here, we analyse data from 192 peer-reviewed studies on pairwise plant competition within a Bayesian multilevel meta-analytic framework and show that non-native plants outperform their native counterparts due to high tolerance of competition, as opposed to strong suppressive ability. Competitive tolerance ability of non-native plants was driven by neighbour's origin and was expressed in response to a heterospecific native but not heterospecific non-native neighbour. In contrast to natives, non-native species were not more suppressed by hetero- vs. conspecific neighbours, which was partially due to higher intensity of intraspecific competition among non-natives. Heterogeneity in the data was primarily associated with methodological differences among studies and not with phylogenetic relatedness among species. Altogether, our synthesis demonstrates that non-native plants are competitively distinct from native plants and challenges the common notion that neighbour suppression is the primary strategy for plant invasion success. © 2018 John Wiley & Sons Ltd/CNRS.
Methner, U; Berndt, A; Locke, M
2017-10-27
A live Salmonella Enteritidis vaccine (SE147N ΔphoP fliC), able to express both a homologous intestinal colonisation-inhibition effect and a systemic invasion-inhibition effect, was tested for its potential to generate a postulated additive protective effect in case of combined application with a competitive exclusion (CE) culture against Salmonella exposure in very young chicks. Both, SE147N ΔphoP fliC and the CE culture alone were highly protective against systemic and intestinal colonisation of the challenge strain in case of moderate Salmonella exposure, consequently, additive protective effects in combined use could not be detected. However, in case of high Salmonella Enteritidis challenge with 10 6 cfu/bird at day 3 of life the combination of the ΔphoP fliC vaccine and the CE culture resulted in a protective effect much more pronounced than either of the single preparations and most substantial compared to untreated control birds. The term additive protective effects reflects the recognition that exclusion effects by gut flora cultures and inhibition effects by Salmonella vaccines are caused by different mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Charging Properties of Cassiterite (alpha-SnO2) surfaces in NaCl and RbCl Ionic Media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenqvist, Jorgen K; Machesky, Michael L.; Vlcek, Lukas
2009-01-01
The acid-base properties of cassiterite (alpha-SnO2) surfaces at 10-50 degrees C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH range of 4.0-4.5 under all conditions, and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical molecular dynamics (MD) simulations, was analyzed in detail, and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated thatmore » the terminal SnOH2 group is more acidic than the bridging Sn2OH group, with protonation constants (log KH) of 3.60 and 5.13 at 25 degrees C, respectively. This is contrary to the situation on the isostructural alpha-TiO2 (rutile), apparently because of the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na+ and Rb+, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, whereas adsorbed rubidium ions form comparable numbers of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na+ between the different complexes shows a considerable dependence on the surface charge density (pH), whereas the distribution of adsorbed Rb+ is almost independent of pH. A surface complexation model (SCM) capable of accurately describing both the measured surface charge and the MD-predicted speciation of adsorbed Na+/Rb+ was formulated. According to the SCM, the deprotonated terminal group (SnOH(-0.40)) and the protonated bridging group (Sn2OH+0.36) dominate the surface speciation over the entire pH range of this study (2.7-10). The complexation of medium cations increases significantly with increasing negative surface charge, and at pH 10, roughly 40% of the terminal sites are predicted to form cation complexes, whereas anion complexation is minor throughout the studied pH range.« less
Charging properties of cassiterite (alfa-SnO2) surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenqvist, Jorgen K; Machesky, Michael L.; Vlcek, L.
The acid-base properties of cassiterite (alfa-SnO2) surfaces at 10 50 C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH-range 4.0 to 4.5 at all conditions and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical Molecular Dynamics (MD) simulations, was analyzed in detail and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated thatmore » the terminal SnOH2 group is more acidic than the bridging Sn2OH group, with protonation constants (log KH) of 3.60 and 5.13 at 25 C, respectively. This is contrary to the situation on the isostructural alfa-TiO2 (rutile), apparently due to the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na+ and Rb+, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, while adsorbed rubidium ions form comparable amounts of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na+ between the different complexes shows a considerable dependence on surface charge density (pH), while the distribution of adsorbed Rb+ is almost independent of pH. A Surface Complexation Model (SCM) capable of accurately describing both the measured surface charge and the MD predicted speciation of adsorbed Na+/Rb+ was formulated. According to the SCM, the deprotonated terminal group (SnOH-0.40) and the protonated bridging group (Sn2OH+0.36) dominate the surface speciation over the entire pH-range (2.7 10), illustrating the ability of positively and negatively charged surface groups to coexist. Complexation of the medium cations increases significantly with increasing negative surface charge and at pH 10 roughly 40 percent of the terminal sites are predicted to form cation complexes, while anion complexation is minor throughout the studied pH-range.« less
Dominance-diversity relationships in ant communities differ with invasion.
Arnan, Xavier; Andersen, Alan N; Gibb, Heloise; Parr, Catherine L; Sanders, Nathan J; Dunn, Robert R; Angulo, Elena; Baccaro, Fabricio B; Bishop, Tom R; Boulay, Raphaël; Castracani, Cristina; Cerdá, Xim; Toro, Israel Del; Delsinne, Thibaut; Donoso, David A; Elten, Emilie K; Fayle, Tom M; Fitzpatrick, Matthew C; Gómez, Crisanto; Grasso, Donato A; Grossman, Blair F; Guénard, Benoit; Gunawardene, Nihara; Heterick, Brian; Hoffmann, Benjamin D; Janda, Milan; Jenkins, Clinton N; Klimes, Petr; Lach, Lori; Laeger, Thomas; Leponce, Maurice; Lucky, Andrea; Majer, Jonathan; Menke, Sean; Mezger, Dirk; Mori, Alessandra; Moses, Jimmy; Munyai, Thinandavha Caswell; Paknia, Omid; Pfeiffer, Martin; Philpott, Stacy M; Souza, Jorge L P; Tista, Melanie; Vasconcelos, Heraldo L; Retana, Javier
2018-05-30
The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities. © 2018 John Wiley & Sons Ltd.
Copper speciation and binding by organic matter in copper-contaminated streamwater
Breault, R.F.; Colman, J.A.; Aiken, G.R.; McKnight, D.
1996-01-01
Fulvic acid binding sites (1.3-70 ??M) and EDTA (0.0017-0.18 ??M) accounted for organically bound Cu in seven stream samples measured by potentiometric titration. Cu was 84-99% organically bound in filtrates with 200 nM total Cu. Binding of Cu by EDTA was limited by competition from other trace metals. Water hardness was inversely related to properties of dissolved organic carbon (DOC) that enhance fulvic acid binding: DOC concentration, percentage of DOC that is fulvic acid, and binding sites per fulvic acid carbon. Dissolved trace metals, stabilized by organic binding, occurred at increased concentration in soft water as compared to hard water.
SPECIATE 4.3: Addendum to SPECIATE 4.2--Speciation database development documentation
SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...
SPECIATE 4.0: SPECIATION DATABASE DEVELOPMENT DOCUMENTATION--FINAL REPORT
SPECIATE is the U.S. EPA's repository of total organic compounds (TOC) and particulate matter (PM) speciation profiles of air pollution sources. This report documents how EPA developed the SPECIATE 4.0 database that replaces the prior version, SPECIATE 3.2. SPECIATE 4.0 includes ...
Speciation in rapidly diverging systems: lessons from Lake Malawi.
Danley, P D; Kocher, T D
2001-05-01
Rapid evolutionary radiations provide insight into the fundamental processes involved in species formation. Here we examine the diversification of one such group, the cichlid fishes of Lake Malawi, which have radiated from a single ancestor into more than 400 species over the past 700 000 years. The phylogenetic history of this group suggests: (i) that their divergence has proceeded in three major bursts of cladogenesis; and (ii) that different selective forces have dominated each cladogenic event. The first episode resulted in the divergence of two major lineages, the sand- and rock-dwellers, each adapted to a major benthic macrohabitat. Among the rock-dwellers, competition for trophic resources then drove a second burst of cladogenesis, which resulted in the differentiation of trophic morphology. The third episode of cladogenesis is associated with differentiation of male nuptial colouration, most likely in response to divergent sexual selection. We discuss models of speciation in relation to this observed pattern. We advocate a model, divergence with gene flow, which reconciles the disparate selective forces responsible for the diversification of this group and suggest that the nonadaptive nature of the tertiary episode has significantly contributed to the extraordinary species richness of this group.
Acoustic communication in insect disease vectors
Vigoder, Felipe de Mello; Ritchie, Michael Gordon; Gibson, Gabriella; Peixoto, Alexandre Afranio
2013-01-01
Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects. PMID:24473800
Cáceres, Nilton Carlos; de Moraes Weber, Marcelo; Melo, Geruza Leal; Meloro, Carlo; Sponchiado, Jonas; Carvalho, Renan dos Santos; Bubadué, Jamile de Moura
2016-01-01
Didelphis albiventris and D. aurita are Neotropical marsupials that share a unique evolutionary history and both are largely distributed throughout South America, being primarily allopatric throughout their ranges. In the Araucaria moist forest of Southern Brazil these species are sympatric and they might potentially compete having similar ecology. For this reason, they are ideal biological models to address questions about ecological character displacement and how closely related species might share their geographic space. Little is known about how two morphologically similar species of marsupials may affect each other through competition, if by competitive exclusion and competitive release. We combined ecological niche modeling and geometric morphometrics to explore the possible effects of competition on their distributional ranges and skull morphology. Ecological niche modeling was used to predict their potential distribution and this method enabled us to identify a case of biotic exclusion where the habit generalist D. albiventris is excluded by the presence of the specialist D. aurita. The morphometric analyses show that a degree of shape discrimination occurs between the species, strengthened by allometric differences, which possibly allowed them to occupy marginally different feeding niches supplemented by behavioral shift in contact areas. Overlap in skull morphology is shown between sympatric and allopatric specimens and a significant, but weak, shift in shape occurs only in D. aurita in sympatric areas. This could be a residual evidence of a higher past competition between both species, when contact zones were possibly larger than today. Therefore, the specialist D. aurita acts a biotic barrier to D. albiventris when niche diversity is not available for coexistence. On the other hand, when there is niche diversification (e.g. habitat mosaic), both species are capable to coexist with a minimal competitive effect on the morphology of D. aurita. PMID:27336371
ERIC Educational Resources Information Center
Zirkel, Perry A.
2005-01-01
In this era of educational choice, school accountability, research-based practices, and commercial competition--illustrated by but not exclusive to No Child Left Behind--some schools, public and private, make claims that resemble false advertising and that some parents rely on, to their disappointment and even detriment. Moreover, the laudable…
The New WTO Telecom Agreement: Opportunities and Challenges.
ERIC Educational Resources Information Center
Sisson, Peter
1997-01-01
The telecommunication agreement reached by the World Trade Organization (WTO) in 1997 will accelerate the global trend toward increased market access, competition, and deregulation. Examines opportunities for marketing and operations, dispute resolution and enforcement, profitability, and the exclusion of Russia and China. Includes the WTO…
48 CFR 206.202 - Establishing or maintaining alternative sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Open Competition After Exclusion of Sources 206.202 Establishing or maintaining alternative sources. (a) Agencies may use this authority to totally or partially exclude a particular source from a contract action... maintaining alternative sources. 206.202 Section 206.202 Federal Acquisition Regulations System DEFENSE...
77 FR 66025 - Program Access Rules
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
... distribution market if the prohibition were lifted.'' Accordingly, we rely on ``economic theory and predictive... incentive and the ability to harm competition and diversity in the distribution of video programming by entering into exclusive contracts. We undertake the same analysis here. Below, we consider the ``incentive...
Ponce de León, Claudia A; DeNicola, Katie; Montes Bayón, Maria; Caruso, Joseph A
2003-06-01
Different techniques have been employed in order to evaluate the most efficient procedure for the extraction of selenium from soil as required for speciation. Selenium contaminated sediments from Stewart Lake Wetland, California were used. A strong acid mineralization of the samples gives quantitative total selenium, which is then used to estimate recoveries for the milder extraction methods. The different extraction methodologies involve the sequential use of water, buffer (phosphate, pH 7) and either acid solution (e.g. HNO3 or HCl) or basic solutions (e.g. ammonium acetate, NaOH or TMAH). Pyrophosphate extraction was also evaluated and showed that selenium was not associated with humic acids. The extractants were subsequently analyzed by size exclusion chromatography (SEC) with UV (254 and 400 nm) and on-line ICP-MS detection; anion exchange chromatography, and ion-pair reversed phase chromatography with ICP-MS detection. For sequential extractions the extraction efficiencies showed that the basic extractions were more efficient than the acidic. The difference between the acidic and the basic extraction efficiency is carried to the sulfite extraction, suggesting that whatever is not extracted by the acid is subsequently extracted by the sulfite. The species identified with the different chromatographies were selenate, selenite, elemental selenium and some organic selenium.
Picture-Induced Semantic Interference Reflects Lexical Competition during Object Naming
Aristei, Sabrina; Zwitserlood, Pienie; Rahman, Rasha Abdel
2012-01-01
With a picture–picture experiment, we contrasted competitive and non-competitive models of lexical selection during language production. Participants produced novel noun–noun compounds in response to two adjacently displayed objects that were categorically related or unrelated (e.g., depicted objects: apple and cherry; naming response: “apple–cherry”). We observed semantic interference, with slower compound naming for related relative to unrelated pictures, very similar to interference effects produced by semantically related context words in picture–word-interference paradigms. This finding suggests that previous failures to observe reliable interference induced by context pictures may be due to the weakness of lexical activation and competition induced by pictures, relative to words. The production of both picture names within one integrated compound word clearly enhances lexical activation, resulting in measurable interference effects. We interpret this interference as resulting from lexical competition, because the alternative interpretation, in terms of response-exclusion from the articulatory buffer, does not apply to pictures, even when they are named. PMID:22363304
This product provides training to air pollution inventory and modeling professionals to understand the US EPA's SPECIATE database base and Speciation Tool and their use to develop speciated emission inventories.
This training provides general concepts on chemical speciation, the SPECIATE database and browser, and how to use the Speciation Tool to create model ready speciation inputs for a photochemical air quality model.
SPECIATE 4.2: speciation Database Development Documentation
SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...
Specialization and competition in dental health services.
Grytten, Jostein; Skau, Irene
2009-04-01
The number of specialists within dental health services has increased over the last few years. This raises the issue of how the services should be organized and funded. We describe the effect of one way of organizing the services, which is by relying on competition. In Norway, some oral specialists face real competition with general dental practitioners for the same patients (prosthetists, periodontists and endodontists), while other specialists do not (orthodontists and oral surgeons). The latter specialists have skills that give them exclusive possibilities to practice their profession. We find that competition can be effective for the specialists who experience real competition with general dental practitioners for patients. In situations where real competition does not exist, specialists can obtain market power and raise their fees. Our results are based on an analysis of a representative set of data from general dental practitioners and specialists in Norway. The specialities in which practitioners can exercise market power raise challenges related to the type of public policy that can reduce this market power in an appropriate way, and without involving too large costs for the authorities. (c) 2008 John Wiley & Sons, Ltd.
"Excellence" and Exclusion: The Individual Costs of Institutional Competitiveness
ERIC Educational Resources Information Center
Watermeyer, Richard; Olssen, Mark
2016-01-01
A performance-based funding system like the United Kingdom's "Research Excellence Framework" (REF) symbolizes the re-rationalization of higher education according to neoliberal ideology and New Public Management technologies. The REF is also significant for disclosing the kinds of behaviour that characterize universities' response to…
USDA-ARS?s Scientific Manuscript database
Introduction: Competitive exclusion (CE) by bacteria from adult poultry reduces colonization of young chicks by Salmonella. CE might include the ability of these bacteria to breakdown complex carbohydrates to produce metabolites that inhibit Salmonella growth. Purpose: To isolate amylase producing, ...
A resource-based game theoretical approach for the paradox of the plankton.
Huang, Weini; de Araujo Campos, Paulo Roberto; Moraes de Oliveira, Viviane; Fagundes Ferrreira, Fernando
2016-01-01
The maintenance of species diversity is a central focus in ecology. It is not rare to observe more species than the number of limiting resources, especially in plankton communities. However, such high species diversity is hard to achieve in theory under the competitive exclusion principles, known as the plankton paradox. Previous studies often focus on the coexistence of predefined species and ignore the fact that species can evolve. We model multi-resource competitions using evolutionary games, where the number of species fluctuates under extinction and the appearance of new species. The interspecific and intraspecific competitions are captured by a dynamical payoff matrix, which has a size of the number of species. The competition strength (payoff entries) is obtained from comparing the capability of species in consuming resources, which can change over time. This allows for the robust coexistence of a large number of species, providing a possible solution to the plankton paradox.
A resource-based game theoretical approach for the paradox of the plankton
de Araujo Campos, Paulo Roberto; Moraes de Oliveira, Viviane
2016-01-01
The maintenance of species diversity is a central focus in ecology. It is not rare to observe more species than the number of limiting resources, especially in plankton communities. However, such high species diversity is hard to achieve in theory under the competitive exclusion principles, known as the plankton paradox. Previous studies often focus on the coexistence of predefined species and ignore the fact that species can evolve. We model multi-resource competitions using evolutionary games, where the number of species fluctuates under extinction and the appearance of new species. The interspecific and intraspecific competitions are captured by a dynamical payoff matrix, which has a size of the number of species. The competition strength (payoff entries) is obtained from comparing the capability of species in consuming resources, which can change over time. This allows for the robust coexistence of a large number of species, providing a possible solution to the plankton paradox. PMID:27602293
Strengbom, Joachim; Viketoft, Maria; Bommarco, Riccardo
2016-01-01
Insect herbivores can shift the composition of a plant community, but the mechanism underlying such shifts remains largely unexplored. A possibility is that insects alter the competitive symmetry between plant species. The effect of herbivory on competition likely depends on whether the plants are subjected to aboveground or belowground herbivory or both, and also depends on soil nitrogen levels. It is unclear how these biotic and abiotic factors interactively affect competition. In a greenhouse experiment, we measured competition between two coexisting grass species that respond differently to nitrogen deposition: Dactylis glomerata L., which is competitively favoured by nitrogen addition, and Festuca rubra L., which is competitively favoured on nitrogen-poor soils. We predicted: (1) that aboveground herbivory would reduce competitive asymmetry at high soil nitrogen by reducing the competitive advantage of D. glomerata; and (2), that belowground herbivory would relax competition at low soil nitrogen, by reducing the competitive advantage of F. rubra. Aboveground herbivory caused a 46% decrease in the competitive ability of F. rubra, and a 23% increase in that of D. glomerata, thus increasing competitive asymmetry, independently of soil nitrogen level. Belowground herbivory did not affect competitive symmetry, but the combined influence of above- and belowground herbivory was weaker than predicted from their individual effects. Belowground herbivory thus mitigated the increased competitive asymmetry caused by aboveground herbivory. D. glomerata remained competitively dominant after the cessation of aboveground herbivory, showing that the influence of herbivory continued beyond the feeding period. We showed that insect herbivory can strongly influence plant competitive interactions. In our experimental plant community, aboveground insect herbivory increased the risk of competitive exclusion of F. rubra. Belowground herbivory appeared to mitigate the influence of aboveground herbivory, and this mechanism may play a role for plant species coexistence. PMID:27069805
Borgström, Pernilla; Strengbom, Joachim; Viketoft, Maria; Bommarco, Riccardo
2016-01-01
Insect herbivores can shift the composition of a plant community, but the mechanism underlying such shifts remains largely unexplored. A possibility is that insects alter the competitive symmetry between plant species. The effect of herbivory on competition likely depends on whether the plants are subjected to aboveground or belowground herbivory or both, and also depends on soil nitrogen levels. It is unclear how these biotic and abiotic factors interactively affect competition. In a greenhouse experiment, we measured competition between two coexisting grass species that respond differently to nitrogen deposition: Dactylis glomerata L., which is competitively favoured by nitrogen addition, and Festuca rubra L., which is competitively favoured on nitrogen-poor soils. We predicted: (1) that aboveground herbivory would reduce competitive asymmetry at high soil nitrogen by reducing the competitive advantage of D. glomerata; and (2), that belowground herbivory would relax competition at low soil nitrogen, by reducing the competitive advantage of F. rubra. Aboveground herbivory caused a 46% decrease in the competitive ability of F. rubra, and a 23% increase in that of D. glomerata, thus increasing competitive asymmetry, independently of soil nitrogen level. Belowground herbivory did not affect competitive symmetry, but the combined influence of above- and belowground herbivory was weaker than predicted from their individual effects. Belowground herbivory thus mitigated the increased competitive asymmetry caused by aboveground herbivory. D. glomerata remained competitively dominant after the cessation of aboveground herbivory, showing that the influence of herbivory continued beyond the feeding period. We showed that insect herbivory can strongly influence plant competitive interactions. In our experimental plant community, aboveground insect herbivory increased the risk of competitive exclusion of F. rubra. Belowground herbivory appeared to mitigate the influence of aboveground herbivory, and this mechanism may play a role for plant species coexistence.
Highton, Richard; Hastings, Amy Picard; Palmer, Catherine; Watts, Richard; Hass, Carla A.; Culver, Melanie; Arnold, Stevan
2012-01-01
Salamanders of the North American plethodontid genus Plethodon are important model organisms in a variety of studies that depend on a phylogenetic framework (e.g., chemical communication, ecological competition, life histories, hybridization, and speciation), and consequently their systematics has been intensively investigated over several decades. Nevertheless, we lack a synthesis of relationships among the species. In the analyses reported here we use new DNA sequence data from the complete nuclear albumin gene (1818 bp) and the 12s mitochondrial gene (355 bp), as well as published data for four other genes (Wiens et al., 2006), up to a total of 6989 bp, to infer relationships. We relate these results to past systematic work based on morphology, allozymes, and DNA sequences. Although basal relationships show a strong consensus across studies, many terminal relationships remain in flux despite substantial sequencing and other molecular and morphological studies. This systematic instability appears to be a consequence of contemporaneous bursts of speciation in the late Miocene and Pliocene, yielding many closely related extant species in each of the four eastern species groups. Therefore we conclude that many relationships are likely to remain poorly resolved in the face of additional sequencing efforts. On the other hand, the current classification of the 45 eastern species into four species groups is supported. The Plethodon cinereus group (10 species) is the sister group to the clade comprising the other three groups, but these latter groups (Plethodon glutinosus [28 species], Plethodon welleri [5 species], and Plethodon wehrlei [2 species]) probably diverged from each other at approximately the same time.
Warming-induced changes in predation, extinction and invasion in an ectotherm food web.
Seifert, Linda I; Weithoff, Guntram; Gaedke, Ursula; Vos, Matthijs
2015-06-01
Climate change will alter the forces of predation and competition in temperate ectotherm food webs. This may increase local extinction rates, change the fate of invasions and impede species reintroductions into communities. Invasion success could be modulated by traits (e.g., defenses) and adaptations to climate. We studied how different temperatures affect the time until extinction of species, using bitrophic and tritrophic planktonic food webs to evaluate the relative importance of predatory overexploitation and competitive exclusion, at 15 and 25 °C. In addition, we tested how inclusion of a subtropical as opposed to a temperate strain in this model food web affects times until extinction. Further, we studied the invasion success of the temperate rotifer Brachionus calyciflorus into the planktonic food web at 15 and 25 °C on five consecutive introduction dates, during which the relative forces of predation and competition differed. A higher temperature dramatically shortened times until extinction of all herbivore species due to carnivorous overexploitation in tritrophic systems. Surprisingly, warming did not increase rates of competitive exclusion among the tested herbivore species in bitrophic communities. Including a subtropical herbivore strain reduced top-down control by the carnivore at high temperature. Invasion attempts of temperate B. calyciflorus into the food web always succeeded at 15 °C, but consistently failed at 25 °C due to voracious overexploitation by the carnivore. Pre-induction of defenses (spines) in B. calyciflorus before the invasion attempt did not change its invasion success at the high temperature. We conclude that high temperatures may promote local extinctions in temperate ectotherms and reduce their chances of successful recovery.
Probiotics, prebiotics, and competitive exclusion for prophylaxis against bacterial disease
USDA-ARS?s Scientific Manuscript database
Bacteria that are pathogenic to animals and human consumers can exist in the gastrointestinal tract of our food animal species. The gastrointestinal tract of food animals can be inhabited by bacteria that cause foodborne illnesses in humans, but that do not cause detectable animal illnesses or a de...
Community Teamwork in Education for Tomorrow.
ERIC Educational Resources Information Center
Monroe-Clay, Sonya
Noting that education is viewed as the route to success in American society, the paper argues that education has not lived up to this promise. Emphasis on conformity and regimentation, fostering of competition and exclusion behaviors, classism, racism, and a microfocal perspecitive of social problems serve as barriers to full realization of the…
Accelerating Electronic Tag Development for Tracking Free-Ranging Marine Animals at Sea
2007-08-01
for the best in Internet marketing. The IAC Awards are the first and only industry - based advertising award competition dedicated exclusively to...Bioenergetics and diving activity of internesting leatherback turtles Dermochelys coriacea at Parque Nacional Marino Las Baulas, Costa Rica. J. Exp. BioL 208
47 CFR 90.165 - Procedures for mutually exclusive applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... grant, pursuant to § 1.935 of this chapter. (1) Selection methods. In selecting the application to grant, the Commission may use competitive bidding, random selection, or comparative hearings, depending on... chapter, either before or after employing selection procedures. (3) Type of filing group used. Except as...
Telecommunications Policy, High Definition Television, and U.S. Competitiveness.
ERIC Educational Resources Information Center
Cohen, Robert B.; Donow, Kenneth
New policies are needed for the U.S. telecommunications industry. The continuation of current policies--which emphasize customer and convenience services to the near exclusion of developing domestically produced equipment and improving infrastructure--will constrain the domestic growth of U.S. corporations and make it difficult for smaller…
Determining effective riparian buffer width for nonnative plant exclusion and habitat enhancement
Gavin Ferris; Vincent D' Amico; Christopher K. Williams
2012-01-01
Nonnative plants threaten native biodiversity in landscapes where habitats are fragmented. Unfortunately, in developed areas, much of the remaining forested habitat occurs in fragmented riparian corridors. Because forested corridors of sufficient width may allow forest interior specializing native species to retain competitive advantage over edge specialist and...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-02
... competitive with cGMP intermediates and Active Pharmaceutical Ingredients from the subject facility to a..., Conshohocken, Pennsylvania, who are engaged in employment related to the production of cGMP intermediates and...GMP intermediates and Active Pharmaceutical Ingredients, who became totally or partially separated...
Personal Reflections of a First Lay President
ERIC Educational Resources Information Center
Doud, Jacqueline Powers
2014-01-01
While this article is not about women's colleges or exclusively women presidents, the author notes, it is women's colleges that have experienced the greatest challenges, due primarily to financial constraints and competition. As operational costs escalated and choices for students increased, many small struggling colleges with little or no…
48 CFR 206.203 - Set-asides for small business concerns.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Competition After Exclusion of Sources 206.203 Set-asides for small business concerns. (b) Also no separate... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Set-asides for small business concerns. 206.203 Section 206.203 Federal Acquisition Regulations System DEFENSE ACQUISITION...
48 CFR 206.203 - Set-asides for small business concerns.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Competition After Exclusion of Sources 206.203 Set-asides for small business concerns. (b) Also no separate... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Set-asides for small business concerns. 206.203 Section 206.203 Federal Acquisition Regulations System DEFENSE ACQUISITION...
48 CFR 206.203 - Set-asides for small business concerns.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Competition After Exclusion of Sources 206.203 Set-asides for small business concerns. (b) Also no separate... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Set-asides for small business concerns. 206.203 Section 206.203 Federal Acquisition Regulations System DEFENSE ACQUISITION...
48 CFR 206.203 - Set-asides for small business concerns.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Competition After Exclusion of Sources 206.203 Set-asides for small business concerns. (b) Also no separate... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Set-asides for small business concerns. 206.203 Section 206.203 Federal Acquisition Regulations System DEFENSE ACQUISITION...
Cospeciation of gut microbiota with hominids
Moeller, Andrew H.; Caro-Quintero, Alejandro; Mjungu, Deus; Georgiev, Alexander V.; Lonsdorf, Elizabeth V.; Muller, Martin N.; Pusey, Anne E.; Peeters, Martine; Hahn, Beatrice H.; Ochman, Howard
2016-01-01
The evolutionary origins of the bacterial lineages that populate the human gut are unknown. Here we show that multiple lineages of the predominant bacterial taxa in the gut arose via cospeciation with humans, chimpanzees, bonobos, and gorillas over the past 15 million years. Analyses of strain-level bacterial diversity within hominid gut microbiomes revealed that clades of Bacteroidaceae and Bifidobacteriaceae have been maintained exclusively within host lineages across hundreds of thousands of host generations. Divergence times of these cospeciating gut bacteria are congruent with those of hominids, indicating that nuclear, mitochondrial, and gut bacterial genomes diversified in concert during hominid evolution. This study identifies human gut bacteria descended from ancient symbionts that speciated simultaneously with humans and the African apes. PMID:27463672
Exclusive contracts in the hospital setting: a two-edged sword, part 1: legal issues.
Portman, Robert M
2007-05-01
Hospitals routinely enter into contracts with radiology groups for the right to be the exclusive provider of radiology services at the facility in exchange for the group agreeing to provide and manage all aspects of that service within the hospital. These "exclusive contracts" generally result in the radiology department and associated equipment being closed off to physicians who are not part of the contracting group. Exclusive contracts are generally considered to be good for physicians who have them and bad for those excluded by them. In fact, while exclusive contracts offer obvious benefits to the physicians who receive them and obvious disadvantages for those who are excluded, they also present pitfalls for physicians in the chosen group. Part I of this article discusses the legal issues raised by exclusive contracts. Although these agreements appear to be anti-competitive, most courts have rejected antitrust challenges to exclusive contracts. Excluded physicians have had much greater success in attacking exclusive contracting arrangements on breach of contract and procedural/due process grounds. Exclusive contracting arrangements can also raise concerns under the Medicare-Medicaid anti-kickback statute if the contracting physicians are required to pay consideration or accept less than fair market value compensation in exchange for exclusive contracts. These agreements can also raise issues under the Stark II physician self-referral law if the contracting physicians are in a position to refer Medicare or Medicaid patients to the hospital. Part II of this article will discuss the advantages and disadvantages of exclusive contracts for physicians covered and not covered by such contracts, as well as strategies for avoiding them or minimizing their potential adverse impact. It also will discuss specific provisions of exclusive contracts that should be included or avoided.
NASA Astrophysics Data System (ADS)
Barrientos, Rafael; Virgós, Emilio
2006-07-01
The common genet ( Genetta genetta) and the stone marten ( Martes foina) are two species that overlap extensively in their distribution ranges in southwest Europe. Available diet data from these species allow us to predict some interference competition for food resources in sympatric populations. We checked the food interference hypothesis in a sympatric population. The diet of both predators was analyzed through scat collection. Seasonal differences in biomass consumption were compared between both species in those items considered as key resources according to biomass consumption. Strawberry tree fruits can be considered as key resource exclusively for genets whereas fungi, blackberries and rabbits are keys for stone martens only. For other key resources consumed by both species (wood mouse and figs) we suggest that a possible mechanism to reduce diet overlap could be the sequential use of these resources: no intensive exploitation by both species of the same key resource during the same season was detected. Figs and wood mouse were used alternatively. Although strawberry tree fruits and blackberry are exclusive key resources of one of the species, their consumptions showed the same pattern. Diet niche overlap in our study is low compared with other carnivore communities suggesting that exclusive use of some key resources and sequential use of shared ones is an optimal scenario to reduce overall competition for food resources.
Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunger, John A.; /Northern Illinois U. /Northern Illinois U.
Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avianmore » vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus Pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers wer 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in dits. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for P. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on P. leucopus spatial patterns mediated through M. Pennsylvanicus. The role of food limitation was studied using natural and manipulative experiments. Unusually high acorn production in Fall 1994 resulted in increased P. leucopus numbers at one Fermilab site due to immigration since survivorship or reproduction were unaffected. A food supplementation experiment during October 1994-March 1995 induced a strong increase in P. leucopus numbers, due again to immigration, although reproduction also was advanced by two months.« less
Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunger, John A.
Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avianmore » vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers were 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in diets. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for £.. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on .f.. leucopus spatial patterns mediated through M. pennsylvanicus. The role of food limitation was studied using natural and manipulative experiments. Unusually high acorn production in Fall 1994 resulted in increased f. leucopus numbers at one Fermilab site due to immigration since survivorship or reproduction were unaffected. A food supplementation experiment during October 1994-March 1995 induced a strong increase in f. leucopus numbers, due again to immigration, although reproduction also was advanced by two months.« less
Long-range RNA pairings contribute to mutually exclusive splicing
Yue, Yuan; Yang, Yun; Dai, Lanzhi; Cao, Guozheng; Chen, Ran; Hong, Weiling; Liu, Baoping; Shi, Yang; Meng, Yijun; Shi, Feng; Xiao, Mu; Jin, Yongfeng
2016-01-01
Mutually exclusive splicing is an important means of increasing the protein repertoire, by which the Down's syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 different isoforms in Drosophila melanogaster. However, the regulatory mechanisms remain obscure due to the complexity of the Dscam exon cluster. Here, we reveal a molecular model for the regulation of the mutually exclusive splicing of the serpent pre-mRNA based on competition between upstream and downstream RNA pairings. Such dual RNA pairings confer fine tuning of the inclusion of alternative exons. Moreover, we demonstrate that the splicing outcome of alternative exons is mediated in relative pairing strength-correlated mode. Combined comparative genomics analysis and experimental evidence revealed similar bidirectional structural architectures in exon clusters 4 and 9 of the Dscam gene. Our findings provide a novel mechanistic framework for the regulation of mutually exclusive splicing and may offer potentially applicable insights into long-range RNA–RNA interactions in gene regulatory networks. PMID:26554032
Long-range RNA pairings contribute to mutually exclusive splicing.
Yue, Yuan; Yang, Yun; Dai, Lanzhi; Cao, Guozheng; Chen, Ran; Hong, Weiling; Liu, Baoping; Shi, Yang; Meng, Yijun; Shi, Feng; Xiao, Mu; Jin, Yongfeng
2016-01-01
Mutually exclusive splicing is an important means of increasing the protein repertoire, by which the Down's syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 different isoforms in Drosophila melanogaster. However, the regulatory mechanisms remain obscure due to the complexity of the Dscam exon cluster. Here, we reveal a molecular model for the regulation of the mutually exclusive splicing of the serpent pre-mRNA based on competition between upstream and downstream RNA pairings. Such dual RNA pairings confer fine tuning of the inclusion of alternative exons. Moreover, we demonstrate that the splicing outcome of alternative exons is mediated in relative pairing strength-correlated mode. Combined comparative genomics analysis and experimental evidence revealed similar bidirectional structural architectures in exon clusters 4 and 9 of the Dscam gene. Our findings provide a novel mechanistic framework for the regulation of mutually exclusive splicing and may offer potentially applicable insights into long-range RNA-RNA interactions in gene regulatory networks. © 2015 Yue et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Fermented functional foods based on probiotics and their biogenic metabolites.
Stanton, Catherine; Ross, R Paul; Fitzgerald, Gerald F; Van Sinderen, Douwe
2005-04-01
The claimed health benefits of fermented functional foods are expressed either directly through the interaction of ingested live microorganisms, bacteria or yeast with the host (probiotic effect) or indirectly as a result of ingestion of microbial metabolites produced during the fermentation process (biogenic effect). Although still far from fully understood, several probiotic mechanisms of action have been proposed, including competitive exclusion, competition for nutrients and/or stimulation of an immune response. The biogenic properties of fermented functional foods result from the microbial production of bioactive metabolites such as certain vitamins, bioactive peptides, organic acids or fatty acids during fermentation.
Hilgarth, M; Nani, M; Vogel, R F
2018-05-01
This study aimed to investigate intraspecies assertiveness of meat-borne Lactococcus piscium isolates, inhibitory effects on unwanted and harmful meat spoilers, and the prevalence on beef deliberately inoculated with Lc. piscium. Co-inoculation of Lc. piscium isolates and spoilers (Brochothrix thermosphacta, Leuconostoc gelidum subsp. gasicomitatum, Carnobacterium divergens, Pseudomonas weihenstephanensis, Serratia liquefaciens, Hafnia alvei) were conducted in sterile meat simulation medium. Differentiation of Lc. piscium strains was carried out with colony-based RAPD-PCR. Selective cultivation was used to differentiate spoilers from Lc. piscium. Intraspecies assertiveness revealed Lc. piscium TMW2.1614 as most assertive strain. Co-inoculation of selected Lc. piscium strains caused substantial growth reduction of spoilers while the extent was strain- and spoiler dependent. Monitoring the microbiota on beef steaks deliberately inoculated with Lc. piscium revealed prevalence over the endogenous microbiota while maintaining a ripened sensory impression without undesired alterations. This study reveals Lc. piscium strains TMW2.1612/2.1614/2.1615 as highly competitive against spoilers in vitro while beef deliberately inoculated with these strains maintained acceptable organoleptics. Selected Lc. piscium strains exhibit high potential for application as bioprotective cultures for competitive exclusion on beef in order to extend minimum shelf life and enhance product safety of meat. © 2018 The Society for Applied Microbiology.
Trace metal speciation in natural waters: Computational vs. analytical
Nordstrom, D. Kirk
1996-01-01
Improvements in the field sampling, preservation, and determination of trace metals in natural waters have made many analyses more reliable and less affected by contamination. The speciation of trace metals, however, remains controversial. Chemical model speciation calculations do not necessarily agree with voltammetric, ion exchange, potentiometric, or other analytical speciation techniques. When metal-organic complexes are important, model calculations are not usually helpful and on-site analytical separations are essential. Many analytical speciation techniques have serious interferences and only work well for a limited subset of water types and compositions. A combined approach to the evaluation of speciation could greatly reduce these uncertainties. The approach proposed would be to (1) compare and contrast different analytical techniques with each other and with computed speciation, (2) compare computed trace metal speciation with reliable measurements of solubility, potentiometry, and mean activity coefficients, and (3) compare different model calculations with each other for the same set of water analyses, especially where supplementary data on speciation already exist. A comparison and critique of analytical with chemical model speciation for a range of water samples would delineate the useful range and limitations of these different approaches to speciation. Both model calculations and analytical determinations have useful and different constraints on the range of possible speciation such that they can provide much better insight into speciation when used together. Major discrepancies in the thermodynamic databases of speciation models can be evaluated with the aid of analytical speciation, and when the thermodynamic models are highly consistent and reliable, the sources of error in the analytical speciation can be evaluated. Major thermodynamic discrepancies also can be evaluated by simulating solubility and activity coefficient data and testing various chemical models for their range of applicability. Until a comparative approach such as this is taken, trace metal speciation will remain highly uncertain and controversial.
Jescheniak, Jörg D; Matushanskaya, Asya; Mädebach, Andreas; Müller, Matthias M
2014-10-01
Picture-naming studies have demonstrated interference from semantic-categorically related distractor words, but not from corresponding distractor pictures, and the lack of generality of the interference effect has been argued to challenge theories viewing lexical selection in speech production as a competitive process. Here, we demonstrate that semantic interference from context pictures does become visible, if sufficient attention is allocated to them. We combined picture naming with a spatial-cuing procedure. When participants' attention was shifted to the distractor, semantically related distractor pictures interfered with the response, as compared with unrelated distractor pictures. This finding supports models conceiving lexical retrieval as competitive (Levelt, Roelofs, & Meyer, 1999) but is difficult to reconcile with the response exclusion hypothesis (Finkbeiner & Caramazza, 2006b) proposed as an alternative.
Seabra, Ana R; Vieira, Cristina P; Cullimore, Julie V; Carvalho, Helena G
2010-08-19
Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS), occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in Medicago truncatula. This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2) in M. truncatula. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene. This study shows that Medicago truncatula contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate that this gene duplication represents a functional innovation of plastid located GS related to storage protein accumulation exclusive to legume seed metabolism.
Nishiguchi, Michele K.; Ruby, Edward G.; McFall-Ngai, Margaret J.
1998-01-01
One of the principal assumptions in symbiosis research is that associated partners have evolved in parallel. We report here experimental evidence for parallel speciation patterns among several partners of the sepiolid squid-luminous bacterial symbioses. Molecular phylogenies for 14 species of host squids were derived from sequences of both the nuclear internal transcribed spacer region and the mitochondrial cytochrome oxidase subunit I; the glyceraldehyde phosphate dehydrogenase locus was sequenced for phylogenetic determinations of 7 strains of bacterial symbionts. Comparisons of trees constructed for each of the three loci revealed a parallel phylogeny between the sepiolids and their respective symbionts. Because both the squids and their bacterial partners can be easily cultured independently in the laboratory, we were able to couple these phylogenetic analyses with experiments to examine the ability of the different symbiont strains to compete with each other during the colonization of one of the host species. Our results not only indicate a pronounced dominance of native symbiont strains over nonnative strains, but also reveal a hierarchy of symbiont competency that reflects the phylogenetic relationships of the partners. For the first time, molecular systematics has been coupled with experimental colonization assays to provide evidence for the existence of parallel speciation among a set of animal-bacterial associations. PMID:9726861
Eiche, Elisabeth; Riemann, Michael; Nick, Peter; Winkel, Lenny H. E.; Göttlicher, Jörg; Steininger, Ralph; Brendel, Rita; von Brasch, Matthias; Konrad, Gabriele; Neumann, Thomas
2016-01-01
Up to 1 billion people are affected by low intakes of the essential nutrient selenium (Se) due to low concentrations in crops. Biofortification of this micronutrient in plants is an attractive way of increasing dietary Se levels. We investigated a promising method of Se biofortification of rice seedlings, as rice is the primary staple for 3 billion people, but naturally contains low Se concentrations. We studied hydroponic Se uptake for 0–2500 ppb Se, potential phyto-toxicological effects of Se and the speciation of Se along the shoots and roots as a function of added Se species, concentrations and other nutrients supplied. We found that rice germinating directly in a Se environment increased plant-Se by factor 2–16, but that nutrient supplementation is required to prevent phyto-toxicity. XANES data showed that selenite uptake mainly resulted in the accumulation of organic Se in roots, but that selenate uptake resulted in accumulation of selenate in the higher part of the shoot, which is an essential requirement for Se to be transported to the grain. The amount of organic Se in the plant was positively correlated with applied Se concentration. Our results indicate that biofortification of seedlings with selenate is a successful method to increase Se levels in rice. PMID:27116220
Visualizing speciation in artificial cichlid fish.
Clement, Ross
2006-01-01
The Cichlid Speciation Project (CSP) is an ALife simulation system for investigating open problems in the speciation of African cichlid fish. The CSP can be used to perform a wide range of experiments that show that speciation is a natural consequence of certain biological systems. A visualization system capable of extracting the history of speciation from low-level trace data and creating a phylogenetic tree has been implemented. Unlike previous approaches, this visualization system presents a concrete trace of speciation, rather than a summary of low-level information from which the viewer can make subjective decisions on how speciation progressed. The phylogenetic trees are a more objective visualization of speciation, and enable automated collection and summarization of the results of experiments. The visualization system is used to create a phylogenetic tree from an experiment that models sympatric speciation.
USDA-ARS?s Scientific Manuscript database
Bacterial cultures of crop and cecal contents of adult poultry contain beneficial bacteria that reduce colonization of young poultry by Salmonella. Since endospore-forming bacteria may play a role in competitive exclusion of Salmonella in poultry, 3 trials were conducted to isolate these bacteria fr...
The myth of plant species saturation
Thomas J. Stohlgren; David T. Barnett; Catherine S. Jarnevich; Curtis Flather; John Kartesz
2008-01-01
Plant species assemblages, communities or regional floras might be termed saturated when additional immigrant species are unsuccessful at establishing due to competitive exclusion or other inter-specific interactions, or when the immigration of species is off-set by extirpation of species. This is clearly not the case for state, regional or national floras in the USA...
The use of pre- and probiotics to improve food safety in the live animal
USDA-ARS?s Scientific Manuscript database
Too many foodborne illnesses happen around the world and are linked to the consumption of meat or contact with animals or their feces. Strategies to reduce these pathogen levels in food animals include the use of probiotics, prebiotics, and competitive exclusion cultures. These products all utiliz...
School Choice and the Pressure To Perform: Deja Vu for Children with Disabilities?
ERIC Educational Resources Information Center
Howe, Kenneth R.; Welner, Kevin G.
2002-01-01
This article examines the tension between the principles underlying the inclusion of students with disabilities and those underlying school choice, particularly market competition and parental autonomy. It examines findings from five states and a case study of a school-choice system that indicate the exclusion of students with disabilities.…
ERIC Educational Resources Information Center
Greeley, Luke
2018-01-01
The Disney/Pixar film, "Monsters University" (2013) was a tremendous financial success. As a film written entirely about college students and their quest for social and economic attainment, but marketed primarily to children and adolescents, its messages about the purpose of college and the college experience deserve close examination…
USDA-ARS?s Scientific Manuscript database
A series of field studies in corn (maize) evaluated the ability of non-aflatoxigenic biocontrol strains of Aspergillus flavus to reduce, through competitive exclusion, production in kernels of aflatoxins and cyclopiazonic acid (CPA) by A. flavus and fumonisins by Fusarium verticillioides. The abili...
Gurven, Michael; Kaplan, Hillard; Winking, Jeffrey
2010-01-01
This paper examines social determinants of resource competition among Tsimane Amerindian women of Bolivia. We introduce a semi-anonymous experiment (the Social Strategy Game) designed to simulate resource competition among women. Information concerning dyadic social relationships and demographic data were collected to identify variables influencing resource competition intensity, as measured by the number of beads one woman took from another. Relationship variables are used to test how the affiliative or competitive aspects of dyads affect the extent of prosociality in the game. Using a mixed-modeling procedure, we find that women compete with those with whom they are quarreling over accusations of meat theft, mate competition, and rumor spreading. They also compete with members of their social network and with those who were designated as cooperative helpers or as close kin. Women take fewer beads from desired friends, neighbors, and from those viewed as enemies. We interpret favoritism toward enemies as resulting from fear of retribution. Our results suggest that social relations among women are multifaceted and often cannot be simplified by exclusive focus on genetic relatedness, physical proximity, or reciprocity. We argue that a complex understanding of cooperation and competition among women may require important contextual information concerning relationship history in addition to typical features of resource ecology. PMID:20526460
The advantage of being slow: The quasi-neutral contact process.
de Oliveira, Marcelo Martins; Dickman, Ronald
2017-01-01
According to the competitive exclusion principle, in a finite ecosystem, extinction occurs naturally when two or more species compete for the same resources. An important question that arises is: when coexistence is not possible, which mechanisms confer an advantage to a given species against the other(s)? In general, it is expected that the species with the higher reproductive/death ratio will win the competition, but other mechanisms, such as asymmetry in interspecific competition or unequal diffusion rates, have been found to change this scenario dramatically. In this work, we examine competitive advantage in the context of quasi-neutral population models, including stochastic models with spatial structure as well as macroscopic (mean-field) descriptions. We employ a two-species contact process in which the "biological clock" of one species is a factor of α slower than that of the other species. Our results provide new insights into how stochasticity and competition interact to determine extinction in finite spatial systems. We find that a species with a slower biological clock has an advantage if resources are limited, winning the competition against a species with a faster clock, in relatively small systems. Periodic or stochastic environmental variations also favor the slower species, even in much larger systems.
Resource and competitive dynamics shape the benefits of public goods cooperation in a plant pathogen
Platt, Thomas G.; Fuqua, Clay; Bever, James D.
2012-01-01
Cooperative benefits depend on a variety of ecological factors. Many cooperative bacteria increase the population size of their groups by making a public good available. Increased local population size can alleviate the constraints of kin competition on the evolution of cooperation by enhancing the between-group fitness of cooperators. The cooperative pathogenesis of Agrobacterium tumefaciens causes infected plants to exude opines—resources that provide a nearly exclusive source of nutrient for the pathogen. We experimentally demonstrate that opines provide cooperative A. tumefaciens cells a within-group fitness advantage over saprophytic agrobacteria. Our results are congruent with a resource-consumer competition model, which predicts that cooperative, virulent agrobacteria are at a competitive disadvantage when opines are unavailable, but have an advantage when opines are available at sufficient levels. This model also predicts that freeloading agrobacteria that catabolize opines but cannot infect plants competitively displace the cooperative pathogen from all environments. However, we show that these cooperative public goods also promote increased local population size. A model built from the Price Equation shows that this effect on group size can contribute to the persistence of cooperative pathogenesis despite inherent kin competition for the benefits of pathogenesis. PMID:22671559
Community trait overdispersion due to trophic interactions: concerns for assembly process inference
Petchey, Owen L.
2016-01-01
The expected link between competitive exclusion and community trait overdispersion has been used to infer competition in local communities, and trait clustering has been interpreted as habitat filtering. Such community assembly process inference has received criticism for ignoring trophic interactions, as competition and trophic interactions might create similar trait patterns. While other theoretical studies have generally demonstrated the importance of predation for coexistence, ours provides the first quantitative demonstration of such effects on assembly process inference, using a trait-based ecological model to simulate the assembly of a competitive primary consumer community with and without the influence of trophic interactions. We quantified and contrasted trait dispersion/clustering of the competitive communities with the absence and presence of secondary consumers. Trophic interactions most often decreased trait clustering (i.e. increased dispersion) in the competitive communities due to evenly distributed invasions of secondary consumers and subsequent competitor extinctions over trait space. Furthermore, effects of trophic interactions were somewhat dependent on model parameters and clustering metric. These effects create considerable problems for process inference from trait distributions; one potential solution is to use more process-based and inclusive models in inference. PMID:27733548
A specter of coexistence: Is centrifugal community organization haunted by the ghost of competition?
Wasserberg, Gideon; Kotler, B.P.; Morris, D.W.; Abramsky, Z.
2006-01-01
In a centrifugally organized community species prefer the same habitat (called "core") but differ in their secondary habitat preferences. The first model of centrifugal community organization (CCO) predicted that optimally foraging, symmetrically competing species would share use of the core habitat at all density combinations. But one might also assume that the competition in the core habitat is asymmetrical, that is, that one of the species (the dominant) has a behavioral advantage therein. In this study, we asked how should habitat use evolve in a centrifugally organized community if its species compete asymmetrically in the core habitat? To address this question we developed an "isoleg model". The model predicts that in a centrifugally organized community, asymmetric competition promotes the use of the core habitat exclusively by the dominant species at most points in the state space. The separation of the core habitat use by the species ("the ghost of competition past") may be either complete or partial ("partial ghost"), and behavior at the stable competitive equilibrium between the species could determine whether coexistence should occur at the "complete-" or the "partial ghost" regions. This version of CCO should be a common feature of competitive systems.
NASA Astrophysics Data System (ADS)
Beier, Ross C.; Young, Colin R.; Stanker, Larry H.
1999-01-01
A competitive exclusion (CE) culture of chicken cecal anaerobes has been developed and used in this laboratory for control of Salmonella typhimurium in chickens. The CE culture consists of 29 different species of micro-organisms, and is known as CF3. Detection of one of the CF3 bacteria, Eubacteria, and S. typhimurium were demonstrated using a commercial immunomagnetic (IM) electrochemiluminescence (ECL) sensor, the ORIGENR Analyzer. Analysis was achieved using a sandwich immunoassay. Bacteria were captured on antibody- conjugated 280 micron sized magnetic beads followed by binding of reporter antibodies labelled with ruthenium (II) tris(dipyridyl) chelate [Ru(bpy)32+]. The magnetic beads were then trapped on an electrode in the reaction cell of the ORIGENR Analyzer by a magnet, and the ECL was evoked from Ru(bpy)32+ on the tagged reporter antibodies by an electrical potential at the electrode. Preliminary IM-ECL assays with Eubacteria yielded a detection limit of 105 cfu/mL. Preliminary IM-ECL assays with S. typhimurium yielded a similar detection limit of 105 cfu/mL.
Singh, Appu Kumar; Ekka, Mary Krishna; Kaushik, Abhishek; Pandya, Vaibhav; Singh, Ravi P; Banerjee, Shrijita; Mittal, Monica; Singh, Vijay; Kumaran, S
2017-09-19
By classical competitive antagonism, a substrate and competitive inhibitor must bind mutually exclusively to the active site. The competitive inhibition of O-acetyl serine sulfhydrylase (OASS) by the C-terminus of serine acetyltransferase (SAT) presents a paradox, because the C-terminus of SAT binds to the active site of OASS with an affinity that is 4-6 log-fold (10 4 -10 6 ) greater than that of the substrate. Therefore, we employed multiple approaches to understand how the substrate gains access to the OASS active site under physiological conditions. Single-molecule and ensemble approaches showed that the active site-bound high-affinity competitive inhibitor is actively dissociated by the substrate, which is not consistent with classical views of competitive antagonism. We employed fast-flow kinetic approaches to demonstrate that substrate-mediated dissociation of full length SAT-OASS (cysteine regulatory complex) follows a noncanonical "facilitated dissociation" mechanism. To understand the mechanism by which the substrate induces inhibitor dissociation, we resolved the crystal structures of enzyme·inhibitor·substrate ternary complexes. Crystal structures reveal a competitive allosteric binding mechanism in which the substrate intrudes into the inhibitor-bound active site and disengages the inhibitor before occupying the site vacated by the inhibitor. In summary, here we reveal a new type of competitive allosteric binding mechanism by which one of the competitive antagonists facilitates the dissociation of the other. Together, our results indicate that "competitive allostery" is the general feature of noncanonical "facilitated/accelerated dissociation" mechanisms. Further understanding of the mechanistic framework of "competitive allosteric" mechanism may allow us to design a new family of "competitive allosteric drugs/small molecules" that will have improved selectivity and specificity as compared to their competitive and allosteric counterparts.
Comparative tests of the role of dewlap size in Anolis lizard speciation
Harrison, Alexis; Mahler, D. Luke; Castañeda, María del Rosario; Glor, Richard E.; Herrel, Anthony; Stuart, Yoel E.; Losos, Jonathan B.
2016-01-01
Phenotypic traits may be linked to speciation in two distinct ways: character values may influence the rate of speciation or diversification in the trait may be associated with speciation events. Traits involved in signal transmission, such as the dewlap of Anolis lizards, are often involved in the speciation process. The dewlap is an important visual signal with roles in species recognition and sexual selection, and dewlaps vary among species in relative size as well as colour and pattern. We compile a dataset of relative dewlap size digitized from photographs of 184 anole species from across the genus' geographical range. We use phylogenetic comparative methods to test two hypotheses: that larger dewlaps are associated with higher speciation rates, and that relative dewlap area diversifies according to a speciational model of evolution. We find no evidence of trait-dependent speciation, indicating that larger signals do not enhance any role the dewlap has in promoting speciation. Instead, we find a signal of mixed speciational and gradual trait evolution, with a particularly strong signal of speciational change in the dewlaps of mainland lineages. This indicates that dewlap size diversifies in association with the speciation process, suggesting that divergent selection may play a role in the macroevolution of this signalling trait. PMID:28003450
Phan, Katherine; Ferenci, Thomas
2017-06-01
The trade-off relationship between antibiotic exclusion and nutrient access across the Gram-negative outer membrane is determined by structural constraints in porin channels. The precise nutritional cost of exclusion is unknown for different antibiotics, as are the shapes of the nutrition-susceptibility trade-off. Using a library of 10 engineered isogenic Escherichia coli strains with structural modifications of OmpF porin expressed at a constant level, susceptibilities were measured for nine antibiotics and the nutritional fitness costs estimated by competitions in chemostats. Different antibiotics exhibited a remarkably varied range of geometries in the nutrition-susceptibility trade-off, including convex, concave and sigmoidal trade-off shapes. The trade-off patterns predict the possibility of adaptations in contributing to antibiotic resistance; exclusion of amoxicillin or trimethoprim in ompF mutants can occur with little loss of fitness whereas kanamycin and streptomycin exclusion has a high cost. Some individual OmpF changes even allow positive correlations (trade-ups), resulting in increased fitness and decreased susceptibility specifically to cephalexin or ciprofloxacin. The surprising plasticity of the nutrition-exclusion relationship means that there are no generalisable rules that apply to decreasing susceptibility for all antibiotics. The protein changes are exquisitely specific in determining nutritional fitness and adaptive outcomes in a structural constraint trade-off.
Lu, T; Saikaly, P E; Oerther, D B
2007-01-01
A comprehensive, simplified microbial biofilm model was developed to evaluate the impact of bioreactor operating parameters on changes in microbial population abundance. Biofilm simulations were conducted using three special cases: fully penetrated, internal mass transfer resistance and external mass transfer resistance. The results of model simulations showed that for certain operating conditions, competition for growth limiting nutrients generated oscillations in the abundance of planktonic and sessile microbial populations. These oscillations resulted in the violation of the competitive exclusion principle where the number of microbial populations was greater than the number of growth limiting nutrients. However, the operating conditions which impacted microbial community diversity were different for the three special cases. Comparing the results of model simulations for dispersed-growth, biofilms and bioflocs showed that oscillations and microbial community diversity were a function of competition as well as other key features of the ecosystem. The significance of the current study is that it is the first to examine competition as a mechanism for controlling microbial community diversity in biofilm reactors.
The role of leaf height in plant competition for sunlight: analysis of a canopy partitioning model.
Nevai, Andrew L; Vance, Richard R
2008-01-01
A global method of nullcline endpoint analysis is employed to determine the outcome of competition for sunlight between two hypothetical plant species with clonal growth form that differ solely in the height at which they place their leaves above the ground. This difference in vertical leaf placement, or canopy partitioning, produces species differences in sunlight energy capture and stem metabolic maintenance costs. The competitive interaction between these two species is analyzed by considering a special case of a canopy partitioning model (RR Vance and AL Nevai, J. Theor. Biol. 2007, 245:210-219; AL Nevai and RR Vance, J. Math. Biol. 2007, 55:105-145). Nullcline endpoint analysis is used to partition parameter space into regions within which either competitive exclusion or competitive coexistence occurs. The principal conclusion is that two clonal plant species which compete for sunlight and place their leaves at different heights above the ground but differ in no other way can, under suitable parameter values, experience stable coexistence even though they occupy an environment which varies neither over horizontal space nor through time.
EPA’s SPECIATE 4.4 Database:Development and Uses
SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...
EPA’s SPECIATE 4.4 Database: Development and Uses
SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...
Rucas, Stacey L; Gurven, Michael; Kaplan, Hillard; Winking, Jeffrey
2010-03-10
This paper examines social determinants of resource competition among Tsimane Amerindian women of Bolivia. We introduce a semi-anonymous experiment (the Social Strategy Game) designed to simulate resource competition among women. Information concerning dyadic social relationships and demographic data were collected to identify variables influencing resource competition intensity, as measured by the number of beads one woman took from another. Relationship variables are used to test how the affiliative or competitive aspects of dyads affect the extent of prosociality in the game. Using a mixed-modeling procedure, we find that women compete with those with whom they are quarreling over accusations of meat theft, mate competition, and rumor spreading. They also compete with members of their social network and with those who were designated as cooperative helpers or as close kin. Women take fewer beads from desired friends, neighbors, and from those viewed as enemies. We interpret favoritism toward enemies as resulting from fear of retribution. Our results suggest that social relations among women are multifaceted and often cannot be simplified by exclusive focus on genetic relatedness, physical proximity, or reciprocity. We argue that a complex understanding of cooperation and competition among women may require important contextual information concerning relationship history in addition to typical features of resource ecology.
Plant water use affects competition for nitrogen: why drought favors invasive species in California.
Everard, Katherine; Seabloom, Eric W; Harpole, W Stanley; de Mazancourt, Claire
2010-01-01
Abstract: Classic resource competition theory typically treats resource supply rates as independent; however, nutrient supplies can be affected by plants indirectly, with important consequences for model predictions. We demonstrate this general phenomenon by using a model in which competition for nitrogen is mediated by soil moisture, with competitive outcomes including coexistence and multiple stable states as well as competitive exclusion. In the model, soil moisture regulates nitrogen availability through soil moisture dependence of microbial processes, leaching, and plant uptake. By affecting water availability, plants also indirectly affect nitrogen availability and may therefore alter the competitive outcome. Exotic annual species from the Mediterranean have displaced much of the native perennial grasses in California. Nitrogen and water have been shown to be potentially limiting in this system. We parameterize the model for a Californian grassland and show that soil moisture-mediated competition for nitrogen can explain the annual species' dominance in drier areas, with coexistence expected in wetter regions. These results are concordant with larger biogeographic patterns of grassland invasion in the Pacific states of the United States, in which annual grasses have invaded most of the hot, dry grasslands in California but perennial grasses dominate the moister prairies of northern California, Oregon, and Washington.
NASA Astrophysics Data System (ADS)
Jeon, Gyuhyeon; Park, Juyong
2017-02-01
In the common jury-contestant competition format, a jury consisting of multiple judges grade contestants on their performances to determine their ranking. Unlike in another common competition format where two contestants play a head-to-head match to produce the winner such as in football or basketball, the objectivity of judges are often called into question, potentially undermining the public's trust in the fairness of the competition. In this work we show, by modeling the jury-contestant competition format as a weighted bipartite network, how one can identify biased scores and how they impact the competition and its structure. Analyzing the prestigious International Chopin Piano Competition of 2015 as an example with a well-publicized scoring controversy, we show that the presence of even a very small fraction of biased edges can gravely distort our inference of the network structure —in the example a single biased edge is shown to lead to an incorrect “solution” that also wrongly appears to be robust exclusively, dominating other reasonable solutions— highlighting the importance of bias detection and elimination in network inference. In the process our work also presents a modified modularity measure for the one-mode projection of weighted complete bipartite networks.
Phylogenetic overdispersion of plant species in southern Brazilian savannas.
Silva, I A; Batalha, M A
2009-08-01
Ecological communities are the result of not only present ecological processes, such as competition among species and environmental filtering, but also past and continuing evolutionary processes. Based on these assumptions, we may infer mechanisms of contemporary coexistence from the phylogenetic relationships of the species in a community. We studied the phylogenetic structure of plant communities in four cerrado sites, in southeastern Brazil. We calculated two raw phylogenetic distances among the species sampled. We estimated the phylogenetic structure by comparing the observed phylogenetic distances to the distribution of phylogenetic distances in null communities. We obtained null communities by randomizing the phylogenetic relationships of the regional pool of species. We found a phylogenetic overdispersion of the cerrado species. Phylogenetic overdispersion has several explanations, depending on the phylogenetic history of traits and contemporary ecological interactions. However, based on coexistence models between grasses and trees, density-dependent ecological forces, and the evolutionary history of the cerrado flora, we argue that the phylogenetic overdispersion of cerrado species is predominantly due to competitive interactions, herbivores and pathogen attacks, and ecological speciation. Future studies will need to include information on the phylogenetic history of plant traits.
The role of biotic interactions in plant community assembly: What is the community species pool?
NASA Astrophysics Data System (ADS)
Švamberková, Eva; Vítová, Alena; Lepš, Jan
2017-11-01
Differences in plant species composition between a community and its species pool are considered to reflect the effect of community filters. If we define the species pool as a set of species able to reach a site and form a viable population in a given abiotic environment (i.e. to pass the dispersal and abiotic filter), the difference in species composition should correspond to the effect of biotic interactions. However, most of the operational definitions of the species pool are based on co-occurrence patterns and thus also reflect the effect of biotic relationships, including definitions based on functional plant traits, Ellenberg indicator values or Beals index. We conducted two seed introduction experiments in an oligotrophic wet meadow with the aim of demonstrating that many species excluded, according to the above definitions, from a species pool are in fact able to establish there successfully if competition is removed. In sowing experiments, we studied the establishment and survival of species after the removal of competition (i.e. in artificial gaps) and in intact vegetation. We also investigated inter-annual variability of seed germination and seedling establishment and competitive exclusion of sown species. The investigated species also included those from very different habitats (i.e. species with very low corresponding Beals index or Ellenberg indicator values that were different from the target community weighted mean). Many of these species were able to grow in the focal wet meadow if competition was removed, but they did not establish and survive in the intact community. These species are thus not limited by abiotic conditions, but by the biotic filter. We also recorded a great inter-annual variability in seed germination and seedling establishment. Competitive exclusion of species with different ecological requirements could be quite fast (one and half seasons) in some species, but some non-resident species were able to survive several seasons; the resident species were able to persist in competition. Comparison of realized vegetation composition with the corresponding species pool greatly underestimates the potential impact of the biotic filter if the delimitation of the species pool is based on the realized niches of species and co-occurrence patterns.
NASA Astrophysics Data System (ADS)
Finstad, A. G.; Palm Helland, I.; Jonsson, B.; Forseth, T.; Foldvik, A.; Hessen, D. O.; Hendrichsen, D. K.; Berg, O. K.; Ulvan, E.; Ugedal, O.
2011-12-01
There has been a growing recognition that single species responses to climate change often mainly are driven by interaction with other organisms and single species studies therefore not are sufficient to recognize and project ecological climate change impacts. Here, we study how performance, relative abundance and the distribution of two common Arctic and sub-Arctic freshwater fishes (brown trout and Arctic char) are driven by competitive interactions. The interactions are modified both by direct climatic effects on temperature and ice-cover, and indirectly through climate forcing of terrestrial vegetation pattern and associated carbon and nutrient run-off. We first use laboratory studies to show that Arctic char, which is the world's most northernmost distributed freshwater fish, outperform trout under low light levels and also have comparable higher growth efficiency. Corresponding to this, a combination of time series and time-for-space analyses show that ice-cover duration and carbon and nutrient load mediated by catchment vegetation properties strongly affected the outcome of the competition and likely drive the species distribution pattern through competitive exclusion. In brief, while shorter ice-cover period and decreased carbon load favored brown trout, increased ice-cover period and increased carbon load favored Arctic char. Length of ice-covered period and export of allochthonous material from catchments are major, but contrasting, climatic drivers of competitive interaction between these two freshwater lake top-predators. While projected climate change lead to decreased ice-cover, corresponding increase in forest and shrub cover amplify carbon and nutrient run-off. Although a likely outcome of future Arctic and sub-arctic climate scenarios are retractions of the Arctic char distribution area caused by competitive exclusion, the main drivers will act on different time scales. While ice-cover will change instantaneously with increasing temperature, changes in catchment vegetation, such as forest-line or shrub advancement affecting carbon and nutrient transport into lakes, act on considerably longer time-scales. This study therefore emphasizes the recurring challenge for ecological climate change studies related to species interactions within and across ecosystem compartments and the response time of ecosystems.
Huss, Magnus; Gårdmark, Anna; Van Leeuwen, Anieke; de Roos, André M
2012-04-01
Patterns of coexistence among competing species exhibiting size- and food-dependent growth remain largely unexplored. Here we studied mechanisms behind coexistence and shifts in competitive dominance in a size-structured fish guild, representing sprat and herring stocks in the Baltic Sea, using a physiologically structured model of competing populations. The influence of degree of resource overlap and the possibility of undergoing ontogenetic diet shifts were studied as functions of zooplankton and zoobenthos productivity. By imposing different size-dependent mortalities, we could study the outcome of competition under contrasting environmental regimes representing poor and favorable growth conditions. We found that the identity of the dominant species shifted between low and high productivity. Adding a herring-exclusive benthos resource only provided a competitive advantage over sprat when size-dependent mortality was high enough to allow for rapid growth in the zooplankton niche. Hence, the importance of a bottom-up effect of varying productivity was dependent on a strong top-down effect. Although herring could depress shared resources to lower levels than could sprat and also could access an exclusive resource, the smaller size at maturation of sprat allowed it to coexist with herring and, in some cases, exclude it. Our model system, characterized by interactions among size cohorts, allowed for consumer coexistence even at full resource overlap at intermediate productivities when size-dependent mortality was low. Observed shifts in community patterns were crucially dependent on the explicit consideration of size- and food-dependent growth. Accordingly, we argue that accounting for food-dependent growth and size-dependent interactions is necessary to better predict changes in community structure and dynamics following changes in major ecosystem drivers such as resource productivity and mortality, which are fundamental for our ability to manage exploitation of living resources in, e.g., fisheries.
Kimura, Yuri; Jacobs, Louis L.; Flynn, Lawrence J.
2013-01-01
Past ecological responses of mammals to climate change are recognized in the fossil record by adaptive significance of morphological variations. To understand the role of dietary behavior on functional adaptations of dental morphology in rodent evolution, we examine evolutionary change of tooth shape in late Miocene Siwalik murine rodents, which experienced a dietary shift toward C4 diets during late Miocene ecological change indicated by carbon isotopic evidence. Geometric morphometric analysis in the outline of upper first molars captures dichotomous lineages of Siwalik murines, in agreement with phylogenetic hypotheses of previous studies (two distinct clades: the Karnimata and Progonomys clades), and indicates lineage-specific functional responses to mechanical properties of their diets. Tooth shapes of the two clades are similar at their sympatric origin but deviate from each other with decreasing overlap through time. Shape change in the Karnimata clade is associated with greater efficiency of propalinal chewing for tough diets than in the Progonomys clade. Larger body mass in Karnimata may be related to exploitation of lower-quality food items, such as grasses, than in smaller-bodied Progonomys. The functional and ecophysiological aspects of Karnimata exploiting C4 grasses are concordant with their isotopic dietary preference relative to Progonomys. Lineage-specific selection was differentially greater in Karnimata, and a faster rate of shape change toward derived Karnimata facilitated inclusion of C4 grasses in the diet. Sympatric speciation in these clades is most plausibly explained by interspecific competition on resource utilization between the two, based on comparisons of our results with the carbon isotope data. Interspecific competition with Karnimata may have suppressed morphological innovation of the Progonomys clade. Pairwise analyses of morphological and carbon isotope data can uncover ecological causes of sympatric speciation and define functional adaptations of teeth to resources. PMID:24155885
Kimura, Yuri; Jacobs, Louis L; Flynn, Lawrence J
2013-01-01
Past ecological responses of mammals to climate change are recognized in the fossil record by adaptive significance of morphological variations. To understand the role of dietary behavior on functional adaptations of dental morphology in rodent evolution, we examine evolutionary change of tooth shape in late Miocene Siwalik murine rodents, which experienced a dietary shift toward C4 diets during late Miocene ecological change indicated by carbon isotopic evidence. Geometric morphometric analysis in the outline of upper first molars captures dichotomous lineages of Siwalik murines, in agreement with phylogenetic hypotheses of previous studies (two distinct clades: the Karnimata and Progonomys clades), and indicates lineage-specific functional responses to mechanical properties of their diets. Tooth shapes of the two clades are similar at their sympatric origin but deviate from each other with decreasing overlap through time. Shape change in the Karnimata clade is associated with greater efficiency of propalinal chewing for tough diets than in the Progonomys clade. Larger body mass in Karnimata may be related to exploitation of lower-quality food items, such as grasses, than in smaller-bodied Progonomys. The functional and ecophysiological aspects of Karnimata exploiting C4 grasses are concordant with their isotopic dietary preference relative to Progonomys. Lineage-specific selection was differentially greater in Karnimata, and a faster rate of shape change toward derived Karnimata facilitated inclusion of C4 grasses in the diet. Sympatric speciation in these clades is most plausibly explained by interspecific competition on resource utilization between the two, based on comparisons of our results with the carbon isotope data. Interspecific competition with Karnimata may have suppressed morphological innovation of the Progonomys clade. Pairwise analyses of morphological and carbon isotope data can uncover ecological causes of sympatric speciation and define functional adaptations of teeth to resources.
US EPA's SPECIATE 4.4 Database: Development and Uses
SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, volatile o...
EPA’s SPECIATE 4.4 Database: Bridging Data Sources and Data Users
SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...
Charging Properties of Cassiterite (alpha-SnO2) Surfaces in NaCl and RbCl Ionic Media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenqvist, Jorgen K; Machesky, Michael L.; Vlcek, Lukas
2009-01-01
The acid-base properties of cassiterite ({alpha}-SnO{sub 2}) surfaces at 10-50 C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH range of 4.0-4.5 under all conditions, and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical molecular dynamics (MD) simulations, was analyzed in detail, and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated thatmore » the terminal SnOH{sub 2} group is more acidic than the bridging Sn{sub 2}OH group, with protonation constants (log K{sub H}) of 3.60 and 5.13 at 25 C, respectively. This is contrary to the situation on the isostructural {alpha}-TiO{sub 2} (rutile), apparently because of the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na{sup +} and Rb{sup +}, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, whereas adsorbed rubidium ions form comparable numbers of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na{sup +} between the different complexes shows a considerable dependence on the surface charge density (pH), whereas the distribution of adsorbed Rb{sup +} is almost independent of pH. A surface complexation model (SCM) capable of accurately describing both the measured surface charge and the MD-predicted speciation of adsorbed Na{sup +}/Rb{sup +} was formulated. According to the SCM, the deprotonated terminal group (SnOH{sup -0.40}) and the protonated bridging group (Sn{sub 2}OH{sup +0.36}) dominate the surface speciation over the entire pH range of this study (2.7-10). The complexation of medium cations increases significantly with increasing negative surface charge, and at pH 10, roughly 40% of the terminal sites are predicted to form cation complexes, whereas anion complexation is minor throughout the studied pH range.« less
Annual cycle of size-resolved organic aerosol characterization in an urbanized desert environment
NASA Astrophysics Data System (ADS)
Cahill, Thomas M.
2013-06-01
Studies of size-resolved organic speciation of aerosols are still relatively rare and are generally only conducted over short durations. However, size-resolved organic data can both suggest possible sources of the aerosols and identify the human exposure to the chemicals since different aerosol sizes have different lung capture efficiencies. The objective of this study was to conduct size-resolved organic aerosol speciation for a calendar year in Phoenix, Arizona to determine the seasonal variations in both chemical concentrations and size profiles. The results showed large seasonal differences in combustion pollutants where the highest concentrations were observed in winter. Summertime aerosols have a greater proportion of biological compounds (e.g. sugars and fatty acids) and the biological compounds represent the largest fraction of the organic compounds detected. These results suggest that standard organic carbon (OC) measurements might be heavily influenced by primary biological compounds particularly if the samples are PM10 and TSP samples. Several large dust storms did not significantly alter the organic aerosol profile since Phoenix resides in a dusty desert environment, so the soil and plant tracer of trehalose was almost always present. The aerosol size profiles showed that PAHs were generally most abundant in the smallest aerosol size fractions, which are most likely to be captured by the lung, while the biological compounds were almost exclusively found in the coarse size fraction.
Pienaar, Ronel; Latif, Abdalla A; Thekisoe, Oriel M M; Mans, Ben J
2014-03-01
Strict control measures apply to movement of buffalo in South Africa including testing for Theileria parva, the causative agent of Corridor disease in cattle. The official test is a real-time hybridization PCR assay that amplifies the 18S rRNA V4 hyper-variable region of T. parva, T. sp. (buffalo) and T. sp. (bougasvlei). Mixed infections with the latter organisms affect diagnostic sensitivity due to PCR suppression. While the incidence of mixed infections in the Corridor disease endemic region of South Africa is significant, little information is available on the specific distribution and prevalence of T. sp. (buffalo) and T. sp. (bougasvlei). Specific real-time PCR assays were developed and a total of 1211 samples known to harbour these parasites were screened. Both parasites are widely distributed in southern Africa and the incidence of mixed infections with T. parva within the endemic region is similar (∼25-50%). However, a significant discrepancy exists in regard to mixed infections of T. sp. (buffalo) and T. sp. (bougasvlei) (∼10%). Evidence for speciation between T. sp. (buffalo) and T. sp. (bougasvlei) is supported by phylogenetic analysis of the COI gene, and their designation as different species. This suggests mutual exclusion of parasites and the possibility of hybrid sterility in cases of mixed infections.
Murphy, Brian M; Dandy, David S; Henry, Charles S
2009-04-27
Immunoassays represent a core workhorse methodology for many applications ranging from clinical diagnostics to environmental monitoring. In traditional formats such as the enzyme linked immunosorbent assay (ELISA), analytes are measured singly or in small sets. As more biomarkers are identified for disease states, there is a need to develop methods that can measure multiple markers simultaneously. Immunoaffinity arrays are one such chemistry that can achieve multi-marker screening. Most arrays are performed in either competitive or non-competitive formats, where the former are used predominantly for small molecules and the later for macromolecules. To date, ELISA and immunoaffinity array methods have relied exclusively on one of these formats and not the other. Here an immunoaffinity array method capable of performing simultaneous competitive and non-competitive analysis generated using micromosaic immunoassay techniques is introduced for the analysis of metabolites and proteins. In this report, three markers of oxidative stress were used as a model system. The method described here demonstrates the simultaneous analysis of 3-nitrotyrosine, by indirect competitive immunoassay while the enzymes catalase and superoxide dismutase are analyzed by non-competitive sandwich immunoassay. The method requires less than 1 microL sample and 45 min for completion. Logistic curve fits and LOD (limits of detection) statistical analysis of the binding results are presented and show good agreement with published data for these antibody-antigen systems.
Invasive species and biodiversity crises: testing the link in the late devonian.
Stigall, Alycia L
2010-12-29
During the Late Devonian Biodiversity Crisis, the primary driver of biodiversity decline was the dramatic reduction in speciation rates, not elevated extinction rates; however, the causes of speciation decline have been previously unstudied. Speciation, the formation of new species from ancestral populations, occurs by two primary allopatric mechanisms: vicariance, where the ancestral population is passively divided into two large subpopulations that later diverge and form two daughter species, and dispersal, in which a small subset of the ancestral population actively migrates then diverges to form a new species. Studies of modern and fossil clades typically document speciation by vicariance in much higher frequencies than speciation by dispersal. To assess the mechanism behind Late Devonian speciation reduction, speciation rates were calculated within stratigraphically constrained species-level phylogenetic hypotheses for three representative clades and mode of speciation at cladogenetic events was assessed across four clades in three phyla: Arthropoda, Brachiopoda, and Mollusca. In all cases, Devonian taxa exhibited a congruent reduction in speciation rate between the Middle Devonian pre-crisis interval and the Late Devonian crisis interval. Furthermore, speciation via vicariance is almost entirely absent during the crisis interval; most episodes of speciation during this time were due to dispersal. The shutdown of speciation by vicariance during this interval was related to widespread interbasinal species invasions. The lack of Late Devonian vicariance is diametrically opposed to the pattern observed in other geologic intervals, which suggests the loss of vicariant speciation attributable to species invasions during the Late Devonian was a causal factor in the biodiversity crisis. Similarly, modern ecosystems, in which invasive species are rampant, may be expected to exhibit similar shutdown of speciation by vicariance as an outcome of the modern biodiversity crisis.
Ectomycorrhizal fungi slow soil carbon cycling.
Averill, Colin; Hawkes, Christine V
2016-08-01
Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free-living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate. © 2016 John Wiley & Sons Ltd/CNRS.
Large-scale diversification without genetic isolation in nematode symbionts of figs
Susoy, Vladislav; Herrmann, Matthias; Kanzaki, Natsumi; Kruger, Meike; Nguyen, Chau N.; Rödelsperger, Christian; Röseler, Waltraud; Weiler, Christian; Giblin-Davis, Robin M.; Ragsdale, Erik J.; Sommer, Ralf J.
2016-01-01
Diversification is commonly understood to be the divergence of phenotypes accompanying that of lineages. In contrast, alternative phenotypes arising from a single genotype are almost exclusively limited to dimorphism in nature. We report a remarkable case of macroevolutionary-scale diversification without genetic divergence. Upon colonizing the island-like microecosystem of individual figs, symbiotic nematodes of the genus Pristionchus accumulated a polyphenism with up to five discrete adult morphotypes per species. By integrating laboratory and field experiments with extensive genotyping of individuals, including the analysis of 49 genomes from a single species, we show that rapid filling of potential ecological niches is possible without diversifying selection on genotypes. This uncoupling of morphological diversification and speciation in fig-associated nematodes has resulted from a remarkable expansion of discontinuous developmental plasticity. PMID:26824073
Karyotypic Diversity and Evolution in a Sympatric Assemblage of Neotropical Electric Knifefish.
Cardoso, Adauto L; Pieczarka, Julio C; Crampton, William G R; Ready, Jonathan S; de Figueiredo Ready, Wilsea M B; Waddell, Joseph C; de Oliveira, Jonas A; Nagamachi, Cleusa Y
2018-01-01
Chromosome changes can perform an important role in speciation by acting as post-zygotic reproductive barriers. The Neotropical electric fish genus Brachyhypopomus (Gymnotiformes, Hypopomidae) has 28 described species, but cytogenetic data are hitherto available only for four of them. To understand karyotype evolution and investigate the possible role of chromosome changes in the diversification of this genus, we describe here the karyotype of eight species of Brachyhypopomus from a sympatric assemblage in the central Amazon basin. We analyzed cytogenetic data in the context of a phylogenetic reconstruction of the genus and known patterns of geographical distribution. We found a strong phylogenetic signal for chromosome number and noted that sympatric species have exclusive karyotypes. Additional insights into the role of chromosome changes in the diversification of Brachyhypopomus are discussed.
Karyotypic Diversity and Evolution in a Sympatric Assemblage of Neotropical Electric Knifefish
Cardoso, Adauto L.; Pieczarka, Julio C.; Crampton, William G. R.; Ready, Jonathan S.; de Figueiredo Ready, Wilsea M. B.; Waddell, Joseph C.; de Oliveira, Jonas A.; Nagamachi, Cleusa Y.
2018-01-01
Chromosome changes can perform an important role in speciation by acting as post-zygotic reproductive barriers. The Neotropical electric fish genus Brachyhypopomus (Gymnotiformes, Hypopomidae) has 28 described species, but cytogenetic data are hitherto available only for four of them. To understand karyotype evolution and investigate the possible role of chromosome changes in the diversification of this genus, we describe here the karyotype of eight species of Brachyhypopomus from a sympatric assemblage in the central Amazon basin. We analyzed cytogenetic data in the context of a phylogenetic reconstruction of the genus and known patterns of geographical distribution. We found a strong phylogenetic signal for chromosome number and noted that sympatric species have exclusive karyotypes. Additional insights into the role of chromosome changes in the diversification of Brachyhypopomus are discussed. PMID:29616077
Metzler, R; Kinzel, W; Kanter, I
2000-08-01
Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random.
NASA Astrophysics Data System (ADS)
Metzler, R.; Kinzel, W.; Kanter, I.
2000-08-01
Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random.
Framework for analyzing ecological trait-based models in multidimensional niche spaces
NASA Astrophysics Data System (ADS)
Biancalani, Tommaso; DeVille, Lee; Goldenfeld, Nigel
2015-05-01
We develop a theoretical framework for analyzing ecological models with a multidimensional niche space. Our approach relies on the fact that ecological niches are described by sequences of symbols, which allows us to include multiple phenotypic traits. Ecological drivers, such as competitive exclusion, are modeled by introducing the Hamming distance between two sequences. We show that a suitable transform diagonalizes the community interaction matrix of these models, making it possible to predict the conditions for niche differentiation and, close to the instability onset, the asymptotically long time population distributions of niches. We exemplify our method using the Lotka-Volterra equations with an exponential competition kernel.
Liu, Ling; Guo, Xiaoping; Wang, Shuqi; Li, Lei; Zeng, Yang; Liu, Guanhong
2018-04-15
In this study, secondary municipal solid waste composts (SC) and wood vinegar treated secondary compost (WV-SC) was prepared to investigate the capability for single-heavy metals and multi-metal systems adsorption. The adsorption sequence of WV-SC for the maximum single metals sorption capacities was Cd (42.7mgg -1 ) > Cu (38.6mgg -1 ) > Zn (34.9mgg -1 ) > Ni (28.7mgg -1 ) and showed higher than that of SC adsorption isotherm. In binary/quaternary-metal systems, Ni adsorption showed a stronger inhibitory effect compared with Zn, Cd and Cu on both SC and WV-SC. According to Freundlich and Langmuir adsorption isotherm models, as well as desorption behaviors and speciation analysis of heavy metals, competitive adsorption behaviors were differed from single-metal adsorption. Especially, the three-dimensional simulation of competitive adsorption indicated that the Ni was easily exchanged and desorbed. The amount of exchangeable heavy metal fraction were in the lowest level for the metal-loaded adsorbents, composting treated by wood vinegar improved the adsorbed metals converted to the residue fraction. This was an essential start in estimating the multiple heavy metal adsorption behaviors of secondary composts, the results proved that wood vinegar was an effective additive to improve the composts quality and decrease the metal toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.
Arsenic Speciation in Groundwater: Role of Thioanions
The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
... exceeded will be effective July 1, 2013, unless the President grants a waiver before the exclusion goes... available in February 2013 on the Web site of the U.S. International Trade Commission at http://dataweb....10.05--Coniferous wood continuously shaped along any of its ends (Brazil) 7202.99.20--Calcium silicon...
Our Choice to Homeschool: Stepping off the Merry-Go-Round
ERIC Educational Resources Information Center
Rivero, Lisa
2004-01-01
Today's after-school programs and sports are often year-round activities, and children are pressured to focus on one activity to the exclusion of others. Homework for students who attend highly competitive high schools can take three to five hours per night. Not only schools, but the whole culture is different. People listen to music through…
47 CFR 63.14 - Prohibition on agreeing to accept special concessions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... possesses sufficient market power on the foreign end of the route to affect competition adversely in the U.S... Bureau's World Wide Web site at http://www.fcc.gov/ib. (b) A special concession is defined as an exclusive arrangement involving services, facilities, or functions on the foreign end of a U.S...
47 CFR 63.14 - Prohibition on agreeing to accept special concessions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... possesses sufficient market power on the foreign end of the route to affect competition adversely in the U.S... Bureau's World Wide Web site at http://www.fcc.gov/ib. (b) A special concession is defined as an exclusive arrangement involving services, facilities, or functions on the foreign end of a U.S...
47 CFR 63.14 - Prohibition on agreeing to accept special concessions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... possesses sufficient market power on the foreign end of the route to affect competition adversely in the U.S... Bureau's World Wide Web site at http://www.fcc.gov/ib. (b) A special concession is defined as an exclusive arrangement involving services, facilities, or functions on the foreign end of a U.S...
47 CFR 63.14 - Prohibition on agreeing to accept special concessions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... possesses sufficient market power on the foreign end of the route to affect competition adversely in the U.S... Bureau's World Wide Web site at http://www.fcc.gov/ib. (b) A special concession is defined as an exclusive arrangement involving services, facilities, or functions on the foreign end of a U.S...
47 CFR 63.14 - Prohibition on agreeing to accept special concessions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... possesses sufficient market power on the foreign end of the route to affect competition adversely in the U.S... Bureau's World Wide Web site at http://www.fcc.gov/ib. (b) A special concession is defined as an exclusive arrangement involving services, facilities, or functions on the foreign end of a U.S...
Predicting Forest Regeneration in the Central Appalachians Using the REGEN Expert System
Lance A. Vickers; Thomas R. Fox; David L. Loftis; David A. Boucugnani
2011-01-01
REGEN is an expert system designed by David Loftis to predict the future species composition of dominant and codominant stems in forest stands at the onset of stem exclusion following a proposed harvest. REGEN predictions are generated using competitive rankings for advance reproduction along with other existing stand conditions. These parameters are contained within...
ERIC Educational Resources Information Center
Zhang, Huajun
2010-01-01
Quality education reform in China gives high importance to developing the individual's full potential. However, the education system is dominated by a kind of exclusive competitiveness in which high stakes examinations shape the learning process. This paper seeks to bring a philosophical perspective regarding the disjunction between the intent of…
pH feedback and phenotypic diversity within bacterial functional groups of the human gut.
Kettle, Helen; Donnelly, Ruairi; Flint, Harry J; Marion, Glenn
2014-02-07
Microbial diversity in the human colon is very high with apparently large functional redundancy such that within each bacterial functional group there are many coexisting strains. Modelling this mathematically is problematic since strains within a functional group are often competing for the same limited number of resources and therefore competitive exclusion theory predicts a loss of diversity over time. Here we investigate, through computer simulation, a fluctuation dependent mechanism for the promotion of diversity. A variable pH environment caused by acidic by-products of bacterial growth on a fluctuating substrate coupled with small differences in acid tolerance between strains promotes diversity under both equilibrium and far-from-equilibrium conditions. Under equilibrium conditions pH fluctuations and relative nonlinearity in pH limitation among strains combine to prevent complete competitive exclusion. Under far-from-equilibrium conditions, loss of diversity through extinctions is made more difficult because pH cycling leads to fluctuations in the competitive ranking of strains, thereby helping to equalise fitness. We assume a trade-off between acid tolerance and maximum growth rate so that our microbial system consists of strains ranging from specialists to generalists. By altering the magnitude of the effect of the system on its pH environment (e.g. the buffering capacity of the colon) and the pattern of incoming resource we explore the conditions that promote diversity. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.
Bats (Chiroptera: Noctilionoidea) Challenge a Recent Origin of Extant Neotropical Diversity.
Rojas, Danny; Warsi, Omar M; Dávalos, Liliana M
2016-05-01
The mechanisms underlying the high extant biodiversity in the Neotropics have been controversial since the 19th century. Support for the influence of period-specific changes on diversification often rests on detecting more speciation events during a particular period. The timing of speciation events may reflect the influence of incomplete taxon sampling, protracted speciation, and null processes of lineage accumulation. Here we assess the influence of these factors on the timing of speciation with new multilocus data for New World noctilionoid bats (Chiroptera: Noctilionoidea). Biogeographic analyses revealed the importance of the Neotropics in noctilionoid diversification, and the critical role of dispersal. We detected no shift in speciation rate associated with the Quaternary or pre-Quaternary periods, and instead found an increase in speciation linked to the evolution of the subfamily Stenodermatinae (∼18 Ma). Simulations modeling constant speciation and extinction rates for the phylogeny systematically showed more speciation events in the Quaternary. Since recording more divergence events in the Quaternary can result from lineage accumulation, the age of extant sister species cannot be interpreted as supporting higher speciation rates during this period. Instead, analyzing the factors that influence speciation requires modeling lineage-specific traits and environmental, spatial, and ecological drivers of speciation. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Frequency-dependent selection predicts patterns of radiations and biodiversity.
Melián, Carlos J; Alonso, David; Vázquez, Diego P; Regetz, James; Allesina, Stefano
2010-08-26
Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking pre-existing niches, whereas constant rates have been attributed to non-adaptive processes such as sexual selection and mutation. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the temporal trend in the speciation rate can also be explained by frequency-dependent selection. We construct a frequency-dependent and DNA sequence-based model of speciation. We compare our model to empirical diversity patterns observed for cichlid fish and Darwin's finches, two classic systems for which speciation rates and richness data exist. Negative frequency-dependent selection predicts well both the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity may be driven by incipient species abundance with frequency-dependent selection. Our results demonstrate that genetic-distance-based speciation and frequency-dependent selection are sufficient to explain the high diversity observed in natural systems and, importantly, predict decay through time in speciation rate in the absence of pre-existing niches.
Balistrieri, L.S.; Blank, R.G.
2008-01-01
In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.
Costantini, Carlo; Ayala, Diego; Guelbeogo, Wamdaogo M; Pombi, Marco; Some, Corentin Y; Bassole, Imael HN; Ose, Kenji; Fotsing, Jean-Marie; Sagnon, N'Falé; Fontenille, Didier; Besansky, Nora J; Simard, Frédéric
2009-01-01
Background Ongoing lineage splitting within the African malaria mosquito Anopheles gambiae is compatible with ecological speciation, the evolution of reproductive isolation by divergent natural selection acting on two populations exploiting alternative resources. Divergence between two molecular forms (M and S) identified by fixed differences in rDNA, and characterized by marked, although incomplete, reproductive isolation is occurring in West and Central Africa. To elucidate the role that ecology and geography play in speciation, we carried out a countrywide analysis of An. gambiae M and S habitat requirements, and that of their chromosomal variants, across Burkina Faso. Results Maps of relative abundance by geostatistical interpolators produced a distinct pattern of distribution: the M-form dominated in the northernmost arid zones, the S-form in the more humid southern regions. Maps of habitat suitability, quantified by Ecological Niche Factor Analysis based on 15 eco-geographical variables revealed less contrast among forms. M was peculiar as it occurred proportionally more in habitat of marginal quality. Measures of ecological niche breadth and overlap confirmed the mismatch between the fundamental and realized patterns of habitat occupation: forms segregated more than expected from the extent of divergence of their environmental envelope – a signature of niche expansion. Classification of chromosomal arm 2R karyotypes by multilocus genetic clustering identified two clusters loosely corresponding to molecular forms, with 'mismatches' representing admixed individuals due to shared ancestral polymorphism and/or residual hybridization. In multivariate ordination space, these karyotypes plotted in habitat of more marginal quality compared to non-admixed, 'typical', karyotypes. The distribution of 'typical' karyotypes along the main eco-climatic gradient followed a consistent pattern within and between forms, indicating an adaptive role of inversions at this geographical scale. Conclusion Ecological segregation between M and S is consistent with niche expansion into marginal habitats by chromosomal inversion variants during early lineage divergence; presumably, this process is promoted by inter-karyotype competition in the higher-quality core habitat. We propose that the appearance of favourable allelic combinations in other regions of suppressed recombination (e.g. pericentromeric portions defining speciation islands in An. gambiae) fosters development of reproductive isolation to protect linkage between separate chromosomal regions. PMID:19460144
Kooyers, Nicholas J; James, Brooke; Blackman, Benjamin K
2017-05-01
Closely related species may evolve to coexist stably in sympatry through niche differentiation driven by in situ competition, a process termed character displacement. Alternatively, past evolution in allopatry may have already sufficiently reduced niche overlap to permit establishment in sympatry, a process called ecological sorting. The relative importance of each process to niche differentiation is contentious even though they are not mutually exclusive and are both mediated via multivariate trait evolution. We explore how competition has impacted niche differentiation in two monkeyflowers, Mimulus alsinoides and M. guttatus, which often co-occur. Through field observations, common gardens, and competition experiments, we demonstrate that M. alsinoides is restricted to marginal habitats in sympatry and that the impacts of character displacement on niche differentiation are complex. Competition with M. guttatus alters selection gradients and has favored taller M. alsinoides with earlier seasonal flowering at low elevation and floral shape divergence at high elevation. However, no trait exhibits the pattern typically associated with character displacement, higher divergence between species in sympatry than allopatry. Thus, although character displacement was unlikely the process driving initial divergence along niche axes necessary for coexistence, we conclude that competition in sympatry has likely driven trait evolution along additional niche axes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Lee, Charlotte T; Miller, Tom E X; Inouye, Brian D
2011-10-01
Current competition theory does not adequately address the fact that competitors may affect the survival, growth, and reproductive rates of their resources. Ecologically important interactions in which consumers affect resource vital rates range from parasitism and herbivory to mutualism. We present a general model of competition that explicitly includes consumer-dependent resource vital rates. We build on the classic MacArthur model of competition for multiple resources, allowing direct comparison with expectations from established concepts of resource-use overlap. Consumers share a stage-structured resource population but may use the different stages to different extents, as they do the different independent resources in the classic model. Here, however, the stages are dynamically linked via consumer-dependent vital rates. We show that consumers' effects on resource vital rates result in two important departures from classic results. First, consumers can coexist despite identical use of resource stages, provided each competitor shifts the resource stage distribution toward stages that benefit other species. Second, consumers specializing on different resource stages can compete strongly, possibly resulting in competitive exclusion despite a lack of resource stage-use overlap. Our model framework demonstrates the critical role that consumer-dependent resource vital rates can play in competitive dynamics in a wide range of biological systems.
Huang, Jian-Guo; Stadt, Kenneth J; Dawson, Andria; Comeau, Philip G
2013-01-01
We examined the effect of competition on stem growth of Picea glauca and Populus tremuloides in boreal mixedwood stands during the stem exclusion stage. We combined traditional approaches of collecting competition data with dendrochronology to provide retrospective measurements of stem diameter growth. Several competition indices including stand basal area (BA), the sum of stem diameter at breast height (SDBH), and density (N) for the broadleaf and coniferous species, as well as similar indices considering only trees with diameters greater than each subject (BAGR, SDBHGR, and NGR), were evaluated. We used a nonlinear mixed model to characterize the basal area increment over the past 5, 10, 15, 20, 25, 30, and 35 years as a function of growth of nearby dominant trees, the size of the subject trees, deciduous and coniferous competition indices, and ecoregions. SDBHGR and BAGR were better predictors for spruce, and SDBHGR and NGR were better for aspen, respectively, than other indices. Results showed strongest correlations with long-term stem growth, as the best models integrated growth for 10-25 years for aspen and ≥ 25 for spruce. Our model demonstrated a remarkable capability (adjusted R(2)>0.67) to represent this complex variation in growth as a function of site, size and competition.
Asymmetric competition impacts evolutionary rescue in a changing environment.
Van Den Elzen, Courtney L; Kleynhans, Elizabeth J; Otto, Sarah P
2017-06-28
Interspecific competition can strongly influence the evolutionary response of a species to a changing environment, impacting the chance that the species survives or goes extinct. Previous work has shown that when two species compete for a temporally shifting resource distribution, the species lagging behind the resource peak is the first to go extinct due to competitive exclusion. However, this work assumed symmetrically distributed resources and competition. Asymmetries can generate differences between species in population sizes, genetic variation and trait means. We show that asymmetric resource availability or competition can facilitate coexistence and even occasionally cause the leading species to go extinct first. Surprisingly, we also find cases where traits evolve in the opposite direction to the changing environment because of a 'vacuum of competitive release' created when the lagging species declines in number. Thus, the species exhibiting the slowest rate of trait evolution is not always the most likely to go extinct in a changing environment. Our results demonstrate that the extent to which species appear to be tracking environmental change and the extent to which they are preadapted to that change may not necessarily determine which species will be the winners and which will be the losers in a rapidly changing world. © 2017 The Author(s).
Huang, Jian-Guo; Stadt, Kenneth J.; Dawson, Andria; Comeau, Philip G.
2013-01-01
We examined the effect of competition on stem growth of Picea glauca and Populus tremuloides in boreal mixedwood stands during the stem exclusion stage. We combined traditional approaches of collecting competition data with dendrochronology to provide retrospective measurements of stem diameter growth. Several competition indices including stand basal area (BA), the sum of stem diameter at breast height (SDBH), and density (N) for the broadleaf and coniferous species, as well as similar indices considering only trees with diameters greater than each subject (BAGR, SDBHGR, and NGR), were evaluated. We used a nonlinear mixed model to characterize the basal area increment over the past 5, 10, 15, 20, 25, 30, and 35 years as a function of growth of nearby dominant trees, the size of the subject trees, deciduous and coniferous competition indices, and ecoregions. SDBHGR and BAGR were better predictors for spruce, and SDBHGR and NGR were better for aspen, respectively, than other indices. Results showed strongest correlations with long-term stem growth, as the best models integrated growth for 10–25 years for aspen and ≥25 for spruce. Our model demonstrated a remarkable capability (adjusted R2>0.67) to represent this complex variation in growth as a function of site, size and competition. PMID:24204891
Lancaster, Lesley T; Morrison, Gavin; Fitt, Robert N
2017-01-19
The consequences of climate change for local biodiversity are little understood in process or mechanism, but these changes are likely to reflect both changing regional species pools and changing competitive interactions. Previous empirical work largely supports the idea that competition will intensify under climate change, promoting competitive exclusions and local extinctions, while theory and conceptual work indicate that relaxed competition may in fact buffer communities from biodiversity losses that are typically witnessed at broader spatial scales. In this review, we apply life history theory to understand the conditions under which these alternative scenarios may play out in the context of a range-shifting biota undergoing rapid evolutionary and environmental change, and at both leading-edge and trailing-edge communities. We conclude that, in general, warming temperatures are likely to reduce life history variation among competitors, intensifying competition in both established and novel communities. However, longer growing seasons, severe environmental stress and increased climatic variability associated with climate change may buffer these communities against intensified competition. The role of life history plasticity and evolution has been previously underappreciated in community ecology, but may hold the key to understanding changing species interactions and local biodiversity under changing climates.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
Morrison, Gavin; Fitt, Robert N.
2017-01-01
The consequences of climate change for local biodiversity are little understood in process or mechanism, but these changes are likely to reflect both changing regional species pools and changing competitive interactions. Previous empirical work largely supports the idea that competition will intensify under climate change, promoting competitive exclusions and local extinctions, while theory and conceptual work indicate that relaxed competition may in fact buffer communities from biodiversity losses that are typically witnessed at broader spatial scales. In this review, we apply life history theory to understand the conditions under which these alternative scenarios may play out in the context of a range-shifting biota undergoing rapid evolutionary and environmental change, and at both leading-edge and trailing-edge communities. We conclude that, in general, warming temperatures are likely to reduce life history variation among competitors, intensifying competition in both established and novel communities. However, longer growing seasons, severe environmental stress and increased climatic variability associated with climate change may buffer these communities against intensified competition. The role of life history plasticity and evolution has been previously underappreciated in community ecology, but may hold the key to understanding changing species interactions and local biodiversity under changing climates. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920390
EPAs SPECIATE 4.4 Database: Development and Uses
SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of source category-specific particulate matter (PM), volatile organic gas, and other gas speciation profiles of air pollutant emissions. Abt Associates, Inc. developed SPECIATE 4.4 through a collaborat...
SPECIATE Version 4.4 Database Development Documentation
SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for regi...
SPECIATE - EPA'S DATABASE OF SPECIATED EMISSION PROFILES
SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of total organic compound (TOC) and particulate matter (PM) speciation profiles for emissions from air pollution sources. The data base has recently been updated and an associated report has recently been re...
Speciation has a spatial scale that depends on levels of gene flow.
Kisel, Yael; Barraclough, Timothy G
2010-03-01
Area is generally assumed to affect speciation rates, but work on the spatial context of speciation has focused mostly on patterns of range overlap between emerging species rather than on questions of geographical scale. A variety of geographical theories of speciation predict that the probability of speciation occurring within a given region should (1) increase with the size of the region and (2) increase as the spatial extent of intraspecific gene flow becomes smaller. Using a survey of speciation events on isolated oceanic islands for a broad range of taxa, we find evidence for both predictions. The probability of in situ speciation scales with island area in bats, carnivorous mammals, birds, flowering plants, lizards, butterflies and moths, and snails. Ferns are an exception to these findings, but they exhibit high frequencies of polyploid and hybrid speciation, which are expected to be scale independent. Furthermore, the minimum island size for speciation correlates across groups with the strength of intraspecific gene flow, as is estimated from a meta-analysis of published population genetic studies. These results indicate a general geographical model of speciation rates that are dependent on both area and gene flow. The spatial scale of population divergence is an important but neglected determinant of broad-scale diversity patterns.
Microhabitat locality allows multi-species coexistence in terrestrial plant communities.
Tubay, Jerrold M; Suzuki, Keisuke; Uehara, Takashi; Kakishima, Satoshi; Ito, Hiromu; Ishida, Atsushi; Yoshida, Katsuhiko; Mori, Shigeta; Rabajante, Jomar F; Morita, Satoru; Yokozawa, Masayuki; Yoshimura, Jin
2015-10-20
Most terrestrial plant communities exhibit relatively high species diversity and many competitive species are ubiquitous. Many theoretical studies have been carried out to investigate the coexistence of a few competitive species and in most cases they suggest competitive exclusion. Theoretical studies have revealed that coexistence of even three or four species can be extremely difficult. It has been suggested that the coexistence of many species has been achieved by the fine differences in suitable microhabitats for each species, attributing to niche-separation. So far there is no explicit demonstration of such a coexistence in mathematical and simulation studies. Here we built a simple lattice Lotka-Volterra model of competition by incorporating the minute differences of suitable microhabitats for many species. By applying the site variations in species-specific settlement rates of a seedling, we achieved the coexistence of more than 10 species. This result indicates that competition between many species is avoided by the spatial variations in species-specific microhabitats. Our results demonstrate that coexistence of many species becomes possible by the minute differences in microhabitats. This mechanism should be applicable to many vegetation types, such as temperate forests and grasslands.
Microhabitat locality allows multi-species coexistence in terrestrial plant communities
Tubay, Jerrold M.; Suzuki, Keisuke; Uehara, Takashi; Kakishima, Satoshi; Ito, Hiromu; Ishida, Atsushi; Yoshida, Katsuhiko; Mori, Shigeta; Rabajante, Jomar F.; Morita, Satoru; Yokozawa, Masayuki; Yoshimura, Jin
2015-01-01
Most terrestrial plant communities exhibit relatively high species diversity and many competitive species are ubiquitous. Many theoretical studies have been carried out to investigate the coexistence of a few competitive species and in most cases they suggest competitive exclusion. Theoretical studies have revealed that coexistence of even three or four species can be extremely difficult. It has been suggested that the coexistence of many species has been achieved by the fine differences in suitable microhabitats for each species, attributing to niche-separation. So far there is no explicit demonstration of such a coexistence in mathematical and simulation studies. Here we built a simple lattice Lotka-Volterra model of competition by incorporating the minute differences of suitable microhabitats for many species. By applying the site variations in species-specific settlement rates of a seedling, we achieved the coexistence of more than 10 species. This result indicates that competition between many species is avoided by the spatial variations in species-specific microhabitats. Our results demonstrate that coexistence of many species becomes possible by the minute differences in microhabitats. This mechanism should be applicable to many vegetation types, such as temperate forests and grasslands. PMID:26483077
Plavcan, J Michael
2012-03-01
Sexual size dimorphism is generally associated with sexual selection via agonistic male competition in nonhuman primates. These primate models play an important role in understanding the origins and evolution of human behavior. Human size dimorphism is often hypothesized to be associated with high rates of male violence and polygyny. This raises the question of whether human dimorphism and patterns of male violence are inherited from a common ancestor with chimpanzees or are uniquely derived. Here I review patterns of, and causal models for, dimorphism in humans and other primates. While dimorphism in primates is associated with agonistic male mate competition, a variety of factors can affect male and female size, and thereby dimorphism. The causes of human sexual size dimorphism are uncertain, and could involve several non-mutually-exclusive mechanisms, such as mate competition, resource competition, intergroup violence, and female choice. A phylogenetic reconstruction of the evolution of dimorphism, including fossil hominins, indicates that the modern human condition is derived. This suggests that at least some behavioral similarities with Pan associated with dimorphism may have arisen independently, and not directly from a common ancestor.
The Impact of Taxes on Competition for CEOs.
Krenn, Peter
2017-07-03
This paper contributes to the question of how taxation of corporate profits and wages affects competition among firms for highly skilled human resources such as CEOs. Use of a theoretical model shows that wage taxes can have a substantial impact on the outcome of such a competition if marginal tax rates are different as in an international labor market. Further, the paper shows that increasing the wage tax rate unilaterally can have an ambiguous effect on observed gross compensation levels. However, in a local labor market for CEOs, observed gross fixed salaries should decline in the wage tax rate. Tax effects in a market for CEOs is a particularly interesting topic because recent developments with respect to compensation practices of top-level managers have opened a public debate about the use of instruments for regulating compensation of those managers. Furthermore, many countries around the world use tax incentives in order to facilitate immigration of highly skilled human resources. The investigation follows an analytical economics-based approach by extending an LEN model with elements of competition for scarce human resources and income taxation. It investigates the impact of differential taxation on the competition between two firms for the exclusive service of a unique, highly skilled CEO.
SPECIATE--EPA'S DATABASE OF SPECIATED EMISSION PROFILES
SPECIATE is EPA's repository of Total Organic Compound and Particulate Matter speciated profiles for a wide variety of sources. The profiles in this system are provided for air quality dispersion modeling and as a library for source-receptor and source apportionment type models. ...
SPECIATE 4.4: The Bridge Between Emissions Characterization and Modeling
SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for...
Sodium and potassium competition in potassium-selective and non-selective channels
NASA Astrophysics Data System (ADS)
Sauer, David B.; Zeng, Weizhong; Canty, John; Lam, Yeeling; Jiang, Youxing
2013-11-01
Potassium channels selectively conduct K+, primarily to the exclusion of Na+, despite the fact that both ions can bind within the selectivity filter. Here we perform crystallographic titration and single-channel electrophysiology to examine the competition of Na+ and K+ binding within the filter of two NaK channel mutants; one is the potassium-selective NaK2K mutant and the other is the non-selective NaK2CNG, a CNG channel pore mimic. With high-resolution structures of these engineered NaK channel constructs, we explicitly describe the changes in K+ occupancy within the filter upon Na+ competition by anomalous diffraction. Our results demonstrate that the non-selective NaK2CNG still retains a K+-selective site at equilibrium, whereas the NaK2K channel filter maintains two high-affinity K+ sites. A double-barrier mechanism is proposed to explain K+ channel selectivity at low K+ concentrations.
The importance of trace element speciation in biomedical science.
Templeton, Douglas M
2003-04-01
According to IUPAC terminology, trace element speciation reflects differences in chemical composition at multiple levels from nuclear and electronic structure to macromolecular complexation. In the medical sciences, all levels of composition are important in various circumstances, and each can affect the bioavailability, distribution, physiological function, toxicity, diagnostic utility, and therapeutic potential of an element. Here we discuss, with specific examples, three biological principles in the intimate relation between speciation and biological behavior: i) the kinetics of interconversion of species determines distribution within the organism, ii) speciation governs transport across various biological barriers, and iii) speciation can limit potentially undesirable interactions between physiologically essential elements. We will also describe differences in the speciation of iron in states of iron overload, to illustrate how speciation analysis can provide insight into cellular processes in human disease.
ERIC Educational Resources Information Center
Cappellin, Riccardo
2004-01-01
Nowadays, it is widely accepted that knowledge and learning are the core of competitiveness, international division of labour and agglomeration and exclusion phenomena. Yet we are still in need of a better understanding of the processes which allow access by individual regions both to codified knowledge and RTD networks as well as tacit knowledge…
Alejandro A. Royo; Walter P. Carson
2005-01-01
Mammals are hypothesized to either promote plant diversity by preventing competitive exclusion or limit diversity by reducing the abundance of sensitive plant species through their activities as browsers or disturbance agents. Previous studies of herbivore impacts in plant communities have focused on tree species and ignored the herbaceous community. In an experiment...
Let's Begin Again: Sierra On-Line and the Origins of the Graphical Adventure Game
ERIC Educational Resources Information Center
Nooney, Laine
2017-01-01
The author retells the origin story of Sierra On-Line and its historic first product, the graphical adventure game "Mystery House." She reviews the academic and journalistic writing that placed the story almost exclusively inside a narrative about early computer games, treating it as a saga of the competition between the graphic…
Competitive Exclusion and Coexistence of Pathogens in a Homosexually-Transmitted Disease Model
Chai, Caichun; Jiang, Jifa
2011-01-01
A sexually-transmitted disease model for two strains of pathogen in a one-sex, heterogeneously-mixing population has been studied completely by Jiang and Chai in (J Math Biol 56:373–390, 2008). In this paper, we give a analysis for a SIS STD with two competing strains, where populations are divided into three differential groups based on their susceptibility to two distinct pathogenic strains. We investigate the existence and stability of the boundary equilibria that characterizes competitive exclusion of the two competing strains; we also investigate the existence and stability of the positive coexistence equilibrium, which characterizes the possibility of coexistence of the two strains. We obtain sufficient and necessary conditions for the existence and global stability about these equilibria under some assumptions. We verify that there is a strong connection between the stability of the boundary equilibria and the existence of the coexistence equilibrium, that is, there exists a unique coexistence equilibrium if and only if the boundary equilibria both exist and have the same stability, the coexistence equilibrium is globally stable or unstable if and only if the two boundary equilibria are both unstable or both stable. PMID:21347222
Implementation of Online Veterinary Hospital on Cloud Platform.
Chen, Tzer-Shyong; Chen, Tzer-Long; Chung, Yu-Fang; Huang, Yao-Min; Chen, Tao-Chieh; Wang, Huihui; Wei, Wei
2016-06-01
Pet markets involve in great commercial possibilities, which boost thriving development of veterinary hospital businesses. The service tends to intensive competition and diversified channel environment. Information technology is integrated for developing the veterinary hospital cloud service platform. The platform contains not only pet medical services but veterinary hospital management and services. In the study, QR Code andcloud technology are applied to establish the veterinary hospital cloud service platform for pet search by labeling a pet's identification with QR Code. This technology can break the restriction on veterinary hospital inspection in different areas and allows veterinary hospitals receiving the medical records and information through the exclusive QR Code for more effective inspection. As an interactive platform, the veterinary hospital cloud service platform allows pet owners gaining the knowledge of pet diseases and healthcare. Moreover, pet owners can enquire and communicate with veterinarians through the platform. Also, veterinary hospitals can periodically send reminders of relevant points and introduce exclusive marketing information with the platform for promoting the service items and establishing individualized marketing. Consequently, veterinary hospitals can increase the profits by information share and create the best solution in such a competitive veterinary market with industry alliance.
Examination of Arsenic Speciation in Sulfidic Solutions Using X-ray Absorption Spectroscopy
The chemical speciation of arsenic in sulfidic waters is complicated by the existence of thioarsenic species. The purpose of this research was to use advanced spectroscopy techniques along with speciation modeling and chromatography to elucidate the chemical speciation of As in ...
Given the complexity of the various, simultaneous (and competing) equilibrium reactions governing the speciation of ionic species in aquatic systems, EPA has developed and distributed the geochemical speciation model MINTEQA2 (Brown and Allison, 1987, Allison et al., 1991; Hydrog...
Delineating the roles of males and females in sperm competition
Evans, Jonathan P.; Rosengrave, Patrice; Gasparini, Clelia; Gemmell, Neil J.
2013-01-01
Disentangling the relative roles of males, females and their interactive effects on competitive fertilization success remains a challenge in sperm competition. In this study, we apply a novel experimental framework to an ideally suited externally fertilizing model system in order to delineate these roles. We focus on the chinook salmon, Oncorhynchus tshawytscha, a species in which ovarian fluid (OF) has been implicated as a potential arbiter of cryptic female choice for genetically compatible mates. We evaluated this predicted sexually selected function of OF using a series of factorial competitive fertilization trials. Our design involved a series of 10 factorial crosses, each involving two ‘focal’ rival males whose sperm competed against those from a single ‘standardized’ (non-focal) rival for a genetically uniform set of eggs in the presence of OF from two focal females. This design enabled us to attribute variation in competitive fertilization success among focal males, females (OF) and their interacting effects, while controlling for variation attributable to differences in the sperm competitive ability of rival males, and male-by-female genotypic interactions. Using this experimental framework, we found that variation in sperm competitiveness could be attributed exclusively to differences in the sperm competitive ability of focal males, a conclusion supported by subsequent analyses revealing that variation in sperm swimming velocity predicts paternity success. Together, these findings provide evidence that variation in paternity success can be attributed to intrinsic differences in the sperm competitive ability of rival males, and reveal that sperm swimming velocity is a key target of sexual selection. PMID:24266039
Balistrieri, Laurie S.; Nimick, David A.; Mebane, Christopher A.
2012-01-01
Evaluating water quality and the health of aquatic organisms is challenging in systems with systematic diel (24 hour) or less predictable runoff-induced changes in water composition. To advance our understanding of how to evaluate environmental health in these dynamic systems, field studies of diel cycling were conducted in two streams (Silver Bow Creek and High Ore Creek) affected by historical mining activities in southwestern Montana. A combination of sampling and modeling tools were used to assess the toxicity of metals in these systems. Diffusive Gradients in Thin Films (DGT) samplers were deployed at multiple time intervals during diel sampling to confirm that DGT integrates time-varying concentrations of dissolved metals. Thermodynamic speciation calculations using site specific water compositions, including time-integrated dissolved metal concentrations determined from DGT, and a competitive, multiple-metal biotic ligand model incorporated into the Windemere Humic Aqueous Model Version 6.0 (WHAM VI) were used to determine the chemical speciation of dissolved metals and biotic ligands. The model results were combined with previously collected toxicity data on cutthroat trout to derive a relationship that predicts the relative survivability of these fish at a given site. This integrative approach may prove useful for assessing water quality and toxicity of metals to aquatic organisms in dynamic systems and evaluating whether potential changes in environmental health of aquatic systems are due to anthropogenic activities or natural variability.
Speciation of Se and DOC in soil solution and their relation to Se bioavailability.
Weng, Liping; Vega, Flora Alonso; Supriatin, Supriatin; Bussink, Wim; Van Riemsdijk, Willem H
2011-01-01
A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl(2) extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15-53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter.
Speciation genetics: current status and evolving approaches
Wolf, Jochen B. W.; Lindell, Johan; Backström, Niclas
2010-01-01
The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues. PMID:20439277
Assessment of Important SPECIATE Profiles in EPA’s Emissions Modeling Platform and Current Data Gaps
The US Environmental Protection Agency (EPA)’s SPECIATE database contains speciation profiles for both particulate matter (PM) and volatile organic compounds (VOCs) that are key inputs for creating speciated emission inventories for air quality modeling. The objective of th...
Extraordinarily rapid speciation in a marine fish
Momigliano, Paolo; Jokinen, Henri; Fraimout, Antoine; Florin, Ann-Britt; Norkko, Alf; Merilä, Juha
2017-01-01
Divergent selection may initiate ecological speciation extremely rapidly. How often and at what pace ecological speciation proceeds to yield strong reproductive isolation is more uncertain. Here, we document a case of extraordinarily rapid speciation associated with ecological selection in the postglacial Baltic Sea. European flounders (Platichthys flesus) in the Baltic exhibit two contrasting reproductive behaviors: pelagic and demersal spawning. Demersal spawning enables flounders to thrive in the low salinity of the Northern Baltic, where eggs cannot achieve neutral buoyancy. We show that demersal and pelagic flounders are a species pair arising from a recent event of speciation. Despite having a parapatric distribution with extensive overlap, the two species are reciprocally monophyletic and show strongly bimodal genotypic clustering and no evidence of contemporary migration, suggesting strong reproductive isolation. Divergence across the genome is weak but shows strong signatures of selection, a pattern suggestive of a recent ecological speciation event. We propose that spawning behavior in Baltic flounders is the trait under ecologically based selection causing reproductive isolation, directly implicating a process of ecological speciation. We evaluated different possible evolutionary scenarios under the approximate Bayesian computation framework and estimate that the speciation process started in allopatry ∼2,400 generations ago, following the colonization of the Baltic by the demersal lineage. This is faster than most known cases of ecological speciation and represents the most rapid event of speciation ever reported for any marine vertebrate. PMID:28533412
Sun, Fuhong; Yan, Yuanbo; Liao, Haiqing; Bai, Yingchen; Xing, Baoshan; Wu, Fengchang
2014-05-01
There is limited knowledge available on metalloid biosorption by freshwater algae. In this study, biosorption properties of anionic Sb(OH) 6 (-) by naturally occurring cyanobacteria Microcystis were investigated as a function of initial pH, biosorbent dosage, contact time, and addition sequences of competitive ions, and their binding mechanisms were discussed. The biosorption process was fast and equilibrium was reached at 2 h. Sb(V) biosorption decreased with the increase of pH and the optimum pH range was 2.5-3.0, which corresponded with the changes of surface charges of the cell wall of Microcystis. The biosorption data satisfactorily followed the Freundlich model. The simultaneous addition of H2PO4 (-) and Ca(2+) enhanced Sb(V) biosorption, while NO3 (-) greatly inhibited the biosorption, compared with single Sb(V) addition. The initial addition of the competitive ions reduced Sb(V) biosorption at higher Sb(V) concentrations, compared with simultaneous addition. A fraction of biosorbed Sb(V) was replaced by the competitive ions which were added subsequently, and the exchange only occurred at higher concentrations of Sb(V). 1.0 mol/L HCl demonstrated the highest desorption efficiency. Speciation analyses indicated that no reduction of Sb(V) into Sb(III) occurred. Based on the results of zeta potential and attenuated total reflection infrared spectroscopy spectra, Sb(OH) 6 (-) bound to the biomass through electrostatic attraction and surface complexation, and amino, carboxyl, and hydroxyl groups were involved in the biosorption process. The study suggest that Microcystis from cyanobacteria blooms could be used as a potential biosorbent to remove Sb(V) from effluents at environmentally relevant concentrations (≤10.0 mg/L).
Faunce, Thomas
2015-06-01
In Australian Competition and Consumer Commission v Pfizer Australia Pty Ltd [2015] FCA 113, the ACCC alleged that Pfizer's "Project LEAP" involved a scheme to lock pharmacists into substituting its generic version of the high sales volume anti-cholesterol drug, patent-expired atorvastatin (Lipitor), which took advantage of a substantial degree of market power for a purpose proscribed by s 46(1)(c) of the Competition and Consumer Act 2010 (Cth). The ACCC also claimed that Pfizer's actions constituted a course of exclusive dealing pursuant to s 47(1)(d) and (e) for the proscribed purpose of lessening competition. Flick J in the Federal Court of Australia, in a judgment heavy with quotations but sparse in reasoning, dismissed the ACCC's Amended Originating Application alleging abuse of market power and ordered the ACCC to pay Pfizer's costs. The ACCC has now appealed the decision. This column explores this case in the context of Pfizer's broader strategies to preserve its income globally from this high sales volume drug in the period following its patent expiration.
Bhatia, Poonam; Aureli, Federica; D'Amato, Marilena; Prakash, Ranjana; Cameotra, Swaranjit Singh; Nagaraja, Tejo Prakash; Cubadda, Francesco
2013-09-01
Cultivation of saprophytic fungi on selenium-rich substrates can be an effective means to produce selenium-fortified food. Pleurotus florida, an edible species of oyster mushrooms, was grown on wheat straw from the seleniferous belt of Punjab (India) and its potential to mobilize and accumulate selenium from the growth substrate was studied. Selenium concentration in biofortified mushrooms was 800 times higher compared with control samples grown on wheat straw from non selenium-rich areas (141 vs 0.17 μg Se g(-1) dry weight). Seventy-five percent of the selenium was extracted after in vitro simulated gastrointestinal digestion and investigation of the selenium molecular fractions by size exclusion HPLC-ICP-MS revealed that proteins and any other high molecular weight selenium-containing molecule were hydrolyzed to peptides and low molecular weight selenocompounds. Analysis of the gastrointestinal hydrolysates by anion exchange HPLC-ICP-MS showed that the bioaccessible selenium was mainly present as selenomethionine, a good bioavailable source of selenium, which accounted for 73% of the sum of the detected species. This study demonstrates the feasibility of producing selenium-biofortified edible mushrooms using selenium-rich agricultural by-products as growth substrates. The proposed approach can be used to evaluate whether selenium-contaminated plant waste materials harvested from high-selenium areas may be used to produce selenium-biofortified edible mushrooms based on the concentration, bioaccessibility and speciation of selenium in the mushrooms. Copyright © 2013 Elsevier Ltd. All rights reserved.
The US Environmental Protection Agency (EPA)’s SPECIATE database contains speciation profiles for both particulate matter (PM) and volatile organic compounds (VOCs) that are key inputs for creating speciated emission inventories for air quality modeling. The objective of th...
A complex speciation–richness relationship in a simple neutral model
Desjardins-Proulx, Philippe; Gravel, Dominique
2012-01-01
Speciation is the “elephant in the room” of community ecology. As the ultimate source of biodiversity, its integration in ecology's theoretical corpus is necessary to understand community assembly. Yet, speciation is often completely ignored or stripped of its spatial dimension. Recent approaches based on network theory have allowed ecologists to effectively model complex landscapes. In this study, we use this framework to model allopatric and parapatric speciation in networks of communities. We focus on the relationship between speciation, richness, and the spatial structure of communities. We find a strong opposition between speciation and local richness, with speciation being more common in isolated communities and local richness being higher in more connected communities. Unlike previous models, we also find a transition to a positive relationship between speciation and local richness when dispersal is low and the number of communities is small. We use several measures of centrality to characterize the effect of network structure on diversity. The degree, the simplest measure of centrality, is the best predictor of local richness and speciation, although it loses some of its predictive power as connectivity grows. Our framework shows how a simple neutral model can be combined with network theory to reveal complex relationships between speciation, richness, and the spatial organization of populations. PMID:22957181
Divergence with gene flow across a speciation continuum of Heliconius butterflies.
Supple, Megan A; Papa, Riccardo; Hines, Heather M; McMillan, W Owen; Counterman, Brian A
2015-09-24
A key to understanding the origins of species is determining the evolutionary processes that drive the patterns of genomic divergence during speciation. New genomic technologies enable the study of high-resolution genomic patterns of divergence across natural speciation continua, where taxa pairs with different levels of reproductive isolation can be used as proxies for different stages of speciation. Empirical studies of these speciation continua can provide valuable insights into how genomes diverge during speciation. We examine variation across a handful of genomic regions in parapatric and allopatric populations of Heliconius butterflies with varying levels of reproductive isolation. Genome sequences were mapped to 2.2-Mb of the H. erato genome, including 1-Mb across the red color pattern locus and multiple regions unlinked to color pattern variation. Phylogenetic analyses reveal a speciation continuum of pairs of hybridizing races and incipient species in the Heliconius erato clade. Comparisons of hybridizing pairs of divergently colored races and incipient species reveal that genomic divergence increases with ecological and reproductive isolation, not only across the locus responsible for adaptive variation in red wing coloration, but also at genomic regions unlinked to color pattern. We observe high levels of divergence between the incipient species H. erato and H. himera, suggesting that divergence may accumulate early in the speciation process. Comparisons of genomic divergence between the incipient species and allopatric races suggest that limited gene flow cannot account for the observed high levels of divergence between the incipient species. Our results provide a reconstruction of the speciation continuum across the H. erato clade and provide insights into the processes that drive genomic divergence during speciation, establishing the H. erato clade as a powerful framework for the study of speciation.
2014-01-01
Background The role of tectonic uplift in stimulating speciation in South Africa’s only alpine zone, the Drakensberg, has not been explicitly examined. Tectonic processes may influence speciation both through the creation of novel habitats and by physically isolating plant populations. We use the Afrotemperate endemic daisy genus Macowania to explore the timing and mode (geographic versus adaptive) of speciation in this region. Between sister species pairs we expect high morphological divergence where speciation has happened in sympatry (adaptive) while with geographic (vicariant) speciation we may expect to find less morphological divergence and a greater degree of allopatry. A dated molecular phylogenetic hypothesis for Macowania elucidates species’ relationships and is used to address the potential impact of uplift on diversification. Morphological divergence of a small sample of reproductive and vegetative characters, used as a proxy for adaptive divergence, is measured against species’ range distributions to estimate mode of speciation across two subclades in the genus. Results The Macowania crown age is consistent with the hypothesis of post-uplift diversification, and we find evidence for both vicariant and adaptive speciation between the two subclades within Macowania. Both subclades exhibit strong signals of range allopatry, suggesting that geographic isolation was important in speciation. One subclade, associated with dry, rocky environments at high altitudes, shows very little morphological and ecological differentiation but high range allopatry. The other subclade occupies a greater variety of habitats and exhibits far greater morphological differentiation, but contains species with overlapping distribution ranges. Conclusions Species in Macowania are likely to have diversified in response to tectonic uplift, and we invoke uplift and uplift-mediated erosion as the main drivers of speciation. The greater relative morphological divergence in sympatric species of Macowania indicates that speciation in the non-sympatric taxa may not have required obvious adaptive differences, implying that simple geographic isolation was the driving force for speciation (‘neutral speciation’). PMID:24524661
Rosser, Neil; Kozak, Krzysztof M; Phillimore, Albert B; Mallet, James
2015-06-30
Sympatric speciation is today generally viewed as plausible, and some well-supported examples exist, but its relative contribution to biodiversity remains to be established. We here quantify geographic overlap of sister species of heliconiine butterflies, and use age-range correlations and spatial simulations of the geography of speciation to infer the frequency of sympatric speciation. We also test whether shifts in mimetic wing colour pattern, host plant use and climate niche play a role in speciation, and whether such shifts are associated with sympatry. Approximately a third of all heliconiine sister species pairs exhibit near complete range overlap, and analyses of the observed patterns of range overlap suggest that sympatric speciation contributes 32%-95% of speciation events. Müllerian mimicry colour patterns and host plant choice are highly labile traits that seem to be associated with speciation, but we find no association between shifts in these traits and range overlap. In contrast, climatic niches of sister species are more conserved. Unlike birds and mammals, sister species of heliconiines are often sympatric and our inferences using the most recent comparative methods suggest that sympatric speciation is common. However, if sister species spread rapidly into sympatry (e.g. due to their similar climatic niches), then assumptions underlying our methods would be violated. Furthermore, although we find some evidence for the role of ecology in speciation, ecological shifts did not show the associations with range overlap expected under sympatric speciation. We delimit species of heliconiines in three different ways, based on "strict and " "relaxed" biological species concepts (BSC), as well as on a surrogate for the widely-used "diagnostic" version of the phylogenetic species concept (PSC). We show that one reason why more sympatric speciation is inferred in heliconiines than in birds may be due to a different culture of species delimitation in the two groups. To establish whether heliconiines are exceptional will require biogeographic comparative studies for a wider range of animal taxa including many more invertebrates.
Michalke, Bernhard; Kramer, Matthias F; Brehler, Randolf
2018-02-21
Aluminium is associated with disorders and is the commonly used vaccine adjuvant. Understanding the mechanisms of how Al is transported, metabolized or of its toxicity depends on the knowledge of Al-interactions with bioligands, i.e. Al-species. Al-speciation in serum is difficult because of low concentration and the risk of exogenous Al contamination. Furthermore, Al-measurements may be hampered according to various interferences. This study aims for developing quality controlled protocols for reliable Al- and Al-species determination and for investigating probable differences in Al (-speciation) after Al-containing subcutaneous immunotherapy (SIT). Sample donors were recruited either for the control group ("class-0", they never had been treated with SIT containing an Al-depot extract) or for the SIT-group ("class-1", they previously had been treated with SIT for insect venom allergy with an Al-depot extract). Blood was drawn for medical reasons and serum prepared. Additionally, some sample donors collected 24-h-urine. They had been informed (and they consented) about the scientific use of their samples. The study was approved by the ethic committee of the "Medical Association Westphalia-Lippe" and of the University of Münster, evaluating the study positively (No. 2013-667-f-S). We applied quality controlled sample preparation and interference-free Al detection by ICP sectorfield-mass spectrometry. Al-species were analysed using size-exclusion-chromatography-ICP-qMS. Al-concentrations or speciation in urine samples showed no differences between class-0 and class-1. Al-citrate was the main uric Al-species. In serum elevated Al-concentrations were found for both classes, with class-1 samples being significantly higher than class-0 (p = 0.041), but class-0 samples being approximately 10-fold too high compared to reference values from non-exposed persons. We identified gel-monovettes as contamination source. In contamination-free samples from HNO 3 -prewashed gel-free monovettes (n = 27) there was no difference in the serum Al concentration between the two patient groups (p = 0.669) INTERPRETATION: Thorough cleaning of sample preparation ware and use of gel-free monovettes is decisive for an accurate Al analysis in serum. Without these steps, wrong analysis and wrong conclusions are likely. We conclude that gel-monovettes are unsuitable for blood sampling with subsequent Al-analysis. Whether Al in serum is elevated after SIT treatment containing an Al-depot extract, or not, remains inconclusive as the non-contaminated sample size was small. Copyright © 2018 Elsevier GmbH. All rights reserved.
Dale Brockway; Kenneth W. Outcalt; Becky L. Estes
2003-01-01
Developed during periods of fire exclusion, dense midstory vegetation, that reduces understory plant diversity (competitive shading) and increases the risk of damaging Wildfire (fuel ladder from ground to canopy), has impeded restoration efforts to safely reintroduce prescribed burning in southern pine ecosystems. Our study evaluated the effects of midstory reduction...
ERIC Educational Resources Information Center
Razack, Saleem; Lessard, David; Hodges, Brian D.; Maguire, Mary H.; Steinert, Yvonne
2014-01-01
Calls to increase the demographic representativeness of medical classes to better reflect the diversity of society are part of a growing international trend. Despite this, entry into medical school remains highly competitive and exclusive of marginalized groups. To address these questions, we conducted a Foucauldian discourse analysis of 15…
Decrease in sapling nutrient concentrations for six northern Rocky Mountain coniferous species
Theresa B. Jain; Russell T. Graham
2015-01-01
In the west, fire exclusion, timber harvest, and last centuryâs climate led to copious regeneration on millions of ha that now need tending. Without treatment, overcrowding increases competition, snow and ice damage potential, and ladder fuels. Limited funding prevents treating all of the affected ha, but by selling small trees for wood pellets, biofuel, or methanol,...
Dynamic competition in pharmaceuticals. Patent expiry, generic penetration, and industry structure.
Magazzini, Laura; Pammolli, Fabio; Riccaboni, Massimo
2004-06-01
This paper investigates patterns of industrial dynamics and competition in the pharmaceutical industry, with particular reference to the consequences of patent expiry in different countries. We focus on the competition at the level of single chemical entities, distinguishing between original brands and generic products. Quarterly data, spanning from July 1987 to December 1998, on sales of pharmaceutical products in four countries (USA, UK, Germany, and France) constitute the basis of our analysis. All the products containing major molecules whose patent expiration date lies between 1986 and 1996 are included in our sample. We show how diffusion of generics is linked to the characteristics of the market and investigate how price dynamics of original products are affected by generic competition. Our empirical investigation shows that the dynamics of drug prices and the competition by generic drugs vary significantly across countries. This heterogeneity notwithstanding, a clear distinction seems to emerge. On the one hand, systems that rely on market-based competition in pharmaceuticals promote a clear distinction between firms that act as innovators and firms that act as imitators after patent expiry. Here, original products enjoy premium prices and exclusivity profits under patent protection, and face fierce price competition after patent expiry. On the other hand, in systems that rely on administered prices, penetration by generic drugs tends to be rather limited. Its descriptive and preliminary nature notwithstanding, our analysis seems to have relevant implications at different levels of generality, especially for Europe.
Buczkowska-Radlińska, J; Łagocka, R; Kaczmarek, W; Górski, M; Nowicka, A
2013-03-01
The purpose of this study was to analyze the prevalence of dental erosion among competitive swimmers of the local swimming club in Szczecin, Poland, who train in closely monitored gas-chlorinated swimming pool water. The population for this survey consisted of a group of junior competitive swimmers who had been training for an average of 7 years, a group of senior competitive swimmers who had been training for an average of 10 years, and a group of recreational swimmers. All subjects underwent a clinical dental examination and responded to a questionnaire regarding aspects of dental erosion. In pool water samples, the concentration of calcium, magnesium, phosphate, sodium, and potassium ions and pH were determined. The degree of hydroxyapatite saturation was also calculated. Dental erosion was found in more than 26 % of the competitive swimmers and 10 % of the recreational swimmers. The lesions in competitive swimmers were on both the labial and palatal surfaces of the anterior teeth, whereas erosions in recreational swimmers developed exclusively on the palatal surfaces. Although the pH of the pool water was neutral, it was undersaturated with respect to hydroxyapatite. The factors that increase the risk of dental erosion include the duration of swimming and the amount of training. An increased risk of erosion may be related to undersaturation of pool water with hydroxyapatite components. To decrease the risk of erosion in competitive swimmers, the degree of dental hydroxyapatite saturation should be a controlled parameter in pool water.
Competition along productivity gradients: news from heathlands.
Delerue, Florian; Gonzalez, Maya; Achat, David L; Puzos, Luc; Augusto, Laurent
2018-05-01
The importance of competition in low productive habitats is still debated. Studies which simultaneously evaluate preemption of resources and consequences for population dynamics are needed for a comprehensive view of competitive outcomes. We cultivated two emblematic species of European heathlands (Calluna vulgaris and Molinia caerulea) in a nursery for 2 years at two fertility levels, reproducing the productivity gradient found in phosphorus (P)-depleted heathlands in southwest France. The second year, we planted Ulex europaeus seedlings, a ubiquitous heathland species, under the cover of the two species to evaluate its ability to regenerate. Half of the seedlings were placed in tubes for exclusion of competitor roots. We measured the development of the competitors aboveground and belowground and their interception of resources (light, water, inorganic P). Ulex seedlings' growth and survival were also measured. Our results on resources interception were consistent with species distribution in heathlands. Molinia, which dominates rich heathlands, was the strongest competitor for light and water in the rich soil. Calluna, which dominates poor heathlands, increased its root allocation in the poor soil, decreasing water and inorganic P availability. However, the impact of total competition and root competition on Ulex seedlings decreased in the poor soil. Other mechanisms, especially decrease of water stress under neighbouring plant cover, appeared to have more influence on the seedlings' response. We found no formal contradiction between Tilman and Grime's theories. Root competition has a primary role in acquisition of soil resources in poor habitats. However, the importance of competition decreases with decreasing fertility.
Invasive ants compete with and modify the trophic ecology of hermit crabs on tropical islands.
McNatty, Alice; Abbott, Kirsti L; Lester, Philip J
2009-05-01
Invasive species can dramatically alter trophic interactions. Predation is the predominant trophic interaction generally considered to be responsible for ecological change after invasion. In contrast, how frequently competition from invasive species contributes to the decline of native species remains controversial. Here, we demonstrate how the trophic ecology of the remote atoll nation of Tokelau is changing due to competition between invasive ants (Anoplolepis gracilipes) and native terrestrial hermit crabs (Coenobita spp.) for carrion. A significant negative correlation was observed between A. gracilipes and hermit crab abundance. On islands with A. gracilipes, crabs were generally restricted to the periphery of invaded islands. Very few hermit crabs were found in central areas of these islands where A. gracilipes abundances were highest. Ant exclusion experiments demonstrated that changes in the abundance and distribution of hermit crabs on Tokelau are a result of competition. The ants did not kill the hermit crabs. Rather, when highly abundant, A. gracilipes attacked crabs by spraying acid and drove crabs away from carrion resources. Analysis of naturally occurring N and C isotopes suggests that the ants are effectively lowering the trophic level of crabs. According to delta(15) N values, hermit crabs have a relatively high trophic level on islands where A. gracilipes have not invaded. In contrast, where these ants have invaded we observed a significant decrease in delta(15) N for all crab species. This result concurs with our experiment in suggesting long-term exclusion from carrion resources, driving co-occurring crabs towards a more herbivorous diet. Changes in hermit crab abundance or distribution may have major ramifications for the stability of plant communities. Because A. gracilipes have invaded many tropical islands where the predominant scavengers are hermit crabs, we consider that their competitive effects are likely to be more prominent in structuring communities than predation.
MURRELL, EBONY G.; JULIANO, STEVEN A.
2008-01-01
Many studies of interspecific competition between Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae) larvae show that Ae. albopictus are superior resource competitors to Ae. aegypti. Single-species studies indicate that growth and survival of Ae. albopictus and Ae. aegypti larvae are affected by the type of detritus present in containers, which presumably affects the amount and quality of microorganisms that the mosquito larvae consume. We tested whether different detritus types alter the intensity of larval competition by raising 10 different density/species combinations of Ae. albopictus and Ae. aegypti larvae under standard laboratory conditions, with one of four detritus types (oak, pine, grass, or insect) provided as a nutrient base. Intraspecific competitive effects on survival were present with all detritus types. Ae. albopictus survivorship was unaffected by interspecific competition in all treatments. Negative interspecific effects on Ae. aegypti survivorship were present with three of four detritus types, but absent with grass. Estimated finite rate of increase (λ’) was lower with pine detritus than with any other detritus type for both species. Furthermore, Ae. aegypti λ’ was negatively affected by high interspecific density in all detritus types except grass. Thus, our experiment confirms competitive asymmetry in favor of Ae. albopictus with oak, pine, or insect detritus, but also demonstrates that certain detritus types may eliminate interspecific competition among the larvae of these species, which may allow for stable coexistence. Such variation in competitive outcome with detritus type may help to account for observed patterns of coexistence/exclusion of Ae. albopictus and Ae. aegypti in the field. PMID:18533429
Dohn, Justin; Augustine, David J; Hanan, Niall P; Ratnam, Jayashree; Sankaran, Mahesh
2017-02-01
The majority of research on savanna vegetation dynamics has focused on the coexistence of woody and herbaceous vegetation. Interactions among woody plants in savannas are relatively poorly understood. We present data from a 10-yr longitudinal study of spatially explicit growth patterns of woody vegetation in an East African savanna following exclusion of large herbivores and in the absence of fire. We examined plant spatial patterns and quantified the degree of competition among woody individuals. Woody plants in this semiarid savanna exhibit strongly clumped spatial distributions at scales of 1-5 m. However, analysis of woody plant growth rates relative to their conspecific and heterospecific neighbors revealed evidence for strong competitive interactions at neighborhood scales of up to 5 m for most woody plant species. Thus, woody plants were aggregated in clumps despite significantly decreased growth rates in close proximity to neighbors, indicating that the spatial distribution of woody plants in this region depends on dispersal and establishment processes rather than on competitive, density-dependent mortality. However, our documentation of suppressive effects of woody plants on neighbors also suggests a potentially important role for tree-tree competition in controlling vegetation structure and indicates that the balanced-competition hypothesis may contribute to well-known patterns in maximum tree cover across rainfall gradients in Africa. © 2016 by the Ecological Society of America.
He, Wei-Ming; Feng, Yulong; Ridenour, Wendy M; Thelen, Giles C; Pollock, Jarrod L; Diaconu, Alecu; Callaway, Ragan M
2009-04-01
Recent studies suggest that the invasive success of Centaurea maculosa may be related to its stronger allelopathic effects on native North American species than on related European species, one component of the "novel weapons" hypothesis. Other research indicates that C. maculosa plants from the invasive range in North America have evolved to be larger and better competitors than conspecifics from the native range in Europe, a component of the "evolution of increased competitive ability" hypothesis. These hypotheses are not mutually exclusive, but this evidence sets the stage for comparing the relative importance of evolved competitive ability to inherent competitive traits. In a competition experiment with a large number of C. maculosa populations, we found no difference in the competitive effects of C. maculosa plants from North America and Europe on other species. However, both North American and European C. maculosa were much better competitors against plants native to North America than congeners native to Romania, collected in areas where C. maculosa is also native. These results are consistent with the novel weapons hypothesis. But, in a second experiment using just one population from North America and Europe, and where North American and European species were collected from a broader range of sites, competitive interactions were weaker overall, and the competitive effects of C. maculosa were slightly stronger against European species than against North American species. Also consistent with the novel weapons hypothesis, (+/-)-catechin had stronger effects on native North American species than on native European species in two experiments. Our results suggest that the regional composition of the plant communities being invaded by C. maculosa may be more important for invasive success than the evolution of increased size and competitive ability.
Nattier, Romain; Grandcolas, Philippe; Elias, Marianne; Desutter-Grandcolas, Laure; Jourdan, Hervé; Couloux, Arnaud; Robillard, Tony
2012-01-01
Islands are bounded areas where high endemism is explained either by allopatric speciation through the fragmentation of the limited amount of space available, or by sympatric speciation and accumulation of daughter species. Most empirical evidence point out the dominant action of allopatric speciation. We evaluate this general view by looking at a case study where sympatric speciation is suspected. We analyse the mode, tempo and geography of speciation in Agnotecous, a cricket genus endemic to New Caledonia showing a generalized pattern of sympatry between species making sympatric speciation plausible. We obtained five mitochondrial and five nuclear markers (6.8 kb) from 37 taxa corresponding to 17 of the 21 known extant species of Agnotecous, and including several localities per species, and we conducted phylogenetic and dating analyses. Our results suggest that the diversification of Agnotecous occurred mostly through allopatric speciation in the last 10 Myr. Highly microendemic species are the most recent ones (<2 Myr) and current sympatry is due to secondary range expansion after allopatric speciation. Species distribution should then be viewed as a highly dynamic process and extreme microendemism only as a temporary situation. We discuss these results considering the influence of climatic changes combined with intricate soil diversity and mountain topography. A complex interplay between these factors could have permitted repeated speciation events and range expansion.
Weekley, Claire M.; Aitken, Jade B.; Finney, Lydia; Vogt, Stefan; Witting, Paul K.; Harris, Hugh H.
2013-01-01
Determining the speciation of selenium in vivo is crucial to understanding the biological activity of this essential element, which is a popular dietary supplement due to its anti-cancer properties. Hyphenated techniques that combine separation and detection methods are traditionally and effectively used in selenium speciation analysis, but require extensive sample preparation that may affect speciation. Synchrotron-based X-ray absorption and fluorescence techniques offer an alternative approach to selenium speciation analysis that requires minimal sample preparation. We present a brief summary of some key HPLC-ICP-MS and ESI-MS/MS studies of the speciation of selenium in cells and rat tissues. We review the results of a top-down approach to selenium speciation in human lung cancer cells that aims to link the speciation and distribution of selenium to its biological activity using a combination of X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM). The results of this approach highlight the distinct fates of selenomethionine, methylselenocysteine and selenite in terms of their speciation and distribution within cells: organic selenium metabolites were widely distributed throughout the cells, whereas inorganic selenium metabolites were compartmentalized and associated with copper. New data from the XFM mapping of electrophoretically-separated cell lysates show the distribution of selenium in the proteins of selenomethionine-treated cells. Future applications of this top-down approach are discussed. PMID:23698165
Igea, Javier; Bogarín, Diego; Papadopulos, Alexander S T; Savolainen, Vincent
2015-02-01
Speciation on islands, and particularly the divergence of species in situ, has long been debated. Here, we present one of the first, complete assessments of the geographic modes of speciation for the flora of a small oceanic island. Cocos Island (Costa Rica) is pristine; it is located 550 km off the Pacific coast of Central America. It harbors 189 native plant species, 33 of which are endemic. Using phylogenetic data from insular and mainland congeneric species, we show that all of the endemic species are derived from independent colonization events rather than in situ speciation. This is in sharp contrast to the results of a study carried out in a comparable system, Lord Howe Island (Australia), where as much as 8.2% of the plant species were the product of sympatric speciation. Differences in physiography and age between the islands may be responsible for the contrasting patterns of speciation observed. Importantly, comparing phylogenetic assessments of the modes of speciation with taxonomy-based measures shows that widely used island biogeography approaches overestimate rates of in situ speciation. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Self-consistent approach for neutral community models with speciation
NASA Astrophysics Data System (ADS)
Haegeman, Bart; Etienne, Rampal S.
2010-03-01
Hubbell’s neutral model provides a rich theoretical framework to study ecological communities. By incorporating both ecological and evolutionary time scales, it allows us to investigate how communities are shaped by speciation processes. The speciation model in the basic neutral model is particularly simple, describing speciation as a point-mutation event in a birth of a single individual. The stationary species abundance distribution of the basic model, which can be solved exactly, fits empirical data of distributions of species’ abundances surprisingly well. More realistic speciation models have been proposed such as the random-fission model in which new species appear by splitting up existing species. However, no analytical solution is available for these models, impeding quantitative comparison with data. Here, we present a self-consistent approximation method for neutral community models with various speciation modes, including random fission. We derive explicit formulas for the stationary species abundance distribution, which agree very well with simulations. We expect that our approximation method will be useful to study other speciation processes in neutral community models as well.
2018-01-01
Much of life's diversity has arisen through ecological opportunity and adaptive radiations, but the mechanistic underpinning of such diversification is not fully understood. Competition and predation can affect adaptive radiations, but contrasting theoretical and empirical results show that they can both promote and interrupt diversification. A mechanistic understanding of the link between microevolutionary processes and macroevolutionary patterns is thus needed, especially in trophic communities. Here, we use a trait-based eco-evolutionary model to investigate the mechanisms linking competition, predation and adaptive radiations. By combining available micro-evolutionary theory and simulations of adaptive radiations we show that intraspecific competition is crucial for diversification as it induces disruptive selection, in particular in early phases of radiation. The diversification rate is however decreased in later phases owing to interspecific competition as niche availability, and population sizes are decreased. We provide new insight into how predation tends to have a negative effect on prey diversification through decreased population sizes, decreased disruptive selection and through the exclusion of prey from parts of niche space. The seemingly disparate effects of competition and predation on adaptive radiations, listed in the literature, may thus be acting and interacting in the same adaptive radiation at different relative strength as the radiation progresses. PMID:29514970
The Impact of Taxes on Competition for CEOs
Krenn, Peter
2017-01-01
Abstract This paper contributes to the question of how taxation of corporate profits and wages affects competition among firms for highly skilled human resources such as CEOs. Use of a theoretical model shows that wage taxes can have a substantial impact on the outcome of such a competition if marginal tax rates are different as in an international labor market. Further, the paper shows that increasing the wage tax rate unilaterally can have an ambiguous effect on observed gross compensation levels. However, in a local labor market for CEOs, observed gross fixed salaries should decline in the wage tax rate. Tax effects in a market for CEOs is a particularly interesting topic because recent developments with respect to compensation practices of top-level managers have opened a public debate about the use of instruments for regulating compensation of those managers. Furthermore, many countries around the world use tax incentives in order to facilitate immigration of highly skilled human resources. The investigation follows an analytical economics-based approach by extending an LEN model with elements of competition for scarce human resources and income taxation. It investigates the impact of differential taxation on the competition between two firms for the exclusive service of a unique, highly skilled CEO. PMID:29097851
Reichman, Jerome H
2009-01-01
This article describes the growth and consequences of new intellectual property rights given to pharmaceutical developers, and it advocates treating clinical trials as a public good. Although the soaring cost of clinical trials is well known and discussed, too little attention is given to the underlying rationale for allowing drug developers to recoup their costs through the new intellectual property rights provided in multilateral, regional, and bilateral agreements. Known in the US as "market exclusivity" and in Europe as "data exclusivity," these rights prohibit would-be generic producers from obtaining regulatory approval based on the original producers' undisclosed test data. Market and data exclusivity is codified in US and European domestic law as well as the North American Free Trade Agreement (NAFTA) and, to a lesser degree, the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS). Market and data exclusivity is binding an increasing number of developing countries via Free Trade Agreements (FTAs), which hinder developing countries from manufacturing generic drugs. At a minimum, negotiators should replace the norm of exclusive control over data with a liability rule, or take and pay rule, in which generic manufacturers can use original manufacturers' clinical trial data in exchange for reasonable compensation. A more fundamental solution requires questioning the status quo of proprietary clinical trial data. The conventional wisdom is that market and data exclusivity, and drug developers' consequent ability to limit competition from generics above and beyond patent protection, are a necessary incentive for drug developers to fund ever more expensive clinical trials. Clinical trial data, however, are public goods that will be undersupplied and over protected so long as private actors provide them. Moreover, manufacturers have an incentive to present clinical trial data so that they support regulatory approval at the expense of public health. Although liability rules are better than the status quo, they would not resolve the problem of treating a public good as proprietary. Governments should thus oversee and fund clinical trials as the public good that they are. Clinical tests should be awarded to the most qualified scientists through a competitive process, financed in part with the decrease in drug costs to governmental health care programs and in part with drug developers' contributions, selected to maximize social benefit, and made global via intergovernmental bodies to maximize social return. This would reduce the cost of redundant investigations to the global public health system, lower supply costs to drug consumers, and lower the breakeven point for investment in research to discover new drugs.
Antitrust principles for radiologists.
Reuter, S R
1990-12-01
As the practice of medicine becomes more competitive, the states' attorneys general, the Federal Trade Commission, the Justice Department, and individual competitors progressively will use the Sherman Antitrust Act to ensure a competitive market for the delivery of health care services. Therefore, radiologists must have an understanding of the purposes of the Sherman Act and an understanding of types of anticompetitive activities that will trigger civil and criminal penalties. Specifically, radiologists must avoid blatant violations, such as price fixing, division of markets, and group boycotts, any of which may elicit the interest of the Justice Department. Further, radiologists need to consult knowledgable legal counsel when carrying out peer review activities and when entering into exclusive contracts with hospitals, particularly hospitals that have significant market power.
Trace Metal-Humic Complexes in Natural Waters: Insights From Speciation Experiments
NASA Astrophysics Data System (ADS)
Stern, J. C.; Salters, V.; Sonke, J.
2006-12-01
The DOM cycle is intimately linked to the cycling and bioavailability of trace metals in aqueous environments. The presence or absence of DOM in the water column can determined whether trace elements will be present in limited quantities as a nutrient, or in surplus quantities as a toxicant. Humic substances (HS), which represent the refractory products of DOM degradation, strongly affect the speciation of trace metals in natural waters. To simulate metal-HS interactions in nature, experiments must be carried out using trace metal concentrations. Sensitive detection systems such as ICP-MS make working with small (nanomolar) concentrations possible. Capillary electrophoresis coupled with ICP-MS (CE-ICP-MS) has recently been identified as a rapid and accurate method to separate metal species and calculate conditional binding constants (log K_c) of metal-humic complexes. CE-ICP-MS was used to measure partitioning of metals between humic substances and a competing ligand (EDTA) and calculate binding constants of rare earth element (REE) and Th, Hf, and Zr-humic complexes at pH 3.5-8 and ionic strength of 0.1. Equilibrium dialysis ligand exchange (EDLE) experiments to validate the CE-ICP-MS method were performed to separate the metal-HS and metal-EDTA species by partitioning due to size exclusion via diffusion through a 1000 Da membrane. CE-ICP-MS experiments were also conducted to compare binding constants of REE with humic substances of various origin, including soil, peat, and aquatic DOM. Results of our experiments show an increase in log K_c with decrease in ionic radius for REE-humic complexes (the lanthanide contraction effect). Conditional binding constants of tetravalent metal-humic complexes were found to be several orders of magnitude higher than REE-humic complexes, indicating that tetravalent metals have a very strong affinity for humic substances. Because thorium is often used as a proxy for the tetravalent actinides, Th-HS binding constants can allow us to assess the importance of tetravalent actinide-humic complexes in groundwater transport from nuclear repositories. Our results suggest that tetravalent actinide-humic complexes couild be more important to account for in predictive speciation models than previously thought.
Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval
Tennant, Jonathan P.; Mannion, Philip D.; Upchurch, Paul
2016-01-01
Reconstructing deep time trends in biodiversity remains a central goal for palaeobiologists, but our understanding of the magnitude and tempo of extinctions and radiations is confounded by uneven sampling of the fossil record. In particular, the Jurassic/Cretaceous (J/K) boundary, 145 million years ago, remains poorly understood, despite an apparent minor extinction and the radiation of numerous important clades. Here we apply a rigorous subsampling approach to a comprehensive tetrapod fossil occurrence data set to assess the group's macroevolutionary dynamics through the J/K transition. Although much of the signal is exclusively European, almost every higher tetrapod group was affected by a substantial decline across the boundary, culminating in the extinction of several important clades and the ecological release and radiation of numerous modern tetrapod groups. Variation in eustatic sea level was the primary driver of these patterns, controlling biodiversity through availability of shallow marine environments and via allopatric speciation on land. PMID:27587285
U.S. Space Policy and Space Industry Strangulation
2010-03-01
protecting U.S. national security, and creating an environment in which non-U.S. citizens can participate fully in the U.S. space industry. 14...still protecting U.S. national security, and creating an environment in which non-U.S. citizens can participate fully in the U.S. space industry...security, and creating and sustaining a globally competitive space industry. These realms are not mutually exclusive. If technologies are overly guarded
Tara L. Keyser; Mary Arthur; David L. Loftis
2017-01-01
The exclusion of anthropogenic fire is a primary factor responsible for the âmesophicationâ of eastern oak (Quercus) forests and resultant oak regeneration problems. Consequently, the reintroduction of fire is increasingly used to promote the establishment and growth of oak and hickory (Carya) and control competition from shade-tolerant species (e.g., red maple (Acer...
Klose, Viviana; Mohnl, Michaela; Plail, Regina; Schatzmayr, Gerd; Loibner, Andreas-Paul
2006-05-01
Competitive exclusion treatment is able to increase the pathogen colonization resistance of day-old chicks by applying probiotic bacteria stabilizing the indigenous microflora. In order to develop a safe microbial feed additive, various bacterial strains were isolated out of the gastrointestinal tract of healthy chickens. One hundred twenty-one representatives were selected based on differences in whole-cell protein patterns and screened for antagonistic properties. Five effective strains (Pediococcus acidilactici, Enterococcus faecium, Bifidobacterium animalis ssp. animalis, Lactobacillus reuteri, and Lactobacillus salivarius ssp. salivarius) exhibited in vitro the ability to inhibit a range of common pathogens and were evaluated with regard to the risks associated with genetic transfer of antibiotic resistances from animals to humans via the food chain. The probiotic strains were sensitive to several clinically effective antibiotics, though some of them showed single resistances. None of the vancomycin-resistant (R) strains carried the enterococcal vanA gene. Two tetracycline R strains were shown to harbor a tet(M)-associated resistance. The strains contained no extrachromosomal DNA and were not able to transfer the resistance by means of conjugation. On basis of the collected data the presence of easy transferable resistances was excluded and the chicken strains were considered to be suitable for the use as feed additive.
Mañes-Lázaro, R; Van Diemen, P M; Pin, C; Mayer, M J; Stevens, M P; Narbad, A
2017-08-01
1. Campylobacter jejuni is the most common bacterial cause of human food-borne gastroenteritis in the world. A major source of human infection is the consumption of contaminated meat, particularly poultry. New control measures to reduce or eliminate this pathogen from the animal gastrointestinal tract are urgently required, and the use of probiotics as competitive exclusion agents is a promising biocontrol measure to reduce C. jejuni in the food chain. 2. In this study, we assessed the potential of Lactobacillus johnsonii FI9785, which has shown efficacy against Clostridium perfringens, to combat C. jejuni. The effect of prophylactic administration of L. johnsonii on the ability of C. jejuni to colonise chickens was determined. 3. Two doses of L. johnsonii given a week apart led to a reduction in C. jejuni colonisation in the caecal contents, but this biocontrol seemed reliant upon a high level of initial colonisation by the probiotic. 4. The microbial composition in the chicken gut was significantly altered by the probiotic treatment, as shown by denaturing gradient gel electrophoresis of 16S rRNA gene amplicons. 5. Together these results demonstrate the potential of this probiotic strain to be tested further as a competitive exclusion agent in poultry against C. jejuni.
The reality and importance of founder speciation in evolution.
Templeton, Alan R
2008-05-01
A founder event occurs when a new population is established from a small number of individuals drawn from a large ancestral population. Mayr proposed that genetic drift in an isolated founder population could alter the selective forces in an epistatic system, an observation supported by recent studies. Carson argued that a period of relaxed selection could occur when a founder population is in an open ecological niche, allowing rapid population growth after the founder event. Selectable genetic variation can actually increase during this founder-flush phase due to recombination, enhanced survival of advantageous mutations, and the conversion of non-additive genetic variance into additive variance in an epistatic system, another empirically confirmed prediction. Templeton combined the theories of Mayr and Carson with population genetic models to predict the conditions under which founder events can contribute to speciation, and these predictions are strongly confirmed by the empirical literature. Much of the criticism of founder speciation is based upon equating founder speciation to an adaptive peak shift opposed by selection. However, Mayr, Carson and Templeton all modeled a positive interaction of selection and drift, and Templeton showed that founder speciation is incompatible with peak-shift conditions. Although rare, founder speciation can have a disproportionate importance in adaptive innovation and radiation, and examples are given to show that "rare" does not mean "unimportant" in evolution. Founder speciation also interacts with other speciation mechanisms such that a speciation event is not a one-dimensional process due to either selection alone or drift alone. (c) 2008 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Tingting; Zhao, Lei
2017-10-01
The emergence of car-hailing service satisfies the need of public travel in Internet era. Didi—the representative of car-hailing service, provides users with cost-effective service and great travel experience and quickly became the leader in the field of mobile travel depending on its price advantage, market segmentation, fast respond and some other competitive strategies. However, the promulgation of the new car-hailing regulation brings many challenges to Didi. After the new regulation, it is hard for Didi to gap away significantly from its competitors in scale and price. Thus the differentiated service is the competitive focus for all platforms. So there is an urgent need for Didi to do something to make difference, such as improving the interface design of the platform and the process of order allocation, establishing exclusive ‘station’, increasing the interaction between drivers and passengers. By doing so, Didi can reduce the information asymmetry and increase the user engagement and loyalty with high quality service.
Nonlocal birth-death competitive dynamics with volume exclusion
NASA Astrophysics Data System (ADS)
Khalil, Nagi; López, Cristóbal; Hernández-García, Emilio
2017-06-01
A stochastic birth-death competition model for particles with excluded volume is proposed. The particles move, reproduce, and die on a regular lattice. While the death rate is constant, the birth rate is spatially nonlocal and implements inter-particle competition by a dependence on the number of particles within a finite distance. The finite volume of particles is accounted for by fixing an upper value to the number of particles that can occupy a lattice node, compromising births and movements. We derive closed macroscopic equations for the density of particles and spatial correlation at two adjacent sites. Under different conditions, the description is further reduced to a single equation for the particle density that contains three terms: diffusion, a linear death, and a highly nonlinear and nonlocal birth term. Steady-state homogeneous solutions, their stability which reveals spatial pattern formation, and the dynamics of time-dependent homogeneous solutions are discussed and compared, in the one-dimensional case, with numerical simulations of the particle system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neu, Mary Patricia
The coordination chemistry and solution behavior of the toxic ions lead(II) and plutonium(IV, V, VI) have been investigated. The ligand pK as and ligand-lead(II) stability constants of one hydroxamic acid and four thiohydroaxamic acids were determined. Solution thermodynamic results indicate that thiohydroxamic acids are more acidic and slightly better lead chelators than hydroxamates, e.g., N-methylthioaceto-hydroxamic acid, pK a = 5.94, logβ 120 = 10.92; acetohydroxamic acid, pK a = 9.34, logβ 120 = 9.52. The syntheses of lead complexes of two bulky hydroxamate ligands are presented. The X-ray crystal structures show the lead hydroxamates are di-bridged dimers with irregular five-coordinatemore » geometry about the metal atom and a stereochemically active lone pair of electrons. Molecular orbital calculations of a lead hydroxamate and a highly symmetric pseudo octahedral lead complex were performed. The thermodynamic stability of plutonium(IV) complexes of the siderophore, desferrioxamine B (DFO), and two octadentate derivatives of DFO were investigated using competition spectrophotometric titrations. The stability constant measured for the plutonium(IV) complex of DFO-methylterephthalamide is logβ 120 = 41.7. The solubility limited speciation of 242Pu as a function of time in near neutral carbonate solution was measured. Individual solutions of plutonium in a single oxidation state were added to individual solutions at pH = 6.0, T = 30.0, 1.93 mM dissolved carbonate, and sampled over intervals up to 150 days. Plutonium solubility was measured, and speciation was investigated using laser photoacoustic spectroscopy and chemical methods.« less
Mehdawi, Ali F El; Cappa, Jennifer J; Fakra, Sirine C; Self, James; Pilon-Smits, Elizabeth A H
2012-04-01
• This study investigated how selenium (Se) affects relationships between Se hyperaccumulator and nonaccumulator species, particularly how plants influence their neighbors' Se accumulation and growth. • Hyperaccumulators Astragalus bisulcatus and Stanleya pinnata and nonaccumulators Astragalus drummondii and Stanleya elata were cocultivated on seleniferous or nonseleniferous soil, or on gravel supplied with different selenate concentrations. The plants were analyzed for growth, Se accumulation and Se speciation. Also, root exudates were analyzed for Se concentration. • The hyperaccumulators showed 2.5-fold better growth on seleniferous than on nonseleniferous soil, and up to fourfold better growth with increasing Se supply; the nonaccumulators showed the opposite results. Both hyperaccumulators and nonaccumulators could affect growth (up to threefold) and Se accumulation (up to sixfold) of neighboring plants. Nonaccumulators S. elata and A. drummondii accumulated predominantly (88-95%) organic C-Se-C; the remainder was selenate. S. elata accumulated relatively more C-Se-C and less selenate when growing adjacent to S. pinnata. Both hyperaccumulators released selenocompounds from their roots. A. bisulcatus exudate contained predominantly C-Se-C compounds; no speciation data could be obtained for S. pinnata. • Thus, plants can affect Se accumulation in neighbors, and soil Se affects competition and facilitation between plants. This helps to explain why hyperaccumulators are found predominantly on seleniferous soils. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Speciation in birds: genes, geography, and sexual selection.
Edwards, Scott V; Kingan, Sarah B; Calkins, Jennifer D; Balakrishnan, Christopher N; Jennings, W Bryan; Swanson, Willie J; Sorenson, Michael D
2005-05-03
Molecular studies of speciation in birds over the last three decades have been dominated by a focus on the geography, ecology, and timing of speciation, a tradition traceable to Mayr's Systematics and the Origin of Species. However, in the recent years, interest in the behavioral and molecular mechanisms of speciation in birds has increased, building in part on the older traditions and observations from domesticated species. The result is that many of the same mechanisms proffered for model lineages such as Drosophila--mechanisms such as genetic incompatibilities, reinforcement, and sexual selection--are now being seriously entertained for birds, albeit with much lower resolution. The recent completion of a draft sequence of the chicken genome, and an abundance of single-nucleotide polymorphisms on the autosomes and sex chromosomes, will dramatically accelerate research on the molecular mechanisms of avian speciation over the next few years. The challenge for ornithologists is now to inform well studied examples of speciation in nature with increased molecular resolution-to clone speciation genes if they exist--and thereby evaluate the relative roles of extrinsic, intrinsic, deterministic, and stochastic causes for avian diversification.
Variation in the post-mating fitness landscape in fruit flies.
Fricke, C; Chapman, T
2017-07-01
Sperm competition is pervasive and fundamental to determining a male's overall fitness. Sperm traits and seminal fluid proteins (Sfps) are key factors. However, studies of sperm competition may often exclude females that fail to remate during a defined period. Hence, the resulting data sets contain fewer data from the potentially fittest males that have most success in preventing female remating. It is also important to consider a male's reproductive success before entering sperm competition, which is a major contributor to fitness. The exclusion of these data can both hinder our understanding of the complete fitness landscapes of competing males and lessen our ability to assess the contribution of different determinants of reproductive success to male fitness. We addressed this here, using the Drosophila melanogaster model system, by (i) capturing a comprehensive range of intermating intervals that define the fitness of interacting wild-type males and (ii) analysing outcomes of sperm competition using selection analyses. We conducted additional tests using males lacking the sex peptide (SP) ejaculate component vs. genetically matched (SP + ) controls. This allowed us to assess the comprehensive fitness effects of this important Sfp on sperm competition. The results showed a signature of positive, linear selection in wild-type and SP + control males on the length of the intermating interval and on male sperm competition defence. However, the fitness surface for males lacking SP was distinct, with local fitness peaks depending on contrasting combinations of remating intervals and offspring numbers. The results suggest that there are alternative routes to success in sperm competition and provide an explanation for the maintenance of variation in sperm competition traits. © 2017 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.
B Cell Antigen Receptor Signaling and Internalization Are Mutually Exclusive Events
Hou, Ping; Araujo, Elizabeth; Zhao, Tong; Zhang, Miao; Massenburg, Don; Veselits, Margaret; Doyle, Colleen; Dinner, Aaron R; Clark, Marcus R
2006-01-01
Engagement of the B cell antigen receptor initiates two concurrent processes, signaling and receptor internalization. While both are required for normal humoral immune responses, the relationship between these two processes is unknown. Herein, we demonstrate that following receptor ligation, a small subpopulation of B cell antigen receptors are inductively phosphorylated and selectively retained at the cell surface where they can serve as scaffolds for the assembly of signaling molecules. In contrast, the larger population of non-phosphorylated receptors is rapidly endocytosed. Each receptor can undergo only one of two mutually exclusive fates because the tyrosine-based motifs that mediate signaling when phosphorylated mediate internalization when not phosphorylated. Mathematical modeling indicates that the observed competition between receptor phosphorylation and internalization enhances signaling responses to low avidity ligands. PMID:16719564
Facilitation can increase the phylogenetic diversity of plant communities.
Valiente-Banuet, Alfonso; Verdú, Miguel
2007-11-01
With the advent of molecular phylogenies the assessment of community assembly processes has become a central topic in community ecology. These processes have focused almost exclusively on habitat filtering and competitive exclusion. Recent evidence, however, indicates that facilitation has been important in preserving biodiversity over evolutionary time, with recent lineages conserving the regeneration niches of older, distant lineages. Here we test whether, if facilitation among distant-related species has preserved the regeneration niche of plant lineages, this has increased the phylogenetic diversity of communities. By analyzing a large worldwide database of species, we showed that the regeneration niches were strongly conserved across evolutionary history. Likewise, a phylogenetic supertree of all species of three communities driven by facilitation showed that nurse species facilitated distantly related species and increased phylogenetic diversity.
Relationship between the lability of sediment-bound Cd and its bioaccumulation in edible oyster.
Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita; Chennuri, Kartheek; Bardhan, Pratirupa
2015-11-15
A linkage between Cd speciation in sediments and its bioaccumulation in edible oyster (Crassostrea sp.) from a tropical estuarine system was established. Bioaccumulation of Cd in edible oyster increased with the increasing lability and dissociation rate constants of Cd-sediment complexes in the bottom sediments. Total Cd concentration in sediment was not a good indicator of Cd-bioavailability. Increasing trace metal competition in sediments increased lability and bioavailability of Cd in the tropical estuarine sediment. Low thermodynamic stability and high bioavailability of Cd in the estuarine sediment were responsible for high bioaccumulation of Cd in edible oysters (3.2-12.2mgkg(-1)) even though the total concentration of Cd in the bottom sediment was low (0.17-0.49mgkg(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.
Campbell, Heather; Fellowes, Mark D E; Cook, James M
2015-12-01
Myrmecophyte plants house ants within domatia in exchange for protection against herbivores. Ant-myrmecophyte mutualisms exhibit two general patterns due to competition between ants for plant occupancy: (i) domatia nest sites are a limiting resource and (ii) each individual plant hosts one ant species at a time. However, individual camelthorn trees (Vachellia erioloba) typically host two to four ant species simultaneously, often coexisting in adjacent domatia on the same branch. Such fine-grain spatial coexistence brings into question the conventional wisdom on ant-myrmecophyte mutualisms. Camelthorn ants appear not to be nest-site limited, despite low abundance of suitable domatia, and have random distributions of nest sites within and across trees. These patterns suggest a lack of competition between ants for domatia and contrast strongly with other ant-myrmecophyte systems. Comparison of this unusual case with others suggests that spatial scale is crucial to coexistence or competitive exclusion involving multiple ant species. Furthermore, coexistence may be facilitated when co-occurring ant species diverge strongly on at least one niche axis. Our conclusions provide recommendations for future ant-myrmecophyte research, particularly in utilizing multispecies systems to further our understanding of mutualism biology.
Divergent morphological and acoustic traits in sympatric communities of Asian barbets
Tamma, Krishnapriya
2016-01-01
The opposing effects of environmental filtering and competitive interactions may influence community assembly and coexistence of related species. Competition, both in the domain of ecological resources, and in the sensory domain (for example, acoustic interference) may also result in sympatric species evolving divergent traits and niches. Delineating these scenarios within communities requires understanding trait distributions and phylogenetic structure within the community, as well as patterns of trait evolution. We report that sympatric assemblages of Asian barbets (frugivorous canopy birds) consist of a random phylogenetic sample of species, but are divergent in both morphological and acoustic traits. Additionally, we find that morphology is more divergent than expected under Brownian evolution, whereas vocal frequency evolution is close to the pattern expected under Brownian motion (i.e. a random walk). Together, these patterns are consistent with a role for competition or competitive exclusion in driving community assembly. Phylogenetic patterns of morphological divergence between related species suggest that these traits are key in species coexistence. Because vocal frequency and size are correlated in barbets, we therefore hypothesize that frequency differences between sympatric barbets are a by-product of their divergent morphologies. PMID:27853589
Host age modulates within-host parasite competition
Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida
2015-01-01
In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. PMID:25994010
Fancourt, Bronwyn A.; Nicol, Stewart C.; Hawkins, Clare E.; Jones, Menna E.; Johnson, Chris N.
2014-01-01
Disease is often considered a key threat to species of conservation significance. For some, it has resulted in localised extinctions and declines in range and abundance. However, for some species, the assertion that a disease poses a significant threat of extinction is based solely on correlative or anecdotal evidence, often inferred from individual clinical case reports. While a species’ susceptibility to a disease may be demonstrated in a number of individuals, investigations rarely extend to measuring the impact of disease at the population level and its contribution, if any, to population declines. The eastern quoll (Dasyurus viverrinus) is a medium-sized Australian marsupial carnivore that is undergoing severe and rapid decline in Tasmania, its last refuge. Reasons for the decline are currently not understood. Feral cats (Felis catus) may be undergoing competitive release following the ongoing decline of the Tasmanian devil (Sarcophilus harrisii), with cats suppressing eastern quolls through increased predation, competition, exclusion or exposure to diseases such as toxoplasmosis. To investigate the effects of Toxoplasma gondii infection, eastern quoll populations at four sites were regularly screened for the seroprevalence of T. gondii-specific IgG antibodies. Seroprevalence was approximately five times higher at sites with declining quoll populations, and there was a negative association between seroprevalence and quoll abundance. However, T. gondii infection did not reduce quoll survival or reproduction. Despite a high susceptibility to T. gondii infection, eastern quoll populations do not appear to be limited by the parasite or its resultant disease. Significantly higher seroprevalence is a signal of greater exposure to feral cats at sites where eastern quolls are declining, suggesting that increased predation, competition or exclusion by feral cats may be precipitating population declines. PMID:25161908
Windmuller-Campione, Marcella A.; Long, James N.
2016-01-01
As forest communities continue to experience interactions between climate change and shifting disturbance regimes, there is an increased need to link ecological understanding to applied management. Limber pine (Pinus flexilis James.), an understudied species of western North America, has been documented to dominate harsh environments and thought to be competitively excluded from mesic environments. An observational study was conducted using the Forest Inventory and Analysis Database (FIAD) to test the competitive exclusion hypothesis across a broad elevational and geographic area within the Intermountain West, USA. We anticipated that competitive exclusion would result in limber pine’s absence from mid-elevation forest communities, creating a bi-modal distribution. Using the FIAD database, limber pine was observed to occur with 22 different overstory species, which represents a surprising number of the woody, overstory species commonly observed in the Intermountain West. There were no biologically significant relationships between measures of annual precipitation, annual temperature, or climatic indices (i.e. Ombrothermic Index) and limber pine dominance. Limber pine was observed to be a consistent component of forest communities across elevation classes. Of the plots that contained limber pine regeneration, nearly half did not have a live or dead limber pine in the overstory. However, limber pine regeneration was greater in plots with higher limber pine basal area and higher average annual precipitation. Our results suggest limber pine is an important habitat generalist, playing more than one functional role in forest communities. Generalists, like limber pine, may be increasingly important, as managers are challenged to build resistance and resilience to future conditions in western forests. Additional research is needed to understand how different silvicultural systems can be used to maintain multi-species forest communities. PMID:27575596
Harris, Richard B.; Wenying, Wang; Badinqiuying; Smith, Andrew T.
2015-01-01
Rangeland degradation has been identified as a serious concern in alpine regions of western China on the Qinghai-Tibetan plateau (QTP). Numerous government-sponsored programs have been initiated, including many that feature long-term grazing prohibitions and some that call for eliminating pastoralism altogether. As well, government programs have long favored eliminating plateau pikas (Ochotona curzoniae), assumed to contribute to degraded conditions. However, vegetation on the QTP evolved in the presence of herbivory, suggesting that deleterious effects from grazing are, to some extent, compensated for by reduced plant-plant competition. We examined the dynamics of common steppe ecosystem species as well as physical indicators of rangeland stress by excluding livestock and reducing pika abundance on experimental plots, and following responses for 4 years. We established 12 fenced livestock exclosures within pastures grazed during winter by local pastoralists, and removed pikas on half of these. We established paired, permanent vegetation plots within and outside exclosures and measured indices of erosion and biomass of common plant species. We observed modest restoration of physical site conditions (reduced bare soil, erosion, greater vegetation cover) with both livestock exclusion and pika reduction. As expected in areas protected from grazing, we observed a reduction in annual productivity of plant species avoided by livestock and assumed to compete poorly when protected from grazing. Contrary to expectation, we observed similar reductions in annual productivity among palatable, perennial graminoids under livestock exclusion. The dominant grass, Stipa purpurea, displayed evidence of density-dependent growth, suggesting that intra-specific competition exerted a regulatory effect on annual production in the absence of grazing. Complete grazing bans on winter pastures in steppe habitats on the QTP may assist in the recovery of highly eroded pastures, but may not increase annual vegetative production. PMID:26208005
Harris, Richard B; Wenying, Wang; Badinqiuying; Smith, Andrew T; Bedunah, Donald J
2015-01-01
Rangeland degradation has been identified as a serious concern in alpine regions of western China on the Qinghai-Tibetan plateau (QTP). Numerous government-sponsored programs have been initiated, including many that feature long-term grazing prohibitions and some that call for eliminating pastoralism altogether. As well, government programs have long favored eliminating plateau pikas (Ochotona curzoniae), assumed to contribute to degraded conditions. However, vegetation on the QTP evolved in the presence of herbivory, suggesting that deleterious effects from grazing are, to some extent, compensated for by reduced plant-plant competition. We examined the dynamics of common steppe ecosystem species as well as physical indicators of rangeland stress by excluding livestock and reducing pika abundance on experimental plots, and following responses for 4 years. We established 12 fenced livestock exclosures within pastures grazed during winter by local pastoralists, and removed pikas on half of these. We established paired, permanent vegetation plots within and outside exclosures and measured indices of erosion and biomass of common plant species. We observed modest restoration of physical site conditions (reduced bare soil, erosion, greater vegetation cover) with both livestock exclusion and pika reduction. As expected in areas protected from grazing, we observed a reduction in annual productivity of plant species avoided by livestock and assumed to compete poorly when protected from grazing. Contrary to expectation, we observed similar reductions in annual productivity among palatable, perennial graminoids under livestock exclusion. The dominant grass, Stipa purpurea, displayed evidence of density-dependent growth, suggesting that intra-specific competition exerted a regulatory effect on annual production in the absence of grazing. Complete grazing bans on winter pastures in steppe habitats on the QTP may assist in the recovery of highly eroded pastures, but may not increase annual vegetative production.
Windmuller-Campione, Marcella A; Long, James N
2016-01-01
As forest communities continue to experience interactions between climate change and shifting disturbance regimes, there is an increased need to link ecological understanding to applied management. Limber pine (Pinus flexilis James.), an understudied species of western North America, has been documented to dominate harsh environments and thought to be competitively excluded from mesic environments. An observational study was conducted using the Forest Inventory and Analysis Database (FIAD) to test the competitive exclusion hypothesis across a broad elevational and geographic area within the Intermountain West, USA. We anticipated that competitive exclusion would result in limber pine's absence from mid-elevation forest communities, creating a bi-modal distribution. Using the FIAD database, limber pine was observed to occur with 22 different overstory species, which represents a surprising number of the woody, overstory species commonly observed in the Intermountain West. There were no biologically significant relationships between measures of annual precipitation, annual temperature, or climatic indices (i.e. Ombrothermic Index) and limber pine dominance. Limber pine was observed to be a consistent component of forest communities across elevation classes. Of the plots that contained limber pine regeneration, nearly half did not have a live or dead limber pine in the overstory. However, limber pine regeneration was greater in plots with higher limber pine basal area and higher average annual precipitation. Our results suggest limber pine is an important habitat generalist, playing more than one functional role in forest communities. Generalists, like limber pine, may be increasingly important, as managers are challenged to build resistance and resilience to future conditions in western forests. Additional research is needed to understand how different silvicultural systems can be used to maintain multi-species forest communities.
Mineralogical controls on surface colonization by sulfur-metabolizing microbial communities
NASA Astrophysics Data System (ADS)
Jones, A. A.; Bennett, P.
2012-12-01
When characterizing microbial diversity and the microbial ecosystem of the shallow subsurface the mineral matrix is generally assumed to be homogenous and unreactive. We report here experimental evidence that microorganisms colonize rock surfaces according to the rock's chemistry and the organism's metabolic requirements and tolerances. We investigated this phenomenon using laboratory biofilm reactors with both a pure culture of sulfur-oxidizing Thiothrix unzii and a mixed environmental sulfur-metabolizing community from Lower Kane, Cave, WY, USA. Reactors contained rock and mineral chips (calcite, albite, microcline, quartz, chert, Madison Limestone (ML), Madison Dolostone (MD), and basalt) amended with one of the two inoculants. Biomass of attached microorganisms on each mineral surface was quantified. The 16S rRNA of attached microbial communities were compared using Roche FLX and Titanium 454 next generation pyrosequencing. A primary controlling factor on taxonomy of attached microorganisms in both pure and mixed culture experiments was mineral buffering capacity. In mixed culture experiments acid-buffering carbonates were preferentially colonized by neutrophilic sulfur-oxidizing microorganisms (~18% to ~27% of microorganisms), while acidophilic sulfur-oxidizing microorganisms colonized non-buffering quartz exclusively (~46% of microorganisms). The nutrient content of the rock was a controlling factor on biomass accumulation, with neutrophilic organisms selecting between carbonate surfaces of equivalent buffer capacities according to the availability of phosphate. Dry biomass on ML was 17.8 ± 2.3 mg/cm2 and MD was 20.6 ± 6.8 mg/cm2; while nutrient poor calcite accumulated 2.4 ± 0.3 mg/cm2. Biomass accumulation was minimal on non-buffering nutrient-limited surfaces. These factors are countered by the competitive exclusion of some populations. A pure culture of T. unzii preferentially colonizes carbonates while a very closely related Thiothrix spp is excluded from these same rock samples in a mixed culture. Diversity analysis reveals that ML, MD, and calcite have >98% of sequences belonging to shared OTUs. The carbonates have <3% of sequences belonging to OTUs shared with any silicate mineral surface with the exception of basalt (~85% similarity). These four surfaces were host to the least diverse microbial communities, suggesting that competitive exclusion of microorganisms not adapted to these surfaces is a controlling variable on taxonomy. Furthermore, the microorganisms on basalt reveal an unique association between Thiothrix unzii (often found in mid-ocean ridge environments) and basalt, where it excludes other sulfur oxidizers and accumulates the highest non-carbonate biomass in both pure (3.5 ± 1.0 mg/cm2) and mixed culture (5.4 ± 1.4 mg/cm2) experiments. This association suggests that adaptations to specific rocks may be retained even when the organism is displaced from an ancestral rock/mineral surface habitat. Combined, these variables (buffering capacity, nutrient availability, competitive exclusion, tolerance of surface geochemistry, and latent adaptations) affect biomass density, local diversity, and global diversity of the attached communities on mineral and rock surfaces and suggest that different populations are more tolerant of, and more competitive on, specific rock/mineral types.
Rates of speciation in the fossil record
NASA Technical Reports Server (NTRS)
Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)
1998-01-01
Data from palaeontology and biodiversity suggest that the global biota should produce an average of three new species per year. However, the fossil record shows large variation around this mean. Rates of origination have declined through the Phanerozoic. This appears to have been largely a function of sorting among higher taxa (especially classes), which exhibit characteristic rates of speciation (and extinction) that differ among them by nearly an order of magnitude. Secular decline of origination rates is hardly constant, however; many positive deviations reflect accelerated speciation during rebounds from mass extinctions. There has also been general decline in rates of speciation within major taxa through their histories, although rates have tended to remain higher among members in tropical regions. Finally, pulses of speciation appear sometimes to be associated with climate change, although moderate oscillations of climate do not necessarily promote speciation despite forcing changes in species' geographical ranges.
Speciation driven by hybridization and chromosomal plasticity in a wild yeast.
Leducq, Jean-Baptiste; Nielly-Thibault, Lou; Charron, Guillaume; Eberlein, Chris; Verta, Jukka-Pekka; Samani, Pedram; Sylvester, Kayla; Hittinger, Chris Todd; Bell, Graham; Landry, Christian R
2016-01-11
Hybridization is recognized as a powerful mechanism of speciation and a driving force in generating biodiversity. However, only few multicellular species, limited to a handful of plants and animals, have been shown to fulfil all the criteria of homoploid hybrid speciation. This lack of evidence could lead to the interpretation that speciation by hybridization has a limited role in eukaryotes, particularly in single-celled organisms. Laboratory experiments have revealed that fungi such as budding yeasts can rapidly develop reproductive isolation and novel phenotypes through hybridization, showing that in principle homoploid speciation could occur in nature. Here, we report a case of homoploid hybrid speciation in natural populations of the budding yeast Saccharomyces paradoxus inhabiting the North American forests. We show that the rapid evolution of chromosome architecture and an ecological context that led to secondary contact between nascent species drove the formation of an incipient hybrid species with a potentially unique ecological niche.
Ouerdane, Laurent; Aureli, Federica; Flis, Paulina; Bierla, Katarzyna; Preud'homme, Hugues; Cubadda, Francesco; Szpunar, Joanna
2013-09-01
An analytical methodology based on high-resolution high mass accuracy electrospray ionization (ESI) tandem MS assisted by Se-specific detection using inductively coupled plasma mass spectrometry (ICP MS) was developed for speciation of selenium (Se) in seeds of black mustard (Brassica nigra) grown on Se-rich soil. Size-exclusion LC-ICP MS allowed the determination of the Se distribution according to the molecular mass and the control of the species stability during extraction. The optimization of hydrophilic interaction of LC and cation-exchange HPLC resulted in analytical conditions making it possible to detect and characterize over 30 Se species using ESI MS, including a number of minor (<0.5%) metabolites. Selenoglucosinolates were found to be the most important class of species accounting for at least 15% of the total Se present and over 50% of all the metabolites. They were found particularly unstable during aqueous extraction leading to the loss of Se by volatilization as methylselenonitriles and methylselenoisothiocyanates identified using gas chromatography (GC) with the parallel ICP MS and atmospheric pressure chemical ionization (APCI) MS/MS detection. However, selenoglucosinolates could be efficiently recovered by extraction with 70% methanol. Other classes of identified species included selenoamino acids, selenosugars, selenosinapine and selenourea derivatives. The three types of reactions leading to the formation of selenometabolites were: the Se-S substitution in the metabolic pathway, oxidative reactions of -SeH groups with endogenous biomolecules, and chemical reactions, e.g., esterification, of Se-containing molecules and other biomolecules through functional groups not involving Se.
Stelzer, Claus-Peter; Riss, Simone; Stadler, Peter
2011-04-07
Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels--within and among genealogical species--and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.
2011-01-01
Background Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. Results We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels - within and among genealogical species - and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Conclusions Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex. PMID:21473744
Modification of an Existing In vitro Method to Predict Relative ...
The soil matrix can sequester arsenic (As) and reduces its exposure by soil ingestion. In vivo dosing studies and in vitro gastrointestinal (IVG) methods have been used to predict relative bioavailable (RBA) As. Originally, the Ohio State University (OSU-IVG) method predicted RBA As for soils exclusively from mining and smelting sites with a median of 5,636 mg As kg-1. The objectives of the current study were to (i) evaluate the ability of the OSU-IVG method to predict RBA As for As contaminated soils with a wider range of As content and As contaminant sources, and (ii) evaluate a modified extraction procedure's ability to improve prediction of RBA As. In vitro bioaccessible (IVBA) by OSU-IVG and California Bioaccessibility Method (CAB) methods, RBA As, speciation, and properties of 33 As contaminated soils were determined. Total As ranged from 162 to 12,483 mg kg-1 with a median of 731 mg kg-1. RBA As ranged from 1.30 to 60.0% and OSU-IVG IVBA As ranged from 0.80 to 52.3%. Arsenic speciation was predominantly As(V) adsorbed to hydrous ferric oxide (HFO) or iron (Fe), manganese (Mn), and aluminum (Al) oxides. The OSU-IVG often extracted significantly less As in vitro than in vivo RBA As, in particularly for soils from historical gold mining. The CAB method, which is a modified OSU-IVG method extracted more As than OSU-IVG for most soils, resulting in a more accurate predictor than OSU-IVG, especially for low to moderately contaminated soils (<1,500 mg As
Gélin, Pauline; Fauvelot, Cécile; Bigot, Lionel; Baly, Joseph; Magalon, Hélène
2018-01-01
Here, we examined the genetic variability in the coral genus Pocillopora , in particular within the Primary Species Hypothesis PSH09, identified by Gélin, Postaire, Fauvelot and Magalon (2017) using species delimitation methods [also named Pocillopora eydouxi/meandrina complex sensu , Schmidt-Roach, Miller, Lundgren, & Andreakis (2014)] and which was found to split into three secondary species hypotheses (SSH09a, SSH09b, and SSH09c) according to assignment tests using multi-locus genotypes (13 microsatellites). From a large sampling (2,507 colonies) achieved in three marine provinces [Western Indian Ocean (WIO), Tropical Southwestern Pacific (TSP), and Southeast Polynesia (SEP)], genetic structuring analysis conducted with two clustering analyses (structure and DAPC) using 13 microsatellites revealed that SSH09a was restricted to the WIO while SSH09b and SSH09c were almost exclusively in the TSP and SEP. More surprisingly, each SSH split into two to three genetically differentiated clusters, found in sympatry at the reef scale, leading to a pattern of nested hierarchical levels (PSH > SSH > cluster), each level hiding highly differentiated genetic groups. Thus, rather than structured populations within a single species, these three SSHs, and even the eight clusters, likely represent distinct genetic lineages engaged in a speciation process or real species. The issue is now to understand which hierarchical level (SSH, cluster, or even below) corresponds to the species one. Several hypotheses are discussed on the processes leading to this pattern of mixed clusters in sympatry, evoking formation of reproductive barriers, either by allopatric speciation or habitat selection.
Identification of receptors of main sex-pheromone components of three Lepidopteran species.
Mitsuno, Hidefumi; Sakurai, Takeshi; Murai, Masatoshi; Yasuda, Tetsuya; Kugimiya, Soichi; Ozawa, Rika; Toyohara, Haruhiko; Takabayashi, Junji; Miyoshi, Hideto; Nishioka, Takaaki
2008-09-01
Male moths discriminate conspecific female-emitted sex pheromones. Although the chemical components of sex pheromones have been identified in more than 500 moth species, only three components in Bombyx mori and Heliothis virescens have had their receptors identified. Here we report the identification of receptors for the main sex-pheromone components in three moth species, Plutella xylostella, Mythimna separata and Diaphania indica. We cloned putative sex-pheromone receptor genes PxOR1, MsOR1 and DiOR1 from P. xylostella, M. separata and D. indica, respectively. Each of the three genes was exclusively expressed with an Or83b orthologous gene in male olfactory receptor neurons (ORNs) that are surrounded by supporting cells expressing pheromone-binding-protein (PBP) genes. By two-electrode voltage-clamp recording, we tested the ligand specificity of Xenopus oocytes co-expressing PxOR1, MsOR1 or DiOR1 with an OR83b family protein. Among the seven sex-pheromone components of the three moth species, the oocytes dose-dependently responded only to the main sex-pheromone component of the corresponding moth species. In our study, PBPs were not essential for ligand specificity of the receptors. On the phylogenetic tree of insect olfactory receptors, the six sex-pheromone receptors identified in the present and previous studies are grouped in the same subfamily but have no relation with the taxonomy of moths. It is most likely that sex-pheromone receptors have randomly evolved from ancestral sex-pheromone receptors before the speciation of moths and that their ligand specificity was modified by mutations of local amino acid sequences after speciation.
Dubrawski, Kristian L; Mohseni, Madjid
2013-09-15
In this work, iron speciation in electrocoagulation (EC) was studied to determine the impact of operating parameters on natural organic matter (NOM) removal from natural water. Two electrochemical EC parameters, current density (i) and charge loading rate (CLR), were investigated. Variation of these parameters led to a near unity current efficiency (φ = 0.957 ± 0.03), at any combination of i in a range of 1-25 mA/cm(2) and CLR in a range of 12-300 C/L/min. Higher i and CLR led to a higher bulk pH and limited the amount of dissolved oxygen (DO) reduced at the cathode surface due to mass transfer limitations. A low i (1 mA/cm(2)) and intermediate CLR (60 C/L/min) resulted in low bulk DO (<2.5 mg/L), where green rust (GR) was identified by in-situ Raman spectroscopy as the primary crystalline electrochemical product. Longer electrolysis times at higher i led to magnetite (Fe3O4) formation. Both higher (300 C/L/min) and lower (12 C/L/min) CLR values led to increased DO and/or increased pH, with lepidocrocite (γ-FeOOH) as the only crystalline species observed. The NOM removal of the three identified species was compared, with conditions leading to GR formation showing the greatest dissolved organic carbon removal, and highest removal of the low apparent molecular weight (<550 Da) chromophoric NOM fraction, determined by high performance size exclusion chromatography. Copyright © 2013 Elsevier Ltd. All rights reserved.
Speciation in Drosophila: from phenotypes to molecules.
Orr, H Allen; Masly, J P; Phadnis, Nitin
2007-01-01
Study of the genetics of speciation--and especially of the genetics of intrinsic postzygotic isolation-has enjoyed remarkable progress over the last 2 decades. Indeed progress has been so rapid that one might be tempted to ask if the genetics of postzygotic isolation is now wrapped up. Here we argue that the genetics of speciation is far from complete. In particular, we review 2 topics where recent work has revealed major surprises: 1) the role of meiotic drive in hybrid sterility and 2) the role of gene transposition in speciation. These surprises, and others like them, suggest that evolutionary biologists may understand less about the genetic basis of speciation than seemed likely a few years ago.
NASA Astrophysics Data System (ADS)
von Schneidemesser, E.; Coates, J.; Denier van der Gon, H. A. C.; Visschedijk, A. J. H.; Butler, T. M.
2016-06-01
Non-methane volatile organic compounds (NMVOCs) are detrimental to human health owing to the toxicity of many of the NMVOC species, as well as their role in the formation of secondary air pollutants such as tropospheric ozone (O3) and secondary organic aerosol. The speciation and amount of NMVOCs emitted into the troposphere are represented in emission inventories (EIs) for input to chemical transport models that predict air pollutant levels. Much of the information in EIs pertaining to speciation of NMVOCs is likely outdated, but before taking on the task of providing an up-to-date and highly speciated EI, a better understanding of the sensitivity of models to the change in NMVOC input would be highly beneficial. According to the EIs, the solvent sector is the most important sector for NMVOC emissions. Here, the sensitivity of modelled tropospheric O3 to NMVOC emission inventory speciation was investigated by comparing the maximum potential difference in O3 produced using a variety of reported solvent sector EI speciations in an idealized study using a box model. The sensitivity was tested using three chemical mechanisms that describe O3 production chemistry, typically employed for different types of modelling scales - point (MCM v3.2), regional (RADM2), and global (MOZART-4). In the box model simulations, a maximum difference of 15 ppbv (ca. 22% of the mean O3 mixing ratio of 69 ppbv) between the different EI speciations of the solvent sector was calculated. In comparison, for the same EI speciation, but comparing the three different mechanisms, a maximum difference of 6.7 ppbv was observed. Relationships were found between the relative contribution of NMVOC compound classes (alkanes and oxygenated species) in the speciations to the amount of Ox produced in the box model. These results indicate that modelled tropospheric O3 is sensitive to the speciation of NMVOCs as specified by emission inventories, suggesting that detailed updates to the EI speciation information would be warranted. Furthermore, modelled tropospheric O3 was also sensitive to the choice of chemical mechanism and further evaluation of both of these sensitivities in more realistic chemical-transport models is needed.
Kulmuni, Jonna; Seifert, Bernhard; Pamilo, Pekka
2010-04-20
Hybridization in isolated populations can lead either to hybrid breakdown and extinction or in some cases to speciation. The basis of hybrid breakdown lies in genetic incompatibilities between diverged genomes. In social Hymenoptera, the consequences of hybridization can differ from those in other animals because of haplodiploidy and sociality. Selection pressures differ between sexes because males are haploid and females are diploid. Furthermore, sociality and group living may allow survival of hybrid genotypes. We show that hybridization in Formica ants has resulted in a stable situation in which the males form two highly divergent gene pools whereas all the females are hybrids. This causes an exceptional situation with large-scale differences between male and female genomes. The genotype differences indicate strong transmission ratio distortion depending on offspring sex, whereby the mother transmits some alleles exclusively to her daughters and other alleles exclusively to her sons. The genetic differences between the sexes and the apparent lack of multilocus hybrid genotypes in males can be explained by recessive incompatibilities which cause the elimination of hybrid males because of their haploid genome. Alternatively, differentiation between sexes could be created by prezygotic segregation into male-forming and female-forming gametes in diploid females. Differentiation between sexes is stable and maintained throughout generations. The present study shows a unique outcome of hybridization and demonstrates that hybridization has the potential of generating evolutionary novelties in animals.
Bourg, Ian C; Sposito, Garrison
2011-08-15
We report new molecular dynamics results elucidating the structure of the electrical double layer (EDL) on smectite surfaces contacting mixed NaCl-CaCl(2) electrolyte solutions in the range of concentrations relevant to pore waters in geologic repositories for CO(2) or high-level radioactive waste (0.34-1.83 mol(c) dm(-3)). Our results confirm the existence of three distinct ion adsorption planes (0-, β-, and d-planes), often assumed in EDL models, but with two important qualifications: (1) the location of the β- and d-planes are independent of ionic strength or ion type and (2) "indifferent electrolyte" ions can occupy all three planes. Charge inversion occurred in the diffuse ion swarm because of the affinity of the clay surface for CaCl(+) ion pairs. Therefore, at concentrations ≥0.34 mol(c) dm(-3), properties arising from long-range electrostatics at interfaces (electrophoresis, electro-osmosis, co-ion exclusion, colloidal aggregation) will not be correctly predicted by most EDL models. Co-ion exclusion, typically neglected by surface speciation models, balanced a large part of the clay mineral structural charge in the more concentrated solutions. Water molecules and ions diffused relatively rapidly even in the first statistical water monolayer, contradicting reports of rigid "ice-like" structures for water on clay mineral surfaces. Published by Elsevier Inc.
Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiemstra, T.; Riemsdijk, W.H. van
1999-02-01
An important challenge in surface complexation models (SCM) is to connect the molecular microscopic reality to macroscopic adsorption phenomena. This study elucidates the primary factor controlling the adsorption process by analyzing the adsorption and competition of PO{sub 4}, AsO{sub 4}, and SeO{sub 3}. The authors show that the structure of the surface-complex acting in the dominant electrostatic field can be ascertained as the primary controlling adsorption factor. The surface species of arsenate are identical with those of phosphate and the adsorption behavior is very similar. On the basis of the selenite adsorption, The authors show that the commonly used 1pKmore » models are incapable to incorporate in the adsorption modeling the correct bidentate binding mechanism found by spectroscopy. The use of the bidentate mechanism leads to a proton-oxyanion ratio and corresponding pH dependence that are too large. The inappropriate intrinsic charge attribution to the primary surface groups and the condensation of the inner sphere surface complex to a point charge are responsible for this behavior of commonly used 2pK models. Both key factors are differently defined in the charge distributed multi-site complexation (CD-MUSIC) model and are based in this model on a surface structural approach. The CD-MUSIC model can successfully describe the macroscopic adsorption phenomena using the surface speciation and binding mechanisms as found by spectroscopy. The model is also able to predict the anion competition well. The charge distribution in the interface is in agreement with the observed structure of surface complexes.« less
Predicting the toxicity of metal mixtures
Balistrieri, Laurie S.; Mebane, Christopher A.
2013-01-01
The toxicity of single and multiple metal (Cd, Cu, Pb, and Zn) solutions to trout is predicted using an approach that combines calculations of: (1) solution speciation; (2) competition and accumulation of cations (H, Ca, Mg, Na, Cd, Cu, Pb, and Zn) on low abundance, high affinity and high abundance, low affinity biotic ligand sites; (3) a toxicity function that accounts for accumulation and potency of individual toxicants; and (4) biological response. The approach is evaluated by examining water composition from single metal toxicity tests of trout at 50% mortality, results of theoretical calculations of metal accumulation on fish gills and associated mortality for single, binary, ternary, and quaternary metal solutions, and predictions for a field site impacted by acid rock drainage. These evaluations indicate that toxicity of metal mixtures depends on the relative affinity and potency of toxicants for a given aquatic organism, suites of metals in the mixture, dissolved metal concentrations and ratios, and background solution composition (temperature, pH, and concentrations of major ions and dissolved organic carbon). A composite function that incorporates solution composition, affinity and competition of cations for two types of biotic ligand sites, and potencies of hydrogen and individual metals is proposed as a tool to evaluate potential toxicity of environmental solutions to trout.
Song, Ningning; Zhong, Xu; Li, Bo; Li, Jumei; Wei, Dongpu; Ma, Yibing
2014-01-01
Little knowledge is available about the influence of cation competition and metal speciation on trivalent chromium (Cr(III)) toxicity. In the present study, the effects of pH and selected cations on the toxicity of trivalent chromium (Cr(III)) to barley (Hordeum vulgare) root elongation were investigated to develop an appropriate biotic ligand model (BLM). Results showed that the toxicity of Cr(III) decreased with increasing activity of Ca2+ and Mg2+ but not with K+ and Na+. The effect of pH on Cr(III) toxicity to barley root elongation could be explained by H+ competition with Cr3+ bound to a biotic ligand (BL) as well as by the concomitant toxicity of CrOH2+ in solution culture. Stability constants were obtained for the binding of Cr3+, CrOH2+, Ca2+, Mg2+ and H+ with binding ligand: log KCrBL 7.34, log KCrOHBL 5.35, log KCaBL 2.64, log KMgBL 2.98, and log KHBL 4.74. On the basis of those estimated parameters, a BLM was successfully developed to predict Cr(III) toxicity to barley root elongation as a function of solution characteristics. PMID:25119269
Song, Ningning; Zhong, Xu; Li, Bo; Li, Jumei; Wei, Dongpu; Ma, Yibing
2014-01-01
Little knowledge is available about the influence of cation competition and metal speciation on trivalent chromium (Cr(III)) toxicity. In the present study, the effects of pH and selected cations on the toxicity of trivalent chromium (Cr(III)) to barley (Hordeum vulgare) root elongation were investigated to develop an appropriate biotic ligand model (BLM). Results showed that the toxicity of Cr(III) decreased with increasing activity of Ca(2+) and Mg(2+) but not with K(+) and Na(+). The effect of pH on Cr(III) toxicity to barley root elongation could be explained by H(+) competition with Cr(3+) bound to a biotic ligand (BL) as well as by the concomitant toxicity of CrOH(2+) in solution culture. Stability constants were obtained for the binding of Cr(3+), CrOH(2+), Ca(2+), Mg(2+) and H(+) with binding ligand: log KCrBL 7.34, log KCrOHBL 5.35, log KCaBL 2.64, log KMgBL 2.98, and log KHBL 4.74. On the basis of those estimated parameters, a BLM was successfully developed to predict Cr(III) toxicity to barley root elongation as a function of solution characteristics.
Le Du, Alicia; Sabatié-Gogova, Andrea; Morgenstern, Alfred; Montavon, Gilles
2012-04-01
The interaction between thorium and human serum components was studied using difference ultraviolet spectroscopy (DUS), ultrafiltration and high-pressure-anion exchange chromatography (HPAEC) with external inductively conducted plasma mass spectrometry (ICP-MS) analysis. Experimental data are compared with modelling results based on the law of mass action. Human serum transferrin (HSTF) interacts strongly with Th(IV), forming a ternary complex including two synergistic carbonate anions. This complex governs Th(IV) speciation under blood serum conditions. Considering the generally used Langmuir-type model, values of 10(33.5) and 10(32.5) were obtained for strong and weak sites, respectively. We showed that trace amounts of diethylene triamine pentaacetic acid (DTPA) cannot complex Th(IV) in the blood serum at equilibrium. Unexpectedly this effect is not related to the competition with HSTF but is due to the strong competition with major divalent metal ions for DTPA. However, Th-DTPA complex was shown to be stable for a few hours when it is formed before addition in the biological medium; this is related to the high kinetic stability of the complex. This makes DTPA a potential chelating agent for synthesis of (226)Th-labelled biomolecules for application in targeted alpha therapy. Copyright © 2011 Elsevier Inc. All rights reserved.
Alcantara, Suzana; Ree, Richard H.; Martins, Fernando R.; Lohmann, Lúcia G.
2014-01-01
The influence of ecological traits to the distribution and abundance of species is a prevalent issue in biodiversity science. Most studies of plant community assembly have focused on traits related to abiotic aspects or direct interactions among plants, with less attention paid to ignore indirect interactions, as those mediated by pollinators. Here, we assessed the influence of phylogeny, habitat, and floral morphology on ecological community structure in a clade of Neotropical lianas (tribe Bignonieae, Bignoniaceae). Our investigation was guided by the long-standing hypothesis that habitat specialization has promoted speciation in Bignonieae, while competition for shared pollinators influences species co-occurrence within communities. We analyzed a geo-referenced database for 94 local communities occurring across the Neotropics. The effect of floral morphological traits and abiotic variables on species co-occurrence was investigated, taking into account phylogenetic relationships. Habitat filtering seems to be the main process driving community assembly in Bignonieae, with environmental conditions limiting species distributions. Differing specialization to abiotic conditions might have evolved recently, in contrast to the general pattern of phylogenetic clustering found in communities of other diverse regions. We find no evidence that competition for pollinators affects species co-occurrence; instead, pollinator occurrence seems to have acted as an “environmental filter” in some habitats. PMID:24594706
How humans drive speciation as well as extinction
Maron, M.
2016-01-01
A central topic for conservation science is evaluating how human activities influence global species diversity. Humanity exacerbates extinction rates. But by what mechanisms does humanity drive the emergence of new species? We review human-mediated speciation, compare speciation and known extinctions, and discuss the challenges of using net species diversity as a conservation objective. Humans drive rapid evolution through relocation, domestication, hunting and novel ecosystem creation—and emerging technologies could eventually provide additional mechanisms. The number of species relocated, domesticated and hunted during the Holocene is of comparable magnitude to the number of observed extinctions. While instances of human-mediated speciation are known, the overall effect these mechanisms have upon speciation rates has not yet been quantified. We also explore the importance of anthropogenic influence upon divergence in microorganisms. Even if human activities resulted in no net loss of species diversity by balancing speciation and extinction rates, this would probably be deemed unacceptable. We discuss why, based upon ‘no net loss’ conservation literature—considering phylogenetic diversity and other metrics, risk aversion, taboo trade-offs and spatial heterogeneity. We conclude that evaluating speciation alongside extinction could result in more nuanced understanding of biosphere trends, clarifying what it is we actually value about biodiversity. PMID:27358365
How humans drive speciation as well as extinction.
Bull, J W; Maron, M
2016-06-29
A central topic for conservation science is evaluating how human activities influence global species diversity. Humanity exacerbates extinction rates. But by what mechanisms does humanity drive the emergence of new species? We review human-mediated speciation, compare speciation and known extinctions, and discuss the challenges of using net species diversity as a conservation objective. Humans drive rapid evolution through relocation, domestication, hunting and novel ecosystem creation-and emerging technologies could eventually provide additional mechanisms. The number of species relocated, domesticated and hunted during the Holocene is of comparable magnitude to the number of observed extinctions. While instances of human-mediated speciation are known, the overall effect these mechanisms have upon speciation rates has not yet been quantified. We also explore the importance of anthropogenic influence upon divergence in microorganisms. Even if human activities resulted in no net loss of species diversity by balancing speciation and extinction rates, this would probably be deemed unacceptable. We discuss why, based upon 'no net loss' conservation literature-considering phylogenetic diversity and other metrics, risk aversion, taboo trade-offs and spatial heterogeneity. We conclude that evaluating speciation alongside extinction could result in more nuanced understanding of biosphere trends, clarifying what it is we actually value about biodiversity. © 2016 The Author(s).
Stenseth, Nils Chr; Durant, Joël M; Fowler, Mike S; Matthysen, Erik; Adriaensen, Frank; Jonzén, Niclas; Chan, Kung-Sik; Liu, Hai; De Laet, Jenny; Sheldon, Ben C; Visser, Marcel E; Dhondt, André A
2015-05-22
Climate change is expected to have profound ecological effects, yet shifts in competitive abilities among species are rarely studied in this context. Blue tits (Cyanistes caeruleus) and great tits (Parus major) compete for food and roosting sites, yet coexist across much of their range. Climate change might thus change the competitive relationships and coexistence between these two species. Analysing four of the highest-quality, long-term datasets available on these species across Europe, we extend the textbook example of coexistence between competing species to include the dynamic effects of long-term climate variation. Using threshold time-series statistical modelling, we demonstrate that long-term climate variation affects species demography through different influences on density-dependent and density-independent processes. The competitive interaction between blue tits and great tits has shifted in one of the studied sites, creating conditions that alter the relative equilibrium densities between the two species, potentially disrupting long-term coexistence. Our analyses show that long-term climate change can, but does not always, generate local differences in the equilibrium conditions of spatially structured species assemblages. We demonstrate how long-term data can be used to better understand whether (and how), for instance, climate change might change the relationships between coexisting species. However, the studied populations are rather robust against competitive exclusion. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Egan, Andrea L; Hook, Kristin A; Reeve, H Kern; Iyengar, Vikram K
2016-01-01
Given the costs of multiple mating, why has female polyandry evolved? Utetheisa ornatrix moths are well suited for studying multiple mating in females because females are highly polyandrous over their life span, with each male mate transferring a substantial spermatophore with both genetic and nongenetic material. The accumulation of resources might explain the prevalence of polyandry in this species, but another, not mutually exclusive, possibility is that females mate multiply to increase the probability that their sons will inherit more-competitive sperm. This latter "sexy-sperm" hypothesis posits that female multiple mating and male sperm competitiveness coevolve via a Fisherian runaway process. We tested the sexy-sperm hypothesis by using competitive double matings to compare the sperm competition success of sons of polyandrous versus monandrous females. In accordance with sexy-sperm theory, we found that in 511 offspring across 17 families, the male whose polyandrous mother mated once with each of three different males sired significantly more of all total offspring (81%) than did the male whose monandrous mother was mated thrice to a single male. Interestingly, sons of polyandrous mothers had a significantly biased sex ratio of their brood toward sons, also in support of the hypothesis. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Soldánová, Miroslava; Kuris, Armand M.; Scholz, Tomáš; Lafferty, Kevin D.
2012-01-01
We assessed how spatial and temporal heterogeneity and competition structure larval trematode communities in the pulmonate snail Lymnaea stagnalis. To postulate a dominance hierarchy, mark-release-recapture was used to monitor replacements of trematode species within snails over time. In addition, we sampled the trematode community in snails in different ponds in 3 consecutive years. A total of 7,623 snails (10,382 capture events) was sampled in 7 fishponds in the Jindřichův Hradec and Třeboň areas in South Bohemia (Czech Republic) from August 2006 to October 2008. Overall, 39% of snails were infected by a community of 14 trematode species; 7% of snails were infected with more than 1 trematode species (constituting 16 double- and 4 triple-species combinations). Results of the null-model analyses suggested that spatial heterogeneity in recruitment among ponds isolated trematode species from each other, whereas seasonal pulses in recruitment increased species interactions in some ponds. Competitive exclusion among trematodes led to a rarity of multiple infections compared to null-model expectations. Competitive relationships among trematode species were hypothesized as a dominance hierarchy based on direct evidence of replacement and invasion and on indirect evidence. Seven top dominant species with putatively similar competitive abilities (6 rediae and 1 sporocyst species) reduced the prevalence of the other trematode species developing in sporocysts only.
Apparent competition with an exotic plant reduces native plant establishment.
Orrock, John L; Witter, Martha S; Reichman, O J
2008-04-01
Biological invasions can change ecosystem function, have tremendous economic costs, and impact human health; understanding the forces that cause and maintain biological invasions is thus of immediate importance. A mechanism by which exotic plants might displace native plants is by increasing the pressure of native consumers on native plants, a form of indirect interaction termed "apparent competition." Using experimental exclosures, seed addition, and monitoring of small mammals in a California grassland, we examined whether exotic Brassica nigra increases the pressure of native consumers on a native bunchgrass, Nassella pulchra. Experimental plots were weeded to focus entirely on indirect effects via consumers. We demonstrate that B. nigra alters the activity of native small-mammal consumers, creating a gradient of consumption that dramatically reduces N. pulchra establishment. Previous work has shown that N. pulchra is a strong competitor, but that it is heavily seed limited. By demonstrating that consumer pressure is sufficient to curtail establishment, our work provides a mechanism for this seed limitation and suggests that, despite being a good competitor, N. pulchra cannot reestablish close to B. nigra within its old habitats because exotic-mediated consumption preempts direct competitive exclusion. Moreover, we find that apparent competition has a spatial extent, suggesting that consumers may dictate the rate of invasion and the area available for restoration, and that nonspatial studies of apparent competition may miss important dynamics.
Speciation in fungal and oomycete plant pathogens
USDA-ARS?s Scientific Manuscript database
The process of speciation by definition involves evolution of one or more reproductive isolating mechanisms that split a single species into two that can no longer interbreed. Determination of which processes are responsible for speciation is important yet challenging. Several studies have proposed ...
A STUDY OF GAS-PHASE MERCURY SPECIATION USING DETAILED CHEMICAL KINETICS
Mercury (Hg) speciation in combustion-generated flue gas is modeled using a detailed chemical mechanism consisting of 60 reactions and 21 species. This speciation model accounts for chlorination and oxidation of key flue-gas components, including elemental mercury. Results indica...
Ruminant-specific multiple duplication events of PRDM9 before speciation
USDA-ARS?s Scientific Manuscript database
Understanding the genetic and evolutionary mechanisms of speciation genes in sexually reproducing organisms would provide important insights into mammalian reproduction and fitness. PRDM9, a widely known speciation gene, has recently gained attention for its important role in meiotic recombination a...
The Development and Uses of EPA's SPECIATE Database
SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic compounds (VOC) and particulate matter (PM) speciation profiles of air pollution sources. These source profiles can be used to (l) provide input to chemical mass balance (CMB) receptor mod...
EPA’s SPECIATE 4.4 Database - Development and Uses
SPECIATE is the EPA's repository of TOG, PM, and Other Gases speciation profiles of air pollution sources. It includes weight fractions of both organic species and PM and provides data in consistent units. Species include metals, ions, elements, and organic and inorganic compound...
Cold Temperature Effects on Speciated VOC Emissions from modern GDI Light Duty Truck
Although gasoline direct injection (GDI) vehicles represent nearly half of the light-duty vehicle market share, few studies have reported speciated volatile organic compounds (VOCs) in GDI vehicle exhaust emissions. In this study, speciated VOC emissions were characterized from t...
The development of exhaust speciation profiles for commercial jet engines.
DOT National Transportation Integrated Search
2007-10-01
This study reports the emissions of CO, CO2, NOx, Particulate Matter (PM) mass, : speciated PM and speciated hydrocarbons at six thrust settings: 4%, 7%, 30%, 40%, 65% : and 85%, measured from both engines on four parked 737 aircraft at the Oakland :...
Geography, assortative mating, and the effects of sexual selection on speciation with gene flow.
Servedio, Maria R
2016-01-01
Theoretical and empirical research on the evolution of reproductive isolation have both indicated that the effects of sexual selection on speciation with gene flow are quite complex. As part of this special issue on the contributions of women to basic and applied evolutionary biology, I discuss my work on this question in the context of a broader assessment of the patterns of sexual selection that lead to, versus inhibit, the speciation process, as derived from theoretical research. In particular, I focus on how two factors, the geographic context of speciation and the mechanism leading to assortative mating, interact to alter the effect that sexual selection through mate choice has on speciation. I concentrate on two geographic contexts: sympatry and secondary contact between two geographically separated populations that are exchanging migrants and two mechanisms of assortative mating: phenotype matching and separate preferences and traits. I show that both of these factors must be considered for the effects of sexual selection on speciation to be inferred.
Sympatric speciation as a consequence of male pregnancy in seahorses
Jones, Adam G.; Moore, Glenn I.; Kvarnemo, Charlotta; Walker, DeEtte; Avise, John C.
2003-01-01
The phenomenon of male pregnancy in the family Syngnathidae (seahorses, pipefishes, and sea dragons) undeniably has sculpted the course of behavioral evolution in these fishes. Here we explore another potentially important but previously unrecognized consequence of male pregnancy: a predisposition for sympatric speciation. We present microsatellite data on genetic parentage that show that seahorses mate size-assortatively in nature. We then develop a quantitative genetic model based on these empirical findings to demonstrate that sympatric speciation indeed can occur under this mating regime in response to weak disruptive selection on body size. We also evaluate phylogenetic evidence bearing on sympatric speciation by asking whether tiny seahorse species are sister taxa to large sympatric relatives. Overall, our results indicate that sympatric speciation is a plausible mechanism for the diversification of seahorses, and that assortative mating (in this case as a result of male parental care) may warrant broader attention in the speciation process for some other taxonomic groups as well. PMID:12732712
Ephemeral ecological speciation and the latitudinal biodiversity gradient.
Cutter, Asher D; Gray, Jeremy C
2016-10-01
The richness of biodiversity in the tropics compared to high-latitude parts of the world forms one of the most globally conspicuous patterns in biology, and yet few hypotheses aim to explain this phenomenon in terms of explicit microevolutionary mechanisms of speciation and extinction. We link population genetic processes of selection and adaptation to speciation and extinction by way of their interaction with environmental factors to drive global scale macroecological patterns. High-latitude regions are both cradle and grave with respect to species diversification. In particular, we point to a conceptual equivalence of "environmental harshness" and "hard selection" as eco-evolutionary drivers of local adaptation and ecological speciation. By describing how ecological speciation likely occurs more readily at high latitudes, with such nascent species especially prone to extinction by fusion, we derive the ephemeral ecological speciation hypothesis as an integrative mechanistic explanation for latitudinal gradients in species turnover and the net accumulation of biodiversity. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Minimal effects of latitude on present-day speciation rates in New World birds
Rabosky, Daniel L.; Title, Pascal O.; Huang, Huateng
2015-01-01
The tropics contain far greater numbers of species than temperate regions, suggesting that rates of species formation might differ systematically between tropical and non-tropical areas. We tested this hypothesis by reconstructing the history of speciation in New World (NW) land birds using BAMM, a Bayesian framework for modelling complex evolutionary dynamics on phylogenetic trees. We estimated marginal distributions of present-day speciation rates for each of 2571 species of birds. The present-day rate of speciation varies approximately 30-fold across NW birds, but there is no difference in the rate distributions for tropical and temperate taxa. Using macroevolutionary cohort analysis, we demonstrate that clades with high tropical membership do not produce species more rapidly than temperate clades. For nearly any value of present-day speciation rate, there are far more species in the tropics than the temperate zone. Any effects of latitude on speciation rate are marginal in comparison to the dramatic variation in rates among clades. PMID:26019156
Speciation by Symbiosis: the Microbiome and Behavior
Shropshire, J. Dylan
2016-01-01
ABSTRACT Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. PMID:27034284
Speciation by Symbiosis: the Microbiome and Behavior.
Shropshire, J Dylan; Bordenstein, Seth R
2016-03-31
Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. Copyright © 2016 Shropshire and Bordenstein.
Speciation at the Mogollon Rim in the Arizona Mountain Kingsnake (Lampropeltis pyromelana).
Burbrink, Frank T; Yao, Helen; Ingrasci, Matthew; Bryson, Robert W; Guiher, Timothy J; Ruane, Sara
2011-09-01
Studies of speciation and taxon delimitation are usually decoupled. Combining these methods provides a stronger theoretical ground for recognizing new taxa and understanding processes of speciation. Using coalescent methods, we examine speciation, post-speciation population demographics, and taxon delimitation in the Arizona Mountain Kingsnake (Lampropeltis pyromelana), a species restricted to high elevations in southwestern United States and northern Mexico (SW). These methods provide a solid foundation for understanding how biogeographic barriers operate at the regional scale in the SW. Bayesian species delimitation methods, using three loci from samples of L. pyromelana taken throughout their range, show strong support for the existence of two species that are separated by low elevation habitats found between the Colorado Plateau/ Mogollon Rim and the Sierra Madre Occidental. Our results suggest an allopatric mode of speciation given the near absence of gene flow over time, which resulted in two lineages of unequal population sizes. Speciation likely occurred prior to the Pleistocene, during the aridification of the SW and/or the uplift of the Colorado Plateau, and while these species occupy similar high-elevation niches, they are isolated by xeric conditions found in the intervening low deserts. Furthermore, post-speciation demographics suggest that populations of both lineages were not negatively impacted by climate change throughout the Pleistocene. Finally, our results suggest that at least for this group, where divergence is old and gene flow is low, Bayesian species delimitation performs well. Copyright © 2011 Elsevier Inc. All rights reserved.
van Essen-Zandbergen, Alieda; Smid, Bregtje; Veldman, Kees T.; Boender, Gert Jan; Fischer, Egil A. J.; Mevius, Dik J.
2017-01-01
ABSTRACT Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases (pAmpC) are enzymes able to hydrolyze a large variety of β-lactam antibiotics, including third-generation cephalosporins and monobactams. Broilers and broiler meat products can be highly contaminated with ESBL- and pAmpC-producing Escherichia coli strains, also known as extended-spectrum cephalosporin (ESC)-resistant E. coli strains, and can be a source for human infections. As few data on interventions to reduce the presence of ESC-resistant E. coli in broilers are available, we used transmission experiments to examine the role of competitive exclusion (CE) on reducing transmission and excretion in broilers. A broiler model to study the transmission of ESC-resistant E. coli was set up. Day-old chickens were challenged with an ESBL-producing E. coli strain isolated from healthy broilers in the Netherlands. Challenged and not challenged chicks were housed together in pairs or in groups, and ESBL-producing E. coli transmission was monitored via selective culturing of cloacal swab specimens. We observed a statistically significant reduction in both the transmission and excretion of ESBL-producing E. coli in chicks treated with the probiotic flora before E. coli challenge compared to the transmission and excretion in untreated controls. In conclusion, our results support the use of competitive exclusion as an intervention strategy to control ESC-resistant E. coli in the field. IMPORTANCE Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases are a primary cause of resistance to β-lactam antibiotics among members of the family Enterobacteriaceae in humans, animals, and the environment. Food-producing animals are not exempt from this, with a high prevalence being seen in broilers, and there is evidence pointing to a possible foodborne source for human contamination. We investigated the effect of administration of a commercial probiotic product as an intervention to reduce the amount of ESBL-producing Escherichia coli in broilers. Our results showed a substantial reduction in the level of colonization of broiler intestines by ESBL-producing E. coli after administration of commercial probiotic product. The protective effect provided by these probiotics could be implemented on a larger scale in poultry production. Reductions in the levels of ESBL-producing Enterobacteriaceae in the food chain would considerably benefit public health. PMID:28314728
Ceccarelli, Daniela; van Essen-Zandbergen, Alieda; Smid, Bregtje; Veldman, Kees T; Boender, Gert Jan; Fischer, Egil A J; Mevius, Dik J; van der Goot, Jeanet A
2017-06-01
Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases (pAmpC) are enzymes able to hydrolyze a large variety of β-lactam antibiotics, including third-generation cephalosporins and monobactams. Broilers and broiler meat products can be highly contaminated with ESBL- and pAmpC-producing Escherichia coli strains, also known as extended-spectrum cephalosporin (ESC)-resistant E. coli strains, and can be a source for human infections. As few data on interventions to reduce the presence of ESC-resistant E. coli in broilers are available, we used transmission experiments to examine the role of competitive exclusion (CE) on reducing transmission and excretion in broilers. A broiler model to study the transmission of ESC-resistant E. coli was set up. Day-old chickens were challenged with an ESBL-producing E. coli strain isolated from healthy broilers in the Netherlands. Challenged and not challenged chicks were housed together in pairs or in groups, and ESBL-producing E. coli transmission was monitored via selective culturing of cloacal swab specimens. We observed a statistically significant reduction in both the transmission and excretion of ESBL-producing E. coli in chicks treated with the probiotic flora before E. coli challenge compared to the transmission and excretion in untreated controls. In conclusion, our results support the use of competitive exclusion as an intervention strategy to control ESC-resistant E. coli in the field. IMPORTANCE Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases are a primary cause of resistance to β-lactam antibiotics among members of the family Enterobacteriaceae in humans, animals, and the environment. Food-producing animals are not exempt from this, with a high prevalence being seen in broilers, and there is evidence pointing to a possible foodborne source for human contamination. We investigated the effect of administration of a commercial probiotic product as an intervention to reduce the amount of ESBL-producing Escherichia coli in broilers. Our results showed a substantial reduction in the level of colonization of broiler intestines by ESBL-producing E. coli after administration of commercial probiotic product. The protective effect provided by these probiotics could be implemented on a larger scale in poultry production. Reductions in the levels of ESBL-producing Enterobacteriaceae in the food chain would considerably benefit public health. Copyright © 2017 American Society for Microbiology.
SPECIATION OF ORGANICS IN WATER WITH RAMAN SPECTROSCOPY: UTILITY OF IONIC STRENGTH VARIATION
We have developed and are applying an experimental and mathematical method for describing the micro-speciation of complex organic contaminants in aqueous media. For our case, micro-speciation can be defined as qualitative and quantitative identification of all discrete forms of ...
Fichtner, Andreas; Forrester, David I.; Härdtle, Werner; Sturm, Knut; von Oheimb, Goddert
2015-01-01
The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services. PMID:25803035
Climate-driven Sympatry does not Lead to Foraging Competition Between Adélie and Gentoo Penguins
NASA Astrophysics Data System (ADS)
Cimino, M. A.; Moline, M. A.; Fraser, W.; Patterson-Fraser, D.; Oliver, M. J.
2016-02-01
Climate-driven sympatry may lead to competition for food resources between species, population shifts and changes in ecosystem structure. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. At Palmer Station, we tested for foraging competition between these species by comparing their prey, Antarctic krill, distributions and penguin foraging behaviors on fine scales. To study these predator-prey dynamics, we simultaneously deployed penguin satellite transmitters, and a REMUS autonomous underwater vehicle that acoustically detected krill aggregations and measured physical and biological properties of the water column. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguin. In the upper 100 m of the water column, the distribution of krill aggregations were mainly associated with CHL and light, suggesting that krill selected for habitats that balance the need to consume food and avoid predation. Adélie and gentoo penguins mainly had spatially segregated foraging areas but in areas of overlap, gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion. Contrary to a recent theory, which suggests that increased competition for krill is the major driver of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.
Fichtner, Andreas; Forrester, David I; Härdtle, Werner; Sturm, Knut; von Oheimb, Goddert
2015-01-01
The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services.
Swartz, Leslie; Bantjes, Jason; Knight, Bradley; Wilmot, Greg; Derman, Wayne
2018-01-01
To describe how athletes with disabilities talk about their experiences of participating in competitive disability sport in South Africa. In-depth semi-structured interviews were conducted with 20 athletes with disabilities. Data were analysed via thematic content analysis using an inductive data driven process. Participants described their involvement in competitive sport as a positive experience; they described it as a catalyst for the recasting of identities and reframing an understanding of physical impairment, a context for empowerment and resistance of disablist attitudes, and an arena in which a sense of inclusion and belonging is experienced. However, their narratives also lay bare something of the struggle on the part of persons with disabilities to be seen as fully human and reveal how participants reproduce some unhelpful disablist discourses. There are complex contradictions and cross-currents in the way athletes with disabilities describe their participation in competitive disability sport. These narratives highlight political and ideological tensions about inclusion and representation and remind us of the need to document the experiences of persons with disabilities and the potential dangers inherent in idealizing disability sport. Implications for Rehabilitation Competitive sport is a useful context for rehabilitation and the empowerment of persons with disabilities. Athletes with disabilities say that they are able to resist dominant stereotypes about disability and recast their identities through participation in competitive sport. Disability sport seems to provide a setting in which persons with disabilities can reproduce unhelpful disablist discourses. There are dangers inherent in idealizing competitive disability sport. Even where athletes with disabilities are competing at the highest level and are successful, rehabilitation professionals must be aware of these issues, must be able to listen for experiences of exclusion and low self-esteem, and to engage with athletes on these issues.
Webster, Brian; Ott, Melanie; Greene, Warner C
2013-12-01
Cells that are productively infected by hepatitis C virus (HCV) are refractory to a second infection by HCV via a block in viral replication known as superinfection exclusion. The block occurs at a postentry step and likely involves translation or replication of the secondary viral RNA, but the mechanism is largely unknown. To characterize HCV superinfection exclusion, we selected for an HCV variant that could overcome the block. We produced a high-titer HC-J6/JFH1 (Jc1) viral genome with a fluorescent reporter inserted between NS5A and NS5B and used it to infect Huh7.5 cells containing a Jc1 replicon. With multiple passages of these infected cells, we isolated an HCV variant that can superinfect cells at high levels. Notably, the superinfectious virus rapidly cleared the primary replicon from superinfected cells. Viral competition experiments, using a novel strategy of sequence-barcoding viral strains, as well as superinfection of replicon cells demonstrated that mutations in E1, p7, NS5A, and the poly(U/UC) tract of the 3' untranslated region were important for superinfection. Furthermore, these mutations dramatically increased the infectivity of the virus in naive cells. Interestingly, viruses with a shorter poly(U/UC) and an NS5A domain II mutation were most effective in overcoming the postentry block. Neither of these changes affected viral RNA translation, indicating that the major barrier to postentry exclusion occurs at viral RNA replication. The evolution of the ability to superinfect after less than a month in culture and the concomitant exclusion of the primary replicon suggest that superinfection exclusion dramatically affects viral fitness and dynamics in vivo.
Field Evaluation Of Arsenic Speciation In Sediments At The Ground Water/Surface Water Interface
The speciation and mineralogy of sediments contaminated with arsenic at the ground water/surface water interface of the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speciation and mineralog...
Chromosomes, conflict, and epigenetics: chromosomal speciation revisited.
Brown, Judith D; O'Neill, Rachel J
2010-01-01
Since Darwin first noted that the process of speciation was indeed the "mystery of mysteries," scientists have tried to develop testable models for the development of reproductive incompatibilities-the first step in the formation of a new species. Early theorists proposed that chromosome rearrangements were implicated in the process of reproductive isolation; however, the chromosomal speciation model has recently been questioned. In addition, recent data from hybrid model systems indicates that simple epistatic interactions, the Dobzhansky-Muller incompatibilities, are more complex. In fact, incompatibilities are quite broad, including interactions among heterochromatin, small RNAs, and distinct, epigenetically defined genomic regions such as the centromere. In this review, we will examine both classical and current models of chromosomal speciation and describe the "evolving" theory of genetic conflict, epigenetics, and chromosomal speciation.
NASA Astrophysics Data System (ADS)
Pérez-Corona, Teresa; Madrid-Albarrán, Yolanda; Cámara, Carmen; Beceiro, Elisa
1998-02-01
The use of living organisms for metal preconcentration and speciation is discussed. Among substrates, Saccharomyces cerevisiae baker's yeast has been successfully used for the speciation of mercury [Hg(II) and CH 3Hg +], selenium [Se(IV) and Se(VI)] and antimony [Sb(III) and Sb(V)]. To illustrate the capabilities of these organisms, the analytical performance of baker's yeast immobilized on silica gel for on-line preconcentration and speciation of Hg(II) and methylmercury is reported. The immobilized cells were packed in a PTFE microcolumn, through which mixtures of organic and inorganic mercury solutions were passed. Retention of inorganic and organic mercury solutions took place simultaneously, with the former retained in the silica and the latter on the yeast. The efficiency uptake for both species was higher than 95% over a wide pH range. The speciation was carried out by selective and sequential elution with 0.02 mol L -1 HCl for methylmercury and 0.8 mol L -1 CN - for Hg(II). This method allows both preconcentration and speciation of mercury. The preconcentration factors were around 15 and 100 for methylmercury and mercury(II), respectively. The method has been successfully applied to spiked sea water samples.
XAS Studies of Se Speciation in Selenite-Fed Rats
Weekley, Claire M.; Aitken, Jade B.; Witting, Paul K.; Harris, Hugh H.
2014-01-01
The biological activity of selenium is dependent on its chemical form. Therefore, knowledge of Se chemistry in vivo is required for efficacious use of selenium compounds in disease prevention and treatment. Using X-ray absorption spectroscopy, Se speciation in the kidney, liver, heart, spleen, testis and red blood cells of rats fed control (~0.3 ppm Se) or selenite-supplemented (1 ppm or 5 ppm Se) diets for 3 or 6 weeks, was investigated. X-ray absorption spectroscopy revealed the presence of Se–Se and Se–C species in the kidney and liver, and Se–S species in the kidney, but not the liver. X-ray absorption near edge structure (XANES) spectra showed that there was variation in speciation in the liver and kidneys, but Se speciation was much more uniform in the remaining organs. Using principal component analysis (PCA) to interpret the Se K-edge X-ray absorption spectra, we were able to directly compare the speciation of Se in two different models of selenite metabolism – human lung cancer cells and rat tissues. The effects of Se dose, tissue type and duration of diet on selenium speciation in rat tissues were investigated, and a relationship between the duration of the diet (3 weeks versus 6 weeks) and selenium speciation was observed. PMID:25363824
Rep. Wasserman Schultz, Debbie [D-FL-20
2011-06-22
House - 08/25/2011 Referred to the Subcommittee on Intellectual Property, Competition and the Internet. (All Actions) Notes: For further action, see H.R.1249, which became Public Law 112-29 on 9/16/2011. Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Kanavos, Panos
2014-11-01
This paper develops a methodological framework to help evaluate the performance of generic pharmaceutical policies post-patent expiry or after loss of exclusivity in non-tendering settings, comprising five indicators (generic availability, time delay to and speed of generic entry, number of generic competitors, price developments, and generic volume share evolution) and proposes a series of metrics to evaluate performance. The paper subsequently tests this framework across twelve EU Member States (MS) by using IMS data on 101 patent expired molecules over the 1998-2010 period. Results indicate that significant variation exists in generic market entry, price competition and generic penetration across the study countries. Size of a geographical market is not a predictor of generic market entry intensity or price decline. Regardless of geographic or product market size, many off patent molecules lack generic competitors two years after loss of exclusivity. The ranges in each of the five proposed indicators suggest, first, that there are numerous factors--including institutional ones--contributing to the success of generic entry, price decline and market penetration and, second, MS should seek a combination of supply and demand-side policies in order to maximise cost-savings from generics. Overall, there seems to be considerable potential for faster generic entry, uptake and greater generic competition, particularly for molecules at the lower end of the market. Copyright © 2014. Published by Elsevier Ireland Ltd.
Control of Salmonella Enteritidis in turkeys using organic acids and competitive exclusion product.
Milbradt, E L; Zamae, J R; Araújo Júnior, J P; Mazza, P; Padovani, C R; Carvalho, V R; Sanfelice, C; Rodrigues, D M; Okamoto, A S; Andreatti Filho, R L
2014-08-01
To evaluate the use of organic acids (OAs) and competitive exclusion (CE) product administered continuously in the feed and transiently in drinking water on the control of Salmonella enterica subspecie enterica serotype Enteritidis (SE) prior to slaughter. The influence of treatments were evaluated on pH, population of the lactic acid bacteria (LAB) and bacteria of the family Enterobacteriaceae, concentration of volatile fatty acids and SE colonization in the crop and caecum. The birds were challenged with SE 24 h before being slaughtered, and then, the caeca and crop were removed and subjected to SE counts. Continuous administration of OAs reduced the population of bacteria from the Enterobacteriaceae family in both crop and caecum, positively influenced the butyric acid concentration and reduced SE colonization in the caecum. The diet supplemented with CE product positively influenced the quantity of LAB in the crop and caecum, elevated the butyric acid concentration and reduced both Enterobacteriaceae quantity and SE colonization in the caecum. There was no effect from administering the treatments via drinking water on the variables measured. Continuous supplementation in feed with OAs and CE product reduced SE colonization of the caeca. Supplementation of OAs and CE product in diet to turkeys can reduce the SE load, potentially leading to a lower contamination risk of meat during slaughter. © 2014 The Society for Applied Microbiology.
Balistrieri, L.S.; Seal, R.R.; Piatak, N.M.; Paul, B.
2007-01-01
The authors determine the composition of a river that is impacted by acid-mine drainage, evaluate dominant physical and geochemical processes controlling the composition, and assess dissolved metal speciation and toxicity using a combination of laboratory, field and modeling studies. Values of pH increase from 3.3 to 7.6 and the sum of dissolved base metal (Cd + Co + Cu + Ni + Pb + Zn) concentrations decreases from 6270 to 100 ??g/L in the dynamic mixing and reaction zone that is downstream of the river's confluence with acid-mine drainage. Mixing diagrams and PHREEQC calculations indicate that mixing and dilution affect the concentrations of all dissolved elements in the reach, and are the dominant processes controlling dissolved Ca, K, Li, Mn and SO4 concentrations. Additionally, dissolved Al and Fe concentrations decrease due to mineral precipitation (gibbsite, schwertmannite and ferrihydrite), whereas dissolved concentrations of Cd, Co, Cu, Ni, Pb and Zn decrease due to adsorption onto newly formed Fe precipitates. The uptake of dissolved metals by aquatic organisms is dependent on the aqueous speciation of the metals and kinetics of complexation reactions between metals, ligands and solid surfaces. Dissolved speciation of Cd, Cu, Ni and Zn in the mixing and reaction zone is assessed using the diffusive gradients in thin films (DGT) technique and results of speciation calculations using the Biotic Ligand Model (BLM). Data from open and restricted pore DGT units indicate that almost all dissolved metal species are inorganic and that aqueous labile or DGT available metal concentrations are generally equal to total dissolved concentrations in the mixing zone. Exceptions occur when labile metal concentrations are underestimated due to competition between H+ and metal ions for Chelex-100 binding sites in the DGT units at low pH values. Calculations using the BLM indicate that dissolved Cd and Zn species in the mixing and reaction zone are predominantly inorganic, which is consistent with the DGT results. Although the DGT method indicates that the majority of aqueous Cu species are inorganic, BLM calculations indicate that dissolved Cu is inorganic at pH 5.5. Integrated dissolved labile concentrations of Cd, Cu and Zn in the mixing and reaction zone are compared to calculated acute toxicity concentrations (LC50 values) for fathead minnows (Pimephales promelas) (Cd, Cu and Zn) and water fleas (Ceriodaphnia dubia) (Cd and Cu) using the BLM, and to national recommended water quality criteria [i.e., criteria maximum concentration (CMC) and criterion continuous concentration (CCC)]. Observed labile concentrations of Cd and Zn are below LC50 values and CMC for Cd, but above CCC and CMC for Zn at sites <30 m downstream of the confluence. In contrast, labile Cu concentrations exceed LC50 values for the organisms as well as CCC and CMC at sites <30 m downstream of the confluence. These results suggest that environmental conditions at sites closest to the confluence of the river and acid-mine drainage should not support healthy aquatic organisms. ?? 2007 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Parker, Jack C.; Watson, David B
This study investigates uranium and technetium sorption onto aluminum and iron hydroxides during titration of acidic groundwater. The contaminated groundwater exhibits oxic conditions with high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U, Tc, and various metal cations. More than 90% of U and Tc was removed from the aqueous phase as Al and Fe precipitated above pH 5.5, but was partially resolublized at higher pH values. An equilibrium hydrolysis and precipitation reaction model adequately described variations in aqueous concentrations of metal cations. An anion exchange reaction model was incorporated to simulate sulfate, U and Tc sorption onto variablymore » charged (pH-dependent) Al and Fe hydroxides. Modeling results indicate that competitive sorption/desorption on mixed mineral phases needs to be considered to adequately predict U and Tc mobility. The model could be useful for future studies of the speciation of U, Tc and co-existing ions during pre- and post-groundwater treatment practices.« less
Marketing energy services in a competitive environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mykytyn, R.B.
For nearly six decades electrical utilities have operated in a regulated environment established by the Public Utilities Holding Company Act (PUHCA) of 1935. This legislation granted generators exclusive franchise to market electrical power in a given geographical area in return for the company`s commitment to provide safe, reliable and fairly-priced electrical power to all customers within the region. For close to 40 years, this system of regulated monopoly functioned reasonably well to maintain a balance among the varied, and at times competing, interests in the industry. During the 1970s, however, the public argument in favor of competition within the electricalmore » services industry gained momentum. Spiraling energy costs focused the consumer`s attention on the need for conservation and inspired a variety of technological developments as well as experiments in cogeneration. Today, the electrical utility industry is poised for great change. Soon, this industry will follow the natural gas, telecommunications, and transportation industries into the uncharted waters of deregulation. The most pressing consequence of moving from a regulated environment to one that is deregulated - in other words, a competitive environment - is the need to design and implement a completely new form of marketing program. The response among industry marketing managers ranges from confusion and concern to excitement and eager anticipation. Where you fall along this continuum depends on how well you understand competitive marketing practices and the degree to which your company`s management group is willing to initiate competitive strategies and tactics now in preparation for the coming competitive marketplace.« less
Pollinator-driven ecological speciation in plants: new evidence and future perspectives
Van der Niet, Timotheüs; Peakall, Rod; Johnson, Steven D.
2014-01-01
Background The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. Scope This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of ‘pollination ecotypes‘, (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies further illustrate innovative experimental approaches, and they employ modern tools in genetics and floral trait quantification. Future advances to the field require better quantification of selection through male fitness and pollinator isolation, for instance by exploiting next-generation sequencing technologies. By combining these new tools with strategically chosen study systems, and smart experimental design, we predict that examples of pollinator-driven speciation will be among the most widespread and compelling of all cases of ecological speciation. PMID:24418954
Cowie, Robert H
1995-12-01
The native land-snail fauna of the Hawaiian islands was investigated from a combined perspective of ecological and historical, vicariant, and dispersalist biogeography. There were more than 750 described, valid species; almost all were endemic to the archipelago, many to single islands. Path analysis showed that island area, per se, had the strongest influence on numbers of species. Island altitude and number of plant communities, both strongly related to area and both dimensions of habitat diversity, also had major influences. The influence of island age was complex. A direct effect, older islands having more species, was more than counterbalanced by the strong indirect effects of age on area and altitude: older islands are smaller and lower, and smaller, lower islands had fewer species. Distance of an island from a source of colonization was of minor importance. Species richness thus appears to be related almost exclusively to evolutionary radiation in situ and not to an equilibrium between immigration and extinction. Islands need not be extremely isolated for evolutionary radiation to be more important than immigration/extinction dynamics in determining species richness, but isolation is a relative term dependent on the dispersal abilities of the organisms in question. Numbers of recorded species were also strongly correlated with collecting effort on each island, a result that stands as a warning to others involved in such studies. Numbers of species in different families were not evenly distributed across islands. Notably, Kauai had more amastrids and helicinids and fewer achatinellids than predicted; Oahu had more amastrids but fewer pupillids and succineids than predicted; Hawaii exhibited the opposite pattern from Oahu. These patterns may partly reflect the vagaries of collecting/describing effort, but some may be due to the combined effects of historical factors and competitive exclusion. The distribution of shell height/diameter was bimodal with a distinct absence of more or less equidimensional species, a general pattern seen in other faunas. Among the pulmonates, tall species predominated, suggesting a relative lack of opportunity for globular/flat species. Notably, amastrids occurred in both modes, evidence that, at least in part, ecological not taxonomic factors underlie the bimodality. The proportions of tall and globular/flat species did not vary among islands. Prosobranchs were mostly low-spired but generally less flat than the pulmonates in the low-spired mode. The islands were probably colonized originally by small taxa. Large, tall shells are found only on Kauai and Niihau, the oldest of the main islands, suggesting that opportunities for such species are probably available on other islands. © 1995 The Society for the Study of Evolution.
Meier, Joana I; Sousa, Vitor C; Marques, David A; Selz, Oliver M; Wagner, Catherine E; Excoffier, Laurent; Seehausen, Ole
2017-01-01
Modes and mechanisms of speciation are best studied in young species pairs. In older taxa, it is increasingly difficult to distinguish what happened during speciation from what happened after speciation. Lake Victoria cichlids in the genus Pundamilia encompass a complex of young species and polymorphic populations. One Pundamilia species pair, P. pundamilia and P. nyererei, is particularly well suited to study speciation because sympatric population pairs occur with different levels of phenotypic differentiation and reproductive isolation at different rocky islands within the lake. Genetic distances between allopatric island populations of the same nominal species often exceed those between the sympatric species. It thus remained unresolved whether speciation into P. nyererei and P. pundamilia occurred once, followed by geographical range expansion and interspecific gene flow in local sympatry, or if the species pair arose repeatedly by parallel speciation. Here, we use genomic data and demographic modelling to test these alternative evolutionary scenarios. We demonstrate that gene flow plays a strong role in shaping the observed patterns of genetic similarity, including both gene flow between sympatric species and gene flow between allopatric populations, as well as recent and early gene flow. The best supported model for the origin of P. pundamilia and P. nyererei population pairs at two different islands is one where speciation happened twice, whereby the second speciation event follows shortly after introgression from an allopatric P. nyererei population that arose earlier. Our findings support the hypothesis that very similar species may arise repeatedly, potentially facilitated by introgressed genetic variation. © 2016 John Wiley & Sons Ltd.
Ecological speciation in the tropics: insights from comparative genetic studies in Amazonia
Beheregaray, Luciano B.; Cooke, Georgina M.; Chao, Ning L.; Landguth, Erin L.
2015-01-01
Evolution creates and sustains biodiversity via adaptive changes in ecologically relevant traits. Ecologically mediated selection contributes to genetic divergence both in the presence or absence of geographic isolation between populations, and is considered an important driver of speciation. Indeed, the genetics of ecological speciation is becoming increasingly studied across a variety of taxa and environments. In this paper we review the literature of ecological speciation in the tropics. We report on low research productivity in tropical ecosystems and discuss reasons accounting for the rarity of studies. We argue for research programs that simultaneously address biogeographical and taxonomic questions in the tropics, while effectively assessing relationships between reproductive isolation and ecological divergence. To contribute toward this goal, we propose a new framework for ecological speciation that integrates information from phylogenetics, phylogeography, population genomics, and simulations in evolutionary landscape genetics (ELG). We introduce components of the framework, describe ELG simulations (a largely unexplored approach in ecological speciation), and discuss design and experimental feasibility within the context of tropical research. We then use published genetic datasets from populations of five codistributed Amazonian fish species to assess the performance of the framework in studies of tropical speciation. We suggest that these approaches can assist in distinguishing the relative contribution of natural selection from biogeographic history in the origin of biodiversity, even in complex ecosystems such as Amazonia. We also discuss on how to assess ecological speciation using ELG simulations that include selection. These integrative frameworks have considerable potential to enhance conservation management in biodiversity rich ecosystems and to complement historical biogeographic and evolutionary studies of tropical biotas. PMID:25653668
NASA Astrophysics Data System (ADS)
Maggi, F.; Riley, W. J.
2009-12-01
The composition and location of 15N atoms on N2O isotopomers and isotopologues during isotope speciation has been used to characterize soil biological N cycling and N2O surface emissions. Although there exist few experimental observations, no attempt has been made to model N2O isotopomer speciation. The mathematical treatment of biological kinetic reactions in isotopic applications normally makes use of first-order and quasi steady-state complexation assumptions without taking into account changes in enzyme concentration, reaction stoichiometry, and isotopologue and isotopomer speciation. When multiatomic isotopically-labeled reactants are used in a multi-molecurar reaction, these assumptions may fail since they always lead to a constant fractionation factor and cannot describe speciation of isotopologues and isotopomers. We have developed a mathematical framework that is capable of describing isotopologue and isotopmer speciation and fractionation under the assumption of non-steady complexation during biological kinetic reactions that overcome the limitations mentioned above. This framework was applied to a case study of non-steady (variable and inverse) isotopic effects observed during N2O production and consumption in soils. Our mathematical treatment has led to generalized kinetic equations which replicate experimental observations with high accuracy and help interpret non-steady isotopic effects and isotopologue and isotopomer speciation. The kinetic equations introduced and applied here have general validity in describing isotopic effects in any biochemical reactions by considering: changing enzyme concentrations, mass and isotope conservation, and reaction stoichiometry. The equations also describe speciation of any isotopologue and isotopomer product from any isotopologue and isotopmer reactant.
How similar can co-occurring species be in the presence of competition and ecological drift?
Capitán, José A; Cuenda, Sara; Alonso, David
2015-09-06
If two species live on a single resource, the one with a slight advantage will out-compete the other: complete competitors cannot coexist. This is known as the competitive exclusion principle. If no extinction occurs, it is because evolutionary adaptation to slightly different niches takes place. Therefore, it is widely accepted that ecological communities are assembled by evolutionary differentiation and progressive adaptation of species to different niches. However, some ecologists have recently challenged this classic paradigm highlighting the importance of chance and stochasticity. Using a synthetic framework for community dynamics, here we show that, while deterministic descriptors predict coexistence, species similarity is limited in a more restrictive way in the presence of stochasticity. We analyse the stochastic extinction phenomenon, showing that extinction occurs as competitive overlap increases above a certain threshold well below its deterministic counterpart. We also prove that the extinction threshold cannot be ascribed only to demographic fluctuations around small population sizes. The more restrictive limit to species similarity is, therefore, a consequence of the complex interplay between competitive interactions and ecological drift. As a practical implication, we show that the existence of a stochastic limit to similarity has important consequences in the recovery of fragmented habitats. © 2015 The Author(s).
How similar can co-occurring species be in the presence of competition and ecological drift?
Capitán, José A.; Cuenda, Sara; Alonso, David
2015-01-01
If two species live on a single resource, the one with a slight advantage will out-compete the other: complete competitors cannot coexist. This is known as the competitive exclusion principle. If no extinction occurs, it is because evolutionary adaptation to slightly different niches takes place. Therefore, it is widely accepted that ecological communities are assembled by evolutionary differentiation and progressive adaptation of species to different niches. However, some ecologists have recently challenged this classic paradigm highlighting the importance of chance and stochasticity. Using a synthetic framework for community dynamics, here we show that, while deterministic descriptors predict coexistence, species similarity is limited in a more restrictive way in the presence of stochasticity. We analyse the stochastic extinction phenomenon, showing that extinction occurs as competitive overlap increases above a certain threshold well below its deterministic counterpart. We also prove that the extinction threshold cannot be ascribed only to demographic fluctuations around small population sizes. The more restrictive limit to species similarity is, therefore, a consequence of the complex interplay between competitive interactions and ecological drift. As a practical implication, we show that the existence of a stochastic limit to similarity has important consequences in the recovery of fragmented habitats. PMID:26269234
Host age modulates within-host parasite competition.
Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida
2015-05-01
In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Effects of intraspecific phenotypic variation on species coexistence.
Hausch, Stephen; Vamosi, Steven M; Fox, Jeremy W
2018-06-01
Intraspecific variation can promote or inhibit species coexistence, both by increasing species' competitive abilities, and by altering the relative strengths of intraspecific and interspecific competition. Effects of intraspecific variation on coexistence can occur via complementarity of different variants, and via a selection effect: initially-variable populations are more likely to contain highly competitive variants that might determine the ability of the population as a whole to both invade and resist invasion. We tested the effects of intraspecific variation and composition on coexistence by assaying the mutual invasibility of populations of two competing bean weevil species (Callosobruchus maculatus and C. chinensis) when each was initiated with one, three, or five genetically- and phenotypically-distinct lineages. Our results reveal that intraspecific variation is a double-edged sword for species coexistence. Increasing intraspecific variation increased species' abilities to invade, and to resist invasion, via selection effects and intraspecific niche complementarity among conspecific lineages, thereby creating the potential for exclusion among mismatched competitors. But intraspecific variation also increased the scope for resource partitioning, creating the potential for stable coexistence. Stable coexistence occurred only when intraspecific variation caused species to exhibit both relatively evenly-matched competitive abilities and sufficiently-strong resource partitioning. Our work explains the conflicting results of previous studies. © 2018 by the Ecological Society of America.
Alonzo, Suzanne H.; Heckman, Kellie L.
2010-01-01
Although theory generally predicts that males should reduce paternal care in response to cues that predict increased sperm competition and decreased paternity, empirical patterns are equivocal. Some studies have found the predicted decrease in male care with increased sperm competition, while even more studies report no effect of paternity or sperm competition on male care. Here, we report the first example, to our knowledge, of paternal care increasing with the risk and intensity of sperm competition, in the ocellated wrasse (Symphodus ocellatus). Theory also predicts that if paternal care varies and is important to female fitness, female choice among males and male indicators traits of expected paternal care should evolve. Despite a non-random distribution of mating success among nests, we found no evidence for female choice among parental males. Finally, we document the highest published levels of extra-pair paternity for a species with exclusive and obligate male care: genetic paternity analyses revealed cuckoldry at 100 per cent of nests and 28 per cent of all offspring were not sired by the male caring for them. While not predicted by any existing theory, these unexpected reproductive patterns become understandable if we consider how male and female mating and parental care interact simultaneously in this and probably many other species. PMID:19812085
Biosimilars: biologics that meet patients' needs and healthcare economics.
McCamish, Mark; Yoon, William; McKay, James
2016-09-01
Biologics have revolutionized medical care, yet uniform access to these effective medicines remains difficult due to the increasing costs of healthcare. As patent exclusivity on the early biologics wanes, regulatory and legal systems are adapting to bring competition to the field in the form of biosimilars. Biosimilars are biologics that offer the same clinical benefit in one or more of the same indications as the reference biologic drug and bring competition to the biologics space. Legislation creating a pathway resulting in the first US approvals of biosimilars has been in place since 2010, but the regulatory methodology and science of evaluating the sameness of two biologics has been in use for decades. The demonstration of biosimilarity is based on the "totality of the evidence" concept, in which all structural, functional, nonclinical, and clinical data for a biosimilar product are evaluated to show high similarity to the reference product. Clinical trials for biosimilars, therefore, are designed to confirm similarity, or discover clinically relevant differences between the reference product and the biosimilar, should differences exist. It is hoped that competition from biosimilars will drive biologic innovation and increase patient access to biologics.
Community assembly and diversification in Indo-Pacific coral reef fishes
Hubert, Nicolas; Paradis, Emmanuel; Bruggemann, Henrich; Planes, Serge
2011-01-01
Theories of species coexistence have played a central role in ecology and evolutionary studies of the origin and maintenance of biodiversity in highly diverse communities. The concept of niche and associated theories predict that competition for available ecological space leads to a ceiling in species richness that influences further diversification patterns. By contrast, the neutral theory supports that speciation is stochastic and diversity independent. We examined the phylogenetic community structure and diversification rates in three families and 14 sites within coral reef fish communities from the Indian and Pacific oceans. Using the phylogenetic relationships among 157 species estimated with 2300 bp of mitochondrial DNA, we tested predictions in terms of species coexistence from the neutral and niche theories. At the regional scale, our findings suggest that phylogenetic community structure shifts during community assembly to a pattern of dispersion as a consequence of allopatric speciation in recent times but overall, variations in diversification rates did not relate with sea level changes. At the local scale, the phylogenetic community structure is consistent with a neutral model of community assembly since no departure from a random sorting of species was observed. The present results support a neutral model of community assembly as a consequence of the stochastic and unpredictable nature of coral reefs favoring generalist and sedentary species competing for living space rather than trophic resources. As a consequence, the observed decrease in diversification rates may be seen as the result of a limited supply of living space as expected in a finite island model. PMID:22393499
Dakova, Ivanka; Karadjova, Irina; Georgieva, Ventsislava; Georgiev, George
2009-04-30
Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2'-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4M HNO(3). The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 micromol g(-1) for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 microg L(-1) (3 sigma), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 microg L(-1) Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample.
Updated methane, non-methane organic gas, and volatile organic compound calculations based on speciation data. Updated speciation and toxic emission rates for new model year 2010 and later heavy-duty diesel engines. Updated particulate matter emission rates for 2004 and later mod...
Sexual selection drives speciation in an Amazonian frog
Boul, K.E.; Funk, W.C.; Darst, C.R.; Cannatella, D.C.; Ryan, M.J.
2007-01-01
One proposed mechanism of speciation is divergent sexual selection, whereby divergence in female preferences and male signals results in behavioural isolation. Despite the appeal of this hypothesis, evidence for it remains inconclusive. Here, we present several lines of evidence that sexual selection is driving behavioural isolation and speciation among populations of an Amazonian frog (Physalaemus petersi). First, sexual selection has promoted divergence in male mating calls and female preferences for calls between neighbouring populations, resulting in strong behavioural isolation. Second, phylogenetic analysis indicates that populations have become fixed for alternative call types several times throughout the species' range, and coalescent analysis rejects genetic drift as a cause for this pattern, suggesting that this divergence is due to selection. Finally, gene flow estimated with microsatellite loci is an average of 30 times lower between populations with different call types than between populations separated by a similar geographical distance with the same call type, demonstrating genetic divergence and incipient speciation. Taken together, these data provide strong evidence that sexual selection is driving behavioural isolation and speciation, supporting sexual selection as a cause for speciation in the wild. ?? 2006 The Royal Society.
Metals, Health and the Environment – Emergence of Correlations Between Speciation and Effects
Williams, David R.
2004-01-01
Over the last half-century both the identification of the causes of diseases and the use of inorganic compounds to treat such conditions have been considerably enlightened through our emerging capabilities to identify the pivotal chemical species involved. The ‘duty of care’ placed upon scientists to protect the environment from manufactured chemicals and to limit their effects upon humans therefrom is best realised from a speciation knowledge database. This paper discusses categorising chemicals in terms of their persistence, bioaccumulation, and toxicities and uses speciation information to optimise desirable effects of chemicals in several applications such as the manufacture of pulp for paper and in the foliar nutrition of crops. Simultaneously, the chemical wasting side effects of industrial overdosing is easily avoided if speciation approaches are used. The move towards new environmentally friendly ligand agents is described and methods of finding substitute agents (often combinations of two or more chemicals) to replace nonbiodegradable EDTA. The geosphere migration of metals through the environment is discussed in terms of speciation. Future objectives discussed include improved means of communicating speciation-based recommendations to decision makers. PMID:18365083
New analytic results for speciation times in neutral models.
Gernhard, Tanja
2008-05-01
In this paper, we investigate the standard Yule model, and a recently studied model of speciation and extinction, the "critical branching process." We develop an analytic way-as opposed to the common simulation approach-for calculating the speciation times in a reconstructed phylogenetic tree. Simple expressions for the density and the moments of the speciation times are obtained. Methods for dating a speciation event become valuable, if for the reconstructed phylogenetic trees, no time scale is available. A missing time scale could be due to supertree methods, morphological data, or molecular data which violates the molecular clock. Our analytic approach is, in particular, useful for the model with extinction, since simulations of birth-death processes which are conditioned on obtaining n extant species today are quite delicate. Further, simulations are very time consuming for big n under both models.
The shape and temporal dynamics of phylogenetic trees arising from geographic speciation.
Pigot, Alex L; Phillimore, Albert B; Owens, Ian P F; Orme, C David L
2010-12-01
Phylogenetic trees often depart from the expectations of stochastic models, exhibiting imbalance in diversification among lineages and slowdowns in the rate of lineage accumulation through time. Such departures have led to a widespread perception that ecological differences among species or adaptation and subsequent niche filling are required to explain patterns of diversification. However, a key element missing from models of diversification is the geographical context of speciation and extinction. In this study, we develop a spatially explicit model of geographic range evolution and cladogenesis, where speciation arises via vicariance or peripatry, and explore the effects of these processes on patterns of diversification. We compare the results with those observed in 41 reconstructed avian trees. Our model shows that nonconstant rates of speciation and extinction are emergent properties of the apportioning of geographic ranges that accompanies speciation. The dynamics of diversification exhibit wide variation, depending on the mode of speciation, tendency for range expansion, and rate of range evolution. By varying these parameters, the model is able to capture many, but not all, of the features exhibited by birth-death trees and extant bird clades. Under scenarios with relatively stable geographic ranges, strong slowdowns in diversification rates are produced, with faster rates of range dynamics leading to constant or accelerating rates of apparent diversification. A peripatric model of speciation with stable ranges also generates highly unbalanced trees typical of bird phylogenies but fails to produce realistic range size distributions among the extant species. Results most similar to those of a birth-death process are reached under a peripatric speciation scenario with highly volatile range dynamics. Taken together, our results demonstrate that considering the geographical context of speciation and extinction provides a more conservative null model of diversification and offers a very different perspective on the phylogenetic patterns expected in the absence of ecology.
NASA Astrophysics Data System (ADS)
Stokes, M.; Perron, J. T.
2017-12-01
Freshwater systems host exceptionally species-rich communities whose spatial structure is dictated by the topology of the river networks they inhabit. Over geologic time, river networks are dynamic; drainage basins shrink and grow, and river capture establishes new connections between previously separated regions. It has been hypothesized that these changes in river network structure influence the evolution of life by exchanging and isolating species, perhaps boosting biodiversity in the process. However, no general model exists to predict the evolutionary consequences of landscape change. We couple a neutral community model of freshwater organisms to a landscape evolution model in which the river network undergoes drainage divide migration and repeated river capture. Neutral community models are macro-ecological models that include stochastic speciation and dispersal to produce realistic patterns of biodiversity. We explore the consequences of three modes of speciation - point mutation, time-protracted, and vicariant (geographic) speciation - by tracking patterns of diversity in time and comparing the final result to an equilibrium solution of the neutral model on the final landscape. Under point mutation, a simple model of stochastic and instantaneous speciation, the results are identical to the equilibrium solution and indicate the dominance of the species-area relationship in forming patterns of diversity. The number of species in a basin is proportional to its area, and regional species richness reaches its maximum when drainage area is evenly distributed among sub-basins. Time-protracted speciation is also modeled as a stochastic process, but in order to produce more realistic rates of diversification, speciation is not assumed to be instantaneous. Rather, each new species must persist for a certain amount of time before it is considered to be established. When vicariance (geographic speciation) is included, there is a transient signature of increased regional diversity after river capture. The results indicate that the mode of speciation and the rate of speciation relative to the rate of divide migration determine the evolutionary signature of river capture.
Speciation gradients and the distribution of biodiversity.
Schluter, Dolph; Pennell, Matthew W
2017-05-31
Global patterns of biodiversity are influenced by spatial and environmental variations in the rate at which new species form. We relate variations in speciation rates to six key patterns of biodiversity worldwide, including the species-area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness. Although they sometimes mirror biodiversity patterns, recent rates of speciation, at the tip of the tree of life, are often highest where species richness is low. Speciation gradients therefore shape, but are also shaped by, biodiversity gradients and are often more useful for predicting future patterns of biodiversity than for interpreting the past.
New mitochondrial DNA data affirm the importance of Pleistocene speciation in North American birds.
Johnson, Ned K; Cicero, Carla
2004-05-01
The timing of origin of modern North American bird species in relation to Pleistocene glaciations has long been the topic of significant discussion and disagreement. Recently, Klicka and Zink (1997) and Avise and Walker (1998) enlivened this debate by using calibrated molecular distance values to estimate timing of speciations. Here we use new molecular studies to test their conclusions. Molecular distance values for 39 pairs of proven sister species, 27 of which are based on new data, alter the currently perceived pattern that avian species splits occurred mainly in the Pliocene and early-mid-Pleistocene. Mitochondrial DNA divergence values for this set of taxa showed a skewed distribution pointing toward relatively young speciation times, in contrast to the pattern presented by Klicka and Zink (1997) for 35 sister plus non-sister species pairs. Our pattern was not significantly different from that of Avise and Walker (1998) for "intraspecific phylogroups," some of which are species. We conclude that the entire Pleistocene, including the last two glacial cycles (<250,000 years ago), was important in speciations of modern North American birds. A substantial number of speciations were both initiated and completed in the last 250,000 years. Simultaneously, many taxa began to diverge in the Pleistocene but their speciations are not yet complete (per Avise and Walker 1998). The suggestion that durations of speciations average two million years is probably a substantial overestimate.
Ecological Impacts of Reverse Speciation in Threespine Stickleback.
Rudman, Seth M; Schluter, Dolph
2016-02-22
Young species are highly prone to extinction via increased gene flow after human-caused environmental changes. This mechanism of biodiversity loss, often termed reverse speciation or introgressive extinction, is of exceptional interest because the parent species are typically highly differentiated ecologically. Reverse speciation events are potentially powerful case studies for the role of evolution in driving ecological changes, as the phenotypic shifts associated with introgressive extinction can be large and they occur over particularly short timescales. Furthermore, reverse speciation can lead to novel phenotypes, which may in turn produce novel ecological effects. Here we investigate the ecological shift associated with reverse speciation in threespine stickleback fish using a field study and a replicated experiment. We find that an instance of introgressive extinction had cascading ecological consequences that altered the abundance of both aquatic prey and the pupating aquatic insects that emerged into the terrestrial ecosystem. The community and ecosystem impacts of reverse speciation were novel, and yet they were also predictable based on ecological and morphological considerations. The study suggests that knowledge about the community ecology and changes in functional morphology of a dominant species may lead to some predictive power for the ecological effects of evolutionary change. Moreover, the rapid nature and resultant ecological impacts associated with reverse speciation demonstrates the interplay between biodiversity, evolutionary change, and ecosystem function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Refining the conditions for sympatric ecological speciation.
Débarre, F
2012-12-01
Can speciation occur in a single population when different types of resources are available, in the absence of any geographical isolation, or any spatial or temporal variation in selection? The controversial topics of sympatric speciation and ecological speciation have already stimulated many theoretical studies, most of them agreeing on the fact that mechanisms generating disruptive selection, some level of assortment, and enough heterogeneity in the available resources, are critical for sympatric speciation to occur. Few studies, however, have combined the three factors and investigated their interactions. In this article, I analytically derive conditions for sympatric speciation in a general model where the distribution of resources can be uni- or bimodal, and where a parameter controls the range of resources that an individual can exploit. This approach bridges the gap between models of a unimodal continuum of resources and Levene-type models with discrete resources. I then test these conditions against simulation results from a recently published article (Thibert-Plante & Hendry, 2011, J. Evol. Biol. 24: 2186-2196) and confirm that sympatric ecological speciation is favoured when (i) selection is disruptive (i.e. individuals with an intermediate trait are at a local fitness minimum), (ii) resources are differentiated enough and (iii) mating is assortative. I also discuss the role of mating preference functions and the need (or lack thereof) for bimodality in resource distributions for diversification. © 2012 The Author. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Wu, Hong; Jin, Yan; Han, Weiying; Miao, Qiang; Bi, Shuping
2006-07-01
A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH 4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h - 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l - 1 for Hg 2+ and 2.0 ng l - 1 for CH 3Hg +. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l - 1 of Hg 2+ and CH 3Hg + were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.
Anagenesis, Cladogenesis, and Speciation on Islands.
Emerson, Brent C; Patiño, Jairo
2018-05-03
Anagenesis and cladogenesis are fundamental evolutionary concepts, but are increasingly being adopted as speciation models in the field of island biogeography. Here, we review the origin of the terms 'anagenetic' and 'cladogenetic' speciation, critique their utility, and finally suggest alternative terminology that better describes the geographical relationships of insular sister species. Copyright © 2018 Elsevier Ltd. All rights reserved.
Speciation and amphotericin B sensitivity studies on blood isolates of Candida from burned patients
Stieritz, Donald D.; Law, Edward J.; Holder, Ian Alan
1973-01-01
Methods of speciating Candida isolates from clinical specimens are described and the necessity of speciation is emphasized. Differences in susceptibility of C. albicans and C. tropicalis to amphotericin B were observed and the implications of this in relation to treatment with amphotericin B and the development of resistance are discussed. PMID:4578160
High Working Memory Capacity Predicts Less Retrieval Induced Forgetting
Mall, Jonathan T.; Morey, Candice C.
2013-01-01
Background Working Memory Capacity (WMC) is thought to be related to executive control and focused memory search abilities. These two hypotheses make contrasting predictions regarding the effects of retrieval on forgetting. Executive control during memory retrieval is believed to lead to retrieval induced forgetting (RIFO) because inhibition of competing memory traces during retrieval renders them temporarily less accessible. According to this suggestion, superior executive control should increase RIFO. Alternatively, superior focused search abilities could diminish RIFO, because delimiting the search set reduces the amount of competition between traces and thus the need for inhibition. Some evidence suggests that high WMC is related to more RIFO, which is inconsistent with the focused search hypothesis. Methodology/Principal Findings Using the RIFO paradigm, we created distinct and overlapping categories to manipulate the amount of competition between them. This overlap increased competition between some categories while exclusive use of weak exemplars ensured negligible effects of output interference and integration. Low WMC individuals exhibited RIFO within and between overlapping categories, indicating the effect of resolving competition during retrieval. High WMC individuals only exhibited between-category RIFO, suggesting they experienced reduced competition resolution demands. Low WMC Individuals exhibited the strongest RIFO and no retrieval benefits when interference resolution demands were high. Conclusions/Significance Our findings qualify the inhibitory explanation for RIFO by incorporating the focused search hypothesis for materials that are likely to pose extraordinary challenges at retrieval. The results highlight the importance of considering individual differences in retrieval-induced effects and qualify existing models of these effects. PMID:23326359
High working memory capacity predicts less retrieval induced forgetting.
Mall, Jonathan T; Morey, Candice C
2013-01-01
Working Memory Capacity (WMC) is thought to be related to executive control and focused memory search abilities. These two hypotheses make contrasting predictions regarding the effects of retrieval on forgetting. Executive control during memory retrieval is believed to lead to retrieval induced forgetting (RIFO) because inhibition of competing memory traces during retrieval renders them temporarily less accessible. According to this suggestion, superior executive control should increase RIFO. Alternatively, superior focused search abilities could diminish RIFO, because delimiting the search set reduces the amount of competition between traces and thus the need for inhibition. Some evidence suggests that high WMC is related to more RIFO, which is inconsistent with the focused search hypothesis. Using the RIFO paradigm, we created distinct and overlapping categories to manipulate the amount of competition between them. This overlap increased competition between some categories while exclusive use of weak exemplars ensured negligible effects of output interference and integration. Low WMC individuals exhibited RIFO within and between overlapping categories, indicating the effect of resolving competition during retrieval. High WMC individuals only exhibited between-category RIFO, suggesting they experienced reduced competition resolution demands. Low WMC Individuals exhibited the strongest RIFO and no retrieval benefits when interference resolution demands were high. Our findings qualify the inhibitory explanation for RIFO by incorporating the focused search hypothesis for materials that are likely to pose extraordinary challenges at retrieval. The results highlight the importance of considering individual differences in retrieval-induced effects and qualify existing models of these effects.
The effects of intraspecific competition and stabilizing selection on a polygenic trait.
Bürger, Reinhard; Gimelfarb, Alexander
2004-01-01
The equilibrium properties of an additive multilocus model of a quantitative trait under frequency- and density-dependent selection are investigated. Two opposing evolutionary forces are assumed to act: (i) stabilizing selection on the trait, which favors genotypes with an intermediate phenotype, and (ii) intraspecific competition mediated by that trait, which favors genotypes whose effect on the trait deviates most from that of the prevailing genotypes. Accordingly, fitnesses of genotypes have a frequency-independent component describing stabilizing selection and a frequency- and density-dependent component modeling competition. We study how the equilibrium structure, in particular, number, degree of polymorphism, and genetic variance of stable equilibria, is affected by the strength of frequency dependence, and what role the number of loci, the amount of recombination, and the demographic parameters play. To this end, we employ a statistical and numerical approach, complemented by analytical results, and explore how the equilibrium properties averaged over a large number of genetic systems with a given number of loci and average amount of recombination depend on the ecological and demographic parameters. We identify two parameter regions with a transitory region in between, in which the equilibrium properties of genetic systems are distinctively different. These regions depend on the strength of frequency dependence relative to pure stabilizing selection and on the demographic parameters, but not on the number of loci or the amount of recombination. We further study the shape of the fitness function observed at equilibrium and the extent to which the dynamics in this model are adaptive, and we present examples of equilibrium distributions of genotypic values under strong frequency dependence. Consequences for the maintenance of genetic variation, the detection of disruptive selection, and models of sympatric speciation are discussed. PMID:15280253
Feder, Jeffrey L.; Nosil, Patrik; Flaxman, Samuel M.
2014-01-01
Many hypotheses have been put forth to explain the origin and spread of inversions, and their significance for speciation. Several recent genic models have proposed that inversions promote speciation with gene flow due to the adaptive significance of the genes contained within them and because of the effects inversions have on suppressing recombination. However, the consequences of inversions for the dynamics of genome wide divergence across the speciation continuum remain unclear, an issue we examine here. We review a framework for the genomics of speciation involving the congealing of the genome into alternate adaptive states representing species (“genome wide congealing”). We then place inversions in this context as examples of how genetic hitchhiking can potentially hasten genome wide congealing. Specifically, we use simulation models to (i) examine the conditions under which inversions may speed genome congealing and (ii) quantify predicted magnitudes of these effects. Effects of inversions on promoting speciation were most common and pronounced when inversions were initially fixed between populations before secondary contact and adaptation involved many genes with small fitness effects. Further work is required on the role of underdominance and epistasis between a few loci of major effect within inversions. The results highlight five important aspects of the roles of inversions in speciation: (i) the geographic context of the origins and spread of inversions, (ii) the conditions under which inversions can facilitate divergence, (iii) the magnitude of that facilitation, (iv) the extent to which the buildup of divergence is likely to be biased within vs. outside of inversions, and (v) the dynamics of the appearance and disappearance of exceptional divergence within inversions. We conclude by discussing the empirical challenges in showing that inversions play a central role in facilitating speciation with gene flow. PMID:25206365
Stankowski, Sean
2013-05-01
Speciation is the process by which reproductive isolation evolves between populations. Two general models of speciation have been proposed: ecological speciation, where reproductive barriers evolve due to ecologically based divergent selection, and mutation-order speciation, where populations fix different mutations as they adapt to similar selection pressures. I evaluate these alternative models and determine the progress of speciation in a diverse group of land snails, genus Rhagada, inhabiting Rosemary Island. A recently derived keeled-flat morphotype occupies two isolated rocky hills, while globose-shelled snails inhabit the surrounding plains. The study of one hill reveals that they are separated by a narrow hybrid zone. As predicted by ecological speciation theory, there are local and landscape level associations between shell shape and habitat, and the morphological transition coincides with a narrow ecotone between the two distinct environments. Microsatellite DNA revealed a cline of hybrid index scores much wider than the morphological cline, further supporting the ecological maintenance of the morphotypes. The hybrid zone does not run through an area of low population density, as is expected for mutation-order hybrid zones, and there is a unimodal distribution of phenotypes at the centre, suggesting that there is little or no prezygotic isolation. Instead, these data suggest that the ecotypes are maintained by ecologically dependent postzygotic isolation (i.e. ecological selection against hybrids). Mitochondrial and Microsatellite DNA indicate that the keeled-flat form evolved recently, and without major historical disruptions to gene flow. The data also suggest that the two keeled-flat populations, inhabiting similar rocky hills, have evolved in parallel. These snails provide a complex example of ecological speciation in its early stages. © 2013 Blackwell Publishing Ltd.
Rosenberg, Erwin
2003-06-06
The use of mass spectrometry based on atmospheric pressure ionisation techniques (atmospheric pressure chemical ionisation, APCI, and electrospray ionisation, ESI) for speciation analysis is reviewed with emphasis on the literature published in and after 1999. This report accounts for the increasing interest that atmospheric pressure ionisation techniques, and in particular ESI, have found in the past years for qualitative and quantitative speciation analysis. In contrast to element-selective detectors, organic mass spectrometric techniques provide information on the intact metal species which can be used for the identification of unknown species (particularly with MS-MS detection) or the confirmation of the actual presence of species in a given sample. Due to the complexity of real samples, it is inevitable in all but the simplest cases to couple atmospheric pressure MS detection to a separation technique. Separation in the liquid phase (capillary electrophoresis or liquid chromatography in reversed phase, ion chromatographic or size-exclusion mode) is particularly suitable since the available techniques cover a very wide range of analyte polarities and molecular mass. Moreover, derivatisation can normally be avoided in liquid-phase separation. Particularly in complex environmental or biological samples, separation in one dimension is not sufficient for obtaining adequate resolution for all relevant species. In this case, multi-dimensional separation, based on orthogonal separation techniques, has proven successful. ESI-MS is also often used in parallel with inductively coupled plasma MS detection. This review is structured in two parts. In the first, the fundamentals of atmospheric pressure ionisation techniques are briefly reviewed. The second part of the review discusses recent applications including redox species, use of ESI-MS for structural elucidation of metal complexes, characterisation and quantification of small organometallic species with relevance to environment, health and food. Particular attention is given to the characterisation of biomolecules and metalloproteins (metallothioneins and phytochelatins) and to the investigation of the interaction of metals and biomolecules. Particularly in the latter field, ESI-MS is the ideal technique due to the softness of the ionisation process which allows to assume that the detected gas-phase ions are a true representation of the ions or ion-biomolecule complexes prevalent in solution. It is particularly this field, important to biochemistry, physiology and medical chemistry, where we can expect significant developments also in the future.
NASA Astrophysics Data System (ADS)
Miranda, Érica; Tofanello, Aryane; Brito, Adrianne; Lopes, David; Giacomelli, Fernando; Albuquerque, Lindomar; Costa, Fanny; Ferreira, Fabio; Araujo-Chaves, Juliana; de Castro, Carlos; Nantes, Iseli
2016-03-01
The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from fifteen days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After two months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with the gold surface. Therefore, the cysteine side chain of albumins is important for the colloidal stabilization of GNPs rather than as the reducing agent for the synthesis. Despite the presence of more reactive gold species at more acidic pH values, i.e., below
Role of natural nanoparticles on the speciation of Ni in andosols of la Reunion
NASA Astrophysics Data System (ADS)
Levard, Clément; Doelsch, Emmanuel; Rose, Jérôme; Masion, Armand; Basile-Doelsch, Isabelle; Proux, Olivier; Hazemann, Jean-Louis; Borschneck, Daniel; Bottero, Jean-Yves
2009-08-01
Andosols on the island of Réunion have high nickel (Ni) concentrations due to the natural pedo-geochemical background. Enhanced knowledge of Ni speciation is necessary to predict the bioavailability and potential toxicity of this element. Ni speciation in these andosols, marked by the presence of high amounts of natural aluminosilicate nanoparticles, was investigated in two complementary systems: (i) In a soil sample—densimetric fractionation was first performed in order to separate the potential bearing phases, prior to Ni speciation characterization. (ii) In a synthetic sample—Ni reactivity with synthetic aluminosilicate nanoparticle analogs were studied. In both cases, Ni speciation was determined using X-ray absorption spectroscopy (XAS). The results revealed that Ni had the same local environment in both systems (natural and synthetic systems), and Ni was chemically linked to natural short-range ordered aluminosilicates or analogs. This complex represented about 75% of the total Ni in the studied soil.
McDermott, Shannon R.; Noor, Mohamed A. F.
2012-01-01
In contrast to the prevailing dogma in the 1990s, recent studies have suggested that an evolutionary history of segregation distortion within species may contribute to sterility in species hybrids. However, this recent work identified segregation distortion exclusively in species hybrids which may never have had an evolutionary history of segregation distortion in either parent species. We expand on previous work by using a strain of Drosophila persimilis exhibiting segregation distortion within species to generate QTL maps for segregation distortion and hybrid sterility in crosses between D. persimilis and D. pseudoobscura. The maps localize regions along the XR contributing to both phenotypes, and they indicate one region of overlap between the two maps. This overlap could provide preliminary evidence for an association between segregation distortion within species and hybrid sterility, but the localizations are currently too broad to have confidence in this conclusion. This work is a first step towards possibly supporting a genetic conflict model of speciation in this system. PMID:22966762