Complement Depletion Protects Lupus-prone Mice from Ischemia-reperfusion-initiated Organ Injury
2012-10-25
injury, we sought to evaluate whether complement inhibition mitigates organ damage. We found that complement deple- tion with cobra venom factor... venom factor and C5a receptor antagonist were able to protect mice from local tissue damage, treatment with C5a receptor antagonist was not able to...Complement depletion or blockage of the complement pathway using molecules such as cobra venom factor (CVF) (24, 33) and C5a receptor antagonists (C5aRA
Complement Interaction with Trypanosomatid Promastigotes in Normal Human Serum
Domínguez, Mercedes; Moreno, Inmaculada; López-Trascasa, Margarita; Toraño, Alfredo
2002-01-01
In normal human serum (NHS), axenic promastigotes of Crithidia, Phytomonas, and Leishmania trigger complement activation, and from 1.2 to 1.8 × 105 C3 molecules are deposited per promastigote within 2.5 min. In Leishmania, promastigote C3 binding capacity remains constant during in vitro metacyclogenesis. C3 deposition on promastigotes activated through the classical complement pathway reaches a 50% maximum after ∼50 s, and represents >85% of total C3 bound. In C1q- and C2-deficient human sera, promastigotes cannot activate the classical pathway (CP) unless purified C1q or C2 factors, respectively, are supplemented, demonstrating a requirement for CP factor in promastigote C3 opsonization. NHS depleted of natural anti-Leishmania antibodies cannot trigger promastigote CP activation, but IgM addition restores C3 binding. Furthermore, Leishmania binds natural antibodies in ethylenediaminetetracetic acid (EDTA)-treated NHS; after EDTA removal, promastigote-bound IgM triggers C3 deposition in natural antibody-depleted NHS. Serum collectins and pentraxins thus do not participate significantly in NHS promastigote C3 opsonization. Real-time kinetic analysis of promastigote CP-mediated lysis indicates that between 85–95% of parasites are killed within 2.5 min of serum contact. These data indicate that successful Leishmania infection in man must immediately follow promastigote transmission, and that Leishmania evasion strategies are shaped by the selective pressure exerted by complement. PMID:11854358
Schwartz, Justin T.; Barker, Jason H.; Long, Matthew E.; Kaufman, Justin; McCracken, Jenna; Allen, Lee-Ann H.
2012-01-01
A fundamental step in the life cycle of F. tularensis is bacterial entry into host cells. F. tularensis activates complement, and recent data suggest that the classical pathway is required for complement factor C3 deposition on the bacterial surface. Nevertheless, C3 deposition is inefficient and neither the specific serum components necessary for classical pathway activation by F. tularensis in nonimmune human serum, nor the receptors that mediate infection of neutrophils has been defined. Herein human neutrophil uptake of GFP-expressing F. tularensis strains LVS and Schu S4 was quantified with high efficiency by flow cytometry. Using depleted sera and purified complement components we demonstrated first that C1q and C3 were essential for F. tularensis phagocytosis whereas C5 was not. Second, we used purification and immuno-depletion approaches to identify a critical role for natural IgM in this process, and then used a wbtA2 mutant to identify LPS O-antigen and capsule as prominent targets of these antibodies on the bacterial surface. Finally, we demonstrate using receptor-blocking antibodies that CR1 (CD35) and CR3 (CD11b/CD18) acted in concert for phagocytosis of opsonized F. tularensis by human neutrophils, whereas CR3 and CR4 (CD11c/CD18) mediated infection of human monocyte-derived macrophages. Altogether, our data provide fundamental insight into mechanisms of F. tularensis phagocytosis and support a model whereby natural IgM binds to surface capsular and O-antigen polysaccharides of F. tularensis and initiates the classical complement cascade via C1q to promote C3-opsonization of the bacterium and phagocytosis via CR3 and either CR1 or CR4 in a phagocyte-specific manner. PMID:22888138
Goonetilleke, U. R.; Scarborough, M.; Ward, S. A.; Hussain, S.; Kadioglu, A.; Gordon, S. B.
2012-01-01
ABSTRACT Pneumococcal meningitis can lead to death or serious neurological sequelae as a result of the host inflammatory response. We investigated the association between host response protein expression and outcome in patients with pneumococcal meningitis. Cerebrospinal fluid (CSF) was obtained from 80 patients with pneumococcal meningitis (40 nonsurvivors and 40 survivors) and 10 normal controls. Candidate proteins were analyzed for an association with survival. Complement C3 levels were 5-fold lower in nonsurvivors than in survivors (P < 0.05). This C3 reduction was not associated with lower levels in serum, indicating a compartmentalized CSF response. Transferrin levels were significantly higher in CSF (but not serum) from nonsurvivors than in CSF from survivors, suggestive of blood-brain barrier damage. Classical apoptosis proteins caspase 3 and apoptosis-inducing factor were not present in CSF. Expression of creatine kinase BB in clinically infected CSF suggested neuronal necrosis, but there was no clear association between level of expression and clinical outcome. Increased blood-brain barrier permeability and complement C3 depletion may have a role in determining outcome from bacterial meningitis. Therapeutic use of citicoline or caspase inhibitors is unlikely to have beneficial effects in patients with meningitis. PMID:22415003
A previously unrecognized role of C3a in proteinuric progressive nephropathy
Morigi, Marina; Locatelli, Monica; Rota, Cinzia; Buelli, Simona; Corna, Daniela; Rizzo, Paola; Abbate, Mauro; Conti, Debora; Perico, Luca; Longaretti, Lorena; Benigni, Ariela; Zoja, Carlamaria; Remuzzi, Giuseppe
2016-01-01
Podocyte loss is the initial event in the development of glomerulosclerosis, the structural hallmark of progressive proteinuric nephropathies. Understanding mechanisms underlying glomerular injury is the key challenge for identifying novel therapeutic targets. In mice with protein-overload induced by bovine serum albumin (BSA), we evaluated whether the alternative pathway (AP) of complement mediated podocyte depletion and podocyte-dependent parietal epithelial cell (PEC) activation causing glomerulosclerosis. Factor H (Cfh−/−) or factor B-deficient mice were studied in comparison with wild-type (WT) littermates. WT+BSA mice showed podocyte depletion accompanied by glomerular complement C3 and C3a deposits, PEC migration to capillary tuft, proliferation, and glomerulosclerosis. These changes were more prominent in Cfh−/− +BSA mice. The pathogenic role of AP was documented by data that factor B deficiency preserved glomerular integrity. In protein-overload mice, PEC dysregulation was associated with upregulation of CXCR4 and GDNF/c-Ret axis. In vitro studies provided additional evidence of a direct action of C3a on proliferation and CXCR4-related migration of PECs. These effects were enhanced by podocyte-derived GDNF. In patients with proteinuric nephropathy, glomerular C3/C3a paralleled PEC activation, CXCR4 and GDNF upregulation. These results indicate that mechanistically uncontrolled AP complement activation is not dispensable for podocyte-dependent PEC activation resulting in glomerulosclerosis. PMID:27345360
Valenzuela, Nicole M.; Thomas, Kimberly A.; Mulder, Arend; Parry, Graham C.; Panicker, Sandip; Reed, Elaine F.
2017-01-01
Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. PMID:28640789
Complement C3 participation in monocyte adhesion to different surfaces.
McNally, A K; Anderson, J M
1994-01-01
As part of an ongoing investigation into the role of the monocyte/macrophage in biocompatibility, a major goal is to identify the adhesion mechanisms that initiate and promote the observed in vivo morphologic progression of monocyte-to-macrophage-to-foreign body giant cell on biomaterials. We have exploited differently modified polystyrenes, specific component-depleted sera, and monoclonal antibodies (mAbs) to leukocyte integrins to ask what adhesion mechanisms mediate human blood monocyte adhesion to different surfaces in vitro. Preliminary findings are that monocyte interactions with fluorinated, siliconized, nitrogenated, and oxygenated surfaces are reduced by 50-100% when complement component C3-depleted serum is used for adsorption; reductions vary with material surface properties. Adhesion is restored on all surfaces when C3-depleted serum is replenished with purified C3. Monocyte adhesion to serum-adsorbed surfaces is inhibited by mAbs to the leukocyte integrin beta subunit, CD18 (mAbs 60.3 and MHM23), and partially inhibited by a mAb to the alpha subunit, CD11b (mAb 60.1), suggesting adhesive interactions between adsorbed C3bi (the hemolytically inactive form of the C3b fragment) and the leukocyte integrin CD11b/CD18. However, adsorbed fibrinogen reduces the effectiveness of these mAbs, indicating that alternative adhesion mechanisms may operate depending on the propensities of critical adhesion-mediating components to be adsorbed onto different surfaces. Images PMID:7937848
Inactivation of complement by Loxosceles reclusa spider venom.
Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T
1979-07-01
Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.
Ali, Youssif M; Kenawy, Hany I; Muhammad, Adnan; Sim, Robert B; Andrew, Peter W; Schwaeble, Wilhelm J
2013-01-01
The complement system is an essential component of the immune response, providing a critical line of defense against different pathogens including S. pneumoniae. Complement is activated via three distinct pathways: the classical (CP), the alternative (AP) and the lectin pathway (LP). The role of Pneumolysin (PLY), a bacterial toxin released by S. pneumoniae, in triggering complement activation has been studied in vitro. Our results demonstrate that in both human and mouse sera complement was activated via the CP, initiated by direct binding of even non-specific IgM and IgG3 to PLY. Absence of CP activity in C1q(-/-) mouse serum completely abolished any C3 deposition. However, C1q depleted human serum strongly opsonized PLY through abundant deposition of C3 activation products, indicating that the LP may have a vital role in activating the human complement system on PLY. We identified that human L-ficolin is the critical LP recognition molecule that drives LP activation on PLY, while all of the murine LP recognition components fail to bind and activate complement on PLY. This work elucidates the detailed interactions between PLY and complement and shows for the first time a specific role of the LP in PLY-mediated complement activation in human serum.
Ali, Youssif M.; Kenawy, Hany I.; Muhammad, Adnan; Sim, Robert B.
2013-01-01
The complement system is an essential component of the immune response, providing a critical line of defense against different pathogens including S. pneumoniae. Complement is activated via three distinct pathways: the classical (CP), the alternative (AP) and the lectin pathway (LP). The role of Pneumolysin (PLY), a bacterial toxin released by S. pneumoniae, in triggering complement activation has been studied in vitro. Our results demonstrate that in both human and mouse sera complement was activated via the CP, initiated by direct binding of even non-specific IgM and IgG3 to PLY. Absence of CP activity in C1q−/− mouse serum completely abolished any C3 deposition. However, C1q depleted human serum strongly opsonized PLY through abundant deposition of C3 activation products, indicating that the LP may have a vital role in activating the human complement system on PLY. We identified that human L-ficolin is the critical LP recognition molecule that drives LP activation on PLY, while all of the murine LP recognition components fail to bind and activate complement on PLY. This work elucidates the detailed interactions between PLY and complement and shows for the first time a specific role of the LP in PLY-mediated complement activation in human serum. PMID:24349316
Loeschenberger, Beatrix; Niess, Lea; Würzner, Reinhard; Schwelberger, Hubert; Eder, Iris E; Puhr, Martin; Guenther, Julia; Troppmair, Jakob; Rudnicki, Michael; Neuwirt, Hannes
2018-02-01
One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ramos-Sevillano, Elisa; Urzainqui, Ana; Campuzano, Susana; Moscoso, Miriam; González-Camacho, Fernando; Domenech, Mirian; Rodríguez de Córdoba, Santiago; Sánchez-Madrid, Francisco; Brown, Jeremy S.; García, Ernesto
2014-01-01
The complement system is a key component of the host immune response for the recognition and clearance of Streptococcus pneumoniae. In this study, we demonstrate that the amidase LytA, the main pneumococcal autolysin, inhibits complement-mediated immunity independently of effects on pneumolysin by a complex process of impaired complement activation, increased binding of complement regulators, and direct degradation of complement C3. The use of human sera depleted of either C1q or factor B confirmed that LytA prevented activation of both the classical and alternative pathways, whereas pneumolysin inhibited only the classical pathway. LytA prevented binding of C1q and the acute-phase protein C-reactive protein to S. pneumoniae, thereby reducing activation of the classical pathway on the bacterial surface. In addition, LytA increased recruitment of the complement downregulators C4BP and factor H to the pneumococcal cell wall and directly cleaved C3b and iC3b to generate degradation products. As a consequence, C3b deposition and phagocytosis increased in the absence of LytA and were markedly enhanced for the lytA ply double mutant, confirming that a combination of LytA and Ply is essential for the establishment of pneumococcal pneumonia and sepsis in a murine model of infection. These data demonstrate that LytA has pleiotropic effects on complement activation, a finding which, in combination with the effects of pneumolysin on complement to assist with pneumococcal complement evasion, confirms a major role of both proteins for the full virulence of the microorganism during septicemia. PMID:25404032
1973-01-01
In a study of 55 persons with dengue haemorrhagic fever—36 of whom showed the dengue shock syndrome—clinical, haematological, virological, and serological changes were correlated with serial measurements of complement components and immunopathological studies. Viruses dengue-1 or dengue-2 were isolated from the sera of 9 patients. Serological responses indicative of secondary dengue virus infections were observed in 53 patients; 2 (infants) had primary infections. During the acute phase of the disease, dengue antibody titres rose logarithmically. Marked depression of complement components, especially C3, was observed. Activation of both the classical and alternative complement pathways was demonstrated, with depression of both C4 and C3 proactivator levels in most instances, although in some cases it appeared that one mechanism was involved to a greater extent than the other. The level of depression of C3 was correlated with the severity of the disease. Relatively stable transferrin levels indicated that depletion of complement proteins was not primarily due to extravasation. Fibrinogen levels were depressed and fibrinogen split products were found in the plasma. The accumulated data provide further evidence of the central role that activated complement components play in the pathogenesis of dengue haemorrhagic fever. PMID:4575523
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, John B.; Capraro, Gerald A.; Parks, Griffith D.
2008-06-20
The complement system is an important component of the innate immune response to virus infection. The role of human complement pathways in the in vitro neutralization of three closely related paramyxoviruses, Simian Virus 5 (SV5), Mumps virus (MuV) and Human Parainfluenza virus type 2 (HPIV2) was investigated. Sera from ten donors showed high levels of neutralization against HPIV2 that was largely complement-independent, whereas nine of ten donor sera were found to neutralize SV5 and MuV only in the presence of active complement pathways. SV5 and MuV neutralization proceeded through the alternative pathway of the complement cascade. Electron microscopy studies andmore » biochemical analyses showed that treatment of purified SV5 with human serum resulted in C3 deposition on virions and the formation of massive aggregates, but there was relatively little evidence of virion lysis. Treatment of MuV with human serum also resulted in C3 deposition on virions, however in contrast to SV5, MuV particles were lysed by serum complement and there was relatively little aggregation. Assays using serum depleted of complement factors showed that SV5 and MuV neutralization in vitro was absolutely dependent on complement factor C3, but was not dependent on downstream complement factors C5 or C8. Our results indicate that even though antibodies exist that recognize both SV5 and MuV, they are mostly non-neutralizing and viral inactivation in vitro occurs through the alternative pathway of complement. The implications of our work for development of paramyxovirus vectors and vaccines are discussed.« less
Role of Complement Activation in a Model of Adult Respiratory Distress Syndrome
Hosea, Stephen; Brown, Eric; Hammer, Carl; Frank, Michael
1980-01-01
The adult respiratory distress syndrome is characterized by arterial hypoxemia as a result of increased alveolar capillary permeability to serum proteins in the setting of normal capillary hydrostatic pressures. Because bacterial sepsis is prominent among the various diverse conditions associated with altered alveolar capillary permeability, we studied the effect of bacteremia with attendant complement activation on the sequestration of microorganisms and the leakage of albumin in the lungs of guinea pigs. Pneumococci were injected intravenously into guinea pigs and their localization was studied. Unlike normal guinea pigs, complement-depleted guinea pigs did not localize injected bacteria to the lungs. Preopsonization of organisms did not correct this defect in pulmonary localization of bacteria in complement-depleted animals, suggesting that a fluid-phase component of complement activation was required. Genetically C5-deficient mice showed no pulmonary localization of bacteria. C5-sufficient mice demonstrated the usual pulmonary localization, thus further suggesting that the activation of C5 might be important in this localization. The infusion of activated C5 increased alveolar capillary permeability to serum proteins as assayed by the amount of radioactive albumin sequestered in the lung. Neutropenic animals did not develop altered capillary permeability after challenge with activated C5. Thus, complement activation through C5, in the presence of neutrophils, induces alterations in pulmonary alveolar capillary permeability and causes localization of bacteria to the pulmonary parenchyma. Complement activation in other disease states could potentially result in similar clinical manifestations. PMID:7400321
Visan, Lucian; Rouleau, Nicolas; Proust, Emilie; Peyrot, Loïc; Donadieu, Arnaud; Ochs, Martina
2018-02-01
Currently marketed Streptococcus pneumoniae (Spn) vaccines, which contain polysaccharide capsular antigens from the most common Spn serotypes, have substantially reduced pneumococcal disease rates but have limited coverage. A trivalent pneumococcal protein vaccine containing pneumococcal choline-binding protein A (PcpA), pneumococcal histidine triad protein D (PhtD), and detoxified pneumolysin is being developed to provide broader, cross-serotype protection. Antibodies against detoxified pneumolysin protect against bacterial pneumonia by neutralizing Spn-produced pneumolysin, but how anti-PhtD and anti-PcpA antibodies protect against Spn has not been established. Here, we used a murine passive protection sepsis model to investigate the mechanism of protection by anti-PhtD and anti-PcpA antibodies. Depleting complement using cobra venom factor eliminated protection by anti-PhtD and anti-PcpA monoclonal antibodies (mAbs). Consistent with a requirement for complement, complement C3 deposition on Spn in vitro was enhanced by anti-PhtD and anti-PcpA mAbs and by sera from PhtD- and PcpA-immunized rabbits and humans. Moreover, in the presence of complement, anti-PhtD and anti-PcpA mAbs increased uptake of Spn by human granulocytes. Depleting neutrophils using anti-Ly6G mAbs, splenectomy, or a combination of both did not affect passive protection against Spn, whereas depleting macrophages using clodronate liposomes eliminated protection. These results suggest anti-PhtD and anti-PcpA antibodies induced by pneumococcal protein vaccines protect against Spn by a complement- and macrophage-dependent opsonophagocytosis.
CovR Regulates Streptococcus mutans Susceptibility To Complement Immunity and Survival in Blood
Alves, Lívia A.; Nomura, Ryota; Mariano, Flávia S.; Harth-Chu, Erika N.; Stipp, Rafael N.; Nakano, Kazuhiko
2016-01-01
Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro. Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans. Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization. PMID:27572331
Salam, Kazi Abdus; Wang, Richard Y; Grandinetti, Teresa; De Giorgi, Valeria; Alter, Harvey J; Allison, Robert D
2018-05-09
Erythrocytes bind circulating immune complexes (IC) and facilitate IC clearance from the circulation. Chronic hepatitis C virus (HCV) infection is associated with IC-related disorders. In this study we investigated the kinetics and mechanism of HCV and HCV-IC binding to and dissociation from erythrocytes. Cell culture-produced HCV was mixed with erythrocytes from healthy blood donors and erythrocyte-associated virus particles were quantified. Purified complement proteins, complement-depleted serum, and complement receptor antibodies were used to investigate complement-mediated HCV-erythrocyte binding. Purified HCV-specific immunoglobulin G from a chronic HCV-infected patient was used to study complement-mediated HCV-IC-erythrocyte binding. Binding of HCV to erythrocytes increased 200 to 1,000 fold after adding complement active human serum in the absence of antibody. Opsonization of free HCV occurred within 10 minutes and peak binding to erythrocytes was observed at 20-30 minutes. Complement protein C1 was required for binding, while C2, C3 and C4 significantly enhanced binding. Complement receptor 1 (CR1, CD35) antibodies blocked the binding of HCV to erythrocytes isolated from chronically infected HCV patients and healthy blood donors. HCV-ICs significantly enhanced complement-mediated binding to erythrocytes compared to unbound HCV. Dissociation of complement-opsonized HCV from erythrocytes depended on the presence of Factor I. HCV released by Factor I bound preferentially to CD19+ B cells compared to other leukocytes. These results demonstrate that complement mediates the binding of free and IC-associated HCV to CR1 on erythrocytes, and provide a mechanistic rationale for investigating the differential phenotypic expression of HCV-IC-related disease. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.
Meulenbroek, Elisabeth M.; de Haas, Masja; Brouwer, Conny; Folman, Claudia; Zeerleder, Sacha S.; Wouters, Diana
2015-01-01
In autoimmune hemolytic anemia autoantibodies against erythrocytes lead to increased clearance of the erythrocytes, which in turn results in a potentially fatal hemolytic anemia. Depending on whether IgG or IgM antibodies are involved, response to therapy is different. Proper identification of the isotype of the anti-erythrocyte autoantibodies is, therefore, crucial. However, detection of IgM autoantibodies can be challenging. We, therefore, set out to improve the detection of anti-erythrocyte IgM. Direct detection using a flow cytometry-based approach did not yield satisfactory improvements. Next, we analyzed whether the presence of complement C3 on a patient’s erythrocytes could be used for indirect detection of anti-erythrocyte IgM. To this end, we fractionated patients’ sera by size exclusion chromatography and tested which fractions yielded complement deposition on erythrocytes. Strikingly, we found that all patients with C3 on their erythrocytes according to standard diagnostic tests had an IgM anti-erythrocyte component that could activate complement, even if no such autoantibody had been detected with any other test. This also included all tested patients with only IgG and C3 on their erythrocytes, who would previously have been classified as having an IgG-only mediated autoimmune hemolytic anemia. Depleting patients’ sera of either IgG or IgM and testing the remaining complement activation confirmed this result. In conclusion, complement activation in autoimmune hemolytic anemia is mostly IgM-mediated and the presence of covalent C3 on patients’ erythrocytes can be taken as a footprint of the presence of anti-erythrocyte IgM. Based on this finding, we propose a diagnostic workflow that will aid in choosing the optimal treatment strategy. PMID:26354757
Induction of passive Heymann nephritis in complement component 6-deficient PVG rats.
Spicer, S Timothy; Tran, Giang T; Killingsworth, Murray C; Carter, Nicole; Power, David A; Paizis, Kathy; Boyd, Rochelle; Hodgkinson, Suzanne J; Hall, Bruce M
2007-07-01
Passive Heymann nephritis (PHN), a model of human membranous nephritis, is induced in susceptible rat strains by injection of heterologous antisera to rat renal tubular Ag extract. PHN is currently considered the archetypal complement-dependent form of nephritis, with the proteinuria resulting from sublytic glomerular epithelial cell injury induced by the complement membrane attack complex (MAC) of C5b-9. This study examined whether C6 and MAC are essential to the development of proteinuria in PHN by comparing the effect of injection of anti-Fx1A antisera into PVG rats deficient in C6 (PVG/C6(-)) and normal PVG rats (PVG/c). PVG/c and PVG/C6(-) rats developed similar levels of proteinuria at 3, 7, 14, and 28 days following injection of antisera. Isolated whole glomeruli showed similar deposition of rat Ig and C3 staining in PVG/c and PVG/C6(-) rats. C9 deposition was abundant in PVG/c but was not detected in PVG/C6(-) glomeruli, indicating C5b-9/MAC had not formed in PVG/C6(-) rats. There was also no difference in the glomerular cellular infiltrate of T cells and macrophages nor the size of glomerular basement membrane deposits measured on electron micrographs. To examine whether T cells effect injury, rats were depleted of CD8+ T cells which did not affect proteinuria in the early heterologous phase but prevented the increase in proteinuria associated with the later autologous phase. These studies showed proteinuria in PHN occurs without MAC and that other mechanisms, such as immune complex size, early complement components, CD4+ and CD8+ T cells, disrupt glomerular integrity and lead to proteinuria.
The role of the carbohydrate chains in complement (C3) fixation by solid-phase-bound human IgA.
Nikolova, E B; Tomana, M; Russell, M W
1994-01-01
In contrast to antigen-antibody complexes containing native human IgA, solid-phase-deposited IgA activates the alternative complement pathway and binds C3b. To investigate the role of carbohydrate chains in this, various human IgA preparations were treated with neuraminidase alone or together with N-glycanase or O-glycanase, or with mixed glycosidases from the oral bacterium, Streptococcus mitis. Depletion of oligosaccharides was determined by carbohydrate analysis. Removal of sialic acid and N-linked glycan chains greatly increased the C3b-fixing properties of normal serum IgA1 and IgA2. Myeloma IgA1 and IgA2 proteins and secretory IgA had higher C3b-binding activity than normal serum IgA, and this was further increased by removal of sialic acid and N-linked glycans. Fc alpha and Fc alpha-SC fragments of myeloma and secretory IgA1, respectively, but not Fab alpha fragments, obtained by cleavage with bacterial IgA1 proteases and also free secretory component, fixed C3b by the alternative pathway. Images Figure 4 PMID:7927504
Ly6G-mediated depletion of neutrophils is dependent on macrophages.
Bruhn, Kevin W; Dekitani, Ken; Nielsen, Travis B; Pantapalangkoor, Paul; Spellberg, Brad
2016-01-01
Antibody-mediated depletion of neutrophils is commonly used to study neutropenia. However, the mechanisms by which antibodies deplete neutrophils have not been well defined. We noticed that mice deficient in complement and macrophages had blunted neutrophil depletion in response to anti-Ly6G monoclonal antibody (MAb) treatment. In vitro, exposure of murine neutrophils to anti-Ly6G MAb in the presence of plasma did not result in significant depletion of cells, either in the presence or absence of complement. In vivo, anti-Ly6G-mediated neutrophil depletion was abrogated following macrophage depletion, but not complement depletion, indicating a requirement for macrophages to induce neutropenia by this method. These results inform the use and limitations of anti-Ly6G antibody as an experimental tool for depleting neutrophils in various immunological settings.
Beeton, Michael L; Daha, Mohamed R; El-Shanawany, Tariq; Jolles, Stephen R; Kotecha, Sailesh; Spiller, O Brad
2012-02-01
Many Gram-negative bacteria, unlike Gram-positive, are directly lysed by complement. Ureaplasma can cause septic arthritis and meningitis in immunocompromised individuals and induce premature birth. Ureaplasma has no cell wall, cannot be Gram-stain classified and its serum susceptibility is unknown. Survival of Ureaplasma serovars (SV) 1, 3, 6 and 14 (collectively Ureaplasma parvum) were measured following incubation with normal or immunoglobulin-deficient patient serum (relative to heat-inactivated controls). Blocking monoclonal anti-C1q antibody and depletion of calcium, immunoglobulins, or lectins were used to determine the complement pathway responsible for killing. Eighty-three percent of normal sera killed SV1, 67% killed SV6 and 25% killed SV14; greater killing correlating to strong immunoblot identification of anti-Ureaplasma antibodies; killing was abrogated following ProteinA removal of IgG1. All normal sera killed SV3 in a C1q-dependent fashion, irrespective of immunoblot identification of anti-Ureaplasma antibodies; SV3 killing was unaffected by total IgG removal by ProteinG, where complement activity was retained. Only one of four common variable immunodeficient (CVID) patient sera failed to kill SV3, despite profound IgM and IgG deficiency for all; however, killing of SV3 and SV1 was restored with therapeutic intravenous immunoglobulin therapy. Only the classical complement pathway mediated Ureaplasma-cidal activity, sometimes in the absence of observable immunoblot reactive bands. Copyright © 2011 Elsevier GmbH. All rights reserved.
Rituximab for Treatment of Membranoproliferative Glomerulonephritis and C3 Glomerulopathies
2017-01-01
Membranoproliferative glomerulonephritis (MPGN) is a histological pattern of injury resulting from predominantly subendothelial and mesangial deposition of immunoglobulins or complement factors with subsequent inflammation and proliferation particularly of the glomerular basement membrane. Recent classification of MPGN is based on pathogenesis dividing MPGN into immunoglobulin-associated MPGN and complement-mediated C3 glomerulonephritis (C3GN) and dense deposit disease (DDD). Current guidelines suggest treatment with steroids, cytotoxic agents with or without plasmapheresis only for subjects with progressive disease, that is, nephrotic range proteinuria and decline of renal function. Rituximab, a chimeric B-cell depleting anti-CD20 antibody, has emerged in the last decade as a treatment option for patients with primary glomerular diseases such as minimal change disease, focal-segmental glomerulosclerosis, or idiopathic membranous nephropathy. However, data on the use of rituximab in MPGN, C3GN, and DDD are limited to case reports and retrospective case series. Patients with immunoglobulin-associated and idiopathic MPGN who were treated with rituximab showed partial and complete responses in the majorities of cases. However, rituximab was not effective in few cases of C3GN and DDD. Despite promising results in immunoglobulin-associated and idiopathic MPGN, current evidence on this treatment remains weak, and controlled and prospective data are urgently needed. PMID:28573137
Hovingh, Elise S.; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H. M.
2017-01-01
Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis. PMID:28742139
Hovingh, Elise S; van den Broek, Bryan; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H M; Jongerius, Ilse
2017-07-01
Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis.
Md Yusof, Md Yuzaiful; Shaw, Daniel; El-Sherbiny, Yasser M; Dunn, Emma; Rawstron, Andy C; Emery, Paul; Vital, Edward M
2017-01-01
Objective To assess factors associated with primary and secondary non-response to rituximab in systemic lupus erythematosus (SLE) and evaluate management of secondary non-depletion non-response (2NDNR). Methods 125 patients with SLE treated with rituximab over 12 years were studied prospectively. A major clinical response was defined as improvement of all active British Isles Lupus Assessment Group (BILAG)-2004 domains to grade C/better and no A/B flare. Partial responders were defined by one persistent BILAG B. B-cell subsets were measured using highly sensitive flow cytometry. Patients with 2NDNR, defined by infusion reaction and defective depletion, were treated with ocrelizumab or ofatumumab. Results 117 patients had evaluable data. In cycle 1 (C1), 96/117 (82%) achieved BILAG response (major=50%, partial=32%). In multivariable analysis, younger age (OR 0.97, 95% CI 0.94 to 1.00) and B-cell depletion at 6 weeks (OR 3.22, 95% CI 1.24 to 8.33) increased the odds of major response. Complete depletion was predicted by normal complement and lower pre-rituximab plasmablasts and was not associated with increased serious infection post-rituximab. Seventy-seven (with data on 72) C1 responders were retreated on clinical relapse. Of these, 61/72 (85%) responded in cycle 2 (C2). Of the 11 C2 non-responders, nine met 2NDNR criteria (incidence=12%) and tested positive for anti-rituximab antibodies. Lack of concomitant immunosuppressant and higher pre-rituximab plasmablasts predicted 2NDNR. Five were switched to ocrelizumab/ofatumumab, and all depleted and responded. Conclusion Treatment with anti-CD20 agents can be guided by B-cell monitoring and should aim to achieve complete depletion. 2NDNR is associated with anti-rituximab antibodies, and switching to humanised agents restores depletion and response. In SLE, alternative anti-CD20 antibodies may be more consistently effective. PMID:28684557
Szott, Luisa M.; Horbett, Thomas A.
2010-01-01
The role of complement C3 in mediating adhesion of monocytes to plasma deposited tetraglyme surfaces was studied. Although fibrinogen (Fg) is usually considered the main factor in mediating phagocyte attachment, plasma deposited PEO-like tetraethylene glycol dimethyl ether (tetraglyme) coatings that have ultra-low Fg adsorption (< 10 ng/cm2) from low concentration solutions and low monocyte adhesion in vitro still show high phagocyte adhesion after short implantations and later become encapsulated when tested in vivo. To test whether higher Fg adsorption under in vivo conditions could explain the higher in vivo reactivity, we again measured the resistance of tetraglyme films to Fg adsorption. We found a surprising and previously unreported increased amount of adsorbed Fg on tetraglyme surfaces from higher concentration protein solutions. However, monocyte adhesion to tetraglyme did not markedly increase despite the increased Fg adsorption. We thus suspected proteins other than Fg must be responsible for the increased in vivo reactivity. We found that on tetraglyme pre-adsorbed with C3-depleted serum, monocyte adhesion was greatly reduced as compared to samples adsorbed with normal serum. Addition of exogenous pure C3 to the serum used to pre-adsorb the surfaces restored monocyte adhesion to tetraglyme coatings. While Fg clearly plays an important role in mediating monocyte adhesion to tetraglyme surfaces, the results show an additional role for adsorbed C3 in monocyte adhesion. PMID:20939050
Min, Li; Cheng, Jianbo; Zhao, Shengguo; Tian, He; Zhang, Yangdong; Li, Songli; Yang, Hongjian; Zheng, Nan; Wang, Jiaqi
2016-09-02
Heat stress (HS) has an enormous economic impact on the dairy industry. In recent years, many researchers have investigated changes in the gene expression and metabolomics profiles in dairy cows caused by HS. However, the proteomics profiles of heat-stressed dairy cows have not yet been completely elucidated. We compared plasma proteomics from HS-free and heat-stressed dairy cows using an iTRAQ labeling approach. After the depletion of high abundant proteins in the plasma, 1472 proteins were identified. Of these, 85 proteins were differentially abundant in cows exposed to HS relative to HS-free. Database searches combined with GO and KEGG pathway enrichment analyses revealed that many components of the complement and coagulation cascades were altered in heat-stressed cows compared with HS-free cows. Of these, many factors in the complement system (including complement components C1, C3, C5, C6, C7, C8, and C9, complement factor B, and factor H) were down-regulated by HS, while components of the coagulation system (including coagulation factors, vitamin K-dependent proteins, and fibrinogens) were up-regulated by HS. In conclusion, our results indicate that HS decreases plasma levels of complement system proteins, suggesting that immune function is impaired in dairy cows exposed to HS. Though many aspects of heat stress (HS) have been extensively researched, relatively little is known about the proteomics profile changes that occur during heat exposure. In this work, we employed a proteomics approach to investigate differential abundance of plasma proteins in HS-free and heat-stressed dairy cows. Database searches combined with GO and KEGG pathway enrichment analyses revealed that HS resulted in a decrease in complement components, suggesting that heat-stressed dairy cows have impaired immune function. In addition, through integrative analyses of proteomics and previous metabolomics, we showed enhanced glycolysis, lipid metabolic pathway shifts, and nitrogen repartitioning in dairy cows exposed to HS. Our findings expand our current knowledge on the effects of HS on plasma proteomics in dairy cows and offer a new perspective for future research. Copyright © 2016 Elsevier B.V. All rights reserved.
Giuntini, Serena; Reason, Donald C; Granoff, Dan M
2011-09-01
Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.
Beum, Paul V; Lindorfer, Margaret A; Beurskens, Frank; Stukenberg, P Todd; Lokhorst, Henk M; Pawluczkowycz, Andrew W; Parren, Paul W H I; van de Winkel, Jan G J; Taylor, Ronald P
2008-07-01
Binding of the CD20 mAb rituximab (RTX) to B lymphocytes in normal human serum (NHS) activates complement (C) and promotes C3b deposition on or in close proximity to cell-bound RTX. Based on spinning disk confocal microscopy analyses, we report the first real-time visualization of C3b deposition and C-mediated killing of RTX-opsonized B cells. C activation by RTX-opsonized Daudi B cells induces rapid membrane blebbing and generation of long, thin structures protruding from cell surfaces, which we call streamers. Ofatumumab, a unique mAb that targets a distinct binding site (the small loop epitope) of the CD20 Ag, induces more rapid killing and streaming on Daudi cells than RTX. In contrast to RTX, ofatumumab promotes streamer formation and killing of ARH77 cells and primary B cells from patients with chronic lymphocytic leukemia. Generation of streamers requires C activation; no streaming occurs in media, NHS-EDTA, or in sera depleted of C5 or C9. Streamers can be visualized in bright field by phase imaging, and fluorescence-staining patterns indicate they contain membrane lipids and polymerized actin. Streaming also occurs if cells are reacted in medium with bee venom melittin, which penetrates cells and forms membrane pores in a manner similar to the membrane-attack complex of C. Structures similar to streamers are demonstrable when Ab-opsonized sheep erythrocytes (non-nucleated cells) are reacted with NHS. Taken together, our findings indicate that the membrane-attack complex is a key mediator of streaming. Streamer formation may, thus, represent a membrane structural change that can occur shortly before complement-induced cell death.
Clay, Corey D.; Soni, Shilpa; Gunn, John S.; Schlesinger, Larry S.
2009-01-01
The bacterium Francisella tularensis (Ft) is a potential weapon of bioterrorism when aerosolized. Macrophage infection is necessary for disease progression and efficient phagocytosis by human macrophages requires serum opsonization by complement. Microbial complement activation leads to surface deposition of a highly regulated protein complex resulting in opsonization or membrane lysis. The nature of complement component C3 deposition, i.e., C3b (opsonization and lysis) or C3bi (opsonization only) fragment deposition, is central to the outcome of activation. In this study, we examine the mechanisms of Ft resistance to complement-mediated lysis, C3 component deposition on the Ft surface, and complement activation. Upon incubation in fresh nonimmune human serum, Schu S4 (Ft subsp. tularensis), Fn (Ft subsp. novicida), and LVS (Ft subsp. holarctica live vaccine strain) were resistant to complement-mediated lysis, but LVSG and LVSR (LVS strains altered in surface carbohydrate structures) were susceptible. C3 deposition, however, occurred on all strains. Complement-susceptible strains had markedly increased C3 fragment deposition, including the persistent presence of C3b compared with C3bi, which indicates that C3b inactivation results in survival of complement-resistant strains. C1q, an essential component of the classical activation pathway, was necessary for lysis of complement-susceptible strains and optimal C3 deposition on all strains. Finally, use of Francisella LPS mutants confirmed O Ag as a major regulator of complement resistance. These data provide evidence that pathogenic Francisella activate complement, but are resistant to complement-mediated lysis in part due to limited C3 deposition, rapid conversion of surface-bound C3b to C3bi, and the presence of LPS O Ag. PMID:18832715
C/NOFS, SWARM, and LISN Observations of Equatorial Plasma Bubbles
NASA Astrophysics Data System (ADS)
Valladares, C. E.; Coisson, P.; Buchert, S. C.; Huang, C.; Sheehan, R.
2017-12-01
We have used Langmuir Probe densities measured during the early commissioning phase of the SWARM mission and simultaneous number densities recorded with the PLP instrument on board the C/NOFS satellite to investigate the geometric characteristics of equatorial plasma bubbles (EPB). The SWARM satellites orbit in a polar orbit and the C/NOFS satellite has a near equatorial trajectory making it possible to precisely measure the north-south and the east-west width of plasma depletions. This unique satellite database is complemented with TEC values collected with hundreds of GPS receivers that belong to LISN and other networks that operate in South and Central America. The GPS receivers provide multiple and almost concurrent observations of the TEC depletions that are required to calculate the velocity of plasma bubbles as a function of time, latitude, and longitude. The bubble velocity field commonly decreases through the night from 150 to 0 m/s and from low to higher latitudes at a rate equal to 5 m/s/degree. This bubble velocity field is used to trace backward and forward in time the satellite and GPS observations and reconstruct plasma depletions in 3 dimensions. The 3-D geometry indicates that in December 2013, the EPBs most of the time correspond to a series of embedded shells that drift eastward with velocities that vary between 125 and 20 m/s. The 3-D reconstructed EPBs can be used to perform close comparisons with results of numerical simulations and 2-D observations conducted with coherent radars or imagers.
Luo, Shanshan; Hipler, Uta-Christina; Münzberg, Christin; Skerka, Christine; Zipfel, Peter F
2015-01-01
Candida albicans, the important human fungal pathogen uses multiple evasion strategies to control, modulate and inhibit host complement and innate immune attack. Clinical C. albicans strains vary in pathogenicity and in serum resistance, in this work we analyzed sequence polymorphisms and variations in the expression levels of two central fungal complement evasion proteins, Gpm1 (phosphoglycerate mutase 1) and Pra1 (pH-regulated antigen 1) in thirteen clinical C. albicans isolates. Four nucleotide (nt) exchanges, all representing synonymous exchanges, were identified within the 747-nt long GPM1 gene. For the 900-nt long PRA1 gene, sixteen nucleotide exchanges were identified, which represented synonymous, as well as non-synonymous exchanges. All thirteen clinical isolates had a homozygous exchange (A to G) at position 73 of the PRA1 gene. Surface levels of Gpm1 varied by 8.2, and Pra1 levels by 3.3 fold in thirteen tested isolates and these differences influenced fungal immune fitness. The high Gpm1/Pra1 expressing candida strains bound the three human immune regulators more efficiently, than the low expression strains. The difference was 44% for Factor H binding, 51% for C4BP binding and 23% for plasminogen binding. This higher Gpm1/Pra1 expressing strains result in enhanced survival upon challenge with complement active, Factor H depleted human serum (difference 40%). In addition adhesion to and infection of human endothelial cells was increased (difference 60%), and C3b surface deposition was less effective (difference 27%). Thus, variable expression levels of central immune evasion protein influences immune fitness of the human fungal pathogen C. albicans and thus contribute to fungal virulence.
Granoff, Dan M
2009-06-24
Killing of Neisseria meningitidis can result from complement-mediated serum bactericidal activity (SBA) or opsonophagocytosis (OPA), or a combination of the two mechanisms. While SBA titers > or =1:4 confer protection, recent evidence suggests that this threshold titer may not be required. For example, the incidence of meningococcal disease declines between ages 1 and 4 years without evidence of acquisition of SBA titers > or =1:4. Meningococcal polysaccharide vaccination also elicited OPA and lowered the risk of disease in patients with late complement component deficiencies whose sera did not support SBA. Sera from healthy adults immunized with an outer membrane vesicle vaccine showed OPA killing of N. meningitidis with C6-depleted complement, and whole blood from complement-sufficient non-immunized adults with SBA titers <1:4 also frequently had killing activity. Collectively the data indicate that SBA titers <1:4 and/or vaccine-induced OPA can confer protection against meningococcal disease.
Granoff, Dan M.
2009-01-01
Killing of Neisseria meningitidis can result from complement-mediated bactericidal activity (SBA) or opsonophagocytosis (OPA), or a combination of the two mechanisms. While SBA titers ≥1:4 confer protection, recent evidence suggests that this threshold titer may not be required. For example, the incidence of meningococcal disease declines between ages 1 and 4 years without evidence of acquisition of SBA titers ≥1:4. Meningococcal polysaccharide vaccination also elicited OPA and lowered the risk of disease in patients with late complement component deficiencies whose sera did not support SBA. Sera from healthy adults immunized with an outer membrane vesicle vaccine showed OPA killing of N. meningitidis with C6-depleted complement, and whole blood from complement-sufficient non-immunized adults with SBA titers <1:4 also frequently had killing activity. Collectively the data indicate that SBA titers <1:4 and/or vaccine-induced OPA can confer protection against meningococcal disease. PMID:19477054
Elvington, Michelle; Huang, Yuxiang; Morgan, B. Paul; Qiao, Fei; van Rooijen, Nico; Atkinson, Carl
2012-01-01
Complement inhibitors expressed on tumor cells provide an evasion mechanism against mAb therapy and may modulate the development of an acquired antitumor immune response. Here we investigate a strategy to amplify mAb-targeted complement activation on a tumor cell, independent of a requirement to target and block complement inhibitor expression or function, which is difficult to achieve in vivo. We constructed a murine fusion protein, CR2Fc, and demonstrated that the protein targets to C3 activation products deposited on a tumor cell by a specific mAb, and amplifies mAb-dependent complement activation and tumor cell lysis in vitro. In syngeneic models of metastatic lymphoma (EL4) and melanoma (B16), CR2Fc significantly enhanced the outcome of mAb therapy. Subsequent studies using the EL4 model with various genetically modified mice and macrophage-depleted mice revealed that CR2Fc enhanced the therapeutic effect of mAb therapy via both macrophage-dependent FcγR-mediated antibody-dependent cellular cytotoxicity, and by direct complement-mediated lysis. Complement activation products can also modulate adaptive immunity, but we found no evidence that either mAb or CR2Fc treatment had any effect on an antitumor humoral or cellular immune response. CR2Fc represents a potential adjuvant treatment to increase the effectiveness of mAb therapy of cancer. PMID:22442351
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
Deng, Hong; Coyle-Shapiro, Jacqueline; Yang, Qian
2018-05-01
Building on conservation of resources theory, we cast resource depletion as a novel explanatory mechanism to explain why employees' experience of psychological contract violation results in harm to third parties outside the employee-organization exchange dyad. This resource-based perspective extends and complements the dominant social exchange perspective which views employee reactions to psychological contract violation as targeting the source of the violation-the organization. The present article reports on 3 studies. Study 1 conducted an experiment with 109 participants and established the main effect of psychological contract violation on resource depletion. Study 2, using survey data from 315 medical employees and their immediate supervisors, found that after controlling for the social exchange mechanism (i.e., revenge cognitions toward the organization), resource depletion mediated the indirect effects of psychological contract violation on supervisory reports of employees' interpersonal harming toward coworkers and decision-making vigilance for clients. Further, we found that organizational and professional identification played opposing moderating roles in the effects of violation on resource depletion and consequently behavioral outcomes, such that these mediated relationships were stronger when organizational identification was high, and weaker when professional identification was high. Study 3 replicated all the results obtained in Studies 1 and 2 with time-lagged data from 229 medical employees across 3 measurement points. The findings confirm that resource depletion is a more effective explanation of the consequences of violation on third parties than revenge cognitions, although both are useful in predicting organization-directed outcomes (i.e., civic virtue and organizational rule compliance). (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Defining the Complement Biomarker Profile of C3 Glomerulopathy
Zhang, Yuzhou; Nester, Carla M.; Martin, Bertha; Skjoedt, Mikkel-Ole; Meyer, Nicole C.; Shao, Dingwu; Borsa, Nicolò; Palarasah, Yaseelan
2014-01-01
Background and objectives C3 glomerulopathy (C3G) applies to a group of renal diseases defined by a specific renal biopsy finding: a dominant pattern of C3 fragment deposition on immunofluorescence. The primary pathogenic mechanism involves abnormal control of the alternative complement pathway, although a full description of the disease spectrum remains to be determined. This study sought to validate and define the association of complement dysregulation with C3G and to determine whether specific complement pathway abnormalities could inform disease definition. Design, setting, participants, & measurements This study included 34 patients with C3G (17 with C3 glomerulonephritis [C3GN] and 17 with dense deposit disease [DDD]) diagnosed between 2008 and 2013 selected from the C3G Registry. Control samples (n=100) were recruited from regional blood drives. Nineteen complement biomarkers were assayed on all samples. Results were compared between C3G disease categories and with normal controls. Results Assessment of the alternative complement pathway showed that compared with controls, patients with C3G had lower levels of serum C3 (P<0.001 for both DDD and C3GN) and factor B (P<0.001 for both DDD and C3GN) as well as higher levels of complement breakdown products including C3d (P<0.001 for both DDD and C3GN) and Bb (P<0.001 for both DDD and C3GN). A comparison of terminal complement pathway proteins showed that although C5 levels were significantly suppressed (P<0.001 for both DDD and C3GN) its breakdown product C5a was significantly higher only in patients with C3GN (P<0.05). Of the other terminal pathway components (C6–C9), the only significant difference was in C7 levels between patients with C3GN and controls (P<0.01). Soluble C5b-9 was elevated in both diseases but only the difference between patients with C3GN and controls reached statistical significance (P<0.001). Levels of C3 nephritic factor activity were qualitatively higher in patients with DDD compared with patients with C3GN. Conclusions Complement biomarkers are significantly abnormal in patients with C3G compared with controls. These data substantiate the link between complement dysregulation and C3G and identify C3G interdisease differences. PMID:25341722
Biró, E; van den Goor, J M; de Mol, B A; Schaap, M C; Ko, L-Y; Sturk, A; Hack, C E; Nieuwland, R
2011-01-01
To investigate whether cell-derived microparticles play a role in complement activation in pericardial blood of patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) and whether microparticles in pericardial blood contribute to systemic complement activation upon retransfusion. Pericardial blood of 13 patients was retransfused in 9 and discarded in 4 cases. Microparticles were isolated from systemic blood collected before anesthesia (T1) and at the end of CPB (T2), and from pericardial blood. The microparticles were analyzed by flow cytometry for bound complement components C1q, C4 and C3, and bound complement activator molecules C-reactive protein (CRP), serum amyloid P-component (SAP), immunoglobulin (Ig)M and IgG. Fluid-phase complement activation products (C4b/c, C3b/c) and activator molecules were determined by ELISA. Compared with systemic T1 blood, pericardial blood contained increased C4b/c and C3b/c, and increased levels of microparticles with bound complement components. In systemic T1 samples, microparticle-bound CRP, whereas in pericardial blood, microparticle-bound SAP and IgM were associated with complement activation. At the end of CPB, increased C3b/c (but not C4b/c) was present in systemic T2 blood compared with T1, while concentrations of microparticles binding complement components and of those binding complement activator molecules were similar. Concentrations of fluid-phase complement activation products and microparticles were similar in patients whether or not retransfused with pericardial blood. In pericardial blood of patients undergoing cardiac surgery with CPB, microparticles contribute to activation of the complement system via bound SAP and IgM. Retransfusion of pericardial blood, however, does not contribute to systemic complement activation.
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5260 Complement C3b inactivator immunological test system. (a) Identification. A complement... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Complement C3b inactivator immunological test...
Autoimmune oophoritis in thymectomized mice: T cell requirement in adoptive cell transfer.
Taguchi, O; Nishizuka, Y
1980-01-01
Experimental autoimmune oophoritis characterized by rapid loss of oocytes with infiltration of lymphocytes and circulating anti-oocyte antibodies could be induced in (C57Bl/6Cr x A/JCr)F1 mice after thymectomy (Tx) at a critical age of 3 days (Tx-3) but not 0. or 7 days after birth without any sensitization. The lesion of the ovary was passively transferred into neonatal, but not adult, mice 7 days after intraperitoneal (i.p.) injection of spleen cells (10(7)) obtained from syngeneic donors with oophoritis. In contrast, the lesion was never evoked in the recipient ovaries when spleen cells were prepared from Tx-3 mice ovariectomized at day 0. The spleen cells prepared from Tx-3 donors, depleted of T cells by incubation with anti-Thy 1.2 antiserum plus guinea-pig complement (GPC), showed no transfer capacity. However, the spleen cells prepared from the same donors, depleted of B cells with anti-Ig antiserum plus GPC, still kept the capacity to induce oophoritis. The results indicate the presence of autoreactive T cells against ovarian tissues in Tx-3 mice which are capable of inducing oophoritis. Images Fig. 1 Fig. 2 Fig. 3 PMID:6970639
Mapping the Complement Factor H-Related Protein 1 (CFHR1):C3b/C3d Interactions
Laskowski, Jennifer; Thurman, Joshua M.; Hageman, Gregory S.; Holers, V. Michael
2016-01-01
Complement factor H-related protein 1 (CFHR1) is a complement regulator which has been reported to regulate complement by blocking C5 convertase activity and interfering with C5b surface association. CFHR1 also competes with complement factor H (CFH) for binding to C3b, and may act as an antagonist of CFH-directed regulation on cell surfaces. We have employed site-directed mutagenesis in conjunction with ELISA-based and functional assays to isolate the binding interaction that CFHR1 undertakes with complement components C3b and C3d to a single shared interface. The C3b/C3d:CFHR1 interface is identical to that which occurs between the two C-terminal domains (SCR19-20) of CFH and C3b. Moreover, we have been able to corroborate that dimerization of CFHR1 is necessary for this molecule to bind effectively to C3b and C3d, or compete with CFH. Finally, we have established that CFHR1 competes with complement factor H-like protein 1 (CFHL-1) for binding to C3b. CFHL-1 is a CFH gene splice variant, which is almost identical to the N-terminal 7 domains of CFH (SCR1-7). CFHR1, therefore, not only competes with the C-terminus of CFH for binding to C3b, but also sterically blocks the interaction that the N-terminus of CFH undertakes with C3b, and which is required for CFH-regulation. PMID:27814381
Griffioen, A W; Rijkers, G T; Janssens-Korpela, P; Zegers, B J
1991-01-01
The immunoregulatory function of the complement system has been the focus of many investigations. In particular, fragments of complement factor C3 have been shown to play a role in B-lymphocyte activation and proliferation, lymphokine production, and the generation of in vitro antibody production. Purified pneumococcal polysaccharides (PS) can induce direct activation of C3 via the alternative pathway. Using sera of C1q-deficient patients and healthy subjects, we demonstrated that C3d, a split product of C3 that is generated after degradation of iC3b, can be bound to PS antigens. The binding of C3d to PS can occur in the absence of specific antibodies. Subsequently, we showed that PS complexed with C3d can be recognized by complement receptor type 2 that is expressed on B cells. Treatment of B cells with a monoclonal antibody recognizing the C3d-binding site of complement receptor type 2 reduces the binding of PS-C3d to the cells. In addition, we showed that PS4 complexed with C3d exerted an increased immunogenicity compared with free PS4. Our results show that the complement system plays a role in the activation of PS-specific B cells, carrying membrane receptors for C3d. Consequently, the complement system plays a regulatory role in the antibody response to T-cell-independent type 2 antigens such as PS. PMID:1826897
Tüzün, Erdem; Scott, Benjamin G; Goluszko, Elzbieta; Higgs, Stephen; Christadoss, Premkumar
2003-10-01
Abs to acetylcholine receptor (AChR) and complement are the major constituents of pathogenic events causing neuromuscular junction destruction in both myasthenia gravis (MG) and experimental autoimmune MG (EAMG). To analyze the differential roles of the classical vs alternative complement pathways in EAMG induction, we immunized C3(-/-), C4(-/-), C3(+/-), and C4(+/-) mice and their control littermates (C3(+/+) and C4(+/+) mice) with AChR in CFA. C3(-/-) and C4(-/-) mice were resistant to disease, whereas mice heterozygous for C3 or C4 displayed intermediate susceptibility. Although C3(-/-) and C4(-/-) mice had anti-AChR Abs in their sera, anti-AChR IgG production by C3(-/-) mice was significantly suppressed. Both C3(-/-) and C4(-/-) mice had reduced levels of B cells and increased expression of apoptotis inducers (Fas ligand, CD69) and apoptotic cells in lymph nodes. Immunofluorescence studies showed that the neuromuscular junction of C3(-/-) and C4(-/-) mice lacked C3 or membrane attack complex deposits, despite having IgG deposits, thus providing in vivo evidence for the incapacity of anti-AChR IgGs to induce full-blown EAMG without the aid of complements. The data provide the first direct genetic evidence for the classical complement pathway in the induction of EAMG induced by AChR immunization. Accordingly, severe MG and other Ab- and complement-mediated diseases could be effectively treated by inhibiting C4, thus leaving the alternative complement pathway intact.
Mastellos, D C; Ricklin, D; Hajishengallis, E; Hajishengallis, G; Lambris, J D
2016-02-01
There is increasing appreciation that complement dysregulation lies at the heart of numerous immune-mediated and inflammatory disorders. Complement inhibitors are therefore being evaluated as new therapeutic options in various clinical translation programs and the first clinically approved complement-targeted drugs have profoundly impacted the management of certain complement-mediated diseases. Among the many members of the intricate protein network of complement, the central component C3 represents a 'hot-spot' for complement-targeted therapeutic intervention. C3 modulates both innate and adaptive immune responses and is linked to diverse immunomodulatory systems and biological processes that affect human pathophysiology. Compelling evidence from preclinical disease models has shown that C3 interception may offer multiple benefits over existing therapies or even reveal novel therapeutic avenues in disorders that are not commonly regarded as complement-driven, such as periodontal disease. Using the clinically developed compstatin family of C3 inhibitors and periodontitis as illustrative examples, this review highlights emerging therapeutic concepts and developments in the design of C3-targeted drug candidates as novel immunotherapeutics for oral and systemic inflammatory diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
In vitro C3 Deposition on Cryptococcus Capsule Occurs Via Multiple Complement Activation Pathways
Mershon-Shier, Kileen L.; Vasuthasawat, Alex; Takahashi, Kazue; Morrison, Sherie L.; Beenhouwer, David O.
2011-01-01
Complement can be activated via three pathways: classical, alternative, and lectin. Cryptococcus gattii and C. neoformans are closely related fungal pathogens possessing a polysaccharide capsule composed mainly of glucuronoxylomannan (GXM), which serves as a site for complement activation and deposition of complement components. We determined C3 deposition on Cryptococcus spp. by flow cytometry and confocal microscopy after incubation with serum from C57BL/6J mice as well as mice deficient in complement components C4, C3, factor B, and mannose binding lectin (MBL). C. gattii and C. neoformans activate complement in EGTA-treated serum indicating that they can activate the alternative pathway. However, complement activation was seen with factor B−/− serum suggesting activation could also take place in the absence of a functional alternative pathway. Furthermore, we uncovered a role for C4 in the alternative pathway activation by Cryptococcus spp. We also identified an unexpected and complex role for MBL in complement activation by Cryptococcus spp. No complement activation occurred in the absence of MBL-A and -C proteins although activation took place when the lectin binding activity of MBL was disrupted by calcium chelation. In addition, alternative pathway activation by C. neoformans required both MBL-A and -C, while either MBL-A or -C was sufficient for alternative pathway activation by C. gattii. Thus, complement activation by Cryptococcus spp. can take place through multiple pathways and complement activation via the alternative pathway requires the presence of C4 and MBL proteins. PMID:21723612
Reglinski, Mark; Calay, Damien; Siggins, Matthew K.; Mason, Justin C.; Botto, Marina; Sriskandan, Shiranee
2017-01-01
The complement cascade is crucial for clearance and control of invading pathogens, and as such is a key target for pathogen mediated host modulation. C3 is the central molecule of the complement cascade, and plays a vital role in opsonization of bacteria and recruitment of neutrophils to the site of infection. Streptococcal species have evolved multiple mechanisms to disrupt complement-mediated innate immunity, among which ScpA (C5a peptidase), a C5a inactivating enzyme, is widely conserved. Here we demonstrate for the first time that pyogenic streptococcal species are capable of cleaving C3, and identify C3 and C3a as novel substrates for the streptococcal ScpA, which are functionally inactivated as a result of cleavage 7 amino acids upstream of the natural C3 convertase. Cleavage of C3a by ScpA resulted in disruption of human neutrophil activation, phagocytosis and chemotaxis, while cleavage of C3 generated abnormally-sized C3a and C3b moieties with impaired function, in particular reducing C3 deposition on the bacterial surface. Despite clear effects on human complement, expression of ScpA reduced clearance of group A streptococci in vivo in wildtype and C5 deficient mice, and promoted systemic bacterial dissemination in mice that lacked both C3 and C5, suggesting an additional complement-independent role for ScpA in streptococcal pathogenesis. ScpA was shown to mediate streptococcal adhesion to both human epithelial and endothelial cells, consistent with a role in promoting bacterial invasion within the host. Taken together, these data show that ScpA is a multi-functional virulence factor with both complement-dependent and independent roles in streptococcal pathogenesis. PMID:28806402
The role of complement in myasthenia gravis: serological evidence of complement consumption in vivo.
Romi, Fredrik; Kristoffersen, Einar K; Aarli, Johan A; Gilhus, Nils Erik
2005-01-01
Antibodies to the acetylcholine receptor (AChR) titin and the ryanodine receptor (RyR) occur in myasthenia gravis (MG). These antibodies are capable of complement activation in vitro. The involvement of the complement system should cause consumption of complement components such as C3 and C4 in vivo. Complement components C3 and C4 were assayed in sera from 78 AChR antibody-positive MG patients and 52 healthy controls. Forty-eight of the patient sera contained titin antibodies as well, and 20 were also RyR antibody-positive. MG patients with AChR antibody concentrations above the median (11.2 nmol/l) had significantly lower mean C3 and C4 concentrations in serum compared to those with AChR antibody concentrations below the median. Titin antibody-positive MG patients, titin antibody-negative early-onset MG patients, titin antibody-negative late-onset MG patients, and controls had similar C3 and C4 concentrations. Nor did mean C3 and C4 concentrations differ in MG patients with RyR antibodies. Patients with severe MG (grades 4 and 5) had similar C3 and similar C4 levels compared to those with mild MG (grades 1 and 2). An increased in vivo complement consumption was detected in MG patients with high AChR antibody concentrations, unrelated to MG severity and non-AChR muscle antibodies.
Complement system studies in systemic lupus erythematosus (SLE)
Teisberg, P
1975-01-01
Complement system involvement has been studied in 16 patients with systemic lupus erythematosus (SLE). Circulating conversion products of C3 were observed in 4 cases. Low mean values of C4 and C3 were found, while C3 proactivator (properdin factor B) levels were low in only a few of the patients. The levels of C4, C3 and C3 proactivator were not lower in the 4 patients in whom C3 conversion products could be demonstrated than in the others. It is concluded that the low complement values found in SLE may be caused mainly by deficient synthesis. Signs of complement activation are in this patient material demonstrated early in the disease, and chiefly in patients not receiving immunosuppressive therapy.
Identification of C3b-Binding Small-Molecule Complement Inhibitors Using Cheminformatics.
Garcia, Brandon L; Skaff, D Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K; Wyckoff, Gerald J; Geisbrecht, Brian V
2017-05-01
The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of more than two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology, such as acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases, which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small-molecule inhibitors, small-molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study, we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies, we identified 45 small molecules that putatively bind C3b near ligand-guided functional hot spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand that guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small-molecule complement inhibitors and, to our knowledge, provides the first demonstration of cheminformatics-based, complement-directed drug discovery. Copyright © 2017 by The American Association of Immunologists, Inc.
Identification of C3b-binding Small Molecule Complement Inhibitors Using Cheminformatics
Garcia, Brandon L.; Skaff, D. Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K.; Wyckoff, Gerald J.; Geisbrecht, Brian V.
2017-01-01
The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of over two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology which include acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small molecule inhibitors, small molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies we identified 45 small molecules which putatively bind C3b near ligand-guided functional hot-spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand which guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small molecule complement inhibitors, and to our knowledge, provides the first demonstration of cheminformatics-based complement-directed drug discovery. PMID:28298523
Rezeli, Melinda; Végvári, Akos; Ottervald, Jan; Olsson, Tomas; Laurell, Thomas; Marko-Varga, György
2011-12-10
As a proof-of-principle study, a multiple reaction monitoring (MRM) assay was developed for quantitation of proteotypic peptides, representing seven plasma proteins associated with inflammation (complement components and C-reactive protein). The assay development and the sample analysis were performed on a linear ion trap mass spectrometer. We were able to quantify 5 of the 7 target proteins in depleted plasma digests with reasonable reproducibility over a 2 orders of magnitude linear range (RSD≤25%). The assay panel was utilized for the analysis of a small multiple sclerosis sample cohort with 10 diseased and 8 control patients. Copyright © 2011 Elsevier B.V. All rights reserved.
Structure of C3b reveals conformational changes that underlie complement activity.
Janssen, Bert J C; Christodoulidou, Agni; McCarthy, Andrew; Lambris, John D; Gros, Piet
2006-11-09
Resistance to infection and clearance of cell debris in mammals depend on the activation of the complement system, which is an important component of innate and adaptive immunity. Central to the complement system is the activated form of C3, called C3b, which attaches covalently to target surfaces to amplify complement response, label cells for phagocytosis and stimulate the adaptive immune response. C3b consists of 1,560 amino-acid residues and has 12 domains. It binds various proteins and receptors to effect its functions. However, it is not known how C3 changes its conformation into C3b and thereby exposes its many binding sites. Here we present the crystal structure at 4-A resolution of the activated complement protein C3b and describe the conformational rearrangements of the 12 domains that take place upon proteolytic activation. In the activated form the thioester is fully exposed for covalent attachment to target surfaces and is more than 85 A away from the buried site in native C3 (ref. 5). Marked domain rearrangements in the alpha-chain present an altered molecular surface, exposing hidden and cryptic sites that are consistent with known putative binding sites of factor B and several complement regulators. The structural data indicate that the large conformational changes in the proteolytic activation and regulation of C3 take place mainly in the first conversion step, from C3 to C3b. These insights are important for the development of strategies to treat immune disorders that involve complement-mediated inflammation.
Holmes, Amie L; Joyce, Kellie; Xie, Hong; Falank, Carolyne; Hinz, John M; Wise, John Pierce
2014-04-01
Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation. Copyright © 2014 Elsevier B.V. All rights reserved.
Hargreaves, P; Rahman, S; Guthrie, P; Taanman, J W; Leonard, J V; Land, J M; Heales, S J R
2002-02-01
Mitochondrial DNA (mtDNA) depletion syndrome (McKusick 251880) is characterized by a progressive quantitative loss of mtDNA resulting in severe mitochondrial dysfunction. A diagnosis of mtDNA depletion can only be confirmed after Southern blot analysis of affected tissue. Only a limited number of centres have the facilities to offer this service, and this is frequently on an irregular basis. There is therefore a need for a test that can refine sample selection as well as complementing the molecular analysis. In this study we compared the activities of the nuclear-encoded succinate ubiquinone reductase (complex II) to the activities of the combined mitochondrial and nuclear-encoded mitochondrial electron transport chain (ETC) complexes; NADH:ubiquinone reductase (complex I), ubiquinol-cytochrome-c reductase (complex III), and cytochrome-c oxidase (complex IV), in skeletal muscle biopsies from 7 patients with confirmed mtDNA depletion. In one patient there was no evidence of an ETC defect. However, the remaining 6 patients exhibited reduced complex I and IV activities. Five of these patients also displayed reduced complex II-III (succinate:cytochrome-c reductase) activity. Individual measurement of complex II and complex III activities demonstrated normal levels of complex II activity compared to complex III, which was reduced in the 5 biopsies assayed. These findings suggest a possible diagnostic value for the detection of normal levels of complex II activity in conjunction with reduced complex I, III and IV activity in the identification of likely candidates for mtDNA depletion syndrome
Hoh Kam, Jaimie; Lenassi, Eva; Malik, Talat H; Pickering, Matthew C; Jeffery, Glen
2013-08-01
Complement component C3 is the central complement component and a key inflammatory protein activated in age-related macular degeneration (AMD). AMD is associated with genetic variation in complement proteins that results in enhanced activation of C3 through the complement alternative pathway. These include complement factor H (CFH), a negative regulator of C3 activation. Both C3 inhibition and/or CFH augmentation are potential therapeutic strategies in AMD. Herein, we examined retinal integrity in aged (12 months) mice deficient in both factors H and C3 (CFH(-/-).C3(-/-)), CFH alone (CFH(-/-)), or C3 alone (C3(-/-)), and wild-type mice (C57BL/6). Retinal function was assessed by electroretinography, and retinal morphological features were analyzed at light and electron microscope levels. Retinas were also stained for amyloid β (Aβ) deposition, inflammation, and macrophage accumulation. Contrary to expectation, electroretinograms of CFH(-/-).C3(-/-) mice displayed more severely reduced responses than those of other mice. All mutant strains showed significant photoreceptor loss and thickening of Bruch's membrane compared with wild-type C57BL/6, but these changes were greater in CFH(-/-).C3(-/-) mice. CFH(-/-).C3(-/-) mice had significantly more Aβ on Bruch's membrane, fewer macrophages, and high levels of retinal inflammation than the other groups. Our data show that both uncontrolled C3 activation (CFH(-/-)) and complete absence of C3 (CFH(-/-).C3(-/-) and C3(-/-)) negatively affect aged retinas. These findings suggest that strategies that inhibit C3 in AMD may be deleterious. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Roman-Duval
2016-10-01
METAL is a large spectroscopic and imaging program with HST dedicated to the study of dust evolution in the Large Magellanic Cloud (LMC). The program will obtain FUV and NUV medium-resolution spectra of 33 massive stars in the LMC with STIS and COS complementing existing archival data to measure gas-phase and dust-phase (depletion) elemental abundances. With these spectra, we will subsequently directly measure the dust composition and abundance as a function of environment (surface density, radiation field, dynamical conditions, such as the proximity of supernova remnants or expanding HI shells). The depletion information will be complemented with dust UV extinction curves (i.e., the UV opacity of dust grains as a function of wavelength) derived from either archival IUE, or new COS and low-resolution STIS spectra acquired as part of this program. Together, the depletions and extinction curves will constrain how the dust abundance and properties (composition, size distribution) vary with environment at Z=0.5Zo. In parallel to the spectroscopic observations, we will obtain WFC3 NUV-NIR imaging to map dust extinction parameters (AV, RV) in the vicinity of our targets and calibrate the far-infrared (FIR) emissivity of dust. Our observations we will improve the accuracy of dust mass and extinction estimates in the local and high-redshift universe by up to an order of magnitude.METAL will complement a Cycle 23 HST/STIS program (GO-13778) focused on dust evolution in the Small Magellanic Cloud (SMC) at Z=0.2Zo, and previously published depletion studies in the Milky Way (Jenkins et al. 2009) to provide a comprehensive view of dust evolution as a function of metallicity.
2017-01-01
Tamm-Horsfall protein (THP) is an abundant urinary protein of renal origin. We hypothesize that THP can act as an inhibitor of complement since THP binds complement 1q (C1q) of the classical complement pathway, inhibits activation of this pathway, and is important in decreasing renal ischemia-reperfusion injury (a complement-mediated condition). In this study, we began to investigate whether THP interacted with the alternate complement pathway via complement factor H (CFH). THP was shown to bind CFH using ligand blots and in an ELISA (KD of 1 × 10−6 M). Next, the ability of THP to alter CFH’s normal action as it functioned as a cofactor in complement factor I (CFI)–mediated complement 3b (C3b) degradation was investigated. Unexpectedly, control experiments in these in vitro assays suggested that THP, without added CFH, could act as a cofactor in CFI-mediated C3b degradation. This cofactor activity was present equally in THP isolated from 10 different individuals. While an ELISA demonstrated small amounts of CFH contaminating THP samples, these CFH amounts were insufficient to explain the degree of cofactor activity present in THP. An ELISA demonstrated that THP directly bound C3b (KD ~ 5 × 10−8 m), a prerequisite for a protein acting as a C3b degradation cofactor. The cofactor activity of THP likely resides in the protein portion of THP since partially deglycosylated THP still retained cofactor activity. In conclusion, THP appears to participate directly in complement inactivation by its ability to act as a cofactor for C3b degradation, thus adding support to the hypothesis that THP might act as an endogenous urinary tract inhibitor of complement. PMID:28742158
Cropley, Vanessa; Laskaris, Liliana; Zalesky, Andrew; Weickert, Cynthia Shannon; Biase, Maria Di; Chana, Gursharan; Baune, Bernhard; Bousman, Chad; Nelson, Barnaby; McGorry, Patrick D; Everall, Ian; Pantelis, Christos
2018-01-01
Abstract Background The complement system - a key component of the innate immune system, has been proposed to contribute to the pathogenesis of schizophrenia. Recently, complement C4 was associated with increased risk of schizophrenia, and in a mouse model, developmentally-timed synaptic pruning. These observations have led to proposals that abnormal activation of the complement system might contribute to the development of schizophrenia by disrupting synaptic pruning during key developmental periods. However, despite renewed interest in the complement system in schizophrenia it remains unclear whether peripheral complement levels differ in cases compared to controls, change over the course of illness and whether they are associated with current symptomatology and brain cortical thickness. This study aimed to: i) investigate whether peripheral complement protein levels are altered at different stages of illness, and ii) identify patterns among complement protein levels that predict clinical symptoms and grey matter thickness across the cortex. Methods Complement factors C1q, C3 and C4 were quantified in 183 participants [n=83 Healthy Controls (HC), n=10 Ultra-High Risk (UHR) for psychosis, n=40 First Episode Psychosis (FEP), n=50 Chronic schizophrenia] using Multiplex ELISA. Permutation-based t-tests were used to assess between-group differences in complement protein levels at each of the three illness stages, relative to age- and gender-matched healthy controls. Canonical correlation analysis was used to identify patterns of complement protein levels that correlated with clinical symptoms and regional thickness across the cortex. Results C3 and C4 were significantly increased in FEP and UHR patients, whereas only C4 was significantly increased in chronic patients. A molecular pattern of increased C4 and decreased C3 was associated with positive and negative symptom severity in the pooled patient sample. Increased C4 levels alone, or decreased C3 levels alone, did not correlate with symptom severity as strongly as the pattern of increased C4 in combination with decreased C3. Preliminary canonical correlation analyses revealed that, in healthy controls, a molecular pattern characterised by increased C3 and decreased C4 was associated with relatively thinner paracentral, inferior parietal and inferior temporal cortices, but relatively thicker insular, in the left hemisphere. In the pooled patient group, a trend for increased C3 in combination with decreased C1q was associated with relatively thinner left lateral occipital cortex and pars orbitalis but relatively thicker pars opercularis and precuneus. Discussion Our findings indicate that peripheral complement concentration is particularly increased early and preceding psychosis and its imbalance may be associated with symptom severity and variation in regional grey matter thickness across the cortex.
Complement Activation in Relation to Capillary Leakage in Children with Septic Shock and Purpura
Hazelzet, Jan A.; de Groot, Ronald; van Mierlo, Gerard; Joosten, Koen F. M.; van der Voort, Edwin; Eerenberg, Anke; Suur, Marja H.; Hop, Wim C. J.; Hack, C. Erik
1998-01-01
To assess the relationship between capillary leakage and inflammatory mediators during sepsis, blood samples were taken on hospital admission, as well as 24 and 72 h later, from 52 children (median age, 3.3 years) with severe meningococcal sepsis, of whom 38 survived and 14 died. Parameters related to cytokines (interleukin 6 [IL-6] IL-8, plasma phospholipase A2, and C-reactive protein [CRP]), to neutrophil degranulation (elastase and lactoferrin), to complement activation (C3a, C3b/c, C4b/c, and C3- and C4-CRP complexes), and to complement regulation (functional and inactivated C1 inhibitor and C4BP) were determined. The degree of capillary leakage was derived from the amount of plasma infused and the severity of disease by assessing the pediatric risk of mortality (PRISM) score. Levels of IL-6, IL-8, C3b/c, C3-CRP complexes, and C4BP on admission, adjusted for the duration of skin lesions, were significantly different in survivors and nonsurvivors (C3b/c levels were on average 2.2 times higher in nonsurvivors, and C3-CRP levels were 1.9 times higher in survivors). Mortality was independently related to the levels of C3b/c and C3-CRP complexes. In agreement with this, levels of complement activation products correlated well with the PRISM score or capillary leakage. Thus, these data show that complement activation in patients with severe meningococcal sepsis is associated with a poor outcome and a more severe disease course. Further studies should reveal whether complement activation may be a target for therapeutical intervention in this disease. PMID:9784543
Zangenah, Salah; Bergman, Peter
2015-01-01
Capnocytophaga canimorsus (Cani) and Capnocytophaga cynodegmi (Cyno) are found in the oral cavities of dogs and cats. They can be transmitted to humans via licks or bites and cause wound infections as well as severe systemic infections. Cani is considered to be more pathogenic than Cyno, but the pathophysiological mechanisms are not elucidated. Cani has been suggested to be resistant to serum bactericidal effects. Thus, we hypothesized that the more invasive Cani would exhibit a higher degree of serum-resistance than the less pathogenic Cyno. Whole blood and serum bactericidal assays were performed against Cani- (n = 8) and Cyno-strains (n = 15) isolated from blood and wound-specimens, respectively. Analysis of complement-function was performed by heat-inactivation, EGTA-treatment and by using C1q-depleted serum. Serum and whole blood were collected from healthy individuals and from patients (n = 3) with a history of sepsis caused by Cani. Both Cani and Cyno were equally susceptible to human whole blood and serum. Cani was preferentially killed by the classical pathway of the complement-system whereas Cyno was killed by a partly different mechanism. Serum from 2/3 Cani-infected patients were deficient in MBL-activity but still exhibited the same killing effect as control sera. Both Cani and Cyno were readily killed by human whole blood and serum in a complement-dependent way. Thus, it is not likely that serum bactericidal capacity is the key determinant for the clinical outcome in Cani or Cyno-infections.
2017-01-01
Purpose Inflammatory rheumatic diseases (IRD) are associated with accelerated coronary artery disease (CAD), which may result from both systemic and vascular wall inflammation. There are indications that complement may be involved in the pathogenesis of CAD in Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA). This study aimed to evaluate the associations between circulating complement and complement activation products with mononuclear cell infiltrates (MCI, surrogate marker of vascular inflammation) in the aortic media and adventitia in IRDCAD and non-IRDCAD patients undergoing coronary artery bypass grafting (CABG). Furthermore, we compared complement activation product deposition patterns in rare aorta adventitial and medial biopsies from SLE, RA and non-IRD patients. Methods We examined plasma C3 (p-C3) and terminal complement complexes (p-TCC) in 28 IRDCAD (SLE = 3; RA = 25), 52 non-IRDCAD patients, and 32 IRDNo CAD (RA = 32) from the Feiring Heart Biopsy Study. Aortic biopsies taken from the CAD only patients during CABG were previously evaluated for adventitial MCIs. The rare aortic biopsies from 3 SLE, 3 RA and 3 non-IRDCAD were assessed for the presence of C3 and C3d using immunohistochemistry. Results IRDCAD patients had higher p-TCC than non-IRDCAD or IRDNo CAD patients (p<0.0001), but a similar p-C3 level (p = 0.42). Circulating C3 was associated with IRD duration (ρ, p-value: 0.46, 0.03). In multiple logistic regression analysis, IRD remained significantly related to the presence and size of MCI (p<0.05). C3 was present in all tissue samples. C3d was detected in the media of all patients and only in the adventitia of IRD patients (diffuse in all SLE and focal in one RA). Conclusion The independent association of IRD status with MCI and the observed C3d deposition supports the unique relationship between rheumatic disease, and, in particular, SLE with the complement system. Exaggerated systemic and vascular complement activation may accelerate CVD, serve as a CVD biomarker, and represent a target for new therapies. PMID:28362874
Novel Scabies Mite Serpins Inhibit the Three Pathways of the Human Complement System
Mika, Angela; Reynolds, Simone L.; Mohlin, Frida C.; Willis, Charlene; Swe, Pearl M.; Pickering, Darren A.; Halilovic, Vanja; Wijeyewickrema, Lakshmi C.; Pike, Robert N.; Blom, Anna M.; Kemp, David J.; Fischer, Katja
2012-01-01
Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement-mediated gut damage. PMID:22792350
Okroj, Marcin; Mark, Linda; Stokowska, Anna; Wong, Scott W; Rose, Nicola; Blackbourn, David J; Villoutreix, Bruno O; Spiller, O Brad; Blom, Anna M
2009-01-02
Rhesus rhadinovirus (RRV) is currently the closest known, fully sequenced homolog of human Kaposi sarcoma-associated herpesvirus. Both these viruses encode complement inhibitors as follows: Kaposi sarcoma-associated herpesvirus-complement control protein (KCP) and RRV-complement control protein (RCP). Previously we characterized in detail the functional properties of KCP as a complement inhibitor. Here, we performed comparative analyses for two variants of RCP protein, encoded by RRV strains H26-95 and 17577. Both RCP variants and KCP inhibited human and rhesus complement when tested in hemolytic assays measuring all steps of activation via the classical and the alternative pathway. RCP variants from both RRV strains supported C3b and C4b degradation by factor I and decay acceleration of the classical C3 convertase, similar to KCP. Additionally, the 17577 RCP variant accelerated decay of the alternative C3 convertase, which was not seen for KCP. In contrast to KCP, RCP showed no affinity to heparin and is the first described complement inhibitor in which the binding site for C3b/C4b does not interact with heparin. Molecular modeling shows a structural disruption in the region of RCP that corresponds to the KCP-heparin-binding site. This makes RRV a superior model for future in vivo investigations of complement evasion, as RCP does not play a supportive role in viral attachment as KCP does.
van Vuuren, B Jansen; Bergseth, G; Mollnes, T E; Shaw, A M
2014-01-15
Electroluminescent assays for epitopes on the complement components C3dg, terminal complement complex (TCC) and factor B/Bb (fB/Bb) have been developed with capture and detection antibodies to produce detection limits C3dg=91±9ng/mL, TCC=3±0.1ng/mL and fB=55.7±0.1ng/mL. The assay performance was assessed against a series of zymosan and heat aggregated IgG (HAIgG) in vitro activations of complement using a calibrated activated complement serum (ACS) as calibration standard. The ACS standard was stable within 20% accuracy over a 6-month period with freeze-thaw cycles as required. Differential activation of the complement cascade was observed for TCC showing a pseudo-first order formation half-life of 3.5h after activation with zymosan. The C3dg activation fragment indicates a 10% total activation for both activation agents. The kinetic-epitope analysis for fB indicates that the capture epitope is on the fB/Bb protein fragment which can then become covered by the formation of C3bBb or C3bBbP complexes during the time course of the cascade. Copyright © 2013 Elsevier B.V. All rights reserved.
Complement Evasion by Pathogenic Leptospira.
Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva
2016-01-01
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira . Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira , have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.
Complement Evasion by Pathogenic Leptospira
Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva
2016-01-01
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira, have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host. PMID:28066433
BINDING OF SOLUBLE IMMUNE COMPLEXES TO HUMAN LYMPHOBLASTOID CELLS
Theofilopoulos, Argyrios N.; Dixon, Frank J.; Bokisch, Viktor A.
1974-01-01
In the present work we studied the expression of membrane-bound Ig (MBIg) as well as receptors for IgG Fc and complement on nine human lymphoblastoid cell lines. When MBIg and receptors for IgG Fc were compared, four categories of cell lines could be distinguished: (a) cell lines having both MBIg and receptors for IgG Fc, (b) cell lines having MBIg but lacking receptors for IgG Fc, (c) cell lines lacking MBIg but having receptors for IgG Fc, and (d) cell lines lacking both MBIg and receptors for IgG Fc. Two types of receptors for complement could be detected on the cell lines studied, one for C3-C3b and one for C3d. When sensitized red cells carrying C3b or C3d were used for rosette tests, three categories of cell lines could be distinguished: (a) cell lines having receptors for C3b and C3d, (b) cell lines having receptors only for C3d and (c) cell lines lacking both receptors. However, when a more sensitive immunofluorescent method was used instead of the rosette technique, it was found that cell lines unable to form rosettes with EAC1423bhu were able to bind soluble C3 or C3b which indicated the presence of these receptors on the cell surface. Inhibition experiments showed that receptors for C3-C3b and receptors for C3d are distinct and that receptors for C3-C3b and C3d are different from receptors for IgG Fc. A cell line (Raji) without MBIg but with receptors for IgG Fc, C3-C3b, and C3d was selected for use in studying the binding mechanism of soluble immune complexes to cell surface membrane. Aggregated human gamma globulin was used in place of immune complexes. Immune complexes containing complement bind to Raji cells only via receptors for complement, namely receptors for C3-C3b and C3d. Binding of immune complexes containing complement to cells is much greater than that of complexes without complement. Immune complexes bound to cells via receptors for complement can be partially released from the cell surface by addition of normal human serum as well as isolated human C3 or C3b. We postulate that such release is due to competition of immune complex bound C3b and free C3 or C3b for the receptors on Raji cells. PMID:4139225
From orphan drugs to adopted therapies: Advancing C3-targeted intervention to the clinical stage
Mastellos, Dimitrios C.; Reis, Edimara S.; Yancopoulou, Despina; Hajishengallis, George; Ricklin, Daniel; Lambris, John D.
2016-01-01
Complement dysregulation is increasingly recognized as an important pathogenic driver in a number of clinical disorders. Complement-triggered pathways intertwine with key inflammatory and tissue destructive processes that can either increase the risk of disease or exacerbate pathology in acute or chronic conditions. The launch of the first complement-targeted drugs in the clinic has undeniably stirred the field of complement therapeutic design, providing new insights into complement's contribution to disease pathogenesis and also helping to leverage a more personalized, comprehensive approach to patient management. In this regard, a rapidly expanding toolbox of complement therapeutics is being developed to address unmet clinical needs in several immune-mediated and inflammatory diseases. Elegant approaches employing both surface-directed and fluid-phase inhibitors have exploited diverse components of the complement cascade as putative points of therapeutic intervention. Targeting C3, the central hub of the system, has proven to be a promising strategy for developing biologics as well as small-molecule inhibitors with clinical potential. Complement modulation at the level of C3 has recently shown promise in preclinical primate models, opening up new avenues for therapeutic intervention in both acute and chronic indications fueled by uncontrolled C3 turnover. This review highlights recent developments in the field of complement therapeutics, focusing on C3-directed inhibitors and alternative pathway (AP) regulator-based approaches. Translational perspectives and considerations are discussed, particularly with regard to the structure-guided drug optimization and clinical advancement of a new generation of C3-targeted peptidic inhibitors. PMID:27353192
Complement system biomarkers in epilepsy.
Kopczynska, Maja; Zelek, Wioleta M; Vespa, Simone; Touchard, Samuel; Wardle, Mark; Loveless, Samantha; Thomas, Rhys H; Hamandi, Khalid; Morgan, B Paul
2018-05-24
To explore whether complement dysregulation occurs in a routinely recruited clinical cohort of epilepsy patients, and whether complement biomarkers have potential to be used as markers of disease severity and seizure control. Plasma samples from 157 epilepsy cases (106 with focal seizures, 46 generalised seizures, 5 unclassified) and 54 controls were analysed. Concentrations of 10 complement analytes (C1q, C3, C4, factor B [FB], terminal complement complex [TCC], iC3b, factor H [FH], Clusterin [Clu], Properdin, C1 Inhibitor [C1Inh] plus C-reactive protein [CRP]) were measured using enzyme linked immunosorbent assay (ELISA). Univariate and multivariate statistical analysis were used to test whether combinations of complement analytes were predictive of epilepsy diagnoses and seizure occurrence. Correlation between number and type of anti-epileptic drugs (AED) and complement analytes was also performed. We found: CONCLUSION: This study adds to evidence implicating complement in pathogenesis of epilepsy and may allow the development of better therapeutics and prognostic markers in the future. Replication in a larger sample set is needed to validate the findings of the study. Copyright © 2018. Published by Elsevier Ltd.
Complement Inhibition Alleviates Paraquat-Induced Acute Lung Injury
Sun, Shihui; Wang, Hanbin; Zhao, Guangyu; An, Yingbo; Guo, Yan; Du, Lanying; Song, Hongbin; Qiao, Fei; Yu, Hong; Wu, Xiaohong; Atkinson, Carl; Jiang, Shibo; Tomlinson, Stephen
2011-01-01
The widely used herbicide, paraquat (PQ), is highly toxic and claims thousands of lives from both accidental and voluntary ingestion. The pathological mechanisms of PQ poisoning–induced acute lung injury (ALI) are not well understood, and the role of complement in PQ-induced ALI has not been elucidated. We developed and characterized a mouse model of PQ-induced ALI and studied the role of complement in the pathogenesis of PQ poisoning. Intraperitoneal administration of PQ caused dose- and time-dependent lung damage and mortality, with associated inflammatory response. Within 24 hours of PQ-induced ALI, there was significantly increased expression of the complement proteins, C1q and C3, in the lung. Expression of the anaphylatoxin receptors, C3aR and C5aR, was also increased. Compared with wild-type mice, C3-deficient mice survived significantly longer and displayed significantly reduced lung inflammation and pathology after PQ treatment. Similar reductions in PQ-induced inflammation, pathology, and mortality were recorded in mice treated with the C3 inhibitors, CR2-Crry, and alternative pathway specific CR2-fH. A similar therapeutic effect was also observed by treatment with either C3a receptor antagonist or a blocking C5a receptor monoclonal antibody. Together, these studies indicate that PQ-induced ALI is mediated through receptor signaling by the C3a and C5a complement activation products that are generated via the alternative complement pathway, and that complement inhibition may be an effective clinical intervention for postexposure treatment of PQ-induced ALI. PMID:21421909
An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA.
Thomas, K A; Valenzuela, N M; Gjertson, D; Mulder, A; Fishbein, M C; Parry, G C; Panicker, S; Reed, E F
2015-08-01
Antibody-mediated rejection (AMR) of solid organ transplants (SOT) is characterized by damage triggered by donor-specific antibodies (DSA) binding donor Class I and II HLA (HLA-I and HLA-II) expressed on endothelial cells. While F(ab')2 portions of DSA cause cellular activation and proliferation, Fc regions activate the classical complement cascade, resulting in complement deposition and leukocyte recruitment, both hallmark features of AMR. We characterized the ability of an anti-C1s monoclonal antibody, TNT003, to inhibit HLA antibody (HLA-Ab)-induced complement activation. Complement deposition induced by HLA-Ab was evaluated using novel cell- and bead-based assays. Human aortic endothelial cells (HAEC) were cultured with HLA-Ab and human complement; production of activated complement proteins was measured by flow cytometry. Additionally, C3d deposition was measured on single antigen beads (SAB) mixed with HLA-Ab and human complement. TNT003 inhibited HLA-Ab mediated complement deposition on HAEC in a concentration-dependent manner; C3a, C4a and C5a anaphylatoxin production was also diminished by TNT003. Finally, TNT003 blocked C3d deposition induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-specific antibodies on SAB. These data suggest TNT003 may be useful for modulating the effects of DSA, as TNT003 inhibits complement deposition and split product formation generated by HLA-I/II-Ab in vitro. © 2015 The Authors. American Journal of Transplantation Published by Wiley Periodicals, Inc.
An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA
Thomas, K A; Valenzuela, N M; Gjertson, D; Mulder, A; Fishbein, M C; Parry, G C; Panicker, S; Reed, E F
2015-01-01
Antibody-mediated rejection (AMR) of solid organ transplants (SOT) is characterized by damage triggered by donor-specific antibodies (DSA) binding donor Class I and II HLA (HLA-I and HLA-II) expressed on endothelial cells. While F(ab′)2 portions of DSA cause cellular activation and proliferation, Fc regions activate the classical complement cascade, resulting in complement deposition and leukocyte recruitment, both hallmark features of AMR. We characterized the ability of an anti-C1s monoclonal antibody, TNT003, to inhibit HLA antibody (HLA-Ab)-induced complement activation. Complement deposition induced by HLA-Ab was evaluated using novel cell- and bead-based assays. Human aortic endothelial cells (HAEC) were cultured with HLA-Ab and human complement; production of activated complement proteins was measured by flow cytometry. Additionally, C3d deposition was measured on single antigen beads (SAB) mixed with HLA-Ab and human complement. TNT003 inhibited HLA-Ab mediated complement deposition on HAEC in a concentration-dependent manner; C3a, C4a and C5a anaphylatoxin production was also diminished by TNT003. Finally, TNT003 blocked C3d deposition induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-specific antibodies on SAB. These data suggest TNT003 may be useful for modulating the effects of DSA, as TNT003 inhibits complement deposition and split product formation generated by HLA-I/II-Ab in vitro. PMID:25904443
Increased activity of the complement system in the liver of patients with alcoholic hepatitis.
Shen, Hong; French, Barbara A; Liu, Hui; Tillman, Brittany C; French, Samuel W
2014-12-01
Inflammation has been suggested as a mechanism underlying the development of alcoholic hepatitis (AH). The activation of the complement system plays an important role in inflammation. Although it has been shown that ethanol-induced activation of the complement system contributes to the pathophysiology of ethanol-induced liver injury in mice, whether ethanol consumption activates the complement system in the human liver has not been investigated. Using antibodies against C1q, C3, and C5, the immunoreactivity of the complement system in patients with AH was examined by immunohistochemistry and quantified by morphometric image analysis. The immunoreactivity intensity of C1q, C3, and C5 in patients with AH was significantly higher than that seen in normal controls. Further, the gene expression of C1q, C3, and C5 was examined using real-time PCR. There were increases in the levels of C1q and C5, but not C3 mRNA in AH. Moreover, the immunoreactivity of C5a receptor (C5aR) also increased in AH. To explore the functional implication of the activation of the complement system in AH, we examined the colocalization of C5aR in Mallory-Denk bodies (MDBs) forming balloon hepatocytes. C5aR was focally overexpressed in the MDB forming cells. Collectively, our study suggests that alcohol consumption increases the activity of the complement system in the liver cells, which contributes to the inflammation-associated pathogenesis of AH. Copyright © 2014 Elsevier Inc. All rights reserved.
The Murine Factor H-Related Protein FHR-B Promotes Complement Activation.
Cserhalmi, Marcell; Csincsi, Ádám I; Mezei, Zoltán; Kopp, Anne; Hebecker, Mario; Uzonyi, Barbara; Józsi, Mihály
2017-01-01
Factor H-related (FHR) proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH). While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3), and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM) extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.
Eriksson, Charlotta E; Studahl, Marie; Bergström, Tomas
2016-06-15
Herpes simplex encephalitis (HSE) is characterized by a pronounced inflammatory activity in the central nervous system (CNS). Here, we investigated the acute and prolonged complement system activity in HSE patients, by using enzyme-linked immunosorbent assays (ELISAs) for numerous complement components (C). We found increased cerebrospinal fluid concentrations of C3a, C3b, C5 and C5a in HSE patients compared with healthy controls. C3a and C5a concentrations remained increased also compared with patient controls. Our results conclude that the complement system is activated in CNS during HSE in the acute phase, and interestingly also in later stages supporting previous reports of prolonged inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.
A Minimal Anaphase Promoting Complex/Cyclosome (APC/C) in Trypanosoma brucei
Bessat, Mohamed; Knudsen, Giselle; Burlingame, Alma L.; Wang, Ching C.
2013-01-01
The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that initiates chromosome segregation and mitotic exit by targeting critical cell-cycle regulators for proteolytic destruction. Previously, seven APC/C subunit homologues were identified in the genome of Trypanosoma brucei. In the present study, we tested five of them in yeast complementation studies and found none of them capable of complementing the yeast mutants lacking the corresponding subunits, suggesting significant discrepancies between the two APC/C’s. Subunit homologues of mitotic checkpoint complex (MCC) have not yet been identified in T. brucei, raising the possibility that a MCC-APC/C complex equivalent may not exist in T. brucei. We performed tandem affinity purification of the protein complex containing a APC1 fusion protein expressed in the cells enriched in different phases of the cell cycle of procyclic form T. brucei, and compared their protein profiles using LC-MS/MS analyses. The seven putative APC/C subunits were identified in the protein complex throughout the cell cycle together with three additional proteins designated the associated proteins (AP) AP1, AP2 and AP3. Abundance of the 10 proteins remained relatively unchanged throughout the cell cycle, suggesting that they are the core subunits of APC/C. AP1 turned out to be a homologue of APC4. An RNAi knockdown of APC4 and AP3 showed no detectable cellular phenotype, whereas an AP2 knockdown enriched the cells in G2/M phase. The AP2-depleted cells showed stabilized mitotic cyclin B. An accumulation of poly-ubiquitinated cyclin B was indicated in the cells treated with the proteasome inhibitor MG132, demonstrating the involvement of proteasome in degrading poly-ubiquitinated cyclin B. In all, a 10-subunit APC/C machinery with a conserved function is identified in T. brucei without linking to a MCC-like complex, thus indicating a unique T. brucei APC/C. PMID:23533609
Flores-Suárez, Luis F
2011-12-01
One of the main characteristics of the vasculitis associated with antineutrophil cytoplasm autoantibodies (AASV) is the absence of immune complex deposition in biopsies of affected tissues as well as a lack of complement depletion. However, in early stages of disease induced in animal models, it has been observed that the complement system may be involved in the generation of these diseases. There are various animal models which have been developed with the aim of knowing which are the pathogenic mechanisms in granulomatosis with polyangiitis (Wegener) (GPA) and microscopic polyangiitis (MPA), the latter being explained using these approaches in a more satisfactory manner, as there is lack of a model which reproduces the changes leading to a granulomatous vasculitis associated with antibodies against proteinase-3, as in GPA. This short review presents recent evidence of the presence of complement in biopsies of patients with AASV and the most recent animal models, which show the participation of complement in their etiology. Copyright © 2011 Elsevier España, S.L. All rights reserved.
Kotimaa, Juha; Klar-Mohammad, Ngaisah; Gueler, Faikah; Schilders, Geurt; Jansen, Aswin; Rutjes, Helma; Daha, Mohamed R; van Kooten, Cees
2016-08-01
Experimental mouse models have been extensively used to elucidate the role of the complement system in different diseases and injuries. Contribution of gender has revealed an intriguing gender specific difference; female mice often show protection against most complement driven injuries such as ischemia/reperfusion injury, graft rejection and sepsis. Interestingly, early studies to the mouse complement system revealed that female mice have very low total complement activity (CH50), which is related to androgen regulation of hepatic complement synthesis. Here, our aim was to understand at which level the female specific differences in mouse complement resides. We have used recently developed complement assays to study the functional activities of female and male mice at the level of C3 and C9 activation, and furthermore assayed key complement factor levels in serum of age-matched female and male C57BL/6 mice. Our results show that the female mice have normal complement cascade functionality at the level of C3 activation, which was supported by determinations of early complement factors. However, all pathways are strongly reduced at the level of C9 activation, suggesting a terminal pathway specific difference. This was in line with C6 and C9 measurements, showing strongly decreased levels in females. Furthermore, similar gender differences were also found in BALB/cJ mice, but not in CD-1 mice. Our results clearly demonstrate that the complement system in females of frequently used mouse strains is restricted by the terminal pathway components and that the perceived female specific protection against experimental disease and injury might be in part explained by the inability promote inflammation through C5b-9. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Analysis of Nuclear Lamina Proteins in Myoblast Differentiation by Functional Complementation.
Tapia, Olga; Gerace, Larry
2016-01-01
We describe straightforward methodology for structure-function mapping of nuclear lamina proteins in myoblast differentiation, using populations of C2C12 myoblasts in which the endogenous lamina components are replaced with ectopically expressed mutant versions of the proteins. The procedure involves bulk isolation of C2C12 cell populations expressing the ectopic proteins by lentiviral transduction, followed by depletion of the endogenous proteins using siRNA, and incubation of cells under myoblast differentiation conditions. Similar methodology may be applied to mouse embryo fibroblasts or to other cell types as well, for the identification and characterization of sequences of lamina proteins involved in functions that can be measured biochemically or cytologically.
Kunchithapautham, Kannan; Atkinson, Carl; Rohrer, Bärbel
2014-01-01
Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD. PMID:24711457
Gan, Hui; Zhou, Yong; Sun, Ping; Zhu, Xiao-Xia; Wang, Quan-Li; Zhan, Lin-Sheng
2007-08-01
This study was purposed to verify the binding part of human complement C3 to complement receptor III (CRIII) in monocytes, the peptide rC3B, including the binding-site, was expressed, purified and identified. rC3B, the binding part of human complement C3 to CRIII, was selected by computer-aided modeling and summarizing researches published. Then, rC3B gene fragment was amplified by PCR, and cloned into prokaryotic vector pQE30a. The fusion protein rC3B was expressed in E.coli M15 and purified by Ni(2+)-chelating affinity chromatography. The activity of rC3B was identified by Western blot and adherence assay with monocytes. The results showed that rC3B fragment was obtained, and a prokaryotic expression vector pQE30-rC3B was constructed. rC3B was efficiently expressed and purified. In Western blot, the target protein showed the activity of binding with C3 antibody, while the purified protein showed the activity of adherence with monocytes. It is concluded that the recombinant C3B was obtained and identified, and this study lay the basis for the further functional analysis of C3.
Complement anaphylatoxins as immune regulators in cancer.
Sayegh, Eli T; Bloch, Orin; Parsa, Andrew T
2014-08-01
The role of the complement system in innate immunity is well characterized. However, a recent body of research implicates the complement anaphylatoxins C3a and C5a as insidious propagators of tumor growth and progression. It is now recognized that certain tumors elaborate C3a and C5a and that complement, as a mediator of chronic inflammation and regulator of immune function, may in fact foster rather than defend against tumor growth. A putative mechanism for this function is complement-mediated suppression of immune effector cells responsible for immunosurveillance within the tumor microenvironment. This paradigm accords with models of immune dysregulation, such as autoimmunity and infectious disease, which have defined a pathophysiological role for abnormal complement signaling. Several types of immune cells express the cognate receptors for the complement anaphylatoxins, C3aR and C5aR, and demonstrate functional modulation in response to complement stimulation. In turn, impairment of antitumor immunity has been intimately tied to tumor progression in animal models of cancer. In this article, the literature was systematically reviewed to identify studies that have characterized the effects of the complement anaphylatoxins on the composition and function of immune cells within the tumor microenvironment. The search identified six studies based upon models of lymphoma and ovarian, cervical, lung, breast, and mammary cancer, which collectively support the paradigm of complement as an immune regulator in the tumor microenvironment. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
21 CFR 866.5240 - Complement components immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids, and tissues. Complement is a group of serum proteins which destroy infectious agents. Measurements of these...
21 CFR 866.5240 - Complement components immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids, and tissues. Complement is a group of serum proteins which destroy infectious agents. Measurements of these...
21 CFR 866.5240 - Complement components immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids, and tissues. Complement is a group of serum proteins which destroy infectious agents. Measurements of these...
21 CFR 866.5240 - Complement components immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids, and tissues. Complement is a group of serum proteins which destroy infectious agents. Measurements of these...
Feliciani, C; Toto, P; Amerio, P
1999-01-01
Pemphigus vulgaris (PV) is a potentially life-threatening disease, characterized immunohistologically by IgG deposits and complement activation on the surface of keratinocytes. Complement activation has been implicated in the pathogenesis with C3 deposits in about 90% of patients. In order to further elucidate the role of complement in PV and to define which cytokines play a role in C3 mRNA expression, we performed an in vitro study in human keratinocytes. Normal human epidermal keratinocytes (NHuK) were incubated with PV serum and C3 mRNA was measured. We previously had shown that IL-1alpha and TNF-alpha are expressed in PV in vivo and in vitro. Since cytokines are able to modulate complement activation, mRNA expression was evaluated in a similar experiment after pretreatment using antibodies against IL-1alpha and TNF-alpha. Incubation of NHuK with PV sera caused their detachment from the plates after 20-30 minutes with a complete acantholysis within 12 hours. An early C3 mRNA expression was seen after 30 minutes with a peak level after 1 hour. Blocking studies, using antibodies against human IL-1alpha and TNF-alpha in NHuK together with PV-IgG, showed reduction of in vitro induced acantholysis and inhibition of C3 mRNA expression. This study supports the hypothesis that complement C3 is important in PV acantholysis and that complement activation is increased by IL-1alpha and TNF-alpha.
Kaplan, Allen P; Joseph, Kusumam
2016-10-01
Plasma of patients with types I and II hereditary angioedema is unstable if incubated in a plastic (i.e., inert) vessel at 37 °C manifested by progressively increasing formation of bradykinin. There is also a persistent low level of C4 in 95 % of patients even when they are symptomatic. These phenomena are due to the properties of the C1r subcomponent of C1, factor XII, and the bimolecular complex of prekallikrein with high molecular weight kininogen (HK). Purified C1r auto-activates in physiologic buffers, activates C1s, which in turn depletes C4. This occurs when C1 inhibitor is deficient. The complex of prekallikrein-HK acquires an inducible active site not present in prekallikrein which in Tris-type buffers cleaves HK stoichiometrically to release bradykinin, or in phosphate buffer auto-activates to generate kallikrein and bradykinin. Thus immunologic depletion of C1 inhibitor from factor XII-deficient plasma (phosphate is the natural buffer) auto-activates on incubation to release bradykinin. Normal C1 inhibitor prevents this from occurring. During attacks of angioedema, if factor XII auto-activates on surfaces, the initial factor XIIa formed converts prekallikrein to kallikrein, and kallikrein cleaves HK to release bradykinin. Kallikrein also rapidly activates most remaining factor XII to factor XIIa. Additional cleavages convert factor XIIa to factor XIIf and factor XIIf activates C1r enzymatically so that C4 levels approach zero, and C2 is depleted. There is also a possibility that kallikrein is generated first as a result of activation of the prekallikrein-HK complex by heat shock protein 90 released from endothelial cells, followed by kallikrein activation of factor XII.
Barata, Lidia; Miwa, Takashi; Sato, Sayaka; Kim, David; Mohammed, Imran; Song, Wen-Chao
2013-03-15
Complement receptor 1-related gene/protein y (Crry) and decay-accelerating factor (DAF) are two murine membrane C3 complement regulators with overlapping functions. Crry deletion is embryonically lethal whereas DAF-deficient mice are generally healthy. Crry(-/-)DAF(-/-) mice were viable on a C3(-/-) background, but platelets from such mice were rapidly destroyed when transfused into C3-sufficient mice. In this study, we used the cre-lox system to delete platelet Crry in DAF(-/-) mice and studied Crry/DAF-deficient platelet development in vivo. Rather than displaying thrombocytopenia, Pf4-Cre(+)-Crry(flox/flox) mice had normal platelet counts and their peripheral platelets were resistant to complement attack. However, chimera mice generated with Pf4-Cre(+)-Crry(flox/flox) bone marrows showed platelets from C3(-/-) but not C3(+/+) recipients to be sensitive to complement activation, suggesting that circulating platelets in Pf4-Cre(+)-Crry(flox/flox) mice were naturally selected in a complement-sufficient environment. Notably, Pf4-Cre(+)-Crry(flox/flox) mouse platelets became complement susceptible when factor H function was blocked. Examination of Pf4-Cre(+)-Crry(flox/flox) mouse bone marrows revealed exceedingly active thrombopoiesis. Thus, under in vivo conditions, Crry/DAF deficiency on platelets led to abnormal platelet turnover, but peripheral platelet count was compensated for by increased thrombopoiesis. Selective survival of Crry/DAF-deficient platelets aided by factor H protection and compensatory thrombopoiesis demonstrates the cooperation between membrane and fluid phase complement inhibitors and the body's ability to adaptively respond to complement regulator deficiencies.
Banadakoppa, M; Chauhan, M S; Havemann, D; Balakrishnan, M; Dominic, J S; Yallampalli, C
2014-01-01
Spontaneous abortion in early pregnancy due to unknown reasons is a common problem. The excess complement activation and consequent placental inflammation and anti-angiogenic milieu is emerging as an important associated factor in many pregnancy-related complications. In the present study we sought to examine the expression of complement inhibitory proteins at the feto–maternal interface and levels of complement split products in the circulation to understand their role in spontaneous abortion. Consenting pregnant women who either underwent elective abortion due to non-clinical reasons (n = 13) or suffered miscarriage (n = 14) were recruited for the study. Systemic levels of complement factors C3a and C5a were measured by enzyme-linked immunosorbent assay (ELISA). Plasma C5 and C3 protein levels were examined by Western blot. Expressions of complement regulatory proteins such as CD46 and CD55 in the decidua were investigated by quantitative polymerase chain reaction (PCR) and Western blot. The median of plasma C3a level was 82·83 ng/ml and 66·17 ng/ml in elective and spontaneous abortion patients, respectively. Medians of plasma C5a levels in elective and spontaneous abortion patients were 0·96 ng/ml and 1·14 ng/ml, respectively. Only plasma C5a levels but not C3a levels showed significant elevation in spontaneous abortion patients compared to elective abortion patients. Further, there was a threefold decrease in the mRNA expressions of complement inhibitory proteins CD46 and CD55 in the decidua obtained from spontaneous abortion patients compared to that of elective abortion patients. These data suggested that dysregulated complement cascade may be associated with spontaneous abortion. PMID:24802103
Mesophilic Aeromonas sp. serogroup O:11 resistance to complement-mediated killing.
Merino, S; Rubires, X; Aguilar, A; Albertí, S; Hernandez-Allés, S; Benedí, V J; Tomas, J M
1996-01-01
The complement activation by and resistance to complement-mediated killing of Aeromonas sp. strains from serogroup O:11 were investigated by using different wild-type strains (with an S-layer characteristic of this serogroup) and their isogenic mutants characterized for their surface components (S-layer and lipopolysaccharide [LPS]). All of the Aeromonas sp. serogroup O:11 wild-type strains are unable to activate complement, which suggested that the S-layer completely covered the LPS molecules. We found that the classical complement pathway is involved in serum killing of susceptible Aeromonas sp. mutant strains of serogroup O11, while the alternative complement pathway seems not to be involved, and that the complement activation seems to be independent of antibody. The smooth mutant strains devoid of the S-layer (S-layer isogenic mutants) or isogenic LPS mutant strains with a complete or rather complete LPS core (also without the S-layer) are able to activate complement but are resistant to complement-mediated killing. The reasons for this resistance are that C3b is rapidly degraded, and therefore the lytic membrane attack complex (C5b-9) is not formed. Isogenic LPS rough mutants with an incomplete LPS core are serum sensitive because they bind more C3b than the resistant strains, the C3b is not completely degraded, and therefore the lytic complex (C5b-9) is formed. PMID:8945581
Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W; Song, Wenchao; Dunaief, Joshua L
2015-05-08
Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W.; Song, Wenchao; Dunaief, Joshua L.
2015-01-01
Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. PMID:25802332
Sewell, Diane L.; Nacewicz, Brendon; Liu, Frances; Macvilay, Sinarack; Erdei, Anna; Lambris, John D.; Sandor, Matyas; Fabry, Zsuzsa
2016-01-01
The role of complement components in traumatic brain injury is poorly understood. Here we show that secondary damage after acute cryoinjury is significantly reduced in C3−/− or C5−/− mice or in mice treated with C5a receptor antagonist peptides. Injury sizes and neutrophil extravasation were compared. While neutrophil density increased following traumatic brain injury in wild type (C57BL/6) mice, C3-deficient mice demonstrated lower neutrophil extravasation and injury sizes in the brain. RNase protection assay indicated that C3 contributes to the induction of brain inflammatory mediators, MIF, RANTES (CCL5) and MCP-1 (CCL2). Intracranial C3 injection induced neutrophil extravasation in injured brains of C3−/− mice suggesting locally produced C3 is important in brain inflammation. We show that neutrophil extravasation is significantly reduced in both C5−/− mice and C5a receptor antagonist treated cryoinjured mice suggesting that one of the possible mechanisms of C3 effect on neutrophil extravasation is mediated via downstream complement activation products such as C5a. Our data indicates that complement inhibitors may ameliorate traumatic brain injury. PMID:15342196
Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J.; Patz, Edward F.; Li, Shi-You; He, You-Wen
2016-01-01
In contrast to its inhibitory effects on many cells, IL-10 activates CD8+ tumor infiltrating lymphocytes (TILs) and enhances their antitumor activity. However, CD8+ TILs do not routinely express IL-10 as autocrine complement C3 inhibits IL-10 production through complement receptors C3aR and C5aR. CD8+ TILs from C3-deficient mice, however, express IL-10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T cell- and IL-10-dependent manner; human TILs expanded with IL-2 plus IL-10 increase the killing of primary tumors in vitro compared to IL-2 treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the PD-1/PD-L1 immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8+ TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL-10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. PMID:27297552
Atchison, Elizabeth; Eklund, John; Martone, Brenda; Wang, Lili; Gidron, Adi; Macvicar, Gary; Rademaker, Alfred; Goolsby, Charles; Marszalek, Laura; Kozlowski, James; Smith, Norm; Kuzel, Timothy M
2010-09-01
High-dose (HD) IL-2 is approved to treat renal cell carcinoma (RCC) with modest response rates and significant toxicity. Enhancement of cytotoxic T-cell activity by IL-2 is 1 mechanism of action. IL-2 also stimulates regulatory T lymphocytes (Tregs), which are associated with poor prognosis. Favorable outcomes are associated with greater rebound absolute lymphocyte count (Fumagalli 2003). DD depletes IL-2 receptor (CD25 component) expressing cells. We hypothesized that sequential therapy could complement each other; DD would deplete Tregs so IL-2 could more effectively stimulate proliferation and activity of cytotoxic T lymphocytes. Patients (n=18) received standard HD IL-2 and 1 dose of DD daily for 3 days; periodic flow cytometry and complete blood counts were performed. Group A included 3 patients to assess safety only with DD 6 μg/kg between the IL-2 courses. Group B included 9 patients at 9 μg/kg DD before the IL-2 courses. Group C included 6 patients at 9 μg/kg DD between the IL-2 courses. Efficacy using the RECIST criteria was assessed after the treatment. Fifteen patients from a study of IL-2 without DD served as controls for toxicity comparison and 13 of these for flow cytometry comparisons. No unusual toxicity was noted. For group B/C patients receiving DD, the median decline in Tregs was 56.3% from pre-DD to post-DD (P=0.013). Peak absolute lymphocyte count change from baseline was +9980/μL for group B, +4470/μL for group C, and +4720/μL for the controls (P=0.005 B vs. C). The overall response rate was 5 of 15 (33%); 3 of 9 (33%) and 2 of 6 (33%) for groups B and C, respectively, including 2 patients with sarcomatoid RCC and 1 with earlier sunitinib therapy.
Alcorlo, Martín; Tortajada, Agustín; Rodríguez de Córdoba, Santiago; Llorca, Oscar
2013-01-01
Complement is an essential component of innate immunity. Its activation results in the assembly of unstable protease complexes, denominated C3/C5 convertases, leading to inflammation and lysis. Regulatory proteins inactivate C3/C5 convertases on host surfaces to avoid collateral tissue damage. On pathogen surfaces, properdin stabilizes C3/C5 convertases to efficiently fight infection. How properdin performs this function is, however, unclear. Using electron microscopy we show that the N- and C-terminal ends of adjacent monomers in properdin oligomers conform a curly vertex that holds together the AP convertase, interacting with both the C345C and vWA domains of C3b and Bb, respectively. Properdin also promotes a large displacement of the TED (thioester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains of C3b, which likely impairs C3-convertase inactivation by regulatory proteins. The combined effect of molecular cross-linking and structural reorganization increases stability of the C3 convertase and facilitates recruitment of fluid-phase C3 convertase to the cell surfaces. Our model explains how properdin mediates the assembly of stabilized C3/C5-convertase clusters, which helps to localize complement amplification to pathogen surfaces. PMID:23901101
... of a certain protein. This protein is part of the complement system. The complement system is a group of proteins ... system and play a role in the development of inflammation. The complement system protects the body from infections, dead cells and ...
Moulton, Elizabeth A; Bertram, Paula; Chen, Nanhai; Buller, R Mark L; Atkinson, John P
2010-09-01
Poxviruses produce complement regulatory proteins to subvert the host's immune response. Similar to the human pathogen variola virus, ectromelia virus has a limited host range and provides a mouse model where the virus and the host's immune response have coevolved. We previously demonstrated that multiple components (C3, C4, and factor B) of the classical and alternative pathways are required to survive ectromelia virus infection. Complement's role in the innate and adaptive immune responses likely drove the evolution of a virus-encoded virulence factor that regulates complement activation. In this study, we characterized the ectromelia virus inhibitor of complement enzymes (EMICE). Recombinant EMICE regulated complement activation on the surface of CHO cells, and it protected complement-sensitive intracellular mature virions (IMV) from neutralization in vitro. It accomplished this by serving as a cofactor for the inactivation of C3b and C4b and by dissociating the catalytic domain of the classical pathway C3 convertase. Infected murine cells initiated synthesis of EMICE within 4 to 6 h postinoculation. The levels were sufficient in the supernatant to protect the IMV, upon release, from complement-mediated neutralization. EMICE on the surface of infected murine cells also reduced complement activation by the alternative pathway. In contrast, classical pathway activation by high-titer antibody overwhelmed EMICE's regulatory capacity. These results suggest that EMICE's role is early during infection when it counteracts the innate immune response. In summary, ectromelia virus produced EMICE within a few hours of an infection, and EMICE in turn decreased complement activation on IMV and infected cells.
Lillegard, Kathryn E.; Loeks-Johnson, Alex C.; Opacich, Jonathan W.; Peterson, Jenna M.; Bauer, Ashley J.; Elmquist, Barbara J.; Regal, Ronald R.; Gilbert, Jeffrey S.
2014-01-01
Early-onset pre-eclampsia is characterized by decreased placental perfusion, new-onset hypertension, angiogenic imbalance, and endothelial dysfunction associated with excessive activation of the innate immune complement system. Although our previous studies demonstrated that inhibition of complement activation attenuates placental ischemia–induced hypertension using the rat reduced uterine perfusion pressure (RUPP) model, the important product(s) of complement activation has yet to be identified. We hypothesized that antagonism of receptors for complement activation products C3a and C5a would improve vascular function and attenuate RUPP hypertension. On gestational day (GD) 14, rats underwent sham surgery or vascular clip placement on ovarian arteries and abdominal aorta (RUPP). Rats were treated once daily with the C5a receptor antagonist (C5aRA), PMX51 (acetyl-F-[Orn-P-(D-Cha)-WR]), the C3a receptor antagonist (C3aRA), SB290157 (N2-[(2,2-diphenylethoxy)acetyl]-l-arginine), or vehicle from GD 14–18. Both the C3aRA and C5aRA attenuated placental ischemia–induced hypertension without affecting the decreased fetal weight or decreased concentration of free circulating vascular endothelial growth factor (VEGF) also present in this model. The C5aRA, but not the C3aRA, attenuated placental ischemia–induced increase in heart rate and impaired endothelial-dependent relaxation. The C3aRA abrogated the acute pressor response to C3a peptide injection, but it also unexpectedly attenuated the placental ischemia–induced increase in C3a, suggesting nonreceptor-mediated effects. Overall, these results indicate that both C3a and C5a are important products of complement activation that mediate the hypertension regardless of the reduction in free plasma VEGF. The mechanism by which C3a contributes to placental ischemia–induced hypertension appears to be distinct from that of C5a, and management of pregnancy-induced hypertension is likely to require a broad anti-inflammatory approach. PMID:25150279
Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo
NASA Astrophysics Data System (ADS)
Chen, Fangfang; Wang, Guankui; Griffin, James I.; Brenneman, Barbara; Banda, Nirmal K.; Holers, V. Michael; Backos, Donald S.; Wu, Linping; Moghimi, Seyed Moein; Simberg, Dmitri
2017-05-01
When nanoparticles are intravenously injected into the body, complement proteins deposit on the surface of nanoparticles in a process called opsonization. These proteins prime the particle for removal by immune cells and may contribute toward infusion-related adverse effects such as allergic responses. The ways complement proteins assemble on nanoparticles have remained unclear. Here, we show that dextran-coated superparamagnetic iron oxide core-shell nanoworms incubated in human serum and plasma are rapidly opsonized with the third complement component (C3) via the alternative pathway. Serum and plasma proteins bound to the nanoworms are mostly intercalated into the nanoworm shell. We show that C3 covalently binds to these absorbed proteins rather than the dextran shell and the protein-bound C3 undergoes dynamic exchange in vitro. Surface-bound proteins accelerate the assembly of the complement components of the alternative pathway on the nanoworm surface. When nanoworms pre-coated with human plasma were injected into mice, C3 and other adsorbed proteins undergo rapid loss. Our results provide important insight into dynamics of protein adsorption and complement opsonization of nanomedicines.
Serum complement C3 strongly correlates with whole-body insulin sensitivity in rheumatoid arthritis.
Ursini, Francesco; D'Angelo, Salvatore; Russo, Emilio; Arturi, Franco; D'Antona, Lucia; Bruno, Caterina; Naty, Saverio; De Sarro, Giovambattista; Olivieri, Ignazio; Grembiale, Rosa Daniela
2017-01-01
Rheumatoid arthritis (RA) is characterised by an excess of cardiovascular diseases (CVD) risk, attributable to a synergy between under-diagnosed traditional risk factors (i.e. insulin resistance) and inflammatory disease activity. The aim of the present study was to evaluate the correlation between inflammatory measures and insulin sensitivity in RA patients. Forty non-diabetic RA patients (19 males) were recruited. All patients underwent anthropometric measurements, laboratory evaluation and oral glucose tolerance test (OGTT). Insulin sensitivity index (ISI) was calculated with the equation proposed by Matsuda et al., from dynamic values of glucose and insulin obtained during OGTT. In the univariate analysis, lnISI correlated inversely with age, BMI, waist circumference, sBP, ESR, lnCRP and complement C3, but not with disease duration, dBP or complement C4. In non-obese patients (BMI <30 kg/m2, n=28), only age, BMI, lnCRP and C3 maintained their correlation with lnISI. In a stepwise multiple regression using lnISI as the dependent variable and BMI, age, lnCRP and complement C3 as predictors, only BMI and C3 entered the equation and accounted for 38.2% of the variance in lnISI. In non-obese patients, only C3 entered the regression equation, accounting for 32.2% of the variance in lnISI. Using a ROC curve, we identified the best cut-off for complement C3 of 1.22 g/L that yielded a sensitivity of 67% and a specificity of 79% for classification of insulin resistant patients. In RA patients, complement C3 correlates strongly with insulin sensitivity, in both obese and non-obese individuals.
Choi, Eunsil; Kang, Nalae; Jeon, Young; Pai, Hyun-Sook
2016-01-01
ABSTRACT The unique Escherichia coli GTPase Der (double Era-like GTPase), which contains tandemly repeated GTP-binding domains, has been shown to play an essential role in 50S ribosomal subunit biogenesis. The depletion of Der results in the accumulation of precursors of 50S ribosomal subunits that are structurally unstable at low Mg2+ concentrations. Der homologs are ubiquitously found in eubacteria. Conversely, very few are conserved in eukaryotes, and none is conserved in archaea. In the present study, to verify their conserved role in bacterial 50S ribosomal subunit biogenesis, we cloned Der homologs from two gammaproteobacteria, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium; two pathogenic bacteria, Staphylococcus aureus and Neisseria gonorrhoeae; and the extremophile Deinococcus radiodurans and then evaluated whether they could functionally complement the E. coli der-null phenotype. Only K. pneumoniae and S. Typhimurium Der proteins enabled the E. coli der-null strain to grow under nonpermissive conditions. Sucrose density gradient experiments revealed that the expression of K. pneumoniae and S. Typhimurium Der proteins rescued the structural instability of 50S ribosomal subunits, which was caused by E. coli Der depletion. To determine what allows their complementation, we constructed Der chimeras. We found that only Der chimeras harboring both the linker and long C-terminal regions could reverse the growth defects of the der-null strain. Our findings suggest that ubiquitously conserved essential GTPase Der is involved in 50S ribosomal subunit biosynthesis in various bacteria and that the linker and C-terminal regions may participate in species-specific recognition or interaction with the 50S ribosomal subunit. IMPORTANCE In Escherichia coli, Der (double Era-like GTPase) is an essential GTPase that is important for the production of mature 50S ribosomal subunits. However, to date, its precise role in ribosome biogenesis has not been clarified. In this study, we used five Der homologs from gammaproteobacteria, pathogenic bacteria, and an extremophile to elucidate their conserved function in 50S ribosomal subunit biogenesis. Among them, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium Der homologs implicated the participation of Der in ribosome assembly in E. coli. Our results show that the linker and C-terminal regions of Der homologs are correlated with its functional complementation in E. coli der mutants, suggesting that they are involved in species-specific recognition or interaction with 50S ribosomal subunits. PMID:27297882
1988-01-01
We report the organization of the human genes encoding the complement components C4-binding protein (C4BP), C3b/C4b receptor (CR1), decay accelerating factor (DAF), and C3dg receptor (CR2) within the regulator of complement activation (RCA) gene cluster. Using pulsed field gel electrophoresis analysis these genes have been physically linked and aligned as CR1-CR2-DAF-C4BP in an 800-kb DNA segment. The very tight linkage between the CR1 and the C4BP loci, contrasted with the relative long DNA distance between these genes, suggests the existence of mechanisms interfering with recombination within the RCA gene cluster. PMID:2450163
Simple method to distinguish between primary and secondary C3 deficiencies.
Pereira de Carvalho Florido, Marlene; Ferreira de Paula, Patrícia; Isaac, Lourdes
2003-03-01
Due to the increasing numbers of reported clinical cases of complement deficiency in medical centers, clinicians are now more aware of the role of the complement system in the protection against infections caused by microorganisms. Therefore, clinical laboratories are now prepared to perform a number of diagnostic tests of the complement system other than the standard 50% hemolytic component assay. Deficiencies of alternative complement pathway proteins are related to severe and recurrent infections; and the application of easy, reliable, and low-cost methods for their detection and distinction are always welcome, notably in developing countries. When activation of the alternative complement pathway is evaluated in hemolytic agarose plates, some but not all human sera cross-react to form a late linear lysis. Since the formation of this linear lysis is dependent on C3 and factor B, it is possible to use late linear lysis to routinely screen for the presence of deficiencies of alternative human complement pathway proteins such as factor B. Furthermore, since linear lysis is observed between normal human serum and primary C3-deficient serum but not between normal human serum and secondary C3-deficient serum caused by the lack of factor H or factor I, this assay may also be used to discriminate between primary and secondary C3 deficiencies.
Zhu, Li; Zhai, Ya-Ling; Wang, Feng-Mei; Hou, Ping; Lv, Ji-Cheng; Xu, Da-Min; Shi, Su-Fang; Liu, Li-Jun; Yu, Feng; Zhao, Ming-Hui; Novak, Jan; Gharavi, Ali G; Zhang, Hong
2015-05-01
Complement activation is common in patients with IgA nephropathy (IgAN) and associated with disease severity. Our recent genome-wide association study of IgAN identified susceptibility loci on 1q32 containing the complement regulatory protein-encoding genes CFH and CFHR1-5, with rs6677604 in CFH as the top single-nucleotide polymorphism and CFHR3-1 deletion (CFHR3-1∆) as the top signal for copy number variation. In this study, to explore the clinical effects of variation in CFH, CFHR3, and CFHR1 on IgAN susceptibility and progression, we enrolled two populations. Group 1 included 1178 subjects with IgAN and available genome-wide association study data. Group 2 included 365 subjects with IgAN and available clinical follow-up data. In group 1, rs6677604 was associated with mesangial C3 deposition by genotype-phenotype correlation analysis. In group 2, we detected a linkage between the rs6677604-A allele and CFHR3-1∆ and found that the rs6677604-A allele was associated with higher serum levels of CFH and lower levels of the complement activation split product C3a. Furthermore, CFH levels were positively associated with circulating C3 levels and negatively associated with mesangial C3 deposition. Moreover, serum levels of the pathogenic galactose-deficient glycoform of IgA1 were also associated with the degree of mesangial C3 deposition in patients with IgAN. Our findings suggest that genetic variants in CFH, CFHR3, and CFHR1 affect complement activation and thereby, predispose patients to develop IgAN. Copyright © 2015 by the American Society of Nephrology.
Kieslich, Chris A; Morikis, Dimitrios
2012-01-01
The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish.
Kieslich, Chris A.; Morikis, Dimitrios
2012-01-01
The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of −1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic “hot-spots”. Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic “hot-spots” at the two functional sites of C3d, while the surface of CR2 lacks electrostatic “hot-spots” despite its excessively positive nature. We propose that the electrostatic “hot-spots” of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish. PMID:23300422
Novel roles of complement in renal diseases and their therapeutic consequences.
Wada, Takehiko; Nangaku, Masaomi
2013-09-01
The complement system functions as a part of the innate immune system. Inappropriate activation of the complement pathways has a deleterious effect on kidneys. Recent advances in complement research have provided new insights into the pathogenesis of glomerular and tubulointerstitial injury associated with complement activation. A new disease entity termed 'C3 glomerulopathy' has recently been proposed and is characterized by isolated C3 deposition in glomeruli without positive staining for immunoglobulins. Genetic and functional studies have demonstrated that several different mutations and disease variants, as well as the generation of autoantibodies, are potentially associated with its pathogenesis. The data from comprehensive analyses suggest that complement dysregulation can also be associated with hemolytic uremic syndrome and more common glomerular diseases, such as IgA nephropathy and diabetic kidney disease. In addition, animal studies utilizing genetically modified mice have begun to elucidate the molecular pathomechanisms associated with the complement system. From a diagnostic point of view, a noninvasive, MRI-based method for detecting C3 has recently been developed to serve as a novel tool for diagnosing complement-mediated kidney diseases. While novel therapeutic tools related to complement regulation are emerging, studies evaluating the precise roles of the complement system in kidney diseases will still be useful for developing new therapeutic approaches.
Biró, Éva; Nieuwland, Rienk; Tak, Paul P; Pronk, Loes M; Schaap, Marianne C L; Sturk, Augueste; Hack, C Erik
2007-01-01
Objectives In vitro, microparticles can activate complement via the classical pathway. If demonstrable ex vivo, this mechanism may contribute to the pathogenesis of rheumatoid arthritis (RA). We therefore investigated the presence of activated complement components and complement activator molecules on the surface of cell‐derived microparticles of RA patients and healthy individuals. Methods Microparticles from synovial fluid (n = 8) and plasma (n = 9) of 10 RA patients and plasma of sex‐ and age‐matched healthy individuals (n = 10) were analysed by flow cytometry for bound complement components (C1q, C4, C3) and complement activator molecules (C‐reactive protein (CRP), serum amyloid P component (SAP), immunoglobulin (Ig) M, IgG). Results Microparticles with bound C1q, C4, and/or C3 were abundant in RA synovial fluid, while in RA and control plasma much lower levels were present. Microparticles with bound C1q correlated with those with bound C3 in synovial fluid (r = 0.961, p = 0.0001), and with those with bound C4 in plasma (RA: r = 0.908, p = 0.0007; control: r = 0.632, p = 0.0498), indicating classical pathway activation. In synovial fluid, microparticles with IgM and IgG correlated with those with C1q (r = 0.728, p = 0.0408; r = 0.952, p = 0.0003, respectively), and in plasma, microparticles with CRP correlated with those with C1q (RA: r = 0.903, p = 0.0021; control: r = 0.683, p = 0.0296), implicating IgG and IgM in the classical pathway activation in RA synovial fluid, and CRP in the low level classical pathway activation in plasma. Conclusions This study demonstrates the presence of bound complement components and activator molecules on microparticles ex vivo, and supports their role in low grade complement activation in plasma and increased complement activation in RA synovial fluid. PMID:17261534
Effects of freezer storage time on levels of complement biomarkers.
Morgan, Angharad R; O'Hagan, Caroline; Touchard, Samuel; Lovestone, Simon; Morgan, B Paul
2017-11-06
There is uncertainty regarding how stable complement analytes are during long-term storage at - 80 °C. As part of our work program we have measured 17 complement biomarkers (C1q, C1 inhibitor, C3, C3a, iC3b, C4, C5, C9, FB, FD, FH, FI, TCC, Bb, sCR1, sCR2, Clusterin) and the benchmark inflammatory marker C-reactive protein (CRP) in a large set of plasma samples (n = 720) that had been collected, processed and subsequently stored at - 80 °C over a period of 6.6-10.6 years, prior to laboratory analysis. The biomarkers were measured using solid-phase enzyme immunoassays with a combination of multiplex assays using the MesoScale Discovery Platform and single-plex enzyme-linked immunosorbent assays (ELISAs). As part of a post hoc analysis of extrinsic factors (co-variables) affecting the analyses we investigated the impact of freezer storage time on the values obtained for each complement analyte. With the exception of five analytes (C4, C9, sCR2, clusterin and CRP), storage time was significantly correlated with measured plasma concentrations. For ten analytes: C3, FI, FB, FD, C5, sCR1, C3a, iC3b, Bb and TCC, storage time was positively correlated with concentration and for three analytes: FH, C1q, and C1 inhibitor, storage time was negatively correlated with concentration. The results suggest that information on storage time should be regarded as an important co-variable and taken into consideration when analysing data to look for associations of complement biomarker levels and disease or other outcomes.
Banadakoppa, M; Chauhan, M S; Havemann, D; Balakrishnan, M; Dominic, J S; Yallampalli, C
2014-09-01
Spontaneous abortion in early pregnancy due to unknown reasons is a common problem. The excess complement activation and consequent placental inflammation and anti-angiogenic milieu is emerging as an important associated factor in many pregnancy-related complications. In the present study we sought to examine the expression of complement inhibitory proteins at the feto-maternal interface and levels of complement split products in the circulation to understand their role in spontaneous abortion. Consenting pregnant women who either underwent elective abortion due to non-clinical reasons (n = 13) or suffered miscarriage (n = 14) were recruited for the study. Systemic levels of complement factors C3a and C5a were measured by enzyme-linked immunosorbent assay (ELISA). Plasma C5 and C3 protein levels were examined by Western blot. Expressions of complement regulatory proteins such as CD46 and CD55 in the decidua were investigated by quantitative polymerase chain reaction (PCR) and Western blot. The median of plasma C3a level was 82·83 ng/ml and 66·17 ng/ml in elective and spontaneous abortion patients, respectively. Medians of plasma C5a levels in elective and spontaneous abortion patients were 0·96 ng/ml and 1·14 ng/ml, respectively. Only plasma C5a levels but not C3a levels showed significant elevation in spontaneous abortion patients compared to elective abortion patients. Further, there was a threefold decrease in the mRNA expressions of complement inhibitory proteins CD46 and CD55 in the decidua obtained from spontaneous abortion patients compared to that of elective abortion patients. These data suggested that dysregulated complement cascade may be associated with spontaneous abortion. © 2014 British Society for Immunology.
Ghafourian, Mehri; Esmaeili, Mehrnosh; Dashti-Gerdabi, Nader; Sadeghi, Alireza; Malekei Naseri, Ali; Kazemi, Akhtar
2017-01-01
Thalassemia syndrome is the most common genetic disorder in the world and infection is the second cause of death in these patients. Measurement of serum C3 and C4 complement factors in serum was done in 60 patients with beta thalassemia major in comparison with 30 healthy subjects as control group. The serum level of C3 and C4 complement factors in 60 patients with beta thalassemia major who were randomly selected from among the patients referred to Shafa Hospital of Ahvaz was evaluated and compared with 30 samples from healthy individuals with no history of recent infectious or autoimmune diseases. It should be noted that single-radial-immunodiffusion assay was used in this study. This study has shown a significant reduction in serum levels of C3 and C4 in patients compared to controls (P value < 0.05). Decreased synthesis or increased consumption of complement factors in patients receiving multiple blood transfusions might lead to continuous contact between the immune system and various antigens, causing nonstop use of complement factors, recurrent infections, changes in parameters of the immune system due to iron overload as well as exposure to infectious factors such as HBV, HCV, HIV, and HTLV through blood transfusion.
Lohman, Rink-Jan; Hamidon, Johan K; Reid, Robert C; Rowley, Jessica A; Yau, Mei-Kwan; Halili, Maria A; Nielsen, Daniel S; Lim, Junxian; Wu, Kai-Chen; Loh, Zhixuan; Do, Anh; Suen, Jacky Y; Iyer, Abishek; Fairlie, David P
2017-08-24
Complement C3a is an important protein in innate and adaptive immunity, but its specific roles in vivo remain uncertain because C3a degrades rapidly to form the C3a-desArg protein, which does not bind to the C3a receptor and is indistinguishable from C3a using antibodies. Here we develop the most potent, stable and highly selective small molecule modulators of C3a receptor, using a heterocyclic hinge to switch between agonist and antagonist ligand conformations. This enables characterization of C3 areceptor-selective pro- vs. anti-inflammatory actions in human mast cells and macrophages, and in rats. A C3a receptor-selective agonist induces acute rat paw inflammation by first degranulating mast cells before activating macrophages and neutrophils. An orally administered C3a receptor-selective antagonist inhibits mast cell degranulation, thereby blocking recruitment and activation of macrophages and neutrophils, expression of inflammatory mediators and inflammation in a rat paw edema model. These novel tools reveal the mechanism of C3a-induced inflammation and provide new insights to complement-based medicines.Complement C3a is an important protein in innate and adaptive immunity, but its roles in vivo are unclear. Here the authors develop novel chemical agonists and antagonists for the C3a receptor, and show that they modulate mast cell degranulation and inflammation in a rat paw edema model.
A C3(H20) recycling pathway is a component of the intracellular complement system
Elvington, Michelle; Bertram, Paula; Atkinson, John P.
2017-01-01
An intracellular complement system (ICS) has recently been described in immune and nonimmune human cells. This system can be activated in a convertase-independent manner from intracellular stores of the complement component C3. The source of these stores has not been rigorously investigated. In the present study, Western blotting identified a band corresponding to C3 in freshly isolated human peripheral blood cells that was absent in corresponding cell lines. One difference between native cells and cell lines was the time absent from a fluid-phase complement source; therefore, we hypothesized that loading C3 from plasma was a route of establishing intracellular C3 stores. We found that many types of human cells specifically internalized C3(H2O), the hydrolytic product of C3, and not native C3, from the extracellular milieu. Uptake was rapid, saturable, and sensitive to competition with unlabeled C3(H2O), indicating a specific mechanism of loading. Under steady-state conditions, approximately 80% of incorporated C3(H2O) was returned to the extracellular space. These studies identify an ICS recycling pathway for C3(H2O). The loaded C3(H2O) represents a source of C3a, and its uptake altered the cytokine profile of activated CD4+ T cells. Importantly, these results indicate that the impact of soluble plasma factors should be considered when performing in vitro studies assessing cellular immune function. PMID:28192370
A local complement response by RPE causes early-stage macular degeneration
Fernandez-Godino, Rosario; Garland, Donita L.; Pierce, Eric A.
2015-01-01
Inherited and age-related macular degenerations (AMDs) are important causes of vision loss. An early hallmark of these disorders is the formation of sub-retinal pigment epithelium (RPE) basal deposits. A role for the complement system in MDs was suggested by genetic association studies, but direct functional connections between alterations in the complement system and the pathogenesis of MD remain to be defined. We used primary RPE cells from a mouse model of inherited MD due to a p.R345W mutation in EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1) to investigate the role of the RPE in early MD pathogenesis. Efemp1R345W RPE cells recapitulate the basal deposit formation observed in vivo by producing sub-RPE deposits in vitro. The deposits share features with basal deposits, and their formation was mediated by EFEMP1R345W or complement component 3a (C3a), but not by complement component 5a (C5a). Increased activation of complement appears to occur in response to an abnormal extracellular matrix (ECM), generated by the mutant EFEMP1R345W protein and reduced ECM turnover due to inhibition of matrix metalloproteinase 2 by EFEMP1R345W and C3a. Increased production of C3a also stimulated the release of cytokines such as interleukin (IL)-6 and IL-1B, which appear to have a role in deposit formation, albeit downstream of C3a. These studies provide the first direct indication that complement components produced locally by the RPE are involved in the formation of basal deposits. Furthermore, these results suggest that C3a generated by RPE is a potential therapeutic target for the treatment of EFEMP1-associated MD as well as AMD. PMID:26199322
NASA Technical Reports Server (NTRS)
Jahnke, Linda L.; Edger, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; DesMarais, David J.; Cady, Sherry; Hope, Janet M.; Summons, Roger E.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarkers and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber. "Thermocrinis sp. HI", Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyls. The fatty acids of all cultured organisms were dominated by a very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as CIS() monoethers with the expection of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known 'pink-streamers community' (PSC), siliceous filaments of a microbial consortia growing in the upper outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic Aquificales n-C-20:1 and cy-C-21, and in addition, a series of iso-branched fatty acids from i-C-15:0 to i-C-21:0, With i-C-17:0 dominant in the PSC and i-C-19:0 in the biofilm, suggesting the presence of two major bacterial groups. Bacteriohopanepolyols were absent and the minute quantities of archaeol detected showed that Archaea were only minor constituents. Carbon isotopic compositions of the PSC yielded information about community structure and likely physiology. Biomass was C-13-depleted (10.9%) relative to available CO2 from the source water inorganic carbon pool with lipids further depleted by 6.3% relative to biomass The C-20-21 Aquificales fatty acids of the PSC were somewhat heavier than the iso-branched fatty acids. The carbon isotopic signatures of lipid biomarkers were also explored using a pure culture, T ruber, previously isolated from the PSC. Cells grown on C02 with O2 and both H2 and thiosulfate as electron donors were only slightly depleted (3.3%) relative to the C-source while cells grown on formate with O2 showed a major discrimination (19.7%), possibly the result of a metabolic branch point involving the assimilation of C-formate to biomass and the dissimilation to CO2 associated with energy production. T. ruber lipids were slightly heavier than biomass (+1.3%) whether cells were grown using CO2 or formate. Fatty acids from CO2 grown T. ruber cells were a so slightly heavier (average +2.1%) than biomass. The relatively depleted PSC C-20-21 fatty acids suggest that any associated Thermocrinis biomass would also be similarly depleted and much too light to be explained by growth on CO2. The C-fractionations determined with the pure culture suggest that growth of Thermocrinis in the PSC is more likely to occur on formate, presumably generated by geothermal activity. This study points to the value of the analysis of the structural and isotopic composition of lipid blomarkers both in pure culture studies, and in establishing community structure and physiology, as a complement to genomic profiles of microbial diversity. This is especially so when the members of the microbial community are novel and difficult to cultivate in the laboratory.
Function of Serum Complement in Drinking Water Arsenic Toxicity
Islam, Laila N.; Zahid, M. Shamim Hasan; Nabi, A. H. M. Nurun; Hossain, Mahmud
2012-01-01
Serum complement function was evaluated in 125 affected subjects suffering from drinking water arsenic toxicity. Their mean duration of exposure was 7.4 ± 5.3 yrs, and the levels of arsenic in drinking water and urine samples were 216 ± 211 and 223 ± 302 μg/L, respectively. The mean bactericidal activity of complement from the arsenic patients was 92% and that in the unexposed controls was 99% (P < 0.01), but heat-inactivated serum showed slightly elevated activity than in controls. In patients, the mean complement C3 was 1.56 g/L, and C4 was 0.29 g/L compared to 1.68 g/L and 0.25 g/L, respectively, in the controls. The mean IgG in the arsenic patients was 24.3 g/L that was highly significantly elevated (P < 0.001). Arsenic patients showed a significant direct correlation between C3 and bactericidal activity (P = 0.014). Elevated levels of C4 indicated underutilization and possibly impaired activity of the classical complement pathway. We conclude reduced function of serum complement in drinking water arsenic toxicity. PMID:22545044
Goodrum, K J
1987-01-01
Complement levels and complement activation are key determinants in streptococcus-induced inflammatory responses. Activation of macrophage functions, such as complement synthesis, by group B streptococci (GBS) was examined as a possible component of GBS-induced chronic inflammation. Using an enzyme-linked immunosorbent assay, secreted C3 from mouse macrophagelike cell lines (PU5-1.8 and J774A.1) was monitored after cultivation with GBS. Whole, heat-killed GBS (1 to 10 CFU per macrophage) of both type Ia and III strains induced 25 to 300% increases in secreted C3 in both cell lines after a 24-h cultivation. GBS-treated cell lines exhibited increases in secreted lysozyme (10%) and in cellular protein (25 to 50%). Inhibition of macrophage phagocytosis by cytochalasin B inhibited GBS stimulation of C3. Purified cell walls of GBS type III strain 603-79 (1 to 10 micrograms/ml) also enhanced C3 synthesis. Local enhancement of macrophage C3 production by ingested streptococci or by persistent cell wall antigens may serve to promote chronic inflammatory responses. PMID:3552987
Herbert, Jenny; Thomas, Stephen; Brookes, Charlotte; Turner, Claudia; Turner, Paul; Nosten, Francois; Le Doare, Kirsty; Hudson, Michael; Heath, Paul T.; Gorringe, Andrew
2015-01-01
Streptococcus agalactiae (group B streptococcus [GBS]) is the leading cause of neonatal sepsis and meningitis. In this study, we determined antibody-mediated deposition of complement C3b/iC3b onto the bacterial cell surface of GBS serotypes Ia, Ib, II, III, and V. This was determined for 520 mother and umbilical cord serum sample pairs obtained at the time of birth from a population on the Thailand-Myanmar border. Antibody-mediated deposition of complement C3b/iC3b was detected to at least one serotype in 91% of mothers, despite a known carriage rate in this population of only 12%. Antibody-mediated C3b/iC3b deposition corresponded to known carriage rates, with the highest levels of complement deposition observed onto the most prevalent serotype (serotype II) followed by serotypes Ia, III, V, and Ib. Finally, neonates born to mothers carrying serotype II GBS at the time of birth showed higher antibody-mediated C3b/iC3b deposition against serotype II GBS than neonates born to mothers with no serotype II carriage. Assessment of antibody-mediated C3b/iC3b deposition against GBS may provide insights into the seroepidemiology of anti-GBS antibodies in mothers and infants in different populations. PMID:25589553
Zhang, Yingjie; Wu, Minhao; Hang, Tianrong; Wang, Chengliang; Yang, Ye; Pan, Weimin; Zang, Jianye
2017-01-01
Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine–aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE–CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH1206–1226), which binds SdrE N2 and N3 domains (SdrEN2N3) with high affinity, and determined the crystal structures of apo-SdrEN2N3 and the SdrEN2N3–CFH1206–1226 complex. Comparison of the structure of the CFH–SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrEN2N3 adopts a ‘close’ state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel ‘close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a ‘clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion. PMID:28258151
Zhang, Yingjie; Wu, Minhao; Hang, Tianrong; Wang, Chengliang; Yang, Ye; Pan, Weimin; Zang, Jianye; Zhang, Min; Zhang, Xuan
2017-05-04
Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine-aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE-CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH 1206-1226 ), which binds SdrE N2 and N3 domains (SdrE N2N3 ) with high affinity, and determined the crystal structures of apo-SdrE N2N3 and the SdrE N2N3 -CFH 1206-1226 complex. Comparison of the structure of the CFH-SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrE N2N3 adopts a 'close' state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel 'close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a 'clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion. © 2017 The Author(s).
Brenz, Yannick; Eschbach, Marie-Luise; Hartmann, Wiebke; Haben, Irma; Sparwasser, Tim; Huehn, Jochen; Kühl, Anja; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Breloer, Minka
2014-01-01
Accumulating evidence suggests that IL-9-mediated immunity plays a fundamental role in control of intestinal nematode infection. Here we report a different impact of Foxp3+ regulatory T cells (Treg) in nematode-induced evasion of IL-9-mediated immunity in BALB/c and C57BL/6 mice. Infection with Strongyloides ratti induced Treg expansion with similar kinetics and phenotype in both strains. Strikingly, Treg depletion reduced parasite burden selectively in BALB/c but not in C57BL/6 mice. Treg function was apparent in both strains as Treg depletion increased nematode-specific humoral and cellular Th2 response in BALB/c and C57BL/6 mice to the same extent. Improved resistance in Treg-depleted BALB/c mice was accompanied by increased production of IL-9 and accelerated degranulation of mast cells. In contrast, IL-9 production was not significantly elevated and kinetics of mast cell degranulation were unaffected by Treg depletion in C57BL/6 mice. By in vivo neutralization, we demonstrate that increased IL-9 production during the first days of infection caused accelerated mast cell degranulation and rapid expulsion of S. ratti adults from the small intestine of Treg-depleted BALB/c mice. In genetically mast cell-deficient (Cpa3-Cre) BALB/c mice, Treg depletion still resulted in increased IL-9 production but resistance to S. ratti infection was lost, suggesting that IL-9-driven mast cell activation mediated accelerated expulsion of S. ratti in Treg-depleted BALB/c mice. This IL-9-driven mast cell degranulation is a central mechanism of S. ratti expulsion in both, BALB/c and C57BL/6 mice, because IL-9 injection reduced and IL-9 neutralization increased parasite burden in the presence of Treg in both strains. Therefore our results suggest that Foxp3+ Treg suppress sufficient IL-9 production for subsequent mast cell degranulation during S. ratti infection in a non-redundant manner in BALB/c mice, whereas additional regulatory pathways are functional in Treg-depleted C57BL/6 mice. PMID:24516385
Blankenhaus, Birte; Reitz, Martina; Brenz, Yannick; Eschbach, Marie-Luise; Hartmann, Wiebke; Haben, Irma; Sparwasser, Tim; Huehn, Jochen; Kühl, Anja; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Breloer, Minka
2014-02-01
Accumulating evidence suggests that IL-9-mediated immunity plays a fundamental role in control of intestinal nematode infection. Here we report a different impact of Foxp3⁺ regulatory T cells (Treg) in nematode-induced evasion of IL-9-mediated immunity in BALB/c and C57BL/6 mice. Infection with Strongyloides ratti induced Treg expansion with similar kinetics and phenotype in both strains. Strikingly, Treg depletion reduced parasite burden selectively in BALB/c but not in C57BL/6 mice. Treg function was apparent in both strains as Treg depletion increased nematode-specific humoral and cellular Th2 response in BALB/c and C57BL/6 mice to the same extent. Improved resistance in Treg-depleted BALB/c mice was accompanied by increased production of IL-9 and accelerated degranulation of mast cells. In contrast, IL-9 production was not significantly elevated and kinetics of mast cell degranulation were unaffected by Treg depletion in C57BL/6 mice. By in vivo neutralization, we demonstrate that increased IL-9 production during the first days of infection caused accelerated mast cell degranulation and rapid expulsion of S. ratti adults from the small intestine of Treg-depleted BALB/c mice. In genetically mast cell-deficient (Cpa3-Cre) BALB/c mice, Treg depletion still resulted in increased IL-9 production but resistance to S. ratti infection was lost, suggesting that IL-9-driven mast cell activation mediated accelerated expulsion of S. ratti in Treg-depleted BALB/c mice. This IL-9-driven mast cell degranulation is a central mechanism of S. ratti expulsion in both, BALB/c and C57BL/6 mice, because IL-9 injection reduced and IL-9 neutralization increased parasite burden in the presence of Treg in both strains. Therefore our results suggest that Foxp3⁺ Treg suppress sufficient IL-9 production for subsequent mast cell degranulation during S. ratti infection in a non-redundant manner in BALB/c mice, whereas additional regulatory pathways are functional in Treg-depleted C57BL/6 mice.
Generation of Anaphylatoxins by Human β-Tryptase from C3, C4, and C51
Fukuoka, Yoshihiro; Xia, Han-Zhang; Sanchez-Muñoz, Laura B.; Dellinger, Anthony L.; Escribano, Luis; Schwartz, Lawrence B.
2009-01-01
Both mast cells and complement participate in innate and acquired immunity. The current study examines whether β-tryptase, the major protease of human mast cells, can directly generate bioactive complement anaphylatoxins. Important variables included pH, monomeric vs tetrameric forms of β-tryptase, and the β-tryptase-activating polyanion. The B12 mAb was used to stabilize β-tryptase in its monomeric form. C3a and C4a were best generated from C3 and C4, respectively, by monomeric β-tryptase in the presence of low molecular weight dextran sulfate or heparin at acidic pH. High molecular weight polyanions increased degradation of these anaphylatoxins. C5a was optimally generated from C5 at acidic pH by β-tryptase monomers in the presence of high molecular weight dextran sulfate and heparin polyanions, but also was produced by β-tryptase tetramers under these conditions. Mass spectrometry verified that the molecular mass of each anaphylatoxin was correct. Both β-tryptase-generated C5a and C3a (but not C4a) were potent activators of human skin mast cells. These complement anaphylatoxins also could be generated by β-tryptase in releasates of activated skin mast cells. Of further biologic interest, β-tryptase also generated C3a from C3 in human plasma at acidic pH. These results suggest β-tryptase might generate complement anaphylatoxins in vivo at sites of inflammation, such as the airway of active asthma patients where the pH is acidic and where elevated levels of β-tryptase and complement anaphylatoxins are detected. PMID:18424754
Homologous species restriction of the complement-mediated killing of nucleated cells.
Yamamoto, H; Blaas, P; Nicholson-Weller, A; Hänsch, G M
1990-01-01
The homologous restriction of complement (C) lysis is attributed to membrane proteins: decay-accelerating factor (DAF), C8 binding protein (C8bp) and P18/CD59. Since these proteins are also expressed on peripheral blood cells, species restriction was tested for in the complement-mediated killing of antibody-coated human leucocytes by human or rabbit complement. Killing was more efficient when rabbit complement was used. Preincubation of cells with an antibody to DAF abolished the difference. When C1-7 sites were first attached to the cells and either rabbit or human C8, C9 were added, the killing of monocytes and lymphocytes was equally efficient; only in polymorphonuclear neutrophils was a higher efficiency of rabbit C8, C9 seen. Thus, in contrast to haemolysis, restriction occurred predominantly at the C3 level and the action of the terminal complement components was not inhibited. Since C8bp isolated from peripheral blood cells showed essentially similar characteristics as the erythrocyte-derived C8bp, the failure of C8bp to inhibit the action of the terminal components on nucleated cells might reflect differences of the complement membrane interactions between erythrocytes or nucleated cells, respectively. Images Figure 5 PMID:1697561
Ohta, H; Yoshikawa, Y; Kai, C; Yamanouchi, K; Taniguchi, H; Komine, K; Ishijima, Y; Okada, H
1986-01-01
The course of infection with an attenuated strain of fowlpox virus (FPV), which is known to induce antibody-independent activation of complement via the alternative pathway, was investigated in 1- to 3-day-old chickens and 14-day-old chicken embryos by treatment with cobra venom factor (CVF). CVF was found to inhibit complement activity transiently via the alternative pathway but not via the classical pathway. In chickens treated with CVF, virus growth in the skin was enhanced, and pock lesions tended to disseminate, leading to fatal infection in some birds. Histologically, an acute inflammation at an early stage of infection (within 3 days) was inhibited, and virus content in the pock lesion was increased. In chicken embryos with immature immune capacities, CVF treatment caused changes in pock morphology from clear pocks to diffuse ones, an increase in virus content in the pock, and inhibition of cell infiltration. Thus, FPV infection was aggravated in both CVF-treated chickens and chicken embryos. These results are discussed in relation to roles of complement in the elimination of virus at an early stage of FPV infection. Images PMID:3003397
Seitz, Maren; Beineke, Andreas; Singpiel, Alena; Willenborg, Jörg; Dutow, Pavel; Goethe, Ralph; Valentin-Weigand, Peter; Klos, Andreas; Baums, Christoph G
2014-06-01
Virulent Streptococcus suis serotype 2 strains are invasive extracellular bacteria causing septicemia and meningitis in piglets and humans. One objective of this study was to elucidate the function of complement in innate immune defense against S. suis. Experimental infection of wild-type (WT) and C3(-/-) mice demonstrated for the first time that the complement system protects naive mice against invasive mucosal S. suis infection. S. suis WT but not an unencapsulated mutant caused mortality associated with meningitis and other pathologies in C3(-/-) mice. The capsule contributed also substantially to colonization of the upper respiratory tract. Experimental infection of C3(-/-) mice with a suilysin mutant indicated that suilysin expression facilitated an early disease onset and the pathogenesis of meningitis. Flow cytometric analysis revealed C3 antigen deposition on the surface of ca. 40% of S. suis WT bacteria after opsonization with naive WT mouse serum, although to a significantly lower intensity than on the unencapsulated mutant. Ex vivo multiplication in murine WT and C3(-/-) blood depended on capsule but not suilysin expression. Interestingly, S. suis invasion of inner organs was also detectable in C5aR(-/-) mice, suggesting that chemotaxis and activation of immune cells via the anaphylatoxin receptor C5aR is, in addition to opsonization, a further important function of the complement system in defense against mucosal S. suis infection. In conclusion, we unequivocally demonstrate here the importance of complement against mucosal S. suis serotype 2 infection and that the capsule of this pathogen is also involved in escape from complement-independent immunity.
STUDIES ON THE ANTIGENIC PROPERTIES OF COMPLEMENT
Klein, Paul G.; Burkholder, Peter M.
1960-01-01
Sheep erythrocytes sensitized with amboceptor and persensitized thereafter with guinea pig complement are agglutinated by rabbit anti-guinea pig globulin and by immune sera obtained by injection of rabbits with fixed complement. In this agglutination neither C'1 nor C'2 takes part. Fixed C'4 acts as an agglutinogen. An additional agglutinogen, distinct from C'4, was found on persensitized cells. This additional agglutinogen appears to be distinct from hemolytically active C'3. PMID:14409703
Chen, Ying; Liu, Fangwei; Weng, Dong; Song, Laiyu; Li, Cuiying; Tang, Wen; Yu, Ye; Dai, Wujing; Chen, Jie
2013-01-01
1,3-β-glucan is considered a fungal biomarker and exposure to this agent can induce lung inflammation. Complement activation plays an important role in early immune responses to β-glucan. Previous studies showed that T-regulatory cells (Tregs) regulated 1,3-β-glucan-induced lung inflammation by modulating the maintenance of immune homeostasis in the lung. Both interleukin (IL)-17 and TH17 cells play pivotal roles in inflammation associated with lung disease and share reciprocal developmental pathways with Tregs. However, the effect of Tregs on IL-17 and TH17 responses in 1,3-β-glucan-induced lung inflammation remains unclear. In this study, mice were exposed to 1,3-β-glucan by intratracheal instillation. To investigate the effects of Tregs on IL-17 and TH17 cells in the induced lung inflammation, a Treg-depleted mice model was generated by administration of anti-CD25 mAb. The results indicated that Treg-depleted mice showed more severe pathological inflammatory changes in lung tissues. Tregs depletion reduced IL-17 expression in these tissues, and increased those of TH1 cytokines. The expression of IL-17 increased at the early phase of the inflammation response. There were no significant effects of the Tregs on expression of RORγt and IL-6 or the amount of CD4(+)IL-17(+) cells in the lungs. When taken together, the late phase of the 1,3-β-glucan-induced inflammatory response in the mice was primarily mediated by TH1 cytokines rather than IL-17. In contrast, the early phase of the inflammatory response might be mediated in part by IL-17 along with activated complement. Tregs might be required for IL-17 expression during the late phase inflammatory response in mice. The increased IL-17 mRNA observed during the 1,3-β-glucan induced inflammatory response were attributed to cells other than TH17 cells.
Julkunen, Heikki; Ekblom-Kullberg, Susanne; Miettinen, Aaro
2012-08-01
Associations of different assays for antibodies to C1q (anti-C1q) and to dsDNA (anti-dsDNA) and of complements C3 and C4 with disease activity in patients with systemic lupus erythematosus (SLE) were studied. The clinical manifestations of 223 SLE patients were recorded, and the disease activity was assessed by the SLEDAI score. Anti-C1q were determined by two enzyme-linked immunosorbent assays (ELISA) and anti-dsDNA by a radioimmunoassay (RIA), a Crithidia immunofluorescence (IF) assay and three ELISA assays using human telomere DNA, plasmid DNA circles, or calf thymus DNA as antigens, respectively. Complement C3 and C4 were determined by nephelometry. Control sera were obtained from 98 blood donors. In patients with SLE, the prevalence of anti-C1q was 17-18% and that of anti-dsDNA was 36-69%. Anti-C1q, anti-dsDNA, and complement C3 and C4 correlated well with the overall activity of SLE (r = 0.323-0.351, 0.353-0.566, and -0.372-0.444, respectively; P < 0.001). Sensitivity, specificity, positive predictive value, and negative predictive value for active lupus nephritis among SLE patients were 40-44, 92, 29, and 91-92% for anti-C1q and 48-68, 29-66, 11-16, and 86-91% for anti-dsDNA, respectively. Patients with active nephritis had higher levels of anti-C1q and lower levels of C3 and C4 than patients with inactive nephritis (P = 0.003-0.018). The corresponding associations of anti-dsDNA were somewhat weaker (P = 0.023-0.198). Hematological parameters reflecting disease activity correlated clearly better with anti-dsDNA and complement C3 and C4 than with anti-C1q. Anti-C1q is inferior to anti-dsDNA as a diagnostic test in SLE and in the evaluation of overall clinical activity of the disease. Anti-C1q together with complement C3 and C4 may offer useful additional information to monitor lupus nephritis activity. There are no practical differences between different assays for anti-C1q and anti-dsDNA.
Attenuation of Leishmania infantum chagasi Metacyclic Promastigotes by Sterol Depletion
Gaur Dixit, Upasna; Barker, Jason H.; Teesch, Lynn M.; Love-Homan, Laurie; Donelson, John E.; Wilson, Mary E.
2013-01-01
The infectious metacyclic promastigotes of Leishmania protozoa establish infection in a mammalian host after they are deposited into the dermis by a sand fly vector. Several Leishmania virulence factors promote infection, including the glycosylphosphatidylinositol membrane-anchored major surface protease (MSP). Metacyclic Leishmania infantum chagasi promastigotes were treated with methyl-beta-cyclodextrin (MβCD), a sterol-chelating reagent, causing a 3-fold reduction in total cellular sterols as well as enhancing MSP release without affecting parasite viability in vitro. MβCD-treated promastigotes were more susceptible to complement-mediated lysis than untreated controls and reduced the parasite load 3-fold when inoculated into BALB/c mice. Paradoxically, MβCD-treated promastigotes caused a higher initial in vitro infection rate in human or murine macrophages than untreated controls, although their intracellular multiplication was hindered upon infection establishment. There was a corresponding larger amount of covalently bound C3b than iC3b on the parasite surfaces of MβCD-treated promastigotes exposed to healthy human serum in vitro, as well as loss of MSP, a protease that enhances C3b cleavage to iC3b. Mass spectrometry showed that MβCD promotes the release of proteins into the extracellular medium, including both MSP and MSP-like protein (MLP), from virulent metacyclic promastigotes. These data support the hypothesis that plasma membrane sterols are important for the virulence of Leishmania protozoa at least in part through retention of membrane virulence proteins. PMID:23630964
Immunologic Control of Mus musculus Papillomavirus Type 1
Peng, Shiwen; Chang, Yung-Nien; Hung, Chien-Fu; Roden, Richard B. S.
2015-01-01
Persistent papillomas developed in ~10% of out-bred immune-competent SKH-1 mice following MusPV1 challenge of their tail, and in a similar fraction the papillomas were transient, suggesting potential as a model. However, papillomas only occurred in BALB/c or C57BL/6 mice depleted of T cells with anti-CD3 antibody, and they completely regressed within 8 weeks after depletion was stopped. Neither CD4+ nor CD8+ T cell depletion alone in BALB/c or C57BL/6 mice was sufficient to permit visible papilloma formation. However, low levels of MusPV1 were sporadically detected by either genomic DNA-specific PCR analysis of local skin swabs or in situ hybridization of the challenge site with an E6/E7 probe. After switching to CD3+ T cell depletion, papillomas appeared upon 14/15 of mice that had been CD4+ T cell depleted throughout the challenge phase, 1/15 of CD8+ T cell depleted mice, and none in mice without any prior T cell depletion. Both control animals and those depleted with CD8-specific antibody generated MusPV1 L1 capsid-specific antibodies, but not those depleted with CD4-specific antibody prior to T cell depletion with CD3 antibody. Thus, normal BALB/c or C57BL/6 mice eliminate the challenge dose, whereas infection is suppressed but not completely cleared if their CD4 or CD8 T cells are depleted, and recrudescence of MusPV1 is much greater in the former following treatment with CD3 antibody, possibly reflecting their failure to generate capsid antibody. Systemic vaccination of C57BL/6 mice with DNA vectors expressing MusPV1 E6 or E7 fused to calreticulin elicits potent CD8 T cell responses and these immunodominant CD8 T cell epitopes were mapped. Adoptive transfer of a MusPV1 E6-specific CD8+ T cell line controlled established MusPV1 infection and papilloma in RAG1-knockout mice. These findings suggest the potential of immunotherapy for HPV-related disease and the importance of host immunogenetics in the outcome of infection. PMID:26495972
Complement System Part II: Role in Immunity
Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.
2015-01-01
The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922
Pietrocola, Giampiero; Rindi, Simonetta; Rosini, Roberto; Buccato, Scilla
2016-01-01
The group B Streptococcus (GBS) is a leading cause of neonatal invasive disease. GBS bacteria are surrounded by a thick capsular polysaccharide that is a potent inhibitor of complement deposition via the alternative pathway. Several of its surface molecules can however activate the classical and lectin complement pathways, rendering this species still vulnerable to phagocytic killing. In this study we have identified a novel secreted protein named complement interfering protein (CIP) that downregulates complement activation via the classical and lectin pathways, but not the alternative pathway. The CIP protein showed high affinity toward C4b and inhibited its interaction with C2, presumably preventing the formation of the C4bC2a convertase. Addition of recombinant CIP to GBS cip-negative bacteria resulted in decreased deposition of C3b on their surface and in diminished phagocytic killing in a whole-blood assay. Our data reveal a novel strategy exploited by GBS to counteract innate immunity and could be valuable for the development of anti-infective agents against this important pathogen. PMID:26608922
van der Maten, Erika; van den Broek, Bryan; de Jonge, Marien I; Rensen, Kim J W; Eleveld, Marc J; Zomer, Aldert L; Cremers, Amelieke J H; Ferwerda, Gerben; de Groot, Ronald; Langereis, Jeroen D; van der Flier, Michiel
2018-04-01
The pneumococcal capsular serotype is an important determinant of complement resistance and invasive disease potential, but other virulence factors have also been found to contribute. Pneumococcal surface protein C (PspC), a highly variable virulence protein that binds complement factor H to evade C3 opsonization, is divided into two subgroups: choline-bound subgroup I and LPxTG-anchored subgroup II. The prevalence of different PspC subgroups in invasive pneumococcal disease (IPD) and functional differences in complement evasion are unknown. The prevalence of PspC subgroups in IPD isolates was determined in a collection of 349 sequenced strains of Streptococcus pneumoniae isolated from adult patients. pspC deletion mutants and isogenic pspC switch mutants were constructed to study differences in factor H binding and complement evasion in relation to capsule thickness. Subgroup I pspC was far more prevalent in IPD isolates than subgroup II pspC The presence of capsule was associated with a greater ability of bound factor H to reduce complement opsonization. Pneumococcal subgroup I PspC bound significantly more factor H and showed more effective complement evasion than subgroup II PspC in isogenic encapsulated pneumococci. We conclude that variation in the PspC subgroups, independent of capsule serotypes, affects pneumococcal factor H binding and its ability to evade complement deposition. Copyright © 2018 American Society for Microbiology.
Unique structure of iC3b resolved at a resolution of 24 Å by 3D-electron microscopy.
Alcorlo, Martin; Martínez-Barricarte, Ruben; Fernández, Francisco J; Rodríguez-Gallego, César; Round, Adam; Vega, M Cristina; Harris, Claire L; de Cordoba, Santiago Rodríguez; Llorca, Oscar
2011-08-09
Activation of C3, deposition of C3b on the target surface, and subsequent amplification by formation of a C3-cleaving enzyme (C3-convertase; C3bBb) triggers the effector functions of complement that result in inflammation and cell lysis. Concurrently, surface-bound C3b is proteolyzed to iC3b by factor I and appropriate cofactors. iC3b then interacts with the complement receptors (CR) of the Ig superfamily, CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) on leukocytes, down-modulating inflammation, enhancing B cell-mediated immunity, and targeting pathogens for clearance by phagocytosis. Using EM and small-angle X-ray scattering, we now present a medium-resolution structure of iC3b (24 Å). iC3b displays a unique conformation with structural features distinct from any other C3 fragment. The macroglobulin ring in iC3b is similar to that in C3b, whereas the TED (thioester-containing domain) domain and the remnants of the CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain have moved to locations more similar to where they were in native C3. A consequence of this large conformational change is the disruption of the factor B binding site, which renders iC3b unable to assemble a C3-convertase. This structural model also justifies the decreased interaction between iC3b and complement regulators and the recognition of iC3b by the CR of the Ig superfamily, CR2, CR3, and CR4. These data further illustrate the extraordinary conformational versatility of C3 to accommodate a great diversity of functional activities.
Jäckel, Sven; Saffarzadeh, Mona; Langer, Florian
2017-01-01
Expanding evidence indicates multiple interactions between the hemostatic system and innate immunity, and the coagulation and complement cascades. Here we show in a tissue factor (TF)–dependent model of flow restriction-induced venous thrombosis that complement factors make distinct contributions to platelet activation and fibrin deposition. Complement factor 3 (C3) deficiency causes prolonged bleeding, reduced thrombus incidence, thrombus size, fibrin and platelet deposition in the ligated inferior vena cava, and diminished platelet activation in vitro. Initial fibrin deposition at the vessel wall over 6 hours in this model was dependent on protein disulfide isomerase (PDI) and TF expression by myeloid cells, but did not require neutrophil extracellular trap formation involving peptidyl arginine deiminase 4. In contrast to C3−/− mice, C5-deficient mice had no apparent defect in platelet activation in vitro, and vessel wall platelet deposition and initial hemostasis in vivo. However, fibrin formation, the exposure of negatively charged phosphatidylserine (PS) on adherent leukocytes, and clot burden after 48 hours were significantly reduced in C5−/− mice compared with wild-type controls. These results delineate that C3 plays specific roles in platelet activation independent of formation of the terminal complement complex and provide in vivo evidence for contributions of complement-dependent membrane perturbations to prothrombotic TF activation on myeloid cells. PMID:28223279
Iatropoulos, Paraskevas; Daina, Erica; Curreri, Manuela; Piras, Rossella; Valoti, Elisabetta; Mele, Caterina; Bresin, Elena; Gamba, Sara; Alberti, Marta; Breno, Matteo; Perna, Annalisa; Bettoni, Serena; Sabadini, Ettore; Murer, Luisa; Vivarelli, Marina; Noris, Marina; Remuzzi, Giuseppe
2018-01-01
Membranoproliferative GN (MPGN) was recently reclassified as alternative pathway complement-mediated C3 glomerulopathy (C3G) and immune complex-mediated membranoproliferative GN (IC-MPGN). However, genetic and acquired alternative pathway abnormalities are also observed in IC-MPGN. Here, we explored the presence of distinct disease entities characterized by specific pathophysiologic mechanisms. We performed unsupervised hierarchical clustering, a data-driven statistical approach, on histologic, genetic, and clinical data and data regarding serum/plasma complement parameters from 173 patients with C3G/IC-MPGN. This approach divided patients into four clusters, indicating the existence of four different pathogenetic patterns. Specifically, this analysis separated patients with fluid-phase complement activation (clusters 1-3) who had low serum C3 levels and a high prevalence of genetic and acquired alternative pathway abnormalities from patients with solid-phase complement activation (cluster 4) who had normal or mildly altered serum C3, late disease onset, and poor renal survival. In patients with fluid-phase complement activation, those in clusters 1 and 2 had massive activation of the alternative pathway, including activation of the terminal pathway, and the highest prevalence of subendothelial deposits, but those in cluster 2 had additional activation of the classic pathway and the highest prevalence of nephrotic syndrome at disease onset. Patients in cluster 3 had prevalent activation of C3 convertase and highly electron-dense intramembranous deposits. In addition, we provide a simple algorithm to assign patients with C3G/IC-MPGN to specific clusters. These distinct clusters may facilitate clarification of disease etiology, improve risk assessment for ESRD, and pave the way for personalized treatment. Copyright © 2018 by the American Society of Nephrology.
Yuen, Joshua; Pluthero, Fred G.; Douda, David N.; Riedl, Magdalena; Cherry, Ahmed; Ulanova, Marina; Kahr, Walter H. A.; Palaniyar, Nades; Licht, Christoph
2016-01-01
Neutrophils deposit antimicrobial proteins, such as myeloperoxidase and proteases on chromatin, which they release as neutrophil extracellular traps (NETs). Neutrophils also carry key components of the complement alternative pathway (AP) such as properdin or complement factor P (CFP), complement factor B (CFB), and C3. However, the contribution of these complement components and complement activation during NET formation in the presence and absence of bacteria is poorly understood. We studied complement activation on NETs and a Gram-negative opportunistic bacterial pathogen Pseudomonas aeruginosa (PA01, PAKwt, and PAKgfp). Here, we show that anaphylatoxin C5a, formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol myristate acetate (PMA), which activates NADPH oxidase, induce the release of CFP, CFB, and C3 from neutrophils. In response to PMA or P. aeruginosa, neutrophils secrete CFP, deposit it on NETs and bacteria, and induce the formation of terminal complement complexes (C5b–9). A blocking anti-CFP antibody inhibited AP-mediated but not non-AP-mediated complement activation on NETs and P. aeruginosa. Therefore, NET-mediated complement activation occurs via both AP- and non AP-based mechanisms, and AP-mediated complement activation during NETosis is dependent on CFP. These findings suggest that neutrophils could use their “AP tool kit” to readily activate complement on NETs and Gram-negative bacteria, such as P. aeruginosa, whereas additional components present in the serum help to fix non-AP-mediated complement both on NETs and bacteria. This unique mechanism may play important roles in host defense and help to explain specific roles of complement activation in NET-related diseases. PMID:27148258
Unmasking of complements using proteinase-K in formalin fixed paraffin embedded renal biopsies.
Nada, R; Kumar, A; Kumar, V G; Gupta, K L; Joshi, K
2016-01-01
Renal biopsy interpretation requires histopathology, direct immunofluorescence (DIF) and electron microscopy. Formalin-fixed, paraffin-embedded tissue (FFPE) sent for light microscopy can be used for DIF after antigen retrieval. However, complement staining has not been satisfactory. We standardized DIF using proteinase-K for antigen retrieval in FFPE renal biopsies. A pilot study was conducted on known cases of membranous glomerulonephritis (MGN), membranoproliferative type-1 (MPGN-1), immunoglobulin A nephropathy (IgAN), and anti-glomerular basement disease (anti-GBM). Immunofluorescence panel included fluorescein isothiocyanate (FITC) conjugated IgG, IgA, IgM, complements (C3 and C1q), light chains (kappa, lambda) and fibrinogen antibodies. After standardization of the technique, 75 renal biopsies and 43 autopsies cases were stained. Out of 43 autopsy cases, immune-complex mediated glomerulonephritis (GN) was confirmed in 18 cases (Lupus nephritis-11, IgAN-6, MGN-1), complement-mediated dense deposit disease (DDD-1) and monoclonal diseases in 4 cases (amyloidosis-3, cast nephropathy-1). Immune-mediated injury was excluded in 17 cases (focal segmental glomerulosclerosis -3, crescentic GN-6 [pauci-immune-3, anti-GBM-3], thrombotic microangiopathy-5, atherosclerosis-3). Renal biopsies (n-75) where inadequate or no frozen sample was available; this technique classified 52 mesangiocapillary pattern as MPGN type-1-46, DDD-2 and (C3GN-4). Others were diagnosed as IgAN-3, lupus nephritis-2, MGN-4, diffuse proliferative glomerulonephritis (DPGN)-1, Non-IC crescentic GN-1, monoclonal diseases-3. In nine cases, DIF on FFPE tissue could not help in making diagnosis. Proteinase-K enzymatic digestion of FFPE renal biopsies can unmask complements (both C3 and C1q) in immune-complexes mediated and complement-mediated diseases. This method showed good results on autopsy tissues archived for as long as 15 years.
c-Cbl regulates αPix-mediated cell migration and invasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong, Min Woo; Park, Ji Ho; Yoo, Hee Min
2014-12-12
Highlights: • c-Cbl ubiquitinates αPix for proteasome-mediated degradation. • C6 and A172 glioma cells lack c-Cbl, which leads to stabilization of αPix. • The accumulated αPix promotes migration and invasion of the cancer cells. • The lack of c-Cbl in the cells appears responsible for their malignant behavior. - Abstract: c-Cbl, a RING-type ubiquitin E3 ligase, down-regulates receptor tyrosine kinases, including EGF receptor, and inhibits cell proliferation. Moreover, c-Cbl mutations are frequently found in patients with myeloid neoplasm. Therefore, c-Cbl is known as a tumor suppressor. αPix is expressed only in highly proliferative and mobile cells, including immune cells, andmore » up-regulated in certain invasive tumors, such as glioblastoma multiforme. Here, we showed that c-Cbl serves as an ubiquitin E3 ligase for proteasome-mediated degradation of αPix, but not βPix. Remarkably, the rat C6 and human A172 glioma cells were unable to express c-Cbl, which leads to a dramatic accumulation of αPix. Depletion of αPix by shRNA markedly reduced the ability of the glioma cells to migrate and invade, whereas complementation of shRNA-insensitive αPix promoted it. These results indicate that c-Cbl negatively regulates αPix-mediated cell migration and invasion and the lack of c-Cbl in the C6 and A172 glioma cells is responsible for their malignant behavior.« less
Rituximab fails where eculizumab restores renal function in C3nef-related DDD.
Rousset-Rouvière, Caroline; Cailliez, Mathilde; Garaix, Florentine; Bruno, Daniele; Laurent, Daniel; Tsimaratos, Michel
2014-06-01
Dense deposit disease (DDD), a C3 glomerulopathy (C3G), is a rare disease with unfavorable progression towards end-stage kidney disease. The pathogenesis of DDD is due to cytotoxic effects related to acquired or genetic dysregulation of the complement alternative pathway, which is at times accompanied by the production of C3 nephritic factor (C3NeF), an auto-antibody directed against the alternative C3 convertase. Available treatments include plasma exchange, CD20-targeted antibodies, and a terminal complement blockade via the anti-C5 monoclonal antibody eculizumab. We report here the case of an 8-year-old child with C3NeF and refractory DDD who presented with a nephritic syndrome. She tested positive for C3NeF activity; C3 was undetectable. Genetic analyses of the alternative complement pathway were normal. Methylprednisolone pulses and mycophenolate mofetil treatment resulted in complete recovery of renal function and a reduction in proteinuria. Corticosteroids were tapered and then withdrawn. Four months after corticosteroid discontinuation, hematuria and proteinuria recurred, and a renal biopsy confirmed an active DDD with a majority of extracapillary crescents. Despite an increase in immunosuppressive drugs, including methylprednisolone pulses and rituximab therapy, the patient suffered acute renal failure within 3 weeks, requiring dialysis. Eculizumab treatment resulted in a quick and impressive response. Hematuria very quickly resolved, kidney function improved, and no further dialysis was required. The patient received bimonthly eculizumab injections of 600 mg, allowing for normalization of renal function and reduction of proteinuria to <0.5 g per day. Since then, she continues to receive eculizumab. Complement regulation pathway-targeted therapy may be a specific and useful treatment for rapidly progressing DDD prior to the development of glomerulosclerosis. Our data provide evidence supporting the pivotal role of complement alternative pathway abnormalities in C3G with DDD.
Role of Complement in a Rat Model of Paclitaxel-Induced Peripheral Neuropathy.
Xu, Jijun; Zhang, Lingjun; Xie, Mian; Li, Yan; Huang, Ping; Saunders, Thomas L; Fox, David A; Rosenquist, Richard; Lin, Feng
2018-06-15
Chemotherapy-induced peripheral neuropathy (CIPN) is a painful and debilitating side effect of cancer chemotherapy with an unclear pathogenesis. Consequently, the available therapies for this neuropathic pain syndrome are inadequate, leading to a significantly reduced quality of life in many patients. Complement, a key component of the innate immune system, has been associated with neuroinflammation, a potentially important trigger of some types of neuropathic pain. However, the role of complement in CIPN remains unclear. To address this issue, we developed a C3 knockout (KO) rat model and induced CIPN in these KO rats and wild-type littermates via the i.p. administration of paclitaxel, a chemotherapeutic agent associated with CIPN. We then compared the severity of mechanical allodynia, complement activation, and intradermal nerve fiber loss between the groups. We found that 1) i.p. paclitaxel administration activated complement in wild-type rats, 2) paclitaxel-induced mechanical allodynia was significantly reduced in C3 KO rats, and 3) the paclitaxel-induced loss of intradermal nerve fibers was markedly attenuated in C3 KO rats. In in vitro studies, we found that paclitaxel-treated rat neuronal cells activated complement, leading to cellular injury. Our findings demonstrate a previously unknown but pivotal role of complement in CIPN and suggest that complement may be a new target for the development of novel therapeutics to manage this painful disease. Copyright © 2018 by The American Association of Immunologists, Inc.
Rainard, P
1993-01-01
The ability of lactoferrin (Lf) bound to Streptococcus agalactiae to interfere with the deposition of complement components on the bacterial surface was investigated by enzyme-linked immunosorbent assay (ELISA). By using a strain of S. agalactiae which activates the alternative pathway of complement in the absence of antibodies, it was found that pretreatment of bacteria with Lf shortened the lag phase preceding the deposition of C3 on bacteria. The kinetics of C3 deposition was comparable to that obtained by adding antibodies against S. agalactiae to agammaglobulinaemic precolostral calf serum (PCS) heated at 56 degrees for 3 min to inactivate the alternative pathway. Accelerated C3 deposition did not occur in the absence of Ca2+ ions. Deposition of C4 on bacteria occurred only when either antibodies or Lf were added to PCS. These results demonstrate that the interaction of lactoferrin with bacteria activated the classical pathway of complement in the absence of antibodies. The binding of purified C1q to bacteria was promoted in a dose-dependent manner by Lf, suggesting that recruitment of classical pathway of complement resulted from the interaction of C1q with Lf adsorbed to the bacterial surface. Phagocytosis of bacteria opsonized with heated PCS (at 56 degrees for 3 min) and Lf was comparable to that occurring in the presence of heated PCS and antibodies. In conclusion, Lf was able to substitute for antibodies in order to activate the classical pathway of complement and to opsonize unencapsulated S. agalactiae efficiently. PMID:8406591
Schmidt, C Q; Herbert, A P; Hocking, H G; Uhrín, D; Barlow, P N
2008-01-01
The 155-kDa glycoprotein, complement factor H (CFH), is a regulator of complement activation that is abundant in human plasma. Three-dimensional structures of over half the 20 complement control protein (CCP) modules in CFH have been solved in the context of single-, double- and triple-module segments. Proven binding sites for C3b occupy the N and C termini of this elongated molecule and may be brought together by a bend in CFH mediated by its central CCP modules. The C-terminal CCP 20 is key to the ability of the molecule to adhere to polyanionic markers on self-surfaces where CFH acts to regulate amplification of the alternative pathway of complement. The surface patch on CCP 20 that binds to model glycosaminoglycans has been mapped using nuclear magnetic resonance (NMR), as has a second glycosaminoglycan-binding patch on CCP 7. These patches include many of the residue positions at which sequence variations have been linked to three complement-mediated disorders: dense deposit disease, age-related macular degeneration and atypical haemolytic uraemic syndrome. In one plausible model, CCP 20 anchors CFH to self-surfaces via a C3b/polyanion composite binding site, CCP 7 acts as a ‘proof-reader’ to help discriminate self- from non-self patterns of sulphation, and CCPs 1–4 disrupt C3/C5 convertase formation and stability. PMID:18081691
Wells, Laura A; Guo, Hongbo; Emili, Andrew; Sefton, Michael V
2017-02-01
Polymer beads made of 45% methacrylic acid co methyl methacrylate (MAA beads) promote vascular regenerative responses in contrast to control materials without methacrylic acid (here polymethyl methacrylate beads, PMMA). In vitro and in vivo studies suggest that MAA copolymers induce differences in macrophage phenotype and polarization and inflammatory responses, presumably due to protein adsorption differences between the beads. To explore differences in protein adsorption in an unbiased manner, we used high resolution shotgun mass spectrometry to identify and compare proteins that adsorb from human plasma or serum onto MAA and PMMA beads. From plasma, MAA beads adsorbed many complement proteins, such as C1q, C4-related proteins and the complement inhibitor factor H, while PMMA adsorbed proteins, such as albumin, C3 and apolipoproteins. Because of the differences in complement protein adsorption, follow-up studies focused on using ELISA to assess complement activation. When incubated in serum, MAA beads generated significantly lower levels of soluble C5b9 and C3a/C3a desarg in comparison to PMMA beads, indicating a decrease in complement activation with MAA beads. The differences in adsorbed protein on the two materials likely alter subsequent cell-material interactions that ultimately result in different host responses and local vascularization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Haspel, Nurit; Ricklin, Daniel; Geisbrecht, Brian V; Kavraki, Lydia E; Lambris, John D
2008-11-01
The C3-inhibitory domain of Staphylococcus aureus extracellular fibrinogen-binding protein (Efb-C) defines a novel three-helix bundle motif that regulates complement activation. Previous crystallographic studies of Efb-C bound to its cognate subdomain of human C3 (C3d) identified Arg-131 and Asn-138 of Efb-C as key residues for its activity. In order to characterize more completely the physical and chemical driving forces behind this important interaction, we employed in this study a combination of structural, biophysical, and computational methods to analyze the interaction of C3d with Efb-C and the single-point mutants R131A and N138A. Our results show that while these mutations do not drastically affect the structure of the Efb-C/C3d recognition complex, they have significant adverse effects on both the thermodynamic and kinetic profiles of the resulting complexes. We also characterized other key interactions along the Efb-C/C3d binding interface and found an intricate network of salt bridges and hydrogen bonds that anchor Efb-C to C3d, resulting in its potent complement inhibitory properties.
Tran, Cheryl L; Sethi, Sanjeev; Murray, David; Cramer, Carl H; Sas, David J; Willrich, Maria; Smith, Richard J; Fervenza, Fernando C
2016-04-01
Dense deposit disease (DDD) is a rare glomerular disease caused by an uncontrolled activation of the alternative complement pathway leading to end-stage renal disease in 50 % of patients. As such, DDD has been classified within the spectrum of complement component 3 (C3) glomerulopathies due to its pathogenesis from alternative pathway dysregulation. Conventional immunosuppressive therapies have no proven effectiveness. Eculizumab, a terminal complement inhibitor, has been reported to mitigate disease in some cases. We report on the efficacy of eculizumab in a pediatric patient who failed to respond to cyclophosphamide, corticosteroids, and plasma exchange. Complement biomarker profiling was remarkable for low serum C3, low properdin, and elevated soluble C5b-9. Consistent with these findings, the alternative pathway functional assay was abnormally low, indicative of alternative pathway activity, although neither C3-nephritic factors nor Factor H autoantibodies were detected. Eculizumab therapy was associated with significant improvement in proteinuria and renal function allowing discontinuation of hemodialysis (HD). Repeat C3 and soluble C5b-9 levels normalized, showing that terminal complement pathway activity was successfully blocked while the patient was receiving eculizumab therapy. Repeat testing for alternative pathway activation allowed for a successful decrease in eculizumab dosing. The case reported here demonstrates the successful recovery of renal function in a pediatric patient on HD following the use of eculizumab.
Breaking down the complement system: a review and update on novel therapies.
Reddy, Yuvaram N V; Siedlecki, Andrew M; Francis, Jean M
2017-03-01
The complement system represents one of the more primitive forms of innate immunity. It has increasingly been found to contribute to pathologies in the native and transplanted kidney. We provide a concise review of the physiology of the complement cascade, and discuss current and upcoming complement-based therapies. Current agents in clinical use either bind to complement components directly or prevent complement from binding to antibodies affixed to the endothelial surface. These include C1 esterase inhibitors, anti-C5 mAbs, anti-CD20 mAbs, and proteasome inhibitors. Treatment continues to show efficacy in the atypical hemolytic uremic syndrome and antibody-mediated rejection. Promising agents not currently available include CCX168, TP10, AMY-101, factor D inhibitors, coversin, and compstatin. Several new trials are targeting complement inhibition to treat antineutrophilic cystoplasmic antibody (ANCA)-associated vasculitis, C3 glomerulopathy, thrombotic microangiopathy, and IgA nephropathy. New agents for the treatment of the atypical hemolytic uremic syndrome are also in development. Complement-based therapies are being considered for targeted therapy in the atypical hemolytic uremic syndrome and antibody-mediated rejection, C3 glomerulopathy, and ANCA-associated vasculitis. A few agents are currently in use as orphan drugs. A number of other drugs are in clinical trials and, overall, are showing promising preliminary results.
Complement in autoimmune diseases.
Vignesh, Pandiarajan; Rawat, Amit; Sharma, Madhubala; Singh, Surjit
2017-02-01
The complement system is an ancient and evolutionary conserved element of the innate immune mechanism. It comprises of more than 20 serum proteins most of which are synthesized in the liver. These proteins are synthesized as inactive precursor proteins which are activated by appropriate stimuli. The activated forms of these proteins act as proteases and cleave other components successively in amplification pathways leading to exponential generation of final effectors. Three major pathways of complement pathways have been described, namely the classical, alternative and lectin pathways which are activated by different stimuli. However, all the 3 pathways converge on Complement C3. Cleavage of C3 and C5 successively leads to the production of the membrane attack complex which is final common effector. Excessive and uncontrolled activation of the complement has been implicated in the host of autoimmune diseases. But the complement has also been bemusedly described as the proverbial "double edged sword". On one hand, complement is the final effector of tissue injury in autoimmune diseases and on the other, deficiencies of some components of the complement can result in autoimmune diseases. Currently available tools such as enzyme based immunoassays for functional assessment of complement pathways, flow cytometry, next generation sequencing and proteomics-based approaches provide an exciting opportunity to study this ancient yet mysterious element of innate immunity. Copyright © 2017 Elsevier B.V. All rights reserved.
Seitz, Maren; Beineke, Andreas; Singpiel, Alena; Willenborg, Jörg; Dutow, Pavel; Goethe, Ralph; Valentin-Weigand, Peter; Klos, Andreas
2014-01-01
Virulent Streptococcus suis serotype 2 strains are invasive extracellular bacteria causing septicemia and meningitis in piglets and humans. One objective of this study was to elucidate the function of complement in innate immune defense against S. suis. Experimental infection of wild-type (WT) and C3−/− mice demonstrated for the first time that the complement system protects naive mice against invasive mucosal S. suis infection. S. suis WT but not an unencapsulated mutant caused mortality associated with meningitis and other pathologies in C3−/− mice. The capsule contributed also substantially to colonization of the upper respiratory tract. Experimental infection of C3−/− mice with a suilysin mutant indicated that suilysin expression facilitated an early disease onset and the pathogenesis of meningitis. Flow cytometric analysis revealed C3 antigen deposition on the surface of ca. 40% of S. suis WT bacteria after opsonization with naive WT mouse serum, although to a significantly lower intensity than on the unencapsulated mutant. Ex vivo multiplication in murine WT and C3−/− blood depended on capsule but not suilysin expression. Interestingly, S. suis invasion of inner organs was also detectable in C5aR−/− mice, suggesting that chemotaxis and activation of immune cells via the anaphylatoxin receptor C5aR is, in addition to opsonization, a further important function of the complement system in defense against mucosal S. suis infection. In conclusion, we unequivocally demonstrate here the importance of complement against mucosal S. suis serotype 2 infection and that the capsule of this pathogen is also involved in escape from complement-independent immunity. PMID:24686060
Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J; Patz, Edward F; Li, Shi-You; He, You-Wen
2016-09-01
In contrast to its inhibitory effects on many cells, IL10 activates CD8(+) tumor-infiltrating lymphocytes (TIL) and enhances their antitumor activity. However, CD8(+) TILs do not routinely express IL10, as autocrine complement C3 inhibits IL10 production through complement receptors C3aR and C5aR. CD8(+) TILs from C3-deficient mice, however, express IL10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T-cell- and IL10-dependent manner; human TILs expanded with IL2 plus IL10 increase the killing of primary tumors in vitro compared with IL2-treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8(+) TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. Our data suggest novel strategies to enhance immunotherapies: a combined blockade of complement signaling by antagonists to C3aR, C5aR, and anti-PD-1 to enhance anti-PD-1 efficacy; a targeted IL10 delivery to CD8(+) TILs using anti-PD-1-IL10 or anti-CTLA4-IL10 fusion proteins; and the addition of IL10 in TIL expansion for adoptive cellular therapy. Cancer Discov; 6(9); 1022-35. ©2016 AACR.See related commentary by Peng et al., p. 953This article is highlighted in the In This Issue feature, p. 932. ©2016 American Association for Cancer Research.
Sass, Laura A; Hair, Pamela S; Perkins, Amy M; Shah, Tushar A; Krishna, Neel K; Cunnion, Kenji M
2015-01-01
In cystic fibrosis (CF), lung damage is mediated by a cycle of obstruction, infection, and inflammation. Here we explored complement inflammatory effectors in CF lung fluid. In this study soluble fractions (sols) from sputum samples of 15 CF patients were assayed for complement effectors and analyzed with clinical measurements. The pro-inflammatory peptide C5a was increased 4.8-fold (P = 0.04) in CF sols compared with controls. Incubation of CF sols with P. aeruginosa or S. aureus increased C5a concentration 2.3-fold (P = 0.02). A peptide inhibitor of complement C1 (PIC1) completely blocked the increase in C5a concentration from P. aeruginosa in CF sol in vitro (P = 0.001). C5a concentration in CF sol correlated inversely with body mass index (BMI) percentile in children (r = -0.77, P = 0.04). C3a, which has anti-inflammatory effects, correlated positively with FEV1% predicted (rs = 0.63, P = 0.02). These results suggest that complement effectors may significantly impact inflammation in CF lung fluid.
Skipping of exon 27 in C3 gene compromises TED domain and results in complete human C3 deficiency.
da Silva, Karina Ribeiro; Fraga, Tatiana Rodrigues; Lucatelli, Juliana Faggion; Grumach, Anete Sevciovic; Isaac, Lourdes
2016-05-01
Primary deficiency of complement C3 is rare and usually associated with increased susceptibility to bacterial infections. In this work, we investigated the molecular basis of complete C3 deficiency in a Brazilian 9-year old female patient with a family history of consanguinity. Hemolytic assays revealed complete lack of complement-mediated hemolytic activity in the patient's serum. While levels of the complement regulatory proteins Factor I, Factor H and Factor B were normal in the patient's and family members' sera, complement C3 levels were undetectable in the patient's serum and were reduced by at least 50% in the sera of the patient's parents and brother. Additionally, no C3 could be observed in the patient's plasma and cell culture supernatants by Western blot. We also observed that patient's skin fibroblasts stimulated with Escherichia coli LPS were unable to secrete C3, which might be accumulated within the cells before being intracellularly degraded. Sequencing analysis of the patient's C3 cDNA revealed a genetic mutation responsible for the complete skipping of exon 27, resulting in the loss of 99 nucleotides (3450-3549) located in the TED domain. Sequencing of the intronic region between the exons 26 and 27 of the C3 gene (nucleotides 6690313-6690961) showed a nucleotide exchange (T→C) at position 6690626 located in a splicing donor site, resulting in the complete skipping of exon 27 in the C3 mRNA. Copyright © 2016. Published by Elsevier GmbH.
Micrurus snake venoms activate human complement system and generate anaphylatoxins
2012-01-01
Background The genus Micrurus, coral snakes (Serpentes, Elapidae), comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s) present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process. PMID:22248157
Micrurus snake venoms activate human complement system and generate anaphylatoxins.
Tanaka, Gabriela D; Pidde-Queiroz, Giselle; de Fátima D Furtado, Maria; van den Berg, Carmen; Tambourgi, Denise V
2012-01-16
The genus Micrurus, coral snakes (Serpentes, Elapidae), comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s) present in the venoms, which disrupts complement activation control. Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.
The lectin pathway in renal disease: old concept and new insights.
Gaya da Costa, Mariana; Poppelaars, Felix; Berger, Stefan P; Daha, Mohamed R; Seelen, Marc A
2018-04-26
The complement system is composed of a network of at least 40 proteins, which significantly contributes to health and disease. The lectin pathway (LP) is one of three pathways that can activate the complement system. Next to protection of the host against pathogens, the LP has been shown to play a crucial role in multiple renal diseases as well as during renal replacement therapy. Therefore, several complement-targeted drugs are currently being explored in clinical trials. Among these complement inhibitors, specific LP inhibitors are also being tested in renal abnormalities such as in immunoglobulin A nephropathy and lupus nephritis. Using various in vitro models, Yaseen et al. (Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement component 3 (C3) in absence of C4 and/or C2. FASEB J 2017; 31: 2210-2219) showed that Mannan-associated serine protease2 can directly activate C3 thereby bypassing C2 and C4 in the activation of the LP. These new findings broaden our understanding of the mechanisms of complement activation and could potentially impact our strategies to inhibit the LP in renal diseases. In support of these findings, we present data of human renal biopsies, demonstrating the occurrence of the LP bypass mechanism in vivo. In conclusion, this review provides a detailed overview of the LP and clarifies the recently described bypass mechanism and its relevance. Finally, we speculate on the role of the C4 bypass mechanism in other renal diseases.
Phylogenetic aspects of the complement system.
Zarkadis, I K; Mastellos, D; Lambris, J D
2001-01-01
During evolution two general systems of immunity have emerged: innate or, natural immunity and adaptive (acquired), or specific immunity. The innate system is phylogenetically older and is found in some form in all multicellular organisms, whereas the adaptive system appeared about 450 million years ago and is found in all vertebrates except jawless fish. The complement system in higher vertebrates plays an important role as an effector of both the innate and the acquired immune response, and also participates in various immunoregulatory processes. In lower vertebrates complement is activated by the alternative and lectin pathways and is primarily involved in the opsonization of foreign material. The Agnatha (the most primitive vertebrate species) possess the alternative and lectin pathways while cartilaginous fish are the first species in which the classical pathway appears following the emergence of immunoglobulins. The rest of the poikilothermic species, ranging from teleosts to reptilians, appear to contain a well-developed complement system resembling that of the homeothermic vertebrates. It seems that most of the complement components have appeared after the duplication of primordial genes encoding C3/C4/C5, fB/C2, C1s/C1r/MASP-1/MASP-2, and C6/C7/C8/C9 molecules, in a process that led to the formation of distinct activation pathways. However, unlike homeotherms, several species of poikilotherms (e.g. trout) have recently been shown to possess multiple forms of complement components (C3, factor B) that are structurally and functionally more diverse than those of higher vertebrates. We hypothesize that this remarkable diversity has allowed these animals to expand their innate capacity for immune recognition and response. Recent studies have also indicated the possible presence of complement receptors in protochordates and lower vertebrates. In conclusion, there is considerable evidence suggesting that the complement system is present in the entire lineage of deuterostomes, and regulatory complement components have been identified in all species beyond the protochordates, indicating that the mechanisms of complement activation and regulation have developed in parallel.
C3 Polymorphism Influences Circulating Levels of C3, ASP and Lipids in Schizophrenic Patients.
Nsaiba, Mohamed Jalloul; Lapointe, Marc; Mabrouk, Hajer; Douki, Wahiba; Gaha, Lotfi; Pérusse, Louis; Bouchard, Claude; Jrad, Besma Bel Hadj; Cianflone, Katherine
2015-05-01
Excessive activation of complement is associated with many diseases including schizophrenia. Investigation of C3 polymorphisms, circulating C3, cleavage product ASP/C3adesArg, and lipid metabolism. Cross-sectional analysis. C3 genotyping (CC vs GG for R102L) was performed on 434 Tunisian people consisting of 272 schizophrenic (SZ) patients and 162 control subjects. In a age- and gender-matched subgroups of the three genotypes (131 SZ and 112 NOR), plasma triglycerides, total cholesterol (C), LDL-C, HDL-C, ASP, and complement C3 were measured. C3 gene polymorphism influences BMI and plasma C3, ASP, triglyceride, total cholesterol, LDL-C and HDL-C among SZ patients (p < 0.05-0.0001), with increasing values demonstrated from CC (common form) to CG (heterozygote form) to GG (rare homozygote) forms. Significant correlations between plasma C3 and BMI, triglyceride, HDL-C and ASP (p < 0.05-0.0001) were observed, while ASP correlated with BMI and LDL-C (p = 0.005, p = 0.001, respectively) in SZ patients. Further, proportional conversion of C3 to ASP (%ASP/C3) also increased (p < 0.0001, GG>CG>CC). C3 polymorphisms and plasma C3, ASP and %ASP/C3 correlated with lipid parameters in this SZ population, suggesting that factors predisposing patients to schizophrenia are permissive for complement pathway activation and dyslipidemic influences.
Li, Keying; Gor, Jayesh; Perkins, Stephen J
2010-10-01
Component C3 is the central protein of the complement system. During complement activation, the thioester group in C3 is slowly hydrolysed to form C3u, then the presence of C3u enables the rapid conversion of C3 into functionally active C3b. C3u shows functional similarities to C3b. To clarify this mechanism, the self-association properties and solution structures of C3 and C3u were determined using analytical ultracentrifugation and X-ray scattering. Sedimentation coefficients identified two different dimerization events in both proteins. A fast dimerization was observed in 50 mM NaCl but not in 137 mM NaCl. Low amounts of a slow dimerization was observed for C3u and C3 in both buffers. The X-ray radius of gyration RG values were unchanged for both C3 and C3u in 137 mM NaCl, but depend on concentration in 50 mM NaCl. The C3 crystal structure gave good X-ray fits for C3 in 137 mM NaCl. By randomization of the TED (thioester-containing domain)/CUB (for complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains in the C3b crystal structure, X-ray fits showed that the TED/CUB domains in C3u are extended and differ from the more compact arrangement of C3b. This TED/CUB conformation is intermediate between those of C3 and C3b. The greater exposure of the TED domain in C3u (which possesses the hydrolysed reactive thioester) accounts for the greater self-association of C3u in low-salt conditions. This conformational variability of the TED/CUB domains would facilitate their interactions with a broad range of antigenic surfaces. The second dimerization of C3 and C3u may correspond to a dimer observed in one of the crystal structures of C3b.
Complement factor B expression profile in a spontaneous uveitis model.
Zipplies, Johanna K; Kirschfink, Michael; Amann, Barbara; Hauck, Stefanie M; Stangassinger, Manfred; Deeg, Cornelia A
2010-12-01
Equine recurrent uveitis serves as a spontaneous model for human autoimmune uveitis. Unpredictable relapses and ongoing inflammation in the eyes of diseased horses as well as in humans lead to destruction of the retina and finally result in blindness. However, the molecular mechanisms leading to inflammation and retinal degeneration are not well understood. An initial screening for differentially regulated proteins in sera of uveitic cases compared to healthy controls revealed an increase of the alternative pathway complement component factor B in ERU cases. To determine the activation status of the complement system, sera were subsequently examined for complement split products. We could demonstrate a significant higher concentration of the activation products B/Ba, B/Bb, Bb neoantigen, iC3b and C3d in uveitic condition compared to healthy controls, whereas for C5b-9 no differences were detected. Additionally, we investigated complement activation directly in the retina by immunohistochemistry, since it is the main target organ of this autoimmune disease. Interestingly, infiltrating cells co-expressed activated factor Bb neoantigen, complement split product C3d as well as CD68, a macrophage marker. In this study, we could demonstrate activation of the complement system both systemically as well as in the eye, the target organ of spontaneous recurrent uveitis. Based on these novel findings, we postulate a novel role for macrophages in connection with complement synthesis at the site of inflammation. Copyright © 2010 Elsevier GmbH. All rights reserved.
Fuentes-Arderiu, Xavier; Alonso-Gregorio, Eduardo; Alvarez-Funes, Virtudes; Ambrós-Marigómez, Carmen; Coca-Fábregas, Lluís; Cruz-Placer, Marta; Díaz-Fernández, Julián; Pinel-Julián, María Pilar; Gutiérrez-Cecchini, Beatriz; Herrero-Bernal, Pilar; Sempere-Alcocer, Marcos; García-Caballero, Francisca; Del Mar Larrea-Ortiz-Quintana, María; La-Torre-Marcellán, Pedro; Del Señor López-Vélez, María; Mar-Medina, Carmen; Martín-Oncina, Javier; Rodríguez-Hernández, María Victoria; Romero-Sotomayor, María Victoria; Serrano-López, Cándido; Sicilia-Enríquez-de-Salamanca, Adolfo; Velasco-Romero, Ana María; Juvé-Cuxart, Santiago
2007-01-01
Clinical laboratories seeking accreditation for compliance with ISO 15189:2003 need to demonstrate that the physiological reference intervals communicated to all users of the laboratory service are appropriate for the patient population served and for the measurement systems used. In the case of immunological quantities, few articles have been published in peer-reviewed journals. A total of 21 clinical laboratories in different regions of Spain collaborated in identifying reference individuals and determining adult reference intervals for some immunological quantities measured using RD/Hitachi Modular Analytics analysers and Tina-Quant reagent systems. These immunological quantities are the mass concentrations of immunoglobulin A, immunoglobulin G, immunoglobulin M, complement C3c and complement C4 in serum. All the logistic work was carried out in co-operation with the supplier of the reagents and analysers (Roche Diagnostics España, S.L., Sant Cugat del Vallès, Catalonia, Spain). From the set of reference values obtained by each laboratory, multicentre reference limits were estimated non-parametrically. The reference intervals estimated in this study for concentrations of serum components under consideration are: complement C3c, 0.62-1.64 g/L for women and men; complement C4, 0.14-0.72 g/L for women and men; immunoglobulin A, 0.89-4.80 g/L for women and men; immunoglobulin G, 6.5-14.3 g/L for women and men; and immunoglobulin M, 0.48-3.38 g/L for women and 0.41-2.46 g/L for men.
Sethi, Sanjeev; Gamez, Jeffrey D.; Vrana, Julie A.; Theis, Jason D.; Bergen, H. Robert; Zipfel, Peter F.; Dogan, Ahmet; Smith, Richard J. H.
2009-01-01
Dense Deposit Disease (DDD), or membranoproliferative glomerulonephritis type II, is a rare renal disease characterized by dense deposits in the mesangium and along the glomerular basement membranes that can be seen by electron microscopy. Although these deposits contain complement factor C3, as determined by immunofluorescence microscopy, their precise composition remains unknown. To address this question, we used mass spectrometry to identify the proteins in laser microdissected glomeruli isolated from paraffin-embedded tissue of eight confirmed cases of DDD. Compared to glomeruli from five control patients, we found that all of the glomeruli from patients with DDD contain components of the alternative pathway and terminal complement complex. Factor C9 was uniformly present as well as the two fluid-phase regulators of terminal complement complex clusterin and vitronectin. In contrast, in nine patients with immune complex–mediated membranoproliferative glomerulonephritis, glomerular samples contained mainly immunoglobulins and complement factors C3 and C4. Our study shows that in addition to fluid-phase dysregulation of the alternative pathway, soluble components of the terminal complement complex contribute to glomerular lesions found in DDD. PMID:19177158
The depletion of sodium nitrite by lactic acid bacteria isolated from kimchi.
Oh, Chang-Kyung; Oh, Myung-Chul; Kim, Soo-Hyun
2004-01-01
Nitrites, whether added or naturally occurring in foods, are potential carcinogens, and controlling their concentrations is important for maintaining a safe food supply. In this study we investigated the depletion of sodium nitrite (150 microg/mL) during the fermentation in Lactobacilli MRS broth at 5, 10, 15, 20, 25, 30, and 36 degrees C by lactic acid bacteria (LAB-A, -B, -C, and -D) isolated from kimchi and Leuconostoc mesenteroides strain KCTC3100. The four species of lactic acid bacteria isolated from kimchi were identified as L. mesenteroides, and all produced depletion of less than 20% of sodium nitrite after 10 days of incubation at 5 degrees C. There was less than 40% depletion after 9 days at 10 degrees C, 86.4-92.8% after 7 days at 15 degrees C, 81.4-87.8% after 4 days and more than 90.0% after 5 days at 20 degrees C, 76.3-85.7% after 3 days and more than 90.0% after 5 days at 25 degrees C, and more than 90.0% after 2 days at 30 and 36 degrees C. The depletion by LAB isolates was similar or higher than that by L. mesenteroides strain KCTC3100, and in particular, the LAB-D strain showed the highest depletion effect of all the strains tested, up to 15 degrees C. From these results, the strains isolated from kimchi were very effective for the depletion of sodium nitrite at high temperature, and all sodium nitrite was depleted at the initial period of incubation (1-2 days) at 30 and 36 degrees C. But as the temperature was lowered, the depletion effect of sodium nitrite was decreased in all the strains tested from kimchi. This illustrates that the depletion of nitrite by each strain is subject to the influence of temperatures.
C3aR and C5aR1 act as key regulators of human and mouse β-cell function.
Atanes, Patricio; Ruz-Maldonado, Inmaculada; Pingitore, Attilio; Hawkes, Ross; Liu, Bo; Zhao, Min; Huang, Guo Cai; Persaud, Shanta J; Amisten, Stefan
2018-02-01
Complement components 3 and 5 (C3 and C5) play essential roles in the complement system, generating C3a and C5a peptides that are best known as chemotactic and inflammatory factors. In this study we characterised islet expression of C3 and C5 complement components, and the impact of C3aR and C5aR1 activation on islet function and viability. Human and mouse islet mRNAs encoding key elements of the complement system were quantified by qPCR and distribution of C3 and C5 proteins was determined by immunohistochemistry. Activation of C3aR and C5aR1 was determined using DiscoverX beta-arrestin assays. Insulin secretion from human and mouse islets was measured by radioimmunoassay, and intracellular calcium ([Ca 2+ ]i), ATP generation and apoptosis were assessed by standard techniques. C3 and C5 proteins and C3aR and C5aR1 were expressed by human and mouse islets, and C3 and C5 were mainly localised to β- and α-cells. Conditioned media from islets exposed for 1 h to 5.5 and 20 mM glucose stimulated C3aR and C5aR1-driven beta-arrestin recruitment. Activation of C3aR and C5aR1 potentiated glucose-induced insulin secretion from human and mouse islets, increased [Ca 2+ ]i and ATP generation, and protected islets against apoptosis induced by a pro-apoptotic cytokine cocktail or palmitate. Our observations demonstrate a functional link between activation of components of the innate immune system and improved β-cell function, suggesting that low-level chronic inflammation may improve glucose homeostasis through direct effects on β-cells.
Stock, P G; Ascher, N L; Platt, J L; Kaufman, D B; Chen, S; Field, M J; Sutherland, D E
1989-01-01
In vitro manipulation of pancreatic islets to decrease islet immunogenicity before transplantation has largely been directed at eliminating the major histocompatibility complex (MHC) class II-positive passenger leukocytes from the islets. The mixed islet-lymphocyte coculture (MILC) system was used to quantitate the efficacy of immunodepletion of MHC class II-positive cells from pancreatic islets in terms of reducing immunogenicity. With these experiments we compared the in vitro immunogenicity of MHC class II-depleted islets with untreated islets. B10.BR (H-2k) islets were treated with anti-Iak alloserum followed by complement. This treatment successfully eliminated MHC class II-positive cells from the islets, as demonstrated by indirect immunofluorescence techniques. Depleted islets generated slightly lower amounts of allospecific cytotoxic T-lymphocyte (CTL) activity when exposed to C57BL/6 (H-2b) splenocytes in the MILC than untreated control islets. Although the amount of CTL generated by the depleted islets was slightly less than that generated by untreated islets, there was significant stimulation of CTL by the MHC class II-depleted islets. Therefore, the presence or absence of MHC class II cells within the islet is unlikely to be the decisive factor contributing to islet immunogenicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavropoulos, D.J.; Tomkins, D.J.; Allingham-Hawkins, D.J.
1994-09-01
Cells from all four Fanconi anemia complementation groups show hypersensitivity to cell-killing by mitomycin C (MMC), diepoxybutane (DEB) and other DNA cross-linking agents, and increased spontaneous and DEB-induced chromosome aberrations (CA). The extent of these phenotypes varies between lymphoblastoid cell lines from different complementation groups. Our data showed that the difference in MMC hypersensitivity and DEB-CA was not always coupled. While 230N (FA-B) had higher DEB-induced CA/cell than 536N (FA-C) (7.42 vs. 4.46 respectively), that latter was much more sensitive to cell-killing by MMC (dose at 10% survival, D{sub 10}: 5.2 vs. 1.2 ng/ml respectively). Strathdes et al. (1992) clonedmore » a cDNA Fanconi anemia complementation group C (FACC) which complemented the hypersensitivity to MMC and DEB cell-killing of FA-C cells (536N) but not cells from the other three complementation groups. The present study was initiated to determine whether chromosome instability in 536N is also complemented by the FACC (FAC3) cDNA. The pREP4-FAC3 vector was transfected into 536N and transfectants selected with hygromycin B. The DEB D{sub 10} of 536N (1.0 {mu}M) was corrected to the control level (16.2 {mu}M for 3TO) by FACC (15.1 {mu}M for 536N-FACC), as previously demonstrated. Chromosome instability (cab, cse, ctb, cte) was determined without and with 0.1 {mu}g/ml DEB treatment. Spontaneous CA of 536N (0.30 aberrations/cell) was corrected to the control level (0.04 for 3TO) by FACC (0.06 for 536N-FACC). Similarly, the DEB-induced CA was corrected (2.74 for 536N vs. 0.06 and 0.02 for 3TO and 536N-FACC respectively). Thus, at least for FA complementation group C, hypersensitivity to cell-killing and chromosome instability are not dissociated and are most likely caused by the same gene defect.« less
Recent insights into C3 glomerulopathy
Barbour, Thomas D.; Pickering, Matthew C.; Cook, H. Terence
2013-01-01
‘C3 glomerulopathy’ is a recent disease classification comprising several rare types of glomerulonephritis (GN), including dense deposit disease (DDD), C3 glomerulonephritis (C3GN) and CFHR5 nephropathy. These disorders share the key histological feature of isolated complement C3 deposits in the glomerulus. A common aetiology involving dysregulation of the alternative pathway (AP) of complement has been elucidated in the past decade, with genetic defects and/or autoantibodies able to be identified in a proportion of patients. We review the clinical and histological features of C3 glomerulopathy, relating these to underlying molecular mechanisms. The role of uncontrolled C3 activation in pathogenesis is emphasized, with important lessons from animal models. Methods, advantages and limitations of gene testing in the assessment of individuals or families with C3 glomerulopathy are discussed. While no therapy has yet been shown consistently effective, clinical evaluation of agents targeting specific components of the complement system is ongoing. However, limits to current knowledge regarding the natural history and the appropriate timing and duration of proposed therapies need to be addressed. PMID:23479095
Host Defense against Opportunist Microorganisms Following Trauma.
1979-06-01
patients were total hemolytic complement (CH5 0 ), C3 conversion by inulin and cobra venom factor (CoVF), and itmunochemical concentrations of Clq, C4, C2...were normal or elevated for the entire study period. C3 conversion by inulin and CoVF and the concentration of properdin were reduced in the sera of the...measured in all patients were total hemolytic complement (CH5 0), C3 conversion by inulin and cobra venom factor (CoVF), and inunochemical
Nissilä, E; Korpela, K; Lokki, A I; Paakkanen, R; Jokiranta, S; de Vos, W M; Lokki, M-L; Kolho, K-L; Meri, S
2017-12-01
Complement C4 genes are linked to paediatric inflammatory bowel disease (PIBD), but the mechanisms have remained unclear. We examined the influence of C4B gene number on intestinal microbiota and in-vitro serum complement activation by intestinal microbes in PIBD patients. Complement C4A and C4B gene numbers were determined by genomic reverse transcription-polymerase chain reaction (RT-PCR) from 64 patients with PIBD (Crohn's disease or ulcerative colitis). The severity of the disease course was determined from faecal calprotectin levels. Intestinal microbiota was assessed using the HITChip microarray. Complement reactivity in patients was analysed by incubating their sera with Yersinia pseudotuberculosis and Akkermansia muciniphila and determining the levels of C3a and soluble terminal complement complex (SC5b-9) using enzyme immunoassays. The microbiota diversity was wider in patients with no C4B genes than in those with one or two C4B genes, irrespective of intestinal inflammation. C4B and total C4 gene numbers correlated positively with soluble terminal complement complex (TCC, SC5b-9) levels when patient serum samples were stimulated with bacteria. Our results suggest that the C4B gene number associates positively with inflammation in patients with PIBD. Multiple copies of the C4B gene may thus aggravate the IBD-associated dysbiosis through escalated complement reactivity towards the microbiota. © 2017 British Society for Immunology.
Rodriguez, E. R.; Skojec, Diane V.; Tan, Carmela D.; Zachary, Andrea A.; Kasper, Edward K.; Conte, John V.; Baldwin, William M.
2005-01-01
Antibody-mediated rejection (AMR) in human heart transplantation is an immunopathologic process in which injury to the graft is in part the result of activation of complement and it is poorly responsive to conventional therapy. We evaluated by immunofluorescence (IF), 665 consecutive endomyocardial biopsies from 165 patients for deposits of immunoglobulins and complement. Diffuse IF deposits in a linear capillary pattern greater than 2+ were considered significant. Clinical evidence of graft dysfunction was correlated with complement deposits. IF 2+ or higher was positive for IgG, 66%; IgM, 12%; IgA, 0.6%; C1q, 1.8%; C4d, 9% and C3d, 10%. In 3% of patients, concomitant C4d and C3d correlated with graft dysfunction or heart failure. In these 5 patients AMR occurred 56–163 months after transplantation, and they responded well to therapy for AMR but not to treatment with steroids. Systematic evaluation of endomyocardial biopsies is not improved by the use of antibodies for immunoglobulins or C1q. Concomitant use of C4d and C3d is very useful to diagnose AMR, when correlated with clinical parameters of graft function. AMR in heart transplant patients can occur many months or years after transplant. PMID:16212640
TANG, S; LEUNG, J C K; CHAN, L Y Y; TSANG, A W L; CHEN, C X R; ZHOU, W; LAI, K N; SACKS, S H
2004-01-01
Although complement is activated in the peritoneal cavity during chronic peritoneal dialysis (PD), little is known about its role in peritoneal defence and injury related to long-term PD. We examined the impact of glucose and commercial peritoneal dialysis solutions on complement expression in HPMCs obtained by primary culture from omental tissues of consented patients undergoing elective abdominal surgery. Constitutive expression of C3 and C4 mRNA in HPMCs was up-regulated upon exposure to 75 mm glucose in a time-dependent manner. C3 and C4 protein was secreted in both apical and basolateral directions. Glucose doses beyond 100 mm markedly down-regulated C3 and C4 expression, and stimulated LDH release dose-dependently. Such cytotoxic effects were attenuated using equivalent doses of mannitol instead of glucose. Treatment with conventional lactate-buffered dialysis solution gave rise to down-regulation of C3 and C4 expression, and heightened LDH release in HPMCs. These effects correlated with the glucose strength of the solution, persisted despite replacement with a bicarbonate-buffered solution, aggravated by glycated albumin, and were partially abrogated by supplementation with 10% fetal bovine serum in the culture system. Our findings suggest that the artificial conditions imposed by PD lead to alterations in local complement synthesis that have implications for the role of the peritoneal mesothelium in both inflammation and defence. PMID:15030518
Pietrocola, Giampiero; Rindi, Simonetta; Rosini, Roberto; Buccato, Scilla; Speziale, Pietro; Margarit, Immaculada
2016-01-01
The group B Streptococcus (GBS) is a leading cause of neonatal invasive disease. GBS bacteria are surrounded by a thick capsular polysaccharide that is a potent inhibitor of complement deposition via the alternative pathway. Several of its surface molecules can however activate the classical and lectin complement pathways, rendering this species still vulnerable to phagocytic killing. In this study we have identified a novel secreted protein named complement interfering protein (CIP) that downregulates complement activation via the classical and lectin pathways, but not the alternative pathway. The CIP protein showed high affinity toward C4b and inhibited its interaction with C2, presumably preventing the formation of the C4bC2a convertase. Addition of recombinant CIP to GBS cip-negative bacteria resulted in decreased deposition of C3b on their surface and in diminished phagocytic killing in a whole-blood assay. Our data reveal a novel strategy exploited by GBS to counteract innate immunity and could be valuable for the development of anti-infective agents against this important pathogen. Copyright © 2015 by The American Association of Immunologists, Inc.
Awasthi, Sita; Lubinski, John M.; Shaw, Carolyn E.; Barrett, Shana M.; Cai, Michael; Wang, Fushan; Betts, Michael; Kingsley, Susan; DiStefano, Daniel J.; Balliet, John W.; Flynn, Jessica A.; Casimiro, Danilo R.; Bryan, Janine T.; Friedman, Harvey M.
2011-01-01
Attempts to develop a vaccine to prevent genital herpes simplex virus 2 (HSV-2) disease have been only marginally successful, suggesting that novel strategies are needed. Immunization with HSV-2 glycoprotein C (gC-2) and gD-2 was evaluated in mice and guinea pigs to determine whether adding gC-2 to a gD-2 subunit vaccine would improve protection by producing antibodies that block gC-2 immune evasion from complement. Antibodies produced by gC-2 immunization blocked the interaction between gC-2 and complement C3b, and passive transfer of gC-2 antibody protected complement-intact mice but not C3 knockout mice against HSV-2 challenge, indicating that gC-2 antibody is effective, at least in part, because it prevents HSV-2 evasion from complement. Immunization with gC-2 also produced neutralizing antibodies that were active in the absence of complement; however, the neutralizing titers were higher when complement was present, with the highest titers in animals immunized with both antigens. Animals immunized with the gC-2-plus-gD-2 combination had robust CD4+ T-cell responses to each immunogen. Multiple disease parameters were evaluated in mice and guinea pigs immunized with gC-2 alone, gD-2 alone, or both antigens. In general, gD-2 outperformed gC-2; however, the gC-2-plus-gD-2 combination outperformed gD-2 alone, particularly in protecting dorsal root ganglia in mice and reducing recurrent vaginal shedding of HSV-2 DNA in guinea pigs. Therefore, the gC-2 subunit antigen enhances a gD-2 subunit vaccine by stimulating a CD4+ T-cell response, by producing neutralizing antibodies that are effective in the absence and presence of complement, and by blocking immune evasion domains that inhibit complement activation. PMID:21813597
Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M.
2012-01-01
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases. PMID:22514678
Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M
2012-01-01
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.
Yuan, Xiang-Yang; Liu, Wen-Bin; Liang, Chao; Sun, Cun-Xin; Xue, Yun-Fei; Wan, Zu-De; Jiang, Guang-Zhen
2017-08-01
A 10-week feeding trial was carried out to investigate the effects of dietary fish meal replacement by yeast hydrolysate (YH) on growth performance, complement system and stress resistance of juvenile Jian carp (Cyprinus carpio var. Jian) (initial average weight 19.44 ± 0.06 g). In the study, there were five groups: one control group was fed with a basal diet (YH0), and four treatment groups were fed with dietary fish meal replaced by 1% YH (YH1), 3% (YH3), 5% (YH5) and 7% (YH7), respectively. Each group had four replicates. At the end of feeding trial, twelve fish from each group (three fish per replicate) were randomly selected for assessing the growth and immunity. Meanwhile, 20 fish per replicate were injected by Aeromonas hydrophila. The results showed that (1) Replacement levels of YH significantly affected the growth of the fish with the highest values of weight gain (WG) occurred in fish fed YH3 diet. However, no significant difference in feed conversion ratios (FCR) was observed among all groups. (2) Pre-stressed plasma lysozyme activity, total protein and albumin contents and complement component 3 (C3) and complement component 4 (C4) levels of fish fed YH3 diet were significantly higher than those of fish fed YH0 diet. However, post-stressed immune parameters of fish in all groups were significantly lower. (3) There was a trend that the expression levels of the complement-related genes (c1r/s-A, c4-1, c3-H1, c5-1, fb/c2-A, mbl-2 and masp) initially increased and then decreased except mbl-2 and masp, with the maximum values observed in fish fed YH3 diet. Before stress, the expression levels of the inflammation-related genes (alp, il-1β and tnf-α) in the hepatopancreas and spleen of fish fed YH1 diet and YH7 diet were significant higher than that of fish fed YH0 diet. After stress, no significant difference in the expression levels of those genes was observed among all groups. These results indicated that FM replacement by YH could improve growth performance, enhance innate immunity, and activate complement via the alternative complement pathway (ACP) and the classical complement pathway (CCP). Copyright © 2017 Elsevier Ltd. All rights reserved.
Roy, René M.; Paes, Hugo C.; Nanjappa, Som G.; Sorkness, Ron; Gasper, David; Sterkel, Alana; Wüthrich, Marcel; Klein, Bruce S.
2013-01-01
ABSTRACT Levels of the anaphylatoxin C3a are increased in patients with asthma compared with those in nonasthmatics and increase further still during asthma exacerbations. However, the role of C3a during sensitization to allergen is poorly understood. Sensitization to fungal allergens, such as Aspergillus fumigatus, is a strong risk factor for the development of asthma. Exposure to chitin, a structural polysaccharide of the fungal cell wall, induces innate allergic inflammation and may promote sensitization to fungal allergens. Here, we found that coincubation of chitin with serum or intratracheal administration of chitin in mice resulted in the generation of C3a. We established a model of chitin-dependent sensitization to soluble Aspergillus antigens to test the contribution of complement to these events. C3−/− and C3aR−/− mice were protected from chitin-dependent sensitization to Aspergillus and had reduced lung eosinophilia and type 2 cytokines and serum IgE. In contrast, complement-deficient mice were not protected against chitin-induced innate allergic inflammation. In sensitized mice, plasmacytoid dendritic cells from complement-deficient animals acquired a tolerogenic profile associated with enhanced regulatory T cell responses and suppressed Th2 and Th17 responses specific for Aspergillus. Thus, chitin induces the generation of C3a in the lung, and chitin-dependent allergic sensitization to Aspergillus requires C3aR signaling, which suppresses regulatory dendritic cells and T cells and induces allergy-promoting T cells. PMID:23549917
Høgåsen, A K; Abrahamsen, T G
1993-01-01
Activation of the complement system is an important part of host resistance against fungal infections. When human monocytes, cultured for 2 days or more, were treated in vitro with Candida albicans for 24 h, an enhancement of their biosynthesis of the complement components C3 and factor B was found. However, when C. albicans was administered to freshly isolated monocytes, a consistent stimulation of factor B biosynthesis occurred, while the C3 production was increased in about 50% of the donors. C. albicans also induced the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) from the cultured cells, apparently in larger amounts in the donors in whom no stimulation of C3 production was found. An antibody to GM-CSF administered with the yeast at the initiation of the monocyte culture caused an increase in the C3 production. Furthermore, when monocytes were treated with recombinant human GM-CSF either at the same time as or 4 days prior to the addition of C. albicans, the increase in C3 production was suppressed or neutralized, while factor B biosynthesis was unaffected. Taken together, these results indicate that monocytes respond to C. albicans with an increased production of complement factors. This may be an important mechanism both for opsonization of the fungus and for initiation of an inflammatory reaction. At an inflammatory site, this complement response may be suppressed by locally produced GM-CSF. PMID:8478067
Horváth, Zsófia; Csuka, Dorottya; Vargova, Katarina; Kovács, Andrea; Leé, Sarolta; Varga, Lilian; Préda, István; Tóth Zsámboki, Emese; Prohászka, Zoltán; Kiss, Róbert Gábor
2016-12-01
The effect of invasive percutaneous coronary procedures on complement activation has not been elucidated. We enrolled stable angina patients with elective percutaneous coronary intervention (SA-PCI, n=24), diagnostic coronary angiography (CA, n=52) and 23 patients with ST segment elevation myocardial infarction and primary PCI (STEMI-PCI). Complement activation products (C1rC1sC1inh, C3bBbP and SC5b-9) were measured on admission, 6 and 24h after coronary procedures. The alternative pathway product, C3bBbP significantly and reversibly increased 6h after elective PCI (baseline: 7.81AU/ml, 6h: 16.09AU/ml, 24h: 4.27AU/ml, p<0.01, n=23) and diagnostic angiography (baseline: 6.13AU/ml, 6h: 12.08AU/ml, 24h: 5.4AU/ml, p<0.01, n=52). Six hour C3bBbP values correlated with post-procedural CK, creatinine level and the applied contrast material volume (r=0.41, r=0.4, r=0.3, p<0.05, respectively). In STEMI-PCI, baseline C3bBbP level was higher, compared to SA-PCI or CA patients (11.33AU/ml vs. 7.81AU/ml or 6.13AU/ml, p<0.001). Similarly, the terminal complex (SC5b-9) level was already elevated at baseline compared to SA-PCI group (3.49AU/ml vs. 1.87AU/ml, p=0.011). Complement pathway products did not increase further after primary PCI. Elective coronary procedures induced transient alternative complement pathway activation, influenced by the applied contrast volume. In STEMI, the alternative complement pathway is promptly activated during the atherothrombotic event and PCI itself had no further detectable effect. Copyright © 2016 Elsevier B.V. All rights reserved.
High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation.
Kim, Sook Young; Son, Myoungsun; Lee, Sang Eun; Park, In Ho; Kwak, Man Sup; Han, Myeonggil; Lee, Hyun Sook; Kim, Eun Sook; Kim, Jae-Young; Lee, Jong Eun; Choi, Ji Eun; Diamond, Betty; Shin, Jeon-Soo
2018-01-01
High-mobility group box 1 (HMGB1), a well-known danger-associated molecular pattern molecule, acts as a pro-inflammatory molecule when secreted by activated immune cells or released after necrotic cell damage. HMGB1 binds to immunogenic bacterial components and augments septic inflammation. In this study, we show how HMGB1 mediates complement activation, promoting sterile inflammation. We show that HMGB1 activates the classical pathway of complement system in an antibody-independent manner after binding to C1q. The C3a complement activation product in human plasma and C5b-9 membrane attack complexes on cell membrane surface are detected after the addition of HMGB1. In an acetaminophen (APAP)-induced hepatotoxicity model, APAP injection reduced HMGB1 levels and elevated C3 levels in C1q-deficient mouse serum samples, compared to that in wild-type (WT) mice. APAP-induced C3 consumption was inhibited by sRAGE treatment in WT mice. Moreover, in a mouse model of brain ischemia-reperfusion injury based on middle cerebral arterial occlusion, C5b-9 complexes were deposited on vessels where HMGB1 was accumulated, an effect that was suppressed upon HMGB1 neutralization. We propose that the HMGB1 released after cell necrosis and in ischemic condition can trigger the classical pathway of complement activation to exacerbate sterile inflammation.
High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation
Kim, Sook Young; Son, Myoungsun; Lee, Sang Eun; Park, In Ho; Kwak, Man Sup; Han, Myeonggil; Lee, Hyun Sook; Kim, Eun Sook; Kim, Jae-Young; Lee, Jong Eun; Choi, Ji Eun; Diamond, Betty; Shin, Jeon-Soo
2018-01-01
High-mobility group box 1 (HMGB1), a well-known danger-associated molecular pattern molecule, acts as a pro-inflammatory molecule when secreted by activated immune cells or released after necrotic cell damage. HMGB1 binds to immunogenic bacterial components and augments septic inflammation. In this study, we show how HMGB1 mediates complement activation, promoting sterile inflammation. We show that HMGB1 activates the classical pathway of complement system in an antibody-independent manner after binding to C1q. The C3a complement activation product in human plasma and C5b-9 membrane attack complexes on cell membrane surface are detected after the addition of HMGB1. In an acetaminophen (APAP)-induced hepatotoxicity model, APAP injection reduced HMGB1 levels and elevated C3 levels in C1q-deficient mouse serum samples, compared to that in wild-type (WT) mice. APAP-induced C3 consumption was inhibited by sRAGE treatment in WT mice. Moreover, in a mouse model of brain ischemia–reperfusion injury based on middle cerebral arterial occlusion, C5b-9 complexes were deposited on vessels where HMGB1 was accumulated, an effect that was suppressed upon HMGB1 neutralization. We propose that the HMGB1 released after cell necrosis and in ischemic condition can trigger the classical pathway of complement activation to exacerbate sterile inflammation. PMID:29696019
Rattan, Ajitanuj; Pawar, Shailesh D.; Nawadkar, Renuka; Kulkarni, Neeraja
2017-01-01
The pandemic influenza A(H1N1) 2009 virus caused significant morbidity and mortality worldwide thus necessitating the need to understand the host factors that influence its control. Previously, the complement system has been shown to provide protection during the seasonal influenza virus infection, however, the role of individual complement pathways is not yet clear. Here, we have dissected the role of intact complement as well as of its individual activation pathways during the pandemic influenza virus infection using mouse strains deficient in various complement components. We show that the virus infection in C3-/- mice results in increased viral load and 100% mortality, which can be reversed by adoptive transfer of naïve wild-type (WT) splenocytes, purified splenic B cells, or passive transfer of immune sera from WT, but not C3-/- mice. Blocking of C3a and/or C5a receptor signaling in WT mice using receptor antagonists and use of C3aR-/- and C5aR-/- mice showed significant mortality after blocking/ablation of C3aR, with little or no effect after blocking/ablation of C5aR. Intriguingly, deficiency of C4 and FB in mice resulted in only partial mortality (24%-32%) suggesting a necessary cross-talk between the classical/lectin and alternative pathways for providing effective protection. In vitro virus neutralization experiments performed to probe the cross-talk between the various pathways indicated that activation of the classical and alternative pathways in concert, owing to coating of viral surface by antibodies, is needed for its efficient neutralization. Examination of the virus-specific complement-binding antibodies in virus positive subjects showed that their levels vary among individuals. Together these results indicate that cooperation between the classical and alternative pathways not only result in efficient direct neutralization of the pandemic influenza virus, but also lead to the optimum generation of C3a, which when sensed by the immune cells along with the antigen culminates in generation of effective protective immune responses. PMID:28301559
Ren, Weihong; Liu, Yan; Wang, Xuerui; Piao, Chunmei; Ma, Youcai; Qiu, Shulan; Jia, Lixin; Chen, Boya; Wang, Yuan; Jiang, Wenjian; Zheng, Shuai; Liu, Chang; Dai, Nan; Lan, Feng; Zhang, Hongjia; Song, Wen-Chao; Du, Jie
2018-03-01
Thoracic aortic dissection (TAD), once ruptured, is devastating to patients, and no effective pharmaceutical therapy is available. Anaphylatoxins released by complement activation are involved in a variety of diseases. However, the role of the complement system in TAD is unknown. We found that plasma levels of C3a, C4a, and C5a were significantly increased in patients with TAD. Elevated circulating C3a levels were also detected in the developmental process of mouse TAD, which was induced by β-aminopropionitrile monofumarate (BAPN) treatment, with enhanced expression of C1q and properdin in mouse dissected aortas. These findings indicated activation of classical and alternative complement pathways. Further, expression of C3aR was obviously increased in smooth muscle cells of human and mouse dissected aortas, and knockout of C3aR notably inhibited BAPN-induced formation and rupture of TAD in mice. C3aR antagonist administered pre- and post-BAPN treatment attenuated the development of TAD. We found that C3aR knockout decreased matrix metalloproteinase 2 (MMP2) expression in BAPN-treated mice. Additionally, recombinant C3a stimulation enhanced MMP2 expression and activation in smooth muscle cells that were subjected to mechanical stretch. Finally, we generated MMP2-knockdown mice by in vivo MMP2 short hairpin RNA delivery using recombinant adeno-associated virus and found that MMP2 deficiency significantly reduced the formation of TAD. Therefore, our study suggests that the C3a - C3aR axis contributes to the development of TAD via regulation of MMP2 expression. Targeting the C3a-C3aR axis may represent a strategy for inhibiting the formation of TAD. Copyright © 2018 by The American Association of Immunologists, Inc.
Contributions of Human Cytochrome P450 Enzymes to Glyburide Metabolism*
Zhou, Lin; Naraharisetti, Suresh B.; Liu, Li; Wang, Honggang; Lin, Yvonne S.; Isoherranen, Nina; Unadkat, Jashvant D.; Hebert, Mary F.; Mao, Qingcheng
2011-01-01
Glyburide (GLB) is a widely used oral sulfonylurea for the treatment of gestational diabetes. Therapeutic use of GLB is often complicated by a substantial inter-individual variability in the pharmacokinetics and pharmacodynamics of the drug in human populations, which might be caused by inter-individual variations in factors such as GLB metabolism. Therefore, there has been a continued interest in identifying human cytochrome P450 (CYP) isoforms that play a major role in the metabolism of GLB. However, contrasting data are available in the present literature in this regard. In the present study, we systematically investigated the contributions of various human CYP isoforms (CYP3A4, CYP3A5, CYP2C8, CYP2C9, and CYP2C19) to in vitro metabolism of GLB. GLB depletion and metabolite formation in human liver microsomes were most significantly inhibited by the CYP3A inhibitor ketoconazole compared with the inhibitors of other CYP isoforms. Furthermore, multiple correlation analysis between GLB depletion and individual CYP activities was performed, demonstrating a significant correlation between GLB depletion and the CYP3A probe activity in 16 individual human liver microsomal preparations, but not between GLB depletion and the CYP2C19, CYP2C8, or CYP2C9 probe activity. By using recombinant supersomes overexpressing individual human CYP isoforms, we found that GLB could be depleted by all the enzymes tested; however, the intrinsic clearance (Vmax/Km) of CYP3A4 for GLB depletion was 4 – 17 times greater than that of other CYP isoforms. These results confirm that human CYP3A4 is the major enzyme invovled in the in vitro metabolism of GLB. PMID:20437462
Ning, C; Li, Y-Y; Wang, Y; Han, G-C; Wang, R-X; Xiao, H; Li, X-Y; Hou, C-M; Ma, Y-F; Sheng, D-S; Shen, B-F; Feng, J-N; Guo, R-F; Li, Y; Chen, G-J
2015-11-01
Colitis-associated colorectal cancer (CAC) is the most serious complication of inflammatory bowel disease (IBD). Excessive complement activation has been shown to be involved in the pathogenesis of IBD. However, its role in the development of CAC is largely unknown. Here, using a CAC model induced by combined administration of azoxymethane (AOM) and dextran sulfate sodium (DSS), we demonstrated that complement activation was required for CAC pathogenesis. Deficiency in key components of complement (e.g., C3, C5, or C5a receptor) rendered tumor repression in mice subjected to AOM/DSS. Mechanistic investigation revealed that complement ablation dramatically reduced proinflammatory cytokine interleukin (IL)-1β levels in the colonic tissues that was mainly produced by infiltrating neutrophils. IL-1β promoted colon carcinogenesis by eliciting IL-17 response in intestinal myeloid cells. Furthermore, complement-activation product C5a represented a potent inducer for IL-1β in neutrophil, accounting for downregulation of IL-1β levels in the employed complement-deficient mice. Overall, our study proposes a protumorigenic role of complement in inflammation-related colorectal cancer and that the therapeutic strategies targeting complement may be beneficial for the treatment of CAC in clinic.
Complement System in Dermatological Diseases – Fire Under the Skin
Panelius, Jaana; Meri, Seppo
2015-01-01
The complement system plays a key role in several dermatological diseases. Overactivation, deficiency, or abnormality of the control proteins are often related to a skin disease. Autoimmune mechanisms with autoantibodies and a cytotoxic effect of the complement membrane attack complex on epidermal or vascular cells can cause direct tissue damage and inflammation, e.g., in systemic lupus erythematosus (SLE), phospholipid antibody syndrome, and bullous skin diseases like pemphigoid. By evading complement attack, some microbes like Borrelia spirochetes and staphylococci can persist in the skin and cause prolonged symptoms. In this review, we present the most important skin diseases connected to abnormalities in the function of the complement system. Drugs having an effect on the complement system are also briefly described. On one hand, drugs with free hydroxyl on amino groups (e.g., hydralazine, procainamide) could interact with C4A, C4B, or C3 and cause an SLE-like disease. On the other hand, progress in studies on complement has led to novel anti-complement drugs (recombinant C1-inhibitor and anti-C5 antibody, eculizumab) that could alleviate symptoms in diseases associated with excessive complement activation. The main theme of the manuscript is to show how relevant the complement system is as an immune effector system in contributing to tissue injury and inflammation in a broad range of skin disorders. PMID:25688346
Lynch, Anne M; Eckel, Robert H; Murphy, James R; Gibbs, Ronald S; West, Nancy A; Giclas, Patricia C; Salmon, Jane E; Holers, V Michael
2012-05-01
We hypothesized that women who are obese before they become pregnant and also have elevations of complement Bb and C3a in the top quartile in early pregnancy would have the highest risk of preeclampsia compared with a referent group of women who were not obese and had levels of complement less than the top quartile. This was a prospective study of 1013 women recruited at less than 20 weeks' gestation. An EDTA-plasma sample was obtained, and complement fragments were measured using enzyme-linked immunosorbent assays. The data were analyzed using univariable and multivariable logistic regression analysis. Women who were obese with levels of Bb or C3a in the top quartile were 10.0 (95% confidence interval, 3.3-30) and 8.8 (95% confidence interval, 3-24) times, respectively, more likely to develop preeclampsia compared with the referent group. We demonstrate a combined impact of obesity and elevated complement on the development of preeclampsia. Copyright © 2012. Published by Mosby, Inc.
Ionic tethering contributes to the conformational stability and function of complement C3b.
López-Perrote, Andrés; Harrison, Reed E S; Subías, Marta; Alcorlo, Martín; Rodríguez de Córdoba, Santiago; Morikis, Dimitrios; Llorca, Oscar
2017-05-01
C3b, the central component of the alternative pathway (AP) of the complement system, coexists as a mixture of conformations in solution. These conformational changes can affect interactions with other proteins and complement regulators. Here we combine a computational model for electrostatic interactions within C3b with molecular imaging to study the conformation of C3b. The computational analysis shows that the TED domain in C3b is tethered ionically to the macroglobulin (MG) ring. Monovalent counterion concentration affects the magnitude of electrostatic forces anchoring the TED domain to the rest of the C3b molecule in a thermodynamic model. This is confirmed by observing NaCl concentration dependent conformational changes using single molecule electron microscopy (EM). We show that the displacement of the TED domain is compatible with C3b binding to Factor B (FB), suggesting that the regulation of the C3bBb convertase could be affected by conditions that promote movement in the TED domain. Our molecular model also predicts mutations that could alter the positioning of the TED domain, including the common R102G polymorphism, a risk variant for developing age-related macular degeneration. The common C3b isoform, C3bS, and the risk isoform, C3bF, show distinct energetic barriers to displacement in the TED that are related to a network of electrostatic interactions at the interface of the TED and MG-ring domains of C3b. These computational predictions agree with experimental evidence that shows differences in conformation observed in C3b isoforms purified from homozygous donors. Altogether, we reveal an ionic, reversible attachment of the TED domain to the MG ring that may influence complement regulation in some mutations and polymorphisms of C3b. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hecker, Laura A.; Edwards, Albert O.; Ryu, Euijung; Tosakulwong, Nirubol; Baratz, Keith H.; Brown, William L.; Issa, Peter Charbel; Scholl, Hendrik P.; Pollok-Kopp, Beatrix; Schmid-Kubista, Katharina E.; Bailey, Kent R.; Oppermann, Martin
2010-01-01
Activation of the alternative pathway of complement is implicated in common neurodegenerative diseases including age-related macular degeneration (AMD). We explored the impact of common variation in genes encoding proteins of the alternative pathway on complement activation in human blood and in AMD. Genetic variation across the genes encoding complement factor H (CFH), factor B (CFB) and component 3 (C3) was determined. The influence of common haplotypes defining transcriptional and translational units on complement activation in blood was determined in a quantitative genomic association study. Individual haplotypes in CFH and CFB were associated with distinct and novel effects on plasma levels of precursors, regulators and activation products of the alternative pathway of complement in human blood. Further, genetic variation in CFH thought to influence cell surface regulation of complement did not alter plasma complement levels in human blood. Plasma markers of chronic activation (split-products Ba and C3d) and an activating enzyme (factor D) were elevated in AMD subjects. Most of the elevation in AMD was accounted for by the genetic variation controlling complement activation in human blood. Activation of the alternative pathway of complement in blood is under genetic control and increases with age. The genetic variation associated with increased activation of complement in human blood also increased the risk of AMD. Our data are consistent with a disease model in which genetic variation in the complement system increases the risk of AMD by a combination of systemic complement activation and abnormal regulation of complement activation in local tissues. PMID:19825847
Granja, Luiz Fernando Zmetek; Pinto, Lysianne; Almeida, Cátia Amancio; Alviano, Daniela Sales; Da Silva, Maria Helena; Ejzemberg, Regina; Alviano, Celuta Sales
2010-03-01
Complement activation by spores of Mucor ramosissimus, Mucor plumbeus and Mucor circinelloides was studied using absorbed human serum in the presence or absence of chelators (EGTA or EDTA). We found that the spore caused full complement activation when incubated with EGTA-Mg2+ or without chelators, indicating that the alternative pathway is mainly responsible for this response. In order to compare activation profiles from each species, ELISAs for C3 and C4 fragments, mannan binding lectin (MBL), C-reactive protein (CRP) and IgG studies were carried out. All proteins were present on the species tested. Immunofluorescence tests demonstrated the presence of C3 fragments on the surface of all samples, which were confluent throughout fungal surfaces. The same profile of C3, C4, MBL, CRP and IgG deposition, observed in all species, suggests a similar activation behavior for these species.
Tavano, Regina; Gabrielli, Luca; Lubian, Elisa; Fedeli, Chiara; Visentin, Silvia; Polverino De Laureto, Patrizia; Arrigoni, Giorgio; Geffner-Smith, Alessandra; Chen, Fangfang; Simberg, Dmitri; Morgese, Giulia; Benetti, Edmondo M; Wu, Linping; Moghimi, Seyed Moein; Mancin, Fabrizio; Papini, Emanuele
2018-05-23
Poly(2-methyl-2-oxazoline) (PMOXA) is an alternative promising polymer to poly(ethylene glycol) (PEG) for design and engineering of macrophage-evading nanoparticles (NPs). Although PMOXA-engineered NPs have shown comparable pharmacokinetics and in vivo performance to PEGylated stealth NPs in the murine model, its interaction with elements of the human innate immune system has not been studied. From a translational angle, we studied the interaction of fully characterized PMOXA-coated vinyltriethoxysilane-derived organically modified silica NPs (PMOXA-coated NPs) of approximately 100 nm in diameter with human complement system, blood leukocytes, and macrophages and compared their performance with PEGylated and uncoated NP counterparts. Through detailed immunological and proteomic profiling, we show that PMOXA-coated NPs extensively trigger complement activation in human sera exclusively through the classical pathway. Complement activation is initiated by the sensing molecule C1q, where C1q binds with high affinity ( K d = 11 ± 1 nM) to NP surfaces independent of immunoglobulin binding. C1q-mediated complement activation accelerates PMOXA opsonization with the third complement protein (C3) through the amplification loop of the alternative pathway. This promoted NP recognition by human blood leukocytes and monocyte-derived macrophages. The macrophage capture of PMOXA-coated NPs correlates with sera donor variability in complement activation and opsonization but not with other major corona proteins, including clusterin and a wide range of apolipoproteins. In contrast to these observations, PMOXA-coated NPs poorly activated the murine complement system and were marginally recognized by mouse macrophages. These studies provide important insights into compatibility of engineered NPs with elements of the human innate immune system for translational steps.
Preeclampsia in autologous and oocyte donation pregnancy: is there a different pathophysiology?
Lashley, Lisa E E L O; Buurma, Aletta; Swings, Godelieve M J S; Eikmans, Michael; Anholts, Jacqueline D H; Bakker, Jaap A; Claas, Frans H J
2015-06-01
Oocyte donation (OD) is a specific method of artificial reproductive technology that is accompanied by a higher risk of preeclampsia during pregnancy. The pathophysiological mechanism underlying preeclampsia in OD pregnancies is thought to differ from preeclampsia in autologous pregnancies. As preeclampsia in autologous pregnancies is suggested to be associated with complement activation, we studied C4d deposition, circulating complement components and placental complement regulatory proteins in preeclamptic OD pregnancies. Women with uncomplicated and preeclamptic pregnancies after OD or spontaneous conception were selected. We stained the placentas for C4d, marker for complement activation, measured complement factors C1q, C3 and C4 in maternal sera and quantified the placental mRNA expression of complement regulatory proteins CD46, CD55 and CD59. A significantly (p < 0.03) higher incidence of C4d deposition was observed in placentas from women with preeclampsia compared with uncomplicated pregnancies, both OD and autologous. The level of complement factors in serum did not differ between the groups. Children born in the autologous preeclampsia group were significantly lower in birth weight (p < 10th percentile) compared with the preeclamptic OD group. In addition, the placental mRNA expression level of complement regulatory proteins was significantly lower in uncomplicated and preeclamptic OD compared with the autologous pregnancies. In line with autologous preeclampsia pregnancies, there is excessive activation of complement in preeclamptic OD pregnancies. However, in contrast to autologous pregnancies this is not associated with counterbalancing upregulation of complement regulatory proteins. Furthermore, C4d deposition in OD pregnancies is not related to the severity of preeclampsia, suggesting another trigger or regulatory mechanism of placental C4d deposition in preeclamptic OD pregnancies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Classical Complement Pathway Activation in the Kidneys of Women With Preeclampsia.
Penning, Marlies; Chua, Jamie S; van Kooten, Cees; Zandbergen, Malu; Buurma, Aletta; Schutte, Joke; Bruijn, Jan Anthonie; Khankin, Eliyahu V; Bloemenkamp, Kitty; Karumanchi, S Ananth; Baelde, Hans
2015-07-01
A growing body of evidence suggests that complement dysregulation plays a role in the pathogenesis of preeclampsia. The kidney is one of the major organs affected in preeclampsia. Because the kidney is highly susceptible to complement activation, we hypothesized that preeclampsia is associated with renal complement activation. We performed a nationwide search for renal autopsy material in the Netherlands using a computerized database (PALGA). Renal tissue was obtained from 11 women with preeclampsia, 25 pregnant controls, and 14 nonpregnant controls with hypertension. The samples were immunostained for C4d, C1q, mannose-binding lectin, properdin, C3d, C5b-9, IgA, IgG, and IgM. Preeclampsia was significantly associated with renal C4d-a stable marker of complement activation-and the classical pathway marker C1q. In addition, the prevalence of IgM was significantly higher in the kidneys of the preeclamptic women. No other complement markers studied differed between the groups. Our findings in human samples were validated using a soluble fms-like tyrosine kinase 1 mouse model of preeclampsia. The kidneys in the soluble fms-like tyrosine kinase 1-injected mice had significantly more C4 deposits than the control mice. The association between preeclampsia and renal C4d, C1q, and IgM levels suggests that the classical complement pathway is involved in the renal injury in preeclampsia. Moreover, our finding that soluble fms-like tyrosine kinase 1-injected mice develop excess C4 deposits indicates that angiogenic dysregulation may play a role in complement activation within the kidney. We suggest that inhibiting complement activation may be beneficial for preventing the renal manifestations of preeclampsia. © 2015 American Heart Association, Inc.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Depletion on extraction of ores or minerals from... Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or residue of prior... section 613(c)(3) (relating to extraction of ores or minerals from the ground). Thus, an acquiring...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Depletion on extraction of ores or minerals from...) Insolvency Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or... the applicability of section 613(c)(3) (relating to extraction of ores or minerals from the ground...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 4 2011-04-01 2011-04-01 false Depletion on extraction of ores or minerals from... Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or residue of prior... section 613(c)(3) (relating to extraction of ores or minerals from the ground). Thus, an acquiring...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 4 2012-04-01 2012-04-01 false Depletion on extraction of ores or minerals from...) Insolvency Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or... the applicability of section 613(c)(3) (relating to extraction of ores or minerals from the ground...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 4 2014-04-01 2014-04-01 false Depletion on extraction of ores or minerals from...) Insolvency Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or... the applicability of section 613(c)(3) (relating to extraction of ores or minerals from the ground...
Complement activation and liver impairment in trichloroethylene-sensitized BALB/c mice.
Zhang, Jiaxiang; Zha, Wansheng; Wang, Feng; Jiang, Tao; Xu, Shuhai; Yu, Junfeng; Zhou, Chengfan; Shen, Tong; Wu, Changhao; Zhu, Qixing
2013-01-01
Our recent studies have shown that trichloroethylene (TCE) was able to induce multisystem injuries in the form of occupational medicamentosa-like dermatitis, including skin, kidney, and liver damages. However, the role of complement activation in the immune-mediated liver injury is not known. This study examined the role of complement activation in the liver injury in a mouse model of TCE-induced sensitization. Treatment of female BALB/c mice with TCE under specific dosing protocols resulted in skin inflammation and sensitization. Skin edema and erythema occurred in TCE-sensitized groups. Trichloroethylene sensitization produced liver histopathological lesions, increased serum alanine aminotransferase, aspartate transaminase activities, and the relative liver weight. The concentrations of serum complement components C3a-desArg, C5a-desArg, and C5b-9 were significantly increased in 24-hour, 48-hour, and 72-hour sensitization-positive groups treated with TCE and peaked in the 72-hour sensitization-positive group. Depositions of C3a, C5a, and C5b-9 into the liver tissue were also revealed by immunohistochemistry. Immunofluorescence further verified high C5b-9 expression in 24-hour, 48-hour, and 72-hour sensitization-positive groups in response to TCE treatment. Reverse transcription-polymerase chain reaction detected C3 messenger RNA expression in the liver, and this was significantly increased in 24-hour and 48-hour sensitization-positive groups with a transient reduction at 72 hours. These results provide the first experimental evidence that complement activation may play a key role in the generation and progression of immune-mediated hepatic injury by exposure to TCE.
Wu, Linping; Uldahl, Kristine Buch; Chen, Fangfang; Benasutti, Halli; Logvinski, Deborah; Vu, Vivian; Banda, Nirmal K.; Peng, Xu; Simberg, Dmitri; Moghimi, Seyed Moein
2017-01-01
Archaeal viruses offer exceptional biophysical properties for modification and exploration of their potential in bionanotechnology, bioengineering and nanotherapeutic developments. However, the interaction of archaeal viruses with elements of the innate immune system has not been explored, which is a necessary prerequisite if their potential for biomedical applications to be realized. Here we show complement activation through lectin (via direct binding of MBL/MASPs) and alternative pathways by two extremophilic archaeal viruses (Sulfolobus monocaudavirus 1 and Sulfolobus spindle-shaped virus 2) in human serum. We further show some differences in initiation of complement activation pathways between these viruses. Since, Sulfolobus monocaudavirus 1 was capable of directly triggering the alternative pathway, we also demonstrate that the complement regulator factor H has no affinity for the viral surface, but factor H deposition is purely C3-dependent. This suggests that unlike some virulent pathogens Sulfolobus monocaudavirus 1 does not acquire factor H for protection. Complement activation with Sulfolobus monocaudavirus 1 also proceeds in murine sera through MBL-A/C as well as factor D-dependent manner, but C3 deficiency has no overall effect on viral clearance by organs of the reticuloendothelial system on intravenous injection. However, splenic deposition was significantly higher in C3 knockout animals compared with the corresponding wild type mice. We discuss the potential application of these viruses in biomedicine in relation to their complement activating properties. PMID:28846925
Khattab, Ayman; Barroso, Marta; Miettinen, Tiera; Meri, Seppo
2015-01-01
Hematophagous vectors strictly require ingesting blood from their hosts to complete their life cycles. Exposure of the alimentary canal of these vectors to the host immune effectors necessitates efficient counteractive measures by hematophagous vectors. The Anopheles mosquito transmitting the malaria parasite is an example of hematophagous vectors that within seconds can ingest human blood double its weight. The innate immune defense mechanisms, like the complement system, in the human blood should thereby immediately react against foreign cells in the mosquito midgut. A prerequisite for complement activation is that the target cells lack complement regulators on their surfaces. In this work, we analyzed whether human complement is active in the mosquito midgut, and how the mosquito midgut cells protect themselves against complement attack. We found that complement remained active for a considerable time and was able to kill microbes within the mosquito midgut. However, the Anopheles mosquito midgut cells were not injured. These cells were found to protect themselves by capturing factor H, the main soluble inhibitor of the alternative complement pathway. Factor H inhibited complement on the midgut cells by promoting inactivation of C3b to iC3b and preventing the activity of the alternative pathway amplification C3 convertase enzyme. An interference of the FH regulatory activity by monoclonal antibodies, carried to the midgut via blood, resulted in increased mosquito mortality and reduced fecundity. By using a ligand blotting assay, a putative mosquito midgut FH receptor could be detected. Thereby, we have identified a novel mechanism whereby mosquitoes can tolerate human blood. PMID:25679788
El-Halawany, Nermin; Abd-El-Monsif, Shawky A; Al-Tohamy Ahmed, F M; Hegazy, Lamees; Abdel-Shafy, Hamdy; Abdel-Latif, Magdy A; Ghazi, Yasser A; Neuhoff, Christiane; Salilew-Wondim, Dessie; Schellander, Karl
2017-03-01
Mastitis is an infectious disease of the mammary gland that leads to reduced milk production and change in milk composition. Complement component C3 plays a major role as a central molecule of the complement cascade involving in killing of microorganisms, either directly or in cooperation with phagocytic cells. C3 cDNA were isolated, from Egyptian buffalo and cattle, sequenced and characterized. The C3 cDNA sequences of buffalo and cattle consist of 5025 and 5019 bp, respectively. Buffalo and cattle C3 cDNAs share 99% of sequence identity with each other. The 4986 bp open reading frame in buffalo encodes a putative protein of 1661 amino acids-as in cattle-and includes all the functional domains. Further, analysis of the C3 cDNA sequences detected six novel single-nucleotide polymorphisms (SNPs) in buffalo and three novel SNPs in cattle. The association analysis of the detected SNPs with milk somatic cell score as an indicator of mastitis revealed that the most significant association in buffalo was found in the C>A substitution (ss: 1752816097) in exon 27, whereas in cattle it was in the C>T substitution (ss: 1752816085) in exon 12. Our findings provide preliminary information about the contribution of C3 polymorphisms to mastitis resistance in buffalo and cattle.
Castiblanco-Valencia, Mónica Marcela; Fraga, Tatiana Rodrigues; Pagotto, Ana Helena; Serrano, Solange Maria de Toledo; Abreu, Patricia Antonia Estima; Barbosa, Angela Silva; Isaac, Lourdes
2016-05-01
Plasminogen is a single-chain glycoprotein found in human plasma as the inactive precursor of plasmin. When converted to proteolytically active plasmin, plasmin(ogen) regulates both complement and coagulation cascades, thus representing an important target for pathogenic microorganisms. Leptospira interrogans binds plasminogen, which is converted to active plasmin. Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules that interact with extracellular matrix components and complement regulators, including proteins of the FH family and C4BP. In this work, we demonstrate that these multifunctional molecules also bind plasminogen through both N- and C-terminal domains. These interactions are dependent on lysine residues and are affected by ionic strength. Competition assays suggest that plasminogen does not share binding sites with C4BP or FH on Lig proteins at physiological molar ratios. Plasminogen bound to Lig proteins is converted to proteolytic active plasmin in the presence of urokinase-type plasminogen activator (uPA). Lig-bound plasmin is able to cleave the physiological substrates fibrinogen and the complement proteins C3b and C5. Taken together, our data point to a new role of LigA and LigB in leptospiral invasion and complement immune evasion. Plasmin(ogen) acquisition by these versatile proteins may contribute to Leptospira infection, favoring bacterial survival and dissemination inside the host. Copyright © 2016. Published by Elsevier GmbH.
Thirty years of cometary spectroscopy from McDonald Observatory
NASA Astrophysics Data System (ADS)
Cochran, A. L.; Barker, E. S.; Gray, C. L.
2012-03-01
We report on the results of a spectroscopic survey of 130 comets that was conducted at McDonald Observatory from 1980 through 2008. Some of the comets were observed on only one night, while others were observed repeatedly. For 20 of these comets, no molecules were detected. For the remaining 110 comets, some emission from CN, OH, NH, C3, C2, CH, and NH2 molecules were observed on at least one occasion. We converted the observed molecular column densities to production rates using a Haser (Haser, L. [1957]. Liege Inst. Astrophysics Reprint No. 394) model. We defined a restricted data set of comets that had at least three nights of observations. The restricted data set consists of 59 comets. We used ratios of production rates to study the trends in the data. We find two classes of comets: typical and carbon-chain depleted comets. Using a very strict definition of depleted comets, requiring C2and C3 to both be depleted, we find 9% of our restricted data set comets to be depleted. Using a more relaxed definition that requires only C2 to be below a threshold (similar to other researchers), we find 25% of the comets are depleted. Two-thirds of the depleted comets are Jupiter Family comets, while one-third are Long Period comets. 37% of the Jupiter Family comets are depleted, while 18.5% of the Long Period comets are depleted. We compare our results with other studies and find good agreement.
Hepatic macrophage complement receptor clearance function following injury.
Cuddy, B G; Loegering, D J; Blumenstock, F A; Shah, D M
1986-03-01
Previous work has demonstrated that in vivo hepatic macrophage complement receptor clearance function is depressed following thermal injury. The present study was carried out to determine if complement receptor function depression is associated with other states of depressed host defense. Hepatic complement receptor clearance function was determined from the hepatic uptake of rat erythrocytes coated with antierythrocyte IgM (EIgM) in rats. Receptor function was determined following cannulation of a carotid artery, laparotomy plus enterotomy, hemorrhagic shock, trauma, thermal injury, acute bacteremia, acute endotoxemia, and injection of erythrocyte stroma, gelatinized lipid emulsion, or colloidal carbon. Hepatic uptake of EIgM was depressed following each of these experimental interventions except arterial cannulation. This effect was shown not to be due to a decrease in hepatic blood flow or depletion of complement and was therefore due to a depression in hepatic macrophage complement receptor clearance function. Thus, impairment of hepatic macrophage complement receptor function is associated with several states of depressed host defense.
Yuan, Yujie; Ren, Jianan; Cao, Shougen; Zhang, Weiwei; Li, Jieshou
2012-01-01
The role of complement system in bridging innate and adaptive immunity has been confirmed in various invasive pathogens. It is still obscure how complement proteins promote T cell-mediated immune response during sepsis. The aim of this study is to investigate the role of exogenous C3 protein in the T-cell responses to sepsis. Sepsis was induced by colon ascendens stent peritonitis (CASP) in wild-type C57BL/6 mice, sham-operated mice for control. Human purified C3 protein (HuC3, 1 mg) was intraperitoneally injected at 6 h post-surgery, with 200 μl phosphate-buffered saline as control. The levels of C3 and cytokines, the expression of FOXP3 and NF-κB, and the percentages of CD4(+) T-cell subsets were compared among the groups at given time points. The polymicrobial sepsis produced considerable release of TNF-α and IL-10, and caused complement C3 exhaustion. Exogenous C3 administration markedly improved the 48 h survival rate, as compared with nontreatment (40% vs. 5%, P<0.01). The expression of FOXP3 protein was increased during sepsis, but can be suppressed by HuC3 administration. A single injection of HuC3 postponed the decline of differentiated Th1 cells, and depressed the activation of Th2/Th17 cells. Besides, the Th1-Th2 shift in late stage of sepsis can be controlled under C3 supplementation. The suppression of NF-κB pathway might be related to the appearance of immunocompromise. The study confirmed the important role of exogenous C3 in up-regulation of adaptive immune response to sepsis. The complement pathway would be a pivotal target for severe sepsis management. Copyright © 2011 Elsevier B.V. All rights reserved.
Elson, C J; Carter, S D; Cottrell, B J; Scott, D G; Bacon, P A; Wallington, T B
1985-01-01
The relationship between complexes containing rheumatoid factor and complexes activating complement was examined in synovial fluids and sera from patients with rheumatoid arthritis (RA). In each case this was performed by quantifying the amount of rheumatoid factor bound by solid phase Fab'2 anti-C3 and/or solid phase conglutinin. Both anti-C3 coated and conglutinin coated microtitre plates bound high levels of complexes containing rheumatoid factor from sera of RA patients with vasculitis. Unexpectedly, these complexes were detected in synovial fluids from only a minority of RA patients with synovitis. However, RA synovial fluids did contain other complexes as shown by the presence of complement consuming activity, C1q binding material and immunoglobulin attaching to conglutinin. It is considered that in RA synovial fluids the complexes containing RF and those activating complement are not necessarily the same whilst in vasculitic sera the complexes containing rheumatoid factor also activate complement. PMID:3978872
Pondman, Kirsten M; Sobik, Martin; Nayak, Annapurna; Tsolaki, Anthony G; Jäkel, Anne; Flahaut, Emmanuel; Hampel, Silke; Ten Haken, Bennie; Sim, Robert B; Kishore, Uday
2014-08-01
Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. Copyright © 2014 Elsevier Inc. All rights reserved.
Peng, Maoxiao; Niu, Donghong; Wang, Fei; Chen, Zhiyi; Li, Jiale
2016-08-01
Complement component 3 (C3) is central to the complement system, playing an important role in immune defense, immune regulation and immune pathology. Several C3 genes have been characterized in invertebrates but very few in shellfish. The C3 gene was identified from the razor clam Sinonovacula constricta, referred to here as Sc-C3. It was found to be highly homologous with the C3 gene of Ruditapes decussatus. All eight model motifs of the C3 gene were found to be included in the thiolester bond and the C345C region. Sc-C3 was widely expressed in all healthy tissues with expression being highest in hemolymph. A significant difference in expression was revealed at the umbo larvae development stage. The expression of Sc-C3 was highly regulated in the hemolymph and liver, with a distinct response pattern being noted after a challenge with Micrococcus lysodeikticus and Vibrio parahemolyticus. It is therefore suggested that a complicated and unique response pathway may be present in S. constricta. Further, serum of S. constricta containing Sc-C3 was extracted. This was activated by LPS or bacterium for verification for function. The more obvious immune function of Sc-C3 was described as an effective membrane rupture in hemocyte cells of rabbit, V. parahemolyticus and Vibrio anguillarum. Thus, Sc-C3 plays an essential role in the immune defense of S. constricta. Copyright © 2016 Elsevier Ltd. All rights reserved.
The expression of Fc and complement receptors in young, adult and aged mice.
Vĕtvicka, V; Fornůsek, L; Zídková, J
1985-01-01
Age-dependent changes in the expression of Fc receptors (FcR) for different isotypes of immunoglobulins and receptors for C3b, C5b and C3bi fragments of complement on the membranes of peritoneal macrophages were studied with mice of different ages. An age-related increase in expression of Fc receptors for IgM, IgE, IgA, IgG2b and IgG3, and a decrease in the expression of Fc receptors for IgG1 was observed. The expression of FcR on macrophages of donors of different ages corresponded with Fc-receptor mediated phagocytosis. The highest number of C3b-binding macrophages was found in aged mice, in contrast to low numbers of C3bi-binding macrophages at this age. The percentage of C5b-binding macrophages was lowest in adult animals. We also observed effective inhibition of binding of the C3b component of complement by preincubation of macrophages with aggregated IgG and vice versa. These observations suggest that fluctuation in expression of Fc but not C receptors may be important to the generalized changes that occur in macrophage function during development and ageing. PMID:2931351
Manning, Michael L; Williams, Simon A; Jelinek, Christine A; Kostova, Maya B; Denmeade, Samuel R
2013-03-15
Prostate-specific Ag (PSA) is a serine protease that is expressed exclusively by normal and malignant prostate epithelial cells. The continued high-level expression of PSA by the majority of men with both high- and low-grade prostate cancer throughout the course of disease progression, even in the androgen-ablated state, suggests that PSA has a role in the pathogenesis of disease. Current experimental and clinical evidence suggests that chronic inflammation, regardless of the cause, may predispose men to prostate cancer. The responsibility of the immune system in immune surveillance and eventually tumor progression is well appreciated but not completely understood. In this study, we used a mass spectrometry-based evaluation of prostatic fluid obtained from diseased prostates after removal by radical prostatectomy to identify potential immunoregulatory proteins. This analysis revealed the presence of Igs and the complement system proteins C3, factor B, and clusterin. Verification of these findings by Western blot confirmed the high-level expression of C3 in the prostatic fluid and the presence of a previously uncharacterized C-terminal C3 cleavage product. Biochemical analysis of this C3 cleavage fragment revealed a putative PSA cleavage site after tyrosine-1348. Purified PSA was able to cleave iC3b and the related complement protein C5. These results suggest a previously uncharacterized function of PSA as an immunoregulatory protease that could help to create an environment hospitable to malignancy through proteolysis of the complement system.
Pelkonen, S; Pluschke, G
1989-10-01
Functional properties of rat immunoglobulins obtained from hybridoma isotype switch variants were studied in vivo in a rat model for neonatal bacterial sepsis. Escherichia coli 018:K1, a common cause of human neonatal sepsis and meningitis, was injected intravenously into 6-day-old rats after incubation with 018-specific antibodies IgM, IgG1, IgG2a, IgG2b, IgG2c, IgE and IgA. The clearance of bacteria treated with saline or IgE was low, whereas monoclonal antibodies of other isotypes triggered hepatic sequestration and killing of the K1 E. coli cells. All four IgG subclasses were more efficient than IgM and IgA. Comparable results were obtained upon injecting antibodies into rats with an established fulminating bacteraemia. IgM was inactive in animals depleted of complement with cobra-venom factor (CVF), whereas IgG2b was able to trigger hepatic clearance independently of complement.
Coty, Jean-Baptiste; Noiray, Magali; Vauthier, Christine
2018-04-26
A Surface Plasmon Resonance chip (SPR) was developed to study the activation of complement system triggered by nanomaterials in contact with human serum, which is an important concern today to warrant safety of nanomedicines. The developed chip was tested for its specificity in complex medium and its longevity of use. It was then employed to assess the release of complement fragments upon incubation of nanoparticles in serum. A comparison was made with other current methods assessing complement activation (μC-IE, ELISA). The SPR chip was found to give a consistent response for C3a release upon activation by nanoparticles. Results were similar to those obtained by μC-IE. However, ELISA detection of iC3b fragments showed an explained high non-specific background. The impact of sample preparation preceding the analysis was assessed with the newly develop SPR method. The removal of nanoparticles before analysis showed an important modification in the obtained response, possibly leading to false negative results. The SPR chip developed in this work allows for an automated assessment of complement activation triggered by nanoparticles with possibility of multiplexed analysis. The design of the chip proved to give consistent results of complement activation by nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee
Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3{sup +} apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver ofmore » SIGN-R1 KO mice, followed by a significant increase of CD11b{sup +} cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1{sup +} macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver.« less
Wooster, David G; Maruvada, Ravi; Blom, Anna M; Prasadarao, Nemani V
2006-01-01
Meningitis caused by Escherichia coli K1 is a serious illness in neonates with neurological sequelae in up to 50% of survivors. A high degree of bacteremia is required for E. coli K1 to cross the blood–brain barrier, which suggests that the bacterium must evade the host defence mechanisms and survive in the bloodstream. We previously showed that outer membrane protein A (OmpA) of E. coli binds C4b-binding protein (C4bp), an inhibitor of complement activation via the classical pathway. Nevertheless, the exact mechanism by which E. coli K1 survives in serum remains elusive. Here, we demonstrate that log phase (LP) OmpA+E. coli K1 avoids serum bactericidal activity more effectively than postexponential phase bacteria. OmpA–E. coli cannot survive in serum grown to either phase. The increased serum resistance of LP OmpA+E. coli is the result of increased binding of C4bp, with a concomitant decrease in the deposition of C3b and the downstream complement proteins responsible for the formation of the membrane attack complex. C4bp bound to E. coli K1 acts as a cofactor to factor I in the cleavage of both C3b and C4b, which shuts down the ensuing complement cascade. Accordingly, a peptide corresponding to the complement control protein domain 3 of C4bp sequence, was able to compete with C4bp binding to OmpA and cause increased deposition of C3b. Thus, binding of C4bp appears to be responsible for survival of E. coli K1 in human serum. PMID:16556262
Graham, Matthew; Shin, Dong-Ho; Smith, Sylvia L
2009-07-01
We present the complete cDNA sequence of shark (Ginglymostoma cirratum) pro-C5 and its molecular characterization with a descriptive analysis of the structural elements necessary for its potential functional role as a potent mediator of inflammation (fragment C5a) and initiator molecule (fragment C5b) for the assembly of the membrane attack complex (MAC) upon activation by C5 convertase. In mammals the three complement activation cascades, the classical, alternative and lectin pathways, converge at the activation of C3, a pivotal complement protein. It is, however, the subsequent activation of the next complement component, C5, which is the focal point at which the initiation of the terminal lytic pathway takes place and involves the stepwise assembly of the MAC. The effector cytolytic function of complement occurs with the insertion of MAC into target membranes causing dough-nut like holes and cell leakage. The lytic activity of shark complement results in structurally similar holes in target membranes suggesting the assembly of a shark MAC that likely involves a functional analogue of C5. The composition of shark MAC remains unresolved and to date conclusive evidence has been lacking for shark C5. The gene has not been cloned nor has the serum protein been characterized for any elasmobranch species. This report is the first to confirm the presence of C5 homologue in the shark. GcC5 is remarkably similar to human C5 in overall structure and domain arrangement. The GcC5 cDNA measured 5160-bp with 5' and 3' UTRs of 35 bp and 79 bp, respectively. Structural analysis of the derived protein sequence predicts a molecule that is a two-chain structure which lacks a thiolester bond and contains a C5 convertase cleavage site indicating that activation will generate two peptides, akin to C5b and C5a. The putative GcC5 molecule also contains the C-terminal C345C/Netrin module that characterizes C3, C4 and C5. Multiple alignment of deduced amino acid sequences shows that GcC5 shares more amino acid identities/similarities with mammals than that with bony fish. We conclude that at the time of emergence of sharks the elaborate mosaic structure of C5 had already evolved.
Graham, Matthew; Shin, Dong-Ho; Smith, Sylvia L.
2009-01-01
We present the complete cDNA sequence of shark (Ginglymostoma cirratum) pro-C5 and its molecular characterization with a descriptive analysis of the structural elements necessary for its potential functional role as a potent mediator of inflammation (fragment C5a) and initiator molecule (fragment C5b) for the assembly of the membrane attack complex (MAC) upon activation by C5 convertase. In mammals the three complement activation cascades, the classical, alternative and lectin pathways, converge at the activation of C3, a pivotal complement protein. It is, however, the subsequent activation of the next complement component, C5, which is the focal point at which the initiation of the terminal lytic pathway takes place and involves the stepwise assembly of the MAC. The effector cytolytic function of complement occurs with the insertion of MAC into target membranes causing dough-nut like holes and cell leakage. The lytic activity of shark complement results in structurally similar holes in target membranes suggesting the assembly of a shark MAC that likely involves a functional analogue of C5. The composition of shark MAC remains unresolved and to date conclusive evidence has been lacking for shark C5. The gene has not been cloned nor has the serum protein been characterized for any elasmobranch species. This report is the first to confirm the presence of C5 homologue in the shark. GcC5 is remarkably similar to human C5 in overall structure and domain arrangement. The GcC5 cDNA measured 5160-bp with 5′ and 3′ UTRs of 35bp and 79bp, respectively. Structural analysis of the derived protein sequence predicts a molecule that is a two-chain structure which lacks a thiolester bond and contains a C5 convertase cleavage site indicating that activation will generate two peptides, akin to C5b and C5a. The putative GcC5 molecule also contains the C-terminal C345C/Netrin module that characterizes C3, C4 and C5. Multiple alignment of deduced amino acid sequences show that GcC5 shares more amino acid identities/similarities with mammals than that with bony fish. We conclude that at the time of emergence of sharks the elaborate mosaic structure of C5 had already evolved. PMID:19410004
Kraft, Peter; Scholtyschik, Karolina; Schuhmann, Michael K; Kleinschnitz, Christoph
2017-01-01
While it has been shown that different T-cell subsets have a detrimental role in the acute phase of ischemic stroke, data on the impact of dendritic cells (DC) are missing. Classic DC can be characterized by the cluster of differentiation (CD)11c surface antigen. In this study, we depleted CD11c+ cells by using a CD11c-diphtheria toxin (DTX) receptor mouse strain that allows selective depletion of CD11c+ cells by DTX injection. For stroke induction, we used the model of transient middle cerebral artery occlusion (tMCAO) and analyzed stroke volume and functional outcome on days 1 and 3 as well as expression of prototypical pro- and anti-inflammatory cytokines on day 1 after tMCAO. Three different protocols for CD11c+ cell depletion, tMCAO duration, and readout time point were applied. Injection of DTX (5 or 100 ng/g) reliably depleted CD11c+ cells without influencing the fractions of other immune cell subsets. CD11c+ cell depletion had no impact on stroke volume, but mice with a longer DTX pretreatment performed worse than those with vehicle treatment. CD11c+ cell depletion led to a decrease in cortical interleukin (IL)-1β and IL-6 messenger ribonucleic acid levels. We show, for the first time, that CD11c+ cell depletion does not influence stroke volume in a mouse model of focal cerebral ischemia. Nevertheless, given the unspecificity of the CD11c surface antigen for DC, mouse models that allow a more selective depletion of DC are needed to investigate the role of DC in stroke pathophysiology. © 2017 S. Karger AG, Basel.
Engberg, Anna E; Nilsson, Per H; Huang, Shan; Fromell, Karin; Hamad, Osama A; Mollnes, Tom Eirik; Rosengren-Holmberg, Jenny P; Sandholm, Kerstin; Teramura, Yuji; Nicholls, Ian A; Nilsson, Bo; Ekdahl, Kristina N
2015-01-01
Inappropriate complement activation is often responsible for incompatibility reactions that occur when biomaterials are used. Complement activation is therefore a criterion included in legislation regarding biomaterials testing. However, no consensus is yet available regarding appropriate complement-activation-related test parameters. We examined protein adsorption in plasma and complement activation/cytokine release in whole blood incubated with well-characterized polymers. Strong correlations were found between the ratio of C4 to its inhibitor C4BP and generation of 10 (mainly pro-inflammatory) cytokines, including IL-17, IFN-γ, and IL-6. The levels of complement activation products correlated weakly (C3a) or not at all (C5a, sC5b-9), confirming their poor predictive values. We have demonstrated a direct correlation between downstream biological effects and the proteins initially adhering to an artificial surface after contact with blood. Consequently, we propose the C4/C4BP ratio as a robust, predictor of biocompatibility with superior specificity and sensitivity over the current gold standard. Copyright © 2014 Elsevier Ltd. All rights reserved.
Videau, Patrick; Rivers, Orion S.; Ushijima, Blake; Oshiro, Reid T.; Kim, Min Joo; Philmus, Benjamin
2016-01-01
ABSTRACT To stabilize cellular integrity in the face of environmental perturbations, most bacteria, including cyanobacteria, synthesize and maintain a strong, flexible, three-dimensional peptidoglycan lattice. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium capable of differentiating morphologically distinct nitrogen-fixing heterocyst cells in a periodic pattern. While heterocyst development has been shown to require proper peptidoglycan remodeling, the role of peptidoglycan synthesis has remained unclear. Here we report the identification of two peptidoglycan synthesis genes, murC (alr5065) and murB (alr5066), as required for heterocyst development. The murC and murB genes are predicted to encode a UDP-N-acetylmuramate:l-alanine ligase and a UDP-N-acetylenolpyruvoylglucosamine reductase, respectively, and we confirm enzymatic function through complementation of Escherichia coli strains deficient for these enzymes. Cells depleted of either murC or murB expression failed to differentiate heterocysts under normally inducing conditions and displayed decreased filament integrity. To identify the stage(s) of development affected by murC or murB depletion, the spatial distribution of expression of the patterning marker gene, patS, was examined. Whereas murB depletion did not affect the pattern of patS expression, murC depletion led to aberrant expression of patS in all cells of the filament. Finally, expression of gfp controlled by the region of DNA immediately upstream of murC was enriched in differentiating cells and was repressed by the transcription factor NtcA. Collectively, the data in this work provide evidence for a direct link between peptidoglycan synthesis and the maintenance of a biological pattern in a multicellular organism. IMPORTANCE Multicellular organisms that differentiate specialized cells must regulate morphological changes such that both cellular integrity and the dissemination of developmental signals are preserved. Here we show that the multicellular bacterium Anabaena, which differentiates a periodic pattern of specialized heterocyst cells, requires peptidoglycan synthesis by the murine ligase genes murC (alr5065) and murB (alr5066) for maintenance of patterned gene expression, filament integrity, and overall development. This work highlights the significant influence that intracellular structure and intercellular connections can have on the execution of a developmental program. PMID:26811320
Videau, Patrick; Rivers, Orion S; Ushijima, Blake; Oshiro, Reid T; Kim, Min Joo; Philmus, Benjamin; Cozy, Loralyn M
2016-04-01
To stabilize cellular integrity in the face of environmental perturbations, most bacteria, including cyanobacteria, synthesize and maintain a strong, flexible, three-dimensional peptidoglycan lattice. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium capable of differentiating morphologically distinct nitrogen-fixing heterocyst cells in a periodic pattern. While heterocyst development has been shown to require proper peptidoglycan remodeling, the role of peptidoglycan synthesis has remained unclear. Here we report the identification of two peptidoglycan synthesis genes, murC (alr5065) and murB (alr5066), as required for heterocyst development. The murC and murB genes are predicted to encode a UDP-N-acetylmuramate:L-alanine ligase and a UDP-N-acetylenolpyruvoylglucosamine reductase, respectively, and we confirm enzymatic function through complementation of Escherichia coli strains deficient for these enzymes. Cells depleted of either murC or murB expression failed to differentiate heterocysts under normally inducing conditions and displayed decreased filament integrity. To identify the stage(s) of development affected by murC or murB depletion, the spatial distribution of expression of the patterning marker gene, patS, was examined. Whereas murB depletion did not affect the pattern of patS expression, murC depletion led to aberrant expression of patS in all cells of the filament. Finally, expression of gfp controlled by the region of DNA immediately upstream of murC was enriched in differentiating cells and was repressed by the transcription factor NtcA. Collectively, the data in this work provide evidence for a direct link between peptidoglycan synthesis and the maintenance of a biological pattern in a multicellular organism. Multicellular organisms that differentiate specialized cells must regulate morphological changes such that both cellular integrity and the dissemination of developmental signals are preserved. Here we show that the multicellular bacterium Anabaena, which differentiates a periodic pattern of specialized heterocyst cells, requires peptidoglycan synthesis by the murine ligase genes murC (alr5065) and murB (alr5066) for maintenance of patterned gene expression, filament integrity, and overall development. This work highlights the significant influence that intracellular structure and intercellular connections can have on the execution of a developmental program. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Tong, Hua Hua; Li, Yong Xing; Stahl, Gregory L; Thurman, Joshua M
2010-03-01
To define the roles of specific complement activation pathways in host defense against Streptococcus pneumoniae in acute otitis media (AOM), we investigated the susceptibility to AOM in mice deficient in complement factor B and C2 (Bf/C2(-/)(-)), C1qa (C1qa(-/)(-)), and factor B (Bf(-)(/)(-)). Bacterial titers of both S. pneumoniae serotype 6A and 14 in the middle ear lavage fluid samples from Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice were significantly higher than in samples from wild-type mice 24 h after transtympanical infection (P < 0.05) and remained persistently higher in samples from Bf/C2(-/)(-) mice than in samples from wild-type mice. Bacteremia occurred in Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice infected with both strains, but not in wild-type mice. Recruitment of inflammatory cells was paralleled by enhanced production of inflammatory mediators in the middle ear lavage samples from Bf/C2(-/)(-) mice. C3b deposition on both strains was greatest for sera obtained from wild-type mice, followed by C1qa(-)(/)(-) and Bf(-)(/)(-) mice, and least for Bf/C2(-)(/)(-) mice. Opsonophagocytosis and whole-blood killing capacity of both strains were significantly decreased in the presence of sera or whole blood from complement-deficient mice compared to wild-type mice. These findings indicate that both the classical and alternative complement pathways are critical for middle ear immune defense against S. pneumoniae. The reduced capacity of complement-mediated opsonization and phagocytosis in the complement-deficient mice appears to be responsible for the impaired clearance of S. pneumoniae from the middle ear and dissemination to the bloodstream during AOM.
Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation.
Lekowski, R; Collard, C D; Reenstra, W R; Stahl, G L
2001-02-01
Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O(2), 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 +/- 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (< or = 100 micromol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC(50) = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC(50) approximately 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress.
Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation
Lekowski, Robert; Collard, Charles D.; Reenstra, Wende R.; Stahl, Gregory L.
2001-01-01
Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O2, 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 ± 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (≤ 100 μmol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC50 = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC50 ≈ 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress. PMID:11266613
Early Complementopathy after Multiple Injuries in Humans
Burk, Anne-Maud; Martin, Myriam; Flierl, Michael A.; Rittirsch, Daniel; Helm, Matthias; Lampl, Lorenz; Bruckner, Uwe; Stahl, Gregory L.; Blom, Anna M.; Perl, Mario; Gebhard, Florian; Huber-Lang, Markus
2012-01-01
After severe tissue injury, innate immunity mounts a robust systemic inflammatory response. However, little is known about the immediate impact of multiple trauma on early complement function in humans. In the present study we hypothesized that multiple trauma results in immediate activation, consumption and dysfunction of the complement cascade and that the resulting severe “complementopathy” may be associated with morbidity and mortality. Therefore a prospective multicenter study with 25 healthy volunteers and 40 polytrauma patients (mean injury severity score [ISS] = 30.3 ± 2.9) was performed. After polytrauma serum was collected as early as possible at the scene, upon admission to the emergency room and 4, 12, 24, 120 and 240 hours post trauma and analysed for the complement profile. Complement hemolytic activity (CH-50) was massively reduced within the first 24 h after injury, recovered only 5 days after trauma and discriminated between lethal and non-lethal 28-day outcome. Serum levels of the complement activation products C3a and C5a were significantly elevated throughout the entire observation period and correlated with the severity of traumatic brain injury and survival. The soluble terminal complement complex SC5b-9 and mannose-binding lectin (MBL) showed a biphasic response after trauma. Key fluid phase inhibitors of complement, such as C4b-binding protein (C4BP) and factor I, were significantly diminished early after trauma. The present data indicate an almost synchronically rapid activation and dysfunction of complement suggesting a trauma-induced “complementopathy” early after injury. These events may participate to the impairment of the innate immune response observed after severe trauma. PMID:22258234
Kalm, Marie; Andreasson, Ulf; Björk-Eriksson, Thomas; Zetterberg, Henrik; Pekny, Milos; Blennow, Kaj; Pekna, Marcela; Blomgren, Klas
2016-04-12
Radiotherapy in the treatment of pediatric brain tumors is often associated with debilitating late-appearing adverse effects, such as intellectual impairment. Areas in the brain harboring stem cells are particularly sensitive to irradiation (IR) and loss of these cells may contribute to cognitive deficits. It has been demonstrated that IR-induced inflammation negatively affects neural progenitor differentiation. In this study, we used mice lacking the third complement component (C3-/-) to investigate the role of complement in a mouse model of IR-induced injury to the granule cell layer (GCL) of the hippocampus. C3-/- and wild type (WT) mice received a single, moderate dose of 8 Gy to the brain on postnatal day 10. The C3-/- mice displayed 55 % more microglia (Iba-1+) and a trend towards increase in proliferating cells in the GCL compared to WT mice 7 days after IR. Importantly, months after IR C3-/- mice made fewer errors than WT mice in a reversal learning test indicating better learning capacity in C3-/- mice after IR. Notably, months after IR C3-/- and WT mice had similar GCL volumes, survival of newborn cells (BrdU), microglia (Iba-1) and astrocyte (S100β) numbers in the GCL. In summary, our data show that the complement system contributes to IR-induced loss of proliferating cells and maladaptive inflammatory responses in the acute phase after IR, leading to impaired learning capacity in adulthood. Targeting the complement system is hence promising for future strategies to reduce the long-term adverse consequences of IR in the young brain.
Becker, Elmer L.
1972-01-01
The inhibition profiles obtained when a series of p-nitrophenyl ethyl alkylphosphonates and of p-nitrophenyl ethyl chloroalkylphosphonates were used to interfere with the chemotactic activity of polymorphonuclear leukocytes stimulated by C3a, C5a, and bacterial factor were the same as found previously when C567 was the chemotactic agent. This indicates that as in the chemotactic activity induced by C567, an obligatory step in the chemotaxis caused by C3a, C5a, and bacterial factor is the activation of proesterase 1 of the rabbit polymorphonuclear leukocyte. C5a and C3a activate proesterase 1 of peripheral blood polymophonuclear leukocytes as measured by the increase of acetyl DL-phenylalanine β-naphthyl esterase activity. Attempts to detect in a like manner the proesterase 1 of the same leukocytes using bacterial factor under varying circumstances have consistently failed. It is concluded that bacterial factor, for unknown reasons, is unable to activate proesterase 1 to the same extent as the complement-derived chemotactic factors. The hypothesis of there being a quantitative difference in the ability of bacterial factor to activate proesterase 1 compared with the complement-derived factors explains the previous observations that bacterial factor can not deactivate to itself or to the complement-derived factors, although these latter factors can deactivate to themselves, to each other, and to the bacterial factor. The quantitative difference in the ability of bacterial factor to activate proesterase 1 compared to the complement-derived factors is also associated with and explains the finding that the maximal chemotactic activity attainable when bacterial factor is the chemotactic agent is distinctly less than that obtained using either C3a, C5a, or C567. These results indicate that the activation of proesterase 1 is a general requirement for the chemotactic activity of rabbit polymorphonuclear leukocytes with known macromolecular chemotactic agents and suggest that under several different circumstances the level of chemotactic activity attained is related to the degree of such activation. PMID:4551218
Garcia, Brandon L.; Ramyar, Kasra X.; Keightley, Andrew; Ruyken, Maartje; Syriga, Maria; Sfyroera, Georgia; Weber, Alexander B.; Zolkiewski, Michal; Ricklin, Daniel; Lambris, John D.; Rooijakkers, Suzan H.M.; Geisbrecht, Brian V.
2014-01-01
The pathogenic bacterium Staphylococcus aureus actively evades many aspects of human innate immunity by expressing a series of small inhibitory proteins. A number of these proteins inhibit the complement system, which labels bacteria for phagocytosis and generates inflammatory chemoattractants. While the majority of staphylococcal complement inhibitors act on the alternative pathway (AP) to block the amplification loop, only a few proteins act on the initial recognition cascades that constitute the classical (CP) and lectin (LP) pathways. We screened a collection of recombinant, secreted staphylococcal proteins to determine if S. aureus produces other molecules that inhibit either the CP and/or LP. Using this approach, we identified the extracellular adherence protein (Eap) as a potent, specific inhibitor of both the CP and LP. We found that Eap blocked CP/LP-dependent activation of C3, but not C4, and that Eap likewise inhibited deposition of C3b on the surface of S. aureus cells. In turn, this significantly diminished the extent of S. aureus opsonophagocytosis and killing by neutrophils. This combination of functional properties suggested that Eap acts specifically at the level of the CP/LP C3 convertase (C4b2a). Indeed, we demonstrated a direct, nanomolar-affinity interaction of Eap with C4b. Eap binding to C4b inhibited binding of both full-length C2 and its C2b fragment, which indicated that Eap disrupts formation of the CP/LP C3 pro-convertase (C4b2). As a whole, our results demonstrate that S. aureus inhibits the two initiation routes of complement by expression of the Eap protein, and thereby define a novel mechanism of immune evasion. PMID:25381436
Józsi, Mihály; Meri, Seppo
2014-01-01
Factor H-related proteins (CFHRs) are plasma glycoproteins related in structure and antigenicity to each other and to the complement inhibitory protein factor H. Such proteins are found in most mammals but their number and domain composition vary. This chapter summarizes our current knowledge on the human factor H-related proteins. In contrast to factor H, they have no strong complement inhibitory activity, although for some of them regulatory or complement modulatory activity has been reported. A common feature of CFHRs is that they bind to the C3b component of complement. Novel links between CFHRs and various diseases (C3 glomerulopathies, atypical hemolytic uremic syndrome and age-related macular degeneration) have been revealed in recent years, but we are still far from understanding their biological function.
Prechl, József; Papp, Krisztián; Hérincs, Zoltán; Péterfy, Hajna; Lóránd, Veronika; Szittner, Zoltán; Estonba, Andone; Rovero, Paolo; Paolini, Ilaria; Del Amo, Jokin; Uribarri, Maria; Alcaro, Maria Claudia; Ruiz-Larrañaga, Otsanda; Migliorini, Paola; Czirják, László
2016-01-01
Systemic lupus erythematosus is a chronic autoimmune disease with multifactorial ethiopathogenesis. The complement system is involved in both the early and late stages of disease development and organ damage. To better understand autoantibody mediated complement consumption we examined ex vivo immune complex formation on autoantigen arrays. We recruited patients with SLE (n = 211), with other systemic autoimmune diseases (n = 65) and non-autoimmune control subjects (n = 149). Standard clinical and laboratory data were collected and serum complement levels were determined. The genotype of SNP rs1143679 in the ITGAM gene was also determined. Ex vivo formation of immune complexes, with respect to IgM, IgG, complement C4 and C3 binding, was examined using a functional immunoassay on autoantigen microarray comprising nucleic acids, proteins and lipids. Complement consumption of nucleic acids increased upon binding of IgM and IgG even when serum complement levels were decreased due to consumption in SLE patients. A negative correlation between serum complement levels and ex vivo complement deposition on nucleic acid autoantigens is demonstrated. On the contrary, complement deposition on tested protein and lipid autoantigens showed positive correlation with C4 levels. Genetic analysis revealed that the non-synonymous variant rs1143679 in complement receptor type 3 is associated with an increased production of anti-dsDNA IgG antibodies. Notwithstanding, homozygous carriers of the previously reported susceptible allele (AA) had lower levels of dsDNA specific IgM among SLE patients. Both the non-synonymous variant rs1143679 and the high ratio of nucleic acid specific IgG/IgM were associated with multiple organ involvement. In summary, secondary complement deficiency in SLE does not impair opsonization of nucleic-acid-containing autoantigens but does affect other antigens and potentially other complement dependent processes. Dysfunction of the receptor recognizing complement opsonized immune complexes promotes the development of class-switched autoantibodies targeting nucleic acids.
Pickering, R. J.; Wolfson, M. R.; Good, R. A.; Gewurz, H.
1969-01-01
The studies presented here indicate that activation of the complement (C′) system by a foreign protein will cause membrane injury and passive lysis of unsensitized erythrocytes present at the time of the reaction. These observations suggest that in addition to the classical antibody-C′-induced cytolysis, there are alternative pathways or mechanisms for activation and participation of the terminal C′ components in the production of cell membrane injury. We have shown that a substance derived from cobra venom and eluted from a single protein band on polyacrylamide can promote lysis of unsensitized autologous or heterologous erythrocytes in the presence of fresh guinea pig serum and that this lysis-inducing activity and C′-inhibiting activity appear to reside in the same fractions. The lytic activity is prevented by several agents known to impair classical C′3 activity, but is unaffected by certain procedures which interfere with the function of C′ components C′1 and C′2, a suggestion that this reaction involves chiefly C′3-C′9. Further, the cobra venom (CV) factor depletes C′ activity in cobra serum, and the CV factor (with its 5S serum cofactor) converts purified C′3 to its inactive form,1 indicating that the reaction of this complex with the complement system occurs without participation of antibody. Therefore, since the lysis-inducing and C′-inhibiting activity of the CV factor appear to result from similar interactions with the complement system, these observations suggest that cell membrane damage and cell lysis can be accomplished through activation of the complement system by a mechanism involving little or no participation of classical antibody or C′ components C′1, 4, or 2. Images PMID:4978744
Complement Evasion Strategies of Viruses: An Overview
Agrawal, Palak; Nawadkar, Renuka; Ojha, Hina; Kumar, Jitendra; Sahu, Arvind
2017-01-01
Being a major first line of immune defense, the complement system keeps a constant vigil against viruses. Its ability to recognize large panoply of viruses and virus-infected cells, and trigger the effector pathways, results in neutralization of viruses and killing of the infected cells. This selection pressure exerted by complement on viruses has made them evolve a multitude of countermeasures. These include targeting the recognition molecules for the avoidance of detection, targeting key enzymes and complexes of the complement pathways like C3 convertases and C5b-9 formation – either by encoding complement regulators or by recruiting membrane-bound and soluble host complement regulators, cleaving complement proteins by encoding protease, and inhibiting the synthesis of complement proteins. Additionally, viruses also exploit the complement system for their own benefit. For example, they use complement receptors as well as membrane regulators for cellular entry as well as their spread. Here, we provide an overview on the complement subversion mechanisms adopted by the members of various viral families including Poxviridae, Herpesviridae, Adenoviridae, Flaviviridae, Retroviridae, Picornaviridae, Astroviridae, Togaviridae, Orthomyxoviridae and Paramyxoviridae. PMID:28670306
Myamoto, D T; Pidde-Queiroz, G; Pedroso, A; Gonçalves-de-Andrade, R M; van den Berg, C W; Tambourgi, D V
2016-09-01
A transcriptome analysis of the venom glands of the spider Loxosceles laeta, performed by our group, in a previous study (Fernandes-Pedrosa et al., 2008), revealed a transcript with a sequence similar to the human complement component C3. Here we present the analysis of this transcript. cDNA fragments encoding the C3 homologue (Lox-C3) were amplified from total RNA isolated from the venom glands of L. laeta by RACE-PCR. Lox-C3 is a 5178 bps cDNA sequence encoding a 190kDa protein, with a domain configuration similar to human C3. Multiple alignments of C3-like proteins revealed two processing sites, suggesting that Lox-C3 is composed of three chains. Furthermore, the amino acids consensus sequences for the thioester was found, in addition to putative sequences responsible for FB binding. The phylogenetic analysis showed that Lox-C3 belongs to the same group as two C3 isoforms from the spider Hasarius adansoni (Family Salcitidae), showing 53% homology with these. This is the first characterization of a Loxosceles cDNA sequence encoding a human C3 homologue, and this finding, together with our previous finding of the expression of a FB-like molecule, suggests that this spider species also has a complement system. This work will help to improve our understanding of the innate immune system in these spiders and the ancestral structure of C3. Copyright © 2016 Elsevier GmbH. All rights reserved.
Evolution and diversity of the complement system of poikilothermic vertebrates.
Sunyer, J O; Lambris, J D
1998-12-01
In mammals the complement system plays an important role in innate and acquired host defense mechanisms against infection and in various immunoregulatory processes. The complement system is an ancient defense mechanism that is already present in the invertebrate deuterostomes. In these species as well as in agnathans (the most primitive vertebrate species), both the alternative and lectin pathway of complement activation are already present, and the complement system appears to be involved mainly in opsonization of foreign material. With the emergence of immunoglobulins in cartilaginous fish, the classical and lytic pathways first appear. The rest of the poikilothermic species, from teleosts to reptilians, appear to contain a well-developed complement system resembling that of homeothermic vertebrates. However, important differences remain. Unlike homeotherms, several species of poikilotherms have recently been shown to possess multiple forms of complement components (C3 and factor B) that are structurally and functionally more diverse than those of higher vertebrates. It is noteworthy that the multiple forms of C3 that have been characterized in several teleost fish are able to bind with varying efficiencies to various complement-activating surfaces. We hypothesize that this diversity has allowed these animals to expand their innate capacity for immune recognition.
Gao, Sansi; Yang, Wei; Yu, Hongjiang; Liu, Runqi; Dong, Zhihao; Zhang, Hongyou; Xia, Cheng; Xu, Chuang
2017-11-01
High concentrations of non-esterified fatty acid (NEFA) and β-hydroxybutyrate (BHBA) in cows' blood caused by ketosis are associated with inflammatory states. We hypothesised that ketosis in postparturient dairy cows would result in altered levels on inflammation-related proteins not only in plasma but also in the milk fat globule membranes (MFGM). Thirty cows were selected from a dairy farm in Heilongjiang, China. Inflammatory milk fat globule membrane proteins were detected using ELISA kits, and a fully automatic biochemical analyser was used to measure the concentrations of BHBA, NEFA, glucose (GLU) and triglyceride (TG) in plasma. MFGM protein from milk of ketotic cows contained significantly different concentrations of acute-phase response proteins (complement C3 (C3), prothrombin (F2), alpha-1-acid glycoprotein (ORM1), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), alpha-2-HS-glycoprotein (AHSG), complement C9 (C9), complement regulatory protein variant 4 (CD46)) in comparison with milk from non-ketotic cows. Blood concentrations of C3, complement C9 (C9), tumour necrosis factor α (TNFα), MFGM C3, monocyte differentiation antigen CD14 (CD14) and ORM1 levels were correlated with energy balance. ITIH4 and CD46 increased, and AHSG and ORM1 decreased before the onset of ketosis. These biomarkers offer potential as predictors and monitors of ketosis in at-risk cows.
Cell-derived microparticles and complement activation in preeclampsia versus normal pregnancy.
Biró, E; Lok, C A R; Hack, C E; van der Post, J A M; Schaap, M C L; Sturk, A; Nieuwland, R
2007-01-01
Inflammation plays a major role in the vascular dysfunction seen in preeclampsia, and several studies suggest involvement of the complement system. To investigate whether complement activation on the surface of microparticles is increased in plasma of preeclamptic patients versus healthy pregnant controls. Microparticles from plasma of preeclamptic (n=10), healthy pregnant (n=10) and healthy nonpregnant (n=10) women were analyzed by flow cytometry for bound complement components (C1q, C4, C3) and complement activator molecules (C-reactive protein [CRP], serum amyloid P component [SAP], immunoglobulin [Ig]M, IgG). Fluid phase complement activation products and activator molecules were also determined. Levels of microparticles with bound complement components showed no increase in complement activation on the microparticle surface in preeclamptic women, in line with levels of fluid phase complement activation products. In healthy nonpregnant and pregnant women, bound CRP was associated with classical pathway activation on the microparticle surface, and in healthy pregnant women IgM and IgG molecules also contributed. In preeclamptic women, microparticles with bound SAP and those with IgG seemed to contribute to C1q binding without a clear association to further classical pathway activation. Furthermore, significantly increased levels of microparticles with bound CRP were present in preeclamptic compared with healthy pregnant women (median 178x10(6)/L versus 47x10(6)/L, P<0.01), but without concomitant increases in complement activation. We found no evidence of increased complement activation on the microparticle surface in preeclamptic women. Microparticles with bound CRP were significantly increased, but in contrast to healthy pregnant and nonpregnant women, this was not associated with increased classical pathway activation on the surface of the microparticles.
Dimeric, trimeric and tetrameric complexes of immunoglobulin G fix complement.
Wright, J K; Tschopp, J; Jaton, J C; Engel, J
1980-01-01
The binding of pure dimers, trimers and tetramers of randomly cross-linked non-immune rabbit immunoglobulin G to the first component and subcomponent of the complement system, C1 and C1q respectively, was studied. These oligomers possessed open linear structures. All three oligomers fixed complement with decreasing affinity in the order: tetramer, trimer, dimer. Complement fixation by dimeric immunoglobulin exhibited the strongest concentration-dependence. No clear distinction between a non-co-operative and a co-operative binding mechanism could be achieved, although the steepness of the complement-fixation curves for dimers and trimers was better reflected by the co-operative mechanism. Intrinsic binding constants were about 10(6)M-1 for dimers, 10(7)M-1 for trimers and 3 X 10(9)M-1 for tetramers, assuming non-co-operative binding. The data are consistent with a maximum valency of complement component C1 for immunoglobulin G protomers in the range 6-18. The binding of dimers to purified complement subcomponent C1q was demonstrated by sedimentation-velocity ultracentrifugation. Mild reduction of the complexes by dithioerythritol caused the immunoglobulin to revert to the monomeric state (S20,w = 6.2-6.5S) with concomitant loss of complement-fixing ability. Images Fig. 2. PMID:6985362
Mehlhop, Erin; Diamond, Michael S
2006-05-15
West Nile virus (WNV) causes a severe infection of the central nervous system in several vertebrate animals including humans. Prior studies have shown that complement plays a critical role in controlling WNV infection in complement (C) 3(-/-) and complement receptor 1/2(-/-) mice. Here, we dissect the contributions of the individual complement activation pathways to the protection from WNV disease. Genetic deficiencies in C1q, C4, factor B, or factor D all resulted in increased mortality in mice, suggesting that all activation pathways function together to limit WNV spread. In the absence of alternative pathway complement activation, WNV disseminated into the central nervous system at earlier times and was associated with reduced CD8+ T cell responses yet near normal anti-WNV antibody profiles. Animals lacking the classical and lectin pathways had deficits in both B and T cell responses to WNV. Finally, and somewhat surprisingly, C1q was required for productive infection in the spleen but not for development of adaptive immune responses after WNV infection. Our results suggest that individual pathways of complement activation control WNV infection by priming adaptive immune responses through distinct mechanisms.
Binding of Soluble Yeast β-Glucan to Human Neutrophils and Monocytes is Complement-Dependent
Bose, Nandita; Chan, Anissa S. H.; Guerrero, Faimola; Maristany, Carolyn M.; Qiu, Xiaohong; Walsh, Richard M.; Ertelt, Kathleen E.; Jonas, Adria Bykowski; Gorden, Keith B.; Dudney, Christine M.; Wurst, Lindsay R.; Danielson, Michael E.; Elmasry, Natalie; Magee, Andrew S.; Patchen, Myra L.; Vasilakos, John P.
2013-01-01
The immunomodulatory properties of yeast β-1,3/1,6 glucans are mediated through their ability to be recognized by human innate immune cells. While several studies have investigated binding of opsonized and unopsonized particulate β-glucans to human immune cells mainly via complement receptor 3 (CR3) or Dectin-1, few have focused on understanding the binding characteristics of soluble β-glucans. Using a well-characterized, pharmaceutical-grade, soluble yeast β-glucan, this study evaluated and characterized the binding of soluble β-glucan to human neutrophils and monocytes. The results demonstrated that soluble β-glucan bound to both human neutrophils and monocytes in a concentration-dependent and receptor-specific manner. Antibodies blocking the CD11b and CD18 chains of CR3 significantly inhibited binding to both cell types, establishing CR3 as the key receptor recognizing the soluble β-glucan in these cells. Binding of soluble β-glucan to human neutrophils and monocytes required serum and was also dependent on incubation time and temperature, strongly suggesting that binding was complement-mediated. Indeed, binding was reduced in heat-inactivated serum, or in serum treated with methylamine or in serum reacted with the C3-specific inhibitor compstatin. Opsonization of soluble β-glucan was demonstrated by detection of iC3b, the complement opsonin on β-glucan-bound cells, as well as by the direct binding of iC3b to β-glucan in the absence of cells. Binding of β-glucan to cells was partially inhibited by blockade of the alternative pathway of complement, suggesting that the C3 activation amplification step mediated by this pathway also contributed to binding. PMID:23964276
Gao, Zhan; Li, Mengyang; Ma, Jie; Zhang, Shicui
2014-12-01
The origin of the classical complement pathway remains open during chordate evolution. A C1q-like member, BjC1q, was identified in the basal chordate amphioxus. It is predominantly expressed in the hepatic caecum, hindgut, and notochord, and is significantly upregulated following challenge with bacteria or lipoteichoic acid and LPS. Recombinant BjC1q and its globular head domain specifically interact with lipoteichoic acid and LPS, but BjC1q displays little lectin activity. Moreover, rBjC1q can assemble to form the high molecular weight oligomers necessary for binding to proteases C1r/C1s and for complement activation, and binds human C1r/C1s/mannan-binding lectin-associated serine protease-2 as well as amphioxus serine proteases involved in the cleavage of C4/C2, and C3 activation. Importantly, rBjC1q binds with human IgG as well as an amphioxus Ig domain containing protein, resulting in the activation of the classical complement pathway. This is the first report showing that a C1q-like protein in invertebrates is able to initiate classical pathway, raising the possibility that amphioxus possesses a C1q-mediated complement system. It also suggests a new scenario for the emergence of the classical complement pathway, in contrast to the proposal that the lectin pathway evolved into the classical pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Swe, Pearl M; Fischer, Katja
2014-06-01
Scabies is a contagious skin disease caused by the parasitic mite Sarcoptes scabiei. The disease is highly prevalent worldwide and known to predispose to secondary bacterial infections, in particular by Streptococcus pyogenes and Staphylococcus aureus. Reports of scabies patients co-infected with methicillin resistant S. aureus (MRSA) pose a major concern for serious down-stream complications. We previously reported that a range of complement inhibitors secreted by the mites promoted the growth of S. pyogenes. Here, we show that a recently characterized mite serine protease inhibitor (SMSB4) inhibits the complement-mediated blood killing of S. aureus. Blood killing of S. aureus was measured in whole blood bactericidal assays, counting viable bacteria recovered after treatment in fresh blood containing active complement and phagocytes, treated with recombinant SMSB4. SMSB4 inhibited the blood killing of various strains of S. aureus including methicillin-resistant and methicillin-sensitive isolates. Staphylococcal growth was promoted in a dose-dependent manner. We investigated the effect of SMSB4 on the complement-mediated neutrophil functions, namely phagocytosis, opsonization and anaphylatoxin release, by flow cytometry and in enzyme linked immuno sorbent assays (ELISA). SMSB4 reduced phagocytosis of S. aureus by neutrophils. It inhibited the deposition of C3b, C4b and properdin on the bacteria surface, but did not affect the depositions of C1q and MBL. SMSB4 also inhibited C5 cleavage as indicated by a reduced C5b-9 deposition. We postulate that SMSB4 interferes with the activation of all three complement pathways by reducing the amount of C3 convertase formed. We conclude that SMSB4 interferes with the complement-dependent killing function of neutrophils, thereby reducing opsonization, phagocytosis and further recruitment of neutrophils to the site of infection. As a consequence secreted scabies mites complement inhibitors, such as SMSB4, provide favorable conditions for the onset of S. aureus co-infection in the scabies-infected microenvironment by suppressing the immediate host immune response.
A novel model for studies of blood-mediated long-term responses to cellular transplants
Lindblom, Susanne; Hong, Jaan; Nilsson, Bo; Korsgren, Olle; Ronquist, Gunnar
2015-01-01
Aims Interaction between blood and bio-surfaces is important in many medical fields. With the aim of studying blood-mediated reactions to cellular transplants, we developed a whole-blood model for incubation of small volumes for up to 48 h. Methods Heparinized polyvinyl chloride tubing was cut in suitable lengths and sealed to create small bags. Multiple bags, with fresh venous blood, were incubated attached to a rotating wheel at 37°C. Physiological variables in blood were monitored: glucose, blood gases, mono- and divalent cations and chloride ions, osmolality, coagulation (platelet consumption, thrombin-antithrombin complexes (TAT)), and complement activation (C3a and SC5b-9), haemolysis, and leukocyte viability. Results Basic glucose consumption was high. Glucose depletion resulted in successive elevation of extracellular potassium, while sodium and calcium ions decreased due to inhibition of energy-requiring ion pumps. Addition of glucose improved ion balance but led to metabolic acidosis. To maintain a balanced physiological environment beyond 6 h, glucose and sodium hydrogen carbonate were added regularly based on analyses of glucose, pH, ions, and osmotic pressure. With these additives haemolysis was prevented for up to 72 h and leukocyte viability better preserved. Despite using non-heparinized blood, coagulation and complement activation were lower during long-term incubations compared with addition of thromboplastin and collagen. Conclusion A novel whole-blood model for studies of blood-mediated responses to a cellular transplant is presented allowing extended observations for up to 48 h and highlights the importance of stringent evaluations and adjustment of physiological conditions. PMID:25322825
Dense Deposit Disease and C3 Glomerulopathy
Barbour, Thomas D.; Pickering, Matthew C.; Terence Cook, H.
2013-01-01
Summary C3 glomerulopathy refers to those renal lesions characterized histologically by predominant C3 accumulation within the glomerulus, and pathogenetically by aberrant regulation of the alternative pathway of complement. Dense deposit disease is distinguished from other forms of C3 glomerulopathy by its characteristic appearance on electron microscopy. The extent to which dense deposit disease also differs from other forms of C3 glomerulopathy in terms of clinical features, natural history, and outcomes of treatment including renal transplantation is less clear. We discuss the pathophysiology of C3 glomerulopathy, with evidence for alternative pathway dysregulation obtained from affected individuals and complement factor H (Cfh)-deficient animal models. Recent linkage studies in familial C3 glomerulopathy have shown genomic rearrangements in the Cfh-related genes, for which the novel pathophysiologic concept of Cfh deregulation has been proposed. PMID:24161036
Hashimoto, Takashi; Tsuruta, Daisuke; Yasukochi, Atsushi; Imanishi, Hisayoshi; Sekine, Hideharu; Fujita, Teizo; Wanibuchi, Hideki; Gi, Min; Kárpáti, Sarolta; Sitaru, Cassian; Zone, John J; Endo, Daisuke; Abe, Shinichi; Nishino, Tomoya; Koji, Takehiko; Ishii, Norito
2016-08-23
There has been no previous systematic study of bullous skin diseases with granular basement membrane zone deposition exclusively of C3. In this study we collected 20 such patients, none of whom showed cutaneous vasculitis histopathologically. Oral dapsone and topical steroids were effective. Various serological tests detected no autoantibodies or autoantigens. Direct immunofluorescence for various complement components revealed deposition only of C3 and C5-C9, indicating that no known complement pathways were involved. Studies of in situ hybridization and micro-dissection with quantitative RT-PCR revealed a slight reduction in expression of C3 in patient epidermis. These patients may represent a new disease entity, for which we propose the term "granular C3 dermatosis". The mechanism for granular C3 deposition in these patients is unknown, but it is possible that the condition is caused by autoantibodies to skin or aberrant C3 expression in epidermal keratinocytes.
A specific inactivator of mammalian C'4 isolated from nurse shark (Ginglymostoma cirratum) serum.
Jensen, J A
1969-08-01
A material which specifically inactivates mammalian C'4 was isolated from low ionic strength precipitates of nurse shark serum. The C'4 inactivator was not detected in whole serum. The conditions of its generation and its immunoelectrophoretic behavior seem to indicate that it is an enzymatically formed cleavage product of a precursor contained in whole shark serum. The inactivator was partially purified and characterized. It had an S-value of 3.3 (sucrose gradient) which was in agreement with its retardation on gel filtration, was stable between pH 5.0 and 10.0, had a half-life of 5 min at 56 degrees C, pH 7.5, was inactivated by trypsin and was nontoxic. Its powerful anticomplementary activity in vitro and in vivo was solely due to the rapid inactivation of C'4; no other complement components were affected. No cofactor requirement was observed for the equally rapid inactivation of highly purified human and guinea pig C'4. The kinetics of C'4 inactivation and TAME hydrolysis, the greater anodic mobility of inactivated human C'4, and the influence of temperature on the rate of inactivation suggest that the inactivator is an enzyme and C'4 its substrate. This conclusion was supported by the more recent detection of a split product of C'4. Intravenous administration of the C'4 inactivator could prevent lethal Forssman shock and suppress the Arthus reaction in guinea pigs; it prolonged significantly the rejection time of renal xenografts but had no detectable effect on passive cutaneous anaphylaxis. Anaphylatoxin could be generated in C'4 depleted guinea pig serum with the cobra venom factor, but not with immune precipitates. The possible relationship between C'1 esterase and the C'4 inactivator is discussed on the basis of similarities and dissimilarities.
Noone, D; Al-Matrafi, J; Tinckam, K; Zipfel, P F; Herzenberg, A M; Thorner, P S; Pluthero, F G; Kahr, W H A; Filler, G; Hebert, D; Harvey, E; Licht, C
2012-09-01
Antibody mediated rejection (AMR) activates the classical complement pathway and can be detrimental to graft survival. AMR can be accompanied by thrombotic microangiopathy (TMA). Eculizumab, a monoclonal C5 antibody prevents induction of the terminal complement cascade (TCC) and has recently emerged as a therapeutic option for AMR. We present a highly sensitized 13-year-old female with end-stage kidney disease secondary to spina bifida-associated reflux nephropathy, who developed severe steroid-, ATG- and plasmapheresis-resistant AMR with TMA 1 week post second kidney transplant despite previous desensitization therapy with immunoglobulin infusions. Eculizumab rescue therapy resulted in a dramatic improvement in biochemical (C3; creatinine) and hematological (platelets) parameters within 6 days. The patient was proven to be deficient in complement Factor H-related protein 3/1 (CFHR3/1), a plasma protein that regulates the complement cascade at the level of C5 conversion and has been involved in the pathogenesis of atypical hemolytic uremic syndrome caused by CFH autoantibodies (DEAP-HUS). CFHR1 deficiency may have worsened the severe clinical progression of AMR and possibly contributed to the development of donor-specific antibodies. Thus, screening for CFHR3/1 deficiency should be considered in patients with severe AMR associated with TMA. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
Barrio, Maria Belén; Rainard, Pascal; Poutrel, Bernard
2003-01-01
Phagocytosis of bacteria by bovine polymorphonuclear neutrophils (PMN) has long been regarded as essential for host defense against mastitis infection. Complement-mediated opsonisation by complement component 3 (C3) binding is an important component of the innate immune system. We investigated the role of milk complement as an opsonin and its involvement in the phagocytosis and killing of Staphylococcus aureus isolates from cases of bovine mastitis by bovine blood PMN. We show that deposition of milk C3 component occurred on six different isolates of S. aureus and that the alternative pathway was the sole complement pathway operating in milk of uninflamed mammary gland. This deposition was shown to occur at the same location as the capsule, but not on capsular antigen. Milk complement enhanced the chemiluminescence response of PMN induced by S. aureus. Nevertheless, the association of S. aureus to cells and the overall killing of bacteria by bovine PMN were not affected by the presence of milk complement. Therefore, as all milk samples contained antibodies to capsular polysaccharide type 5 and to other surface antigens, it is likely that milk antibodies were responsible for these two phagocytic events. Results of this study suggest that the deposition of milk complement components on the surface of S. aureus does not contribute to the defence of the mammary gland against S. aureus.
Aouba, Achille; Khoy, Kathy; Mariotte, Delphine; Lobbedez, Thierry; Martin Silva, Nicolas
2018-01-01
Recent data suggest the existence of a complement alternative pathway activation in the pathogenesis of antineutrophilic cytoplasmic antibody (ANCA)-associated vasculitis (AAV), a condition that remains poorly understood. This study aims to assess the clinical characteristics and outcomes of granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA) patients with regard to their plasma complement levels at diagnosis. A retrospective monocentric study carried out at Caen University Hospital led to the identification of proteinase-3- or myeloperoxidase-ANCA-positive GPA and MPA patients from January 2000 to June 2016 and from September 2011 to June 2016, respectively. All patients with available C3 and C4 levels at diagnosis were included. Patients were categorized in the hypocomplementemia group if their C3 and/or C4 levels at diagnosis were below the lower limit of the normal range. Among the 76 AAV patients (43 GPA, 33 MPA), 4 (5%) had hypocomplementemia, and the 72 remaining patients exhibited normal plasma complement levels. All 4 hypocomplementemia patients had renal involvement. Hypocomplementemia was followed in 1 patient whose post-treatment complement level normalized within 1 month. Among all clinical and ANCA specificity, including relapse-free survival (p = 0.093), only overall and renal survival rates were significantly lower in the hypocomplementemia group (p = 0.0011 and p<0.001, respectively). Hypocomplementemia with low C3 and/or C4 levels at GPA or MPA diagnosis may be responsible for worse survival and renal prognosis. These results argue for larger and prospective studies to better determine the epidemiology of the disease and to assess complement-targeting therapy in these patients. PMID:29621352
Yadav, Viveka Nand; Pyaram, Kalyani; Mullick, Jayati; Sahu, Arvind
2008-04-01
Variola virus, the causative agent of smallpox, encodes a soluble complement regulator named SPICE. Previously, SPICE has been shown to be much more potent in inactivating human complement than the vaccinia virus complement control protein (VCP), although they differ only in 11 amino acid residues. In the present study, we have expressed SPICE, VCP, and mutants of VCP by substituting each or more of the 11 non-variant VCP residues with the corresponding residue of SPICE to identify hot spots that impart functional advantage to SPICE over VCP. Our data indicate that (i) SPICE is approximately 90-fold more potent than VCP in inactivating human C3b, and the residues Y98, Y103, K108 and K120 are predominantly responsible for its enhanced activity; (ii) SPICE is 5.4-fold more potent in inactivating human C4b, and residues Y98, Y103, K108, K120 and L193 mainly dictate this increase; (iii) the classical pathway decay-accelerating activity of activity is only twofold higher than that of VCP, and the 11 mutations in SPICE do not significantly affect this activity; (iv) SPICE possesses significantly greater binding ability to human C3b compared to VCP, although its binding to human C4b is lower than that of VCP; (v) residue N144 is largely responsible for the increased binding of SPICE to human C3b; and (vi) the human specificity of SPICE is dictated primarily by residues Y98, Y103, K108, and K120 since these are enough to formulate VCP as potent as SPICE. Together, these results suggest that principally 4 of the 11 residues that differ between SPICE and VCP partake in its enhanced function against human complement.
Yadav, Viveka Nand; Pyaram, Kalyani; Mullick, Jayati; Sahu, Arvind
2008-01-01
Variola virus, the causative agent of smallpox, encodes a soluble complement regulator named SPICE. Previously, SPICE has been shown to be much more potent in inactivating human complement than the vaccinia virus complement control protein (VCP), although they differ only in 11 amino acid residues. In the present study, we have expressed SPICE, VCP, and mutants of VCP by substituting each or more of the 11 non-variant VCP residues with the corresponding residue of SPICE to identify hot spots that impart functional advantage to SPICE over VCP. Our data indicate that (i) SPICE is ∼90-fold more potent than VCP in inactivating human C3b, and the residues Y98, Y103, K108 and K120 are predominantly responsible for its enhanced activity; (ii) SPICE is 5.4-fold more potent in inactivating human C4b, and residues Y98, Y103, K108, K120 and L193 mainly dictate this increase; (iii) the classical pathway decay-accelerating activity of activity is only twofold higher than that of VCP, and the 11 mutations in SPICE do not significantly affect this activity; (iv) SPICE possesses significantly greater binding ability to human C3b compared to VCP, although its binding to human C4b is lower than that of VCP; (v) residue N144 is largely responsible for the increased binding of SPICE to human C3b; and (vi) the human specificity of SPICE is dictated primarily by residues Y98, Y103, K108, and K120 since these are enough to formulate VCP as potent as SPICE. Together, these results suggest that principally 4 of the 11 residues that differ between SPICE and VCP partake in its enhanced function against human complement. PMID:18216095
Coagulation cascade and complement system in systemic lupus erythematosus
Liang, Yan; Xie, Shang-Bo; Wu, Chang-Hao; Hu, Yuan; Zhang, Qin; Li, Si; Fan, Yin-Guang; Leng, Rui-Xue; Pan, Hai-Feng; Xiong, Hua-Bao; Ye, Dong-Qing
2018-01-01
This study was conducted to (1) characterize coagulation cascade and complement system in systemic lupus erythematosus (SLE); (2) evaluate the associations between coagulation cascade, complement system, inflammatory response and SLE disease severity; (3) test the diagnostic value of a combination of D-dimer and C4 for lupus activity. Transcriptomics, proteomics and metabolomics were performed in 24 SLE patients and 24 healthy controls. The levels of ten coagulations, seven complements and three cytokines were measured in 112 SLE patients. Clinical data were collected from 2025 SLE patients. The analysis of multi-omics data revealed the common links for the components of coagulation cascade and complement system. The results of ELISA showed coagulation cascade and complement system had an interaction effect on SLE disease severity, this effect was pronounced among patients with excess inflammation. The analysis of clinical data revealed a combination of D-dimer and C4 provided good diagnostic performance for lupus activity. This study suggested that coagulation cascade and complement system become ‘partners in crime’, contributing to SLE disease severity and identified the diagnostic value of D-dimer combined with C4for lupus activity. PMID:29599912
Merrill, Joan T; Petri, Michelle A; Buyon, Jill; Ramsey-Goldman, Rosalind; Kalunian, Kenneth; Putterman, Chaim; Conklin, John; Furie, Richard A; Dervieux, Thierry
2018-01-01
We examined the usefulness of erythrocyte-bound C4d (EC4d) to monitor disease activity in SLE. Data and blood samples were collected from three different studies, each of which included longitudinal evaluations using the Physicians Global Assessment (PGA) of disease activity and the Safety of Estrogens in Lupus Erythematosus National Assessment (SELENA) SLE Disease Activity Index (SLEDAI), which was assessed without anti-double-stranded DNA (dsDNA) and low complement C3/C4 (clinical SELENA-SLEDAI). EC4d levels were determined using flow cytometry; other laboratory measures included antibodies to dsDNA, C3 and C4 proteins. Relationships between clinical SELENA-SLEDAI, PGA and the laboratory measures were analysed using linear mixed effect models. The three studies combined enrolled 124 patients with SLE (mean age 42 years, 97% women, 31% Caucasians and 34% African-Americans) followed for an average of 5 consecutive visits (range 2-13 visits). EC4d levels and low C3/C4 status were significantly associated the clinical SELENA-SLEDAI or PGA in each of the three study groups (p<0.05). Multivariate analysis revealed that EC4d levels (estimate=0.94±0.28) and low complement C3/C4 (estimate=1.24±0.43) were both independently and significantly associated with the clinical SELENA-SLEDAI (p<0.01) and PGA. EC4d levels were also associated with the clinical SELENA-SLEDAI (estimate: 1.20±0.29) and PGA (estimate=0.19±0.04) among patients with chronically low or normal C3/C4 (p<0.01). Anti-dsDNA titres were generally associated with disease activity. These data support the association of EC4d with disease activity regardless of complement C3/C4 status and its usefulness in monitoring SLE disease. Additional studies will be required to support these validation data.
Vitamin D. Treatment of Prostate Cancer: The Inhibitory Role of IGFBP-3
2005-01-01
cassette, sub-family C (CFTR/MRP), member 6 AA424804 Flag 1.62 2.36 Xeroderma pigmentosum , complementation group C (XPC) AA287323 1.44 1.83 2.25...expressed gene I (POVI) T72067 2.37 7.30 Xeroderma pigmentosum , complementation group C (XPC) AA287323 2.25 11.2 Claudin 4 AA506754 2.21 7.30 UDP...Diego: Academic Press; 2001. in DNA damage response ( xeroderma pigmentosum pp 257-303. compledamentatgerouponse C e r [e 3. Miller GJ. Vitamin D and
NASA Astrophysics Data System (ADS)
Griffin, Debora
This thesis focusses on transport and composition of boreal fire plumes, evolution of trace gases in the Arctic, multi-year comparisons of ground-based and satellite-borne instruments, and depletion of Arctic ozone. Two similar Fourier Transform Spectrometer (FTS) instruments were utilized: (1) the ground-based and balloon-borne Portable Atmospheric Research Interferometric Spectrometer for the InfraRed (PARIS-IR) and (2) the space-borne Atmospheric Chemistry Experiment (ACE) FTS. Additional datasets, from other satellite and ground-based instruments, as well as Chemical Transport Models (CTMs) complemented the analysis. Transport and composition of boreal fire plumes were analysed with PARIS-IR measurements taken in Halifax, Nova Scotia. This study analysed the retrievals of different FTSs and investigated transport and composition of a smoke plume utilizing various models. The CO retrievals of three different FTSs (PARIS-IR, DA8, and IASI) were consistent and detected a smoke plume between 19 and 21 July 2011. These measurements were similar to the concentrations computed by GEOS-Chem ( 3% for CO and 8% for C2H6). Multi-year comparisons (2006-2013) of ground-based and satellite-borne FTSs near Eureka, Nunavut were carried out utilizing measurements from PARIS-IR, the Bruker 125HR and ACEFTS. The mean and interannual differences between the datasets were investigated for eight species (ozone, HCl, HNO3, HF, CH4, N2O, CO, and C2H6) and good agreement between these instruments was found. Furthermore, the evolution of the eight gases was investigated and increasing ozone, HCl, HF, CH4 and C2H6 were found. Springtime Arctic ozone depletion was studied, where six different methods to estimate ozone depletion were evaluated using the ACE-FTS dataset. It was shown that CH4, N2O, HF, and CCl2F2 are suitable tracers to estimate the ozone loss. The loss estimates (mixing ratio and partial column) are consistent for all six methods. Finally, PARIS-IR was prepared for a balloon-borne measurement campaign and a new suntracker for these measurements was designed and tested. The balloon was launched in September 2015. The suntracker performed with a +/-0.04° accuracy. From the balloon-borne sunset spectra, an ozone profile was retrieved and is consistent with measurements from a nearby ozonesonde within approximately 10 %.
Jahnke, Linda L.; Eder, Wolfgang; Huber, Robert; Hope, Janet M.; Hinrichs, Kai-Uwe; Hayes, John M.; Des Marais, David J.; Cady, Sherry L.; Summons, Roger E.
2001-01-01
The molecular and isotopic compositions of lipid biomarkers of cultured Aquificales genera have been used to study the community and trophic structure of the hyperthermophilic pink streamers and vent biofilm from Octopus Spring. Thermocrinis ruber, Thermocrinis sp. strain HI 11/12, Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus, and Aquifex aeolicus all contained glycerol-ether phospholipids as well as acyl glycerides. The n-C20:1 and cy-C21 fatty acids dominated all of the Aquificales, while the alkyl glycerol ethers were mainly C18:0. These Aquificales biomarkers were major constituents of the lipid extracts of two Octopus Spring samples, a biofilm associated with the siliceous vent walls, and the well-known pink streamer community (PSC). Both the biofilm and the PSC contained mono- and dialkyl glycerol ethers in which C18 and C20 alkyl groups were prevalent. Phospholipid fatty acids included both the Aquificales n-C20:1 and cy-C21, plus a series of iso-branched fatty acids (i-C15:0 to i-C21:0), indicating an additional bacterial component. Biomass and lipids from the PSC were depleted in 13C relative to source water CO2 by 10.9 and 17.2‰, respectively. The C20–21 fatty acids of the PSC were less depleted than the iso-branched fatty acids, 18.4 and 22.6‰, respectively. The biomass of T. ruber grown on CO2 was depleted in 13C by only 3.3‰ relative to C source. In contrast, biomass was depleted by 19.7‰ when formate was the C source. Independent of carbon source, T. ruber lipids were heavier than biomass (+1.3‰). The depletion in the C20–21 fatty acids from the PSC indicates that Thermocrinis biomass must be similarly depleted and too light to be explained by growth on CO2. Accordingly, Thermocrinis in the PSC is likely to have utilized formate, presumably generated in the spring source region. PMID:11679343
NASA Technical Reports Server (NTRS)
Jahnke, L. L.; Eder, W.; Huber, R.; Hope, J. M.; Hinrichs, K. U.; Hayes, J. M.; Des Marais, D. J.; Cady, S. L.; Summons, R. E.
2001-01-01
The molecular and isotopic compositions of lipid biomarkers of cultured Aquificales genera have been used to study the community and trophic structure of the hyperthermophilic pink streamers and vent biofilm from Octopus Spring. Thermocrinis ruber, Thermocrinis sp. strain HI 11/12, Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus, and Aquifex aeolicus all contained glycerol-ether phospholipids as well as acyl glycerides. The n-C(20:1) and cy-C(21) fatty acids dominated all of the Aquificales, while the alkyl glycerol ethers were mainly C(18:0). These Aquificales biomarkers were major constituents of the lipid extracts of two Octopus Spring samples, a biofilm associated with the siliceous vent walls, and the well-known pink streamer community (PSC). Both the biofilm and the PSC contained mono- and dialkyl glycerol ethers in which C(18) and C(20) alkyl groups were prevalent. Phospholipid fatty acids included both the Aquificales n-C(20:1) and cy-C(21), plus a series of iso-branched fatty acids (i-C(15:0) to i-C(21:0)), indicating an additional bacterial component. Biomass and lipids from the PSC were depleted in (13)C relative to source water CO(2) by 10.9 and 17.2 per thousand, respectively. The C(20-21) fatty acids of the PSC were less depleted than the iso-branched fatty acids, 18.4 and 22.6 per thousand, respectively. The biomass of T. ruber grown on CO(2) was depleted in (13)C by only 3.3 per thousand relative to C source. In contrast, biomass was depleted by 19.7 per thousand when formate was the C source. Independent of carbon source, T. ruber lipids were heavier than biomass (+1.3 per thousand). The depletion in the C(20-21) fatty acids from the PSC indicates that Thermocrinis biomass must be similarly depleted and too light to be explained by growth on CO(2). Accordingly, Thermocrinis in the PSC is likely to have utilized formate, presumably generated in the spring source region.
Complement factor h is critical in the maintenance of retinal perfusion.
Lundh von Leithner, Peter; Kam, Jaimie Hoh; Bainbridge, James; Catchpole, Ian; Gough, Gerald; Coffey, Peter; Jeffery, Glen
2009-07-01
Vascular pathologies are known to be associated with age-related macular degeneration. Recently, age-related macular degeneration was associated with a single-nucleotide substitution of the complement factor H (CFH) gene, part of the alternative pathway of the complement system, a critical element in the innate immune response. Such polymorphisms are found in more than 50% of cases of age-related macular degeneration. Here we show that the absence of CFH causes an autoimmune response that targets the vascular endothelium of both the inner and outer retinal vascular networks. In CFH-knockout (cfh(-/-)) mice, C3 and C3b, key components of the complement system, are progressively deposited on retinal vessels, which subsequently become restricted and wither, resulting in a reduction of retinal blood supply. This result leads to increased oxygen stress. While such effects are not systemic, these structural changes are mirrored in functional changes with a substantial decline in retinal blood flow dynamics. When the system is challenged functionally by laser-induced choroidal neovascularization, fluorescein leakage was significantly smaller in cfh(-/-) mice compared with controls, likely due to reduced retinal perfusion. These data reveal that in both the presence and absence of exogenous challenge to the innate immune system, CFH is required to maintain normal levels of retinal perfusion. It is likely that C3 and C3b accumulation in the aged CFH-deficient retina is associated with complement-mediated retinal endothelium destruction.
Adler Sørensen, Camilla; Rosbjerg, Anne; Hebbelstrup Jensen, Betina; Krogfelt, Karen Angeliki; Garred, Peter
2018-01-01
Enteroaggregative Escherichia coli (EAEC) causes acute and persistent diarrhea worldwide. Still, the involvement of host factors in EAEC infections is unresolved. Binding of recognition molecules from the lectin pathway of complement to EAEC strains have been observed, but the importance is not known. Our aim was to uncover the involvement of these molecules in innate complement dependent immune protection toward EAEC. Binding of mannose-binding lectin, ficolin-1, -2, and -3 to four prototypic EAEC strains, and ficolin-2 binding to 56 clinical EAEC isolates were screened by a consumption-based ELISA method. Flow cytometry was used to determine deposition of C4b, C3b, and the bactericidal C5b-9 membrane attack complex (MAC) on the bacteria in combination with different complement inhibitors. In addition, the direct serum bactericidal effect was assessed. Screening of the prototypic EAEC strains revealed that ficolin-2 was the major binder among the lectin pathway recognition molecules. However, among the clinical EAEC isolates only a restricted number ( n = 5) of the isolates bound ficolin-2. Using the ficolin-2 binding isolate C322-17 as a model, we found that incubation with normal human serum led to deposition of C4b, C3b, and to MAC formation. No inhibition of complement deposition was observed when a C1q inhibitor was added, while partial inhibition was observed when ficolin-2 or factor D inhibitors were used separately. Combining the inhibitors against ficolin-2 and factor D led to virtually complete inhibition of complement deposition and protection against direct bacterial killing. These results demonstrate that ficolin-2 may play an important role in innate immune protection against EAEC when an appropriate ligand is exposed, but many EAEC strains evade lectin pathway recognition and may, therefore, circumvent this strategy of innate host immune protection.
Susceptibility of pathogenic and nonpathogenic Naegleria ssp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteman, L.Y.
1988-01-01
The susceptibility of four species of Naegleria amoebae to complement-mediated lysis was determined. The amoebicidal activity of normal human serum (NHS) and normal guinea pig serum (NGPS) for Naegleria amoebae was measured by an in vitro cytotoxicity assay. Release of radioactivity from amoebae labeled with {sup 3}H-uridine and visual observation with a compound microscope were used as indices of lysis. Susceptibility or resistance to complement-mediated lysis in vitro correlated with the in vivo pathogenic potential. Nonpathogenic Naegleria amoebae were lysed at a faster rate and at higher cell concentrations than were pathogenic amoebae. Electrophoretic analysis of NHS incubated with pathogenicmore » or nonpathogenic Naegleria spp. demonstrated that amoebae activate the complement cascade resulting in the production of C3 and C5 complement cleavage products. Treatment with papain or trypsin for 1 h, but not with sialidase, increase the susceptibility of highly pathogenic, mouse-passaged N. fowleri to lysis. Treatment with actinomycin D, cycloheximide or various protease inhibitors for 4 h did not increase susceptibility to lysis. Neither a repair process involving de novo protein synthesis nor a complement-inactivating protease appear to account for the increase resistance of N. fowleri amoebae to complement-mediated lysis. A binding study with {sup 125}I radiolabeled C9 indicated that the terminal complement component does not remain stably bound to the membrane of pathogenic amoebae.« less
[Complement deficiencies and meningococcal disease in The Netherlands].
Swart, A G; Fijen, C A; te Bulte, M T; Daha, M R; Dankert, J; Kuijper, E J
1993-06-05
To determine the prevalence of complement system deficiencies in patients who have survived a Neisseria meningitidis infection. Retrospective. Reference laboratory for bacterial meningitis of the University of Amsterdam and the National Institute of Public Health and Environmental Protection. Out of the files of the laboratory 187 patients who had experienced a meningococcal infection in the Netherlands between 1959-1990 were selected in two groups according to the infecting bacterial strain: 97 patients with a serogroup X, Y, Z, W135, 29E, or non-groupable strains and 90 patients with an infection due to serogroup A or C. The patients were asked for their cooperation by their family doctor and one of us visited the patients at home to take blood samples. The complement activity was studied with a haemolysis in gel test and with an assay of haemolytic activity in free solution. Complement deficiency was present in 18% of the 187 patients who had experienced a meningococcal infection. The highest prevalence was found in patients older than 10 years who had developed infections due to serogroups X, Y, W135, or non-groupable strains (45%). Of the patients with a serogroup A or C infection, 3% had an complement deficiency. Of the complement deficiencies, 42% concerned a component of the alternative pathway, 12% a deficiency of C3, and 46% a component of the terminal route. The most commonly found deficiencies were properdin deficiency (39%) and C8 deficiency (18%). 30% of the complement deficient patients reported other family members having experienced meningitis. Recurrent meningitis was only observed in patients with terminal route deficiencies. We recommend that patients with a meningococcal infection due to serogroups X, Y, W135 or non-groupable strains should be screened for complement deficiency.
Buyon, Jill; Furie, Richard; Putterman, Chaim; Ramsey-Goldman, Rosalind; Kalunian, Kenneth; Barken, Derren; Conklin, John; Dervieux, Thierry
2016-01-01
The relationship between cell-bound complement activation products (CB-CAPs: EC4d, EC3d), anti-C1q, soluble complement C3/C4 and disease activity in systemic lupus erythematosus (SLE) was evaluated. Per protocol, at baseline all SLE subjects enrolled in this longitudinal study presented with active disease and elevated CB-CAPs. At each monthly visit, the non-serological (ns) Safety of Estrogens in Lupus Erythematosus: National Assessment (SELENA-SLEDAI) and the British Isles Lupus Assessment Group (BILAG)-2004 index scores were determined as was a random urinary protein to creatinine ratio (uPCR). Short-form 36 (SF-36) questionnaires were also collected. All soluble markers were determined using immunoassays, while EC4d and EC3d were determined using flow cytometry. Statistical analysis consisted of linear mixed models with random intercept and fixed slopes. A total of 36 SLE subjects (mean age 34 years; 94% female) were enrolled and evaluated monthly for an average 11 visits per subject. Clinical improvements were observed during the study, with significant decreases in ns-SELENA-SLEDAI scores, BILAG-2004 index scores and uPCR, and increases in all domains of SF-36 (p<0.01). The longitudinal decrease in ns-SELENA-SLEDAI and BILAG-2004 index scores was significantly associated with reduced EC4d and EC3d levels, reduced anti-C1q titres and increased serum complement C3/C4 (p<0.05). The changes in uPCR significantly correlated with C3, C4, anti-C1q and EC4d, with EC4d outperforming C3/C4 by a multivariate analysis. The reduced EC4d or EC3d was associated with improvements in at least six out of the eight domains of SF-36 and outperformed C3/C4. Anti-dsDNA titres did not correlate with changes in disease activity. These data indicate that CB-CAPs and anti-C1q are helpful in monitoring patients with SLE.
Santa-Marta, Mariana; da Silva, Frederico Aires; Fonseca, Ana Margarida; Goncalves, Joao
2005-03-11
The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G), also known as CEM-15, is a host-cell factor involved in innate resistance to retroviral infection. HIV-1 viral infectivity factor (Vif) protein was shown to protect the virus from APOBEC3G-mediated viral cDNA hypermutation. The mechanism proposed for protection of the virus by HIV-1 Vif is mediated by APOBEC3G degradation through ubiquitination and the proteasomal pathway. Here we show that in Escherichia coli the APOBEC3G-induced cytidine deamination is inhibited by expression of Vif without depletion of deaminase. Moreover, inhibition of deaminase-mediated bacterial hypermutation is dependent on a single amino acid substitution D128K that renders APOBEC3G resistant to Vif inhibition. This single amino acid was elegantly proven by other authors to determine species-specific sensitivity. Our results show that in bacteria this single amino acid substitution controls Vif-dependent blocking of APOBEC3G that is dependent on a strong protein interaction. The C-terminal region of Vif is responsible for this strong protein-protein interaction. In conclusion, our experiments suggest a complement to the model of Vif-induced degradation of APOBEC3G by bringing to relevance that deaminase inhibition can also result from a direct interaction with Vif protein.
Hirsch, Judith; Estavillo, Gonzalo M.; Javot, Hélène; Chiarenza, Serge; Mallory, Allison C.; Maizel, Alexis; Declerck, Marie; Pogson, Barry J.; Vaucheret, Hervé; Crespi, Martin; Desnos, Thierry; Thibaud, Marie-Christine; Nussaume, Laurent; Marin, Elena
2011-01-01
Background Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3′,(2′),5′-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. Principal Findings A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3′-polyadenosine 5′-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. Conclusions/Significance Our results indicate that the 3′,(2′),5′-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi and is independent of the XRNs. PMID:21304819
Sugihara, T; Kobori, A; Imaeda, H; Tsujikawa, T; Amagase, K; Takeuchi, K; Fujiyama, Y; Andoh, A
2010-01-01
Recent studies have demonstrated that the complement system participates in the regulation of T cell functions. To address the local biosynthesis of complement components in inflammatory bowel disease (IBD) mucosa, we investigated C3 and interleukin (IL)-17 mRNA expression in mucosal samples obtained from patients with IBD. The molecular mechanisms underlying C3 induction were investigated in human colonic subepithelial myofibroblasts (SEMFs). IL-17 and C3 mRNA expressions in the IBD mucosa were evaluated by real-time polymerase chain reaction. The C3 levels in the supernatant were determined by enzyme-linked immunosorbent assay. IL-17 and C3 mRNA expressions were elevated significantly in the active lesions from ulcerative colitis (UC) and Crohn's disease (CD) patients. There was a significant positive correlation between IL-17 and C3 mRNA expression in the IBD mucosa. IL-17 stimulated a dose- and time-dependent increase in C3 mRNA expression and C3 secretion in colonic SEMFs. The C3 molecules secreted by colonic SEMFs were a 115-kDa α-chain linked to a 70-kDa β-chain by disulphide bonds, which was identical to serum C3. The IL-17-induced C3 mRNA expression was blocked by p42/44 mitogen-activated protein kinase (MAPK) inhibitors (PD98059 and U0216) and a p38 MAPK inhibitor (SB203580). Furthermore, IL-17-induced C3 mRNA expression was inhibited by an adenovirus containing a stable mutant form of IκBα. C3 and IL-17 mRNA expressions are enhanced, with a strong correlation, in the inflamed mucosa of IBD patients. Part of these clinical findings was considered to be mediated by the colonic SEMF response to IL-17. PMID:20089077
Katschke, Kenneth J; Xi, Hongkang; Cox, Christian; Truong, Tom; Malato, Yann; Lee, Wyne P; McKenzie, Brent; Arceo, Rommel; Tao, Jianhua; Rangell, Linda; Reichelt, Mike; Diehl, Lauri; Elstrott, Justin; Weimer, Robby M; Campagne, Menno van Lookeren
2018-05-09
Geographic atrophy (GA), the advanced form of dry age-related macular degeneration (AMD), is characterized by progressive loss of retinal pigment epithelium cells and photoreceptors in the setting of characteristic extracellular deposits and remains a serious unmet medical need. While genetic predisposition to AMD is dominated by polymorphisms in complement genes, it remains unclear how complement activation contributes to retinal atrophy. Here we demonstrate that complement is activated on photoreceptor outer segments (POS) in the retina peripheral to atrophic lesions associated with GA. When exposed to human serum following outer blood-retinal barrier breakdown, POS act as potent activators of the classical and alternative complement pathway. In mouse models of retinal degeneration, classical and alternative pathway complement activation on photoreceptors contributed to the loss of photoreceptor function. This was dependent on C5a-mediated recruitment of peripheral blood monocytes but independent of resident microglia. Genetic or pharmacologic inhibition of both classical and alternative complement C3 and C5 convertases was required to reduce progressive degeneration of photoreceptor rods and cones. Our study implicates systemic classical and alternative complement proteins and peripheral blood monocytes as critical effectors of localized retinal degeneration with potential relevance for the contribution of complement activation to GA.
On the Functional Overlap between Complement and Anti-Microbial Peptides.
Zimmer, Jana; Hobkirk, James; Mohamed, Fatima; Browning, Michael J; Stover, Cordula M
2014-01-01
Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia).
Sprong, Tom; Brandtzaeg, Petter; Fung, Michael; Pharo, Anne M; Høiby, E Arne; Michaelsen, Terje E; Aase, Audun; van der Meer, Jos W M; van Deuren, Marcel; Mollnes, Tom E
2003-11-15
The complement system plays an important role in the initial defense against Neisseria meningitidis. In contrast, uncontrolled activation in meningococcal sepsis contributes to the development of tissue damage and shock. In a novel human whole blood model of meningococcal sepsis, we studied the effect of complement inhibition on inflammation and bacterial killing. Monoclonal antibodies (mAbs) blocking lectin and alternative pathways inhibited complement activation by N meningitidis and oxidative burst induced in granulocytes and monocytes. Oxidative burst was critically dependent on CD11b/CD18 (CR3) expression but not on Fc gamma-receptors. Specific inhibition of C5a using mAb 137-26 binding the C5a moiety of C5 before cleavage prohibited CR3 up-regulation, phagocytosis, and oxidative burst but had no effect on C5b-9 (TCC) formation, lysis, and bacterial killing. An mAb-blocking cleavage of C5, preventing C5a and TCC formation, showed the same effect on CR3, phagocytosis, and oxidative burst as the anti-C5a mAb but additionally inhibited TCC formation, lysis, and bacterial killing, consistent with a C5b-9-dependent killing mechanism. In conclusion, the anti-C5a mAb 137-26 inhibits the potentially harmful effects of N meningitidis-induced C5a formation while preserving complement-mediated bacterial killing. We suggest that this may be an attractive approach for the treatment of meningococcal sepsis.
Complement Activation in Arterial and Venous Thrombosis is Mediated by Plasmin
Foley, Jonathan H.; Walton, Bethany L.; Aleman, Maria M.; O'Byrne, Alice M.; Lei, Victor; Harrasser, Micaela; Foley, Kimberley A.; Wolberg, Alisa S.; Conway, Edward M.
2016-01-01
Thrombus formation leading to vaso-occlusive events is a major cause of death, and involves complex interactions between coagulation, fibrinolytic and innate immune systems. Leukocyte recruitment is a key step, mediated partly by chemotactic complement activation factors C3a and C5a. However, mechanisms mediating C3a/C5a generation during thrombosis have not been studied. In a murine venous thrombosis model, levels of thrombin–antithrombin complexes poorly correlated with C3a and C5a, excluding a central role for thrombin in C3a/C5a production. However, clot weight strongly correlated with C5a, suggesting processes triggered during thrombosis promote C5a generation. Since thrombosis elicits fibrinolysis, we hypothesized that plasmin activates C5 during thrombosis. In vitro, the catalytic efficiency of plasmin-mediated C5a generation greatly exceeded that of thrombin or factor Xa, but was similar to the recognized complement C5 convertases. Plasmin-activated C5 yielded a functional membrane attack complex (MAC). In an arterial thrombosis model, plasminogen activator administration increased C5a levels. Overall, these findings suggest plasmin bridges thrombosis and the immune response by liberating C5a and inducing MAC assembly. These new insights may lead to the development of strategies to limit thrombus formation and/or enhance resolution. PMID:27077125
The Crystal Structure of Cobra Venom Factor, a Cofactor for C3- and C5-Convertase CVFBb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Vengadesan; Ponnuraj, Karthe; Xu, Yuanyuan
2009-05-26
Cobra venom factor (CVF) is a functional analog of human complement component C3b, the active fragment of C3. Similar to C3b, in human and mammalian serum, CVF binds factor B, which is then cleaved by factor D, giving rise to the CVFBb complex that targets the same scissile bond in C3 as the authentic complement convertases C4bC2a and C3bBb. Unlike the latter, CVFBb is a stable complex and an efficient C5 convertase. We solved the crystal structure of CVF, isolated from Naja naja kouthia venom, at 2.6 {angstrom} resolution. The CVF crystal structure, an intermediate between C3b and C3c, lacksmore » the TED domain and has the CUB domain in an identical position to that seen in C3b. The similarly positioned CUB and slightly displaced C345c domains of CVF could play a vital role in the formation of C3 convertases by providing important primary binding sites for factor B.« less
The crystal structure of cobra venom factor, a cofactor for C3- and C5-convertase CVFBb.
Krishnan, Vengadesan; Ponnuraj, Karthe; Xu, Yuanyuan; Macon, Kevin; Volanakis, John E; Narayana, Sthanam V L
2009-04-15
Cobra venom factor (CVF) is a functional analog of human complement component C3b, the active fragment of C3. Similar to C3b, in human and mammalian serum, CVF binds factor B, which is then cleaved by factor D, giving rise to the CVFBb complex that targets the same scissile bond in C3 as the authentic complement convertases C4bC2a and C3bBb. Unlike the latter, CVFBb is a stable complex and an efficient C5 convertase. We solved the crystal structure of CVF, isolated from Naja naja kouthia venom, at 2.6 A resolution. The CVF crystal structure, an intermediate between C3b and C3c, lacks the TED domain and has the CUB domain in an identical position to that seen in C3b. The similarly positioned CUB and slightly displaced C345c domains of CVF could play a vital role in the formation of C3 convertases by providing important primary binding sites for factor B.
Rodriguez, Elizabeth; Nan, Ruodan; Li, Keying; Gor, Jayesh; Perkins, Stephen J
2015-01-23
The solution structure of complement C3b is crucial for the understanding of complement activation and regulation. C3b is generated by the removal of C3a from C3. Hydrolysis of the C3 thioester produces C3u, an analog of C3b. C3b cleavage results in C3c and C3d (thioester-containing domain; TED). To resolve functional questions in relation to C3b and C3u, analytical ultracentrifugation and x-ray and neutron scattering studies were used with C3, C3b, C3u, C3c, and C3d, using the wild-type allotype with Arg(102). In 50 mm NaCl buffer, atomistic scattering modeling showed that both C3b and C3u adopted a compact structure, similar to the C3b crystal structure in which its TED and macroglobulin 1 (MG1) domains were connected through the Arg(102)-Glu(1032) salt bridge. In physiological 137 mm NaCl, scattering modeling showed that C3b and C3u were both extended in structure, with the TED and MG1 domains now separated by up to 6 nm. The importance of the Arg(102)-Glu(1032) salt bridge was determined using surface plasmon resonance to monitor the binding of wild-type C3d(E1032) and mutant C3d(A1032) to immobilized C3c. The mutant did not bind, whereas the wild-type form did. The high conformational variability of TED in C3b in physiological buffer showed that C3b is more reactive than previously thought. Because the Arg(102)-Glu(1032) salt bridge is essential for the C3b-Factor H complex during the regulatory control of C3b, the known clinical associations of the major C3S (Arg(102)) and disease-linked C3F (Gly(102)) allotypes of C3b were experimentally explained for the first time. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
A Revised Mechanism for the Activation of Complement C3 to C3b
Rodriguez, Elizabeth; Nan, Ruodan; Li, Keying; Gor, Jayesh; Perkins, Stephen J.
2015-01-01
The solution structure of complement C3b is crucial for the understanding of complement activation and regulation. C3b is generated by the removal of C3a from C3. Hydrolysis of the C3 thioester produces C3u, an analog of C3b. C3b cleavage results in C3c and C3d (thioester-containing domain; TED). To resolve functional questions in relation to C3b and C3u, analytical ultracentrifugation and x-ray and neutron scattering studies were used with C3, C3b, C3u, C3c, and C3d, using the wild-type allotype with Arg102. In 50 mm NaCl buffer, atomistic scattering modeling showed that both C3b and C3u adopted a compact structure, similar to the C3b crystal structure in which its TED and macroglobulin 1 (MG1) domains were connected through the Arg102–Glu1032 salt bridge. In physiological 137 mm NaCl, scattering modeling showed that C3b and C3u were both extended in structure, with the TED and MG1 domains now separated by up to 6 nm. The importance of the Arg102–Glu1032 salt bridge was determined using surface plasmon resonance to monitor the binding of wild-type C3d(E1032) and mutant C3d(A1032) to immobilized C3c. The mutant did not bind, whereas the wild-type form did. The high conformational variability of TED in C3b in physiological buffer showed that C3b is more reactive than previously thought. Because the Arg102-Glu1032 salt bridge is essential for the C3b-Factor H complex during the regulatory control of C3b, the known clinical associations of the major C3S (Arg102) and disease-linked C3F (Gly102) allotypes of C3b were experimentally explained for the first time. PMID:25488663
Purine biosynthesis is the bottleneck in trimethoprim-treated Bacillus subtilis.
Stepanek, Jennifer Janina; Schäkermann, Sina; Wenzel, Michaela; Prochnow, Pascal; Bandow, Julia Elisabeth
2016-10-01
Trimethoprim is a folate biosynthesis inhibitor. Tetrahydrofolates are essential for the transfer of C 1 units in several biochemical pathways including purine, thymine, methionine, and glycine biosynthesis. This study addressed the effects of folate biosynthesis inhibition on bacterial physiology. Two complementary proteomic approaches were employed to analyze the response of Bacillus subtilis to trimethoprim. Acute changes in protein synthesis rates were monitored by radioactive pulse labeling of newly synthesized proteins and subsequent 2DE analysis. Changes in protein levels were detected using gel-free quantitative MS. Proteins involved in purine and histidine biosynthesis, the σ B -dependent general stress response, and sporulation were upregulated. Most prominently, the PurR-regulon required for de novo purine biosynthesis was derepressed indicating purine depletion. The general stress response was activated energy dependently and in a subpopulation of treated cultures an early onset of sporulation was observed, most likely triggered by low guanosine triphosphate levels. Supplementation of adenosine triphosphate, adenosine, and guanosine to the medium substantially decreased antibacterial activity, showing that purine depletion becomes the bottleneck in trimethoprim-treated B. subtilis. The frequently prescribed antibiotic trimethoprim causes purine depletion in B. subtilis, which can be complemented by supplementing purines to the medium. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The C1Σ+ , A1Σ+ , and b3Π0+ states of LiRb
NASA Astrophysics Data System (ADS)
Stevenson, Ian; Blasing, David; Chen, Yong; Elliott, Daniel
2017-04-01
We present the first spectroscopic studies of the C1Σ+ electronic state and the A1Σ+ - b3Π0+ complex in 7Li - 85Rb. Using resonantly-enhanced, two-photon ionization, we observed v = 7 , 9, 12, 13 and 26 - 45 of the C1Σ+ state. We augment the REMPI data with a form of depletion spectra in regions of dense spectral lines. The A1Σ+ - b3Π0+ complex was observed with depletion spectroscopy, depleting to vibrational levels v = 0 -> 29 of the A1Σ+ state and v = 8 -> 18 of the b3Π0+ state. For all three series, we determine the term energy and vibrational constants. Finally, we outline several possible future projects in ultracold molecules based on the data presented here.
C 1Σ+ , A 1Σ+ , and b 3Π0+ states of LiRb
NASA Astrophysics Data System (ADS)
Stevenson, I. C.; Blasing, D. B.; Chen, Y. P.; Elliott, D. S.
2016-12-01
We present the first spectroscopic studies of the C 1Σ+ electronic state and the A 1Σ+ -b 3Π0+ complex in 7Li-85Rb. Using resonantly enhanced, two-photon ionization, we observed v =7 , 9, 12, 13, and 26-45 of the C 1Σ+ state. We augment the REMPI data with a form of depletion spectra in regions of dense spectral lines. The A 1Σ+ -b 3Π0+ complex was observed with depletion spectroscopy, depleting to vibrational levels v =0 →29 of the A 1Σ+ state and v =8 →18 of the b 3Π0+ state. For all three series, we determine the term energy and vibrational constants. Finally, we outline several possible future projects based on the data presented here.
Gene for ataxia-telangiectasia complementation group D (ATDC)
Murnane, John P.; Painter, Robert B.; Kapp, Leon N.; Yu, Loh-Chung
1995-03-07
Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for said gene are provided as well as proteins encoded by said gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of said proteins. Further disclosed are methods to detect mutations in said gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups.
NASA Astrophysics Data System (ADS)
Schleicher, David G.; Birch, P. V.; Bair, A. N.
2006-09-01
We present analyses and results from multi-apparition narrowband photometry of Comet 73P/Schwassmann-Wachmann 3. Observations were obtained on 7 nights during the comet's current apparition from 2006 February 25 to May 18 (r = 1.65-0.99 AU) using Lowell Observatory's 42-inch (1.1-m) Hall telescope. Due to the comet's very close passage by the Earth and occasional outbursts, a total of 4 components were successfully measured, including the apparent primary body (C) and 3 fragments (B, G, and R), thus permitting us to probe the composition of the interior of Schwassmann-Wachmann 3's nucleus. Abundances of carbon-chain molecules yield a classification of strongly "depleted” in the A'Hearn et al. (1995, Icarus 118, 223) database, with the Q(C2)-to-Q(CN) ratio depleted by factors of between 7 and 8 for components C, B, and G, and a comparable upper limit for component R. Measured from Perth Observatory, S-W 3 also exhibited strong depletion in 1995, about 1-2 months after its original outburst and fragmentation. In 1990, prior to any fragmentation, Fink and Hicks (1996, Ap.J. 459, 729) identified Schwassmann-Wachmann 3 as being strongly depleted, with an upper limit on Q(C2) corresponding to a C2 depletion of a factor of 6.4 or greater. With the material released from the interior of S-W 3 yielding comparable depletions of carbon-chain molecules as with the original surface of the nucleus, we can conclusively state that carbon-chain depletion is not caused by evolution of the surface, and so must instead reflect the primordial composition at the time and location that the comet accreted. A comparison of production rates for CN implies that component C in 2006 had returned to nearly the same rate of gas vaporization as it had at similar heliocentric distances in 1990. These and other results will be presented. This research is supported by NASA's Planetary Astronomy Program.
Variola virus immune evasion design: expression of a highly efficient inhibitor of human complement.
Rosengard, Ariella M; Liu, Yu; Nie, Zhiping; Jimenez, Robert
2002-06-25
Variola virus, the most virulent member of the genus Orthopoxvirus, specifically infects humans and has no other animal reservoir. Variola causes the contagious disease smallpox, which has a 30-40% mortality rate. Conversely, the prototype orthopoxvirus, vaccinia, causes no disease in immunocompetent humans and was used in the global eradication of smallpox, which ended in 1977. However, the threat of smallpox persists because clandestine stockpiles of variola still exist. Although variola and vaccinia share remarkable DNA homology, the strict human tropism of variola suggests that its proteins are better suited than those of vaccinia to overcome the human immune response. Here, we demonstrate the functional advantage of a variola complement regulatory protein over that of its vaccinia homologue. Because authentic variola proteins are not available for study, we molecularly engineered and characterized the smallpox inhibitor of complement enzymes (SPICE), a homologue of a vaccinia virulence factor, vaccinia virus complement control protein (VCP). SPICE is nearly 100-fold more potent than VCP at inactivating human C3b and 6-fold more potent at inactivating C4b. SPICE is also more human complement-specific than is VCP. By inactivating complement components, SPICE serves to inhibit the formation of the C3/C5 convertases necessary for complement-mediated viral clearance. SPICE provides the first evidence that variola proteins are particularly adept at overcoming human immunity, and the decreased function of VCP suggests one reason why the vaccinia virus vaccine was associated with relatively low mortality. Disabling SPICE may be therapeutically useful if smallpox reemerges.
Variola virus immune evasion design: Expression of a highly efficient inhibitor of human complement
Rosengard, Ariella M.; Liu, Yu; Nie, Zhiping; Jimenez, Robert
2002-01-01
Variola virus, the most virulent member of the genus Orthopoxvirus, specifically infects humans and has no other animal reservoir. Variola causes the contagious disease smallpox, which has a 30–40% mortality rate. Conversely, the prototype orthopoxvirus, vaccinia, causes no disease in immunocompetent humans and was used in the global eradication of smallpox, which ended in 1977. However, the threat of smallpox persists because clandestine stockpiles of variola still exist. Although variola and vaccinia share remarkable DNA homology, the strict human tropism of variola suggests that its proteins are better suited than those of vaccinia to overcome the human immune response. Here, we demonstrate the functional advantage of a variola complement regulatory protein over that of its vaccinia homologue. Because authentic variola proteins are not available for study, we molecularly engineered and characterized the smallpox inhibitor of complement enzymes (SPICE), a homologue of a vaccinia virulence factor, vaccinia virus complement control protein (VCP). SPICE is nearly 100-fold more potent than VCP at inactivating human C3b and 6-fold more potent at inactivating C4b. SPICE is also more human complement-specific than is VCP. By inactivating complement components, SPICE serves to inhibit the formation of the C3/C5 convertases necessary for complement-mediated viral clearance. SPICE provides the first evidence that variola proteins are particularly adept at overcoming human immunity, and the decreased function of VCP suggests one reason why the vaccinia virus vaccine was associated with relatively low mortality. Disabling SPICE may be therapeutically useful if smallpox reemerges. PMID:12034872
C1q complement component and -antibodies reflect SLE activity and kidney involvement.
Horák, P; Hermanová, Z; Zadrazil, J; Ciferská, H; Ordeltová, M; Kusá, L; Zurek, M; Tichý, T
2006-07-01
The role of the complement system in the pathogenesis of systemic diseases is very ambivalent. In systemic lupus erythematosus (SLE), many abnormalities in the activation of the complement system have been reported. The most important antibodies formed against the complement system in SLE are the ones associated with the C1q component. The aim of this study was to assess separately the anti-C1q antibodies and C1q component in the serum from 65 patients with SLE, then in individuals with (n=33) and without (n=32) lupus nephritis and with active (n=36) and nonactive (n=29) form of the disease (European Consensus Lupus Activity Measurement, ECLAM>3, ECLAM
El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Chung, S P; Diem, T H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K
2012-02-01
Oxidative stress-energy depletion therapy using oxidative stress induced by D-amino acid oxidase (DAO) and energy depletion induced by 3-bromopyruvate (3BP) was reported recently (El Sayed et al., Cancer Gene Ther., 19, 1-18, 2012). Even in the presence of oxygen, cancer cells oxidize glucose preferentially to produce lactate (Warburg effect) which seems vital for cancer microenvironment and progression. 3BP is a closely related structure to lactate and pyruvate and may antagonize their effects as a novel mechanism of its action. Pyruvate exerted a potent H(2)O(2) scavenging effect to exogenous H(2)O(2), while lactate had no scavenging effect. 3BP induced H(2)O(2) production. Pyruvate protected against H(2)O(2)-induced C6 glioma cell death, 3BP-induced C6 glioma cell death but not against DAO/D-serine-induced cell death, while lactate had no protecting effect. Lactate and pyruvate protected against 3BP-induced C6 glioma cell death and energy depletion which were overcome with higher doses of 3BP. Lactate and pyruvate enhanced migratory power of C6 glioma which was blocked by 3BP. Pyruvate and lactate did not protect against C6 glioma cell death induced by other glycolytic inhibitors e.g. citrate (inhibitor of phosphofructokinase) and sodium fluoride (inhibitor of enolase). Serial doses of 3BP were synergistic with citrate in decreasing viability of C6 glioma cells and spheroids. Glycolysis subjected to double inhibition using 3BP with citrate depleted ATP, clonogenic power and migratory power of C6 glioma cells. 3BP induced a caspase-dependent cell death in C6 glioma. 3BP was powerful in decreasing viability of human glioblastoma multiforme cells (U373MG) and C6 glioma in a dose- and time-dependent manner.
The role of complement system in septic shock.
Charchaflieh, Jean; Wei, Jiandong; Labaze, Georges; Hou, Yunfang Joan; Babarsh, Benjamin; Stutz, Helen; Lee, Haekyung; Worah, Samrat; Zhang, Ming
2012-01-01
Septic shock is a critical clinical condition with a high mortality rate. A better understanding of the underlying mechanisms is important to develop effective therapies. Basic and clinical studies suggest that activation of complements in the common cascade, for example, complement component 3 (C3) and C5, is involved in the development of septic shock. The involvement of three upstream complement pathways in septic shock is more complicated. Both the classical and alternative pathways appear to be activated in septic shock, but the alternative pathway may be activated earlier than the classical pathway. Activation of these two pathways is essential to clear endotoxin. Recent investigations have shed light on the role of lectin complement pathway in septic shock. Published reports suggest a protective role of mannose-binding lectin (MBL) against sepsis. Our preliminary study of MBL-associated serine protease-2 (MASP-2) in septic shock patients indicated that acute decrease of MASP-2 in the early phase of septic shock might correlate with in-hospital mortality. It is unknown whether excessive activation of these three upstream complement pathways may contribute to the detrimental effects in septic shock. This paper also discusses additional complement-related pathogenic mechanisms and intervention strategies for septic shock.
Protection against Chlamydia psittaci in mice conferred by Lyt-2+ T cells.
Buzoni-Gatel, D; Guilloteau, L; Bernard, F; Bernard, S; Chardès, T; Rocca, A
1992-01-01
A murine model was used to study the respective roles of L3T4+ and Lyt-2+ T cells in protection against Chlamydia psittaci. Donor mice were intravenously (i.v.) infected with 1 x 10(5) plaque-forming units (PFU) per mice of live C. psittaci. One month after inoculation, splenic cells from donors were transferred into syngenic recipients (5 x 10(7) cells/mouse). As measured by splenic colonization on Day 6 after i.v. challenge (1 x 10(5) PFU/mouse), transfer with primed (untreated) cells conferred a 3 log protection in this model. In vitro treatment, before transfer, of splenic cells with anti-Lyt-2 monoclonal antibody (mAb) and complement, markedly impaired the protection in comparison with control mice transferred with primed untreated cells, whereas treatment with anti-L3T4 mAb did not reduce the transferred protection. Resistance to a reinfection with C. psittaci was also studied after selective in vivo depletion of L3T4+ and Lyt-2+ T cells. One month after primary infection, mice were treated with anti-L3T4 or anti-Lyt-2 mAb and challenged thereafter (i.v., 1 x 10(5) PFU). The splenic colonization on Day 6 after challenge demonstrated that treatment with anti-Lyt-2 mAb impaired resistance against a subsequent infection with C. psittaci. Treatment with anti-L3T4 mAb in vivo had no effect on protection, as previously described in vitro. The mechanisms by which Lyt-2+ T cells could participate in the elimination of bacteria were discussed. PMID:1427980
Agarwal, Sarika; Specht, Charles A; Haibin, Huang; Ostroff, Gary R; Ram, Sanjay; Rice, Peter A; Levitz, Stuart M
2011-01-01
Fungal cell walls are predominantly composed of glucans, mannans, and chitin. Recognition of these glycans by the innate immune system is a critical component of host defenses against the mycoses. Complement, an important arm of innate immunity, plays a significant role in fungal pathogenesis, especially the alternative pathway (AP). Here we determine that the glycan monosaccharide composition and glycosidic linkages affect AP activation and C3 deposition. Furthermore, properdin, a positive regulator of the AP, contributes to these functions. AP activation by glycan particles that varied in composition and linkage was measured by C3a generation in serum treated with 10 mM EGTA and 10 mM Mg(2+) (Mg-EGTA-treated serum) (AP specific; properdin functional) or Mg-EGTA-treated serum that lacked functional properdin. Particles that contained either β1→3 or β1→6 glucans or both generated large and similar amounts of C3a when the AP was intact. Blocking properdin function resulted in 5- to 10-fold-less C3a production by particulate β1→3 glucans. However, particulate β1→6 glucans generated C3a via the AP only in the presence of intact properdin. Interestingly, zymosan and glucan-mannan particles (GMP), which contain both β-glucans and mannans, also required properdin to generate C3a. The β1→4 glycans chitin and chitosan minimally activated C3 even when properdin was functional. Finally, properdin binding to glucan particles (GP) and zymosan in serum required active C3. Properdin colocalized with bound C3, suggesting that in the presence of serum, properdin bound indirectly to glycans through C3 convertases. These findings provide a better understanding of how properdin facilitates AP activation by fungi through interaction with the cell wall components. Invasive fungal infections have increased in incidence with the widespread use of immunosuppressive therapy and invasive procedures. Activation of the complement system contributes to innate immunity against fungi by generating chemoattractants that recruit white blood cells and by coating the pathogen with complement fragments that "mark" them for phagocytosis. The fungal cell wall activates complement in an antibody-independent manner through the alternative pathway (AP). Properdin is a positive regulator of the AP. This study elucidates how the specificity of cell wall glycan linkages affects AP activation and the role properdin plays in this process. Particulate β1→3 glucans activated the AP even in the absence of properdin, while β1→6 glucans required properdin for AP activation. In contrast, the β1→4 glycans chitin and chitosan failed to activate the AP. These findings enhance our mechanistic understanding of how fungi activate complement and have implications for the use of glycans in biomedical applications.
Depressed spontaneous cell-mediated cytotoxicity in Crohn's disease.
Beeken, W L; Macpherson, B R; Gundel, R M; St Andre-Ukena, S; Wood, S G; Sylwester, D L
1983-02-01
Cytotoxicity of peripheral blood mononuclear cells of 30 patients with Crohn's disease (CD) and 30 matched controls was assayed by measuring isotope release from 75Se-L-methionine labelled RPMI 4788 human colon cancer cells. Effector populations were studied with and without monocyte depletion after 4 and 24 hr incubations in 10% fetal calf serum or autologous serum or plasma. Cytotoxicity was negligible at 4 hr. Twenty-four hour cytotoxicity was consistently lower in CD patients than in healthy controls, mean values ranging from 13.6 +/- 2.7% (s.e.m.) to 19.5 +/- 3.7% in patients and from 27.2 +/- 4.1% to 33.6 +/- 5.3% in controls. Cytotoxicity of disease controls was not significantly different from that of healthy subjects. Cytotoxicity was reduced by monocyte depletion, was weakly and inversely related to disease activity, was relatively stable for up to 24 months and was not HLA restricted. Cell lysis was attributable to spontaneous cell-mediated cytotoxicity. Antibody-dependent cellular cytotoxicity and antibody-complement-dependent cytotoxicity were not detected.
Depressed spontaneous cell-mediated cytotoxicity in Crohn's disease.
Beeken, W L; Macpherson, B R; Gundel, R M; St Andre-Ukena, S; Wood, S G; Sylwester, D L
1983-01-01
Cytotoxicity of peripheral blood mononuclear cells of 30 patients with Crohn's disease (CD) and 30 matched controls was assayed by measuring isotope release from 75Se-L-methionine labelled RPMI 4788 human colon cancer cells. Effector populations were studied with and without monocyte depletion after 4 and 24 hr incubations in 10% fetal calf serum or autologous serum or plasma. Cytotoxicity was negligible at 4 hr. Twenty-four hour cytotoxicity was consistently lower in CD patients than in healthy controls, mean values ranging from 13.6 +/- 2.7% (s.e.m.) to 19.5 +/- 3.7% in patients and from 27.2 +/- 4.1% to 33.6 +/- 5.3% in controls. Cytotoxicity of disease controls was not significantly different from that of healthy subjects. Cytotoxicity was reduced by monocyte depletion, was weakly and inversely related to disease activity, was relatively stable for up to 24 months and was not HLA restricted. Cell lysis was attributable to spontaneous cell-mediated cytotoxicity. Antibody-dependent cellular cytotoxicity and antibody-complement-dependent cytotoxicity were not detected. PMID:6601555
Harder, Jeffrey M; Braine, Catherine E; Williams, Pete A; Zhu, Xianjun; MacNicoll, Katharine H; Sousa, Gregory L; Buchanan, Rebecca A; Smith, Richard S; Libby, Richard T; Howell, Gareth R; John, Simon W M
2017-05-09
Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wld s allele, which protects from axon dysfunction. We demonstrate that DBA/2J .Wld s mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J .Wld s mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J. Wld s mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma.
Harder, Jeffrey M.; Braine, Catherine E.; Williams, Pete A.; Zhu, Xianjun; MacNicoll, Katharine H.; Sousa, Gregory L.; Buchanan, Rebecca A.; Smith, Richard S.; Howell, Gareth R.; John, Simon W. M.
2017-01-01
Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wlds allele, which protects from axon dysfunction. We demonstrate that DBA/2J.Wlds mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J.Wlds mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J.Wlds mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma. PMID:28446616
Seo, Hyo Won; Hung, Tran Manh; Na, MinKyun; Jung, Hyun Ju; Kim, Jin Cheol; Choi, Jae Sue; Kim, Jung Hee; Lee, Hyeong-Kyu; Lee, IkSoo; Bae, KiHwan; Hattori, Masao; Min, Byung Sun
2009-11-01
To determine the anti-complement activity of natural triterpenes, chromatographic separation of the EtOAc-soluble fraction from the fruiting body of Ganoderma lucidum led to the isolation of three steroids and five triterpenoids. They were identified as ergosterol peroxide (1), ergosterol (2), genoderic acid Sz (3), stella sterol (4), ganoderic aic C1 (5), ganoderic acid A (6), methyl ganoderate A (7), and lucidenic acid A (8) based on spectroscopic evidence and physicochemical properties. These compounds were examined for their anti-complement activity against the classical pathway of the complement system. Compounds 2 and 3 showed potent anti-complement activity with IC50 values of 52.0 and 44.6 microM, respectively. Compound 1 exhibited significant inhibitory activity with an IC50 value of 126.8 microM, whereas compounds 4-8 were inactive. Our findings suggested that in addition to the ketone group at C-3, the delta7(8), delta9(11)-lanostadiene type triterpene also plays an important role in inhibiting the hemolytic activity of human serum against erythrocytes.
Scanlon, Bridget R.; Reedy, Robert C.; Faunt, Claudia; Pool, Donald R.; Uhlman, Kristine;
2016-01-01
Projected longer‐term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (Managed Aquifer Recharge, MAR). Unique multi‐decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ~44 km3 in the Central Valley and by ~100 km3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km3/yr, CU) or is used to recharge groundwater (MAR, ≤1.5 km3/yr) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water‐level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in Active Management Areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0 – 1.6 km3/yr, 2000–2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi‐year storage, complementing shorter term surface reservoir storage, and facilitating water markets.
Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration
Haynes, Tracy; Luz-Madrigal, Agustin; Reis, Edimara S.; Echeverri Ruiz, Nancy P.; Grajales-Esquivel, Erika; Tzekou, Apostolia; Tsonis, Panagiotis A.; Lambris, John D.; Del Rio-Tsonis, Katia
2013-01-01
Identifying the initiation signals for tissue regeneration in vertebrates is one of the major challenges in regenerative biology. Much of the research thus far has indicated that certain growth factors have key roles. Here we show that complement fragment C3a is sufficient to induce complete regeneration of the embryonic chick retina from stem/progenitor cells present in the eye, independent of fibroblast growth factor receptor signaling. Instead, C3a induces retina regeneration via STAT3 activation, which in turn activates the injury- and inflammation-responsive factors, IL-6, IL-8 and TNF-α. This activation sets forth regulation of Wnt2b, Six3 and Sox2, genes associated with retina stem and progenitor cells. Thus, our results establish a mechanism for retina regeneration based on injury and inflammation signals. Furthermore, our results indicate a unique function for complement anaphylatoxins that implicate these molecules in the induction and complete regeneration of the retina, opening new avenues of experimentation in the field. PMID:23942241
Persistent complement activation on tumor cells in breast cancer.
Niculescu, F.; Rus, H. G.; Retegan, M.; Vlaicu, R.
1992-01-01
The neoantigens of the C5b-9 complement complex, IgG, C3, C4, S-protein/vitronectin, fibronectin, and macrophages were localized on 17 samples of breast cancer and on 6 samples of benign breast tumors using polyclonal or monoclonal antibodies and the streptavidin-biotin-peroxidase technique. All the tissue samples with carcinoma in each the TNM stages presented C5b-9 deposits on the membranes of tumor cells, thin granules on cell remnants, and diffuse deposits in the necrotic areas. When chemotherapy and radiation therapy preceded surgery, C5b-9 deposits were more intense and extended. The C5b-9 deposits were absent in all the samples with benign lesions. S-protein/vitronectin was present as fibrillar deposits in the connective tissue matrix and as diffuse deposits around the tumor cells, less intense and extended than fibronectin. IgG, C3, and C4 deposits were present only in carcinoma samples. The presence of C5b-9 deposits is indicative of complement activation and its subsequent pathogenetic effects in breast cancer. Images Figure 1 PMID:1374587
Villiers, M B; Villiers, C L; Jacquier-Sarlin, M R; Gabert, F M; Journet, A M; Colomb, M G
1996-01-01
Antigen opsonization by the C3b fragment of complement is a significant event in the modulation of cell-mediated immune response, but its mechanism is still largely unknown. The structural characteristics of C3b allow it to act as a bifunctional ligand between antigen and cells via their membrane C3b receptors. It was thus of interest to study the influence of the covalent link between C3b and antigen on the fixation and internalization of this antigen by antigen-presenting cells. Tetanus toxin (TT) was used as antigen, either free or covalently linked to C3b (TT-C3b). The antigen-presenting cells were TT-specific (4.2) or non-specific (BL15) Epstein-Barr virus (EBV)-transformed B cells. C3b was found to play an important role in antigen fixation and internalization by both antigen-specific and antigen non-specific cells. Covalent binding of C3b on TT (1) permitted fixation and internalization of this antigen by non-specific cells via their complement receptors; (2) enhanced antigen fixation and resulted in cross-linking between membrane immunoglobulins and complement receptors on antigen-specific cells. The consequences of covalent C3b binding to TT were analysed using antigen-specific and antigen-nonspecific cells. In both cases, a net increase in antigen fixation was observed. At the intracellular level, covalent C3b binding to TT resulted in a large TT incorporation in endosomes of nonspecific cells, similar to that observed in antigen-specific cells. Thus, C3b covalently linked to antigen enlarges the array of B-cell types capable of presenting antigen, including non-specific cells. Images Figure 2 PMID:8958046
Electrostatic Steering Accelerates C3d:CR2 Association.
Mohan, Rohith R; Huber, Gary A; Morikis, Dimitrios
2016-08-25
Electrostatic effects are ubiquitous in protein interactions and are found to be pervasive in the complement system as well. The interaction between complement fragment C3d and complement receptor 2 (CR2) has evolved to become a link between innate and adaptive immunity. Electrostatic interactions have been suggested to be the driving factor for the association of the C3d:CR2 complex. In this study, we investigate the effects of ionic strength and mutagenesis on the association of C3d:CR2 through Brownian dynamics simulations. We demonstrate that the formation of the C3d:CR2 complex is ionic strength-dependent, suggesting the presence of long-range electrostatic steering that accelerates the complex formation. Electrostatic steering occurs through the interaction of an acidic surface patch in C3d and the positively charged CR2 and is supported by the effects of mutations within the acidic patch of C3d that slow or diminish association. Our data are in agreement with previous experimental mutagenesis and binding studies and computational studies. Although the C3d acidic patch may be locally destabilizing because of unfavorable Coulombic interactions of like charges, it contributes to the acceleration of association. Therefore, acceleration of function through electrostatic steering takes precedence to stability. The site of interaction between C3d and CR2 has been the target for delivery of CR2-bound nanoparticle, antibody, and small molecule biomarkers, as well as potential therapeutics. A detailed knowledge of the physicochemical basis of C3d:CR2 association may be necessary to accelerate biomarker and drug discovery efforts.
RhoC and ROCKs regulate cancer cell interactions with endothelial cells.
Reymond, Nicolas; Im, Jae Hong; Garg, Ritu; Cox, Susan; Soyer, Magali; Riou, Philippe; Colomba, Audrey; Muschel, Ruth J; Ridley, Anne J
2015-06-01
RhoC is a member of the Rho GTPase family that is implicated in cancer progression by stimulating cancer cell invasiveness. Here we report that RhoC regulates the interaction of cancer cells with vascular endothelial cells (ECs), a crucial step in the metastatic process. RhoC depletion by RNAi reduces PC3 prostate cancer cell adhesion to ECs, intercalation between ECs as well as transendothelial migration in vitro. Depletion of the kinases ROCK1 and ROCK2, two known RhoC downstream effectors, similarly decreases cancer interaction with ECs. RhoC also regulates the extension of protrusions made by cancer cells on vascular ECs in vivo. Transient RhoC depletion is sufficient to reduce both early PC3 cell retention in the lungs and experimental metastasis formation in vivo. Our results indicate RhoC plays a central role in cancer cell interaction with vascular ECs, which is a critical event for cancer progression. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Kaufman, T S; Srivastava, R P; Sindelar, R D; Scesney, S M; Marsh, H C
1995-04-28
The terpenoid 6,7-diformyl-3',4',4a',5',6',7',8',8a'-octahydro-4,6',7'-trihydrox y-2',5',5', 8a'-tetramethylspiro[1'(2'H)-naphthalene-2(3H)-benzofuran] (1a; K-76), a natural product of fungal origin, and its monocarboxylate sodium salt 1c (R = COONa; K-76COONa) inhibit the classical and alternative pathways of complement, and 1c was shown to inhibit the classical pathway at the C5 activation step. In an attempt to elucidate the essential pharmacophore of 1a,c, the natural product was used as a "topographical model" for the design of partial analogs retaining the desired complement inhibiting potency. Therefore, A/C/D-ring analogs have been synthesized, as shown in Scheme 1 using 3-methoxyphenol (3) and limonene chloride (5) as starting materials, which contain functional groups similar to those found on the natural product. The use of (4R)-(+)- and (4S)(-)-limonene chloride (5a,b, respectively) provided two series of compounds differing in the stereochemistry of the C-4 chiral center (limonene moiety numbering). The in vitro assay results of the inhibition of anaphylatoxin production and classical complement-mediated hemolysis revealed that 7-carboxy-2-(R,S)-methyl-2-(1'-methylcyclohexen-(4'R)-yl)-4-met hoxybenzofuran (13a) and 7-carboxy-2-(R,S)-methyl-2-(1'-methylcyclohexen-(4'S)-yl)-4-met hoxybenzofuran (13b) were active in the same range of concentrations as the natural product.
Nicolay, Nils H; Carter, Rebecca; Hatch, Stephanie B; Schultz, Niklas; Prevo, Remko; McKenna, W Gillies; Helleday, Thomas; Sharma, Ricky A
2012-11-01
DNA polymerase eta (pol η) is the only DNA polymerase causally linked to carcinogenesis in humans. Inherited deficiency of pol η in the variant form of xeroderma pigmentosum (XPV) predisposes to UV-light-induced skin cancer. Pol η-deficient cells demonstrate increased sensitivity to cisplatin and oxaliplatin chemotherapy. We have found that XP30R0 fibroblasts derived from a patient with XPV are more resistant to cell kill by ionising radiation (IR) than the same cells complemented with wild-type pol η. This phenomenon has been confirmed in Burkitt's lymphoma cells, which either expressed wild-type pol η or harboured a pol η deletion. Pol η deficiency was associated with accumulation of cells in S-phase, which persisted after IR. Cells deficient in pol η demonstrated increased homologous recombination (HR)-directed repair of double strand breaks created by IR. Depletion of the HR protein, X-ray repair cross-complementing protein 3 (XRCC3), abrogated the radioresistance observed in pol η-deficient cells as compared with pol η-complemented cells. These findings suggest that HR mediates S-phase-dependent radioresistance associated with pol η deficiency. We propose that pol η protein levels in tumours may potentially be used to identify patients who require treatment with chemo-radiotherapy rather than radiotherapy alone for adequate tumour control.
Trichinella spiralis Calreticulin Binds Human Complement C1q As an Immune Evasion Strategy.
Zhao, Limei; Shao, Shuai; Chen, Yi; Sun, Ximeng; Sun, Ran; Huang, Jingjing; Zhan, Bin; Zhu, Xinping
2017-01-01
As a multicellular parasitic nematode, Trichinella spiralis regulates host immune responses by producing a variety of immunomodulatory molecules to escape from host immune attack, but the mechanisms underlying the immune evasion are not well understood. Here, we identified that T. spiralis calreticulin ( Ts -CRT), a Ca 2+ -binding protein, facilitated T. spiralis immune evasion by interacting with the first component of human classical complement pathway, C1q. In the present study, Ts -CRT was found to be expressed on the surface of different developmental stages of T. spiralis as well as in the secreted products of adult and muscle larval worms. Functional analysis identified that Ts -CRT was able to bind to human C1q, resulting in the inhibition of C1q-initiated complement classical activation pathway reflected by reduced C4/C3 generation and C1q-dependent lysis of antibody-sensitized sheep erythrocytes. Moreover, recombinant Ts -CRT (r Ts -CRT) binding to C1q suppressed C1q-induced THP-1-derived macrophages chemotaxis and reduced monocyte-macrophages release of reactive oxygen intermediates (ROIs). Blocking Ts -CRT on the surface of newborn larvae (NBL) of T. spiralis with anti- Ts -CRT antibody increased the C1q-mediated adherence of monocyte-macrophages to larvae and impaired larval infectivity. All of these results suggest that T. spiralis -expressed Ts -CRT plays crucial roles in T. spiralis immune evasion and survival in host mostly by directly binding to host complement C1q, which not only reduces C1q-mediated activation of classical complement pathway but also inhibits the C1q-induced non-complement activation of macrophages.
Trichinella spiralis Calreticulin Binds Human Complement C1q As an Immune Evasion Strategy
Zhao, Limei; Shao, Shuai; Chen, Yi; Sun, Ximeng; Sun, Ran; Huang, Jingjing; Zhan, Bin; Zhu, Xinping
2017-01-01
As a multicellular parasitic nematode, Trichinella spiralis regulates host immune responses by producing a variety of immunomodulatory molecules to escape from host immune attack, but the mechanisms underlying the immune evasion are not well understood. Here, we identified that T. spiralis calreticulin (Ts-CRT), a Ca2+-binding protein, facilitated T. spiralis immune evasion by interacting with the first component of human classical complement pathway, C1q. In the present study, Ts-CRT was found to be expressed on the surface of different developmental stages of T. spiralis as well as in the secreted products of adult and muscle larval worms. Functional analysis identified that Ts-CRT was able to bind to human C1q, resulting in the inhibition of C1q-initiated complement classical activation pathway reflected by reduced C4/C3 generation and C1q-dependent lysis of antibody-sensitized sheep erythrocytes. Moreover, recombinant Ts-CRT (rTs-CRT) binding to C1q suppressed C1q-induced THP-1-derived macrophages chemotaxis and reduced monocyte–macrophages release of reactive oxygen intermediates (ROIs). Blocking Ts-CRT on the surface of newborn larvae (NBL) of T. spiralis with anti-Ts-CRT antibody increased the C1q-mediated adherence of monocyte–macrophages to larvae and impaired larval infectivity. All of these results suggest that T. spiralis-expressed Ts-CRT plays crucial roles in T. spiralis immune evasion and survival in host mostly by directly binding to host complement C1q, which not only reduces C1q-mediated activation of classical complement pathway but also inhibits the C1q-induced non-complement activation of macrophages. PMID:28620388
Geerlings, M J; Volokhina, E B; de Jong, E K; van de Kar, N; Pauper, M; Hoyng, C B; van den Heuvel, L P; den Hollander, A I
2018-06-11
Genetic alterations in the complement system have been linked to a variety of diseases, including atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathy (C3G), and age-related macular degeneration (AMD). We performed sequence analysis of the complement genes CFH, CFI, and C3 in 866 aHUS/C3G and 697 AMD patients. In total we identified 505 low frequency alleles, representing 121 unique variants, of which 51 are novel. CFH contained the largest number of unique low frequency variants (n=64; 53%), followed by C3 (n=32; 26%) and CFI (n=25; 21%). A substantial number of variants were found in both patients groups (n=48; 40%), while 41 (34%) variants were found only in aHUS/C3G and 32 (26%) variants were AMD-specific. Genotype-phenotype correlations between the disease groups identified a higher frequency of protein-altering alleles in SCR20 of Factor H (FH), and in the serine protease domain of Factor I (FI) in aHUS/C3G patients. In AMD a higher frequency of protein-altering alleles was observed in SCR3, SCR5 and SCR7 of FH, the SRCR domain of FI, and in the MG3 domain of C3. In conclusion, we observed a substantial overlap of variants between aHUS/C3G and AMD, however, there is a distinct clustering of variants within specific domains. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The Action of Red Cell Calcium Ions on Human Erythrophagocytosis in Vitro
Romero, Pedro J.; Hernández-Chinea, Concepción
2017-01-01
In the present work we have studied in vitro the effect of increasing red cell Ca2+ ions on human erythrophagocytosis by peripheral monocyte-derived autologous macrophages. In addition, the relative contribution to phagocytosis of phosphatidylserine exposure, autologous IgG binding, complement deposition and Gárdos channel activity was also investigated. Monocytes were obtained after ficoll-hypaque fractionation and induced to transform by adherence to glass coverslips, for 24 h at 37°C in a RPMI medium, containing 10% fetal calf serum. Red blood cells (RBC) were loaded with Ca2+ using 10 μM A23187 and 1 mM Ca-EGTA buffers, in the absence of Mg2+. Ca2+-loaded cells were transferred to above coverslips and incubated for 2 h at 37°C under various experimental conditions, after which phagocytosis was assessed by light microscopy. Confirming earlier findings, phagocytosis depended on internal Ca2+. Accordingly; it was linearly raised from about 2–15% by increasing the free Ca2+ content of the loading solution from 0.5 to 20 μM, respectively. Such a linear increase was virtually doubled by the presence of 40% autologous serum. At 7 μM Ca2+, the phagocytosis degree attained with serum was practically equal to that obtained with either 2 mg/ml affinity-purified IgG or 40% IgG-depleted serum. However, phagocytosis was reduced to levels found with Ca2+ alone when IgG-depleted serum was inactivated by heat, implying an involvement of complement. On the other hand, phagocytosis in the absence of serum was markedly reduced by preincubating macrophages with phosphatidylserine-containing liposomes. In contrast, a similar incubation in the presence of serum affected it partially whereas employing liposomes made only of phosphatidylcholine essentially had no effect. Significantly, the Gárdos channel inhibitors clotrimazole (2 μM) and TRAM-34 (100 nM) fully blocked serum-dependent phagocytosis. These findings show that a raised internal Ca2+ promotes erythrophagocytosis by independently triggering phosphatidylserine externalization, complement deposition and IgG binding. Serum appeared to stimulate phagocytosis in a way dependent on Gárdos activity. It seems likely that Ca2+ promoted IgG-binding to erythrocytes via Gárdos channel activation. This can be an important signal for clearance of senescent human erythrocytes under physiological conditions. PMID:29255426
The Action of Red Cell Calcium Ions on Human Erythrophagocytosis in Vitro.
Romero, Pedro J; Hernández-Chinea, Concepción
2017-01-01
In the present work we have studied in vitro the effect of increasing red cell Ca 2+ ions on human erythrophagocytosis by peripheral monocyte-derived autologous macrophages. In addition, the relative contribution to phagocytosis of phosphatidylserine exposure, autologous IgG binding, complement deposition and Gárdos channel activity was also investigated. Monocytes were obtained after ficoll-hypaque fractionation and induced to transform by adherence to glass coverslips, for 24 h at 37°C in a RPMI medium, containing 10% fetal calf serum. Red blood cells (RBC) were loaded with Ca 2+ using 10 μM A23187 and 1 mM Ca-EGTA buffers, in the absence of Mg 2+ . Ca 2+ -loaded cells were transferred to above coverslips and incubated for 2 h at 37°C under various experimental conditions, after which phagocytosis was assessed by light microscopy. Confirming earlier findings, phagocytosis depended on internal Ca 2+ . Accordingly; it was linearly raised from about 2-15% by increasing the free Ca 2+ content of the loading solution from 0.5 to 20 μM, respectively. Such a linear increase was virtually doubled by the presence of 40% autologous serum. At 7 μM Ca 2+ , the phagocytosis degree attained with serum was practically equal to that obtained with either 2 mg/ml affinity-purified IgG or 40% IgG-depleted serum. However, phagocytosis was reduced to levels found with Ca 2+ alone when IgG-depleted serum was inactivated by heat, implying an involvement of complement. On the other hand, phagocytosis in the absence of serum was markedly reduced by preincubating macrophages with phosphatidylserine-containing liposomes. In contrast, a similar incubation in the presence of serum affected it partially whereas employing liposomes made only of phosphatidylcholine essentially had no effect. Significantly, the Gárdos channel inhibitors clotrimazole (2 μM) and TRAM-34 (100 nM) fully blocked serum-dependent phagocytosis. These findings show that a raised internal Ca 2+ promotes erythrophagocytosis by independently triggering phosphatidylserine externalization, complement deposition and IgG binding. Serum appeared to stimulate phagocytosis in a way dependent on Gárdos activity. It seems likely that Ca 2+ promoted IgG-binding to erythrocytes via Gárdos channel activation. This can be an important signal for clearance of senescent human erythrocytes under physiological conditions.
NASA Astrophysics Data System (ADS)
Chen, Zhong; Zhou, Zunchun; Yang, Aifu; Dong, Ying; Guan, Xiaoyan; Jiang, Bei; Wang, Bai
2015-12-01
The complement system plays a crucial role in the innate immune system of animals. It can be activated by distinct yet overlapping classical, alternative and lectin pathways. In the alternative pathway, complement factor B (Bf) serves as the catalytic subunit of complement component 3 (C3) convertase, which plays the central role among three activation pathways. In this study, the Bf gene in sea cucumber ( Apostichopus japonicus), termed AjBf, was obtained by rapid amplification of cDNA ends (RACE). The full-length cDNA of AjBf was 3231 bp in length barring the poly (A) tail. It contained an open reading frame (ORF) of 2742 bp encoding 913 amino acids, a 105 bp 5'-UTR (5'-terminal untranslated region) and a 384 bp 3'-UTR. AjBf was a mosaic protein with six CCP (complement control protein) domains, a VWA (von Willebrand factor A) domain, and a serine protease domain. The deduced molecular weight of AjBf protein was 101 kDa. Quantitative real time PCR (qRT-PCR) analysis indicated that the expression level of AjBf in A. japonicus was obviously higher at larval stage than that at embryonic stage. Expression detection in different tissues showed that AjBf expressed higher in coelomocytes than in other four tissues. In addation, AjBf expression in different tissues was induced significantly after LPS or PolyI:C challenge. These results indicated that AjBf plays an important role in immune responses to pathogen infection.
Dodds, A W; Smith, S L; Levine, R P; Willis, A C
1998-01-01
Complement components C3 and C4 have been isolated from the serum of the nurse shark (Ginglymostoma cirratum) and of the channel catfish (Ictalurus punctatus). As in the higher vertebrates, the fish C4 proteins have three-chain structures while the C3 proteins have two-chain structures. All four proteins have intra-chain thioesters located within their highest molecular mass polypeptides. N-terminal sequence analysis of the polypeptides has confirmed the identity of the proteins. In all cases except the catfish C3 alpha-chain, which appears to have a blocked N-terminus, sequence similarities are apparent in comparisons with the chains of C3 and C4 from higher vertebrates. We have confirmed that the activity/protein previously designated C2n is the nurse shark analogue of mammalian C4. This is the first report of structural evidence for C4 in both the bony and cartilaginous fish.
McGonigal, Rhona; Cunningham, Madeleine E; Yao, Denggao; Barrie, Jennifer A; Sankaranarayanan, Sethu; Fewou, Simon N; Furukawa, Koichi; Yednock, Ted A; Willison, Hugh J
2016-03-02
Guillain-Barré syndrome (GBS) is an autoimmune disease that results in acute paralysis through inflammatory attack on peripheral nerves, and currently has limited, non-specific treatment options. The pathogenesis of the acute motor axonal neuropathy (AMAN) variant is mediated by complement-fixing anti-ganglioside antibodies that directly bind and injure the axon at sites of vulnerability such as nodes of Ranvier and nerve terminals. Consequently, the complement cascade is an attractive target to reduce disease severity. Recently, C5 complement component inhibitors that block the formation of the membrane attack complex and subsequent downstream injury have been shown to be efficacious in an in vivo anti-GQ1b antibody-mediated mouse model of the GBS variant Miller Fisher syndrome (MFS). However, since gangliosides are widely expressed in neurons and glial cells, injury in this model was not targeted exclusively to the axon and there are currently no pure mouse models for AMAN. Additionally, C5 inhibition does not prevent the production of early complement fragments such as C3a and C3b that can be deleterious via their known role in immune cell and macrophage recruitment to sites of neuronal damage. In this study, we first developed a new in vivo transgenic mouse model of AMAN using mice that express complex gangliosides exclusively in neurons, thereby enabling specific targeting of axons with anti-ganglioside antibodies. Secondly, we have evaluated the efficacy of a novel anti-C1q antibody (M1) that blocks initiation of the classical complement cascade, in both the newly developed anti-GM1 antibody-mediated AMAN model and our established MFS model in vivo. Anti-C1q monoclonal antibody treatment attenuated complement cascade activation and deposition, reduced immune cell recruitment and axonal injury, in both mouse models of GBS, along with improvement in respiratory function. These results demonstrate that neutralising C1q function attenuates injury with a consequent neuroprotective effect in acute GBS models and promises to be a useful new target for human therapy.
Immunological properties of glycolipids from membranes of Acholeplasma laidlawii.
Ryan, M D; Noker, P; Matz, L L
1975-01-01
Glycolipids, the predominant class of lipids in the membranes of Acholeplasma laidlawii, are the haptenic determinants that react with anti-A. Laidlawii serum to fix complement. The predominant complement-fixing activity of the membrane glycolipids was associated with the monoglucoysyl diglyceride, diglucosyl diglyceride, glycerlphosphoryl diglucosyl diglyceride (GPDD), and an unknown lipid B, which did not react with ninhydrin but release glucose and glycerol and traces of phosphorus upon hydrolysis. The glycolipids monoglucosyl diglyceride and diglucosyl diglyceride or GPDD and unknown lipid B were paired as a result of their cross-reactions with selective antisera prepared with the aid of reconstituted membrane complexes containing membrane lipids. Reconstituted membrane complexes assembled from [14C]monoglucosyl diglyceride and delipidated membrane proteins gave optimal complement fixation titers before saturation of the complexes with the ]14C]monoglucosyl diglyceride. The phosphoglycolipid of the membrane, GPDD, was anticomplementary as a pure lipid, a cholesterol liposome, and a reconstituted membrane complex. This anticomplementary activity, which was caused by 3 mug of pure GPDD, affected both human and guinea pig complement. Although human C1, C4, C3, and C5 were not inhibited by GPDD, C2 was inhibited 10-fold by reconstituted membrane complexes containing 150 mug of GPDD. A role for this phosphoglycolipid is discussed in the hypothetical mechanism of inhibition of C2 attachment to SAC1, 4 sites. PMID:1193716
Cao, Sijia; Wang, Jay Ching Chieh; Gao, Jiangyuan; Wong, Matthew; To, Elliott; White, Valerie A; Cui, Jing Z; Matsubara, Joanne A
2016-05-01
The Y402H polymorphism in the complement factor H (CFH) gene is an important risk factor for age-related macular degeneration (AMD). Complement activation products and proinflammatory cytokines are associated with this polymorphism at the systemic level, but less is known of the associations in the outer retina of the genotyped eye. Here we investigate complement activation products and their role in nuclear factor (NF)-κB activation and gene expression of the NLRP3 inflammasome pathway. Postmortem donor eyes were genotyped for the CFH Y402H polymorphism and assessed for complement C3a, C5a, interleukin (IL)-18 and tumour necrosis factor (TNF)-α. ARPE19 cells were stimulated basolaterally with C5a or TNF-α in polarised cultures. NF-κB activation was assessed with a reporter cell line. Gene expression of inflammasome-related (NLRP3, caspase-1, IL-1β and IL-18) and classic inflammatory (IL-6 and IL-8) genes was studied. The distribution of inflammasome products, IL-1β and IL-18, was studied in postmortem donor eyes with AMD pathologies. Eyes with the homozygous at-risk variant demonstrated higher levels of C5a, IL-18 and TNF-α in Bruch's membrane and choroid. C5a promoted NF-κB activation and upregulation of IL-18 in polarised ARPE19. TNF-α promoted NF-κB activation and gene expression of caspase-1, IL-1β, IL-18, IL-6 and IL-8, but downregulated NLRP3. In eyes with geographic atrophy, strong immunoreactivity was observed for inflammasome products IL-1β and IL-18 compared with age-matched controls. The at-risk polymorphism of the CFH Y402H may contribute to AMD disease process through increased complement and NF-κB activation, and the upregulation of IL-18, a product of inflammasome activation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Han, Wei; Zhou, Jingshi; Li, Xiao; Wang, Jianfeng; Li, Junjie; Zhang, Zhuochao; Yang, Zhaoxu; Wang, Desheng; Tao, Kaishan; Dou, Kefeng
2013-11-01
Pig organs are commonly used in xenotransplantation, and α-1,3-galactose has been shown to be the main cause of hyperacute rejection. The development of transgenic pigs that lack α-1,3-galactosyltransferase (GGTA1) has overcome this problem to a certain extent, but transgenic pigs are difficult to maintain, making their usefulness in basic research limited. For this reason, we propose to establish a cell model to study hyperacute rejection. Immortalized primary porcine aortic endothelial cells were transfected with a short hairpin RNA targeted to GGTA1. Cell proliferation, apoptosis, complement C3 activation, and the binding of human immunoglobulins and components of the complement system, including IgM, IgG, C3, and C5b-9, were examined. After RNA interference, GGTA1 was found to be reduced at both the transcript and protein level as assessed by quantitative polymerase chain reaction and flow cytometry, respectively. When cultured in the presence of human serum, the proliferation rate of the transfected cells was higher than that of untransfected cells, and the apoptosis rate was lower. Additionally, activation of C3 and the binding of human immunoglobulins IgM and IgG and complement component C3 and C5b-9 to the transfected cells were lower than in the immortalized group but higher than in untransfected cells. RNA interference of GGTA1 in cultured porcine endothelial cells reduces the reaction of immunoglobulin and complement system with the cells. Therefore, this in vitro cell model could be useful for further study of xenotransplantation. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lazar, Boaz; Erez, Jonathan
1990-12-01
Extreme depletions in the 13C content of the total dissolved inorganic carbon (CT) were found in brines overlying microbial mat communities. Total alkalinity (AT) and CT in the brines suggest that intense photosynthetic activity of the microbial mat communities depletes the CT from the brine. We suggest that this depletion drives a large, kinetic, negative fractionation of carbon isotopes similar to that observed in highly alkaline solutions. In brines of extreme salinity where microbial mat communities no longer exist, the 13C content of the CT increases, probably because photosynthesis no longer dominates the gas-exchange processes. This mechanism explains light carbon-isotope compositions of carbonate rocks from evaporitic sections and bears on the interpretation of δ13C values in bedded stromatolitic limestones that are ca. 3.5 b.y. old.
Complement is activated in progressive multiple sclerosis cortical grey matter lesions.
Watkins, Lewis M; Neal, James W; Loveless, Sam; Michailidou, Iliana; Ramaglia, Valeria; Rees, Mark I; Reynolds, Richard; Robertson, Neil P; Morgan, B Paul; Howell, Owain W
2016-06-22
The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression. We analysed complement expression and activation by immunocytochemistry and in situ hybridisation in frozen or formalin-fixed paraffin-embedded post-mortem tissue blocks from 22 progressive MS cases and made comparisons to inflammatory central nervous system disease and non-neurological disease controls. Expression of the transcript for C1qA was noted in neurons and the activation fragment and opsonin C3b-labelled neurons and glia in the MS cortical and deep grey matter. The density of immunostained cells positive for the classical complement pathway protein C1q and the alternative complement pathway activation fragment Bb was significantly increased in cortical grey matter lesions in comparison to control grey matter. The number of cells immunostained for the membrane attack complex was elevated in cortical lesions, indicating complement activation to completion. The numbers of classical (C1-inhibitor) and alternative (factor H) pathway regulator-positive cells were unchanged between MS and controls, whilst complement anaphylatoxin receptor-bearing microglia in the MS cortex were found closely apposed to cortical neurons. Complement immunopositive neurons displayed an altered nuclear morphology, indicative of cell stress/damage, supporting our finding of significant neurodegeneration in cortical grey matter lesions. Complement is activated in the MS cortical grey matter lesions in areas of elevated numbers of complement receptor-positive microglia and suggests that complement over-activation may contribute to the worsening pathology that underlies the irreversible progression of MS.
Gene for ataxia-telangiectasia complementation group D (ATDC)
Murnane, J.P.; Painter, R.B.; Kapp, L.N.; Yu, L.C.
1995-03-07
Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for the gene are provided as well as proteins encoded by the gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of the proteins. Further disclosed are methods to detect mutations in the gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups. 30 figs.
Jiang, Yun; Lu, Yan; Zhang, Yun-Yi; Chen, Dao-Feng
2014-01-01
Activity-guided fractionation for complement inhibitors led to the isolation of 23 known compounds from Houttuynia cordata Thunb. Seven flavonoids, two alkaloids, one coumarin and two phenols showed anti-complementary activity. Preliminary inhibitory mechanism of four flavonoids, including quercitrin, afzelin, isoquercitrin and quercetin in the complement activation cascade were examined for the first time. The results indicated that the target components of flavonols are different from those of flavonosides, and the glycoside moieties may be necessary to block C3 and C4 components.
Imai, Yuko; Itsuki, Kyohei; Okamura, Yasushi; Inoue, Ryuji; Mori, Masayuki X
2012-01-01
Activation of transient receptor potential (TRP) canonical TRPC3/C6/C7 channels by diacylglycerol (DAG) upon stimulation of phospholipase C (PLC)-coupled receptors results in the breakdown of phosphoinositides (PIPs). The critical importance of PIPs to various ion-transporting molecules is well documented, but their function in relation to TRPC3/C6/C7 channels remains controversial. By using an ectopic voltage-sensing PIP phosphatase (DrVSP), we found that dephosphorylation of PIPs robustly inhibits currents induced by carbachol (CCh), 1-oleolyl-2-acetyl-sn-glycerol (OAG) or RHC80267 in TRPC3, TRPC6 and TRPC7 channels, though the strength of the DrVSP-mediated inhibition (VMI) varied among the channels with a rank order of C7 > C6 > C3. Pharmacological and molecular interventions suggest that depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is most likely the critical event for VMI in all three channels. When the PLC catalytic signal was vigorously activated through overexpression of the muscarinic type-I receptor (M1R), the inactivation of macroscopic TRPC currents was greatly accelerated in the same rank order as the VMI, and VMI of these currents was attenuated or lost. VMI was also rarely detected in vasopressin-induced TRPC6-like currents in A7r5 vascular smooth muscle cells, indicating that the inactivation by PI(4,5)P2 depletion underlies the physiological condition. Simultaneous fluorescence resonance energy transfer (FRET)-based measurement of PI(4,5)P2 levels and TRPC6 currents confirmed that VMI magnitude reflects the degree of PI(4,5)P2 depletion. These results demonstrate that TRPC3/C6/C7 channels are differentially regulated by depletion of PI(4,5)P2, and that the bimodal signal produced by PLC activation controls these channels in a self-limiting manner. PMID:22183723
Role of Complement on Broken Surfaces After Trauma.
Huber-Lang, Markus; Ignatius, Anita; Brenner, Rolf E
2015-01-01
Activation of both the complement and coagulation cascade after trauma and subsequent local and systemic inflammatory response represent a major scientific and clinical problem. After severe tissue injury and bone fracture, exposure of innate immunity to damaged cells and molecular debris is considered a main trigger of the posttraumatic danger response. However, the effects of cellular fragments (e.g., histones) on complement activation remain enigmatic. Furthermore, direct effects of "broken" bone and cartilage surfaces on the fluid phase response of complement and its interaction with key cells of connective tissues are still unknown. Here, we summarize data suggesting direct and indirect complement activation by extracellular and cellular danger associated molecular patterns. In addition, key complement components and the corresponding receptors (such as C3aR, C5aR) have been detected on "exposed surfaces" of the damaged regions. On a cellular level, multiple effects of complement activation products on osteoblasts, osteoclasts, chondrocytes and mesenchymal stem cells have been found.In conclusion, the complement system may be activated by trauma-altered surfaces and is crucially involved in connective tissue healing and posttraumatic systemic inflammatory response.
Neutrophil extracellular traps can activate alternative complement pathways.
Wang, H; Wang, C; Zhao, M-H; Chen, M
2015-09-01
The interaction between neutrophils and activation of alternative complement pathway plays a pivotal role in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). ANCAs activate primed neutrophils to release neutrophil extracellular traps (NETs), which have recently gathered increasing attention in the development of AAV. The relationship between NETs and alternative complement pathway has not been elucidated. The current study aimed to investigate the relationship between NETs and alternative complement pathway. Detection of components of alternative complement pathway on NETs in vitro was assessed by immunostain and confocal microscopy. Complement deposition on NETs were detected after incubation with magnesium salt ethyleneglycol tetraacetic acid (Mg-EGTA)-treated human serum. After incubation of serum with supernatants enriched in ANCA-induced NETs, levels of complement components in supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Complement factor B (Bb) and properdin deposited on NETs in vitro. The deposition of C3b and C5b-9 on NETs incubated with heat-inactivated normal human serum (Hi-NHS) or EGTA-treated Hi-NHS (Mg-EGTA-Hi-NHS) were significantly less than that on NETs incubated with NHS or EGTA-treated NHS (Mg-EGTA-NHS). NETs induced by ANCA could activate the alternative complement cascade in the serum. In the presence of EGTA, C3a, C5a and SC5b-9 concentration decreased from 800·42 ± 244·81 ng/ml, 7·68 ± 1·50 ng/ml, 382·15 ± 159·75 ng/ml in the supernatants enriched in ANCA induced NETs to 479·07 ± 156·2 ng/ml, 4·86 ± 1·26 ng/ml, 212·65 ± 44·40 ng/ml in the supernatants of DNase I-degraded NETs (P < 0·001, P = 0·008, P < 0·001, respectively). NETs could activate the alternative complement pathway, and might thus participate in the pathogenesis of AAV. © 2015 British Society for Immunology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoewall, Christopher; Wetteroe, Jonas; Bengtsson, Torbjoern
2007-01-05
C-reactive protein (CRP) interacts with phosphorylcholine (PC), Fc{gamma} receptors, complement factor C1q and cell nuclear constituents, yet its biological roles are insufficiently understood. The aim was to characterize CRP-induced complement activation by ellipsometry. PC conjugated with keyhole limpet hemocyanin (PC-KLH) was immobilized to cross-linked fibrinogen. A low-CRP serum with different amounts of added CRP was exposed to the PC-surfaces. The total serum protein deposition was quantified and deposition of IgG, C1q, C3c, C4, factor H, and CRP detected with polyclonal antibodies. The binding of serum CRP to PC-KLH dose-dependently triggered activation of the classical pathway. Unexpectedly, the activation was efficientlymore » down-regulated at CRP levels >150 mg/L. Using radial immunodiffusion, CRP-C1q interaction was observed in serum samples with high CRP concentrations. We propose that the underlying mechanism depends on fluid-phase interaction between C1q and CRP. This might constitute another level of complement regulation, which has implications for systemic lupus erythematosus where CRP is often low despite flare-ups.« less
C1 inhibitor-mediated myocardial protection from chronic intermittent hypoxia-induced injury
Fu, Jinrong; Guo, Furong; Chen, Cheng; Yu, Xiaoman; Hu, Ke; Li, Mingjiang
2016-01-01
The optimal treatment for chronic intermittent hypoxia (CIH)-induced cardiovascular injuries has yet to be determined. The aim of the current study was to explore the potential protective effect and mechanism of a C1 inhibitor in CIH in the myocardium. The present study used a rat model of CIH in which complement regulatory protein, known as C1 inhibitor (C1INH), was administered to the rats in the intervention groups. Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. The expression of proteins associated with the apoptotic pathway, such as B-cell lymphoma 2 (Bcl-2), Bax and caspase-3 were detected by western blot analysis. The expression of complement C3 protein and RNA were also analyzed. C1INH was observed to improve the cardiac function in rats with CIH. Myocardial myeloperoxidase activity, a marker of neutrophil infiltration, was significantly decreased in the C1INH intervention group compared with the CIH control group, and cardiomyocyte apoptosis was significantly attenuated (P<0.05). Western blotting and reverse transcription-polymerase chain reaction analysis indicated that the protein expression levels of Bcl-2 were decreased and those of Bax were increased in the CIH group compared with the normal control group, but the protein expression levels of Bcl-2 were increased and those of Bax were decreased in the C1INH intervention group, as compared with the CIH group. Furthermore, the CIH-induced expression and synthesis of complement C3 in the myocardium were also reduced in the C1INH intervention group. C1INH, in addition to inhibiting complement activation and inflammation, preserved cardiac function in CIH-mediated myocardial cell injury through an anti-apoptotic mechanism. PMID:27698713
Alawieh, Ali; Elvington, Andrew; Zhu, Hong; Yu, Jin; Kindy, Mark S; Atkinson, Carl; Tomlinson, Stephen
2015-12-30
Complement promotes neuroinflammation and injury in models of stroke. However, complement is also being increasingly implicated in repair and regeneration after central nervous system (CNS) injury, and some complement deficiencies have been shown to provide acute, but not subacute, protection after murine stroke. Here, we investigate the dual role of complement in injury and repair after cerebral ischemia and reperfusion. We used complement-deficient mice and different complement inhibitors in a model of transient middle cerebral artery occlusion to investigate complement-dependent cellular and molecular changes that occur through the subacute phase after stroke. C3 deficiency and site-targeted complement inhibition with either CR2-Crry (inhibits all pathways) or CR2-fH (inhibits alternative pathway) significantly reduced infarct size, reduced apoptotic cell death, and improved neurological deficit score in the acute phase after stroke. However, only in CR2-fH-treated mice was there sustained protection with no evolution of injury in the subacute phase. Whereas both inhibitors significantly reduced microglia/macrophage activation and astrogliosis in the subacute phase, only CR2-fH improved neurological deficit and locomotor function, maintained neurogenesis markers, enhanced neuronal migration, and increased VEGF expression. These findings in CR2-fH-treated mice correlated with improved performance in spatial learning and passive avoidance tasks. The complement anaphylatoxins have been implicated in repair and regenerative mechanisms after CNS injury, and in this context CR2-fH significantly reduced, but did not eliminate the generation of C5a within the brain, unlike CR2-Crry that completely blocked C5a generation. Gene expression profiling revealed that CR2-fH treatment downregulated genes associated with apoptosis, TGFβ signaling, and neutrophil activation, and decreased neutrophil infiltration was confirmed by immunohistochemistry. CR2-fH upregulated genes for neural growth factor and mediators of neurogenesis and neuronal migration. Live animal imaging demonstrated that following intravenous injection, CR2-fH targeted specifically to the post-ischemic brain, with a tissue half-life of 48.5 h. Finally, unlike C3 deficiency, targeted complement inhibition did not increase susceptibility to lethal post-stroke infection, an important consideration for stroke patients. Ischemic brain tissue-targeted and selective inhibition of alternative complement pathway provide self-limiting inhibition of complement activation and reduces acute injury while maintaining complement-dependent recovery mechanisms into the subacute phase after stroke.
Medina, Eva; van Rooijen, Willemien J.; Spaan, András N.; van Kessel, Kok P. M.; Höök, Magnus; Rooijakkers, Suzan H. M.
2013-01-01
Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein. PMID:24348255
Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un
2016-12-01
Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.
Lack of association of CFD polymorphisms with advanced age-related macular degeneration.
Zeng, Jiexi; Chen, Yuhong; Tong, Zongzhong; Zhou, Xinrong; Zhao, Chao; Wang, Kevin; Hughes, Guy; Kasuga, Daniel; Bedell, Matthew; Lee, Clara; Ferreyra, Henry; Kozak, Igor; Haw, Weldon; Guan, Jean; Shaw, Robert; Stevenson, William; Weishaar, Paul D; Nelson, Mark H; Tang, Luosheng; Zhang, Kang
2010-11-03
Age-related macular degeneration (AMD) is the most common cause of irreversible central vision loss worldwide. Research has linked AMD susceptibility with dysregulation of the complement cascade. Typically, complement factor H (CFH), complement factor B (CFB), complement component 2 (C2), and complement component 3 (C3) are associated with AMD. In this paper, we investigated the association between complement factor D (CFD), another factor of the complement system, and advanced AMD in a Caucasian population. Six single nucleotide polymorphisms (SNPs), rs1683564, rs35186399, rs1683563, rs3826945, rs34337649, and rs1651896, across the region covering CFD, were chosen for this study. One hundred and seventy-eight patients with advanced AMD and 161 age-matched normal controls were genotyped. Potential positive signals were further tested in another independent 445 advanced AMD patients and 190 controls. χ2 tests were performed to compare the allele frequencies between case and control groups. None of the six SNPs of CFD was found to be significantly associated with advanced AMD in our study. Our findings suggest that CFD may not play a major role in the genetic susceptibility to AMD because no association was found between the six SNPs analyzed in the CFD region and advanced AMD.
Anceschi, M M; Di Renzo, G C; Venincasa, M D; Bleasdale, J E
1984-01-01
When type II pneumonocytes from adult rats were maintained in a medium that lacked choline, the incorporation of [14C]glycerol into phosphatidylcholine was not greatly diminished during the period that the cells displayed characteristics of type II pneumonocytes. Cells that were maintained in choline-free medium that contained choline oxidase and catalase, however, became depleted of choline and subsequent synthesis of phosphatidylcholine by these cells was responsive to choline in the extracellular medium. Incorporation of [14C]glycerol into phosphatidylcholine by choline-depleted cells was stimulated maximally (approx. 6-fold) by extracellular choline at a concentration (0.05 mM) that also supported the greatest incorporation into phosphatidylglycerol. The incorporation of [14C]glycerol into other glycerophospholipids by choline-depleted cells was not increased by extracellular choline. When cells were incubated in the presence of [3H]cytidine, the choline-dependent stimulation of the synthesis of phosphatidylcholine and phosphatidylglycerol was accompanied by an increased recovery of [3H]CMP. This increased recovery of [3H]CMP reflected an increase in the intracellular amount of CMP from 48 +/- 9 to 76 +/- 16 pmol/10(6) cells. Choline-depleted cells that were exposed to [3H]choline contained [3H]CDP-choline as the principal water-soluble choline derivative. As the extracellular concentration of choline was increase, however, the amount of 3H in phosphocholine greatly exceeded that in all other water-soluble derivatives. Choline-depletion of cells resulted in an increase in the specific activity of CTP:phosphocholine cytidylyltransferase in cell homogenates (from 0.40 +/- 0.15 to 1.31 +/- 0.20 nmol X min-1 X mg of protein-1). These data are indicative that the biosynthesis of phosphatidylcholine is integrated with that of phosphatidylglycerol and are consistent with the proposed involvement of CMP in this integration. The choline-depleted type II pneumonocyte provides a new model for investigating the regulation of CTP:phosphocholine cytidylyltransferase activity. PMID:6548908
Complement reduction impairs the febrile response of guinea pigs to endotoxin.
Sehic, E; Li, S; Ungar, A L; Blatteis, C M
1998-06-01
Although it is generally believed that circulating exogenous pyrogens [e.g., lipopolysaccharides (LPS)] induce fever via the mediation of endogenous pyrogens (EP) such as cytokines, the first of these, tumor necrosis factor-alpha, is usually not detectable in blood until at least 30 min after intravenous administration of LPS, whereas the febrile rise begins within 15 min after its administration. Moreover, although abundant evidence indicates that circulating LPS is cleared primarily by liver macrophages [Kupffer cells (KC)], these do not secrete EP in immediate response. This would imply that other factors, presumably evoked earlier than EP, may mediate the onset of the febrile response to intravenous LPS. It is well known that blood-borne LPS very rapidly activates the intravascular complement (C) system, some components of which in turn stimulate the quick release into blood of various substances that have roles in the acute inflammatory reaction. KC contain receptors for C components and are in close contact with afferent vagal terminals in the liver; the involvement of hepatic vagal afferents in LPS-induced fever has recently been shown. In this study, we tested the hypothesis that the initiation of fever by intravenous LPS involves, sequentially, the C system and KC. To test this postulated mechanism, we measured directly the levels of prostaglandin E2 (PGE2) in the interstitial fluid of the preoptic anterior hypothalamus (POA), the presumptive site of the fever-producing controller, of conscious guinea pigs over their entire febrile course, before and after C depletion by cobra venom factor (CVF) and before and after elimination of KC by gadolinium chloride (GdCl3). CVF and GdCl3 pretreatment each individually attenuated the first of the biphasic core temperature (Tc) rises after intravenous LPS, inverted the second into a Tc fall, and greatly reduced the usual fever-associated increase in POA PGE2. We conclude, therefore, that C activation may indeed be pivotal in the induction of fever by intravenous LPS and that substance(s) generated presumably by KC in almost immediate reaction to the presence of LPS and/or C may transmit pyrogenic signals via hepatic vagal afferents to the POA, where they rapidly induce the production of PGE2 and, hence, fever.
Health Educators as Environmental Policy Advocates.
ERIC Educational Resources Information Center
Miner, Kimberly J.; Baker, Judith A.
1993-01-01
Health educators must complement individual-level change with communitywide policy and legislative initiatives, focusing on environmental issues such as air pollution, ozone layer depletion, and toxic waste disposal. Recent increases in discomfort and disease related to the physical environment call for immediate action from health professionals…
Hueging, Kathrin; Weller, Romy; Doepke, Mandy; Vieyres, Gabrielle; Todt, Daniel; Wölk, Benno; Vondran, Florian W R; Geffers, Robert; Lauber, Chris; Kaderali, Lars; Penin, François; Pietschmann, Thomas
2015-01-01
Apolipoprotein E (ApoE), an exchangeable apolipoprotein, is necessary for production of infectious Hepatitis C virus (HCV) particles. However, ApoE is not the only liver-expressed apolipoprotein and the role of other apolipoproteins for production of infectious HCV progeny is incompletely defined. Therefore, we quantified mRNA expression of human apolipoproteins in primary human hepatocytes. Subsequently, cDNAs encoding apolipoproteins were expressed in 293T/miR-122 cells to explore if they complement HCV virus production in cells that are non-permissive due to limiting endogenous levels of human apolipoproteins. Primary human hepatocytes expressed high mRNA levels of ApoA1, A2, C1, C3, E, and H. ApoA4, A5, B, D, F, J, L1, L2, L3, L4, L6, M, and O were expressed at intermediate levels, and C2, C4, and L5 were not detected. All members of the ApoA and ApoC family of lipoproteins complemented HCV virus production in HCV transfected 293T/miR-122 cells, albeit with significantly lower efficacy compared with ApoE. In contrast, ApoD expression did not support production of infectious HCV. Specific infectivity of released particles complemented with ApoA family members was significantly lower compared with ApoE. Moreover, the ratio of extracellular to intracellular infectious virus was significantly higher for ApoE compared to ApoA2 and ApoC3. Since apolipoproteins complementing HCV virus production share amphipathic alpha helices as common structural features we altered the two alpha helices of ApoC1. Helix breaking mutations in both ApoC1 helices impaired virus assembly highlighting a critical role of alpha helices in apolipoproteins supporting HCV assembly. In summary, various liver expressed apolipoproteins with amphipathic alpha helices complement HCV virus production in human non liver cells. Differences in the efficiency of virus assembly, the specific infectivity of released particles, and the ratio between extracellular and intracellular infectivity point to distinct characteristics of these apolipoproteins that influence HCV assembly and cell entry. This will guide future research to precisely pinpoint how apolipoproteins function during virus assembly and cell entry.
Doepke, Mandy; Vieyres, Gabrielle; Todt, Daniel; Wölk, Benno; Vondran, Florian W. R.; Geffers, Robert; Lauber, Chris; Kaderali, Lars; Penin, François; Pietschmann, Thomas
2015-01-01
Apolipoprotein E (ApoE), an exchangeable apolipoprotein, is necessary for production of infectious Hepatitis C virus (HCV) particles. However, ApoE is not the only liver-expressed apolipoprotein and the role of other apolipoproteins for production of infectious HCV progeny is incompletely defined. Therefore, we quantified mRNA expression of human apolipoproteins in primary human hepatocytes. Subsequently, cDNAs encoding apolipoproteins were expressed in 293T/miR-122 cells to explore if they complement HCV virus production in cells that are non-permissive due to limiting endogenous levels of human apolipoproteins. Primary human hepatocytes expressed high mRNA levels of ApoA1, A2, C1, C3, E, and H. ApoA4, A5, B, D, F, J, L1, L2, L3, L4, L6, M, and O were expressed at intermediate levels, and C2, C4, and L5 were not detected. All members of the ApoA and ApoC family of lipoproteins complemented HCV virus production in HCV transfected 293T/miR-122 cells, albeit with significantly lower efficacy compared with ApoE. In contrast, ApoD expression did not support production of infectious HCV. Specific infectivity of released particles complemented with ApoA family members was significantly lower compared with ApoE. Moreover, the ratio of extracellular to intracellular infectious virus was significantly higher for ApoE compared to ApoA2 and ApoC3. Since apolipoproteins complementing HCV virus production share amphipathic alpha helices as common structural features we altered the two alpha helices of ApoC1. Helix breaking mutations in both ApoC1 helices impaired virus assembly highlighting a critical role of alpha helices in apolipoproteins supporting HCV assembly. In summary, various liver expressed apolipoproteins with amphipathic alpha helices complement HCV virus production in human non liver cells. Differences in the efficiency of virus assembly, the specific infectivity of released particles, and the ratio between extracellular and intracellular infectivity point to distinct characteristics of these apolipoproteins that influence HCV assembly and cell entry. This will guide future research to precisely pinpoint how apolipoproteins function during virus assembly and cell entry. PMID:26226615
Shin, Dong-Ho; Webb, Barbara M; Nakao, Miki; Smith, Sylvia L
2009-07-01
Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and -d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (
Shin, Dong-Ho; Webb, Barbara M.; Nakao, Miki; Smith, Sylvia L.
2009-01-01
Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and –d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (≤) amino acid identities with each other, 35.4 ~ 39.6% and 62.8 ~ 65.9% with factor I of mammals and banded houndshark (Triakis scyllium), respectively. The modular structure of the GcIf is similar to that of mammals with one notable exception, the presence of a novel shark-specific sequence between the leader peptide (LP) and the factor I membrane attack complex (FIMAC) domain. The cDNA sequences differ only in the size and composition of the shark-specific region (SSR). Sequence analysis of each SSR has identified within the region two novel short sequences (SS1 and SS2) and three repeat sequences (RS1, 2 and 3). Genomic analysis has revealed the existence of three introns between the leader peptide and the FIMAC domain, tentatively designated intron 1, intron 2, and intron 3 which span 4067, 2293 and 2082 bp, respectively. Southern blot analysis suggests the presence of a single gene copy for each cDNA type. Phylogenetic analysis suggests that complement factor I of cartilaginous fish diverged prior to the emergence of mammals. All four GcIf cDNA species are expressed in four different tissues and the liver is the main tissue in which expression level of all four is high. This suggests that the expression of GcIf isotypes is tissue-dependent. PMID:19423168
Thrombomodulin Mutations in Atypical Hemolytic–Uremic Syndrome
Delvaeye, Mieke; Noris, Marina; De Vriese, Astrid; Esmon, Charles T.; Esmon, Naomi L.; Ferrell, Gary; Del-Favero, Jurgen; Plaisance, Stephane; Claes, Bart; Lambrechts, Diether; Zoja, Carla; Remuzzi, Giuseppe; Conway, Edward M.
2012-01-01
BACKGROUND The hemolytic–uremic syndrome consists of the triad of microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. The common form of the syndrome is triggered by infection with Shiga toxin–producing bacteria and has a favorable outcome. The less common form of the syndrome, called atypical hemolytic–uremic syndrome, accounts for about 10% of cases, and patients with this form of the syndrome have a poor prognosis. Approximately half of the patients with atypical hemolytic–uremic syndrome have mutations in genes that regulate the complement system. Genetic factors in the remaining cases are unknown. We studied the role of thrombomodulin, an endothelial glycoprotein with anticoagulant, antiinflammatory, and cytoprotective properties, in atypical hemolytic–uremic syndrome. METHODS We sequenced the entire thrombomodulin gene (THBD) in 152 patients with atypical hemolytic–uremic syndrome and in 380 controls. Using purified proteins and cell-expression systems, we investigated whether thrombomodulin regulates the complement system, and we characterized the mechanisms. We evaluated the effects of thrombomodulin missense mutations associated with atypical hemolytic–uremic syndrome on complement activation by expressing thrombomodulin variants in cultured cells. RESULTS Of 152 patients with atypical hemolytic–uremic syndrome, 7 unrelated patients had six different heterozygous missense THBD mutations. In vitro, thrombomodulin binds to C3b and factor H (CFH) and negatively regulates complement by accelerating factor I–mediated inactivation of C3b in the presence of cofactors, CFH or C4b binding protein. By promoting activation of the plasma procarboxypeptidase B, thrombomodulin also accelerates the inactivation of anaphylatoxins C3a and C5a. Cultured cells expressing thrombomodulin variants associated with atypical hemolytic–uremic syndrome had diminished capacity to inactivate C3b and to activate procarboxypeptidase B and were thus less protected from activated complement. CONCLUSIONS Mutations that impair the function of thrombomodulin occur in about 5% of patients with atypical hemolytic–uremic syndrome. PMID:19625716
Complement research in the 18th-21st centuries: Progress comes with new technology.
Sim, R B; Schwaeble, W; Fujita, T
2016-10-01
The complement system has been studied for about 120 years. Progress in defining this large and complex system has been dependent on the research technologies available, but since the introduction of protein chromatography, electrophoresis, and antibody-based assay methods in the 1950s and 60s, and sequencing of proteins and DNA in the 70s and 80s, there has been very rapid accumulation of data. With more recent improvements in 3D structure determination (nmr and X-ray crystallography), the structures of most of the complement proteins have now been solved. Complement research since 1990 has been greatly stimulated by the discoveries of the multiple proteins in the lectin pathway, the strong association of Factor H, C3, Factor B allelic variants with adult macular degeneration and atypical haemolytic uremic syndrome, and the introduction of the anti-C5 monoclonal antibody as a therapy for paroxysmal nocturnal hemoglobinuria and atypical haemolytic uremic syndrome. Potential new roles for complement in tissue development and the search for novel therapeutics suggest a very active future for complement research. Copyright © 2016 Elsevier GmbH. All rights reserved.
Electrostatic Steering Accelerates C3d:CR2 Association
2016-01-01
Electrostatic effects are ubiquitous in protein interactions and are found to be pervasive in the complement system as well. The interaction between complement fragment C3d and complement receptor 2 (CR2) has evolved to become a link between innate and adaptive immunity. Electrostatic interactions have been suggested to be the driving factor for the association of the C3d:CR2 complex. In this study, we investigate the effects of ionic strength and mutagenesis on the association of C3d:CR2 through Brownian dynamics simulations. We demonstrate that the formation of the C3d:CR2 complex is ionic strength-dependent, suggesting the presence of long-range electrostatic steering that accelerates the complex formation. Electrostatic steering occurs through the interaction of an acidic surface patch in C3d and the positively charged CR2 and is supported by the effects of mutations within the acidic patch of C3d that slow or diminish association. Our data are in agreement with previous experimental mutagenesis and binding studies and computational studies. Although the C3d acidic patch may be locally destabilizing because of unfavorable Coulombic interactions of like charges, it contributes to the acceleration of association. Therefore, acceleration of function through electrostatic steering takes precedence to stability. The site of interaction between C3d and CR2 has been the target for delivery of CR2-bound nanoparticle, antibody, and small molecule biomarkers, as well as potential therapeutics. A detailed knowledge of the physicochemical basis of C3d:CR2 association may be necessary to accelerate biomarker and drug discovery efforts. PMID:27092816
Castiblanco-Valencia, Mónica M.; Fraga, Tatiana R.; Breda, Leandro C.D.; Vasconcellos, Sílvio A.; Figueira, Cláudio P.; Picardeau, Mathieu; Wunder, Elsio; Ko, Albert I.; Barbosa, Angela S.; Isaac, Lourdes
2017-01-01
Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules present in pathogenic but not in saprophytic Leptospira species. We have previously shown that Lig proteins interact with the soluble complement regulators Factor H (FH), FH like-1 (FHL-1), FH related-1 (FHR-1) and C4b Binding Protein (C4BP). In this study, we used the saprophyte L. biflexa serovar Patoc as a surrogate host to address the specific role of LigA and LigB proteins in leptospiral complement evasion. L. biflexa expressing LigA or LigB was able to acquire FH and C4BP. Bound complement regulators retained their cofactor activities of FI in the proteolytic cleavage of C3b and C4b. Moreover, heterologous expression of ligA and ligB genes in the saprophyte L. biflexa enhanced bacterial survival in human serum. Complement deposition on lig-transformed L. biflexa was assessed by flow cytometry analysis. With regard to MAC deposition, L. biflexa expressing LigA or LigB presented an intermediate profile: MAC deposition levels were greater than those found in the pathogenic L. interrogans, but lower than those observed for L. biflexa wildtype. In conclusion, Lig proteins contribute to in vitro control of complement activation on the leptospiral surface, promoting an increased bacterial survival in human serum. PMID:26976804
The Lectin Pathway of Complement and Rheumatic Heart Disease
Beltrame, Marcia Holsbach; Catarino, Sandra Jeremias; Goeldner, Isabela; Boldt, Angelica Beate Winter; de Messias-Reason, Iara José
2014-01-01
The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever. PMID:25654073
Complement fixation test to C burnetii
... complement fixation test; Coxiella burnetii - complement fixation test; C burnetii - complement fixation test ... a specific foreign substance ( antigen ), in this case, C burnetii . Antibodies defend the body against bacteria, viruses, ...
Chen, MiaoMiao; Wu, Jianjun; Shi, Songshan; Chen, Yonglin; Wang, Huijun; Fan, Hongwei; Wang, Shunchun
2016-11-05
A homogenous water-soluble polysaccharide, DPSW-A, with a deduced chemical structure was extracted from the herb Taraxacum mongolicum Hand.-Mazz. Moreover, 80.813-kDa DPSW-A is composed of three types of monosaccharide, namely rhamnose, arabinose, and galactose, at a molar ratio of 1.0:10.7:11.9. The main chain of DPSW-A contains Terminal-Galp, 1,3-Galp, 1,6-Galp, 1,3,6-Galp, and 1,2,4-Rhap; the branched chain contains Terminal-Araf, 1,5-Araf, and 1,3,5-Araf. The sulfated derivatives prepared from DPSW-A showed inhibitory effects on complement activation through the classical pathway (CH50: Sul-DPSW-A, 3.94±0.43μg/mL; heparin, 104.40±3.82μg/mL) and alternative pathway (AP50: Sul-DPSW-A, 42.76±0.46μg/mL; heparin, 43.42±0.22μg/mL). Mechanism studies indicated that Sul-DPSW-A inhibited complement activation by blocking C1q, C1r, C1s, and C9, but not C2, C3, C4, and C5. In addition, Sul-DPSW-A displayed limited anticoagulant effects. These results suggest that Sul-DPSW-A prepared from DPSW-A is valuable for treating diseases caused by excessive complement system activation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lower omega-3 polyunsaturated fatty acids and lower docosahexaenoic acid in men with pedophilia.
Mincke, Elda; Cosyns, Paul; Christophe, Armand B; De Vriese, Stephanie; Maes, Michael
2006-12-01
Previous studies have suggested that abnormalities in plasma phospholipid fatty acids may play a role in aggressive behavior. Recently, it was suggested that a dysfunctional serotonergic turnover in the brain may be involved in the etiopathology of pedophilia. Depletion of n-3 polyunsaturated fatty acids (PUFA) may cause alterations in the serotonergic system that may be related to pedophilia and aggression. This study examines the serum phospholipid n-3 and n-6 PUFA fractions in pedophilia. Twenty-seven pedophilic men and eighteen healthy volunteers participated in this study. In pedophilia there was a significant depletion of the C22:6n-3 (docosahexaenoic acid, DHA), total n-3 fractions and an increase in the total n-6/n-3 and C20:4n-6/C20:5n-3 (arachidonic acid/eicosapentaenoic acid) ratios. Using the NEO Personality Inventory, lower DHA in pedophiles is related to more impulsiveness and lower agreeableness (trust, altruism, straightforwardness, compliance) and conscientiousness (self-discipline). The results of this study suggest that a depletion of the serum phospholipid n-3 higher unsaturated fatty acids (HUFAs) and, in particular, of DHA may take part in the pathophysiology of pedophilia. One hypothesis is that a depletion of n-3 HUFAs and DHA may cause alterations in the serotonergic turnover, which are related to impulse discontrol and aggression-hostility, behaviors which are associated with pedophilia.
The Surface-Exposed Protein SntA Contributes to Complement Evasion in Zoonotic Streptococcus suis.
Deng, Simin; Xu, Tong; Fang, Qiong; Yu, Lei; Zhu, Jiaqi; Chen, Long; Liu, Jiahui; Zhou, Rui
2018-01-01
Streptococcus suis is an emerging zoonotic pathogen causing streptococcal toxic shock like syndrome (STSLS), meningitis, septicemia, and even sudden death in human and pigs. Serious septicemia indicates this bacterium can evade the host complement surveillance. In our previous study, a functionally unknown protein SntA of S. suis has been identified as a heme-binding protein, and contributes to virulence in pigs. SntA can interact with the host antioxidant protein AOP2 and consequently inhibit its antioxidant activity. In the present study, SntA is identified as a cell wall anchored protein that functions as an important player in S. suis complement evasion. The C3 deposition and membrane attack complex (MAC) formation on the surface of sntA -deleted mutant strain Δ sntA are demonstrated to be significantly higher than the parental strain SC-19 and the complementary strain CΔ sntA . The abilities of anti-phagocytosis, survival in blood, and in vivo colonization of Δ sntA are obviously reduced. SntA can interact with C1q and inhibit hemolytic activity via the classical pathway. Complement activation assays reveal that SntA can also directly activate classical and lectin pathways, resulting in complement consumption. These two complement evasion strategies may be crucial for the pathogenesis of this zoonotic pathogen. Concerning that SntA is a bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase in many species of Gram-positive bacteria, these complement evasion strategies may have common biological significance.
Strunk, R C; Whitehead, A S; Cole, F S
1985-01-01
The third component of complement (C3) is a plasma glycoprotein with a variety of biologic functions in the initiation and maintenance of host response to infectious agents. While the hepatocyte is the primary source of plasma C3, mononuclear phagocytes contribute to the regulation of tissue availability of C3. Lipopolysaccharide (LPS), a constituent of cell walls of gram-negative bacteria, consists of a polysaccharide moiety (core polysaccharide and O antigen) covalently linked to a lipid portion (lipid A). Using metabolic labeling with [35S]methionine, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis, we examined the effects of LPS on synthesis of C3 by human mononuclear phagocytes as well as synthesis of the second component of complement (C2), factor B, lysozyme, and total protein. LPS increased C3 synthesis 5-30-fold without affecting the kinetics of secretion of C3 or the synthesis of C2, lysozyme, or total protein. Factor B synthesis was consistently increased by LPS. Experiments with lipid A-inactivated LPS (alkaline treated), LPS from a polysaccharide mutant strain, and lipid X (a lipid A precursor) indicated that the lipid A portion is the structural element required for this effect. Northern blot analysis demonstrated at least a fivefold increase in C3 mRNA in LPS-treated monolayers, which suggests that the regulation of the increase in C3 synthesis is pretranslational. C2 mRNA and factor B mRNA were increased approximately twofold. The availability of specific gene products in human mononuclear phagocytes that respond to LPS should permit understanding of the molecular regulation of more complex functions of these cells elicited by LPS in which multiple gene products are coordinately expressed. Images PMID:3900137
Lynch, AM; Murphy, JR; Gibbs, RS; Levine, RJ; Giclas, PC; Salmon, JE; Holers, VM
2016-01-01
Objective To determine the interrelationships during early pregnancy of complement-activation fragments Bb, C3a and sC5b-9, and angiogenesis-related factors placental growth factor (PiGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng), and their associations with pre-eclampsia. Design Prospective cohort study. Setting Denver complement study (June 2005–June 2008). Population A total of 668 pregnant women with singleton gestations, recruited between 10 and 15 weeks of gestation. Methods Using univariable and multivariable logistic regression analysis, concentrations of complement-activation fragments and angiogenesis-related factors were compared between 10 and 15 weeks of gestation in women who subsequently did or did not develop pre-eclampsia. Interrelationships between these variables were tested using the non-parametric Spearman rank correlation coefficient. Main outcome measure Pre-eclampsia. The association of complement-activation fragments and angiogenesis-related factors with obesity was also examined. Results The mean (±SD) levels of complement Bb in early pregnancy among women who did and did not develop pre-eclampsia were 0.84 (±0.26) µg/ml and 0.69 (±0.2) µg/ml, respectively (P = 0.001). Concentrations of PiGF were significantly (P = 0.01) lower (31 ± 12 pg/ml) in early pregnancy in the pre-eclamptic group of women, as compared with the normotensive group (39 ± 32 pg/ml). The adjusted odds ratio (AOR) of Bb and PiGF were 2.1 (CI = 1.4–3.1, P < 0.0003) and 0.2 (CI = 0.07–0.7, P = 0.01), respectively. There was no significant difference in the levels of C3a, sC5b-9, sFlt-1 and sEng in early pregnancy among women who developed pre-eclampsia, compared with women who remained normotensive during pregnancy. Higher levels of Bb (P = 0.0001) and C3a (P = 0.03), and lower levels of sFlt-1 (P = 0.0002) and sEng (P = 0.0001) were found among women with obesity, compared with non-obese controls. No meaningful relationships were found between the complement-activation fragments and the angiogenesis-related factors. Conclusions In this cohort during early pregnancy, increased concentrations of complement-activation factor Bb and lower concentrations of PiGF were associated with the development of pre-eclampsia later in pregnancy. PMID:20074261
Toropainen, Maija; Saarinen, Leena; Vidarsson, Gestur; Käyhty, Helena
2006-05-01
The relative contributions of antibody-induced complement-mediated bacterial lysis and antibody/complement-mediated phagocytosis to host immunity against meningococcal infections are currently unclear. Further, the in vivo effector functions of antibodies may vary depending on their specificity and Fc heavy-chain isotype. In this study, a mouse immunoglobulin G2a (mIgG2a) monoclonal antibody (MN12H2) to meningococcal outer membrane protein PorA (P1.16), its human IgG subclass derivatives (hIgG1 to hIgG4), and an mIgG2a monoclonal antibody (Nmb735) to serogroup B capsular polysaccharide (B-PS) were evaluated for passive protection against meningococcal serogroup B strain 44/76-SL (B:15:P1.7,16) in an infant rat infection model. Complement component C6-deficient (PVG/c-) rats were used to assess the importance of complement-mediated bacterial lysis for protection. The PorA-specific parental mIgG2a and the hIgG1 to hIgG3 derivatives all induced efficient bactericidal activity in vitro in the presence of human or infant rat complement and augmented bacterial clearance in complement-sufficient HsdBrlHan:WIST rats, while the hIgG4 was unable to do so. In C6-deficient PVG/c- rats, lacking complement-mediated bacterial lysis, the augmentation of bacterial clearance by PorA-specific mIgG2a and hIgG1 antibodies was impaired compared to that in the syngeneic complement-sufficient PVG/c+ rat strain. This was in contrast to the case for B-PS-specific mIgG2a, which conferred similar protective activity in both rat strains. These data suggest that while anti-B-PS antibody can provide protection in the infant rats without membrane attack complex formation, the protection afforded by anti-PorA antibody is more dependent on the activation of the whole complement pathway and subsequent bacterial lysis.
van Vuuren, A J; Appeldoorn, E; Odijk, H; Yasui, A; Jaspers, N G; Bootsma, D; Hoeijmakers, J H
1993-01-01
Nucleotide excision repair (NER), one of the major cellular DNA repair systems, removes a wide range of lesions in a multi-enzyme reaction. In man, a NER defect due to a mutation in one of at least 11 distinct genes, can give rise to the inherited repair disorders xeroderma pigmentosum (XP), Cockayne's syndrome or PIBIDS, a photosensitive form of the brittle hair disease trichothiodystrophy. Laboratory-induced NER-deficient mutants of cultured rodent cells have been classified into 11 complementation groups (CGs). Some of these have been shown to correspond with human disorders. In cell-free extracts prepared from rodent CGs 1-5 and 11, but not in a mutant from CG6, we find an impaired repair of damage induced in plasmids by UV light and N-acetoxy-acetylaminofluorene. Complementation analysis in vitro of rodent CGs is accomplished by pairwise mixing of mutant extracts. The results show that mutants from groups 2, 3, 5 and XP-A can complement all other CGs tested. However, selective non-complementation in vitro was observed in mutual mixtures of groups 1, 4, 11 and XP-F, suggesting that the complementing activities involved somehow affect each other. Depletion of wild-type human extracts from ERCC1 protein using specific anti-ERCC1 antibodies concomitantly removed the correcting activities for groups 4, 11 and XP-F, but not those for the other CGs. Furthermore, we find that 33 kDa ERCC1 protein sediments as a high mol. wt species of approximately 120 kDa in a native glycerol gradient.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8253091
Lintner, Katherine E.; Patwardhan, Anjali; Rider, Lisa G.; Abdul-Aziz, Rabheh; Wu, Yee Ling; Lundström, Emeli; Padyukov, Leonid; Zhou, Bi; Alhomosh, Alaaedin; Newsom, David; White, Peter; Jones, Karla B.; O’Hanlon, Terrance P.; Miller, Frederick W.; Spencer, Charles H.; Yu, C. Yung
2017-01-01
Objective Complement-mediated vasculopathy of muscle and skin are clinical features of juvenile dermatomyositis (JDM). We assess gene copy-number variations (CNVs) for complement C4 and its isotypes, C4A and C4B, in genetic risks and pathogenesis of JDM. Methods The study population included 105 JDM patients and 500 healthy European Americans. Gene copy-numbers (GCNs) for total C4, C4A, C4B and HLA-DRB1 genotypes were determined by Southern blots and PCRs. Processed activation product C4d bound to erythrocytes (E-C4d) was measured by flow cytometry. Global gene-expression microarrays were performed in 19 JDM and 7 controls using PAXgene-blood RNA. Differential expression levels for selected genes were validated by qPCR. Results Significantly lower GCNs and differences in distribution of GCN groups for total C4 and C4A were observed between JDM and controls. Lower GCN of C4A in JDM remained among HLA DR3-positive subjects (p=0.015). Homozygous or heterozygous C4A-deficiency was present in 40.0% of JDM compared to 18.2% of controls [odds ratio (OR)=3.00 (1.87–4.79), p=8.2x10−6]. JDM had higher levels of E-C4d than controls (p=0.004). In JDM, C4A-deficient subjects had higher levels of E-C4d (p=0.0003) and higher frequency of elevated levels of multiple serum muscle enzymes at diagnosis (p=0.004). Microarray profiling of blood RNA revealed upregulation of type I Interferon-stimulated genes and lower abundance of transcripts for T-cell and chemokine function genes in JDM, but this was less prominent among C4A-deficient or DR3-positive patients. Conclusions Complement C4A-deficiency appears to be an important factor for the genetic risk and pathogenesis of JDM, particularly in patients with a DR3-positive background. PMID:26493816
Savani, Krishna; Job, Veronika
2017-10-01
The strength model of self-control has been predominantly tested with people from Western cultures. The present research asks whether the phenomenon of ego-depletion generalizes to a culture emphasizing the virtues of exerting mental self-control in everyday life. A pilot study found that whereas Americans tended to believe that exerting willpower on mental tasks is depleting, Indians tended to believe that exerting willpower is energizing. Using dual task ego-depletion paradigms, Studies 1a, 1b, and 1c found reverse ego-depletion among Indian participants, such that participants exhibited better mental self-control on a subsequent task after initially working on strenuous rather than nonstrenuous cognitive tasks. Studies 2 and 3 found that Westerners exhibited the ego-depletion effect whereas Indians exhibited the reverse ego-depletion effect on the same set of tasks. Study 4 documented the causal effect of lay beliefs about whether exerting willpower is depleting versus energizing on reverse ego-depletion with both Indian and Western participants. Together, these studies reveal the underlying basis of the ego-depletion phenomenon in culturally shaped lay theories about willpower. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Complement mutations in diacylglycerol kinase-ε-associated atypical hemolytic uremic syndrome.
Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago
2014-09-05
Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol kinase-ε and C3 mutations. Data suggest that complement dysregulation influences the onset and disease severity in carriers of diacylglycerol kinase-ε mutations and that treatments on the basis of plasma infusions and complement inhibition are potentially useful in patients with combined diacylglycerol kinase-ε and complement mutations. A comprehensive understanding of the genetic component predisposing to atypical hemolytic uremic syndrome is, therefore, critical to guide an effective treatment. Copyright © 2014 by the American Society of Nephrology.
Complement Mutations in Diacylglycerol Kinase-ε–Associated Atypical Hemolytic Uremic Syndrome
Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago
2014-01-01
Background and objectives Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Design, setting, participants, & measurements Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Results Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol kinase-ε and C3 mutations. Conclusions Data suggest that complement dysregulation influences the onset and disease severity in carriers of diacylglycerol kinase-ε mutations and that treatments on the basis of plasma infusions and complement inhibition are potentially useful in patients with combined diacylglycerol kinase-ε and complement mutations. A comprehensive understanding of the genetic component predisposing to atypical hemolytic uremic syndrome is, therefore, critical to guide an effective treatment. PMID:25135762
Zhao, Xin; Chen, Yun-Xia; Li, Chun-Sheng
2015-04-01
To investigate changes in circulating complement component C3, membrane attack complex (MAC), and mannose-binding lectin (MBL) in patients with sepsis-induced disseminated intravascular coagulation (DIC). Adult septic patients admitted to the emergency department (ED) of Beijing Chao-Yang Hospital were enrolled. A DIC score of 5 or higher was considered sepsis-induced DIC. Circulating C3, MAC, and MBL levels were detected on ED arrival and compared between patients with and without DIC. The predictive value of C3, MAC, and MBL for sepsis-induced DIC at ED arrival and development of DIC after admission were assessed by receiver operating characteristic curve and logistic regression. We enrolled 267 septic patients between February and December 2013. Complement 3, MAC, and MBL were higher in the DIC group (P < .01). Membrane attack complex was the independent predictor of sepsis-induced DIC. The area under the curve of MAC in predicting sepsis-induced DIC was 0.793. During hospitalization, 25 patients without DIC at enrollment developed DIC. Membrane attack complex and Sequential Organ Failure Assessment independently predicted progress to DIC. The area under the curve of MAC was 0.741. Complement 3, MAC, and MBL were significantly increased in septic patients with DIC. Membrane attack complex independently predicted sepsis-induced DIC and development of DIC after ED admission. Copyright © 2014 Elsevier Inc. All rights reserved.
Kupffer cell complement receptor clearance function and host defense.
Loegering, D J
1986-01-01
Kupffer cells are well known to be important for normal host defense function. The development of methods to evaluate the in vivo function of specific receptors on Kupffer cells has made it possible to assess the role of these receptors in host defense. The rationale for studying complement receptors is based on the proposed important role of these receptors in host defense and on the observation that the hereditary deficiency of a complement receptor is associated with recurrent severe bacterial infections. The studies reviewed here demonstrate that forms of injury that are associated with depressed host defense including thermal injury, hemorrhagic shock, trauma, and surgery also cause a decrease in complement receptor clearance function. This decrease in Kupffer cell receptor clearance function was shown not to be the result of depressed hepatic blood flow or depletion of complement components. Complement receptor function was also depressed following the phagocytosis of particulates that are known to depress Kupffer cell host defense function. Endotoxemia and bacteremia also were associated with a depression of complement receptor function. Complement receptor function was experimentally depressed in uninjured animals by the phagocytosis of IgG-coated erythrocytes. There was a close association between the depression of complement receptor clearance function and increased susceptibility to the lethal effects of endotoxin and bacterial infection. These studies support the hypotheses that complement receptors on Kupffer cells are important for normal host defense and that depression of the function of these receptors impairs host defense.
Cao, Wenjing; Pham, Huy P; Williams, Lance A; McDaniel, Jenny; Siniard, Rance C; Lorenz, Robin G; Marques, Marisa B; Zheng, X Long
2016-11-01
Acquired thrombotic thrombocytopenic purpura is primarily caused by the deficiency of plasma ADAMTS13 activity resulting from autoantibodies against ADAMTS13. However, ADAMTS13 deficiency alone is often not sufficient to cause acute thrombotic thrombocytopenic purpura. Infections or systemic inflammation may precede acute bursts of the disease, but the underlying mechanisms are not fully understood. Herein, 52 patients with acquired autoimmune thrombotic thrombocytopenic purpura and 30 blood donor controls were recruited for the study. The plasma levels of human neutrophil peptides 1-3 and complement activation fragments (i.e. Bb, iC3b, C4d, and sC5b-9) were determined by enzyme-linked immunosorbent assays. Univariate analyses were performed to determine the correlation between each biomarker and clinical outcomes. We found that the plasma levels of human neutrophil peptides 1-3 and Bb in patients with acute thrombotic thrombocytopenic purpura were significantly higher than those in the control (P<0.0001). The plasma levels of HNP1-3 correlated with the levels of plasma complement fragment Bb (rho=0.48, P=0.0004) and serum lactate dehydrogenase (rho=0.28, P=0.04); in addition, the plasma levels of Bb correlated with iC3b (rho=0.55, P<0.0001), sC5b-9 (rho=0.63, P<0.0001), serum creatinine (rho=0.42, p=0.0011), and lactate dehydrogenase (rho=0.40, P=0.0034), respectively. Moreover, the plasma levels of iC3b and sC5b-9 were correlated (rho=0.72, P<0.0001), despite no statistically significant difference of the two markers between thrombotic thrombocytopenic purpura patients and the control. We conclude that innate immunity, i.e. neutrophil and complement activation via the alternative pathway, may play a role in the pathogenesis of acute autoimmune thrombotic thrombocytopenic purpura, and a therapy targeted at these pathways may be considered in a subset of these patients. Copyright© Ferrata Storti Foundation.
Hajishengallis, George; Hajishengallis, Evlambia; Kajikawa, Tetsuhiro; Wang, Baomei; Yancopoulou, Despina; Ricklin, Daniel; Lambris, John D
2016-06-01
Periodontitis is a dysbiotic inflammatory disease leading to the destruction of the tooth-supporting tissues. Current therapies are not always effective and this prevalent oral disease continues to be a significant health and economic burden. Early clinical studies have associated periodontitis with elevated complement activity. Consistently, subsequent genetic and pharmacological studies in rodents have implicated the central complement component C3 and downstream signaling pathways in periodontal host-microbe interactions that promote dysbiosis and inflammatory bone loss. This review discusses these mechanistic advances and moreover focuses on the compstatin family of C3 inhibitors as a novel approach to treat periodontitis. In this regard, local application of the current lead analog Cp40 was recently shown to block both inducible and naturally occurring periodontitis in non-human primates. These promising results from non-human primate studies and the parallel development of Cp40 for clinical use highlight the feasibility for developing an adjunctive, C3-targeted therapy for human periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of TOF-SIMS spectra from fullerene compounds
NASA Astrophysics Data System (ADS)
Kato, N.; Yamashita, Y.; Iida, S.; Sanada, N.; Kudo, M.
2008-12-01
We analyzed TOF-SIMS spectra obtained from three different size of fullerenes (C 60, C 70 and C 84) by using Ga +, Au + and Au 3+ primary ion beams and investigated the fragmentation patterns, the enhancement of secondary ion yields and the restraint of fragmentation by using cluster primary ion beams compared with monoatomic primary ion beams. In the TOS-SIMS spectra from C 70 and C 84, it was found that a fragment ion, identified as C 60+ ( m/ z = 720), showed a relatively high intensity compared with that of other fragment ions related to C 2 depletion. It was also found that the Au 3+ bombardment caused intensity enhancement of intact molecules (C 60+, C 70+ and C 84+) and restrained the fragmentation due to C 2 depletion.
Role of 2',3'-cyclic nucleotide 3'-phosphodiesterase in the renal 2',3'-cAMP-adenosine pathway.
Jackson, Edwin K; Gillespie, Delbert G; Mi, Zaichuan; Cheng, Dongmei; Bansal, Rashmi; Janesko-Feldman, Keri; Kochanek, Patrick M
2014-07-01
Energy depletion increases the renal production of 2',3'-cAMP (a positional isomer of 3',5'-cAMP that opens mitochondrial permeability transition pores) and 2',3'-cAMP is converted to 2'-AMP and 3'-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this "2',3'-cAMP-adenosine pathway" are unknown, we examined whether 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) participates in the renal metabolism of 2',3'-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3',5'-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2',3'-cAMP to 2'-AMP. Infusions of 2',3'-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2'-AMP, and this response was diminished by 63% in CNPase knockout (-/-) kidneys, whereas the conversion of 3',5'-cAMP to 5'-AMP was similar in CNPase +/+ vs. -/- kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2',3'-cAMP. In contrast, in CNPase -/- kidneys, energy depletion increased kidney tissue levels of 2',3'-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2',3'-cAMP-adenosine pathway. Copyright © 2014 the American Physiological Society.
Transient Treg depletion enhances therapeutic anti‐cancer vaccination
Aston, Wayne J.; Chee, Jonathan; Khong, Andrea; Cleaver, Amanda L.; Solin, Jessica N.; Ma, Shaokang; Lesterhuis, W. Joost; Dick, Ian; Holt, Robert A.; Creaney, Jenette; Boon, Louis; Robinson, Bruce; Lake, Richard A.
2016-01-01
Abstract Introduction Regulatory T cells (Treg) play an important role in suppressing anti‐ immunity and their depletion has been linked to improved outcomes. To better understand the role of Treg in limiting the efficacy of anti‐cancer immunity, we used a Diphtheria toxin (DTX) transgenic mouse model to specifically target and deplete Treg. Methods Tumor bearing BALB/c FoxP3.dtr transgenic mice were subjected to different treatment protocols, with or without Treg depletion and tumor growth and survival monitored. Results DTX specifically depleted Treg in a transient, dose‐dependent manner. Treg depletion correlated with delayed tumor growth, increased effector T cell (Teff) activation, and enhanced survival in a range of solid tumors. Tumor regression was dependent on Teffs as depletion of both CD4 and CD8 T cells completely abrogated any survival benefit. Severe morbidity following Treg depletion was only observed, when consecutive doses of DTX were given during peak CD8 T cell activation, demonstrating that Treg can be depleted on multiple occasions, but only when CD8 T cell activation has returned to base line levels. Finally, we show that even minimal Treg depletion is sufficient to significantly improve the efficacy of tumor‐peptide vaccination. Conclusions BALB/c.FoxP3.dtr mice are an ideal model to investigate the full therapeutic potential of Treg depletion to boost anti‐tumor immunity. DTX‐mediated Treg depletion is transient, dose‐dependent, and leads to strong anti‐tumor immunity and complete tumor regression at high doses, while enhancing the efficacy of tumor‐specific vaccination at low doses. Together this data highlight the importance of Treg manipulation as a useful strategy for enhancing current and future cancer immunotherapies. PMID:28250921
Transient Treg depletion enhances therapeutic anti-cancer vaccination.
Fisher, Scott A; Aston, Wayne J; Chee, Jonathan; Khong, Andrea; Cleaver, Amanda L; Solin, Jessica N; Ma, Shaokang; Lesterhuis, W Joost; Dick, Ian; Holt, Robert A; Creaney, Jenette; Boon, Louis; Robinson, Bruce; Lake, Richard A
2017-03-01
Regulatory T cells (Treg) play an important role in suppressing anti- immunity and their depletion has been linked to improved outcomes. To better understand the role of Treg in limiting the efficacy of anti-cancer immunity, we used a Diphtheria toxin (DTX) transgenic mouse model to specifically target and deplete Treg. Tumor bearing BALB/c FoxP3.dtr transgenic mice were subjected to different treatment protocols, with or without Treg depletion and tumor growth and survival monitored. DTX specifically depleted Treg in a transient, dose-dependent manner. Treg depletion correlated with delayed tumor growth, increased effector T cell (Teff) activation, and enhanced survival in a range of solid tumors. Tumor regression was dependent on Teffs as depletion of both CD4 and CD8 T cells completely abrogated any survival benefit. Severe morbidity following Treg depletion was only observed, when consecutive doses of DTX were given during peak CD8 T cell activation, demonstrating that Treg can be depleted on multiple occasions, but only when CD8 T cell activation has returned to base line levels. Finally, we show that even minimal Treg depletion is sufficient to significantly improve the efficacy of tumor-peptide vaccination. BALB/c.FoxP3.dtr mice are an ideal model to investigate the full therapeutic potential of Treg depletion to boost anti-tumor immunity. DTX-mediated Treg depletion is transient, dose-dependent, and leads to strong anti-tumor immunity and complete tumor regression at high doses, while enhancing the efficacy of tumor-specific vaccination at low doses. Together this data highlight the importance of Treg manipulation as a useful strategy for enhancing current and future cancer immunotherapies.
Takeshita, Ai; Kusakabe, Ken Takeshi; Hiyama, Masato; Kuniyoshi, Nobue; Kondo, Tomohiro; Kano, Kiyoshi; Kiso, Yasuo; Okada, Toshiya
2014-05-01
The complement system is one component of innate immunity that could participate in fetal loss. We have already reported that adipsin, a complement activator in the alternative pathway, is stably expressed in the placenta and that an increase in this expression is related to spontaneous abortion. However, complement inhibitor Crry was concurrently expressed in the placenta, and the role of complement factors during pregnancy was not clear. In the present study, we examined the endogenous regulation of complement factors in placenta and serum by using another model mouse for spontaneous abortion and studied the effect of exogenous complement disruption on pregnancy. Compared to control mice, the CBA/J×DBA/2 model mice had higher expression levels of adipsin in the placenta and serum. Adipsin and complement C3 were localized in the metrial gland and labyrinth regions, and both positive reactive ranges were limited in the maternal blood current in normal implantation sites. These results suggest that extrauterine adipsin hematogenously reaches the placenta, activates complement C3, and promotes destruction of the feto-maternal barrier in aborted implantation sites. Crry was consistently expressed in the placenta and serum and reduced in the resorption sites of CBA/J×DBA/2 mice as compared to normal sites. Injection of recombinant adipsin increased the resorption rate and changed the expression of Th-type cytokines toward a Th1 bias. The present study indicates that adipsin could induce the fetal loss that accompanies the Th1 bias and may be a crucial cause of spontaneous abortion. In addition, the local expression of Crry prevents complement activation in placenta in response to a systemic increase of adipsin. Copyright © 2014 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Nittler, Larry R.; Alexander, Conel M. O'D.; Davidson, Jemma; Riebe, My E. I.; Stroud, Rhonda M.; Wang, Jianhua
2018-04-01
NanoSIMS C-, N-, and O-isotopic mapping of matrix in CO3.0 chondrite Dominion Range (DOM) 08006 revealed it to have in its matrix the highest abundance of presolar O-rich grains (257 +76/-96 ppm, 2σ) of any meteorite. It also has a matrix abundance of presolar SiC of 35 (+25/-17, 2σ) ppm, similar to that seen across primitive chondrite classes. This provides additional support to bulk isotopic and petrologic evidence that DOM 08006 is the most primitive known CO meteorite. Transmission electron microscopy of five presolar silicate grains revealed one to have a composite mineralogy similar to larger amoeboid olivine aggregates and consistent with equilibrium condensation, two non-stoichiometric amorphous grains, and two olivine grains, though one is identified as such solely based on its composition. We also found insoluble organic matter (IOM) to be present primarily as sub-micron inclusions with ranges of C- and N-isotopic anomalies similar to those seen in primitive CR chondrites and interplanetary dust particles. In contrast to other primitive extraterrestrial materials, H isotopic imaging showed normal and homogeneous D/H. Most likely, DOM 08006 and other CO chondrites accreted a similar complement of primitive and isotopically anomalous organic matter to that found in other chondrite classes and IDPs, but the very limited amount of thermal metamorphism experienced by DOM 08006 has caused loss of D-rich organic moieties, while not substantially affecting either the molecular carriers of C and N anomalies or most inorganic phases in the meteorite. One C-rich grain that was highly depleted in 13C and 15N was identified; we propose it originated in the Sun's parental molecular cloud.
Sharma, Ricky A.
2012-01-01
DNA polymerase eta (pol η) is the only DNA polymerase causally linked to carcinogenesis in humans. Inherited deficiency of pol η in the variant form of xeroderma pigmentosum (XPV) predisposes to UV-light-induced skin cancer. Pol η-deficient cells demonstrate increased sensitivity to cisplatin and oxaliplatin chemotherapy. We have found that XP30R0 fibroblasts derived from a patient with XPV are more resistant to cell kill by ionising radiation (IR) than the same cells complemented with wild-type pol η. This phenomenon has been confirmed in Burkitt’s lymphoma cells, which either expressed wild-type pol η or harboured a pol η deletion. Pol η deficiency was associated with accumulation of cells in S-phase, which persisted after IR. Cells deficient in pol η demonstrated increased homologous recombination (HR)-directed repair of double strand breaks created by IR. Depletion of the HR protein, X-ray repair cross-complementing protein 3 (XRCC3), abrogated the radioresistance observed in pol η-deficient cells as compared with pol η-complemented cells. These findings suggest that HR mediates S-phase-dependent radioresistance associated with pol η deficiency. We propose that pol η protein levels in tumours may potentially be used to identify patients who require treatment with chemo-radiotherapy rather than radiotherapy alone for adequate tumour control. PMID:22822095
Kawakami, Tamihiro; Kimura, Satoko; Takeuchi, Sora; Soma, Yoshinao
2013-07-01
Eosinophilic granulomatosis with polyangiitis (EGPA), also known as Churg-Strauss syndrome, is an antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis characterized by a history of asthma, hypereosinophilia. The prevalence of ANCA in EGPA is less common than in other ANCA-associated vasculitis. Increasing evidence of complement activation in the pathogenesis of ANCA-associated vasculitis has been provided by studies in animal models. We examined EGPA patients with cutaneous manifestations as an initial sign and investigated the correlations among clinical, serological and histopathological findings. We focused on differences among ANCA, blood urea nitrogen and complement levels such as complement 3 (C3), C4 and total complement hemolytic activity (CH50). We retrospectively investigated the records of 22 patients (11 male and 11 female) with EGPA admitted to our hospital from 1997-2012. Ten of the 22 patients (46%) were positive for serum myeloperoxidase (MPO)-ANCA. In contrast, all the patients were negative for serum proteinase 3 ANCA. There was a significantly positive correlation between serum CH50 and C4 levels in patients with EGPA. Serum blood urea nitrogen (BUN) levels differed significantly between MPO-ANCA-positive and -negative patients. Serum CH50 levels were higher in MPO-ANCA-positive patients compared to negative patients. Serum BUN levels were higher in elevated CH50 patients compared to normal and low CH50-negative patients. We propose that positive findings for MPO-ANCA with CH50 high activity may be a risk factor for developing renal insufficiency. Assuming there are correlations between the presence of ANCA and complements, earlier diagnosis based on initial efficacious treatment for EGPA. © 2013 Japanese Dermatological Association.
Castiblanco-Valencia, Mónica M; Fraga, Tatiana R; Breda, Leandro C D; Vasconcellos, Sílvio A; Figueira, Cláudio P; Picardeau, Mathieu; Wunder, Elsio; Ko, Albert I; Barbosa, Angela S; Isaac, Lourdes
2016-05-01
Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules present in pathogenic but not in saprophytic Leptospira species. We have previously shown that Lig proteins interact with the soluble complement regulators Factor H (FH), FH like-1 (FHL-1), FH related-1 (FHR-1) and C4b Binding Protein (C4BP). In this study, we used the saprophyte L. biflexa serovar Patoc as a surrogate host to address the specific role of LigA and LigB proteins in leptospiral complement evasion. L. biflexa expressing LigA or LigB was able to acquire FH and C4BP. Bound complement regulators retained their cofactor activities of FI in the proteolytic cleavage of C3b and C4b. Moreover, heterologous expression of ligA and ligB genes in the saprophyte L. biflexa enhanced bacterial survival in human serum. Complement deposition on lig-transformed L. biflexa was assessed by flow cytometry analysis. With regard to MAC deposition, L. biflexa expressing LigA or LigB presented an intermediate profile: MAC deposition levels were greater than those found in the pathogenic L. interrogans, but lower than those observed for L. biflexa wildtype. In conclusion, Lig proteins contribute to in vitro control of complement activation on the leptospiral surface, promoting an increased bacterial survival in human serum. Copyright © 2016 European Federation of Immunological Societies. All rights reserved.
Chang, Ming-Ling; Kuo, Chia-Jung; Huang, Hsin-Chih; Chu, Yin-Yi; Chiu, Cheng-Tang
2016-01-01
The association between leptin and complement in hepatitis C virus (HCV) infection remains unknown. A prospective study was conducted including 474 (250 genotype 1, 224 genotype 2) consecutive chronic hepatitis C (CHC) patients who had completed an anti-HCV therapy course and undergone pre-therapy and 24-week post-therapy assessments of interferon λ3-rs12979860 and HCV RNA/genotypes, anthropometric measurements, metabolic and liver profiles, and complement component 3 (C3), C4, and leptin levels. Of the 474 patients, 395 had a sustained virological response (SVR). Pre-therapy leptin levels did not differ between patients with and without an SVR. Univariate and multivariate analyses showed that sex (pre- and post-therapy, p<0.001), body mass index (BMI) (pre- and post-therapy, p<0.001), and C3 levels (pre-therapy, p = 0.027; post-therapy, p = 0.02) were independently associated with leptin levels with or without HCV infection. Pre-therapy BMI, total cholesterol (TC), C4 levels, and the rs12979860 genotype were independently associated with pre-therapy C3 levels in all patients. Post-therapy BMI, alanine aminotransferase, TC, C4 levels, white blood cell counts, and hepatic steatosis were independently associated with the post-therapy C3 levels of SVR patients. Compared with pre-therapy levels, SVR patients showed higher 24-week post-therapy C4 (20.32+/-7.30 vs. 21.55+/-7.07 mg/dL, p<0.001) and TC (171.68+/-32.67 vs. 186.97+/-36.09 mg/dL, p<0.001) levels; however, leptin and C3 levels remained unchanged after therapy in patients with and without an SVR. Leptin and C3 may maintain immune and metabolic homeostasis through association with C4 and TC. Positive alterations in C4 and TC levels reflect viral clearance after therapy in CHC patients.
He, Yin-Cheng; Cao, Jun; Chen, Ji-Wei; Pan, Ding-Yu; Zhou, Ya-Kui
2003-01-01
AIM: To investigate the effects of methionine/valine-depleted enteral nutrition (EN) on RNA, DNA and protein metabolism in tumor-bearing (TB) rats. METHODS: Sprague-Dawlley (SD) rats underwent jejunostomy for nutritional support. A suspension of Walker-256 carcinosarcoma cells was subcutaneously inoculated. 48 TB rats were randomly divided in 4 groups: A, B, C and D. The TB rats had respectively received jejunal feedings supplemented with balanced amino acids, methionine-depleted, balanced amino acids and valine-depleted for 6 d before injection of 740 KBq 3H- methionine/valine via jejunum. The 3H incorporation rate of the radioactivity into RNA, DNA and proteins in tumor tissues at 0.5, 1, 2, 4 h postinjection of tracers was assessed with liquid scintillation counter. RESULTS: Incorporation of 3H into proteins in groups B and D was (0.500 ± 0.020)% to (3.670 ± 0.110)% and (0.708 ± 0.019)% to (3.813 ± 0.076)% respectively, lower than in groups A [(0.659 ± 0.055)% to (4.492 ± 0.108)%] and C [(0.805 ± 0.098)% to (4.180 ± 0.018)%]. Incorporation of 3H into RNA, DNA in group B was (0.237 ± 0.075)% and (0.231 ± 0.052)% respectively, lower than in group A (P < 0.01). There was no significant difference in uptake of 3H by RNA and DNA between group C and D (P > 0.05). CONCLUSION: Protein synthesis was inhibited by methionine/valine starvation in TB rats and nucleic acid synthesis was reduced after methionine depletion, thus resulting in suppression of tumor growth. PMID:12679929
Rosoff, J D; Soltow, L O; Vocelka, C R; Schmer, G; Chandler, W L; Cochran, R P; Kunzelman, K S; Spiess, B D
1998-08-01
To examine whether a second-generation perfluorocarbon (PFC) blood substitute added to the cardiopulmonary bypass (CPB) prime influences complement production. A prospective, randomized, single-blinded, ex vivo model. A university hospital, laboratory, and clinics. Ten healthy adult consented volunteer blood donors (five men, five women). Ex vivo closed-loop extracorporeal circuit including membrane oxygenator, tubing, and filter primed with crystalloid or crystalloid plus PFC was circulated for 1 hour with the addition of 500 mL of heparinized fresh human whole blood. Laboratory specimens were drawn from the circuit at 10-minute intervals for 1 hour and measured for complement (C3a, Bb fragment) concentrations, blood gases, fibrinogen concentration, platelet count, and hematocrit. In the PFC group, C3a and Bb fragments were equal to or less than those in the group that received crystalloid alone. The second-generation PFC added to the prime of a CPB circuit does not independently increase complement production.
Allelic Variants of Complement Genes Associated with Dense Deposit Disease
Abrera-Abeleda, Maria Asuncion; Nishimura, Carla; Frees, Kathy; Jones, Michael; Maga, Tara; Katz, Louis M.; Zhang, Yuzhou
2011-01-01
The alternative pathway of the complement cascade plays a role in the pathogenesis of dense deposit disease (DDD). Deficiency of complement factor H and mutations in CFH associate with the development of DDD, but it is unknown whether allelic variants in other complement genes also associate with this disease. We studied patients with DDD and identified previously unreported sequence alterations in several genes in addition to allelic variants and haplotypes common to patients with DDD. We found that the likelihood of developing DDD increases with the presence of two or more risk alleles in CFH and C3. To determine the functional consequence of this finding, we measured the activity of the alternative pathway in serum samples from phenotypically normal controls genotyped for variants in CFH and C3. Alternative pathway activity was higher in the presence of variants associated with DDD. Taken together, these data confirm that DDD is a complex genetic disease and may provide targets for the development of disease-specific therapies. PMID:21784901
Afroz, S; Roy, D K; Khan, A H
2013-04-01
Low serum level of IgG, complement C3 and C4 in nephrotic syndrome children may cause increased susceptibility to infection. Serum level of IgG and complements in nephrotic children (NS) with UTI has been analyzed in this cross sectional study. It was carried out in the department of Pediatric nephrology, National Institute of Kidney Diseases & Urology (NIKDU), Dhaka, Bangladesh. The study subjects were followed up prospectively for one year to see and compare the frequency of relapse of NS and UTI. Patients were selected in a nonrandom purposive technique. Nephrotic syndrome children with initial attack between 1-12 year of age were included over a period of one year. The patients were grouped into Group I - UTI positive and Group II - UTI negative depending on urine culture positivity and colony count >10⁵ CFU/ml. Serum IgG and complements C3, C4 levels were done in both groups during nephrosis and were compared. A total of 101 children M: F 1.7:1, mean age 5.96±3.2 years were included in this study. Group I, n=45 vs. Group II, n=56. The mean serum level of IgG was low in Group I (549.91±210.71 vs. 728.64±235.81mg/dl, p<0.001). Serum IgG level less than 700mg/dl was found in 37 vs. 23 children {x² (¹) 17.52 p<0.001, OR=6.63}. Mean serum complement C3 level was also low in Group I (123.09±40.52 vs. 143.38±37.06mg/dl, p<0.05). But complement C3 and C4 level do not carry any risk of developing UTI in nephrotic children. Higher number of children in Group II were at remission (n=24) during follow up, while frequent relapsers were high in Group I (n=22). Increased frequency of UTI attack (88 episodes) was found in Group I children compared to none in Group II during follow up. So low serum level of IgG in children with NS during nephrosis can predict UTI with an odds ratio of 6.63 as well as relapse. Serum level of C3, C4 do not associated with any risk of development of UTI in NS children.
Kumar, Jitendra; Yadav, Viveka Nand; Phulera, Swastik; Kamble, Ashish; Gautam, Avneesh Kumar; Panwar, Hemendra Singh
2017-01-01
ABSTRACT Poxviruses display species tropism—variola virus is a human-specific virus, while vaccinia virus causes repeated outbreaks in dairy cattle. Consistent with this, variola virus complement regulator SPICE (smallpox inhibitor of complement enzymes) exhibits selectivity in inhibiting the human alternative complement pathway and vaccinia virus complement regulator VCP (vaccinia virus complement control protein) displays selectivity in inhibiting the bovine alternative complement pathway. In the present study, we examined the species specificity of VCP and SPICE for the classical pathway (CP). We observed that VCP is ∼43-fold superior to SPICE in inhibiting bovine CP. Further, functional assays revealed that increased inhibitory activity of VCP for bovine CP is solely due to its enhanced cofactor activity, with no effect on decay of bovine CP C3-convertase. To probe the structural basis of this specificity, we utilized single- and multi-amino-acid substitution mutants wherein 1 or more of the 11 variant VCP residues were substituted in the SPICE template. Examination of these mutants for their ability to inhibit bovine CP revealed that E108, E120, and E144 are primarily responsible for imparting the specificity and contribute to the enhanced cofactor activity of VCP. Binding and functional assays suggested that these residues interact with bovine factor I but not with bovine C4(H2O) (a moiety conformationally similar to C4b). Mapping of these residues onto the modeled structure of bovine C4b-VCP-bovine factor I supported the mutagenesis data. Taken together, our data help explain why the vaccine strain of vaccinia virus was able to gain a foothold in domesticated animals. IMPORTANCE Vaccinia virus was used for smallpox vaccination. The vaccine-derived virus is now circulating and causing outbreaks in dairy cattle in India and Brazil. However, the reason for this tropism is unknown. It is well recognized that the virus is susceptible to neutralization by the complement classical pathway (CP). Because the virus encodes a soluble complement regulator, VCP, we examined whether this protein displays selectivity in targeting bovine CP. Our data show that it does exhibit selectivity in inhibiting the bovine CP and that this is primarily determined by its amino acids E108, E120, and E144, which interact with bovine serine protease factor I to inactivate bovine C4b—one of the two subunits of CP C3-convertase. Of note, the variola complement regulator SPICE contains positively charged residues at these positions. Thus, these variant residues in VCP help enhance its potency against the bovine CP and thereby the fitness of the virus in cattle. PMID:28724763
NASA Astrophysics Data System (ADS)
Elkins, J. W.; Moore, F. L.; Hintsa, E. J.; Dutton, G. S.; Nance, J. D.; Hall, B. D.
2016-12-01
NOAA scientists started in situ airborne measurements of two strong ozone-depleting gases or chlorofluorocarbons, CFC-11 and CFC-113 in 1991 on the NASA ER-2 aircraft with a two-channel gas chromatograph, Airborne Chromatograph for Atmospheric Trace Species (ACATS). We broaden our list of gases to include more ozone-depleting and other climate-related gases. An improved 4-channel gas chromatograph that included N2O, SF6, CFC-11, -12, -113, halon-1211, CCl4, CH3CCl3, CH4, CO, and H2 was added to the ER-2 aircraft in 1994. As CFC replacements took hold, we add a gas chromatograph-mass spectrometer system, PAN and other Trace Hydro-halocarbon Experiment (PANTHER), to examine shorter-lived gases mainly in the upper troposphere. These airborne measurements were to complement of ground-based flask and in situ measurements from the NOAA Halocarbon and other Trace Species Network. This talk will show results from a tropical study, Airborne Tropical Tropopause Experiment (ATTREX) on the NASA Global Hawk aircraft and preliminary results from the Atmospheric Tomography Mission (ATom) conducted in August 2016 on the NASA DC-8 aircraft. A detrended, gridded, latitudinal distribution of SF6 is shown in the figure below for the years of 1994 through 2014. Such a plot may be useful to atmospheric modelers trying to capture transport or calculate emissions.
Franco, A A; Kothary, M H; Gopinath, G; Jarvis, K G; Grim, C J; Hu, L; Datta, A R; McCardell, B A; Tall, B D
2011-04-01
Cronobacter spp. are emerging neonatal pathogens in humans, associated with outbreaks of meningitis and sepsis. To cause disease, they must survive in blood and invade the central nervous system by penetrating the blood-brain barrier. C. sakazakii BAA-894 possesses an ~131-kb plasmid (pESA3) that encodes an outer membrane protease (Cpa) that has significant identity to proteins that belong to the Pla subfamily of omptins. Members of this subfamily of proteins degrade a number of serum proteins, including circulating complement, providing protection from the complement-dependent serum killing. Moreover, proteins of the Pla subfamily can cause uncontrolled plasmin activity by converting plasminogen to plasmin and inactivating the plasmin inhibitor α2-antiplasmin (α2-AP). These reactions enhance the spread and invasion of bacteria in the host. In this study, we found that an isogenic cpa mutant showed reduced resistance to serum in comparison to its parent C. sakazakii BAA-894 strain. Overexpression of Cpa in C. sakazakii or Escherichia coli DH5α showed that Cpa proteolytically cleaved complement components C3, C3a, and C4b. Furthermore, a strain of C. sakazakii overexpressing Cpa caused a rapid activation of plasminogen and inactivation of α2-AP. These results strongly suggest that Cpa may be an important virulence factor involved in serum resistance, as well as in the spread and invasion of C. sakazakii.
Chemical characterization and complement fixation of pectins from Cola cordifolia leaves.
Austarheim, Ingvild; Christensen, Bjørn E; Aas, Hoai Thi Nguyen; Thöle, Christian; Diallo, Drissa; Paulsen, Berit S
2014-02-15
Defatted leaves from the medicinal tree Cola cordifolia were extracted with 50% EtOH, 50 °C and 100 °C water. The polysaccharide rich extracts were fractionated and the structure of the polysaccharides elucidated. Linkage analysis of the polysaccharides indicates a rhamnogalacturonan type I backbone where both Rha and parts of GalA are substituted in position 3, indicating a highly branched polymer with short side chains. The purified fractions were tested for complement fixation, macrophage stimulating activity and anti-adhesion activity towards Helicobacter pylori. Here we report on complex and polydisperse types of pectins (Mw: 3-1300 kDa) as well as the presence of low Mw (<3 kDa) acidic oligosaccharides. The fractions showed a moderate complement fixing activity and no macrophage activating effects after LPS removal. Anti-adhesion activity towards H. pylori was not found. Copyright © 2013 Elsevier Ltd. All rights reserved.
Splenic macrophages are required for protective innate immunity against West Nile virus
Bryan, Marianne A.; Giordano, Daniela; Draves, Kevin E.; Green, Richard; Gale, Michael
2018-01-01
Although the spleen is a major site for West Nile virus (WNV) replication and spread, relatively little is known about which innate cells in the spleen replicate WNV, control viral dissemination, and/or prime innate and adaptive immune responses. Here we tested if splenic macrophages (MΦs) were necessary for control of WNV infection. We selectively depleted splenic MΦs, but not draining lymph node MΦs, by injecting mice intravenously with clodronate liposomes several days prior to infecting them with WNV. Mice missing splenic MΦs succumbed to WNV infection after an increased and accelerated spread of virus to the spleen and the brain. WNV-specific Ab and CTL responses were normal in splenic MΦ-depleted mice; however, numbers of NK cells and CD4 and CD8 T cells were significantly increased in the brains of infected mice. Splenic MΦ deficiency led to increased WNV in other splenic innate immune cells including CD11b- DCs, newly formed MΦs and monocytes. Unlike other splenic myeloid subsets, splenic MΦs express high levels of mRNAs encoding the complement protein C1q, the apoptotic cell clearance protein Mertk, the IL-18 cytokine and the FcγR1 receptor. Splenic MΦ-deficient mice may be highly susceptible to WNV infection in part to a deficiency in C1q, Mertk, IL-18 or Caspase 12 expression. PMID:29408905
Mode of complement activation by acidic heteroglycans from the leaves of Artemisia princeps PAMP.
Yamada, H; Nagai, T; Cyong, J C; Otsuka, Y
1991-08-01
The mode of action of the anti-complementary acidic heteroglycans, AAF-IIb-2 and IIb-3 which consisted of rhamnogalacturonan core and arabinogalactan moieties, purified from the leaves of Artemisia princeps PAMP (Japanese name = Gaiyo) were investigated. The anti-complementary activities of AAF-IIb-2 and IIb-3 were reduced partially in the absence of Ca2+ ions. A marked consumption of C4 was observed to have occurred when serum was incubated with both polysaccharides in the presence of Ca2+ ions. AAF-IIb-2 showed more potent C4 consumption than IIb-3. After the incubation of the serum with AAF-IIb-2 in the absence of Ca2+ ions, a cleavage of C3 in the serum was detected by immunoelectrophoresis. AAF-IIb-2 showed more significant consumption of the complement than IIb-3 when rabbit erythrocytes were used in the assay system in the absence of Ca2+ ions. These results indicate that AAF-IIb-2 activates the complement via both the alternative and classical pathways, whereas IIb-3 mainly activates the complement via the classical pathway. The absorption of serum with Protein A-Sepharose results in a decrease of the activity of AAF-IIb-2 and IIb-3. However, the decrease of the activity was restored by the replacement of the immunoglobulin G (IgG) fraction after its recovery from the Protein A-Sepharose. These results suggest that IgG dependent mechanisms are both involved in the anti-complementary activity of AAF-IIb-2 and IIb-3.
The pathogenesis of diclofenac induced immunoallergic hepatitis in a canine model of liver injury
Selvaraj, Saravanakumar; Oh, Jung-Hwa; Spanel, Reinhard; Länger, Florian; Han, Hyoung-Yun; Lee, Eun-Hee; Yoon, Seokjoo; Borlak, Jürgen
2017-01-01
Hypersensitivity to non-steroidal anti-inflammatory drugs is a common adverse drug reaction and may result in serious inflammatory reactions of the liver. To investigate mechanism of immunoallergic hepatitis beagle dogs were given 1 or 3 mg/kg/day (HD) oral diclofenac for 28 days. HD diclofenac treatment caused liver function test abnormalities, reduced haematocrit and haemoglobin but induced reticulocyte, WBC, platelet, neutrophil and eosinophil counts. Histopathology evidenced hepatic steatosis and glycogen depletion, apoptosis, acute lobular hepatitis, granulomas and mastocytosis. Whole genome scans revealed 663 significantly regulated genes of which 82, 47 and 25 code for stress, immune response and inflammation. Immunopathology confirmed strong induction of IgM, the complement factors C3&B, SAA, SERPING1 and others of the classical and alternate pathway. Alike, marked expression of CD205 and CD74 in Kupffer cells and lymphocytes facilitate antigen presentation and B-cell differentiation. The highly induced HIF1A and KLF6 protein expression in mast cells and macrophages sustain inflammation. Furthermore, immunogenomics discovered 24, 17, 6 and 11 significantly regulated marker genes to hallmark M1/M2 polarized macrophages, lymphocytic and granulocytic infiltrates; note, the latter was confirmed by CAE staining. Other highly regulated genes included alpha-2-macroglobulin, CRP, hepcidin, IL1R1, S100A8 and CCL20. Diclofenac treatment caused unprecedented induction of myeloperoxidase in macrophages and oxidative stress as shown by SOD1/SOD2 immunohistochemistry. Lastly, bioinformatics defined molecular circuits of inflammation and consisted of 161 regulated genes. Altogether, the mechanism of diclofenac induced liver hypersensitivity reactions involved oxidative stress, macrophage polarization, mastocytosis, complement activation and an erroneous programming of the innate and adaptive immune system. PMID:29296203
Khandhadia, Samir; Hakobyan, Svetlana; Heng, Ling Z; Gibson, Jane; Adams, David H; Alexander, Graeme J; Gibson, Jonathan M; Martin, Keith R; Menon, Geeta; Nash, Kathryn; Sivaprasad, Sobha; Ennis, Sarah; Cree, Angela J; Morgan, B Paul; Lotery, Andrew J
2013-08-01
To investigate whether modification of liver complement factor H (CFH) production, by alteration of liver CFH Y402H genotype through liver transplantation (LT), influences the development of age-related macular degeneration (AMD). Multicenter, cross-sectional study. We recruited 223 Western European patients ≥ 55 years old who had undergone LT ≥ 5 years previously. We determined AMD status using a standard grading system. Recipient CFH Y402H genotype was obtained from DNA extracted from recipient blood samples. Donor CFH Y402H genotype was inferred from recipient plasma CFH Y402H protein allotype, measured using enzyme-linked immunosorbent assays. This approach was verified by genotyping donor tissue from a subgroup of patients. Systemic complement activity was ascertained by measuring levels of plasma complement proteins using an enzyme-linked immunosorbent assay, including substrates (C3, C4), activation products (C3a, C4a, and terminal complement complex), and regulators (total CFH, C1 inhibitor). We evaluated AMD status and recipient and donor CFH Y402H genotype. In LT patients, AMD was associated with recipient CFH Y402H genotype (P = 0.036; odds ratio [OR], 1.6; 95% confidence interval [CI], 1.0-2.4) but not with donor CFH Y402H genotype (P = 0.626), after controlling for age, sex, smoking status, and body mass index. Recipient plasma CFH Y402H protein allotype predicted donor CFH Y402H genotype with 100% accuracy (n = 49). Plasma complement protein or activation product levels were similar in LT patients with and without AMD. Compared with previously reported prevalence figures (Rotterdam Study), LT patients demonstrated a high prevalence of both AMD (64.6% vs 37.1%; OR, 3.09; P<0.001) and the CFH Y402H sequence variation (41.9% vs 36.2%; OR, 1.27; P = 0.014). Presence of AMD is not associated with modification of hepatic CFH production. In addition, AMD is not associated with systemic complement activity in LT patients. These findings suggest that local intraocular complement activity is of greater importance in AMD pathogenesis. The high AMD prevalence observed in LT patients may be associated with the increased frequency of the CFH Y402H sequence variation. The authors have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Scanlon, Bridget R.; Reedy, Robert C.; Faunt, Claudia C.; Pool, Donald; Uhlman, Kristine
2016-03-01
Projected longer-term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (managed aquifer recharge, MAR). Unique multi-decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ˜44 km3 in the Central Valley and by ˜100 km3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km3 yr-1, CU) or is used to recharge groundwater (MAR, ≤1.5 km3 yr-1) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water-level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in active management areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0-1.6 km3 yr-1, 2000-2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi-year storage, complementing shorter term surface reservoir storage, and facilitating water markets.
Inner disk clearing around the Herbig Ae star HD 139614: Evidence for a planet-induced gap?
NASA Astrophysics Data System (ADS)
Matter, A.; Labadie, L.; Augereau, J. C.; Kluska, J.; Crida, A.; Carmona, A.; Gonzalez, J. F.; Thi, W. F.; Le Bouquin, J.-B.; Olofsson, J.; Lopez, B.
2016-02-01
Spatially resolving the inner dust cavity (or gap) of the so-called (pre-)transitional disks is a key to understanding the connection between the processes of planetary formation and disk dispersal. The disk around the Herbig star HD 139614 is of particular interest since it presents a pretransitional nature with an au-sized gap structure that is spatially resolved by mid-infrared interferometry in the dust distribution. With the aid of new near-infrared interferometric observations, we aim to characterize the 0.1-10 au region of the HD 139614 disk further and then identify viable mechanisms for the inner disk clearing. We report the first multiwavelength modeling of the interferometric data acquired on HD 139614 with the VLTI instruments PIONIER, AMBER, and MIDI, complemented by Herschel/PACS photometric measurements. We first performed a geometrical modeling of the new near-infrared interferometric data, followed by radiative transfer modeling of the complete dataset using the code RADMC3D. We confirm the presence of a gap structure in the warm μm-sized dust distribution, extending from about 2.5 au to 6 au, and constrained the properties of the inner dust component: e.g., a radially increasing dust surface density profile, and a depletion in dust of ~103 relative to the outer disk. Since self-shadowing and photoevaporation appears unlikely to be responsible for the au-sized gap of HD 139614, we thus tested if dynamical clearing could be a viable mechanism using hydrodynamical simulations to predict the structure of the gaseous disk. Indeed, a narrow au-sized gap is consistent with the expected effect of the interaction between a single giant planet and the disk. Assuming that small dust grains are well coupled to the gas, we found that an approximately 3 Mjup planet located at ~4.5 au from the star could, in less than 1 Myr, reproduce most of the aspects of the dust surface density profile, while no significant depletion (in gas) occurred in the inner disk, in contrast to the dust. However, this "dust-depleted" inner disk could be explained by the expected dust filtration by the gap and the efficient dust growth/fragmentation occurring in the inner disk regions. Our results support the hypothesis of a giant planet opening a gap and shaping the inner region of the HD 139614 disk. This makes HD 139614 an exciting candidate specifically for witnessing planet-disk interaction. Based on observations collected at the European Southern Observatory, Chile (ESO IDs : 385.C-0886, 087.C-0811, 089.C-0456, and 190.C-0963).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loyer, M.; Leclerc, D.; Gravel, R.A.
1994-09-01
Propionic acidemia is a rare autosomal recessive disorder resulting from defects of the {alpha} or {beta} subunit of biotin-dependent propionyl-CoA carboxylase (PCC). Mutations are assigned to defects of the PCCA ({alpha} subunit) or PCCB ({beta} subunit) gene through complementation studies after somatic fusion of patient cell lines. About two-thirds of patients with {beta} subunit defects (complementation group pccBC) show interallelic complementation in cell fusion experiments (subgroups pccB and pccC), monitored by the PCC-dependent metabolisms of {sup 14}C-propionate. Most patient cell lines are heteroallelic for two different mutations, leaving ambiguous the identity of the mutation participating in interallelic complementation. To identifymore » the complementing mutations, we have expressed {beta}-subunit cDNAs containing individual mutations by microinjection of the cDNAs in recipient cells from patients with {beta} subunit defects. Correction of the PCC defect was monitored by autoradiography of {sup 14}C-propionate incorporation. In some experiments, cDNAs were co-injected with a plasmid expressing the E. coli lacZ gene as a positive control for successful injection. Two mutations from the pccB subgroup showed complementation when injected into pccC cells; dupKICK140-143 and Pro228Leu. Similarly, two mutations from the pccC subgroup complemented after injection into pccB cells; {Delta}Ile408 and Arg410Trp. No mutation complemented with mutation of the pccBC group which are classified as non-complementing in cell fusion experiments. The results show that the complementing pccB mutations are found in the N-terminal half of the {beta} subunit, while the complementing pccC mutations cluxter at a site in the C-terminal half. The latter site is a candidate for the propionyl-CoA binding site based on sequence identity with a region of transcarboxylase from Propionibacterium shermanii.« less
Park, Yun Yeon; Ahn, Ju-Hyun; Cho, Min-Guk; Lee, Jae-Ho
2018-04-27
ATP depletion inhibits cell cycle progression, especially during the G1 phase and the G2 to M transition. However, the effect of ATP depletion on mitotic progression remains unclear. We observed that the reduction of ATP after prometaphase by simultaneous treatment with 2-deoxyglucose and NaN 3 did not arrest mitotic progression. Interestingly, ATP depletion during nocodazole-induced prometaphase arrest resulted in mitotic slippage, as indicated by a reduction in mitotic cells, APC/C-dependent degradation of cyclin B1, increased cell attachment, and increased nuclear membrane reassembly. Additionally, cells successfully progressed through the cell cycle after mitotic slippage, as indicated by EdU incorporation and time-lapse imaging. Although degradation of cyclin B during normal mitotic progression is primarily regulated by APC/C Cdc20 , we observed an unexpected decrease in Cdc20 prior to degradation of cyclin B during mitotic slippage. This decrease in Cdc20 was followed by a change in the binding partner preference of APC/C from Cdc20 to Cdh1; consequently, APC/C Cdh1 , but not APC/C Cdc20 , facilitated cyclin B degradation following ATP depletion. Pulse-chase analysis revealed that ATP depletion significantly abrogated global translation, including the translation of Cdc20 and Cdh1. Additionally, the half-life of Cdh1 was much longer than that of Cdc20. These data suggest that ATP depletion during mitotic arrest induces mitotic slippage facilitated by APC/C Cdh1 -dependent cyclin B degradation, which follows a decrease in Cdc20 resulting from reduced global translation and the differences in the half-lives of the Cdc20 and Cdh1 proteins.
Anti-complement activities of human breast-milk.
Ogundele, M O
1999-08-01
It has long been observed that the human milk possesses significant anti-inflammatory properties, while simultaneously protecting the infant against many intestinal and respiratory pathogens. There is, however, a paucity of information on the degree and extent of this anti-inflammatory activity. In the present study, the inhibitory effects of different fractions of human milk on serum complement activity were analysed. Colostrum and milk samples from healthy voluntary lactating donors at different postpartum ages were obtained and pooled normal human serum was used as source of complement in a modified CH50 assay. Inherent complement activity in human milk was also investigated by measuring the deposition of an activated C3 fragment on a serum-sensitive bacteria, and by haemolytic assays. Most whole- and defatted-milk samples consistently showed a dose-dependent inhibition of the serum complement activity. This inhibition was greater in mature milk compared to transitional milk samples. It was enhanced by inactivation of milk complement, and diminished by centrifugation of milk samples, which partly removed fat and larger protein components including casein micelles. Inherent complement activity in human milk was also demonstrated by haemolysis of sensitised sheep erythrocytes and deposition of C3 fragments on solid-phase bacteria. These activities were highest in the colostrum and gradually decreased as lactation proceeded. Several natural components abundant in the fluid phase of the human breast-milk have been shown to be inhibitors of complement activation in vitro. Their physiological significance probably reside in their ability to prevent inflammatory-induced tissue damage of the delicate immature gastrointestinal tract of the new-born as well as the mammary gland itself, which may arise from ongoing complement activation.
Morris, John A.; Francois, Cedric; Olson, Paul K.; Cotton, Bryan A.; Summar, Marshall; Jenkins, Judith M.; Norris, Patrick R.; Moore, Jason H.; Williams, Anna E.; McNew, Brent S.; Canter, Jeffrey A.
2009-01-01
Trauma is a disease of inflammation. Complement Component 2 (C2) is a protease involved in activation of complement through the classical pathway and has been implicated in a variety of chronic inflammatory diseases. We hypothesized that genetic variation in C2 (E318D) identifies a high-risk subgroup of trauma patients reflecting increased mortality and infection (Ventilator associated pneumonia: VAP). Consequently, genetic variation in C2 may stratify patient risk and illuminate underlying mechanisms for therapeutic intervention. Methods DNA samples from 702 trauma patients were genotyped for C2 E318D and linked with covariates (age: mean 42.8 years, gender: 74% male, ethnicity: 80% Caucasian, mechanism: 84% blunt, ISS: mean 25.0, admission lactate: mean 3.13 mEq/L) and outcomes: mortality 9.9% and VAP: 18.5%. VAP was defined by quantitative bronchoalveolar lavage (>104). Multivariate regression determined the relationship of genotype and covariates to risk of death and VAP. However, patients with ISS ≥ 45 were excluded from the multivariate analysis, as magnitude of injury overwhelms genetics and covariates in determining outcome. Results 52 patients (8.3%) had the high-risk heterozygous genotype, associated with a significant increase in mortality and VAP. Conclusion In 702 trauma patients, 8.3% had a high-risk genetic variation in C2 associated with increased mortality (OR=2.65) and infection (OR=2.00). This variation: 1) Identifies a previously unknown high risk group for infection and mortality; 2) Can be determined on admission; 3) May provide opportunity for early therapeutic intervention; and 4) Requires validation in a distinct cohort of patients. PMID:19430225
Broders-Bondon, Florence; Paul-Gilloteaux, Perrine; Gazquez, Elodie; Heysch, Julie; Piel, Matthieu; Mayor, Roberto; Lambris, John D.; Dufour, Sylvie
2016-01-01
We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cad-herin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cad-herin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders. PMID:27041467
Wen, Qiong; Zhang, Li; Mao, Hai-Ping; Tang, Xue-Qing; Rong, Rong; Fan, Jin-Jin; Yu, Xue-Qing
2013-08-30
Peritoneal membranes can be categorized as high, high average, low average, and low transporters, based on the removal or transport rate of solutes. In this study, we used proteomic analysis to determine the differences in proteins removed by different types of peritoneal membranes. Peritoneal transport characteristics in patients who received peritoneal dialysis therapy were assessed by a peritoneal equilibration test. Two-dimensional differential gel electrophoresis technology followed by quantitative analysis was performed to study the variation in protein expression from peritoneal dialysis effluents (PDE) among different groups. Proteins were identified by MALDI-TOF-MS/MS analyses. Further validation in PDE or serum was performed utilizing ELISA analysis. Proteomics analysis revealed ten protein spots with significant differences in intensity levels among different groups, including vitamin D-binding protein, complement C3, apolipoprotein-A1, complement factor C4A, haptoglobin, alpha-1 antitrypsin, immunoglobulin kappa light chain, alpha-2-microglobulin, retinol-binding protein 4 and transthyretin. The levels of vitamin D-binding protein, complement C3, and apolipoprotein-A1 in PDE derived from different groups were greatly varied (P<0.05). However, no significant difference was found in the serum levels of these proteins among different groups (P>0.05 for all groups). This study provides a novel overview of the differences in PDE proteomes of four types of peritoneal membranes. Vitamin D-binding protein, complement C3, and apolipoprotein-A1 showed enhanced expression in PDE of patients with high transporter. Copyright © 2013 Elsevier Inc. All rights reserved.
Clinical roundtable monograph: Paroxysmal nocturnal hemoglobinuria: a case-based discussion.
Szer, Jeff; Hill, Anita; Weitz, Ilene Ceil
2012-11-01
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired disorder characterized by chronic intravascular hemolysis as the primary clinical manifestation and morbidities that include anemia, thrombosis, renal impairment, pulmonary hypertension, and bone marrow failure. The prevalence of the PNH clone (from <1-100% PNH granulocytes) is approximately 16 per million, and careful monitoring is required. The average age of onset of the clinical disease is the early 30s, although it can present at all ages. PNH is caused by the acquisition of a somatic mutation of the gene phosphatidylinositol glycan anchor (PIG-A) in a multipotent hematopoietic stem cell (HSC), with clonal expansion of the mutated HSC. The mutation causes a deficiency in the synthesis of glycosylphosphatidylinositol (GPI). In cells derived from normal HSCs, the complement regulatory proteins CD55 and CD59 are anchored to the hematopoietic cell membrane surface via GPI, protecting the cells from complement-mediated lysis. However, in patients with PNH, these 2 proteins, along with numerous other GPI-linked proteins, are absent from the cell surface of red cells, granulocytes, monocytes, and platelets, resulting in complement-mediated intravascular hemolysis and other complications. Lysis of red blood cells is the most obvious manifestation, but as other cell lineages are also affected, this complement-mediated attack contributes to additional complications, such as thrombosis. Eculizumab, a humanized monoclonal antibody against the C5 complement protein, is the only effective drug therapy for PNH patients. The antibody prevents cleavage of the C5 protein by C5 convertase, in turn preventing generation of C5b-9 and release of C5a, thereby protecting from hemolysis of cells lacking the CD59 surface protein and other complications associated with complement activation. Drs. Ilene C. Weitz, Anita Hill, and Jeff Szer discuss 3 recent cases of patients with PNH.
Hou, Yunfang; Wong, Karen A.; Lee, Daniel; Rushbrook, Julie I.; Gulaya, Karan; Hines, Roberta; Hollis, Tamika; Nistal Nuno, Beatriz; Mangi, Abeel A.; Hashim, Sabet; Pekna, Marcela; Catalfamo, Amy; Chin, Hsiao-ying; Patel, Foramben; Rayala, Sravani; Shevde, Ketan; Heeger, Peter S.
2017-01-01
The pathophysiology of myocardial injury that results from cardiac ischemia and reperfusion (I/R) is incompletely understood. Experimental evidence from murine models indicates that innate immune mechanisms including complement activation via the classical and lectin pathways are crucial. Whether factor B (fB), a component of the alternative complement pathway required for amplification of complement cascade activation, participates in the pathophysiology of myocardial I/R injury has not been addressed. We induced regional myocardial I/R injury by transient coronary ligation in WT C57BL/6 mice, a manipulation that resulted in marked myocardial necrosis associated with activation of fB protein and myocardial deposition of C3 activation products. In contrast, in fB-/- mice, the same procedure resulted in significantly reduced myocardial necrosis (% ventricular tissue necrotic; fB-/- mice, 20 ± 4%; WT mice, 45 ± 3%; P < 0.05) and diminished deposition of C3 activation products in the myocardial tissue (fB-/- mice, 0 ± 0%; WT mice, 31 ± 6%; P<0.05). Reconstitution of fB-/- mice with WT serum followed by cardiac I/R restored the myocardial necrosis and activated C3 deposition in the myocardium. In translational human studies we measured levels of activated fB (Bb) in intracoronary blood samples obtained during cardio-pulmonary bypass surgery before and after aortic cross clamping (AXCL), during which global heart ischemia was induced. Intracoronary Bb increased immediately after AXCL, and the levels were directly correlated with peripheral blood levels of cardiac troponin I, an established biomarker of myocardial necrosis (Spearman coefficient = 0.465, P < 0.01). Taken together, our results support the conclusion that circulating fB is a crucial pathophysiological amplifier of I/R-induced, complement-dependent myocardial necrosis and identify fB as a potential therapeutic target for prevention of human myocardial I/R injury. PMID:28662037
Chun, Nicholas; Haddadin, Ala S; Liu, Junying; Hou, Yunfang; Wong, Karen A; Lee, Daniel; Rushbrook, Julie I; Gulaya, Karan; Hines, Roberta; Hollis, Tamika; Nistal Nuno, Beatriz; Mangi, Abeel A; Hashim, Sabet; Pekna, Marcela; Catalfamo, Amy; Chin, Hsiao-Ying; Patel, Foramben; Rayala, Sravani; Shevde, Ketan; Heeger, Peter S; Zhang, Ming
2017-01-01
The pathophysiology of myocardial injury that results from cardiac ischemia and reperfusion (I/R) is incompletely understood. Experimental evidence from murine models indicates that innate immune mechanisms including complement activation via the classical and lectin pathways are crucial. Whether factor B (fB), a component of the alternative complement pathway required for amplification of complement cascade activation, participates in the pathophysiology of myocardial I/R injury has not been addressed. We induced regional myocardial I/R injury by transient coronary ligation in WT C57BL/6 mice, a manipulation that resulted in marked myocardial necrosis associated with activation of fB protein and myocardial deposition of C3 activation products. In contrast, in fB-/- mice, the same procedure resulted in significantly reduced myocardial necrosis (% ventricular tissue necrotic; fB-/- mice, 20 ± 4%; WT mice, 45 ± 3%; P < 0.05) and diminished deposition of C3 activation products in the myocardial tissue (fB-/- mice, 0 ± 0%; WT mice, 31 ± 6%; P<0.05). Reconstitution of fB-/- mice with WT serum followed by cardiac I/R restored the myocardial necrosis and activated C3 deposition in the myocardium. In translational human studies we measured levels of activated fB (Bb) in intracoronary blood samples obtained during cardio-pulmonary bypass surgery before and after aortic cross clamping (AXCL), during which global heart ischemia was induced. Intracoronary Bb increased immediately after AXCL, and the levels were directly correlated with peripheral blood levels of cardiac troponin I, an established biomarker of myocardial necrosis (Spearman coefficient = 0.465, P < 0.01). Taken together, our results support the conclusion that circulating fB is a crucial pathophysiological amplifier of I/R-induced, complement-dependent myocardial necrosis and identify fB as a potential therapeutic target for prevention of human myocardial I/R injury.
Fusion proton diagnostic for the C-2 field reversed configurationa)
NASA Astrophysics Data System (ADS)
Magee, R. M.; Clary, R.; Korepanov, S.; Smirnov, A.; Garate, E.; Knapp, K.; Tkachev, A.
2014-11-01
Measurements of the flux of fusion products from high temperature plasmas provide valuable insights into the ion energy distribution, as the fusion reaction rate is a very sensitive function of ion energy. In C-2, where field reversed configuration plasmas are formed by the collision of two compact toroids and partially sustained by high power neutral beam injection [M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010); M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012)], measurements of DD fusion neutron flux are used to diagnose ion temperature and study fast ion confinement and dynamics. In this paper, we will describe the development of a new 3 MeV proton detector that will complement existing neutron detectors. The detector is a large area (50 cm2), partially depleted, ion implanted silicon diode operated in a pulse counting regime. While the scintillator-based neutron detectors allow for high time resolution measurements (˜100 kHz), they have no spatial or energy resolution. The proton detector will provide 10 cm spatial resolution, allowing us to determine if the axial distribution of fast ions is consistent with classical fast ion theory or whether anomalous scattering mechanisms are active. We will describe in detail the diagnostic design and present initial data from a neutral beam test chamber.
Shark complement: an assessment.
Smith, S L
1998-12-01
The classical (CCP) and alternative (ACP) pathways of complement activation have been established for the nurse shark (Ginglymostoma cirratum). The isolation of a cDNA clone encoding a mannan-binding protein-associated serine protease (MASP)-1-like protein from the Japanese dogfish (Triakis scyllia) suggests the presence of a lectin pathway. The CCP consists of six functionally distinct components: C1n, C2n, C3n, C4n, C8n and C9n, and is activated by immune complexes in the presence of Ca++ and Mg++ ions. The ACP is antibody independent, requiring Mg++ ions and a heat-labile 90 kDa factor B-like protein for activity. Proteins considered homologues of C1q, C3 and C4 (C2n) of the mammalian complement system have been isolated from nurse shark serum. Shark C1q is composed of at least two chain types each showing 50% identity to human C1q chains A and B. Partial sequence of the globular domain of one of the chains shows it to be C1q-like rather than like mannan-binding protein. N-terminal amino acid sequences of the alpha and beta chain of shark C3 and C4 molecules show significant identity with corresponding human C3 and C4 chains. A sequence representing shark C4 gamma chain, shows little similarity to human C4 gamma chain. The terminal shark components C8n and C9n are functional analogues of mammalian C8 and C9. Anaphylatoxin activity has been demonstrated in activated shark serum, and porcine C5a desArg induces shark leucocyte chemotaxis. The deduced amino acid sequence of a partial C3 cDNA clone from the nurse shark shows 50%, 30% and 24% homology with the corresponding region of mammalian C3, C4 and alpha 2-macroglobulin. Deduced amino acid sequence data from partial Bf/C2 cDNA clones, two from the nurse shark and one from the Japanese dogfish, suggest that at least one species of elasmobranch has two distinct Bf/C2 genes.
21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
Hichami, Aziz; Datiche, Frédérique; Ullah, Sana; Liénard, Fabienne; Chardigny, Jean-Michel; Cattarelli, Martine; Khan, Naim Akhtar
2007-11-22
The long-chain polyunsaturated n-3 fatty acids (n-3 PUFA), particularly docosahexaenoic acid (DHA), are abundantly present in the central nervous system and play an important role in cognitive functions such as learning and memory. We, therefore, investigated the effects of n-3 PUFA-depletion in rats (F2 generation) on the learning of an olfactory discrimination task, progressively acquired within a four-arm maze, and on the mRNA expression of some candidate genes, i.e., c-fos, Gir and glucose transporter (Glut1), which could reflect the level of cerebral activity. We observed that DHA contents were dramatically decreased in the olfactory bulb, the piriform cortex and the neocortex of n-3-depleted rats. Furthermore, the n-3 deficiency resulted in a mild olfactory learning impairment as these rats required more days to master the olfactory task compared to control rats. Real-time RT-PCR experiments revealed that the training induced the expression of c-fos mRNA in all the three regions of the brain whereas Gir and Glut1 mRNA were induced only in olfactory bulb and neocortex. However, such an increase was less marked in the n-3-deficient rats. Taken together, these results allow us to assume that the behavioural impairment in n-3-deficient rats is linked to the depletion of n-3 fatty acids in brain regions processing olfactory cues. Data are discussed in view of the possible role of some of these genes in learning-induced neuronal olfactory plasticity.
Early Elevations of the Complement Activation Fragment C3a and Adverse Pregnancy Outcomes
Lynch, Anne M.; Gibbs, Ronald S.; Murphy, James R.; Giclas, Patricia C.; Salmon, Jane E.; Holers, V. Michael
2016-01-01
OBJECTIVE To estimate whether elevations of complement C3a early in pregnancy are predictive of the subsequent development of adverse pregnancy outcomes. METHODS A plasma sample was obtained from each enrolled pregnant woman before 20 weeks of gestation. The cohort (n=1,002) was evaluated for the development of adverse pregnancy outcomes defined as hypertensive diseases of pregnancy (gestational hypertension or preeclampsia), preterm birth (before 37 weeks of gestation), premature rupture of the membranes, pregnancy loss (during the embryonic and fetal period), intrauterine growth restriction, and the composite outcome of any adverse outcome. RESULTS One or more adverse pregnancy outcomes occurred in 211 (21%) of the cohort. The mean levels (ng/mL) of C3a in early pregnancy were significantly (P=<.001) higher among women with one or more adverse outcomes (858±435) compared with women with an uncomplicated pregnancy (741±407). Adjusted for parity and prepregnancy body mass index, women with levels of C3a in the upper quartile in early pregnancy were three times more likely to have an adverse outcome later in pregnancy compared with women in the lowest quartile (95% confidence interval, 1.8–4.8; P<.001). The link between early elevated C3a levels and adverse pregnancy outcomes was driven primarily by individual significant (P<.05) associations of C3a with hypertensive diseases of pregnancy, preterm birth, and premature rupture of the membranes. CONCLUSION Elevated C3a as early as the first trimester of pregnancy is an independent predictive factor for adverse pregnancy outcomes, suggesting that complement-related inflammatory events in pregnancy contribute to the subsequent development of poor outcomes at later stages of pregnancy. PMID:21173647
PAF Complex Plays Novel Subunit-Specific Roles in Alternative Cleavage and Polyadenylation
Yang, Yan; Li, Wencheng; Hoque, Mainul; Hou, Liming; Shen, Steven; Tian, Bin; Dynlacht, Brian D.
2016-01-01
The PAF complex (Paf1C) has been shown to regulate chromatin modifications, gene transcription, and RNA polymerase II (PolII) elongation. Here, we provide the first genome-wide profiles for the distribution of the entire complex in mammalian cells using chromatin immunoprecipitation and high throughput sequencing. We show that Paf1C is recruited not only to promoters and gene bodies, but also to regions downstream of cleavage/polyadenylation (pA) sites at 3’ ends, a profile that sharply contrasted with the yeast complex. Remarkably, we identified novel, subunit-specific links between Paf1C and regulation of alternative cleavage and polyadenylation (APA) and upstream antisense transcription using RNAi coupled with deep sequencing of the 3’ ends of transcripts. Moreover, we found that depletion of Paf1C subunits resulted in the accumulation of PolII over gene bodies, which coincided with APA. Depletion of specific Paf1C subunits led to global loss of histone H2B ubiquitylation, although there was little impact of Paf1C depletion on other histone modifications, including tri-methylation of histone H3 on lysines 4 and 36 (H3K4me3 and H3K36me3), previously associated with this complex. Our results provide surprising differences with yeast, while unifying observations that link Paf1C with PolII elongation and RNA processing, and indicate that Paf1C subunits could play roles in controlling transcript length through suppression of PolII accumulation at transcription start site (TSS)-proximal pA sites and regulating pA site choice in 3’UTRs. PMID:26765774
Where is the Earth's missing xenon?
NASA Technical Reports Server (NTRS)
Wacker, J. F.; Anders, E.
1984-01-01
Highly volatile elements (e.g., T1, Pb, B, C1, Br, etc.) in the Earth's crust occur in C-chondrite proportions, and so do the atmospheric noble gases Ne, Ar, and Kr. This has led to the suggestion that the Earth acquired its volatiles from a late veneer of C-chondrite-like material. A glaring exception is Xe, which is depleted approx. 20x relative to Ne, Ar, Kr. Three explanations are discussed for the depletion: (1) Xe is preferentially trapped in the crust, either in sediments (3) or in Antarctic ice (4); (2) the Earth's noble gas inventory is non-chondritic (5); or (3) Xe is incompletely outgassed from the mantle.
Role of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the renal 2′,3′-cAMP-adenosine pathway
Gillespie, Delbert G.; Mi, Zaichuan; Cheng, Dongmei; Bansal, Rashmi; Janesko-Feldman, Keri; Kochanek, Patrick M.
2014-01-01
Energy depletion increases the renal production of 2′,3′-cAMP (a positional isomer of 3′,5′-cAMP that opens mitochondrial permeability transition pores) and 2′,3′-cAMP is converted to 2′-AMP and 3′-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this “2′,3′-cAMP-adenosine pathway” are unknown, we examined whether 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) participates in the renal metabolism of 2′,3′-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3′,5′-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2′,3′-cAMP to 2′-AMP. Infusions of 2′,3′-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2′-AMP, and this response was diminished by 63% in CNPase knockout (−/−) kidneys, whereas the conversion of 3′,5′-cAMP to 5′-AMP was similar in CNPase +/+ vs. −/− kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2′,3′-cAMP. In contrast, in CNPase −/− kidneys, energy depletion increased kidney tissue levels of 2′,3′-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2′,3′-cAMP-adenosine pathway. PMID:24808540
Yang, Zhi-Hong; Gordon, Scott M; Sviridov, Denis; Wang, Shuibang; Danner, Robert L; Pryor, Milton; Vaisman, Boris; Shichijo, Yuka; Doisaki, Nobushige; Remaley, Alan T
2017-07-01
Concentrated fish oils, containing a mixture of long-chain monounsaturated fatty acids (LCMUFA) with aliphatic chains longer than 18 C atoms (i.e., C20:1 and C22:1), have been shown to attenuate atherosclerosis development in mouse models. It is not clear, however, how individual LCMUFA isomers may act on atherosclerosis. In the present study, we used saury fish oil-derived concentrates enriched in either C20:1 or C22:1 isomer fractions to investigate their individual effect on atherosclerosis and lipoprotein metabolism. LDLR-deficient (LDLr -/- ) mice were fed a Western diet supplemented with 5% (w/w) of either C20:1 or C22:1 concentrate for 12 wk. Compared to the control Western diet with no supplement, both LCMUFA isomers increased hepatic levels of LCMUFA by 2∼3-fold (p < 0.05), and decreased atherosclerotic lesion areas by more than 40% (p < 0.05), although there were no major differences in plasma lipoproteins or hepatic lipid content. Both LCMUFA isomers significantly decreased plasma CRP levels, improved Abca1-dependent cholesterol efflux capacity of apoB-depleted plasma, and enhanced Ppar transcriptional activities in HepG2 cells. LC-MS/MS proteomic analysis of lipoproteins (HDL, LDL and VLDL) revealed that both LCMUFA isomer diets resulted in similar potentially beneficial alterations in proteins involved in complement activation, blood coagulation, and lipid metabolism. Several lipoprotein proteome changes were significantly correlated with atherosclerotic plaque reduction. Dietary supplementation with the LCMUFA isomers C20:1 or C22:1 was equally effective in reducing atherosclerosis in LDLr -/- mice and this may partly occur through activation of the Ppar signaling pathways and favorable alterations in the proteome of lipoproteins. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Roth, Nathan X.; Gibb, Erika; Bonev, Boncho P.; Disanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Paganini, Lucas
2017-01-01
On 2014 May 22 and 24 we characterized the volatile composition of the dynamically new Oort cloud comet C2012 K1 (PanSTARRS) using the long-slit, high resolution ( lambda/delta lambda is approximately or equal to 25,000) near-infrared echelle spectrograph (NIRSPEC) at the 10 m Keck II telescope on Maunakea, Hawaii. We detected fluorescent emission from six primary volatiles (H2O, HCN, CH4, C2H6, CH3OH, and CO). Upper limits were derived for C2H2, NH3, and H2CO. We report rotational temperatures, production rates, and mixing ratios (relative to water). Compared with median abundance ratios for primary volatiles in other sampled Oort cloud comets, trace gas abundance ratios in C2012 K1 (PanSTARRS) for CO and HCN are consistent, but CH3OH and C2H6 are enriched while H2CO, CH4, and possibly C2H2 are depleted. When placed in context with comets observed in the near- infrared to date, the data suggest a continuous distribution of abundances of some organic volatiles (HCN, C2H6, CH3OH, CH4) among the comet population. The level of enrichment or depletion in a given comet does not necessarily correlate across all molecules sampled, suggesting that chemical diversity among comets may be more complex than the simple organics-enriched, organics-normal, and organics-depleted framework.
Cabello, Juan; Toledo-Cervantes, Alma; Sánchez, León; Revah, Sergio; Morales, Marcia
2015-04-01
This paper evaluates the effect of the irradiance, pH and temperature on the photosynthetic activity (PA) of Scenedesmus obtusiusculus under N-replete and N-deplete conditions through oxygen measurements. The highest PA values were 160 mgO2 gb(-1) h(-1) at 620 μmol m(-2) s(-1), 35 °C and pH of 8 under N-replete conditions and 3.3 mgO2 gb(-1) h(-1) at 100 μmol m(-2) s(-1), 28.5 °C and pH of 5.5 for N-deplete conditions. Those operation conditions were tested in a flat-panel photobioreactor. The biomass productivity was 0.97 gb L(-1) d(-1) under N-replete conditions with a photosynthetic efficiency (PE) of 4.4% yielding 0.85 gb mol photon(-1). Similar biomass productivity was obtained under N-deplete condition; and the lipid productivity was 0.34 gL L(-1) d(-1) with a PE of 7.8% yielding 0.39 gL mol photon(-1). The apparent activation and deactivation energies were 16.1 and 30 kcal mol(-1), and 11.9 and 15.3 kcal mol(-1), for N-replete and N-deplete conditions, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Immune functions of the garment workers.
Sultana, R; Ferdous, K J; Hossain, M; Zahid, M S H; Islam, L N
2012-10-01
Occupational exposure to cotton dust, fibers, metal fumes and different chemicals used in the aparrel manufacturing industries cause a wide range of physical and psychological health problems in the garment workers that may also affect their immune function. To assess the immune system function in garment workers. A total of 45 workers of a garment factory, and 41 control subjects, not exposed to the garment working environment were enrolled in this study. In the study subjects, the complement system function was assessed as bactericidal activity on Escherichia coli DH5α cells using the standard plate count method. Serum complement components C3 and C4 were measured by immunoprecipitation, and IgG was measured by immunonephelometry. The bactericidal activity of serum complement in the garment workers (range: 93.5%-99.9%) was significantly (p<0.01) lower than that in the controls (range: 98.6%-100%). The heat-inactivated serum of the workers showed a significantly enhanced bactericidal activity. In the garment workers, the mean levels of complement C3, and C4 were 1.75 and 0.26 g/L, respectively that were close to those of the controls. The mean IgG level in the garment workers was 13.5 g/L that was significantly (p<0.001) higher than that in the controls. Working in a garment factory may affect the immune system.
Shpakovski, G V; Acker, J; Wintzerith, M; Lacroix, J F; Thuriaux, P; Vigneron, M
1995-01-01
Four cDNAs encoding human polypeptides hRPB7.0, hRPB7.6, hRPB17, and hRPB14.4 (referred to as Hs10 alpha, Hs10 beta, Hs8, and Hs6, respectively), homologous to the ABC10 alpha, ABC10 beta, ABC14.5, and ABC23 RNA polymerase subunits (referred to as Sc10 alpha, Sc10 beta, Sc8, and Sc6, respectively) of Saccharomyces cerevisiae, were cloned and characterized for their ability to complement defective yeast mutants. Hs10 alpha and the corresponding Sp10 alpha of Schizosaccharomyces pombe can complement an S. cerevisiae mutant (rpc10-delta::HIS3) defective in Sc10 alpha. The peptide sequences are highly conserved in their carboxy-terminal halves, with an invariant motif CX2CX12RCX2CGXR corresponding to a canonical zinc-binding domain. Hs10 beta, Sc10 beta, and the N subunit of archaeal RNA polymerase are homologous. An invariant CX2CGXnCCR motif presumably forms an atypical zinc-binding domain. Hs10 beta, but not the archaeal subunit, complemented an S. cerevisiae mutant (rpb10-delta 1::HIS3) lacking Sc10 beta. Hs8 complemented a yeast mutant (rpb8-delta 1::LYS2) defective in the corresponding Sc8 subunit, although with a strong thermosensitive phenotype. Interspecific complementation also occurred with Hs6 and with the corresponding Dm6 cDNA of Drosophila melanogaster. Hs6 cDNA and the Sp6 cDNA of S. pombe are dosage-dependent suppressors of rpo21-4, a mutation generating a slowly growing yeast defective in the largest subunit of RNA polymerase II. Finally, a doubly chimeric S. cerevisiae strain bearing the Sp6 cDNA and the human Hs10 beta cDNA was also viable. No interspecific complementation was observed for the human hRPB25 (Hs5) homolog of the yeast ABC27 (Sc5) subunit. PMID:7651387
Njoku, Dolores B; Mellerson, Jenelle L; Talor, Monica V; Kerr, Douglas R; Faraday, Nauder R; Outschoorn, Ingrid; Rose, Noel R
2006-02-01
Idiosyncratic drug-induced hepatitis (IDDIH) is the third most common cause for acute liver failure in the United States. Previous studies have attempted to identify susceptible patients or early stages of disease with various degrees of success. To determine if total serum immunoglobulin subclasses, CYP2E1-specific subclass autoantibodies, complement components, or immune complexes could distinguish persons with IDDIH from others exposed to drugs, we studied persons exposed to halogenated volatile anesthetics, which have been associated with IDDIH and CYP2E1 autoantibodies. We found that patients with anesthetic-induced IDDIH had significantly elevated levels of CYP2E1-specific immunoglobulin G4 (IgG4) autoantibodies, while anesthetic-exposed healthy persons had significantly elevated levels of CYP2E1-specific IgG1 autoantibodies. Anesthetic IDDIH patients had significantly lower levels of C4a, C3a, and C5a compared to anesthetic-exposed healthy persons. C1q- and C3d-containing immune complexes were significantly elevated in anesthetic-exposed persons. In conclusion, our data suggest that anesthetic-exposed persons develop CYP2E1-specific IgG1 autoantibodies which may form detectable circulating immune complexes subsequently cleared by classical pathway activation of the complement system. Persons susceptible to anesthetic-induced IDDIH develop CYP2E1-specific IgG4 autoantibodies which form small, nonprecipitating immune complexes that escape clearance because of their size or by direct inhibition of complement activation.
Franco, A. A.; Kothary, M. H.; Gopinath, G.; Jarvis, K. G.; Grim, C. J.; Hu, L.; Datta, A. R.; McCardell, B. A.; Tall, B. D.
2011-01-01
Cronobacter spp. are emerging neonatal pathogens in humans, associated with outbreaks of meningitis and sepsis. To cause disease, they must survive in blood and invade the central nervous system by penetrating the blood-brain barrier. C. sakazakii BAA-894 possesses an ∼131-kb plasmid (pESA3) that encodes an outer membrane protease (Cpa) that has significant identity to proteins that belong to the Pla subfamily of omptins. Members of this subfamily of proteins degrade a number of serum proteins, including circulating complement, providing protection from the complement-dependent serum killing. Moreover, proteins of the Pla subfamily can cause uncontrolled plasmin activity by converting plasminogen to plasmin and inactivating the plasmin inhibitor α2-antiplasmin (α2-AP). These reactions enhance the spread and invasion of bacteria in the host. In this study, we found that an isogenic cpa mutant showed reduced resistance to serum in comparison to its parent C. sakazakii BAA-894 strain. Overexpression of Cpa in C. sakazakii or Escherichia coli DH5α showed that Cpa proteolytically cleaved complement components C3, C3a, and C4b. Furthermore, a strain of C. sakazakii overexpressing Cpa caused a rapid activation of plasminogen and inactivation of α2-AP. These results strongly suggest that Cpa may be an important virulence factor involved in serum resistance, as well as in the spread and invasion of C. sakazakii. PMID:21245266
NASA Astrophysics Data System (ADS)
McKay, Adam; DiSanti, Michael A.; Cochran, Anita L.; Dello Russo, Neil; Bonev, Boncho P.; Vervack, Ronald J.; Gibb, Erika L.; Roth, Nathan X.; Kawakita, Hideyo
2017-10-01
Over the past 20 years optical and IR spectroscopy of cometary comae has expanded our understanding both of cometary volatile composition and coma photochemistry. However, these observations tend to be biased towards Nearly Isotropic Comets (NIC's) from the Oort Cloud, rather than the generally fainter and less active Jupiter Family Comets (JFC's) that are thought to originate from the Scattered Disk. However, early 2017 provided a rare opportunity to study several JFC's. We present preliminary results from IR and optical spectroscopy of JFC 41P/Tuttle-Giacobini-Kresak obtained during its 2017 apparition. IR spectra were obtained with the NIRSPEC instrument on Keck II and the new iSHELL spectrograph on NASA IRTF. High spectral resolution optical spectra were obtained with the Tull Coude spectrograph on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory. We will discuss mixing ratios of HCN, NH3, C2H6, C2H2, H2CO, and CH3OH compared to H2O and compare these to previous observations of comets. Preliminary results from the NIRSPEC observations indicate that 41P has typical C2H2 and HCN abundances compared to other JFC's, while the C2H6 abundance is similar to that of NIC's, but is enriched compared to other JFC's. H2CO appears to be heavily depleted in 41P. Analysis of the iSHELL spectra is underway and we will include results from these observations, which complement those from NIRSPEC and extend the scope or our compositional study by measuring additional molecules. We will also present abundances for CN, C2, NH2, C3, and CH obtained from the optical spectra and discuss the implications for the coma photochemistry.This work is supported by the NASA Postdoctoral Program, administered by the Universities Space Research Association, with additional funding from the NSF and NASA PAST.
NASA Astrophysics Data System (ADS)
McKay, Adam; DiSanti, Michael; Cochran, Anita; Dello Russo, Neil; Bonev, Boncho; Vervack, Ronald; Gibb, Erika; Roth, Nathan; Kawakita, Hideyo
2018-01-01
Over the past 20 years optical and IR spectroscopy of cometary comae has expanded our understanding both of cometary volatile composition and coma photochemistry. However, these observations tend to be biased towards Nearly Isotropic Comets (NIC'S) from the Oort Cloud, rather than the generally fainter and less active Jupiter Family Comets (JFC's) that are thought to originate from the Scattered Disk. However, early 2017 provided a rare opportunity to study several JFC's. We present preliminary results from IR and optical spectroscopy of JFC 41P/Tuttle-Giacobini-Kresak obtained during its 2017 apparition. IR spectra were obtained with the NIRSPEC instrument on Keck II and the new iSHELL spectrograph on NASA IRTF. High spectral resolution optical spectra were obtained with the Tull Coude spectrograph on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory. We will discuss mixing ratios of HCN, NH3, C2H6, C2H2, H2CO, and CH3OH compared to H2O and compare these to previous observations of comets. Preliminary results from the NIRSPEC observations indicate that 41P has typical C2H2 and HCN abundances compared to other JFC's, while the C2H6 abundance is similar to that of NIC's, but is enriched compared to other JFC's. H2CO appears to be heavily depleted in 41P. Analysis of the iSHELL spectra is underway and we will include results from these observations, which complement those from NIRSPEC and extend the scope or our compositional study by measuring additional molecules. We will also present abundances for CN, C2, NH2, C3, and CH obtained from the optical spectra and discuss the implications for the coma photochemistry.This work is supported by the NASA Postdoctoral Program, administered by the Universities Space Research Association, with additional funding from the NSF and NASA PAST.
Myamoto, Daniela Tiemi; Pidde-Queiroz, Giselle; Gonçalves-de-Andrade, Rute Maria; Pedroso, Aurélio; van den Berg, Carmen W; Tambourgi, Denise V
2016-01-01
The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae.
Myamoto, Daniela Tiemi; Pidde-Queiroz, Giselle; Gonçalves-de-Andrade, Rute Maria; Pedroso, Aurélio; van den Berg, Carmen W.; Tambourgi, Denise V.
2016-01-01
The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae. PMID:26771533
Abbitt, Katherine B; Cotter, Matthew J; Ridger, Victoria C; Crossman, David C; Hellewell, Paul G; Norman, Keith E
2009-01-01
Ly-6G is a member of the Ly-6 family of GPI-linked proteins, which is expressed on murine neutrophils. Antibodies against Ly-6G cause neutropenia, and fatal reactions also develop if mice are primed with TNF-alpha prior to antibody treatment. We have investigated the mechanisms behind these responses to Ly-6G ligation in the belief that similar mechanisms may be involved in neutropenia and respiratory disorders associated with alloantibody ligation of the related Ly-6 family member, NB1, in humans. Neutrophil adhesion, microvascular obstruction, breathing difficulties, and death initiated by anti-Ly-6G antibodies in TNF-alpha-primed mice were shown to be highly complement-dependent, partly mediated by CD11b, CD18, and FcgammaR and associated with clustering of Ly-6G. Neutrophil depletion, on the other hand, was only partly complement-dependent and was not altered by blockade of CD11b, CD18, or FcgammaR. Unlike other neutrophil-activating agents, Ly-6G ligation did not induce neutropenia via sequestration in the lungs. Cross-linking Ly-6G mimicked the responses seen with whole antibody in vivo and also activated murine neutrophils in vitro. Although this suggests that the responses are, in part, mediated by nonspecific properties of antibody ligation, neutrophil depletion requires an additional mechanism possibly specific to the natural function of Ly-6G.
Woodruff, M. F. A.; Inchley, M. P.; Dunbar, Noreen
1972-01-01
The inhibitory effect of an i.v. or i.p. injection of C. parvum on intrastrain transplants of a mammary carcinoma in A/HeJ mice has been confirmed, and it has been shown further that C. parvum inhibits the growth of transplants of sarcomata induced with methylcholanthrene both in this strain (members of which lack the fifth component of complement) and in CBA mice (which are not complement deficient). In experiments with the mammary carcinoma, 2 injections of C. parvum on days + 3 and + 9 were more effective than a single injection on day + 3; injections on days + 3 and + 6, or + 3 and + 12, appeared to be marginally less effective than on days + 3 and + 9, but the difference was not statistically significant. Development of the CBA sarcoma was inhibited to about the same extent if, instead of treating the mouse with C. parvum, the tumour cells were pre-incubated with anti-tumour globulin (ATG) in the absence of complement prior to inoculation, and the effect of combining these procedures was much greater than that of either alone. Pre-incubation with ATG had a similar but less marked effect on the development of the mammary carcinoma but had no effect on the A/HeJ sarcoma. Injection (i.v.) of ATG did not inhibit the growth of any of the tumours in these experiments and possible reasons for this are discussed. PMID:5038327
Yuan, Xuan; Gavriilaki, Eleni; Thanassi, Jane A; Yang, Guangwei; Baines, Andrea C; Podos, Steven D; Huang, Yongqing; Huang, Mingjun; Brodsky, Robert A
2017-03-01
Paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome are diseases of excess activation of the alternative pathway of complement that are treated with eculizumab, a humanized monoclonal antibody against the terminal complement component C5. Eculizumab must be administered intravenously, and moreover some patients with paroxysmal nocturnal hemoglobinuria on eculizumab have symptomatic extravascular hemolysis, indicating an unmet need for additional therapeutic approaches. We report the activity of two novel small-molecule inhibitors of the alternative pathway component Factor D using in vitro correlates of both paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Both compounds bind human Factor D with high affinity and effectively inhibit its proteolytic activity against purified Factor B in complex with C3b. When tested using the traditional Ham test with cells from paroxysmal nocturnal hemoglobinuria patients, the Factor D inhibitors significantly reduced complement-mediated hemolysis at concentrations as low as 0.01 μM. Additionally the compound ACH-4471 significantly decreased C3 fragment deposition on paroxysmal nocturnal hemoglobinuria erythrocytes, indicating a reduced potential relative to eculizumab for extravascular hemolysis. Using the recently described modified Ham test with serum from patients with atypical hemolytic uremic syndrome, the compounds reduced the alternative pathway-mediated killing of PIGA -null reagent cells, thus establishing their potential utility for this disease of alternative pathway of complement dysregulation and validating the modified Ham test as a system for pre-clinical drug development for atypical hemolytic uremic syndrome. Finally, ACH-4471 blocked alternative pathway activity when administered orally to cynomolgus monkeys. In conclusion, the small-molecule Factor D inhibitors show potential as oral therapeutics for human diseases driven by the alternative pathway of complement, including paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Copyright© Ferrata Storti Foundation.
Xu, Rui; Guo, Qian-Qian; Yang, Le-Ping; Lai, Mi-Lin; Tong, Lin
2016-08-20
To detect the variations in peripheral blood levels of autoantibodies, immunoglobulilns and complements in patients with non-lactational mastitis and investigate whether non-lactational mastitis is an autoimmune disease with immune dysfunction. Seven-eight patients with non-lactational mastitis treated in our hospital between September 2013 and May 2015 and 88 healthy women (control) were examined for peripheral blood levels of antinuclear antibody (ANA), anti-histone antibody (AHA), immunoglobulins (IgA, IgM, and IgG) and complements (C3, C4, and total complements). s Of the 78 patients with non-lactational mastitis, 50 (64.10%) were positive of ANA showing mainly the granular and cytoplasmic granular fluorescence patterns, and the positivity rate was significantly higher than that in the control group (P<0.000). Twenty-eight (36.00%) of the patients were positive of AHA, a rate significantly higher than that in the control group (P<0.000). The levels of IgA, IgM, C4, and total complements levels were all significantly elevated in the patients compared with those in the control group (P<0.05). Patients with non-lactational mastitis have abnormal changes in peripheral blood levels of immunoglobulins and complements with high positivity rates for ANA and AHA, indicating that non-lactational mastitis is an autoimmune disease with immune dysfunction.
Rainer, Johannes; Rambach, Günter; Kaltseis, Josef; Hagleitner, Magdalena; Heiss, Silvia; Speth, Cornelia
2011-10-01
Representatives of the genus Pseudallescheria (anamorph: Scedosporium) are saprobes and the aetiologic agent of invasive mycosis in humans. After dissemination, the central nervous system (CNS) is one of the most affected organs. Prerequisites for the survival of Pseudallescheria/Scedosporium in the host are the ability to acquire nutrients and to evade the immune attack. The cleavage of complement compounds via the secretion of fungal proteases might meet both challenges since proteolytic degradation of proteins can provide nutrients and destroy the complement factors, a fast and effective immune weapon in the CNS. Therefore, we studied the capacity of different Pseudallescheria/Scedosporium species to degrade key elements of the complement cascade in the cerebrospinal fluid and investigated a correlation with the phylogenetic background. The majority of the Pseudallescheria apiosperma isolates tested were demonstrated to efficiently eliminate proteins like complement factors C3 and C1q, thus affecting two main components of a functional complement cascade, presumably by proteolytic degradation, and using them as nutrient source. In contrast, the tested strains of Pseudallescheria boydii have no or only weak capacity to eliminate these complement proteins. We hypothesise that the ability of Pseudallescheria/Scedosporium strains to acquire nutrients and to undermine the complement attack is at least partly phylogenetically determined. © 2011 Blackwell Verlag GmbH.
Dialysis in rats with acute renal failure: evaluation of three different dialyzer membranes.
Kränzlin, B; Gretz, N; Kirschfink, M; Mujais, S K
1996-11-01
Exposure to complement-activating cellulosic dialysis membranes has been claimed to adversely affect the course of acute renal failure (ARF). To test this hypothesis, male Sprague-Dawley rats were allocated to 2 groups: in Group 1, ARF was induced by bilateral renal artery clamping whereas in Group 2, animals underwent a sham procedure. In each group, rats were further allocated to undergo hemodialysis with either a Cuprophan, a Hemophan, or a polyacrylonitrile minidialyzer on Days 4 and 8 after surgery, or no dialysis. Renal function was measured by inulin clearance on the days after dialysis. Additionally, total complement activity (CH50) was estimated on Days 1, 2, 4, and 8, and complement factor C3 was detected immunohistochemically. The degree of renal failure and the rate of recovery of renal function were similar in all the ARF groups irrespective of whether they had undergone dialysis or not, or of the type of the dialysis membrane. Furthermore, there were no significant differences in the course of CH50 or in the amount and distribution of complement factor C3 in the kidney tissue between the rats of Groups 1 and 2. Our findings refute the hypothesis that in ischemic ARF exposure to complement-activating cellulosic dialysis membranes impairs the recovery of renal function in rats.
Candida albicans Shaving to Profile Human Serum Proteins on Hyphal Surface
Marín, Elvira; Parra-Giraldo, Claudia M.; Hernández-Haro, Carolina; Hernáez, María L.; Nombela, César; Monteoliva, Lucía; Gil, Concha
2015-01-01
Candida albicans is a human opportunistic fungus and it is responsible for a wide variety of infections, either superficial or systemic. C. albicans is a polymorphic fungus and its ability to switch between yeast and hyphae is essential for its virulence. Once C. albicans obtains access to the human body, the host serum constitutes a complex environment of interaction with C. albicans cell surface in bloodstream. To draw a comprehensive picture of this relevant step in host-pathogen interaction during invasive candidiasis, we have optimized a gel-free shaving proteomic strategy to identify both, human serum proteins coating C. albicans cells and fungi surface proteins simultaneously. This approach was carried out with normal serum (NS) and heat inactivated serum (HIS). We identified 214 human and 372 C. albicans unique proteins. Proteins identified in C. albicans included 147 which were described as located at the cell surface and 52 that were described as immunogenic. Interestingly, among these C. albicans proteins, we identified 23 GPI-anchored proteins, Gpd2 and Pra1, which are involved in complement system evasion and 7 other proteins that are able to attach plasminogen to C. albicans surface (Adh1, Eno1, Fba1, Pgk1, Tdh3, Tef1, and Tsa1). Furthermore, 12 proteins identified at the C. albicans hyphae surface induced with 10% human serum were not detected in other hypha-induced conditions. The most abundant human proteins identified are involved in complement and coagulation pathways. Remarkably, with this strategy, all main proteins belonging to complement cascades were identified on the C. albicans surface. Moreover, we identified immunoglobulins, cytoskeletal proteins, metabolic proteins such as apolipoproteins and others. Additionally, we identified more inhibitors of complement and coagulation pathways, some of them serpin proteins (serine protease inhibitors), in HIS vs. NS. On the other hand, we detected a higher amount of C3 at the C. albicans surface in NS than in HIS, as validated by immunofluorescence. PMID:26696967
Visnjić, D; Batinić, D; Banfić, H
1999-01-01
The signalling mechanisms responsible for the hydrolysis of sphingomyelin mediated by 1,25-dihydroxyvitamin D(3) [1, 25(OH)(2)D(3)] and interferon gamma (IFN-gamma) in HL-60 cells were investigated. IFN-gamma was found to increase selectively the activity of cytosolic, Mg(2+)-independent, neutral sphingomyelinase. The treatment of HL-60 cells with the combination of 1,25(OH)(2)D(3) and IFN-gamma had an additive effect on sphingomyelin hydrolysis, ceramide release and the activity of cytosolic, Mg(2+)-independent, neutral sphingomyelinase. The pretreatment of HL-60 cells with staurosporine, chelerythrine chloride and bisindolylmaleimide abolished the activity of sphingomyelinase in response to 1,25(OH)(2)D(3) and IFN-gamma. Calphostin C, which acts on the regulatory site of protein kinase C (PKC), and Gö 6976, a selective inhibitor of Ca(2+)-dependent PKC isoforms, inhibited the effect of 1,25(OH)(2)D(3) but had no effect on the IFN-gamma-mediated increase in activity of sphingomyelinase. Isoform-specific antibodies were used to deplete different PKC isoforms from cytosol before the treatment of the cytosolic fraction with 1,25(OH)(2)D(3), arachidonic acid (AA) and PMA. The depletion of PKC isoforms beta(1), beta(2), epsilon, eta, mu, zeta and lambda had no effect on the activation of sphingomyelinase induced by 1,25(OH)(2)D(3) or by AA. The depletion of PKC alpha from the cytosol completely abolished the effect of 1,25(OH)(2)D(3) on sphingomyelinase activity but had no effect on the AA-induced activity of sphingomyelinase. PMA had no effect on the activity of sphingomyelinase in either untreated or alpha-depleted cytosol but significantly increased the activity of sphingomyelinase when added to cytosol depleted of PKC delta. Moreover, PMA inhibited the effect of 1,25(OH)(2)D(3) on sphingomyelinase activation but the inhibitory effect was abolished by prior depletion of PKC delta from the cytosol. These studies demonstrate that 1,25(OH)(2)D(3)-induced activation of sphingomyelinase is mediated by PKC alpha. Furthermore, PKC delta had an inhibitory effect on sphingomyelinase, suggesting that the difference between the 1,25(OH)(2)D(3)- and PMA-mediated effects on sphingomyelin turnover depends on the specific regulation of the PKC alpha and PKC delta isoforms. PMID:10585882
2012-05-01
Because the patient had a history of meningococcal meningitis at age 10, archived serum was obtained for further analysis. Complement component C7...us.arrny.mil Submitted: 11/21/11; Revised: 01/17/ 12; Accepted: 01129/12 httpJ/dx.doi.orgl10.4161/hv.19517 did when he had meningitis ." The...found that 15 23% of adults with meningococcal meningitis had an underlying complement deficiency.3 The most common and most recencly described
Bexborn, Fredrik; Andersson, Per Ola; Chen, Hui; Nilsson, Bo; Ekdahl, Kristina N
2008-04-01
The molecular interactions between the components of the C3 convertase of the alternative pathway (AP) of complement and its regulators, in both surface-bound and fluid-phase form, are still incompletely understood. The fact that the AP convertase is labile makes studies difficult to perform. According to the so called tick-over theory, hydrolyzed C3, called C3(H(2)O), forms the initial convertase in fluid phase together with factor B. In the present study, we have applied western blot analysis and ELISA together with fluorescence resonance energy transfer (FRET) to study the formation of the fluid-phase AP convertases C3(H(2)O)Bb and C3bBb and their regulation by factor H and factor I at specific time points and, with FRET, in real time. In our hands, factor B showed a higher affinity for C3(H(2)O) than for C3b, although in both cases it was readily activated to Bb. However, the convertase activity of C3bBb was approximately twice that of C3(H(2)O)Bb, as monitored by the generation of C3a. But in contrast, the C3(H(2)O)Bb convertase was more resistant to inactivation by factor H and factor I than was the C3bBb convertase. Under conditions that totally inactivated C3bBb, C3(H(2)O)Bb still retained approximately 25% of its initial activity.
Bexborn, Fredrik; Andersson, Per Ola; Chen, Hui; Nilsson, Bo; Ekdahl, Kristina N.
2009-01-01
The molecular interactions between the components of the C3 convertase of the alternative pathway (AP) of complement and its regulators, in both surface-bound and fluid-phase form, are still incompletely understood. The fact that the AP convertase is labile makes studies difficult to perform. According to the so called tick-over theory, hydrolyzed C3, called C3(H2O), forms the initial convertase in fluid phase together with factor B. In the present study, we have applied western blot analysis and ELISA together with fluorescence resonance energy transfer (FRET) to study the formation of the fluid-phase AP convertases C3(H2O)Bb and C3bBb and their regulation by factor H and factor I at specific time points and, with FRET, in real time. In our hands, factor B showed a higher affinity for C3(H2O) than for C3b, although in both cases it was readily activated to Bb. However, the convertase activity of C3bBb was approximately twice that of C3(H2O)Bb, as monitored by the generation of C3a. But in contrast, the C3(H2O)Bb convertase was more resistant to inactivation by factor H and factor I than was the C3bBb convertase. Under conditions that totally inactivated C3bBb, C3(H2O)Bb still retained approximately 25% of its initial activity. PMID:18096230
Hovland, Anders; Jonasson, Lena; Garred, Peter; Yndestad, Arne; Aukrust, Pål; Lappegård, Knut T; Espevik, Terje; Mollnes, Tom E
2015-08-01
Despite recent medical advances, atherosclerosis is a global burden accounting for numerous deaths and hospital admissions. Immune-mediated inflammation is a major component of the atherosclerotic process, but earlier research focus on adaptive immunity has gradually switched towards the role of innate immunity. The complement system and toll-like receptors (TLRs), and the crosstalk between them, may be of particular interest both with respect to pathogenesis and as therapeutic targets in atherosclerosis. Animal studies indicate that inhibition of C3a and C5a reduces atherosclerosis. In humans modified LDL-cholesterol activate complement and TLRs leading to downstream inflammation, and histopathological studies indicate that the innate immune system is present in atherosclerotic lesions. Moreover, clinical studies have demonstrated that both complement and TLRs are upregulated in atherosclerotic diseases, although interventional trials have this far been disappointing. However, based on recent research showing an intimate interplay between complement and TLRs we propose a model in which combined inhibition of both complement and TLRs may represent a potent anti-inflammatory therapeutic approach to reduce atherosclerosis. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Co-occurring Down syndrome and SUCLA2-related mitochondrial depletion syndrome.
Couser, Natario L; Marchuk, Daniel S; Smith, Laurie D; Arreola, Alexandra; Kaiser-Rogers, Kathleen A; Muenzer, Joseph; Pandya, Arti; Gucsavas-Calikoglu, Muge; Powell, Cynthia M
2017-10-01
Mitochondrial DNA depletion syndrome 5 (MIM 612073) is a rare autosomal recessive disorder caused by homozygous or compound heterozygous pathogenic variants in the beta subunit of the succinate-CoA ligase gene located within the 13q14 band. We describe two siblings of Hispanic descent with SUCLA2-related mitochondrial depletion syndrome (encephalomyopathic form with methylmalonic aciduria); the older sibling is additionally affected with trisomy 21. SUCLA2 sequencing identified homozygous p.Arg284Cys pathogenic variants in both patients. This mutation has previously been identified in four individuals of Italian and Caucasian descent. The older sibling with concomitant disease has a more severe phenotype than what is typically described in patients with either SUCLA2-related mitochondrial depletion syndrome or Down syndrome alone. The younger sibling, who has a normal female chromosome complement, is significantly less affected compared to her brother. While the clinical and molecular findings have been reported in about 50 patients affected with a deficiency of succinate-CoA ligase caused by pathogenic variants in SUCLA2, this report describes the first known individual affected with both a mitochondrial depletion syndrome and trisomy 21. © 2017 Wiley Periodicals, Inc.
Polyanion-Induced Self Association of Complement Factor H1
Pangburn, Michael K.; Rawal, Nenoo; Cortes, Claudio; Alam, M. Nurul; Ferreira, Viviana P.; Atkinson, Mark A. L.
2008-01-01
Factor H is the primary soluble regulator of activation of the alternative pathway of complement. It prevents activation of complement on host cells and tissues upon association with C3b and surface polyanions such as sialic acids, heparin and other glycosaminoglycans. Here we show that interaction with polyanions causes self-association forming tetramers of the 155,000 Da glycosylated protein. Monomeric human factor H is an extended flexible protein that exhibits an apparent size of 330,000 Da, relative to globular standards, during gel filtration chromatography in the absence of polyanions. In the presence of dextran sulfate (5,000 Da) or heparin an intermediate species of apparent m.w. 700,000 and a limit species of m.w. 1,400,000 were observed by gel filtration. Sedimentation equilibrium analysis by analytical ultracentrifugation indicated a monomer Mr of 163,000 in the absence of polyanions and a Mr of 607,000, corresponding to a tetramer, in the presence of less than a 2-fold molar excess of dextran sulfate. Increasing concentrations of dextran sulfate increased binding of factor H to zymosan-C3b 4.5-fold. This was accompanied by an increase in both the decay accelerating and cofactor activity of factor H on these cells. An expressed fragment encompassing the C-terminal polyanion binding site (complement control protein domains 18–20) also exhibited polyanion-induced self association, suggesting that the C-terminal ends of factor H mediate self-association. The results suggest that recognition of polyanionic markers on host cells and tissues by factor H, and the resulting regulation of complement activation, may involve formation of dimers and tetramers of factor H. PMID:19124749
In vivo T cell depletion regulates resistance and morbidity in murine schistosomiasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, S.M.; Linette, G.P.; Doughty, B.L.
1987-08-01
These studies assessed the roles of subpopulations of T lymphocytes in inducing and modulating resistance to schistosomiasis and thereby influencing subsequent morbidity. C57BL/6 mice were depleted in vivo of Lyt-1+, Lyt-2+, and L3T4+ cells by the daily administration of monoclonal antibodies. The development of protective immunity, induced by exposure to irradiated Schistosoma mansoni cercariae as expressed in depleted animals, was compared to that demonstrated in undepleted, normal, and congenitally athymic C57BL/6 mice. The development of morbidity was determined by spleen weight, portal pressure and reticuloendothelial system activity. The results indicated that depletion of specific subpopulations of T lymphocytes minimally affectedmore » the primary development of parasites; however, depletion strongly influenced the development of resistance to the parasite and subsequent morbidity due to infection. Depletion of T lymphocytes by anti-Lyt-1+ or anti-L3T4+ antibody decreased the development of resistance, antibody and delayed-type hypersensitivity directed against schistosome antigens. Morbidity due to disease was increased. Depletion of Lyt-2+ cells produced opposite changes with augmented resistance and reduced morbidity. Congenitally athymic mice developed minimal resistance and morbidity. Moreover, resistance was inversely related to the morbidity shown by a given animal. These studies indicate that the development of protective immunity to S. mansoni cercariae is regulated by discrete subpopulations of T lymphocytes. The feasibility of decreasing morbidity by increasing specific immunologically mediated resistance is suggested.« less
Loss of CD11b Exacerbates Murine Complement-Mediated Tubulointerstitial Nephritis
Wang, Ying; Chang, Anthony; Haas, Mark; Quigg, Richard John
2014-01-01
Acute complement activation occurs in the tubulointerstitium (TI) of kidneys transplanted from Crry−/−C3−/− mice into complement-sufficient wildtype mice, followed by marked inflammatory cell infiltration, tubular damage and interstitial fibrosis. We postulated iC3b-CD11b interactions were critical in this TI nephritis model. We transplanted Crry−/−C3−/− mouse kidneys into CD11b−/− and wildtype C57BL/6 mice. Surprisingly, there was greater inflammation in Crry−/−C3−/− kidneys in CD11b−/− recipients compared to those in wildtype hosts. Kidneys in CD11b−/− recipients had large numbers of CD11b−Ly6ChiCCR2hiF4/80+ cells consistent with inflammatory (M1) macrophages recruited from circulating monocytes of the host CD11b−/− animal. There was also an expanded population of CD11b+CD11c+Ly6C−F4/80hi cells. Since these cells were CD11b+, they must have originated from the transplanted kidney; their surface protein expression and appearance within the kidney were consistent with the intrinsic renal mononuclear cellular population. These cells were markedly expanded relative to all relevant controls, including the contralateral donor kidney and Crry−/−C3−/− mouse kidneys in CD11b+/+ wildtype recipients. Direct evidence for their in situ proliferation was the presence of nuclear Ki67 and PCNA in CD11b+F4/80+ cells. Thus, in this experimental model in which there is unrestricted C3 activation, CD11b+ monocytes limit their own infiltration into the kidney and prevent proliferation of endogenous mononuclear cells. This suggests a role for outside-in iC3b-CD11b signals in limiting intrinsic organ inflammation. PMID:24632830
Gu, Weifeng; Hurto, Rebecca L.; Hopper, Anita K.; Grayhack, Elizabeth J.; Phizicky, Eric M.
2005-01-01
The essential Saccharomyces cerevisiae tRNAHis guanylyltransferase (Thg1p) is responsible for the unusual G−1 addition to the 5′ end of cytoplasmic tRNAHis. We report here that tRNAHis from Thg1p-depleted cells is uncharged, although histidyl tRNA synthetase is active and the 3′ end of the tRNA is intact, suggesting that G−1 is a critical determinant for aminoacylation of tRNAHis in vivo. Thg1p depletion leads to activation of the GCN4 pathway, most, but not all, of which is Gcn2p dependent, and to the accumulation of tRNAHis in the nucleus. Surprisingly, tRNAHis in Thg1p-depleted cells accumulates additional m5C modifications, which are delayed relative to the loss of G−1 and aminoacylation. The additional modification is likely due to tRNA m5C methyltransferase Trm4p. We developed a new method to map m5C residues in RNA and localized the additional m5C to positions 48 and 50. This is the first documented example of the accumulation of additional modifications in a eukaryotic tRNA species. PMID:16135808
Habibi, Imen; Sfar, Imen; Kort, Fedra; Bouraoui, Rim; Chebil, Ahmed; Limaiem, Rim; Ayed, Saloua; Ben Abdallah, Taïeb; El Matri, Leila; Gorgi, Yousr
2017-04-01
Purpose To explore the association between the polymorphism (S/F) p.R102G in the complement component 3 ( C3 ) gene and age-related macular degeneration (AMD) in a Tunisian population. Methods The molecular study was performed by polymerase chain reaction using sequence-specific primers (PCR-SSP) in 207 control subjects free of any eye disease (fundus normal) and 145 patients with exudative AMD. The CH50 activity and quantification of C3 and C4 have been made by technical home method and nephelometry, respectively. Results The prevalence of C3 GG genotype polymorphism was significantly higher in AMD patients compared to controls (OR: 2.41, IC 95% [1.90-3.05], p = 0.0007). However, no correlation was found between this allelic variant and the type of neovascularization. Similarly, there is no association between this polymorphism and the presence of functional and/or quantitative hypocomplementemia. Conclusions The C3 GG genotype of the gene could be a susceptibility factor for AMD in the Tunisian population. However, it does not seem to influence the clinical profile of the disease. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Matson, Ernest A.
1989-01-01
Stable C isotope ratios (δ13C-PDB), percentages of organic matter, and HCl insoluble ash and soluble carbonates, extractable Fe, Al, Si and P were used to determine the distribution and accumulation of terrestrial material in reef-flat moats and lagoons of two high islands (Guam and Saipan) in the western tropical Pacific. Carbonate sediments of a reef-flat moat infiltrated by seepage of aquifer waters (but without surface runoff) were depleted in both P (by 38%) and 13C (by 41%) and enriched in Si (by 100%) relative to offshore lagoon sediments. Iron and ash accumulated in depositional regimes regardless of the occurrence of runoff but was depleted from coarse-grained carbonates in turbulent regimes. Aluminum (>ca. 10 to 20 μmol g-1), Fe (>ca. 1 to 3 μmol g-1) and ash (>0.5%) indicated terrigenous influence which was corroborated by depletions in both 13C and P. Low-salinity geochemical segregation, natural biochemical accumulation, as well as long-shore currents and eddies help sequester these materials nearshore.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, M.; Naiman, T.; Canaani, D.
1989-08-15
In a previous work, an immortal xeroderma pigmentosum cell line belonging to complementation group C was complemented to a UV-resistant phenotype by transfection with a human cDNA clone library. We now report that the primary transformants selected for UV-resistance also acquired normal levels of DNA repair. This was assessed both by measurement of UV-induced ({sup 3}H)thymidine incorporation and by equilibrium sedimentation analysis of repair-DNA synthesis. Therefore, the transduced DNA element which confers normal UV-resistance also corrects the excision repair defect of the xeroderma pigmentosum group C cell line.
Brady, A L; Druschel, G; Leoni, L; Lim, D S S; Slater, G F
2013-09-01
Photosynthetic activity in carbonate-rich benthic microbial mats located in saline, alkaline lakes on the Cariboo Plateau, B.C. resulted in pCO2 below equilibrium and δ(13) CDIC values up to +6.0‰ above predicted carbon dioxide (CO2 ) equilibrium values, representing a biosignature of photosynthesis. Mat-associated δ(13) Ccarb values ranged from ~4 to 8‰ within any individual lake, with observations of both enrichments (up to 3.8‰) and depletions (up to 11.6‰) relative to the concurrent dissolved inorganic carbon (DIC). Seasonal and annual variations in δ(13) C values reflected the balance between photosynthetic (13) C-enrichment and heterotrophic inputs of (13) C-depleted DIC. Mat microelectrode profiles identified oxic zones where δ(13) Ccarb was within 0.2‰ of surface DIC overlying anoxic zones associated with sulphate reduction where δ(13) Ccarb was depleted by up to 5‰ relative to surface DIC reflecting inputs of (13) C-depleted DIC. δ(13) C values of sulphate reducing bacteria biomarker phospholipid fatty acids (PLFA) were depleted relative to the bulk organic matter by ~4‰, consistent with heterotrophic synthesis, while the majority of PLFA had larger offsets consistent with autotrophy. Mean δ(13) Corg values ranged from -18.7 ± 0.1 to -25.3 ± 1.0‰ with mean Δ(13) Cinorg-org values ranging from 21.1 to 24.2‰, consistent with non-CO2 -limited photosynthesis, suggesting that Precambrian δ(13) Corg values of ~-26‰ do not necessitate higher atmospheric CO2 concentrations. Rather, it is likely that the high DIC and carbonate content of these systems provide a non-limiting carbon source allowing for expression of large photosynthetic offsets, in contrast to the smaller offsets observed in saline, organic-rich and hot spring microbial mats. © 2013 John Wiley & Sons Ltd.
Krukowski, Karen; Feng, Xi; Paladini, Maria Serena; Chou, Austin; Sacramento, Kristen; Grue, Katherine; Riparip, Lara-Kirstie; Jones, Tamako; Campbell-Beachler, Mary; Nelson, Gregory; Rosi, Susanna
2018-05-18
Microglia are the main immune component in the brain that can regulate neuronal health and synapse function. Exposure to cosmic radiation can cause long-term cognitive impairments in rodent models thereby presenting potential obstacles for astronauts engaged in deep space travel. The mechanism/s for how cosmic radiation induces cognitive deficits are currently unknown. We find that temporary microglia depletion, one week after cosmic radiation, prevents the development of long-term memory deficits. Gene array profiling reveals that acute microglia depletion alters the late neuroinflammatory response to cosmic radiation. The repopulated microglia present a modified functional phenotype with reduced expression of scavenger receptors, lysosome membrane protein and complement receptor, all shown to be involved in microglia-synapses interaction. The lower phagocytic activity observed in the repopulated microglia is paralleled by improved synaptic protein expression. Our data provide mechanistic evidence for the role of microglia in the development of cognitive deficits after cosmic radiation exposure.
Dickson, Eamonn J.; Falkenburger, Björn H.
2013-01-01
Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5′-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (<1%). These differences can be attributed purely to differences in receptor abundance. Full amplitude calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition. PMID:23630337
Dickson, Eamonn J; Falkenburger, Björn H; Hille, Bertil
2013-05-01
Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5'-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (<1%). These differences can be attributed purely to differences in receptor abundance. Full amplitude calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition.
Identification of C1q as a Binding Protein for Advanced Glycation End Products.
Chikazawa, Miho; Shibata, Takahiro; Hatasa, Yukinori; Hirose, Sayumi; Otaki, Natsuki; Nakashima, Fumie; Ito, Mika; Machida, Sachiko; Maruyama, Shoichi; Uchida, Koji
2016-01-26
Advanced glycation end products (AGEs) make up a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with the free amino groups of proteins. The abundance of AGEs in a variety of age-related diseases, including diabetic complications and atherosclerosis, and their pathophysiological effects suggest the existence of innate defense mechanisms. Here we examined the presence of serum proteins that are capable of binding glycated bovine serum albumin (AGEs-BSA), prepared upon incubation of BSA with dehydroascorbate, and identified complement component C1q subcomponent subunit A as a novel AGE-binding protein in human serum. A molecular interaction analysis showed the specific binding of C1q to the AGEs-BSA. In addition, we identified DNA-binding regions of C1q, including a collagen-like domain, as the AGE-binding site and established that the amount of positive charge on the binding site was the determining factor. C1q indeed recognized several other modified proteins, including acylated proteins, suggesting that the binding specificity of C1q might be ascribed, at least in part, to the electronegative potential of the ligand proteins. We also observed that C1q was involved in the AGEs-BSA-activated deposition of complement proteins, C3b and C4b. In addition, the AGEs-BSA mediated the proteolytic cleavage of complement protein 5 to release C5a. These findings provide the first evidence of AGEs as a new ligand recognized by C1q, stimulating the C1q-dependent classical complement pathway.
Gautam, Avneesh Kumar; Panse, Yogesh; Ghosh, Payel; Reza, Malik Johid; Mullick, Jayati; Sahu, Arvind
2015-01-01
The complement system has evolved to annul pathogens, but its improper regulation is linked with diseases. Efficient regulation of the system is primarily provided by a family of proteins termed regulators of complement activation (RCA). The knowledge of precise structural determinants of RCA proteins critical for imparting the regulatory activities and the molecular events underlying the regulatory processes, nonetheless, is still limited. Here, we have dissected the structural requirements of RCA proteins that are crucial for one of their two regulatory activities, the cofactor activity (CFA), by using the Kaposi’s sarcoma-associated herpesvirus RCA homolog Kaposica as a model protein. We have scanned the entire Kaposica molecule by sequential mutagenesis using swapping and site-directed mutagenesis, which identified residues critical for its interaction with C3b and factor I. Mapping of these residues onto the modeled structure of C3b–Kaposica–factor I complex supported the mutagenesis data. Furthermore, the model suggested that the C3b-interacting residues bridge the CUB (complement C1r-C1s, Uegf, Bmp1) and MG2 (macroglobulin-2) domains of C3b. Thus, it seems that stabilization of the CUB domain with respect to the core of the C3b molecule is central for its CFA. Identification of CFA-critical regions in Kaposica guided experiments in which the equivalent regions of membrane cofactor protein were swapped into decay-accelerating factor. This strategy allowed CFA to be introduced into decay-accelerating factor, suggesting that viral and human regulators use a common mechanism for CFA. PMID:26420870
NASA Astrophysics Data System (ADS)
Di Guilmi, Corrado; Gallegati, Mauro; Landini, Simone
2017-04-01
Preface; List of tables; List of figures, 1. Introduction; Part I. Methodological Notes and Tools: 2. The state space notion; 3. The master equation; Part II. Applications to HIA Based Models: 4. Financial fragility and macroeconomic dynamics I: heterogeneity and interaction; 5. Financial fragility and macroeconomic Dynamics II: learning; Part III. Conclusions: 6. Conclusive remarks; Part IV. Appendices and Complements: Appendix A: Complements to Chapter 3; Appendix B: Solving the ME to solve the ABM; Appendix C: Specifying transition rates; Index.
Diurnal Characteristics of Surface-Level O3 and Other Trace Gases in New England
NASA Astrophysics Data System (ADS)
Talbot, R.; Mao, H.; Sive, B.
2003-12-01
We use data from air quality monitoring sites operated by the Atmospheric Investigation, Regional Modeling, Analysis and Prediction (AIRMAP) program to examine the diurnal characteristics of O3, CO, CO2 and selected volatile organic compounds (VOCs) in the New England atmosphere. Throughout the year a nocturnal inversion forms several hundred meters above the surface on 25% of the days in winter with its frequency of occurrence increasing to 50% in summer. Below the inversion O3 is typically depleted to zero while other gases including CO2, alkanes and alkenes exhibit several-fold enhancements due to local emission sources. The daily time period with O3 < 5 ppbv varies from < 0.5 to 21 hours, with a mean of 3.5 hours. Typically the depletion intervals are shortest in summer and last the longest in winter. The rates of nighttime depletion and daytime replenishment of O3 are very similar, ranging from a few ppbv hr-1 to 25 ppbv hr-1. Due to the rural location of the AIRMAP sites, it appears that the depletion is mainly due to dry deposition with an occasional contribution of titration by NO. The relative enhancements of CO2 and VOCs relative to urban tracers such as C2HCl3 and C2Cl4, which have minimal local sources, provides information on the magnitude and nature of natural and anthropogenic sources.
Cortelazzo, Alessio; de Felice, Claudio; Leoncini, Silvia; Signorini, Cinzia; Guerranti, Roberto; Leoncini, Roberto; Armini, Alessandro; Bini, Luca; Ciccoli, Lucia; Hayek, Joussef
2017-03-01
Mutations in the cyclin-dependent kinase-like 5 gene cause a clinical variant of Rett syndrome (CDKL5-RTT). A role for the acute-phase response (APR) is emerging in typical RTT caused by methyl-CpG-binding protein 2 gene mutations (MECP2-RTT). No information is, to date, available on the inflammatory protein response in CDKL5-RTT. We evaluated, for the first time, the APR protein response in CDKL5-RTT. Protein patterns in albumin- and IgG-depleted plasma proteome from CDKL5-RTT patients were evaluated by two-dimensional gel electrophoresis/mass spectrometry. The resulting data were related to circulating cytokines and compared to healthy controls or MECP2-RTT patients. The effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) were evaluated. CDKL5-RTT mutations resulted in a subclinical attenuated inflammation, specifically characterized by an overexpression of the complement component C3 and CD5 antigen-like, both strictly related to the inflammatory response. Cytokine dysregulation featuring a bulk increase of anti-inflammatory cytokines, predominantly IL-10, could explain the unchanged erythrocyte sedimentation rate and atypical features of inflammation in CDKL5-RTT. Omega-3 PUFAs were able to counterbalance the pro-inflammatory status. For the first time, we revealed a subclinical smouldering inflammation pattern in CDKL5-RTT consisting in the coexistence of an atypical APR coupled with a dysregulated cytokine response.
Observations and Simulations of Formation of Broad Plasma Depletions Through Merging Process
NASA Technical Reports Server (NTRS)
Huang, Chao-Song; Retterer, J. M.; Beaujardiere, O. De La; Roddy, P. A.; Hunton, D.E.; Ballenthin, J. O.; Pfaff, Robert F.
2012-01-01
Broad plasma depletions in the equatorial ionosphere near dawn are region in which the plasma density is reduced by 1-3 orders of magnitude over thousands of kilometers in longitude. This phenomenon is observed repeatedly by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during deep solar minimum. The plasma flow inside the depletion region can be strongly upward. The possible causal mechanism for the formation of broad plasma depletions is that the broad depletions result from merging of multiple equatorial plasma bubbles. The purpose of this study is to demonstrate the feasibility of the merging mechanism with new observations and simulations. We present C/NOFS observations for two cases. A series of plasma bubbles is first detected by C/NOFS over a longitudinal range of 3300-3800 km around midnight. Each of the individual bubbles has a typical width of approx 100 km in longitude, and the upward ion drift velocity inside the bubbles is 200-400 m/s. The plasma bubbles rotate with the Earth to the dawn sector and become broad plasma depletions. The observations clearly show the evolution from multiple plasma bubbles to broad depletions. Large upward plasma flow occurs inside the depletion region over 3800 km in longitude and exists for approx 5 h. We also present the numerical simulations of bubble merging with the physics-based low-latitude ionospheric model. It is found that two separate plasma bubbles join together and form a single, wider bubble. The simulations show that the merging process of plasma bubbles can indeed occur in incompressible ionospheric plasma. The simulation results support the merging mechanism for the formation of broad plasma depletions.
Müller, M; Laxton, C; Briscoe, J; Schindler, C; Improta, T; Darnell, J E; Stark, G R; Kerr, I M
1993-01-01
Mutants in complementation group U3, completely defective in the response of all genes tested to interferons (IFNs) alpha and gamma, do not express the 91 and 84 kDa polypeptide components of interferon-stimulated gene factor 3 (ISGF3), a transcription factor known to play a primary role in the IFN-alpha response pathway. The 91 and 84 kDa polypeptides are products of a single gene. They result from differential splicing and differ only in a 38 amino acid extension at the C-terminus of the 91 kDa polypeptide. Complementation of U3 mutants with cDNA constructs expressing the 91 kDa product at levels comparable to those observed in induced wild-type cells completely restored the response to both IFN-alpha and -gamma and the ability to form ISGF3. Complementation with the 84 kDa component similarly restored the ability to form ISGF3 and, albeit to a lower level, the IFN-alpha response of all genes tested so far. It failed, however, to restore the IFN-gamma response of any gene analysed. The precise nature of the DNA motifs and combination of factors required for the transcriptional response of all genes inducible by IFN-alpha and -gamma remains to be established. The results presented here, however, emphasize the apparent general requirement of the 91 kDa polypeptide in the primary transcriptional response to both types of IFN. Images PMID:7693454
de Beer, Friso; Lagrand, Wim; Glas, Gerie J; Beurskens, Charlotte J P; van Mierlo, Gerard; Wouters, Diana; Zeerleder, Sacha; Roelofs, Joris J T H; Juffermans, Nicole P; Horn, Janneke; Schultz, Marcus J
2016-12-01
Complement activation plays an important role in the pathogenesis of pneumonia. We hypothesized that inhibition of the complement system in the lungs by repeated treatment with nebulized plasma-derived human C1-esterase inhibitor reduces pulmonary complement activation and subsequently attenuates lung injury and lung inflammation. This was investigated in a rat model of severe Streptococcus pneumoniae pneumonia. Rats were intra-tracheally challenged with S. pneumoniae to induce pneumonia. Nebulized C1-esterase inhibitor or saline (control animals) was repeatedly administered to rats, 30 min before induction of pneumonia and every 6 h thereafter. Rats were sacrificed 20 or 40 h after inoculation with bacteria. Brochoalveolar lavage fluid and lung tissue were obtained for measuring levels of complement activation (C4b/c), lung injury and inflammation. Induction of pneumonia was associated with pulmonary complement activation (C4b/c at 20 h 1.24 % [0.56-2.59] and at 40 h 2.08 % [0.98-5.12], compared to 0.50 % [0.07-0.59] and 0.03 % [0.03-0.03] in the healthy control animals). The functional fraction of C1-INH was detectable in BALF, but no effect was found on pulmonary complement activation (C4b/c at 20 h 0.73 % [0.16-1.93] and at 40 h 2.38 % [0.54-4.19]). Twenty hours after inoculation, nebulized C1-esterase inhibitor treatment reduced total histology score, but this effect was no longer seen at 40 h. Nebulized C1-esterase inhibitor did not affect other markers of lung injury or lung inflammation. In this negative experimental animal study, severe S. pneumoniae pneumonia in rats is associated with pulmonary complement activation. Repeated treatment with nebulized C1-esterase inhibitor, although successfully delivered to the lungs, does not affect pulmonary complement activation, lung inflammation or lung injury.
1983-05-20
an impurity-mobility reduction factor of about 100. We finally note that there is no indication of an emitter-base noise source due to oxide surface...in N2 + 1% 02, at 11000C, for 3 hrs. Different phosphorus surface concentrations have been realized using different in situ oxidation times (prior to...depletion change per unit area at the surface potential Ts = 1.5 OF , Cox and C are the oxide and the depletion capacitances per unit area
Papadimitriou, Vassileios C; McGillen, Max R; Smith, Shona C; Jubb, Aaron M; Portmann, Robert W; Hall, Bradley D; Fleming, Eric L; Jackman, Charles H; Burkholder, James B
2013-10-31
The atmospheric processing of (E)- and (Z)-1,2-dichlorohexafluoro-cyclobutane (1,2-c-C4F6Cl2, R-316c) was examined in this work as the ozone depleting (ODP) and global warming (GWP) potentials of this proposed replacement compound are presently unknown. The predominant atmospheric loss processes and infrared absorption spectra of the R-316c isomers were measured to provide a basis to evaluate their atmospheric lifetimes and, thus, ODPs and GWPs. UV absorption spectra were measured between 184.95 to 230 nm at temperatures between 214 and 296 K and a parametrization for use in atmospheric modeling is presented. The Cl atom quantum yield in the 193 nm photolysis of R-316c was measured to be 1.90 ± 0.27. Hexafluorocyclobutene (c-C4F6) was determined to be a photolysis co-product with molar yields of 0.7 and 1.0 (±10%) for (E)- and (Z)-R-316c, respectively. The 296 K total rate coefficient for the O((1)D) + R-316c reaction, i.e., O((1)D) loss, was measured to be (1.56 ± 0.11) × 10(-10) cm(3) molecule(-1) s(-1) and the reactive rate coefficient, i.e., R-316c loss, was measured to be (1.36 ± 0.20) × 10(-10) cm(3) molecule(-1) s(-1) corresponding to a ~88% reactive yield. Rate coefficient upper-limits for the OH and O3 reaction with R-316c were determined to be <2.3 × 10(-17) and <2.0 × 10(-22) cm(3) molecule(-1) s(-1), respectively, at 296 K. The quoted uncertainty limits are 2σ and include estimated systematic errors. Local and global annually averaged lifetimes for the (E)- and (Z)-R-316c isomers were calculated using a 2-D atmospheric model to be 74.6 ± 3 and 114.1 ± 10 years, respectively, where the estimated uncertainties are due solely to the uncertainty in the UV absorption spectra. Stratospheric photolysis is the predominant atmospheric loss process for both isomers with the O((1)D) reaction making a minor, ~2% for the (E) isomer and 7% for the (Z) isomer, contribution to the total atmospheric loss. Ozone depletion potentials for (E)- and (Z)-R-316c were calculated using the 2-D model to be 0.46 and 0.54, respectively. Infrared absorption spectra for (E)- and (Z)-R-316c were measured at 296 K and used to estimate their radiative efficiencies (REs) and GWPs; 100-year time-horizon GWPs of 4160 and 5400 were obtained for (E)- and (Z)-R-316c, respectively. Both isomers of R-316c are shown in this work to be long-lived ozone depleting substances and potent greenhouse gases.
Complement C1q formation of immune complexes with milk caseins and wheat glutens in schizophrenia
Severance, Emily G.; Gressitt, Kristin; Halling, Meredith; Stallings, Cassie R.; Origoni, Andrea E.; Vaughan, Crystal; Khushalani, Sunil; Alaedini, Armin; Dupont, Didier; Dickerson, Faith B.; Yolken, Robert H.
2012-01-01
Immune system factors including complement pathway activation are increasingly linked to the etiology and pathophysiology of schizophrenia. Complement protein, C1q, binds to and helps to clear immune complexes composed of immunoglobulins coupled to antigens. The antigenic stimuli for C1q activation in schizophrenia are not known. Food sensitivities characterized by elevated IgG antibodies to bovine milk caseins and wheat glutens have been reported in individuals with schizophrenia. Here, we examined the extent to which these food products might comprise the antigen component of complement C1q immune complexes in individuals with recent onset schizophrenia (n=38), non-recent onset schizophrenia (n=61) and non-psychiatric controls (n=63). C1q seropositivity was significantly associated with both schizophrenia groups (recent onset, odds ratio (OR)=8.02, p≤0.008; non-recent onset, OR=3.15, p≤0.03) compared to controls (logistic regression models corrected for age, sex, race and smoking status). Casein- and/or gluten-IgG binding to C1q was significantly elevated in the non-recent onset group compared to controls (OR=4.36, p≤0.01). Significant amounts of C1q-casein/gluten-related immune complexes and C1q correlations with a marker for gastrointestinal inflammation in non-recent onset schizophrenia suggests a heightened rate of food antigens in the systemic circulation, perhaps via a disease-associated altered intestinal permeability. In individuals who are in the early stages of disease onset, C1q activation may reflect the formation of immune complexes with non-casein- or non-gluten-related antigens, the presence of C1q autoantibodies, and/or a dissociated state of immune complex components. In conclusion, complement activation may be a useful biomarker to diagnose schizophrenia early during the course of the disease. Future prospective studies should evaluate the impacts of casein- and gluten-free diets on C1q activation in schizophrenia. PMID:22801085
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayegh, R.A.; Tao, Xiao Jing; Awwad, J.T.
C3 production by the human endometrium has been previously described. The objective of the current study was to localize the site of expression and regulation of the third component of complement, C3, in the endometrium. Eight secretory and eight proliferative archival endometrial samples from hysterectomy and endometrial biopsy specimens were used for in situ hybridization analysis. This analysis was performed with a radiolabeled riboprobe synthesized from a 736-bp template representing sequence 1944-2680 of the human C3 complementary DNA. Duplicate sections were hybridized with sense and antisense riboprobes. Resultant autoradiograms were analyzed qualitatively by light- and darkfield microscopy. In proliferative endometrium,more » minimal expression of C3 was observed and was limited to a few stromal patches and glands throughout the section. In the secretory samples, prominent C3 expression was observed in both the glands and stroma of the basalis layer. Endometrial lymphocytes did not express C3. Endometrial stromal and glandular cells express the C3 gene. Endometrial lymphocytes did not express C3, but other nondistinct lymphoid elements scattered in the stroma may be expressing C3. There was a visibly more intense expression of C3 in the basalis layer of the secretory endometrium than in proliferative endometrium. The spatial and temporal pattern of C3 expression may have implications in normal menstrual physiology and in the immunological response of the endometrium to the invading trophoblast during placentation. 23 refs., 4 figs., 1 tab.« less
Novel Mutations Causing C5 Deficiency in Three North-African Families.
Colobran, Roger; Franco-Jarava, Clara; Martín-Nalda, Andrea; Baena, Neus; Gabau, Elisabeth; Padilla, Natàlia; de la Cruz, Xavier; Pujol-Borrell, Ricardo; Comas, David; Soler-Palacín, Pere; Hernández-González, Manuel
2016-05-01
The complement system plays a central role in defense to encapsulated bacteria through opsonization and membrane attack complex (MAC) dependent lysis. The three activation pathways (classical, lectin, and alternative) converge in the cleavage of C5, which initiates MAC formation and target lysis. C5 deficiency is associated to recurrent infections by Neisseria spp. In the present study, complement deficiency was suspected in three families of North-African origin after one episode of invasive meningitis due to a non-groupable and two uncommon Meningococcal serotypes (E29, Y). Activity of alternative and classical pathways of complement were markedly reduced and the measurement of terminal complement components revealed total C5 absence. C5 gene analysis revealed two novel mutations as causative of the deficiency: Family A propositus carried a homozygous deletion of two adenines in the exon 21 of C5 gene, resulting in a frameshift and a truncated protein (c.2607_2608del/p.Ser870ProfsX3 mutation). Families B and C probands carried the same homozygous deletion of three consecutive nucleotides (CAA) in exon 9 of the C5 gene, leading to the deletion of asparagine 320 (c.960_962del/p.Asn320del mutation). Family studies confirmed an autosomal recessive inheritance pattern. Although sharing the same geographical origin, families B and C were unrelated. This prompted us to investigate this mutation prevalence in a cohort of 768 North-African healthy individuals. We identified one heterozygous carrier of the p.Asn320del mutation (allelic frequency = 0.065 %), indicating that this mutation is present at low frequency in North-African population.
Njoku, Dolores B.; Mellerson, Jenelle L.; Talor, Monica V.; Kerr, Douglas R.; Faraday, Nauder R.; Outschoorn, Ingrid; Rose, Noel R.
2006-01-01
Idiosyncratic drug-induced hepatitis (IDDIH) is the third most common cause for acute liver failure in the United States. Previous studies have attempted to identify susceptible patients or early stages of disease with various degrees of success. To determine if total serum immunoglobulin subclasses, CYP2E1-specific subclass autoantibodies, complement components, or immune complexes could distinguish persons with IDDIH from others exposed to drugs, we studied persons exposed to halogenated volatile anesthetics, which have been associated with IDDIH and CYP2E1 autoantibodies. We found that patients with anesthetic-induced IDDIH had significantly elevated levels of CYP2E1-specific immunoglobulin G4 (IgG4) autoantibodies, while anesthetic-exposed healthy persons had significantly elevated levels of CYP2E1-specific IgG1 autoantibodies. Anesthetic IDDIH patients had significantly lower levels of C4a, C3a, and C5a compared to anesthetic-exposed healthy persons. C1q- and C3d-containing immune complexes were significantly elevated in anesthetic-exposed persons. In conclusion, our data suggest that anesthetic-exposed persons develop CYP2E1-specific IgG1 autoantibodies which may form detectable circulating immune complexes subsequently cleared by classical pathway activation of the complement system. Persons susceptible to anesthetic-induced IDDIH develop CYP2E1-specific IgG4 autoantibodies which form small, nonprecipitating immune complexes that escape clearance because of their size or by direct inhibition of complement activation. PMID:16467335
Fung, Ka Wai; Wright, David W; Gor, Jayesh; Swann, Marcus J; Perkins, Stephen J
2016-12-01
During the activation of complement C4 to C4b, the exposure of its thioester domain (TED) is crucial for the attachment of C4b to activator surfaces. In the C4b crystal structure, TED forms an Arg 104 -Glu 1032 salt bridge to tether its neighbouring macroglobulin (MG1) domain. Here, we examined the C4b domain structure to test whether this salt bridge affects its conformation. Dual polarisation interferometry of C4b immobilised at a sensor surface showed that the maximum thickness of C4b increased by 0.46 nm with an increase in NaCl concentration from 50 to 175 mM NaCl. Analytical ultracentrifugation showed that the sedimentation coefficient s 20,w of monomeric C4b of 8.41 S in 50 mM NaCl buffer decreased to 7.98 S in 137 mM NaCl buffer, indicating that C4b became more extended. Small angle X-ray scattering reported similar R G values of 4.89-4.90 nm for C4b in 137-250 mM NaCl. Atomistic scattering modelling of the C4b conformation showed that TED and the MG1 domain were separated by 4.7 nm in 137-250 mM NaCl and this is greater than that of 4.0 nm in the C4b crystal structure. Our data reveal that in low NaCl concentrations, both at surfaces and in solution, C4b forms compact TED-MG1 structures. In solution, physiologically relevant NaCl concentrations lead to the separation of the TED and MG1 domain, making C4b less capable of binding to its complement regulators. These conformational changes are similar to those seen previously for complement C3b, confirming the importance of this salt bridge for regulating both C4b and C3b. © 2016 The Author(s).
Wu, Lifen; Wang, Xinru; Chen, Fenghua; Lv, Xing; Sun, Wenwen; Guo, Ying; Hou, Hou; Ji, Haiyan; Wei, Wei; Gong, Lu
2017-01-01
Systemic lupus erythematosus (SLE) is a chronic, autoimmune disorder that affects nearly all organs and tissues. As knowledge about the mechanism of SLE has increased, some immunosuppressive agents have become routinely used in clinical care, and infections have become one of the direct causes of mortality in SLE patients. To identify the risk factors indicative of infection in SLE patients, a case control study of our hospital's medical records between 2011 and 2013 was performed. We reviewed the records of 117 SLE patients with infection and 61 SLE patients without infection. Changes in the levels of T cell subsets, immunoglobulin G (IgG), complement C3, complement C4, globulin, and anti-double-stranded DNA (anti-ds-DNA) were detected. CD4+ and CD4+/CD8+ T cell levels were significantly lower and CD8+ T cell levels were significantly greater in SLE patients with infection than in SLE patients without infection. Additionally, the concentrations of IgG in SLE patients with infection were significantly lower than those in SLE patients without infection. However, complement C3, complement C4, globulin, and anti-ds-DNA levels were not significantly different in SLE patients with and without infection. Therefore, clinical testing for T cell subsets and IgG is potentially useful for identifying the presence of infection in SLE patients and for distinguishing a lupus flare from an acute infection. PMID:29267496
Zinc-induced Self-association of Complement C3b and Factor H
Nan, Ruodan; Tetchner, Stuart; Rodriguez, Elizabeth; Pao, Po-Jung; Gor, Jayesh; Lengyel, Imre; Perkins, Stephen J.
2013-01-01
The sub-retinal pigment epithelial deposits that are a hallmark of age-related macular degeneration contain both C3b and millimolar levels of zinc. C3 is the central protein of complement, whereas C3u is formed by the spontaneous hydrolysis of the thioester bridge in C3. During activation, C3 is cleaved to form active C3b, then C3b is inactivated by Factor I and Factor H to form the C3c and C3d fragments. The interaction of zinc with C3 was quantified using analytical ultracentrifugation and x-ray scattering. C3, C3u, and C3b associated strongly in >100 μm zinc, whereas C3c and C3d showed weak association. With zinc, C3 forms soluble oligomers, whereas C3u and C3b precipitate. We conclude that the C3, C3u, and C3b association with zinc depended on the relative positions of C3d and C3c in each protein. Computational predictions showed that putative weak zinc binding sites with different capacities exist in all five proteins, in agreement with experiments. Factor H forms large oligomers in >10 μm zinc. In contrast to C3b or Factor H alone, the solubility of the central C3b-Factor H complex was much reduced at 60 μm zinc and even more so at >100 μm zinc. The removal of the C3b-Factor H complex by zinc explains the reduced C3u/C3b inactivation rates by zinc. Zinc-induced precipitation may contribute to the initial development of sub-retinal pigment epithelial deposits in the retina as well as reducing the progression to advanced age-related macular degeneration in higher risk patients. PMID:23661701
αCP Poly(C) Binding Proteins Act as Global Regulators of Alternative Polyadenylation
Ji, Xinjun; Wan, Ji; Vishnu, Melanie
2013-01-01
We have previously demonstrated that the KH-domain protein αCP binds to a 3′ untranslated region (3′UTR) C-rich motif of the nascent human alpha-globin (hα-globin) transcript and enhances the efficiency of 3′ processing. Here we assess the genome-wide impact of αCP RNA-protein (RNP) complexes on 3′ processing with a specific focus on its role in alternative polyadenylation (APA) site utilization. The major isoforms of αCP were acutely depleted from a human hematopoietic cell line, and the impact on mRNA representation and poly(A) site utilization was determined by direct RNA sequencing (DRS). Bioinformatic analysis revealed 357 significant alterations in poly(A) site utilization that could be specifically linked to the αCP depletion. These APA events correlated strongly with the presence of C-rich sequences in close proximity to the impacted poly(A) addition sites. The most significant linkage was the presence of a C-rich motif within a window 30 to 40 bases 5′ to poly(A) signals (AAUAAA) that were repressed upon αCP depletion. This linkage is consistent with a general role for αCPs as enhancers of 3′ processing. These findings predict a role for αCPs in posttranscriptional control pathways that can alter the coding potential and/or levels of expression of subsets of mRNAs in the mammalian transcriptome. PMID:23629627
Carvello, Michele; Petrelli, Alessandra; Vergani, Andrea; Lee, Kang Mi; Tezza, Sara; Chin, Melissa; Orsenigo, Elena; Staudacher, Carlo; Secchi, Antonio; Dunussi-Joannopoulos, Kyri; Sayegh, Mohamed H.; Markmann, James F.; Fiorina, Paolo
2012-01-01
B cells participate in the priming of the allo- and autoimmune responses, and their depletion can thus be advantageous for islet transplantation. Herein, we provide an extensive study of the effect of B-cell depletion in murine models of islet transplantation. Islet transplantation was performed in hyperglycemic B-cell–deficient(μMT) mice, in a purely alloimmune setting (BALB/c into hyperglycemic C57BL/6), in a purely autoimmune setting (NOD.SCID into hyperglycemic NOD), and in a mixed allo-/autoimmune setting (BALB/c into hyperglycemic NOD). Inotuzumab ozogamicin murine analog (anti-CD22 monoclonal antibody conjugated with calicheamicin [anti-CD22/cal]) efficiently depleted B cells in all three models of islet transplantation examined. Islet graft survival was significantly prolonged in B-cell–depleted mice compared with control groups in transplants of islets from BALB/c into C57BL/6 (mean survival time [MST]: 16.5 vs. 12.0 days; P = 0.004), from NOD.SCID into NOD (MST: 23.5 vs. 14.0 days; P = 0.03), and from BALB/c into NOD (MST: 12.0 vs. 5.5 days; P = 0.003). In the BALB/c into B-cell–deficient mice model, islet survival was prolonged as well (MST: μMT = 32.5 vs. WT = 14 days; P = 0.002). Pathology revealed reduced CD3+ cell islet infiltration and confirmed the absence of B cells in treated mice. Mechanistically, effector T cells were reduced in number, concomitant with a peripheral Th2 profile skewing and ex vivo recipient hyporesponsiveness toward donor-derived antigen as well as islet autoantigens. Finally, an anti-CD22/cal and CTLA4-Ig–based combination therapy displayed remarkable prolongation of graft survival in the stringent model of islet transplantation (BALB/c into NOD). Anti-CD22/cal–mediated B-cell depletion promotes the reduction of the anti-islet immune response in various models of islet transplantation. PMID:22076927
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Long; Shi, Songting; Zhang, Juan
Highlights: Black-Right-Pointing-Pointer Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. Black-Right-Pointing-Pointer Wnt3a induces Id3 expression via canonical Wnt/{beta}-catenin pathway. Black-Right-Pointing-Pointer Wnt3a-induced Id3 expression does not depend on BMP signaling activation. Black-Right-Pointing-Pointer Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a {beta}-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However,more » Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/{beta}-catenin induced gene in myoblast cell fate determination.« less
Honda-Ogawa, Mariko; Sumitomo, Tomoko; Mori, Yasushi; Hamd, Dalia Talat; Ogawa, Taiji; Yamaguchi, Masaya; Nakata, Masanobu; Kawabata, Shigetada
2017-01-01
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes, PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (ΔpepO) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by ΔpepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with ΔpepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites. PMID:28154192
The Extremely Anomalous Molecular Abundances ofComet 96P/Machholz 1 from Narrowband Photometry
NASA Astrophysics Data System (ADS)
Schleicher, David G.
2007-10-01
Narrowband filter photometry of Comet 96P/Machholz 1 was obtained on 4 nights at Lowell Observatory during the comet's 2007 apparition. Production rates of OH, CN, C2, C3, and NH were derived from these data sets, and relative abundances, expressed as ratios of production rates with respect to OH (a measure of the water abundance), were compared to those measured in other comets. Comet Machholz 1 is shown to be depleted in CN by about a factor of 200 from average, while C2 and C3 are also low but "only” by factors of 10-20 from "typical” composition, i.e. comparable to the most strongly carbon-chain depleted comets reported by A'Hearn et al. (1995; Icarus 118, 223). In contrast, NH is near the upper end of its normal range. This extremely low CN-to-OH ratio for Machholz 1 indicates that it is either compositionally associated with Comet Yanaka (1988r; 1988 Y1) which was strongly depleted in CN and C2 but not NH2 (Fink, 1992; Science 257, 1926), or represents a new compositional class of comets, since Yanaka had a much greater depletion of C2 (>100×) than does Machholz 1. It remains unclear if these comets formed at a location in our solar system with unusual conditions and a low probability of being gravitationally perturbed into the inner solar system, or if one or both objects are interstellar interlopers. These and other results will be presented. This research is supported by NASA's Planetary Astronomy Program.
Regional strategies for the accelerating global problem of groundwater depletion
NASA Astrophysics Data System (ADS)
Aeschbach-Hertig, Werner; Gleeson, Tom
2012-12-01
Groundwater--the world's largest freshwater resource--is critically important for irrigated agriculture and hence for global food security. Yet depletion is widespread in large groundwater systems in both semi-arid and humid regions of the world. Excessive extraction for irrigation where groundwater is slowly renewed is the main cause of the depletion, and climate change has the potential to exacerbate the problem in some regions. Globally aggregated groundwater depletion contributes to sea-level rise, and has accelerated markedly since the mid-twentieth century. But its impacts on water resources are more obvious at the regional scale, for example in agriculturally important parts of India, China and the United States. Food production in such regions can only be made sustainable in the long term if groundwater levels are stabilized. To this end, a transformation is required in how we value, manage and characterize groundwater systems. Technical approaches--such as water diversion, artificial groundwater recharge and efficient irrigation--have failed to balance regional groundwater budgets. They need to be complemented by more comprehensive strategies that are adapted to the specific social, economic, political and environmental settings of each region.
Zhou, Xueli; Fukuda, Noboru; Matsuda, Hiroyuki; Endo, Morito; Wang, Xiaofei; Saito, Kosuke; Ueno, Takahiro; Matsumoto, Taro; Matsumoto, Koichi; Soma, Masayoshi; Kobayashi, Naohiko; Nishiyama, Akira
2013-10-01
We have demonstrated that mesenchymal cells from spontaneously hypertensive rats genetically express complement 3 (C3). Mature tubular epithelial cells can undergo epithelial-to-mesenchymal transition (EMT) that is linked to the pathogenesis of renal fibrosis and injury. In this study, we investigated the contribution of C3 in EMT and in the renal renin-angiotensin (RA) systems associated with hypertension. C3a induced EMT in mouse TCMK-1 epithelial cells, which displayed increased expression of renin and Krüppel-like factor 5 (KLF5) and nuclear localization of liver X receptor α (LXRα). C3 and renin were strongly stained in the degenerated nephrotubulus and colocalized with LXRα and prorenin receptor in unilateral ureteral obstruction (UUO) kidneys from wild-type mice. In C3-deficient mice, hydronephrus and EMT were suppressed, with no expression of renin and C3. After UUO, systolic blood pressure was increased in wild-type but not C3-deficient mice. In wild-type mice, intrarenal angiotensin II (ANG II) levels were markedly higher in UUO kidneys than normal kidneys and decreased with aliskiren. There were no increases in intrarenal ANG II levels after UUO in C3-deficient mice. Thus C3 induces EMT and dedifferentiation of epithelial cells, which produce renin through induction of LXRα. These data indicate for the first time that C3 may be a primary factor to activate the renal RA systems to induce hypertension.
Carbon isotopic fractionation in heterotrophic microbial metabolism
NASA Technical Reports Server (NTRS)
Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.
1985-01-01
Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.
Jang, Byung-Hyun; Chang, Seo-Hyuk; Yun, Ui Jeong; Park, Ki-Moon; Waki, Hironori; Li, Dean Y.; Tontonoz, Peter; Park, Kye Won
2016-01-01
Adipocytes are differentiated by various transcriptional cascades integrated on the master regulator, Pparγ. To discover new genes involved in adipocyte differentiation, preadipocytes were treated with three newly identified pro-adipogenic small molecules and GW7845 (a Pparγ agonist) for 24 hours and transcriptional profiling was analyzed. Four genes, Peroxisome proliferator-activated receptor γ (Pparγ), human complement factor D homolog (Cfd), Chemokine (C-C motif) ligand 9 (Ccl9), and GIPC PDZ Domain Containing Family Member 2 (Gipc2) were induced by at least two different small molecules but not by GW7845. Cfd and Ccl9 expressions were specific to adipocytes and they were altered in obese mice. Small hairpin RNA (shRNA) mediated knockdown of Cfd in preadipocytes inhibited lipid accumulation and expression of adipocyte markers during adipocyte differentiation. Overexpression of Cfd promoted adipocyte differentiation, increased C3a production, and led to induction of C3a receptor (C3aR) target gene expression. Similarly, treatments with C3a or C3aR agonist (C4494) also promoted adipogenesis. C3aR knockdown suppressed adipogenesis and impaired the pro-adipogenic effects of Cfd, further suggesting the necessity for C3aR signaling in Cfd-mediated pro-adipogenic axis. Together, these data show the action of Cfd in adipogenesis and underscore the application of small molecules to identify genes in adipocytes. PMID:27611793
Role of Complement C5 in Experimental Blunt Chest Trauma-Induced Septic Acute Lung Injury (ALI)
Karbach, Michael; Braumueller, Sonja; Kellermann, Philipp; Gebhard, Florian; Huber-Lang, Markus; Perl, Mario
2016-01-01
Background Severe blunt chest trauma is associated with high mortality. Sepsis represents a serious risk factor for mortality in acute respiratory distress syndrome (ARDS). In septic patients with ARDS complement activation products were found to be elevated in the plasma. In single models like LPS or trauma complement has been studied to some degree, however in clinically highly relevant double hit models such as the one used here little data is available. Here, we hypothesized that absence of C5 is correlated with a decreased inflammatory response in trauma induced septic acute lung injury. Methods 12 hrs after DH in mice the local and systemic cytokines and chemokines were quantified by multiplex bead array or ELISA, activated caspase-3 by western blot. Data were analyzed using one-way ANOVA followed by post-hoc Sidak’s multiple comparison test (significance, p≤ 0.05). Results In lung tissue interleukin (IL)-6, monocyte chemo attractant protein-1 (MCP-1) and granulocyte-colony stimulating factor (G-CSF) was elevated in both C5-/- mice and wildtype littermates (wt), whereas caspase-3 was reduced in lungs after DH in C5-/- mice. Systemically, reduced keratinocyte-derived chemokine (KC) levels were observed after DH in C5-/- compared to wt mice. Locally, lung myeloperoxidase (MPO), protein, IL-6, MCP-1 and G-CSF in brochoalveolar lavage fluid (BALF) were elevated after DH in C5-/- compared to wt. Conclusions In the complex but clinically relevant DH model the local and systemic inflammatory immune response features both, C5-dependent and C5-independent characteristics. Activation of caspase-3 in lung tissue after DH was C5-dependent whereas local inflammation in lung tissue was C5-independent. PMID:27437704
Role of Complement C5 in Experimental Blunt Chest Trauma-Induced Septic Acute Lung Injury (ALI).
Kalbitz, Miriam; Karbach, Michael; Braumueller, Sonja; Kellermann, Philipp; Gebhard, Florian; Huber-Lang, Markus; Perl, Mario
2016-01-01
Severe blunt chest trauma is associated with high mortality. Sepsis represents a serious risk factor for mortality in acute respiratory distress syndrome (ARDS). In septic patients with ARDS complement activation products were found to be elevated in the plasma. In single models like LPS or trauma complement has been studied to some degree, however in clinically highly relevant double hit models such as the one used here little data is available. Here, we hypothesized that absence of C5 is correlated with a decreased inflammatory response in trauma induced septic acute lung injury. 12 hrs after DH in mice the local and systemic cytokines and chemokines were quantified by multiplex bead array or ELISA, activated caspase-3 by western blot. Data were analyzed using one-way ANOVA followed by post-hoc Sidak's multiple comparison test (significance, p≤ 0.05). In lung tissue interleukin (IL)-6, monocyte chemo attractant protein-1 (MCP-1) and granulocyte-colony stimulating factor (G-CSF) was elevated in both C5-/- mice and wildtype littermates (wt), whereas caspase-3 was reduced in lungs after DH in C5-/- mice. Systemically, reduced keratinocyte-derived chemokine (KC) levels were observed after DH in C5-/- compared to wt mice. Locally, lung myeloperoxidase (MPO), protein, IL-6, MCP-1 and G-CSF in brochoalveolar lavage fluid (BALF) were elevated after DH in C5-/- compared to wt. In the complex but clinically relevant DH model the local and systemic inflammatory immune response features both, C5-dependent and C5-independent characteristics. Activation of caspase-3 in lung tissue after DH was C5-dependent whereas local inflammation in lung tissue was C5-independent.
Farazifard, Rasoul; Kiani, Roozbeh; Esteky, Hossein
2005-07-19
C-fiber depletion results in expansion of low threshold somatosensory mechanoreceptive fields. In this study, we investigated the role of intact C-fibers in GABAA-mediated inhibition in barrel cortical neurons. We used electronically controlled mechanical stimulation of whiskers to quantitatively examine the responses of barrel cells to whisker displacements. After systemic injection of picrotoxin neuronal responses were recorded at 5 min intervals for 20 min and then at 10 min intervals for 100 min. Picrotoxin injection caused a 3-fold increase in response magnitude of adjacent whisker stimulation and 1.4-fold increase in response magnitude of principal whisker stimulation with a maximum enhancement 50 min after the injection. There was no significant change in spontaneous activity following picrotoxin injection. The response enhancement and receptive field expansion observed in normal rats were completely absent in the C-fiber-depleted rats. These results suggest that the GABAA-mediated inhibition that modulates the receptive field functional organization of the barrel cortex depends on intact C-fibers.
Fei, Jia; Chen, Junjie
2012-01-01
Transcription-coupled repair (TCR) is the major pathway involved in the removal of UV-induced photolesions from the transcribed strand of active genes. Two Cockayne syndrome (CS) complementation group proteins, CSA and CSB, are important for TCR repair. The molecular mechanisms by which CS proteins regulate TCR remain elusive. Here, we report the characterization of KIAA1530, an evolutionarily conserved protein that participates in this pathway through its interaction with CSA and the TFIIH complex. We found that UV irradiation led to the recruitment of KIAA1530 onto chromatin in a CSA-dependent manner. Cells lacking KIAA1530 were highly sensitive to UV irradiation and displayed deficiency in TCR. In addition, KIAA1530 depletion abrogated stability of the CSB protein following UV irradiation. More excitingly, we found that a unique CSA mutant (W361C), which was previously identified in a patient with UVsS syndrome, showed defective KIAA1530 binding and resulted in a failure of recruiting KIAA1530 and stabilizing CSB after UV treatment. Together, our data not only reveal that KIAA1530 is an important player in TCR but also lead to a better understanding of the molecular mechanism underlying UVsS syndrome. PMID:22902626
Bahia El Idrissi, Nawal; Iyer, Anand M; Ramaglia, Valeria; Rosa, Patricia S; Soares, Cleverson T; Baas, Frank; Das, Pranab K
2017-01-01
Mycobacterium leprae (M. leprae) infection causes nerve damage and the condition worsens often during and long after treatment. Clearance of bacterial antigens including lipoarabinomannan (LAM) during and after treatment in leprosy patients is slow. We previously demonstrated that M. leprae LAM damages peripheral nerves by in situ generation of the membrane attack complex (MAC). Investigating the role of complement activation in skin lesions of leprosy patients might provide insight into the dynamics of in situ immune reactivity and the destructive pathology of M. leprae. In this study, we analyzed in skin lesions of leprosy patients, whether M. leprae antigen LAM deposition correlates with the deposition of complement activation products MAC and C3d on nerves and cells in the surrounding tissue. Skin biopsies of paucibacillary (n = 7), multibacillary leprosy patients (n = 7), and patients with erythema nodosum leprosum (ENL) (n = 6) or reversal reaction (RR) (n = 4) and controls (n = 5) were analyzed. The percentage of C3d, MAC and LAM deposition was significantly higher in the skin biopsies of multibacillary compared to paucibacillary patients (p = <0.05, p = <0.001 and p = <0.001 respectively), with a significant association between LAM and C3d or MAC in the skin biopsies of leprosy patients (r = 0.9578, p< 0.0001 and r = 0.8585, p<0.0001 respectively). In skin lesions of multibacillary patients, MAC deposition was found on axons and co-localizing with LAM. In skin lesions of paucibacillary patients, we found C3d positive T-cells in and surrounding granulomas, but hardly any MAC deposition. In addition, MAC immunoreactivity was increased in both ENL and RR skin lesions compared to non-reactional leprosy patients (p = <0.01 and p = <0.01 respectively). The present findings demonstrate that complement is deposited in skin lesions of leprosy patients, suggesting that inflammation driven by complement activation might contribute to nerve damage in the lesions of these patients. This should be regarded as an important factor in M. leprae nerve damage pathology.
Contractor, Tanupriya; Kobayashi, Shinta; da Silva, Edaise; Clausen, Richard; Chan, Chang; Vosburgh, Evan; Tang, Laura H; Levine, Arnold J; Harris, Chris R
2016-05-24
In a mouse model for neuroendocrine tumors of the pancreas (PanNETs), liver metastasis occurred at a higher frequency in males. Male mice also had higher serum and intratumoral levels of the innate immunity protein complement C5. In mice that lost the ability to express complement C5, there was a lower frequency of metastasis, and males no longer had a higher frequency of metastasis than females. Treatment with PMX53, a small molecule antagonist of C5aR1/CD88, the receptor for complement C5a, also reduced metastasis. Mice lacking a functional gene for complement C5 had smaller primary tumors, which were less invasive and lacked the CD68+ macrophages that have previously been associated with metastasis in this type of tumor. This is the first report of a gene that causes sexual dimorphism of metastasis in a mouse model. In the human disease, which also shows sexual dimorphism for metastasis, clinically advanced tumors expressed more complement C5 than less advanced tumors.
Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool
Ronge, T. A.; Tiedemann, R.; Lamy, F.; Köhler, P.; Alloway, B. V.; De Pol-Holz, R.; Pahnke, K.; Southon, J.; Wacker, L.
2016-01-01
During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (Δ14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of Δ14C over the last 30,000 years. In ∼2,500–3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (ΔΔ14C=−1,000‰). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific. PMID:27157845
Seravalle, Gino; Piperno, Alberto; Mariani, Raffaella; Pelloni, Irene; Facchetti, Rita; Dell'Oro, Raffaella; Cuspidi, Cesare; Mancia, Giuseppe; Grassi, Guido
2016-03-21
Haemochromatosis (HH) displays a number of circulatory alterations concurring at increase cardiovascular risk. Whether these include sympathetic abnormalities in unknown. In 18 males with primary HH (age: 42.3 ± 10.4 years, mean ± SD), clinic and beat-to-beat blood pressure (BP, Finapres), heart rate (HR, EKG), and muscle sympathetic nerve activity (MSNA, microneurography) traffic were measured in the iron overload state and after iron depletion therapy. Haemochromatosis patients displayed elevated serum iron indices while other haemodynamic and metabolic variables were superimposable to ones seen in 12 healthy subjects (C). Muscle sympathetic nerve activity was significantly greater in HH than C (64.8 ± 13.3 vs. 37.8 ± 6.7 bs/100 hb, P < 0.01). Iron depletion caused a significant reduction in serum ferritin, transferrin saturation, and MSNA (from 64.8 ± 13.3 to 39.2 ± 9.2 bs/100 hb, P < 0.01) and a significant improvement in baroreflex-MSNA modulation. This was paralleled by a significant increase in the high-frequency HR variability and by a significant reduction in the low-frequency systolic BP variability components. Before after iron depletion therapy, MSNA was significantly and directly related to transferrin saturation, liver iron concentration, and iron removed, while the MSNA reductions observed after the procedure were significantly and inversely related to the baroreflex-MSNA increases detected after iron depletion. In C, all variables remained unchanged following 1 month observation. These data provide the first evidence that in HH iron overload is associated with an hyperadrenergic state and a baroreflex alteration, which are reversed by iron depletion. These findings underline the importance of iron overload in modulating sympathetic activation, possibly participating at the elevated cardiovascular risk reported in HH. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Anti-C1q Antibodies in Systemic Lupus Erythematosus
ORBAI, ANA-MARIA; TRUEDSSON, LENNART; STURFELT, GUNNAR; NIVED, OLA; FANG, HONG; ALARCÓN, GRACIELA S.; GORDON, CAROLINE; MERRILL, JOAN T.; FORTIN, PAUL R.; BRUCE, IAN N.; ISENBERG, DAVID A.; WALLACE, DANIEL J.; RAMSEY-GOLDMAN, ROSALIND; BAE, SANG-CHEOL; HANLY, JOHN G.; SANCHEZ-GUERRERO, JORGE; CLARKE, ANN E.; ARANOW, CYNTHIA B.; MANZI, SUSAN; UROWITZ, MURRAY B.; GLADMAN, DAFNA D.; KALUNIAN, KENNETH C.; COSTNER, MELISSA I.; WERTH, VICTORIA P.; ZOMA, ASAD; BERNATSKY, SASHA; RUIZ-IRASTORZA, GUILLERMO; KHAMASHTA, MUNTHER A.; JACOBSEN, SOREN; BUYON, JILL P.; MADDISON, PETER; DOOLEY, MARY ANNE; VAN VOLLENHOVEN, RONALD F.; GINZLER, ELLEN; STOLL, THOMAS; PESCHKEN, CHRISTINE; JORIZZO, JOSEPH L.; CALLEN, JEFFREY P.; LIM, S. SAM; FESSLER, BARRI J.; INANC, MURAT; KAMEN, DIANE L.; RAHMAN, ANISUR; STEINSSON, KRISTJAN; FRANKS, ANDREW G.; SIGLER, LISA; HAMEED, SUHAIL; PHAM, NEENA; BREY, ROBIN; WEISMAN, MICHAEL H.; MCGWIN, GERALD; MAGDER, LAURENCE S.; PETRI, MICHELLE
2014-01-01
Objective Anti-C1q has been associated with systemic lupus erythematosus (SLE) and lupus nephritis in previous studies. We studied anti-C1q specificity for SLE (vs. rheumatic disease controls) and the association with SLE manifestations in an international multi-center study. Methods Information and blood samples were obtained in a cross-sectional study from patients with SLE (n=308) and other rheumatologic diseases (n=389) from 25 clinical sites (84% female, 68% Caucasian, 17% African descent, 8% Asian, 7% other). IgG anti-C1q against the collagen-like region was measured by ELISA. Results Prevalence of anti-C1q was 28% (86/308) in patients with SLE and 13% (49/389) in controls (OR=2.7, 95% CI: 1.8-4, p<0.001). Anti-C1q was associated with proteinuria (OR=3.0, 95% CI: 1.7-5.1, p<0.001), red cell casts (OR=2.6, 95% CI: 1.2-5.4, p=0.015), anti-dsDNA (OR=3.4, 95% CI: 1.9-6.1, p<0.001) and anti-Smith (OR=2.8, 95% CI: 1.5-5.0, p=0.01). Anti-C1q was independently associated with renal involvement after adjustment for demographics, ANA, anti-dsDNA and low complement (OR=2.3, 95% CI: 1.3-4.2, p<0.01). Simultaneously positive anti-C1q, anti-dsDNA and low complement was strongly associated with renal involvement (OR=14.9, 95% CI: 5.8-38.4, p<0.01). Conclusions Anti-C1q was more common in patients with SLE and those of Asian race/ethnicity. We confirmed a significant association of anti-C1q with renal involvement, independent of demographics and other serologies. Anti-C1q in combination with anti-dsDNA and low complement was the strongest serological association with renal involvement. These data support the usefulness of anti-C1q in SLE, especially in lupus nephritis. PMID:25124676
Loxoprofen sodium induces the production of complement C5a in human serum.
Kumagai, Tomoaki; Yamaguchi, Nozomi; Hirai, Hiroyuki; Kojima, Shigeyuki; Kodani, Yoshiko; Hashiguchi, Akihiko; Haida, Michiko; Nakamura, Masataka
2016-04-01
Basophil activation test (BAT) is an in vitro allergy test that is useful to identify allergens that cause IgE-dependent allergies. The test has been used to detect not only food allergies and allergies caused by environmental factors but also to detect drug hypersensitivity, which has been known to include IgE-independent reactions. In our preliminary studies in which BAT was applied to detect hypersensitivity of loxoprofen, a non-steroidal anti-inflammatory drug (NSAID), conventional BAT with incubation for 30min did not show basophil activation by means of increased CD203c expression. In this study, we extended the incubation time to 24h on the basis of the hypothesis that loxoprofen indirectly activates basophils. Basophils from healthy control donors as well as allergic patients showed up-regulation of CD203c after incubation with loxoprofen for 24h. Activation was induced using loxoprofen-treated serum. Proteomic and pharmacologic analyses revealed that serum incubation with loxoprofen generated an active complement component C5a, which induced CD203c expression via binding to the C5a receptor on basophils. Because C3a production was also detected after incubation for 24h, loxoprofen is likely to stimulate the complement classical pathway. Our findings suggest that the complement activation is involved in drug hypersensitivity and the suppression of this activation may contribute to the elimination of false positive of BAT for drug allergies. Copyright © 2016 Elsevier B.V. All rights reserved.
Doan, Ninh; Gettins, Peter G W
2007-10-01
Human alpha2M (alpha2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human alpha2M to be made. We describe here the expression and characterization of three alpha(2)M domains predicted to be involved in the stabilization of the thiol ester in native alpha2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the alpha2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of alpha2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1-MG8 of C3. TED is, as predicted, an alpha-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these alpha2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of alpha2M, and the consequent thiol ester-stabilizing domain-domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein.
Doan, Ninh; Gettins, Peter G. W.
2007-01-01
Human α2M (α2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human α2M to be made. We describe here the expression and characterization of three α2M domains predicted to be involved in the stabilization of the thiol ester in native α2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the α2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of α2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1–MG8 of C3. TED is, as predicted, an α-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these α2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of α2M, and the consequent thiol ester-stabilizing domain–domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein. PMID:17608619
Effect of the C3a-receptor antagonist SB 290157 on anti-OVA polyclonal antibody-induced arthritis.
Hutamekalin, Pilaiwanwadee; Takeda, Kohei; Tani, Mitsuhiro; Tsuga, Yuko; Ogawa, Naoki; Mizutani, Nobuaki; Yoshino, Shin
2010-01-01
It was investigated whether the C3a-receptor antagonist (C3aRA) SB 290157 was involved in the suppression of anti-OVA pAb-induced arthritis because it is well known that anaphylatoxin C3a plays a crucial role in the development of an effective inflammatory response during complement activation. Anti-OVA pAb-induced arthritis was induced in DBA/1J mice by administration of anti-OVA pAb 0.5 h prior to intra-articular (i.a.) injection of OVA (0 h). Two peaks of joint swelling were observed at 0.5 and 3 h. The role of C3aRA in arthritis was investigated by injection of SB 290157 at concentrations of 10 and 30 mg/kg at 0 and 2 h. The antagonist was able to reduce joint swelling only at 3 h, and about 50% inhibition of joint swelling was observed with the concentration of 30 mg/kg. The C3 level was significantly decreased at 3 h compared with naïve mice showing complement consumption. Furthermore, the C3 activation was observed and increased corresponding to the graded concentration of anti-OVA pAb. The results also revealed that the C3aRA was able to reduce the expression of IL-1beta in synovial tissue. Taken together, the results suggested that C3aRA may be effective in the inhibition of arthritis.
Gas6 Promotes Inflammatory (CCR2hiCX3CR1lo) Monocyte Recruitment in Venous Thrombosis.
Laurance, Sandrine; Bertin, François-René; Ebrahimian, Talin; Kassim, Yusra; Rys, Ryan N; Lehoux, Stéphanie; Lemarié, Catherine A; Blostein, Mark D
2017-07-01
Coagulation and inflammation are inter-related. Gas6 (growth arrest-specific 6) promotes venous thrombosis and participates to inflammation through endothelial-innate immune cell interactions. Innate immune cells can provide the initiating stimulus for venous thrombus development. We hypothesize that Gas6 promotes monocyte recruitment during venous thrombosis. Deep venous thrombosis was induced in wild-type and Gas6-deficient (-/-) mice using 5% FeCl 3 and flow reduction in the inferior vena cava. Total monocyte depletion was achieved by injection of clodronate before deep venous thrombosis. Inflammatory monocytes were depleted using an anti-C-C chemokine receptor type 2 (CCR2) antibody. Similarly, injection of an anti-chemokine ligand 2 (CCL2) antibody induced CCL2 depletion. Flow cytometry and immunofluorescence were used to characterize the monocytes recruited to the thrombus. In vivo, absence of Gas6 was associated with a reduction of monocyte recruitment in both deep venous thrombosis models. Global monocyte depletion by clodronate leads to smaller thrombi in wild-type mice. Compared with wild type, the thrombi from Gas6 -/- mice contain less inflammatory (CCR2 hi CX 3 CR1 lo ) monocytes, consistent with a Gas6-dependent recruitment of this monocyte subset. Correspondingly, selective depletion of CCR2 hi CX 3 CR1 lo monocytes reduced the formation of venous thrombi in wild-type mice demonstrating a predominant role of the inflammatory monocytes in thrombosis. In vitro, the expression of both CCR2 and CCL2 were Gas6 dependent in monocytes and endothelial cells, respectively, impacting monocyte migration. Moreover, Gas6-dependent CCL2 expression and monocyte migration were mediated via JNK (c-Jun N-terminal kinase). This study demonstrates that Gas6 specifically promotes the recruitment of inflammatory CCR2 hi CX 3 CR1 lo monocytes through the regulation of both CCR2 and CCL2 during deep venous thrombosis. © 2017 American Heart Association, Inc.
Atkinson, Sara Marie; Hoffmann, Ute; Hamann, Alf; Bach, Emil; Danneskiold-Samsøe, Niels Banhos; Kristiansen, Karsten; Serikawa, Kyle; Fox, Brian; Kruse, Kim; Haase, Claus; Skov, Søren; Nansen, Anneline
2016-01-01
ABSTRACT Rodent models of arthritis have been extensively used in the elucidation of rheumatoid arthritis (RA) pathogenesis and are instrumental in the development of therapeutic strategies. Here we utilise delayed-type hypersensitivity arthritis (DTHA), a model in C57BL/6 mice affecting one paw with synchronised onset, 100% penetrance and low variation. We investigate the role of regulatory T cells (Tregs) in DTHA through selective depletion of Tregs and the role of IL-17 in connection with Treg depletion. Given the relevance of Tregs in RA, and the possibility of developing Treg-directed therapies, this approach could be relevant for advancing the understanding of Tregs in inflammatory arthritis. Selective depletion of Tregs was achieved using a Foxp3-DTR-eGFP mouse, which expresses the diphtheria toxin receptor (DTR) and enhanced green fluorescent protein (eGFP) under control of the Foxp3 gene. Anti-IL-17 monoclonal antibody (mAb) was used for IL-17 blockade. Numbers and activation of Tregs increased in the paw and its draining lymph node in DTHA, and depletion of Tregs resulted in exacerbation of disease as shown by increased paw swelling, increased infiltration of inflammatory cells, increased bone remodelling and increased production of inflammatory mediators, as well as increased production of anti-citrullinated protein antibodies. Anti-IL-17 mAb treatment demonstrated that IL-17 is important for disease severity in both the presence and absence of Tregs, and that IL-17 blockade is able to rescue mice from the exacerbated disease caused by Treg depletion and caused a reduction in RANKL, IL-6 and the number of neutrophils. We show that Tregs are important for the containment of inflammation and bone remodelling in DTHA. To our knowledge, this is the first study using the Foxp3-DTR-eGFP mouse on a C57BL/6 background for Treg depletion in an arthritis model, and we here demonstrate the usefulness of the approach to study the role of Tregs and IL-17 in arthritis. PMID:26822477
Binks, Michael; Sriprakash, K. S.
2004-01-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity. PMID:15213143
Binks, Michael; Sriprakash, K S
2004-07-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity.
NASA Technical Reports Server (NTRS)
DiSanti, Michael A.; Bonev, Boncho P.; Mumma, Michael J.; Villanueva, Geronimo L.
2010-01-01
We report high resolution (lambda/delta lambda approximately 24,000) observations of Comet 21 P/Giacobini-Zinner (21P) between approximately 2.85 -- 3.54 micrometers, obtained with NIRSPEC at Keck 2 on UT 2005 June 03 (R(sub h) = 1.12 AU, delta = 1.45 AU). These simultaneously sampled multiple emissions from the v7 band of C2H6 and the v2 and v3 bands of CH3OH, together with several hot bands of H2O, permitting a direct measure of parent volatile abundances in 21P. Our spectra reveal highly depleted C2H6 (0.13-0.14 percent relative to H2O) and CH3OH/C2H6 approximately 10, consistent with previously published abundances from observations in the IR [1,2] and millimeter sub-mm (reporting CH3OH/H2O [3]) during its previous apparition in 1998. We observed similarly high CH3OH/C2H6, and also similar rotational temperature to that measured for 21 P, in Comet 8P/Tuttle [4,5]. We used our (higher signal-to-noise) NIRSPEC observations of 8P to produce effective (empirical) CH3OH g-factors for several lines in the v2 band. These will be presented together with interpretation of our results, including constraints on the spin temperature of water. We acknowledge support from the NASA Planetary Atmospheres, Planetary Astronomy, and Astrobiology Programs and from the NSF Astronomy and Astrophysics Research Grants Program.
Complement in Non-Antibody-Mediated Kidney Diseases
Angeletti, Andrea; Reyes-Bahamonde, Joselyn; Cravedi, Paolo; Campbell, Kirk N.
2017-01-01
The complement system is part of the innate immune response that plays important roles in protecting the host from foreign pathogens. The complement components and relative fragment deposition have long been recognized to be strongly involved also in the pathogenesis of autoantibody-related kidney glomerulopathies, leading to direct glomerular injury and recruitment of infiltrating inflammation pathways. More recently, unregulated complement activation has been shown to be associated with progression of non-antibody-mediated kidney diseases, including focal segmental glomerulosclerosis, C3 glomerular disease, thrombotic microangiopathies, or general fibrosis generation in progressive chronic kidney diseases. Some of the specific mechanisms associated with complement activation in these diseases were recently clarified, showing a dominant role of alternative activation pathway. Over the last decade, a growing number of anticomplement agents have been developed, and some of them are being approved for clinical use or already in use. Therefore, anticomplement therapies represent a realistic choice of therapeutic approaches for complement-related diseases. Herein, we review the complement system activation, regulatory mechanisms, their involvement in non-antibody-mediated glomerular diseases, and the recent advances in complement-targeting agents as potential therapeutic strategies. PMID:28748184
Soulas, Caroline; Autissier, Patrick J.; Burdo, Tricia H.; Lifson, Jeffrey D.; Williams, Kenneth C.
2015-01-01
Loss of circulating CD123+ plasmacytoid dendritic cells (pDCs) during HIV infection is well established. However, changes of myeloid DCs (mDCs) are ambiguous since they are studied as a homogeneous CD11c+ population despite phenotypic and functional heterogeneity. Heterogeneity of CD11c+ mDCs in primates is poorly described in HIV and SIV infection. Using multiparametric flow cytometry, we monitored longitudinally cell number and cell-associated virus of CD123+ pDCs and non-overlapping subsets of CD1c+ and CD16+ mDCs in SIV-infected CD8-depleted rhesus macaques. The numbers of all three DC subsets were significantly decreased by 8 days post-infection. Whereas CD123+ pDCs were persistently depleted, numbers of CD1c+ and CD16+ mDCs rebounded. Numbers of CD1c+ mDCs significantly increased by 3 weeks post-infection while numbers of CD16+ mDCs remained closer to pre-infection levels. We found similar changes in the numbers of all three DC subsets in CD8 depleted animals as we found in animals that were SIV infected animals that were not CD8 lymphocyte depleted. CD16+ mDCs and CD123+ pDCs but not CD1c+ mDCs were significantly decreased terminally with AIDS. All DC subsets harbored SIV RNA as early as 8 days and then throughout infection. However, SIV DNA was only detected in CD123+ pDCs and only at 40 days post-infection consistent with SIV RNA, at least in mDCs, being surface-bound. Altogether our data demonstrate that SIV infection differently affects CD1c+ and CD16+ mDCs where CD16+ but not CD1c+ mDCs are depleted and might be differentially regulated in terminal AIDS. Finally, our data underline the importance of studying CD1c+ and CD16+ mDCs as discrete populations, and not as total CD11c+ mDCs. PMID:25915601
Memantine effects on liver and adrenal gland of rats exposed to cold stress
2011-01-01
Background Memantine attenuates heart stress due cold stress, however, no study focused its effects on liver and adrenal gland. We evaluated its effects on lipid depletion in adrenal gland and glycogen depletion in liver of rats exposed to cold stress. Methods Male rats divided into 4 groups: 1)Control (CON); 2)Memantine (MEM); 3)Induced cold stress (IH) and; 4)Induced cold stress memantine (IHF). Memantine were administrated by gavage (20 mg/kg/day) during eight days. Cold stress were performed during 4 hours once at - 8°C. Lipid and glycogen depletion were presented as its intensity levels. Results Rats exposed to cold stress presented the highest glycogen (p < 0.001) and lipid depletion (p < 0.001) in liver and adrenal gland, respectively. We noted that memantine significantly reduced lipid depletion in adrenal gland and glycogen depletion in liver. Conclusion Memantine prevented glycogen depletion in liver and lipid depletion in adrenal gland of rats under a cold stress condition. PMID:21255456
NASA Astrophysics Data System (ADS)
Weiersbye-Witkowski, I. M.; Przybylowicz, W. J.; Straker, C. J.; Mesjasz-Przybylowicz, J.
1997-07-01
Genotypes of the Southern African cucurbit, Lagenaria sphaerica, that are resistant to powdery-mildew ( Sphaerotheca fuliginea) exhibit foliar hypersensitive (HS) lesions on inoculation with this fungal pathogen. Elemental distributions across radially symmetrical HS lesions, surrounding unlesioned leaf tissue and uninoculated leaf tissue, were obtained using the true elemental imaging system (Dynamic Analysis) of the NAC Van de Graaff nuclear microprobe. Raster scans of 3 MeV protons were complemented by simultaneous PIXE and BS point analyses. The composition of cellulose (C 6H 10O 5) was used as constant matrix composition for scans, and the sample thickness was found from BS spectra. Si and elements heavier than Ca contributed to matrix composition within HS lesions and the locally elevated Ca raised the limits of detection for some trace metals of interest. In comparison to uninoculated tissue, inoculated tissue was characterised by higher overall concentrations of all measured elements except Cu. Fully developed, 6 day-old HS lesions and the surrounding tissue could be divided into five zones, centred on the fungal infection site. Each zone was characterized by distinct local elemental distributions (either depletion, or accumulation to potentially phytotoxic levels).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arriagada, Pamela; Minniti, Dante; Anglada-Escude, Guillem
2013-07-01
We report two low-mass companions orbiting the nearby K7 dwarf GJ 221 that have emerged from reanalyzing 4.4 yr of publicly available HARPS spectra complemented with 2 years of high-precision Doppler measurements with Magellan/PFS. The HARPS measurements alone contain the clear signal of a low-mass companion with a period of 125 days and a minimum mass of 53.2 M{sub Circled-Plus} (GJ 221b), falling in a mass range where very few planet candidates have been found (sub-Saturn desert). The addition of 17 PFS observations allows the confident detection of a second low-mass companion (6.5 M{sub Circled-Plus }) in a hot orbitmore » (3.87 day period, GJ 221c). Spectroscopic and photometric calibrations suggest that GJ 221 is slightly depleted ([Fe/H] {approx} -0.1) compared to the Sun, so the presence of two low-mass companions in the system confirms the trend that slightly reduced stellar metallicity does not prevent the formation of planets in the super-Earth to sub-Saturn mass regime.« less
Xu, Ting; Xie, Jiasong; Li, Jianming; Luo, Ming; Ye, Shigen; Wu, Xinzhong
2012-06-01
A SMARTer™ cDNA library of hemocyte from Rickettsia-like organism (RLO) challenged oyster, Crassostrea ariakensis Gould was constructed. Random clones (400) were selected and single-pass sequenced, resulted in 200 unique sequences containing 96 known genes and 104 unknown genes. The 96 known genes were categorized into 11 groups based on their biological process. Furthermore, we identified and characterized three complement-related fragments (CaC1q1, CaC1q2 and CaC3). Tissue distribution analysis revealed that all of three fragments were ubiquitously expressed in all tissues studied including hemocyte, gills, mantle, digestive glands, gonads and adductor muscle, while the highest level was seen in the hemocyte. Temporal expression profile in the hemocyte monolayers reveled that the mRNA expression levels of three fragments presented huge increase after the RLO incubation at 3 h and 6 h in post-challenge, respectively. And the maximal expression levels at 3 h in post-challenge are about 256, 104 and 64 times higher than the values detected in the control of CaC1q1, CaC1q2 and CaC3, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Complement in Lupus Nephritis: New Perspectives.
Bao, Lihua; Cunningham, Patrick N; Quigg, Richard J
2015-09-01
Systemic lupus erythematosus (SLE) is an autoimmune disorder caused by loss of tolerance to self-antigens, the production of autoantibodies and deposition of complement-fixing immune complexes (ICs) in injured tissues. SLE is characterized by a wide range of clinical manifestations and targeted organs, with lupus nephritis being one of the most serious complications. The complement system consists of three pathways and is tightly controlled by a set of regulatory proteins to prevent injudicious complement activation on host tissue. The involvement of the complement system in the pathogenesis of SLE is well accepted; yet, its exact role is still not clear. Complement plays dual roles in the pathogenesis of SLE. On the one hand, the complement system appears to have protective features in that hereditary homozygous deficiencies of classical pathway components, such as C1q and C4, are associated with an increased risk for SLE. On the other hand, IC-mediated activation of complement in affected tissues is clearly evident in both experimental and human SLE along with pathological features that are logical consequences of complement activation. Studies in genetically altered mice have shown that lack of complement inhibitors, such as complement factor H (CFH) or decay-accelerating factor (DAF) accelerates the development of experimental lupus nephritis, while treatment with recombinant protein inhibitors, such as Crry-Ig, CR2-Crry, CR2-DAF and CR2-CFH, ameliorates the disease development. Complement-targeted drugs, including soluble complement receptor 1 (TP10), C1 esterase inhibitor and a monoclonal anti-C5 antibody (eculizumab), have been shown to inhibit complement safely, and are now being investigated in a variety of clinical conditions. SLE is an autoimmune disorder which targets multiple systems. Complement is centrally involved and plays dual roles in the pathogenesis of SLE. Studies from experimental lupus models and clinical trials support the use of complement-targeted therapy in the treatment of SLE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tennenberg, S.D.; Jacobs, M.P.; Solomkin, J.S.
Complement-mediated neutrophil activation (CMNA) has been proposed as an important pathogenic mechanism causing acute microvascular lung injury in the adult respiratory distress syndrome (ARDS). To clarify the relationship between CMNA and evolving lung injury, we studied 26 patients with multiple trauma and sepsis within 24 hours of risk establishment for ARDS. Pulmonary alveolar-capillary permeability (PACP) was quantified as the clearance rate of a particulate radioaerosol. Seventeen patients (65%) had increased PACP (six developed ARDS) while nine (35%) had normal PACP (none developed ARDS; clearance rates of 3.4%/min and 1.5%/min, respectively). These patients, regardless of evidence of early lung injury, hadmore » elevated plasma C3adesArg levels and neutrophil chemotactic desensitization to C5a/C5adesArg. Plasma C3adesArg levels correlated weakly, but significantly, with PACP. Thus, CMNA may be a necessary, but not a sufficient, pathogenic mechanism in the evolution of ARDS.« less
Konar, Monica; Granoff, Dan M
2017-08-17
Eculizumab, a humanized anti-complement C5 monoclonal antibody (mAb) for treatment of paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome, blocks the terminal complement pathway required for serum bactericidal activity (SBA). Because treated patients are at >1000-fold increased risk of meningococcal disease, vaccination is recommended; whether vaccination can protect by opsonophagocytic activity in the absence of SBA is not known. Meningococci were added to anticoagulated blood from 12 healthy adults vaccinated with meningococcal serogroup B and serogroup A, C, W, Y vaccines. Bacterial survival was measured after 3-hour incubation in the presence of eculizumab or control complement factor D inhibitor ACH-4471, which blocks the complement alternative pathway (AP) and is in phase 2 development for treatment of PNH. In the absence of inhibitors, colony formation units (CFUs) per milliliter in blood from all 12 immunized subjects decreased from ∼4000 at time 0 to sterile cultures at 3 hours. In the presence of eculizumab, there was a >22-fold increase in geometric mean CFUs per milliliter (90 596 and 114 683 CFU/mL for serogroup B and C strains, respectively; P < .0001 compared with time 0). In the presence of ACH-4471, there was a >12-fold decrease (23 and 331 CFU/mL, respectively; P < .0001). The lack of meningococci killing by blood containing eculizumab resulted from inhibition of release of C5a, a C5 split product needed for upregulation of phagocytosis. The results provide an explanation for the large number of cases of meningococcal disease in immunized patients being treated with eculizumab and suggest that vaccination may provide better protection against meningococcal disease in patients treated with an AP-specific inhibitor. © 2017 by The American Society of Hematology.
Update on hemolytic uremic syndrome: Diagnostic and therapeutic recommendations
Salvadori, Maurizio; Bertoni, Elisabetta
2013-01-01
Hemolytic uremic syndrome (HUS) is a rare disease. In this work the authors review the recent findings on HUS, considering the different etiologic and pathogenetic classifications. New findings in genetics and, in particular, mutations of genes that encode the complement-regulatory proteins have improved our understanding of atypical HUS. Similarly, the complement proteins are clearly involved in all types of thrombotic microangiopathy: typical HUS, atypical HUS and thrombotic thrombocytopenic purpura (TTP). Furthermore, several secondary HUS appear to be related to abnormalities in complement genes in predisposed patients. The authors highlight the therapeutic aspects of this rare disease, examining both “traditional therapy” (including plasma therapy, kidney and kidney-liver transplantation) and “new therapies”. The latter include anti-Shiga-toxin antibodies and anti-C5 monoclonal antibody “eculizumab”. Eculizumab has been recently launched for the treatment of the atypical HUS, but it appears to be effective in the treatment of typical HUS and in TTP. Future therapies are in phases I and II. They include anti-C5 antibodies, which are more purified, less immunogenic and absorbed orally and, anti-C3 antibodies, which are more powerful, but potentially less safe. Additionally, infusions of recombinant complement-regulatory proteins are a potential future therapy. PMID:24255888
The protective effect of SCR(15-18) on cerebral ischemia-reperfusion injury.
Li, Shu; Xian, Jinhong; He, Li; Luo, Xue; Tan, Bing; Yang, Yongtao; Liu, Gaoke; Wang, Zhengqing
2011-10-01
Soluble complement receptor type 1 (sCR1), a potent inhibitor of complement activation, has been shown to protect brain cells against cerebral ischemic/reperfusion (CI/R) injury due to its decay-accelerating activity for C3/C5 convertase and co-factor activity for C3b/C4b degradation. However, the effect of short consensus repeats (SCRs) 15-18, one of active domains of sCR1 with high C3b/C4b degradability, has not been demonstrated. Here, we investigated the protective effect of recombinant SCR(15-18) protein in middle cerebral artery occlusion (MCAO)-induced focal CI/R injury. Recombinant SCR(15-18) protein was successfully expressed in Escherichia coli and refolded to its optimal bioactivity. Seventy-five Sprague-Dawley rats were randomly assigned into three groups: sham-operated group, CI/R group, and SCR(15-18)+CI/R group pretreated with 20 mg/kg SCR(15-18) protein. After 2 hours of MCAO and subsequent 24 hours of reperfusion, rats were evaluated for neurological deficits and cerebral infarction. Polymorphonuclear leukocyte accumulation, C3b deposition, and morphological changes in cerebral tissue were also estimated. SCR(15-18) pretreatment induced a 20% reduction of infarct size and an improvement of neurological function with 22·2% decrease of neurological deficit scores. Inhibition of cerebral neutrophils infiltration by SCR(15-18) was indicated from the reduction of myeloperoxidase activity in SCR(15-18)+CI/R rats. Decreased C3b deposition and improved morphological changes were also found in cerebral tissue of SCR(15-18)-treated rats. Our studies suggest a definitive moderately protective effect of SCR(15-18) against CI/R damage and provide preclinical experimental evidence supporting the possibility of using it as a small anti-complement therapeutic agent for CI/R injury therapy.
Macedo, Ana Catarina Lunz; Isaac, Lourdes
2016-01-01
The complement system plays an important role in the innate and acquired immune response against pathogens. It consists of more than 30 proteins found in soluble form or attached to cell membranes. Most complement proteins circulate in inactive forms and can be sequentially activated by the classical, alternative, or lectin pathways. Biological functions, such as opsonization, removal of apoptotic cells, adjuvant function, activation of B lymphocytes, degranulation of mast cells and basophils, and solubilization and clearance of immune complex and cell lysis, are dependent on complement activation. Although the activation of the complement system is important to avoid infections, it also can contribute to the inflammatory response triggered by immune complex deposition in tissues in autoimmune diseases. Paradoxically, the deficiency of early complement proteins from the classical pathway (CP) is strongly associated with development of systemic lupus erythematous (SLE) – mainly C1q deficiency (93%) and C4 deficiency (75%). The aim of this review is to focus on the deficiencies of early components of the CP (C1q, C1r, C1s, C4, and C2) proteins in SLE patients. PMID:26941740
Complement component C5a mediates hemorrhage-induced intestinal damage
Fleming, Sherry D.; Phillips, Lauren M.; Lambris, John D.; Tsokos, George C.
2008-01-01
Background Complement has been implicated in the pathogenesis of intestinal damage and inflammation in multiple animal models. Although the exact mechanism is unknown, inhibition of complement prevents hemodynamic alterations in hemorrhage. Materials/Methods C57Bl/6, complement 5 deficient (C5−/−) and sufficient (C5+/+) mice were subjected to 25% blood loss. In some cases, C57Bl/6 mice were treated with C5a receptor antagonist (C5aRa) post-hemorrhage. Intestinal injury, leukotriene B4, and myeloperoxidase production were assessed for each treatment group of mice. Results Mice subjected to significant blood loss without major trauma develop intestinal inflammation and tissue damage within two hours. We report here that complement 5 (C5) deficient mice are protected from intestinal tissue damage when subjected to hemorrhage (Injury score = 0.36 compared to wildtype hemorrhaged animal injury score = 2.89; p<0.05). We present evidence that C5a represents the effector molecule because C57Bl/6 mice treated with a C5a receptor antagonist displayed limited intestinal injury (Injury score = 0.88), leukotriene B4 (13.16 pg/mg tissue) and myeloperoxidase (115.6 pg/mg tissue) production compared to hemorrhaged C57Bl/6 mice (p<0.05). Conclusion Complement activation is important in the development of hemorrhage-induced tissue injury and C5a generation is critical for tissue inflammation and damage. Thus, therapeutics targeting C5a may be useful therapeutics for hemorrhage-associated injury. PMID:18639891
1977-01-12
A complement consumption assay was used to show that the anticomplementary activity of a cell wall preparation from F. polymorphum in guinea pig complement...tests with C-deficient guinea pig sera confirmed that F. polymorphum cell walls were capable of generating alternate complement pathway activity in guinea pig sera.
Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan
2016-08-12
Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan
2016-01-01
Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778
Honda-Ogawa, Mariko; Sumitomo, Tomoko; Mori, Yasushi; Hamd, Dalia Talat; Ogawa, Taiji; Yamaguchi, Masaya; Nakata, Masanobu; Kawabata, Shigetada
2017-03-10
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes , PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (Δ pepO ) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by Δ pepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with Δ pepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Strojan, Klemen; Leonardi, Adrijana; Bregar, Vladimir B; Križaj, Igor; Svete, Jurij; Pavlin, Mojca
2017-01-01
Protein corona of nanoparticles (NPs), which forms when these particles come in to contact with protein-containing fluids, is considered as an overlooked factor in nanomedicine. Through numerous studies it has been becoming increasingly evident that it importantly dictates the interaction of NPs with their surroundings. Several factors that determine the compositions of NPs protein corona have been identified in recent years, but one has remained largely ignored-the composition of media used for dispersion of NPs. Here, we determined the effect of dispersion media on the composition of protein corona of polyacrylic acid-coated cobalt ferrite NPs (PAA NPs) and silica NPs. Our results confirmed some of the basic premises such as NPs type-dependent specificity of the protein corona. But more importantly, we demonstrated the effect of the dispersion media on the protein corona composition. The differences between constituents of the media used for dispersion of NPs, such as divalent ions and macromolecules were responsible for the differences in protein corona composition formed in the presence of fetal bovine serum (FBS). Our results suggest that the protein corona composition is a complex function of the constituents present in the media used for dispersion of NPs. Regardless of the dispersion media and FBS concentration, majority of proteins from either PAA NPs or silica NPs coronas were involved in the process of transport and hemostasis. Interestingly, corona of silica NPs contained three complement system related proteins: complement factor H, complement C3 and complement C4 while PAA NPs bound only one immune system related protein, α-2-glycoprotein. Importantly, relative abundance of complement C3 protein in corona of silica NPs was increased when NPs were dispersed in NaCl, which further implies the relevance of dispersion media used to prepare NPs.
Strojan, Klemen; Leonardi, Adrijana; Bregar, Vladimir B.; Križaj, Igor; Svete, Jurij; Pavlin, Mojca
2017-01-01
Protein corona of nanoparticles (NPs), which forms when these particles come in to contact with protein-containing fluids, is considered as an overlooked factor in nanomedicine. Through numerous studies it has been becoming increasingly evident that it importantly dictates the interaction of NPs with their surroundings. Several factors that determine the compositions of NPs protein corona have been identified in recent years, but one has remained largely ignored—the composition of media used for dispersion of NPs. Here, we determined the effect of dispersion media on the composition of protein corona of polyacrylic acid-coated cobalt ferrite NPs (PAA NPs) and silica NPs. Our results confirmed some of the basic premises such as NPs type-dependent specificity of the protein corona. But more importantly, we demonstrated the effect of the dispersion media on the protein corona composition. The differences between constituents of the media used for dispersion of NPs, such as divalent ions and macromolecules were responsible for the differences in protein corona composition formed in the presence of fetal bovine serum (FBS). Our results suggest that the protein corona composition is a complex function of the constituents present in the media used for dispersion of NPs. Regardless of the dispersion media and FBS concentration, majority of proteins from either PAA NPs or silica NPs coronas were involved in the process of transport and hemostasis. Interestingly, corona of silica NPs contained three complement system related proteins: complement factor H, complement C3 and complement C4 while PAA NPs bound only one immune system related protein, α-2-glycoprotein. Importantly, relative abundance of complement C3 protein in corona of silica NPs was increased when NPs were dispersed in NaCl, which further implies the relevance of dispersion media used to prepare NPs. PMID:28052135