Science.gov

Sample records for complement lectin pathway

  1. Role of the lectin complement pathway in kidney transplantation.

    PubMed

    Farrar, Conrad A; Zhou, Wuding; Sacks, Steven H

    2016-10-01

    In the last 15 years two major advances in the role of complement in the kidney transplant have come about. The first is that ischaemia reperfusion injury and its profound effect on transplant outcome is dependent on the terminal product of complement activation, C5b-9. The second key observation relates to the function of the small biologically active fragments C3a and C5a released by complement activation in increasing antigen presentation and priming the T cell response that results in transplant rejection. In both cases local synthesis of C3 principally by the renal tubule cells plays an essential role that overshadows the role of the circulating pool of C3 generated largely by hepatocyte synthesis. More recent efforts have investigated the molecules expressed by renal tissue that can trigger complement activation. These have revealed a prominent effect of collectin-11 (CL-11), a soluble C-type lectin that is expressed in renal tissue and aligns with its major ligand L-fucose at sites of complement activation following ischaemic stress. Biochemical studies have shown that interaction between CL-11 and L-fucose results in complement activation by the lectin complement pathway, precisely targeting the innate immune response to the ischaemic tubule surface. Therapeutic approaches to reduce inflammatory and immune stimulation in ischaemic kidney have so far targeted C3 or its activation products and several are in clinical trials. The finding that lectin-fucose interaction is an important trigger of lectin pathway complement activation within the donor organ opens up further therapeutic targets where intervention could protect the donor kidney against complement. PMID:27286717

  2. The Lectin Pathway of Complement and Rheumatic Heart Disease

    PubMed Central

    Beltrame, Marcia Holsbach; Catarino, Sandra Jeremias; Goeldner, Isabela; Boldt, Angelica Beate Winter; de Messias-Reason, Iara José

    2014-01-01

    The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever. PMID:25654073

  3. Activation of the lectin pathway of complement in experimental human keratitis with Pseudomonas aeruginosa

    PubMed Central

    Osthoff, Michael; Brown, Karl D.; Kong, David C.M.; Daniell, Mark

    2014-01-01

    Purpose Pseudomonas aeruginosa (P. aeruginosa) microbial keratitis (MK) is a sight-threatening disease. Previous animal studies have identified an important contribution of the complement system to the clearance of P. aeruginosa infection of the cornea. Mannose-binding lectin (MBL), a pattern recognition receptor of the lectin pathway of complement, has been implicated in the host defense against P. aeruginosa. However, studies addressing the role of the lectin pathway in P. aeruginosa MK are lacking. Hence, we sought to determine the activity of the lectin pathway in human MK caused by P. aeruginosa. Methods Primary human corneal epithelial cells (HCECs) from cadaveric donors were exposed to two different P. aeruginosa strains. Gene expression of interleukin (IL)-6, IL-8, MBL, and other complement proteins was determined by reverse transcription-polymerase chain reaction (RT–PCR) and MBL synthesis by enzyme-linked immunosorbent assay and intracellular flow cytometry. Results MBL gene expression was not detected in unchallenged HCECs. Exposure of HCECs to P. aeruginosa resulted in rapid induction of the transcriptional expression of MBL, IL-6, and IL-8. In addition, expression of several complement proteins of the classical and lectin pathways, but not the alternative pathway, were upregulated after 5 h of challenge, including MBL-associated serine protease 1. However, MBL protein secretion was not detectable 18 h after challenge with P. aeruginosa. Conclusions MK due to P. aeruginosa triggers activation of MBL and the lectin pathway of complement. However, the physiologic relevance of this finding is unclear, as corresponding MBL oligomer production was not observed. PMID:24426774

  4. Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway.

    PubMed

    Reynolds, Simone L; Pike, Robert N; Mika, Angela; Blom, Anna M; Hofmann, Andreas; Wijeyewickrema, Lakshmi C; Kemp, Dave; Fischer, Katja

    2014-05-01

    Scabies is an infectious skin disease caused by the mite Sarcoptes scabiei and has been classified as one of the six most prevalent epidermal parasitic skin diseases infecting populations living in poverty by the World Health Organisation. The role of the complement system, a pivotal component of human innate immunity, as an important defence against invading pathogens has been well documented and many parasites have an arsenal of anti-complement defences. We previously reported on a family of scabies mite proteolytically inactive serine protease paralogues (SMIPP-Ss) thought to be implicated in host defence evasion. We have since shown that two family members, SMIPP-S D1 and I1 have the ability to bind the human complement components C1q, mannose binding lectin (MBL) and properdin and are capable of inhibiting all three human complement pathways. This investigation focused on inhibition of the lectin pathway of complement activation as it is likely to be the primary pathway affecting scabies mites. Activation of the lectin pathway relies on the activation of MBL, and as SMIPP-S D1 and I1 have previously been shown to bind MBL, the nature of this interaction was examined using binding and mutagenesis studies. SMIPP-S D1 bound MBL in complex with MBL-associated serine proteases (MASPs) and released the MASP-2 enzyme from the complex. SMIPP-S I1 was also able to bind MBL in complex with MASPs, but MASP-1 and MASP-2 remained in the complex. Despite these differences in mechanism, both molecules inhibited activation of complement components downstream of MBL. Mutagenesis studies revealed that both SMIPP-Ss used an alternative site of the molecule from the residual active site region to inhibit the lectin pathway. We propose that SMIPP-Ss are potent lectin pathway inhibitors and that this mechanism represents an important tool in the immune evasion repertoire of the parasitic mite and a potential target for therapeutics. PMID:24854034

  5. Structural Basis for the Function of Complement Component C4 within the Classical and Lectin Pathways of Complement.

    PubMed

    Mortensen, Sofia; Kidmose, Rune T; Petersen, Steen V; Szilágyi, Ágnes; Prohászka, Zoltan; Andersen, Gregers R

    2015-06-01

    Complement component C4 is a central protein in the classical and lectin pathways within the complement system. During activation of complement, its major fragment C4b becomes covalently attached to the surface of pathogens and altered self-tissue, where it acts as an opsonin marking the surface for removal. Moreover, C4b provides a platform for assembly of the proteolytically active convertases that mediate downstream complement activation by cleavage of C3 and C5. In this article, we present the crystal and solution structures of the 195-kDa C4b. Our results provide the molecular details of the rearrangement accompanying C4 cleavage and suggest intramolecular flexibility of C4b. The conformations of C4b and its paralogue C3b are shown to be remarkably conserved, suggesting that the convertases from the classical and alternative pathways are likely to share their overall architecture and mode of substrate recognition. We propose an overall molecular model for the classical pathway C5 convertase in complex with C5, suggesting that C3b increases the affinity for the substrate by inducing conformational changes in C4b rather than a direct interaction with C5. C4b-specific features revealed by our structural studies are probably involved in the assembly of the classical pathway C3/C5 convertases and C4b binding to regulators.

  6. Functional characterization of the lectin pathway of complement in human serum.

    PubMed

    Roos, Anja; Bouwman, Lee H; Munoz, Jeric; Zuiverloon, Tahlita; Faber-Krol, Maria C; Fallaux-van den Houten, Francien C; Klar-Mohamad, Ngaisah; Hack, C Erik; Tilanus, Marcel G; Daha, Mohamed R

    2003-01-01

    Mannan-binding lectin (MBL) is a major initiator of the lectin pathway (LP) of complement. Polymorphisms in exon 1 of the MBL gene are associated with impaired MBL function and infections. Functional assays to assess the activity of the classical pathway (CP) and the alternative pathway (AP) of complement in serum are broadly used in patient diagnostics. We have now developed a functional LP assay that enables the specific quantification of autologous MBL-dependent complement activation in human serum. Complement activation was assessed by ELISA using coated mannan to assess the LP and coated IgM to assess the CP. Normal human serum (NHS) contains IgG, IgA and IgM antibodies against mannan, as shown by ELISA. These antibodies are likely to induce CP activation. Using C1q-blocking and MBL-blocking mAb, it was confirmed that both the LP and the CP contribute to complement activation by mannan. In order to quantify LP activity without interference of the CP, LP activity was measured in serum in the presence of C1q-blocking Ab. Activation of serum on coated IgM via the CP resulted in a dose-dependent deposition of C1q, C4, C3, and C5b-9. This activation and subsequent complement deposition was completely inhibited by the C1q-blocking mAb 2204 and by polyclonal Fab anti-C1q Ab. Evaluation of the LP in the presence of mAb 2204 showed a strong dose-dependent deposition of C4, C3, and C5b-9 using serum from MBL-wildtype (AA) but not MBL-mutant donors (AB or BB genotype), indicating that complement activation under these conditions is MBL-dependent and C1q-independent. Donors with different MBL genotypes were identified using a newly developed oligonucleotide ligation assay (OLA) for detection of MBL exon 1 polymorphisms. We describe a novel functional assay that enables quantification of autologous complement activation via the LP in full human serum up to the formation of the membrane attack complex. This assay offers novel possibilities for patient diagnostics as well as

  7. TFPI inhibits lectin pathway of complement activation by direct interaction with MASP-2.

    PubMed

    Keizer, Mischa P; Pouw, Richard B; Kamp, Angela M; Patiwael, Sanne; Marsman, Gerben; Hart, Margreet H; Zeerleder, Sacha; Kuijpers, Taco W; Wouters, Diana

    2015-02-01

    The lectin pathway (LP) of complement has a protective function against invading pathogens. Recent studies have also shown that the LP plays an important role in ischemia/reperfusion (I/R)-injury. MBL-associated serine protease (MASP)-2 appears to be crucial in this process. The serpin C1-inhibitor is the major inhibitor of MASP-2. In addition, aprotinin, a Kunitz-type inhibitor, was shown to inhibit MASP-2 activity in vitro. In this study we investigated whether the Kunitz-type inhibitor tissue factor pathway inhibitor (TFPI) is also able to inhibit MASP-2. Ex vivo LP was induced and detected by C4-deposition on mannan-coated plates. The MASP-2 activity was measured in a fluid-phase chromogenic assay. rTFPI in the absence or presence of specific monoclonal antibodies was used to investigate which TFPI-domains contribute to MASP-2 inhibition. Here, we identify TFPI as a novel selective inhibitor of MASP-2, without affecting MASP-1 or the classical pathway proteases C1s and C1r. Kunitz-2 domain of TFPI is required for the inhibition of MASP-2. Considering the role of MASP-2 in complement-mediated I/R-injury, the inhibition of this protease by TFPI could be an interesting therapeutic approach to limit the tissue damage in conditions such as cerebral stroke, myocardial infarction or solid organ transplantation.

  8. Trypanosoma cruzi calreticulin inhibits the complement lectin pathway activation by direct interaction with L-Ficolin.

    PubMed

    Sosoniuk, Eduardo; Vallejos, Gerardo; Kenawy, Hany; Gaboriaud, Christine; Thielens, Nicole; Fujita, Teizo; Schwaeble, Wilhelm; Ferreira, Arturo; Valck, Carolina

    2014-07-01

    Trypanosoma cruzi, the agent of Chagas' disease, the sixth neglected tropical disease worldwide, infects 10-12 million people in Latin America. Differently from T. cruzi epimastigotes, trypomastigotes are complement-resistant and infective. CRPs, T-DAF, sialic acid and lipases explain at least part of this resistance. In vitro, T. cruzi calreticulin (TcCRT), a chaperone molecule that translocates from the ER to the parasite surface: (a) Inhibits the human classical complement activation, by interacting with C1, (b) As a consequence, an increase in infectivity is evident and, (c) It inhibits angiogenesis and tumor growth. We report here that TcCRT also binds to the L-Ficolin collagenous portion, thus inhibiting approximately between 35 and 64% of the human complement lectin pathway activation, initiated by L-Ficolin, a property not shared by H-Ficolin. While L-Ficolin binds to 60% of trypomastigotes and to 24% of epimastigotes, 50% of the former and 4% of the latter display TcCRT on their surfaces. Altogether, these data indicate that TcCRT is a parasite inhibitory receptor for Ficolins. The resulting evasive activities, together with the TcCRT capacity to inhibit C1, with a concomitant increase in infectivity, may represent T. cruzi strategies to inhibit important arms of the innate immune response.

  9. The Emerging Role of Complement Lectin Pathway in Trypanosomatids: Molecular Bases in Activation, Genetic Deficiencies, Susceptibility to Infection, and Complement System-Based Therapeutics

    PubMed Central

    Evans-Osses, Ingrid; de Messias-Reason, Iara; Ramirez, Marcel I.

    2013-01-01

    The innate immune system is evolutionary and ancient and is the pivotal line of the host defense system to protect against invading pathogens and abnormal self-derived components. Cellular and molecular components are involved in recognition and effector mechanisms for a successful innate immune response. The complement lectin pathway (CLP) was discovered in 1990. These new components at the complement world are very efficient. Mannan-binding lectin (MBL) and ficolin not only recognize many molecular patterns of pathogens rapidly to activate complement but also display several strategies to evade innate immunity. Many studies have shown a relation between the deficit of complement factors and susceptibility to infection. The recently discovered CLP was shown to be important in host defense against protozoan microbes. Although the recognition of pathogen-associated molecular patterns by MBL and Ficolins reveal efficient complement activations, an increase in deficiency of complement factors and diversity of parasite strategies of immune evasion demonstrate the unsuccessful effort to control the infection. In the present paper, we will discuss basic aspects of complement activation, the structure of the lectin pathway components, genetic deficiency of complement factors, and new therapeutic opportunities to target the complement system to control infection. PMID:23533355

  10. Salivary agglutinin is the major component in human saliva that modulates the lectin pathway of the complement system.

    PubMed

    Gunput, Sabrina Tg; Wouters, Diana; Nazmi, Kamran; Cukkemane, Nivedita; Brouwer, Mieke; Veerman, Enno Ci; Ligtenberg, Antoon Jm

    2016-05-01

    Saliva interacts with blood after mucosal damage or leakage of gingival crevicular fluid. Surface-adsorbed salivary agglutinin (SAG) activates the lectin pathway (LP) of the complement system via mannose-binding lectin, while SAG in solution inhibits complement activation. In the present study we investigated if, next to SAG, whole and glandular saliva itself and other salivary glycoproteins activate or inhibit the LP. Complement activation was measured by detecting C4 deposition on microtiter plates coated with saliva or purified proteins. Complement inhibition was measured after incubating serum with saliva or proteins in microtiter plates coated with mannan, an LP activator. Adsorbed whole, sublingual and submandibular saliva showed LP-dependent complement activation. Blood group secretors, but not non-secretors, activated the LP. Saliva of both secretors and non-secretors inhibited C4 deposition on mannan. After depletion of SAG, saliva no longer inhibited the LP. Other salivary proteins, including amylase, MUC5B and histatin 2, did not activate or inhibit the LP. Surface-adsorbed whole saliva and glandular saliva samples activate the LP of complement, depending on the presence of SAG and the secretor status of the donor. In solution, saliva inhibits the LP, depending on the presence of SAG, but independent of the secretor status. PMID:27048414

  11. Human L-ficolin, a recognition molecule of the lectin activation pathway of complement, activates complement by binding to pneumolysin, the major toxin of Streptococcus pneumoniae.

    PubMed

    Ali, Youssif M; Kenawy, Hany I; Muhammad, Adnan; Sim, Robert B; Andrew, Peter W; Schwaeble, Wilhelm J

    2013-01-01

    The complement system is an essential component of the immune response, providing a critical line of defense against different pathogens including S. pneumoniae. Complement is activated via three distinct pathways: the classical (CP), the alternative (AP) and the lectin pathway (LP). The role of Pneumolysin (PLY), a bacterial toxin released by S. pneumoniae, in triggering complement activation has been studied in vitro. Our results demonstrate that in both human and mouse sera complement was activated via the CP, initiated by direct binding of even non-specific IgM and IgG3 to PLY. Absence of CP activity in C1q(-/-) mouse serum completely abolished any C3 deposition. However, C1q depleted human serum strongly opsonized PLY through abundant deposition of C3 activation products, indicating that the LP may have a vital role in activating the human complement system on PLY. We identified that human L-ficolin is the critical LP recognition molecule that drives LP activation on PLY, while all of the murine LP recognition components fail to bind and activate complement on PLY. This work elucidates the detailed interactions between PLY and complement and shows for the first time a specific role of the LP in PLY-mediated complement activation in human serum.

  12. Serglycin inhibits the classical and lectin pathways of complement via its glycosaminoglycan chains: implications for multiple myeloma.

    PubMed

    Skliris, Antonis; Happonen, Kaisa E; Terpos, Evangelos; Labropoulou, Vassiliki; Børset, Magne; Heinegård, Dick; Blom, Anna M; Theocharis, Achilleas D

    2011-02-01

    Serglycin (SG) is a proteoglycan expressed by hematopoietic cells and is constitutively secreted by multiple myeloma (MM) cells. SG participates in the regulation of various inflammatory events. We found that SG secreted by human MM cell lines inhibits both the classical and lectin pathways of complement, without influencing alternative pathway activity. The inhibitory effect of SG is due to direct interactions with C1q and mannose-binding lectin (MBL). C1q-binding is mediated through the glycosaminoglycan moieties of SG, whereas MBL binds additionally to SG protein core. Interactions between SG and C1q as well as MBL are diminished in the presence of chondroitin sulfate type E. In addition, we localized the SG-binding site to the collagen-like stalk of C1q. Interactions between SG and C1q as well as MBL are ionic in character and only the interaction with MBL was found to be partially dependent on the presence of calcium. We found the serum levels of SG to be elevated in patients with MM compared to healthy controls. Moreover, we found that SG expressed from myeloma plasma cells protects these cells from complement activation induced by treatment with anti-thymocyte immunoglobulins. This might protect myeloma cells during immunotherapy and promote survival of malignant cells.

  13. Critical Role and Therapeutic Control of the Lectin Pathway of Complement Activation in an Abortion-Prone Mouse Mating.

    PubMed

    Petitbarat, Marie; Durigutto, Paolo; Macor, Paolo; Bulla, Roberta; Palmioli, Alessandro; Bernardi, Anna; De Simoni, Maria-Grazia; Ledee, Nathalie; Chaouat, Gerard; Tedesco, Francesco

    2015-12-15

    The abortion-prone mating combination CBA/J × DBA/2 has been recognized as a model of preeclampsia, and complement activation has been implicated in the high rate of pregnancy loss observed in CBA/J mice. We have analyzed the implantation sites collected from DBA/2-mated CBA/J mice for the deposition of the complement recognition molecules using CBA/J mated with BALB/c mice as a control group. MBL-A was observed in the implantation sites of CBA/J × DBA/2 combination in the absence of MBL-C and was undetectable in BALB/c-mated CBA/J mice. Conversely, C1q was present in both mating combinations. Searching for other complement components localized at the implantation sites of CBA/J × DBA/2, we found C4 and C3, but we failed to reveal C1r. These data suggest that complement is activated through the lectin pathway and proceeds to completion of the activation sequence as revealed by C9 deposition. MBL-A was detected as early as 3.5 d of pregnancy, and MBL-A deficiency prevented pregnancy loss in the abortion-prone mating combination. The contribution of the terminal complex to miscarriage was supported by the finding that pregnancy failure was largely inhibited by the administration of neutralizing Ab to C5. Treatment of DBA/2-mated CBA/J mice with Polyman2 that binds to MBL-A with high affinity proved to be highly effective in controlling the activation of the lectin pathway and in preventing fetal loss. PMID:26561549

  14. MASP-3 is the exclusive pro-factor D activator in resting blood: the lectin and the alternative complement pathways are fundamentally linked

    PubMed Central

    Dobó, József; Szakács, Dávid; Oroszlán, Gábor; Kortvely, Elod; Kiss, Bence; Boros, Eszter; Szász, Róbert; Závodszky, Péter; Gál, Péter; Pál, Gábor

    2016-01-01

    MASP-3 was discovered 15 years ago as the third mannan-binding lectin (MBL)-associated serine protease of the complement lectin pathway. Lacking any verified substrate its role remained ambiguous. MASP-3 was shown to compete with a key lectin pathway enzyme MASP-2 for MBL binding, and was therefore considered to be a negative complement regulator. Later, knock-out mice experiments suggested that MASP-1 and/or MASP-3 play important roles in complement pro-factor D (pro-FD) maturation. However, studies on a MASP-1/MASP-3-deficient human patient produced contradicting results. In normal resting blood unperturbed by ongoing coagulation or complement activation, factor D is present predominantly in its active form, suggesting that resting blood contains at least one pro-FD activating proteinase that is not a direct initiator of coagulation or complement activation. We have recently showed that all three MASPs can activate pro-FD in vitro. In resting blood, however, using our previously evolved MASP-1 and MASP-2 inhibitors we proved that neither MASP-1 nor MASP-2 activates pro-FD. Other plasma proteinases, particularly MASP-3, remained candidates for that function. For this study we evolved a specific MASP-3 inhibitor and unambiguously proved that activated MASP-3 is the exclusive pro-FD activator in resting blood, which demonstrates a fundamental link between the lectin and alternative pathways. PMID:27535802

  15. MASP-3 is the exclusive pro-factor D activator in resting blood: the lectin and the alternative complement pathways are fundamentally linked.

    PubMed

    Dobó, József; Szakács, Dávid; Oroszlán, Gábor; Kortvely, Elod; Kiss, Bence; Boros, Eszter; Szász, Róbert; Závodszky, Péter; Gál, Péter; Pál, Gábor

    2016-01-01

    MASP-3 was discovered 15 years ago as the third mannan-binding lectin (MBL)-associated serine protease of the complement lectin pathway. Lacking any verified substrate its role remained ambiguous. MASP-3 was shown to compete with a key lectin pathway enzyme MASP-2 for MBL binding, and was therefore considered to be a negative complement regulator. Later, knock-out mice experiments suggested that MASP-1 and/or MASP-3 play important roles in complement pro-factor D (pro-FD) maturation. However, studies on a MASP-1/MASP-3-deficient human patient produced contradicting results. In normal resting blood unperturbed by ongoing coagulation or complement activation, factor D is present predominantly in its active form, suggesting that resting blood contains at least one pro-FD activating proteinase that is not a direct initiator of coagulation or complement activation. We have recently showed that all three MASPs can activate pro-FD in vitro. In resting blood, however, using our previously evolved MASP-1 and MASP-2 inhibitors we proved that neither MASP-1 nor MASP-2 activates pro-FD. Other plasma proteinases, particularly MASP-3, remained candidates for that function. For this study we evolved a specific MASP-3 inhibitor and unambiguously proved that activated MASP-3 is the exclusive pro-FD activator in resting blood, which demonstrates a fundamental link between the lectin and alternative pathways.

  16. MASP-3 is the exclusive pro-factor D activator in resting blood: the lectin and the alternative complement pathways are fundamentally linked.

    PubMed

    Dobó, József; Szakács, Dávid; Oroszlán, Gábor; Kortvely, Elod; Kiss, Bence; Boros, Eszter; Szász, Róbert; Závodszky, Péter; Gál, Péter; Pál, Gábor

    2016-01-01

    MASP-3 was discovered 15 years ago as the third mannan-binding lectin (MBL)-associated serine protease of the complement lectin pathway. Lacking any verified substrate its role remained ambiguous. MASP-3 was shown to compete with a key lectin pathway enzyme MASP-2 for MBL binding, and was therefore considered to be a negative complement regulator. Later, knock-out mice experiments suggested that MASP-1 and/or MASP-3 play important roles in complement pro-factor D (pro-FD) maturation. However, studies on a MASP-1/MASP-3-deficient human patient produced contradicting results. In normal resting blood unperturbed by ongoing coagulation or complement activation, factor D is present predominantly in its active form, suggesting that resting blood contains at least one pro-FD activating proteinase that is not a direct initiator of coagulation or complement activation. We have recently showed that all three MASPs can activate pro-FD in vitro. In resting blood, however, using our previously evolved MASP-1 and MASP-2 inhibitors we proved that neither MASP-1 nor MASP-2 activates pro-FD. Other plasma proteinases, particularly MASP-3, remained candidates for that function. For this study we evolved a specific MASP-3 inhibitor and unambiguously proved that activated MASP-3 is the exclusive pro-FD activator in resting blood, which demonstrates a fundamental link between the lectin and alternative pathways. PMID:27535802

  17. Genetically engineered fusion of MAP-1 and factor H domains 1-5 generates a potent dual upstream inhibitor of both the lectin and alternative complement pathways.

    PubMed

    Nordmaj, Mie Anemone; Munthe-Fog, Lea; Hein, Estrid; Skjoedt, Mikkel-Ole; Garred, Peter

    2015-12-01

    Inhibition of the complement cascade has emerged as an option for treatment of a range of diseases. Mannose-binding lectin/ficolin/collectin-associated protein (MAP-1) is a pattern recognition molecule (PRM)-associated inhibitor of the lectin pathway. The central regulator of the alternative pathway (AP) is complement factor H (FH). Our aim was to design a dual upstream inhibitor of both human lectin and APs by fusing MAP-1 with a part of FH. There were 2 different recombinant chimeric proteins comprising full-length human MAP-1 and the first 5 N-terminal domains of human FH designed. The FH domains were orientated either in the N- or C-terminal part of MAP-1. The complement inhibition potential in human serum was assessed. Both chimeric constructs displayed the characteristics of the native molecules and bound to the PRMs with an EC50 of ∼ 2 nM. However, when added to serum diluted 1:4 in a solid-phase functional assay, only the first 5 N-terminal domains of complement FH fused to the C-terminal part of full-length MAP-1 chimeric construct were able to combine inhibition of lectin and AP activation with an half maximal inhibitory concentration of ∼ 100 and 20 nM, respectively. No effect was seen on the classical pathway. Fusion of MAP-1 with FH domains represents a novel therapeutic approach for selective targeting upstream and central complement activation at sites of inflammation.

  18. Simultaneous Complement Response via Lectin Pathway in Retina and Optic Nerve in an Experimental Autoimmune Glaucoma Model.

    PubMed

    Reinehr, Sabrina; Reinhard, Jacqueline; Gandej, Marcel; Kuehn, Sandra; Noristani, Rozina; Faissner, Andreas; Dick, H Burkhard; Joachim, Stephanie C

    2016-01-01

    Glaucoma is a multifactorial disease and especially mechanisms occurring independently from an elevated intraocular pressure (IOP) are still unknown. Likely, the immune system contributes to the glaucoma pathogenesis. Previously, IgG antibody depositions and retinal ganglion cell (RGC) loss were found in an IOP-independent autoimmune glaucoma model. Therefore, we investigated the possible participation of the complement system in this model. Here, rats were immunized with bovine optic nerve homogenate antigen (ONA), while controls (Co) received sodium chloride (n = 5-6/group). After 14 days, RGC density was quantified on flatmounts. No changes in the number of RGCs could be observed at this point in time. Longitudinal optic nerve sections were stained against the myelin basic protein (MBP). We could note few signs of degeneration processes. In order to detect distinct complement components, retinas and optic nerves were labeled with complement markers at 3, 7, 14, and 28 days and analyzed. Significantly more C3 and MAC depositions were found in retinas and optic nerves of the ONA group. These were already present at day 7, before RGC loss and demyelination occurred. Additionally, an upregulation of C3 protein was noted via Western Blot at this time. After 14 days, quantitative real-time PCR revealed significantly more C3 mRNA in the ONA retinas. An upregulation of the lectin pathway-associated mannose-serine-protease-2 (MASP2) was observed in the retinas as well as in the optic nerves of the ONA group after 7 days. Significantly more MASP2 in retinas could also be observed via Western Blot analyses at this point in time. No effect was noted in regard to C1q. Therefore, we assume that the immunization led to an activation of the complement system via the lectin pathway in retinas and optic nerves at an early stage in this glaucoma model. This activation seems to be an early response, which then triggers degeneration. These findings can help to develop novel therapy

  19. Inhibition of the classical and lectin pathway of the complement system by recombinant LAIR-2.

    PubMed

    Olde Nordkamp, Marloes J M; Boross, Peter; Yildiz, Cafer; Jansen, J H Marco; Leusen, Jeanette H W; Wouters, Diana; Urbanus, Rolf T; Hack, C Erik; Meyaard, Linde

    2014-01-01

    Activation of complement may cause severe tissue damage in antibody-mediated allograft rejection and other antibody-mediated clinical conditions; therefore, novel potent complement inhibitors are needed. Previously, we described binding of the inhibitory receptor LAIR-1 and its soluble family member LAIR-2 to collagen. Here, we investigated binding of LAIR-1 and LAIR-2 to the complement proteins C1q and MBL, which both have collagen-like domains, and evaluated the effect of this binding on complement function. We demonstrate specific binding of recombinant LAIR proteins to both C1q and MBL. Surface plasmon resonance experiments showed that LAIR-2-Fc protein bound C1q and MBL with the highest affinity compared to LAIR-2-HIS. We, therefore, hypothesized that LAIR-2-Fc is a potent complement inhibitor. Indeed, LAIR-2-Fc inhibited C4 fixation to IgG or mannan, reduced activation of C4 by aggregated IgG in plasma and inhibited iC3b deposition on cells. Finally, LAIR-2-Fc inhibited complement-mediated lysis of cells sensitized with anti-HLA antibodies in an ex vivo model for antibody-mediated transplant rejection. Thus, LAIR-2-Fc is an effective novel complement inhibitor for the treatment and prevention of antibody-mediated allograft rejection and antibody-mediated clinical conditions.

  20. The Group B Streptococcus–Secreted Protein CIP Interacts with C4, Preventing C3b Deposition via the Lectin and Classical Complement Pathways

    PubMed Central

    Pietrocola, Giampiero; Rindi, Simonetta; Rosini, Roberto; Buccato, Scilla

    2016-01-01

    The group B Streptococcus (GBS) is a leading cause of neonatal invasive disease. GBS bacteria are surrounded by a thick capsular polysaccharide that is a potent inhibitor of complement deposition via the alternative pathway. Several of its surface molecules can however activate the classical and lectin complement pathways, rendering this species still vulnerable to phagocytic killing. In this study we have identified a novel secreted protein named complement interfering protein (CIP) that downregulates complement activation via the classical and lectin pathways, but not the alternative pathway. The CIP protein showed high affinity toward C4b and inhibited its interaction with C2, presumably preventing the formation of the C4bC2a convertase. Addition of recombinant CIP to GBS cip-negative bacteria resulted in decreased deposition of C3b on their surface and in diminished phagocytic killing in a whole-blood assay. Our data reveal a novel strategy exploited by GBS to counteract innate immunity and could be valuable for the development of anti-infective agents against this important pathogen. PMID:26608922

  1. Complement Activation by Giardia duodenalis Parasites through the Lectin Pathway Contributes to Mast Cell Responses and Parasite Control.

    PubMed

    Li, Erqiu; Tako, Ernest A; Singer, Steven M

    2016-04-01

    Infection with Giardia duodenalis is one of the most common causes of diarrheal disease in the world. While numerous studies have identified important contributions of adaptive immune responses to parasite control, much less work has examined innate immunity and its connections to the adaptive response during this infection. We explored the role of complement in immunity to Giardia using mice deficient in mannose-binding lectin (Mbl2) or complement factor 3a receptor (C3aR). Both strains exhibited delayed clearance of parasites and a reduced ability to recruit mast cells in the intestinal submucosa. C3aR-deficient mice had normal production of antiparasite IgA, butex vivo T cell recall responses were impaired. These data suggest that complement is a key factor in the innate recognition of Giardia and that recruitment of mast cells and activation of T cell immunity through C3a are important for parasite control.

  2. Activation of the lectin pathway of complement by cardiopulmonary bypass contributes to the development of systemic inflammatory response syndrome after paediatric cardiac surgery.

    PubMed

    Pągowska-Klimek, I; Świerzko, A S; Michalski, M; Głowacka, E; Szala-Poździej, A; Sokołowska, A; Moll, M; Krajewski, W R; Romak, J; Cedzyński, M

    2016-05-01

    The systemic inflammatory response is a challenge in the management of paediatric patients undergoing cardiac surgery. Although multi-factorial, a contribution by the lectin pathway of complement activation has been postulated. We therefore investigated the changes in serum levels of mannose binding lectin (MBL) and activities of MBL-MBL-associated serine protease (MASP)-1 and MBL-MASP-2 complexes immediately before and during surgery, throughout the first postoperative day and at discharge from the hospital. These changes were analysed in relation to postoperative complications. Blood samples were obtained from 185 children with congenital heart disease undergoing surgical correction with the use of cardiopulmonary bypass: preoperatively (MBL-1), 15 min after initiation of cardiopulmonary bypass (CPB) (MBL-E), 30 min (MBL-2), 4 h (MBL-3), 12 h (MBL-4) and 24 h (MBL-5) post-CPB and at discharge from hospital (MBL-K). Alterations in serum MBL levels were calculated as a ratio of its serum level at subsequent time-points (MBL-2, -3, -4, -5) to the preoperative (MBL-1) value. Decreases in MBL and MBL-MASP complexes were observed in all samples, correlating with a decrease in C4 and increase in C4a, confirming activation of the lectin pathway. Changes in MBL levels between children with an uncomplicated postoperative course and those suffering from infection or low cardiac output syndrome did not differ significantly, but significant differences were observed between the SIRS and non-SIRS groups. Paediatric cardiac surgery with the use of cardiopulmonary bypass activates the complement system via the lectin pathway and the latter contributes to the development of the post-bypass systemic inflammatory response. PMID:26703090

  3. Heparin-coated cardiopulmonary bypass circuits selectively deplete the pattern recognition molecule ficolin-2 of the lectin complement pathway in vivo.

    PubMed

    Hein, E; Munthe-Fog, L; Thiara, A S; Fiane, A E; Mollnes, T E; Garred, P

    2015-02-01

    The complement system can be activated via the lectin pathway by the recognition molecules mannose-binding lectin (MBL) and the ficolins. Ficolin-2 exhibits binding against a broad range of ligands, including biomaterials in vitro, and low ficolin-2 levels are associated with increased risk of infections. Thus, we investigated the biocompatibility of the recognition molecules of the lectin pathway in two different types of cardiopulmonary bypass circuits. Bloods were drawn at five time-points before, during and postoperatively from 30 patients undergoing elective cardiac surgery. Patients were randomized into two groups using different coatings of cardiopulmonary bypass circuits, Phisio® (phosphorylcholine polymer coating) and Bioline® (albumin-heparin coating). Concentrations of MBL, ficolin-1, -2 and -3 and soluble C3a and terminal complement complex (TCC) in plasma samples were measured. Ficolin-3-mediated complement activation potential was evaluated with C4, C3 and TCC as output. There was no significant difference between the two circuit materials regarding MBL, ficolin-1 and -3. In the Bioline® group the ficolin-2 levels decreased significantly after initiation of surgery (P < 0.0001) and remained reduced throughout the sampling period. This was not seen for Phisio®-coated circuits. Ficolin-3-mediated complement activation potential was reduced significantly in both groups after start of operation (P < 0.0001), whereas soluble C3a and TCC in the samples were increased (P < 0.0001). Ficolin-2 was depleted from plasma during cardiac surgery when using heparin-coated bypass circuits and did not reach baseline level 24 h postoperation. These findings may have implications for the postoperative susceptibility to infections in patients undergoing extracorporeal circulation procedures.

  4. Stringent Regulation of Complement Lectin Pathway C3/C5 Convertase By C4b-Binding Protein (C4bp)

    PubMed Central

    Rawal, Nenoo; Rajagopalan, Rema; Salvi, Veena P.

    2009-01-01

    The complement lectin pathway, an essential component of the innate immune system, is geared for rapid recognition of infections as each C4b deposited via this pathway is capable of forming a C3/C5 convertase. In the present study, role of C4b-binding protein (C4BP) in regulating the lectin pathway C3/C5 convertase assembled on zymosan and sheep erythrocytes coated with mannan (EMan) was examined. While the C4BP concentration for inhibiting 50% (IC50) formation of surface-bound C3 convertase on the two surfaces was similar to that obtained for the soluble C3 convertase (1.05 nM), ∼3- and 41-fold more was required to inhibit assembly of the C5 convertase on zymosan (2.81 nM) and EMan (42.66 nM). No difference in binding interactions between C4BP and surface-bound C4b alone or in complex with C3b was observed. Increasing the C4b density on zymosan (14,000-431,000 C4b/Zym) increased the number of C4b bound per C4BP from 2.87 to 8.23 indicating that at high C4b density all seven α-chains of C4BP are engaged in C4b-binding. In contrast, the number of C4b bound per C4BP remained constant (3.79 ± 0.60) when the C4b density on EMan was increased. The data also show that C4BP regulates assembly and decay of the lectin pathway C3/C5 convertase more stringently than the classical pathway C3/C5 convertase because of a ∼7 to 13-fold greater affinity for C4b deposited via the lectin pathway than the classical pathway. C4BP thus regulates efficiently the four times greater potential of the lectin pathway than the classical pathway in generating the C3/C5 convertase and hence production of pro-inflammatory products, which are required to fight infections but occasionally cause pathological inflammatory reactions. PMID:19660812

  5. Polymorphisms in the lectin pathway of complement activation influence the incidence of acute rejection and graft outcome after kidney transplantation.

    PubMed

    Golshayan, Déla; Wójtowicz, Agnieszka; Bibert, Stéphanie; Pyndiah, Nitisha; Manuel, Oriol; Binet, Isabelle; Buhler, Leo H; Huynh-Do, Uyen; Mueller, Thomas; Steiger, Jürg; Pascual, Manuel; Meylan, Pascal; Bochud, Pierre-Yves

    2016-04-01

    There are conflicting data on the role of the lectin pathway of complement activation and its recognition molecules in acute rejection and outcome after transplantation. To help resolve this we analyzed polymorphisms and serum levels of lectin pathway components in 710 consecutive kidney transplant recipients enrolled in the nationwide Swiss Transplant Cohort Study, together with all biopsy-proven rejection episodes and 1-year graft and patient survival. Functional mannose-binding lectin (MBL) levels were determined in serum samples, and previously described MBL2, ficolin 2, and MBL-associated serine protease 2 polymorphisms were genotyped. Low MBL serum levels and deficient MBL2 diplotypes were associated with a higher incidence of acute cellular rejection during the first year, in particular in recipients of deceased-donor kidneys. This association remained significant (hazard ratio 1.75, 95% confidence interval 1.18-2.60) in a Cox regression model after adjustment for relevant covariates. In contrast, there was no significant association with rates of antibody-mediated rejection, patient death, early graft dysfunction or loss. Thus, results in a prospective multicenter contemporary cohort suggest that MBL2 polymorphisms result in low MBL serum levels and are associated with acute cellular rejection after kidney transplantation. Since MBL deficiency is a relatively frequent trait in the normal population, our findings may lead to individual risk stratification and customized immunosuppression.

  6. Anti-C1q autoantibodies from systemic lupus erythematosus patients activate the complement system via both the classical and lectin pathways.

    PubMed

    Thanei, Sophia; Vanhecke, Dominique; Trendelenburg, Marten

    2015-10-01

    Autoantibodies against complement C1q (anti-C1q) strongly correlate with the occurrence of lupus nephritis and hypocomplementemia in systemic lupus erythematosus (SLE). Although a direct pathogenic role of anti-C1q has been suggested, the assumed complement-activating capacity remains to be elucidated. Using an ELISA-based assay, we found that anti-C1q activate the classical (CP) and lectin pathways (LP) depending on the anti-C1q immunoglobulin-class repertoire present in the patient's serum. IgG anti-C1q resulted in the activation of the CP as reflected by C4b deposition in the presence of purified C1 and C4 in a dose-dependent manner. The extent of C4b deposition correlated with anti-C1q levels in SLE patients but not in healthy controls. Our data indicate that SLE patient-derived anti-C1q can activate the CP and the LP but not the alternative pathway of complement. These findings are of importance for the understanding of the role of anti-C1q in SLE suggesting a direct link to hypocomplementemia.

  7. H-ficolin binds Aspergillus fumigatus leading to activation of the lectin complement pathway and modulation of lung epithelial immune responses.

    PubMed

    Bidula, Stefan; Sexton, Darren W; Yates, Matthew; Abdolrasouli, Alireza; Shah, Anand; Wallis, Russell; Reed, Anna; Armstrong-James, Darius; Schelenz, Silke

    2015-10-01

    Aspergillus fumigatus is an opportunistic fungal pathogen that typically infects the lungs of immunocompromised patients leading to a high mortality. H-Ficolin, an innate immune opsonin, is produced by type II alveolar epithelial cells and could participate in lung defences against infections. Here, we used the human type II alveolar epithelial cell line, A549, to determine the involvement of H-ficolin in fungal defence. Additionally, we investigated the presence of H-ficolin in bronchoalveolar lavage fluid from transplant patients during pneumonia. H-Ficolin exhibited demonstrable binding to A. fumigatus conidia via l-fucose, d-mannose and N-acetylglucosamine residues in a calcium- and pH-dependent manner. Moreover, recognition led to lectin complement pathway activation and enhanced fungal association with A549 cells. Following recognition, H-ficolin opsonization manifested an increase in interleukin-8 production from A549 cells, which involved activation of the intracellular signalling pathways mitogen-activated protein kinase MAPK kinase 1/2, p38 MAPK and c-Jun N-terminal kinase. Finally, H-ficolin concentrations were significantly higher in bronchoalveolar lavage fluid of patients with lung infections compared with control subjects (n = 16; P = 0·00726). Receiver operating characteristics curve analysis further highlighted the potential of H-ficolin as a diagnostic marker for lung infection (area under the curve = 0·77; P < 0·0001). Hence, H-ficolin participates in A. fumigatus defence through the activation of the lectin complement pathway, enhanced fungus-host interactions and modulated immune responses.

  8. The extracellular adherence protein from Staphylococcus aureus inhibits the classical and lectin pathways of complement by blocking formation of the C3 proconvertase.

    PubMed

    Woehl, Jordan L; Stapels, Daphne A C; Garcia, Brandon L; Ramyar, Kasra X; Keightley, Andrew; Ruyken, Maartje; Syriga, Maria; Sfyroera, Georgia; Weber, Alexander B; Zolkiewski, Michal; Ricklin, Daniel; Lambris, John D; Rooijakkers, Suzan H M; Geisbrecht, Brian V

    2014-12-15

    The pathogenic bacterium Staphylococcus aureus actively evades many aspects of human innate immunity by expressing a series of small inhibitory proteins. A number of these proteins inhibit the complement system, which labels bacteria for phagocytosis and generates inflammatory chemoattractants. Although the majority of staphylococcal complement inhibitors act on the alternative pathway to block the amplification loop, only a few proteins act on the initial recognition cascades that constitute the classical pathway (CP) and lectin pathway (LP). We screened a collection of recombinant, secreted staphylococcal proteins to determine whether S. aureus produces other molecules that inhibit the CP and/or LP. Using this approach, we identified the extracellular adherence protein (Eap) as a potent, specific inhibitor of both the CP and LP. We found that Eap blocked CP/LP-dependent activation of C3, but not C4, and that Eap likewise inhibited deposition of C3b on the surface of S. aureus cells. In turn, this significantly diminished the extent of S. aureus opsonophagocytosis and killing by neutrophils. This combination of functional properties suggested that Eap acts specifically at the level of the CP/LP C3 convertase (C4b2a). Indeed, we demonstrated a direct, nanomolar-affinity interaction of Eap with C4b. Eap binding to C4b inhibited binding of both full-length C2 and its C2b fragment, which indicated that Eap disrupts formation of the CP/LP C3 proconvertase (C4b2). As a whole, our results demonstrate that S. aureus inhibits two initiation routes of complement by expression of the Eap protein, and thereby define a novel mechanism of immune evasion.

  9. Complement-mediated neutralization of dengue virus requires mannose-binding lectin.

    PubMed

    Avirutnan, Panisadee; Hauhart, Richard E; Marovich, Mary A; Garred, Peter; Atkinson, John P; Diamond, Michael S

    2011-01-01

    Mannose-binding lectin (MBL) is a key soluble pathogen recognition protein of the innate immune system that binds specific mannose-containing glycans on the surfaces of microbial agents and initiates complement activation via the lectin pathway. Prior studies showed that MBL-dependent activation of the complement cascade neutralized insect cell-derived West Nile virus (WNV) in cell culture and restricted pathogenesis in mice. Here, we investigated the antiviral activity of MBL in infection by dengue virus (DENV), a related flavivirus. Using a panel of naïve sera from mouse strains deficient in different complement components, we showed that inhibition of infection by insect cell- and mammalian cell-derived DENV was primarily dependent on the lectin pathway. Human MBL also bound to DENV and neutralized infection of all four DENV serotypes through complement activation-dependent and -independent pathways. Experiments with human serum from naïve individuals with inherent variation in the levels of MBL in blood showed a direct correlation between the concentration of MBL and neutralization of DENV; samples with high levels of MBL in blood neutralized DENV more efficiently than those with lower levels. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV pathogenesis. IMPORTANCE Dengue virus (DENV) is a mosquito-transmitted virus that causes a spectrum of clinical disease in humans ranging from subclinical infection to dengue hemorrhagic fever and dengue shock syndrome. Four serotypes of DENV exist, and severe illness is usually associated with secondary infection by a different serotype. Here, we show that mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation, neutralized infection of all four DENV serotypes through complement activation-dependent and -independent pathways. Moreover, we observed a direct correlation with the concentration of MBL in

  10. Effect of Artocarpus integer lectin on functional activity of guinea-pig complement.

    PubMed

    Hashim, O H; Gendeh, G S; Cheong, C N; Jaafar, M I

    1994-03-01

    The effect of Artocarpus integer lectin (lectin C) on the functional activity of guinea-pig complement was investigated. Purified and crude extract of lectin C from six cultivars of Artocarpus integer seeds were found to consume complement and thus decreased the complement-induced haemolytic activity of sensitized sheep erythrocytes. The change in the complement-mediated haemolytic activity was significantly decreased when incubation of the lectins was performed in the presence of melibiose. The reversal effect of the carbohydrate, which is a potent inhibitor of the lectin's binding to O-linked oligosaccharides of glycoprotein, demonstrate involvement of the lectins interaction with O-glycans of glycoproteins in the consumption of guinea-pig complement.

  11. Novel Evasion Mechanisms of the Classical Complement Pathway.

    PubMed

    Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V

    2016-09-15

    Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules. PMID:27591336

  12. Novel Evasion Mechanisms of the Classical Complement Pathway.

    PubMed

    Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V

    2016-09-15

    Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules.

  13. Mannose-binding lectin: targeting the microbial world for complement attack and opsonophagocytosis.

    PubMed

    Jack, D L; Klein, N J; Turner, M W

    2001-04-01

    Mannose-binding lectin (MBL) is an important constituent of the innate immune system. This protein binds through multiple lectin domains to the repeating sugar arrays that decorate many microbial surfaces, and is then able to activate the complement system through a specific protease called MBL-associated protease-2. We have used flow cytometry to study both the binding of MBL to microorganisms and the subsequent activation of complement. For selected Gram-negative organisms, such as Salmonella and Neisseria, we have examined the relative roles of lipopolysaccharide (LPS) structure and capsule in determining binding and conclude that the LPS is of major importance. Our results from studies with several clinically relevant organisms also show that MBL binding detected by flow cytometry leads to measurable activation of purified C4, suggesting that the bound lectin is capable of initiating opsonophagocytosis and/or bacterial lysis. There is an increasing literature suggesting that MBL deficiency, which mainly results from three relatively common single point mutations in exon 1 of the gene, predisposes both to infection by extracellular pathogens and to autoimmune disease. In addition, the protein also modulates disease severity, at least in part through a complex, dose-dependent influence on cytokine production. The mechanisms and signalling pathways involved in such processes remain to be elucidated. PMID:11414367

  14. IgG4 anti-phospholipase A2 receptor might activate lectin and alternative complement pathway meanwhile in idiopathic membranous nephropathy: an inspiration from a cross-sectional study.

    PubMed

    Yang, Yang; Wang, Chao; Jin, Liping; He, Fagui; Li, Changchun; Gao, Qingman; Chen, Guanglei; He, Zhijun; Song, Minghui; Zhou, Zhuliang; Shan, Fujun; Qi, Ka; Ma, Lu

    2016-08-01

    The deposition of IgG4 of antibodies against phospholipase A2 receptor (anti-PLA2R) is predominating in the kidneys of patients with idiopathic membranous nephropathy, while its predictive value has not been determined. It was a retrospective study, and 438 patients were included. Serum samples of two time points [before intervention (baseline) and after 1.5-year treatment (endpoint)] were detected for total and IgG4 anti-PLA2R. IgG4 <0.26 RU/mL or total <20 RU/mL was considered as seronegativity. Bi-positivity/bi-negativity was defined when patients'antibodies were found positive or negative both at the baseline and endpoint. Completed remission (CR) was a major clinical outcome. A series of complement ingredients (MASP-1/2, MBL, C3a, C5a, Factor B, Ba, Bb and C5b-9) were measured in the patients of bi-positivity and bi-negativity: (1) meta-analysis based on six papers conducted seropositivity of anti-PLA2R was a useful predictor for achieving CR, but there was a high heterogeneity; (2) there was significant correlation between the baseline and decrease in IgG4 subclass and the achievement of CR; (3) bi-negativity of IgG4 has a high accuracy of predicting CR compared with total antibodies; (4) in patients of bi-positivity, those achieving CR showed lower MASP-1/2, MBL, C3a, C5a, FB, Ba and Bb than patients failing to achieve CR; (5) the titers of endpoint and decrease in Ba and Bb were associated with improvement of 24 h-UP in those of bi-positivity; and (6) the decrease in Ba was a significant factor for achieving CR in those of bi-positivity. Continuous IgG4 negativity was a useful tool to predict the achievement of CR; however, in patients of continuous IgG4 positivity, those with lower activation of lectin and alternative pathways would still more probably achieve CR.

  15. A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent.

    PubMed

    Schuijt, Tim J; Coumou, Jeroen; Narasimhan, Sukanya; Dai, Jianfeng; Deponte, Kathleen; Wouters, Diana; Brouwer, Mieke; Oei, Anneke; Roelofs, Joris J T H; van Dam, Alje P; van der Poll, Tom; Van't Veer, Cornelis; Hovius, Joppe W; Fikrig, Erol

    2011-08-18

    The Lyme disease agent Borrelia burgdorferi is primarily transmitted to vertebrates by Ixodes ticks. The classical and alternative complement pathways are important in Borrelia eradication by the vertebrate host. We recently identified a tick salivary protein, designated P8, which reduced complement-mediated killing of Borrelia. We now discover that P8 interferes with the human lectin complement cascade, resulting in impaired neutrophil phagocytosis and chemotaxis and diminished Borrelia lysis. Therefore, P8 was renamed the tick salivary lectin pathway inhibitor (TSLPI). TSLPI-silenced ticks, or ticks exposed to TSLPI-immune mice, were hampered in Borrelia transmission. Moreover, Borrelia acquisition and persistence in tick midguts was impaired in ticks feeding on TSLPI-immunized, B. burgdorferi-infected mice. Together, our findings suggest an essential role for the lectin complement cascade in Borrelia eradication and demonstrate how a vector-borne pathogen co-opts a vector protein to facilitate early mammalian infection and vector colonization.

  16. Oligomerization of Mannan-binding Lectin Dictates Binding Properties and Complement Activation.

    PubMed

    Kjaer, T R; Jensen, L; Hansen, A; Dani, R; Jensenius, J C; Dobó, J; Gál, P; Thiel, S

    2016-07-01

    The complement system is a part of the innate immune system and is involved in recognition and clearance of pathogens and altered-self structures. The lectin pathway of the complement system is initiated when soluble pattern recognition molecules (PRMs) with collagen-like regions bind to foreign or altered self-surfaces. Associated with the collagen-like stems of these PRMs are three mannan-binding lectin (MBL)-associated serine proteases (MASPs) and two MBL-associated proteins (MAps). The most studied of the PRMs, MBL, is present in serum mainly as trimeric and tetrameric oligomers of the structural subunit. We hypothesized that oligomerization of MBL may influence both the potential to bind to micro organisms and the interaction with the MASPs and MAps, thus influencing the ability to initiate complement activation. When testing binding at 37 °C, we found higher binding of tetrameric MBL to Staphylococcus aureus (S. aureus) than trimeric and dimeric MBL. In serum, we found that tetrameric MBL was the main oligomeric form present in complexes with the MASPs and MAp44. Such preference was confirmed using purified forms of recombinant MBL (rMBL) oligomers, where tetrameric rMBL interacted stronger with all of the MASPs and MAp44, compared to trimeric MBL. As a direct consequence of the weaker interaction with the MASPs, we found that trimeric rMBL was inferior to tetrameric rMBL in activating the complement system. Our data suggest that the oligomeric state of MBL is crucial both for the binding properties and the effector function of MBL.

  17. Increased Autoreactivity of the Complement-Activating Molecule Mannan-Binding Lectin in a Type 1 Diabetes Model

    PubMed Central

    Østergaard, Jakob Appel; Ruseva, Marieta Milkova; Malik, Talat Habib; Hoffmann-Petersen, Ingeborg Torp; Pickering, Matthew Caleb; Thiel, Steffen; Hansen, Troels Krarup

    2016-01-01

    Background. Diabetic kidney disease is the leading cause of end-stage renal failure despite intensive treatment of modifiable risk factors. Identification of new drug targets is therefore of paramount importance. The complement system is emerging as a potential new target. The lectin pathway of the complement system, initiated by the carbohydrate-recognition molecule mannan-binding lectin (MBL), is linked to poor kidney prognosis in diabetes. We hypothesized that MBL activates complement upon binding within the diabetic glomerulus. Methods. We investigated this by comparing complement deposition and activation in kidneys from streptozotocin-induced diabetic mice and healthy control mice. Results. After 20 weeks of diabetes, glomerular deposition of MBL was significantly increased. Diabetic animals had 2.0-fold higher (95% CI 1.6–2.5) immunofluorescence intensity from anti-MBL antibodies compared with controls (P < 0.001). Diabetes and control groups did not differ in glomerular immunofluorescence intensity obtained by antibodies against complement factors C4, C3, and C9. However, the circulating complement activation product C3a was increased in diabetes as compared to control mice (P = 0.04). Conclusion. 20 weeks of diabetes increased MBL autoreactivity in the kidney and circulating C3a concentration. Together with previous findings, these results indicate direct effects of MBL within the kidney in diabetes. PMID:26977416

  18. The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation.

    PubMed

    Harboe, M; Ulvund, G; Vien, L; Fung, M; Mollnes, T E

    2004-12-01

    Complement activation with formation of biologically potent mediators like C5a and the terminal C5b-9 complex (TCC) contributes essentially to development of inflammation and tissue damage in a number of autoimmune and inflammatory conditions. A particular role for complement in the ischaemia/reperfusion injury of the heart, skeletal muscle, central nervous system, intestine and kidney has been suggested from animal studies. Previous experiments in C3 and C4 knockout mice suggested an important role of the classical or lectin pathway in initiation of complement activation during intestinal ischaemia/reperfusion injury while later use of factor D knockout mice showed the alternative pathway to be critically involved. We hypothesized that alternative pathway amplification might play a more critical role in classical pathway-induced C5 activation than previously recognized and used pathway-selective inhibitory mAbs to further elucidate the role of the alternative pathway. Here we demonstrate that selective blockade of the alternative pathway by neutralizing factor D in human serum diluted 1 : 2 with mAb 166-32 inhibited more than 80% of C5a and TCC formation induced by solid phase IgM and solid- and fluid-phase human aggregated IgG via the classical pathway. The findings emphasize the influence of alternative pathway amplification on the effect of initial classical pathway activation and the therapeutic potential of inhibiting the alternative pathway in clinical conditions with excessive and uncontrolled complement activation. PMID:15544620

  19. Alternative Complement Pathway Deregulation Is Correlated with Dengue Severity

    PubMed Central

    Nascimento, Eduardo J. M.; Silva, Ana M.; Cordeiro, Marli T.; Brito, Carlos A.; Gil, Laura H. V. G.; Braga-Neto, Ulisses; Marques, Ernesto T. A.

    2009-01-01

    Background The complement system, a key component that links the innate and adaptive immune responses, has three pathways: the classical, lectin, and alternative pathways. In the present study, we have analyzed the levels of various complement components in blood samples from dengue fever (DF) and dengue hemorrhagic fever (DHF) patients and found that the level of complement activation is associated with disease severity. Methods and Results Patients with DHF had lower levels of complement factor 3 (C3; p = 0.002) and increased levels of C3a, C4a and C5a (p<0.0001) when compared to those with the less severe form, DF. There were no significant differences between DF and DHF patients in the levels of C1q, immunocomplexes (CIC-CIq) and CRP. However, small but statistically significant differences were detected in the levels of MBL. In contrast, the levels of two regulatory proteins of the alternative pathway varied widely between DF and DHF patients: DHF patients had higher levels of factor D (p = 0.01), which cleaves factor B to yield the active (C3bBb) C3 convertase, and lower levels of factor H (p = 0.03), which inactivates the (C3bBb) C3 convertase, than did DF patients. When we considered the levels of factors D and H together as an indicator of (C3bBb) C3 convertase regulation, we found that the plasma levels of these regulatory proteins in DHF patients favored the formation of the (C3bBb) C3 convertase, whereas its formation was inhibited in DF patients (p<0.0001). Conclusion The data suggest that an imbalance in the levels of regulatory factors D and H is associated with an abnormal regulation of complement activity in DHF patients. PMID:19707565

  20. Polyphosphate suppresses complement via the terminal pathway

    PubMed Central

    Wat, Jovian M.; Foley, Jonathan H.; Krisinger, Michael J.; Ocariza, Linnette Mae; Lei, Victor; Wasney, Gregory A.; Lameignere, Emilie; Strynadka, Natalie C.; Smith, Stephanie A.; Morrissey, James H.

    2014-01-01

    Polyphosphate, synthesized by all cells, is a linear polymer of inorganic phosphate. When released into the circulation, it exerts prothrombotic and proinflammatory activities by modulating steps in the coagulation cascade. We examined the role of polyphosphate in regulating the evolutionarily related proteolytic cascade complement. In erythrocyte lysis assays, polyphosphate comprising more than 1000 phosphate units suppressed total hemolytic activity with a concentration to reduce maximal lysis to 50% that was 10-fold lower than with monophosphate. In the ion- and enzyme-independent terminal pathway complement assay, polyphosphate suppressed complement in a concentration- and size-dependent manner. Phosphatase-treated polyphosphate lost its ability to suppress complement, confirming that polymer integrity is required. Sequential addition of polyphosphate to the terminal pathway assay showed that polyphosphate interferes with complement only when added before formation of the C5b-7 complex. Physicochemical analyses using native gels, gel filtration, and differential scanning fluorimetry revealed that polyphosphate binds to and destabilizes C5b,6, thereby reducing the capacity of the membrane attack complex to bind to and lyse the target cell. In summary, we have added another function to polyphosphate in blood, demonstrating that it dampens the innate immune response by suppressing complement. These findings further establish the complex relationship between coagulation and innate immunity. PMID:24335501

  1. Functional characterization of mannose-binding lectin in zebrafish: implication for a lectin-dependent complement system in early embryos.

    PubMed

    Yang, Lili; Bu, Lingzhen; Sun, Weiwei; Hu, Lili; Zhang, Shicui

    2014-10-01

    The lectin pathway involves recognition of pathogen-associated molecular patterns by mannose-binding lectin (MBL), and the subsequent activation of associated enzymes, termed MBL-associated serine proteases (MASPs). In this study, we demonstrate that the transcript of MBL gene is present in the early embryo of zebrafish, and MBL protein is also present in the embryo. In addition, we show that recombinant zebrafish MBL was able to bind the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Staphylococcus aureus, and rMBL was able to promote the phagocytosis of E. coli and S. aureus by macrophages, indicating that like mammalian MBL, zebrafish MBL performs a dual function in both pattern recognition and opsonization. Importantly, we show that microinjection of anti-MBL antibody into the early developing embryos resulted in a significantly increased mortality in the embryos challenged with Aeromonas hydrophila (pathogenic to zebrafish); and injection of rMBL into the embryos (resulting in increase in MBL in the embryo) markedly promoted their resistance to A. hydrophila; and this promoted bacterial resistance was significantly reduced by the co-injection of anti-MBL antibody with rMBL but not by the injection of anti-actin antibody with rMBL. These suggest that the lectin pathway may be already functional in the early embryos in zebrafish before their immune system is fully matured, protecting the developing embryos from microbial infection. This work provides a new angle to understand the immune role of the lectin pathway in early development of animals.

  2. SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis.

    PubMed

    Ferreira, Viviana P; Fazito Vale, Vladimir; Pangburn, Michael K; Abdeladhim, Maha; Mendes-Sousa, Antonio Ferreira; Coutinho-Abreu, Iliano V; Rasouli, Manoochehr; Brandt, Elizabeth A; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Pereira, Marcos Horácio; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M C; Gontijo, Nelder F; Collin, Nicolas; Valenzuela, Jesus G

    2016-01-01

    Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases. PMID:26758086

  3. SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis

    PubMed Central

    Ferreira, Viviana P.; Fazito Vale, Vladimir; Pangburn, Michael K.; Abdeladhim, Maha; Ferreira Mendes-Sousa, Antonio; Coutinho-Abreu, Iliano V.; Rasouli, Manoochehr; Brandt, Elizabeth A.; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Horácio Pereira, Marcos; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M. C.; Gontijo, Nelder F.; Collin, Nicolas; Valenzuela, Jesus G.

    2016-01-01

    Blood-feeding insects inject potent salivary components including complement inhibitors into their host’s skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases. PMID:26758086

  4. Association Study of Mannose-Binding Lectin Levels and Genetic Variants in Lectin Pathway Proteins with Susceptibility to Age-Related Macular Degeneration: A Case-Control Study

    PubMed Central

    Osthoff, Michael; Dean, Melinda M.; Baird, Paul N.; Richardson, Andrea J.; Daniell, Mark; Guymer, Robyn H.; Eisen, Damon P.

    2015-01-01

    Background In age-related macular degeneration (AMD) the complement system is thought to be activated by chronic oxidative damage with genetic variants identified in the alternative pathway as susceptibility factors. However, the involvement of the lectin pathway of complement, a key mediator of oxidative damage, is controversial. This study investigated whether mannose-binding lectin (MBL) levels and genetic variants in lectin pathway proteins, are associated with the predisposition to and severity of AMD. Methods MBL levels and single nucleotide polymorphisms (SNPs) in the MBL2 and the ficolin-2 (FCN2) gene were determined in 109 patients with AMD and 109 age- and sex-matched controls. Results MBL expression levels were equally distributed in both cases (early and late AMD) and controls (p>0.05). However, there was a trend towards higher median MBL levels in cases with late AMD compared to cases with early AMD (1.0 vs. 0.4 μg/ml, p = 0.09) and MBL deficiency (<0.5 μg/ml) was encountered less frequently in the late AMD group (35% vs 56%, p = 0.03). FCN2 and MBL2 allele frequencies were similarly distributed in early and late AMD cases compared with controls (p>0.05 for all analyses) as were MBL2 genotypes. Similarly, there was no significant difference in allele frequencies in any SNPs in either the MBL2 or FCN2 gene in cases with early vs. late AMD. Conclusions SNPs of lectin pathway proteins investigated in this study were not associated with AMD or AMD severity. However, MBL levels deserve further study in a larger cohort of early vs. late AMD patients to elucidate any real effect on AMD severity. PMID:26207622

  5. A metalloproteinase mirolysin of Tannerella forsythia inhibits all pathways of the complement system

    PubMed Central

    Jusko, Monika; Potempa, Jan; Mizgalska, Danuta; Bielecka, Ewa; Ksiazek, Miroslaw; Riesbeck, Kristian; Garred, Peter; Eick, Sigrun; Blom, Anna M.

    2015-01-01

    Recent reports focusing on virulence factors of periodontal pathogens implicated proteinases as major determinants of remarkable pathogenicity of these species, with special emphasis on their capacity to modulate complement activity. In particular, bacteria-mediated cleavage of C5 and subsequent release of C5a seems to be an important phenomenon in the manipulation of the local inflammatory response in periodontitis. Here we present mirolysin, a novel metalloproteinase secreted by Tannerella forsythia, a well-recognized pathogen strongly associated with periodontitis. Mirolysin exhibited a strong effect on all complement pathways. It inhibited the classical and lectin complement pathways due to efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3 and C4, while inhibition of the alternative pathway was caused by degradation of C5. This specificity toward complement largely resembled the activity of a previously characterized metalloproteinase of T. forsythia, karilysin. Interestingly, mirolysin released the biologically active C5a peptide in human plasma and induced migration of neutrophils. Importantly, we demonstrated that combination of mirolysin with karilysin, as well as a cysteine proteinase of another periodontal pathogen, Prevotella intermedia, resulted in a strong synergistic effect on complement. Furthermore, mutant strains of T. forsythia, devoid of either mirolysin or karilysin, showed diminished survival in human serum, providing further evidence for the synergistic inactivation of complement by these metalloproteinases. Taken together, our findings on interactions of mirolysin with complement significantly add to the understanding of immune evasion strategies of T. forsythia, and expand the knowledge on molecular mechanisms driving pathogenic events in the infected periodontium. PMID:26209620

  6. A Metalloproteinase Mirolysin of Tannerella forsythia Inhibits All Pathways of the Complement System.

    PubMed

    Jusko, Monika; Potempa, Jan; Mizgalska, Danuta; Bielecka, Ewa; Ksiazek, Miroslaw; Riesbeck, Kristian; Garred, Peter; Eick, Sigrun; Blom, Anna M

    2015-09-01

    Recent reports focusing on virulence factors of periodontal pathogens implicated proteinases as major determinants of remarkable pathogenicity of these species, with special emphasis on their capacity to modulate complement activity. In particular, bacteria-mediated cleavage of C5 and subsequent release of C5a seems to be an important phenomenon in the manipulation of the local inflammatory response in periodontitis. In this study, we present mirolysin, a novel metalloproteinase secreted by Tannerella forsythia, a well-recognized pathogen strongly associated with periodontitis. Mirolysin exhibited a strong effect on all complement pathways. It inhibited the classical and lectin complement pathways due to efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3, and C4, whereas inhibition of the alternative pathway was caused by degradation of C5. This specificity toward complement largely resembled the activity of a previously characterized metalloproteinase of T. forsythia, karilysin. Interestingly, mirolysin released the biologically active C5a peptide in human plasma and induced migration of neutrophils. Importantly, we demonstrated that combination of mirolysin with karilysin, as well as a cysteine proteinase of another periodontal pathogen, Prevotella intermedia, resulted in a strong synergistic effect on complement. Furthermore, mutant strains of T. forsythia, devoid of either mirolysin or karilysin, showed diminished survival in human serum, providing further evidence for the synergistic inactivation of complement by these metalloproteinases. Taken together, our findings on interactions of mirolysin with complement significantly add to the understanding of immune evasion strategies of T. forsythia and expand the knowledge on molecular mechanisms driving pathogenic events in the infected periodontium.

  7. Comprehensive and comparative transcription analyses of the complement pathway in rainbow trout.

    PubMed

    Köbis, Judith M; Rebl, Alexander; Kühn, Carsten; Korytář, Tomáš; Köllner, Bernd; Goldammer, Tom

    2015-01-01

    The complement system is one of the most ancient and most essential innate immune cascades throughout the animal kingdom. Survival of aquatic animals, such as rainbow trout, depends on this early inducible, efficient immune cascade. Despite increasing research on genes coding for complement components in bony fish, some complement-related genes are still unknown in salmonid fish. In the present study, we characterize the genes encoding complement factor D (CFD), CD93 molecule (CD93), and C-type lectin domain family 4, member M (CLEC4M) from rainbow trout (Oncorhynchus mykiss). Subsequently, we performed comprehensive and comparative expression analyses of 36 complement genes including CFD, CD93, and CLEC4M and further putative complement-associated genes to obtain general information about the functional gene interaction within the complement pathway in fish. These quantification analyses were conducted in liver, spleen and gills of healthy fish of two rainbow trout strains, selected for survival (strain BORN) and growth (Import strain), respectively. The present expression study clearly confirms for rainbow trout that liver represents the primary site of complement expression. Spleen and gills also express most complement genes, although the mean transcript levels were generally lower than in liver. The transcription data suggest a contribution of spleen and gills to complement activity. The comparison of the two rainbow trout strains revealed a generally similar complement gene expression. However, a significantly lower expression of numerous genes especially in spleen seems characteristic for the BORN strain. This suggests a strain-specific complement pathway regulation under the selected rearing conditions.

  8. Association of Low Ficolin-Lectin Pathway Parameters with Cardiac Syndrome X.

    PubMed

    Horváth, Z; Csuka, D; Vargova, K; Leé, S; Varga, L; Garred, P; Préda, I; Zsámboki, E T; Prohászka, Z; Kiss, R G

    2016-09-01

    In patients with typical angina pectoris, inducible myocardial ischaemia and macroscopically normal coronaries (cardiac syndrome X (CSX)), a significantly elevated plasma level of terminal complement complex (TCC), the common end product of complement activation, has been observed without accompanying activation of the classical or the alternative pathways. Therefore, our aim was to clarify the role of the ficolin-lectin pathway in CSX. Eighteen patients with CSX, 37 stable angina patients with significant coronary stenosis (CHD) and 54 healthy volunteers (HC) were enrolled. Serum levels of ficolin-2 and ficolin-3, ficolin-3/MASP-2 complex and ficolin-3-mediated TCC deposition (FCN3-TCC) were determined. Plasma level of TCC was significantly higher in the CSX than in the HC or CHD group (5.45 versus 1.30 versus 2.04 AU/ml, P < 0.001). Serum levels of ficolin-2 and ficolin-3 were significantly lower in the CSX compared to the HC or CHD group (3.60 versus 5.80 or 5.20 μg/ml, P < 0.05; 17.80 versus 24.10 or 26.80 μg/ml, P < 0.05). The ficolin-3/MASP-2 complex was significantly lower in the CSX group compared to the HC group (92.90 versus 144.90 AU/ml, P = 0.006). FCN3-TCC deposition was significantly lower in the CSX group compared to the HC and CHD groups (67.8% versus 143.3% or 159.7%, P < 0.05). In the CSX group, a significant correlation was found between TCC and FCN3-TCC level (r = 0.507, P = 0.032) and between ficolin-3/MASP-2 complex level and FCN3-TCC deposition (r = 0.651, P = 0.003). In conclusion, in patients with typical angina and myocardial ischaemia despite macroscopically normal coronary arteries, low levels of several lectin pathway parameters were observed, indicating complement activation and consumption. Complement activation through the ficolin-lectin pathway might play a role in the complex pathomechanism of CSX. PMID:27312152

  9. Association of Low Ficolin-Lectin Pathway Parameters with Cardiac Syndrome X.

    PubMed

    Horváth, Z; Csuka, D; Vargova, K; Leé, S; Varga, L; Garred, P; Préda, I; Zsámboki, E T; Prohászka, Z; Kiss, R G

    2016-09-01

    In patients with typical angina pectoris, inducible myocardial ischaemia and macroscopically normal coronaries (cardiac syndrome X (CSX)), a significantly elevated plasma level of terminal complement complex (TCC), the common end product of complement activation, has been observed without accompanying activation of the classical or the alternative pathways. Therefore, our aim was to clarify the role of the ficolin-lectin pathway in CSX. Eighteen patients with CSX, 37 stable angina patients with significant coronary stenosis (CHD) and 54 healthy volunteers (HC) were enrolled. Serum levels of ficolin-2 and ficolin-3, ficolin-3/MASP-2 complex and ficolin-3-mediated TCC deposition (FCN3-TCC) were determined. Plasma level of TCC was significantly higher in the CSX than in the HC or CHD group (5.45 versus 1.30 versus 2.04 AU/ml, P < 0.001). Serum levels of ficolin-2 and ficolin-3 were significantly lower in the CSX compared to the HC or CHD group (3.60 versus 5.80 or 5.20 μg/ml, P < 0.05; 17.80 versus 24.10 or 26.80 μg/ml, P < 0.05). The ficolin-3/MASP-2 complex was significantly lower in the CSX group compared to the HC group (92.90 versus 144.90 AU/ml, P = 0.006). FCN3-TCC deposition was significantly lower in the CSX group compared to the HC and CHD groups (67.8% versus 143.3% or 159.7%, P < 0.05). In the CSX group, a significant correlation was found between TCC and FCN3-TCC level (r = 0.507, P = 0.032) and between ficolin-3/MASP-2 complex level and FCN3-TCC deposition (r = 0.651, P = 0.003). In conclusion, in patients with typical angina and myocardial ischaemia despite macroscopically normal coronary arteries, low levels of several lectin pathway parameters were observed, indicating complement activation and consumption. Complement activation through the ficolin-lectin pathway might play a role in the complex pathomechanism of CSX.

  10. Recombinant form of human wild type mannan-binding lectin (MBL/A) but not its structural variant (MBL/C) promotes phagocytosis of zymosan by activating complement.

    PubMed

    Rajagopalan, Rema; Nyaundi, Takazvida; Salvi, Veena P; Rawal, Nenoo

    2010-09-01

    Mannan-binding lectin (MBL) mediates innate immune responses, such as activation of the complement lectin pathway and phagocytosis, to help fight infections. In the present study, employing recombinant forms of human MBL (rMBL), the role of wild type MBL (rMBL/A) and its structural variant rMBL/C in mediating THP-1 phagocytosis of fluorescent-labeled zymosan was examined and compared to MBL purified from human plasma (pMBL/A). Flow cytometric analyses revealed that opsonization of zymosan with rMBL/A and pMBL/A (0.5-30microg/ml) resulted in a 1.9- and 2.7-fold enhancement in its uptake by THP-1 cells in the presence of serum that was depleted of both MBL and the classical pathway component, C1q (MBL/C1q Dpl serum). In contrast, no enhancement in phagocytosis was observed when zymosan was opsonized with rMBL/C. Addition of MBL monoclonal antibody, EDTA, or mannan to the opsonization reaction mixture inhibited THP-1 phagocytosis of pMBL/A opsonized zymosan. Heat inactivation of MBL/C1q Dpl serum abolished the 2-fold increase in phagocytosis and in the absence of serum the direct opsonic activity of MBL did not contribute significantly to the uptake of zymosan into THP-1 cells. Activation products of complement components C3 and C4 were deposited on zymosan opsonized with pMBL/A and rMBL/A but not rMBL/C indicating that MBL-mediated phagocytosis of zymosan requires activation of the complement lectin pathway. The findings imply that impaired MBL-mediated phagocytosis may put individuals homozygous for the mutant allele MBL/C but not wild type MBL/A at increased risk to infections such as yeast. PMID:20579738

  11. Systemic Lupus Erythematosus and Deficiencies of Early Components of the Complement Classical Pathway

    PubMed Central

    Macedo, Ana Catarina Lunz; Isaac, Lourdes

    2016-01-01

    The complement system plays an important role in the innate and acquired immune response against pathogens. It consists of more than 30 proteins found in soluble form or attached to cell membranes. Most complement proteins circulate in inactive forms and can be sequentially activated by the classical, alternative, or lectin pathways. Biological functions, such as opsonization, removal of apoptotic cells, adjuvant function, activation of B lymphocytes, degranulation of mast cells and basophils, and solubilization and clearance of immune complex and cell lysis, are dependent on complement activation. Although the activation of the complement system is important to avoid infections, it also can contribute to the inflammatory response triggered by immune complex deposition in tissues in autoimmune diseases. Paradoxically, the deficiency of early complement proteins from the classical pathway (CP) is strongly associated with development of systemic lupus erythematous (SLE) – mainly C1q deficiency (93%) and C4 deficiency (75%). The aim of this review is to focus on the deficiencies of early components of the CP (C1q, C1r, C1s, C4, and C2) proteins in SLE patients. PMID:26941740

  12. Classical Complement Pathway Activation in the Kidneys of Women With Preeclampsia.

    PubMed

    Penning, Marlies; Chua, Jamie S; van Kooten, Cees; Zandbergen, Malu; Buurma, Aletta; Schutte, Joke; Bruijn, Jan Anthonie; Khankin, Eliyahu V; Bloemenkamp, Kitty; Karumanchi, S Ananth; Baelde, Hans

    2015-07-01

    A growing body of evidence suggests that complement dysregulation plays a role in the pathogenesis of preeclampsia. The kidney is one of the major organs affected in preeclampsia. Because the kidney is highly susceptible to complement activation, we hypothesized that preeclampsia is associated with renal complement activation. We performed a nationwide search for renal autopsy material in the Netherlands using a computerized database (PALGA). Renal tissue was obtained from 11 women with preeclampsia, 25 pregnant controls, and 14 nonpregnant controls with hypertension. The samples were immunostained for C4d, C1q, mannose-binding lectin, properdin, C3d, C5b-9, IgA, IgG, and IgM. Preeclampsia was significantly associated with renal C4d-a stable marker of complement activation-and the classical pathway marker C1q. In addition, the prevalence of IgM was significantly higher in the kidneys of the preeclamptic women. No other complement markers studied differed between the groups. Our findings in human samples were validated using a soluble fms-like tyrosine kinase 1 mouse model of preeclampsia. The kidneys in the soluble fms-like tyrosine kinase 1-injected mice had significantly more C4 deposits than the control mice. The association between preeclampsia and renal C4d, C1q, and IgM levels suggests that the classical complement pathway is involved in the renal injury in preeclampsia. Moreover, our finding that soluble fms-like tyrosine kinase 1-injected mice develop excess C4 deposits indicates that angiogenic dysregulation may play a role in complement activation within the kidney. We suggest that inhibiting complement activation may be beneficial for preventing the renal manifestations of preeclampsia.

  13. Inhibition of the classical pathway of the complement system by saliva of Amblyomma cajennense (Acari: Ixodidae).

    PubMed

    Franco, Paula F; Silva, Naylene C S; Fazito do Vale, Vladimir; Abreu, Jéssica F; Santos, Vânia C; Gontijo, Nelder F; Valenzuela, Jesus G; Pereira, Marcos H; Sant'Anna, Mauricio R V; Gomes, Alessandra P S; Araujo, Ricardo N

    2016-05-01

    Inhibition of the complement system during and after haematophagy is of utmost importance for tick success in feeding and tick development. The role of such inhibition is to minimise damage to the intestinal epithelium as well as avoiding inflammation and opsonisation of salivary molecules at the bite site. Despite its importance, the salivary anti-complement activity has been characterised only in species belonging to the Ixodes ricinus complex which saliva is able to inhibit the alternative and lectin pathways. Little is known about this activity in other species of the Ixodidae family. Thus, the aim of this study was to describe the inhibition of the classical pathway of the complement system by the saliva of Amblyomma cajennense at different stages of the haematophagy. The A. cajennense saliva and salivary gland extract (SGE) were able to inhibit the complement classical pathway through haemolytic assays with higher activity observed when saliva was used. The anti-complement activity is present in the salivary glands of starving females and also in females throughout the whole feeding process, with significant higher activity soon after tick detachment. The SGE activity from both females fed on mice or horses had no significant correlation (p > 0.05) with tick body weight. The pH found in the intestinal lumen of A. cajennense was 8.04 ± 0.08 and haemolytic assays performed at pH 8.0 showed activation of the classical pathway similarly to what occurs at pH 7.4. Consequently, inhibition could be necessary to protect the tick enterocytes. Indeed, the inhibition observed by SGE was higher in pH 8.0 in comparison to pH 7.4 reinforcing the role of saliva in protecting the intestinal cells. Further studies should be carried out in order to identify the inhibitor molecule and characterise its inhibition mechanism. PMID:26948715

  14. Inhibition of the classical pathway of the complement system by saliva of Amblyomma cajennense (Acari: Ixodidae).

    PubMed

    Franco, Paula F; Silva, Naylene C S; Fazito do Vale, Vladimir; Abreu, Jéssica F; Santos, Vânia C; Gontijo, Nelder F; Valenzuela, Jesus G; Pereira, Marcos H; Sant'Anna, Mauricio R V; Gomes, Alessandra P S; Araujo, Ricardo N

    2016-05-01

    Inhibition of the complement system during and after haematophagy is of utmost importance for tick success in feeding and tick development. The role of such inhibition is to minimise damage to the intestinal epithelium as well as avoiding inflammation and opsonisation of salivary molecules at the bite site. Despite its importance, the salivary anti-complement activity has been characterised only in species belonging to the Ixodes ricinus complex which saliva is able to inhibit the alternative and lectin pathways. Little is known about this activity in other species of the Ixodidae family. Thus, the aim of this study was to describe the inhibition of the classical pathway of the complement system by the saliva of Amblyomma cajennense at different stages of the haematophagy. The A. cajennense saliva and salivary gland extract (SGE) were able to inhibit the complement classical pathway through haemolytic assays with higher activity observed when saliva was used. The anti-complement activity is present in the salivary glands of starving females and also in females throughout the whole feeding process, with significant higher activity soon after tick detachment. The SGE activity from both females fed on mice or horses had no significant correlation (p > 0.05) with tick body weight. The pH found in the intestinal lumen of A. cajennense was 8.04 ± 0.08 and haemolytic assays performed at pH 8.0 showed activation of the classical pathway similarly to what occurs at pH 7.4. Consequently, inhibition could be necessary to protect the tick enterocytes. Indeed, the inhibition observed by SGE was higher in pH 8.0 in comparison to pH 7.4 reinforcing the role of saliva in protecting the intestinal cells. Further studies should be carried out in order to identify the inhibitor molecule and characterise its inhibition mechanism.

  15. Quantitative Modeling of the Alternative Pathway of the Complement System

    PubMed Central

    Dorado, Angel; Morikis, Dimitrios

    2016-01-01

    The complement system is an integral part of innate immunity that detects and eliminates invading pathogens through a cascade of reactions. The destructive effects of the complement activation on host cells are inhibited through versatile regulators that are present in plasma and bound to membranes. Impairment in the capacity of these regulators to function in the proper manner results in autoimmune diseases. To better understand the delicate balance between complement activation and regulation, we have developed a comprehensive quantitative model of the alternative pathway. Our model incorporates a system of ordinary differential equations that describes the dynamics of the four steps of the alternative pathway under physiological conditions: (i) initiation (fluid phase), (ii) amplification (surfaces), (iii) termination (pathogen), and (iv) regulation (host cell and fluid phase). We have examined complement activation and regulation on different surfaces, using the cellular dimensions of a characteristic bacterium (E. coli) and host cell (human erythrocyte). In addition, we have incorporated neutrophil-secreted properdin into the model highlighting the cross talk of neutrophils with the alternative pathway in coordinating innate immunity. Our study yields a series of time-dependent response data for all alternative pathway proteins, fragments, and complexes. We demonstrate the robustness of alternative pathway on the surface of pathogens in which complement components were able to saturate the entire region in about 54 minutes, while occupying less than one percent on host cells at the same time period. Our model reveals that tight regulation of complement starts in fluid phase in which propagation of the alternative pathway was inhibited through the dismantlement of fluid phase convertases. Our model also depicts the intricate role that properdin released from neutrophils plays in initiating and propagating the alternative pathway during bacterial infection. PMID

  16. Quantitative Modeling of the Alternative Pathway of the Complement System.

    PubMed

    Zewde, Nehemiah; Gorham, Ronald D; Dorado, Angel; Morikis, Dimitrios

    2016-01-01

    The complement system is an integral part of innate immunity that detects and eliminates invading pathogens through a cascade of reactions. The destructive effects of the complement activation on host cells are inhibited through versatile regulators that are present in plasma and bound to membranes. Impairment in the capacity of these regulators to function in the proper manner results in autoimmune diseases. To better understand the delicate balance between complement activation and regulation, we have developed a comprehensive quantitative model of the alternative pathway. Our model incorporates a system of ordinary differential equations that describes the dynamics of the four steps of the alternative pathway under physiological conditions: (i) initiation (fluid phase), (ii) amplification (surfaces), (iii) termination (pathogen), and (iv) regulation (host cell and fluid phase). We have examined complement activation and regulation on different surfaces, using the cellular dimensions of a characteristic bacterium (E. coli) and host cell (human erythrocyte). In addition, we have incorporated neutrophil-secreted properdin into the model highlighting the cross talk of neutrophils with the alternative pathway in coordinating innate immunity. Our study yields a series of time-dependent response data for all alternative pathway proteins, fragments, and complexes. We demonstrate the robustness of alternative pathway on the surface of pathogens in which complement components were able to saturate the entire region in about 54 minutes, while occupying less than one percent on host cells at the same time period. Our model reveals that tight regulation of complement starts in fluid phase in which propagation of the alternative pathway was inhibited through the dismantlement of fluid phase convertases. Our model also depicts the intricate role that properdin released from neutrophils plays in initiating and propagating the alternative pathway during bacterial infection.

  17. An Inhibitor of the Alternative Pathway of Complement in Saliva of New World Anopheline Mosquitoes.

    PubMed

    Mendes-Sousa, Antonio F; Queiroz, Daniel C; Vale, Vladimir F; Ribeiro, José M C; Valenzuela, Jesus G; Gontijo, Nelder F; Andersen, John F

    2016-07-15

    The complement system present in circulating blood is an effective mechanism of host defense, responsible for the killing of pathogens and the production of potent anaphylatoxins. Inhibitors of the complement system have been described in the saliva of hematophagous arthropods that are involved in the protection of digestive tissues against complement system-mediated damage. In this study, we describe albicin, a novel inhibitor of the alternative pathway of complement from the salivary glands of the malaria vector, Anopheles albimanus The inhibitor was purified from salivary gland homogenates by reverse-phase HPLC and identified by mass spectrometry as a small (13.4-kDa) protein related to the gSG7 protein of Anopheles gambiae and Anopheles stephensi Recombinant albicin was produced in Escherichia coli and found to potently inhibit lysis of rabbit erythrocytes in assays of the alternative pathway while having no inhibitory effect on the classical or lectin pathways. Albicin also inhibited the deposition of complement components on agarose-coated plates, although it could not remove previously bound components. Antisera produced against recombinant albicin recognized both the native and recombinant inhibitors and also blocked their activities in in vitro assays. Using surface plasmon resonance and enzymatic assays, we found that albicin binds and stabilizes the C3-convertase complex (C3bBb) formed on a properdin surface and inhibits the convertase activity of a reconstituted C3bBb complex in solution. The data indicate that albicin specifically recognizes the activated form of the complex, allowing more efficient inhibition by an inhibitor whose quantity is limited. PMID:27307559

  18. Novel scabies mite serpins inhibit the three pathways of the human complement system.

    PubMed

    Mika, Angela; Reynolds, Simone L; Mohlin, Frida C; Willis, Charlene; Swe, Pearl M; Pickering, Darren A; Halilovic, Vanja; Wijeyewickrema, Lakshmi C; Pike, Robert N; Blom, Anna M; Kemp, David J; Fischer, Katja

    2012-01-01

    Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement

  19. Differential Complement Activation Pathways Promote C3b Deposition on Native and Acetylated LDL thereby Inducing Lipoprotein Binding to the Complement Receptor 1

    PubMed Central

    Klop, Boudewijn; van der Pol, Pieter; van Bruggen, Robin; Wang, Yanan; de Vries, Marijke A.; van Santen, Selvetta; O'Flynn, Joseph; van de Geijn, Gert-Jan M.; Njo, Tjin L.; Janssen, Hans W.; de Man, Peter; Jukema, J. Wouter; Rabelink, Ton J.; Rensen, Patrick C. N.; van Kooten, Cees; Cabezas, Manuel Castro

    2014-01-01

    Lipoproteins can induce complement activation resulting in opsonization and binding of these complexes to complement receptors. We investigated the binding of opsonized native LDL and acetylated LDL (acLDL) to the complement receptor 1 (CR1). Binding of complement factors C3b, IgM, C1q, mannose-binding lectin (MBL), and properdin to LDL and acLDL were investigated by ELISA. Subsequent binding of opsonized LDL and acLDL to CR1 on CR1-transfected Chinese Hamster Ovarian cells (CHO-CR1) was tested by flow cytometry. Both native LDL and acLDL induced complement activation with subsequent C3b opsonization upon incubation with normal human serum. Opsonized LDL and acLDL bound to CR1. Binding to CHO-CR1 was reduced by EDTA, whereas MgEGTA only reduced the binding of opsonized LDL, but not of acLDL suggesting involvement of the alternative pathway in the binding of acLDL to CR1. In vitro incubations showed that LDL bound C1q, whereas acLDL bound to C1q, IgM, and properdin. MBL did neither bind to LDL nor to acLDL. The relevance of these findings was demonstrated by the fact that ex vivo up-regulation of CR1 on leukocytes was accompanied by a concomitant increased binding of apolipoprotein B-containing lipoproteins to leukocytes without changes in LDL-receptor expression. In conclusion, CR1 is able to bind opsonized native LDL and acLDL. Binding of LDL to CR1 is mediated via the classical pathway, whereas binding of acLDL is mediated via both the classical and alternative pathways. Binding of lipoproteins to CR1 may be of clinical relevance due to the ubiquitous cellular distribution of CR1. PMID:25349208

  20. Eosinophil granule cationic proteins regulate the classical pathway of complement.

    PubMed Central

    Weiler, J M; Edens, R E; Bell, C S; Gleich, G J

    1995-01-01

    Major basic protein, the primary constituent of eosinophil granules, regulates the alternative and classical pathways of complement. Major basic protein and other eosinophil granule cationic proteins, which are important in mediating tissue damage in allergic disease, regulate the alternative pathway by interfering with C3b interaction with factor B to assemble an alternative pathway C3 convertase. In the present study, eosinophil peroxidase, eosinophil cationic protein and eosinophil-derived neurotoxin, as well as major basic protein, were examined for capacity to regulate the classical pathway. Eosinophil peroxidase, eosinophil cationic protein and major basic protein inhibited formation of cell-bound classical pathway C3 convertase (EAC1,4b,2a), causing 50% inhibition of complement-mediated lysis at about 0.19, 0.75 and 0.5 micrograms/10(7) cellular intermediates, respectively. Eosinophil-derived neurotoxin had no activity on this pathway of complement. The eosinophil granule proteins were examined for activity on the formation of the membrane attack complex. Major basic protein and eosinophil cationic protein had no activity on terminal lysis. In contrast, eosinophil peroxidase inhibited lysis of EAC1,4b,2a,3b,5b, but had only minimal activity on later events in complement lysis. These polycations were then examined to determine the site(s) at which they regulated the early classical pathway. Eosinophil granule polycationic proteins: (1) reduced the Zmax at all time points but had only minimal effect on the Tmax during the formation of the classical pathway C3 convertase (EAC1,4b,2a); (2) inhibited formation of EAC1,4b,2a proportional to C4 but independent of C2 concentration; (3) inhibited fluid phase formation of C1,4b,2a, as reflected by a decrease in C1-induced consumption of C2 over time; and (4) inhibited C1 activity over time without a direct effect on either C4 or C2. These observations suggest that polycations regulate the early classical pathway by

  1. Complexes between C1q and C3 or C4: novel and specific markers for classical complement pathway activation.

    PubMed

    Wouters, Diana; Wiessenberg, Hans D; Hart, Margreet; Bruins, Peter; Voskuyl, Alexandre; Daha, Mohamed R; Hack, C Erik

    2005-03-01

    Classical pathway activation is often assessed by measuring circulating levels of activated C4. However, this parameter does not discriminate between activation through the classical or the lectin pathway. We hypothesized that during classical pathway activation, complexes are formed between C1q and activated C4 or C3. Using ELISA, we investigated whether such complexes constitute specific markers for classical pathway activation. In vitro, C1q-C3d/C4d complexes were generated upon incubation of normal recalcified plasma with aggregated IgG or an anti-C1q mAb that activates C1 (mAb anti-C1q-130). In contrast, during incubation with C1s or trypsin, C1q-C3d/C4d complexes were not generated, which excludes an innocent bystander effect. Additionally, C1q-C3d/C4d complexes were not generated during activation of the alternative or the lectin pathway. Repeated freezing and thawing did not influence levels of C1q-C3d/C4d complexes in recalcified plasma. To measure C1q-complement complexes in plasma samples, we separated unbound complement proteins from C1q-C3d/C4d complexes in the samples prior to testing with ELISA. In samples from patients undergoing cardiopulmonary bypass surgery or suffering from rheumatoid arthritis, we found higher levels of C1q-C4 complexes than in samples from healthy individuals. We conclude that complexes between C1q and C4 or C3 are specific markers of classical complement pathway activation.

  2. Dual modulating functions of thrombomodulin in the alternative complement pathway.

    PubMed

    Tateishi, Koichiro; Imaoka, Mio; Matsushita, Misao

    2016-07-19

    Thrombomodulin (TM) is a transmembrane protein expressed on vascular endothelial cells. TM has anticoagulant and anti-inflammatory properties. It has recently been reported that TM modulates complement, an immune effector system that destroys pathogens and is also involved in inflammation. TM was demonstrated to enhance the degradation of C3b into iC3b by factor I and factor H, indicating that its role is in negative regulation in the alternative pathway of the complement system. In this study, we examined the effects of recombinant human soluble TM protein composed of the extracellular domains (rTM) on the alternative pathway. The degradation of C3b into iC3b by factor I and factor H was enhanced by rTM as assessed by SDS-PAGE, confirming the previous observation. We also found that rTM enhances the cleavage of C3 into C3b as a result of activation of the alternative pathway. These results indicate that TM has both activating and inactivating functions in the alternative pathway. PMID:27210597

  3. Alternative Pathway Dysregulation and the Conundrum of Complement Activation by IgG4 Immune Complexes in Membranous Nephropathy

    PubMed Central

    Borza, Dorin-Bogdan

    2016-01-01

    Membranous nephropathy (MN), a major cause of nephrotic syndrome, is a non-inflammatory immune kidney disease mediated by IgG antibodies that form glomerular subepithelial immune complexes. In primary MN, autoantibodies target proteins expressed on the podocyte surface, often phospholipase A2 receptor (PLA2R1). Pathology is driven by complement activation, leading to podocyte injury and proteinuria. This article overviews the mechanisms of complement activation and regulation in MN, addressing the paradox that anti-PLA2R1 and other antibodies causing primary MN are predominantly (but not exclusively) IgG4, an IgG subclass that does not fix complement. Besides immune complexes, alterations of the glomerular basement membrane (GBM) in MN may lead to impaired regulation of the alternative pathway (AP). The AP amplifies complement activation on surfaces insufficiently protected by complement regulatory proteins. Whereas podocytes are protected by cell-bound regulators, the GBM must recruit plasma factor H, which inhibits the AP on host surfaces carrying certain polyanions, such as heparan sulfate (HS) chains. Because HS chains present in the normal GBM are lost in MN, we posit that the local complement regulation by factor H may be impaired as a result. Thus, the loss of GBM HS in MN creates a micro-environment that promotes local amplification of complement activation, which in turn may be initiated via the classical or lectin pathways by subsets of IgG in immune complexes. A detailed understanding of the mechanisms of complement activation and dysregulation in MN is important for designing more effective therapies. PMID:27199983

  4. An amphioxus gC1q protein binds human IgG and initiates the classical pathway: Implications for a C1q-mediated complement system in the basal chordate.

    PubMed

    Gao, Zhan; Li, Mengyang; Ma, Jie; Zhang, Shicui

    2014-12-01

    The origin of the classical complement pathway remains open during chordate evolution. A C1q-like member, BjC1q, was identified in the basal chordate amphioxus. It is predominantly expressed in the hepatic caecum, hindgut, and notochord, and is significantly upregulated following challenge with bacteria or lipoteichoic acid and LPS. Recombinant BjC1q and its globular head domain specifically interact with lipoteichoic acid and LPS, but BjC1q displays little lectin activity. Moreover, rBjC1q can assemble to form the high molecular weight oligomers necessary for binding to proteases C1r/C1s and for complement activation, and binds human C1r/C1s/mannan-binding lectin-associated serine protease-2 as well as amphioxus serine proteases involved in the cleavage of C4/C2, and C3 activation. Importantly, rBjC1q binds with human IgG as well as an amphioxus Ig domain containing protein, resulting in the activation of the classical complement pathway. This is the first report showing that a C1q-like protein in invertebrates is able to initiate classical pathway, raising the possibility that amphioxus possesses a C1q-mediated complement system. It also suggests a new scenario for the emergence of the classical complement pathway, in contrast to the proposal that the lectin pathway evolved into the classical pathway.

  5. An amphioxus gC1q protein binds human IgG and initiates the classical pathway: Implications for a C1q-mediated complement system in the basal chordate.

    PubMed

    Gao, Zhan; Li, Mengyang; Ma, Jie; Zhang, Shicui

    2014-12-01

    The origin of the classical complement pathway remains open during chordate evolution. A C1q-like member, BjC1q, was identified in the basal chordate amphioxus. It is predominantly expressed in the hepatic caecum, hindgut, and notochord, and is significantly upregulated following challenge with bacteria or lipoteichoic acid and LPS. Recombinant BjC1q and its globular head domain specifically interact with lipoteichoic acid and LPS, but BjC1q displays little lectin activity. Moreover, rBjC1q can assemble to form the high molecular weight oligomers necessary for binding to proteases C1r/C1s and for complement activation, and binds human C1r/C1s/mannan-binding lectin-associated serine protease-2 as well as amphioxus serine proteases involved in the cleavage of C4/C2, and C3 activation. Importantly, rBjC1q binds with human IgG as well as an amphioxus Ig domain containing protein, resulting in the activation of the classical complement pathway. This is the first report showing that a C1q-like protein in invertebrates is able to initiate classical pathway, raising the possibility that amphioxus possesses a C1q-mediated complement system. It also suggests a new scenario for the emergence of the classical complement pathway, in contrast to the proposal that the lectin pathway evolved into the classical pathway. PMID:25174509

  6. Identification of Novel Pathways in Plant Lectin-Induced Cancer Cell Apoptosis

    PubMed Central

    Shi, Zheng; Sun, Rong; Yu, Tian; Liu, Rong; Cheng, Li-Jia; Bao, Jin-Ku; Zou, Liang; Tang, Yong

    2016-01-01

    Plant lectins have been investigated to elucidate their complicated mechanisms due to their remarkable anticancer activities. Although plant lectins seems promising as a potential anticancer agent for further preclinical and clinical uses, further research is still urgently needed and should include more focus on molecular mechanisms. Herein, a Naïve Bayesian model was developed to predict the protein-protein interaction (PPI), and thus construct the global human PPI network. Moreover, multiple sources of biological data, such as smallest shared biological process (SSBP), domain-domain interaction (DDI), gene co-expression profiles and cross-species interolog mapping were integrated to build the core apoptotic PPI network. In addition, we further modified it into a plant lectin-induced apoptotic cell death context. Then, we identified 22 apoptotic hub proteins in mesothelioma cells according to their different microarray expressions. Subsequently, we used combinational methods to predict microRNAs (miRNAs) which could negatively regulate the abovementioned hub proteins. Together, we demonstrated the ability of our Naïve Bayesian model-based network for identifying novel plant lectin-treated cancer cell apoptotic pathways. These findings may provide new clues concerning plant lectins as potential apoptotic inducers for cancer drug discovery. PMID:26867193

  7. Mannan-binding lectin-associated serine protease 2 is critical for the development of renal ischemia reperfusion injury and mediates tissue injury in the absence of complement C4.

    PubMed

    Asgari, Elham; Farrar, Conrad A; Lynch, Nicholas; Ali, Youssif M; Roscher, Silke; Stover, Cordula; Zhou, Wuding; Schwaeble, Wilhelm J; Sacks, Steven H

    2014-09-01

    Mannan-binding lectin-associated serine protease 2 (MASP-2) has been described as the essential enzyme for the lectin pathway (LP) of complement activation. Since there is strong published evidence indicating that complement activation via the LP critically contributes to ischemia reperfusion (IR) injury, we assessed the effect of MASP-2 deficiency in an isogenic mouse model of renal transplantation. The experimental transplantation model used included nephrectomy of the remaining native kidney at d 5 post-transplantation. While wild-type (WT) kidneys grafted into WT recipients (n=7) developed acute renal failure (control group), WT grafts transplanted into MASP-2-deficient recipients (n=7) showed significantly better kidney function, less C3 deposition, and less IR injury. In the absence of donor or recipient complement C4 (n=7), the WT to WT phenotype was preserved, indicating that the MASP-2-mediated damage was independent of C4 activation. This C4-bypass MASP-2 activity was confirmed in mice deficient for both MASP-2 and C4 (n=7), where the protection from postoperative acute renal failure was no greater than in mice with MASP-2 deficiency alone. Our study highlights the role of LP activation in renal IR injury and indicates that injury occurs through MASP-2-dependent activation events independent of C4.

  8. AMD and the alternative complement pathway: genetics and functional implications.

    PubMed

    Tan, Perciliz L; Bowes Rickman, Catherine; Katsanis, Nicholas

    2016-01-01

    Age-related macular degeneration (AMD) is an ocular neurodegenerative disorder and is the leading cause of legal blindness in Western societies, with a prevalence of up to 8 % over the age of 60, which continues to increase with age. AMD is characterized by the progressive breakdown of the macula (the central region of the retina), resulting in the loss of central vision including visual acuity. While its molecular etiology remains unclear, advances in genetics and genomics have illuminated the genetic architecture of the disease and have generated attractive pathomechanistic hypotheses. Here, we review the genetic architecture of AMD, considering the contribution of both common and rare alleles to susceptibility, and we explore the possible mechanistic links between photoreceptor degeneration and the alternative complement pathway, a cascade that has emerged as the most potent genetic driver of this disorder. PMID:27329102

  9. Complement

    MedlinePlus

    ... in: Cancer Certain infections Ulcerative colitis Decreased complement activity may be seen in: Cirrhosis Glomerulonephritis Hereditary angioedema Hepatitis Kidney transplant rejection Lupus nephritis Malnutrition Systemic lupus erythematosis

  10. The mannan-binding lectin pathway and lung disease in cystic fibrosis--disfunction of mannan-binding lectin-associated serine protease 2 (MASP-2) may be a major modifier.

    PubMed

    Olesen, H V; Jensenius, J C; Steffensen, R; Thiel, S; Schiøtz, P O

    2006-12-01

    The lectin pathway of complement activation is initiated by mannan-binding lectin (MBL) or the ficolins through the common MBL-associated serine protease-2 (MASP-2). Deficiency of MBL has been associated with poorer outcome in cystic fibrosis (CF). We investigated the MBL pathway further by analysis of the MASP-2 deficiency mutation (D105G) as well as MBL-2 genotypes. Concentrations and genotypes of MASP-2 and MBL in 109 CF patients were correlated to lung function and chronic infections. We describe the first CF patient homozygous for the mutation, a girl with extremely severe lung disease with no other precipitating factors. We suspect total MASP-2 dysfunction to be a major modifier of CF lung disease. However, heterozygosity for the D105G mutation of MASP-2 had no correlation to MBL pathway function or poor lung function. Lung function was higher in the MBL deficiency determining genotypes (XA/YO+YO/YO) than in the other genotypes. PMID:17045845

  11. Regulation of the alternative pathway of complement modulates injury and immunity in a chronic model of dextran sulphate sodium-induced colitis

    PubMed Central

    Elvington, M; Schepp-Berglind, J; Tomlinson, S

    2015-01-01

    The role of complement in inflammatory bowel disease (IBD) has been studied primarily using acute models, and it is unclear how complement affects processes in more relevant chronic models of IBD in which modulation of adaptive immunity and development of fibrosis have pathogenic roles. Using mice deficient in C1q/mannose-binding lectin (MBL) or C3, we demonstrated an important role for these opsonins and/or the classical pathway C3 convertase in providing protection against mucosal injury and infection in a model of chronic dextran sulphate sodium (DSS)-induced colitis. In contrast, deficiency of the alternative pathway (fB–/– mice) had significantly less impact on injury profiles. Consequently, the effect of a targeted inhibitor of the alternative pathway was investigated in a therapeutic protocol. Following the establishment of colitis, mice were treated with CR2-fH during subsequent periods of DSS treatment and acute injury (modelling relapse). CR2-fH significantly reduced complement activation, inflammation and injury in the colon, and additionally reduced fibrosis. Alternative pathway inhibition also altered the immune response in the chronic state in terms of reducing numbers of B cells, macrophages and mature dendritic cells in the lamina propria. This study indicates an important role for the alternative pathway of complement in the pathogenesis and the shaping of an immune response in chronic DSS-induced colitis, and supports further investigation into the use of targeted alternative pathway inhibition for the treatment of IBD. PMID:25293413

  12. Molecular defects in the mannose binding lectin pathway in dermatological disease: Case report and literature review

    PubMed Central

    2010-01-01

    Mannose-binding lectin (MBL) and the Mannose-binding lectin-associated serine proteases (MASPs) are an essential aspect of innate immune responses that probably play an important but understudied role in cutaneous function. The MBL-MASP pathway appears to exert its primary role by assisting in the clearance of apoptotic skin cells (thus preventing accumulation and a subsequent autoimmune response) and promoting opsonophagocytosis of invading pathogens, limiting their dissemination. Deficiencies of the pathway have been described and are associated with infectious, autoimmune and vascular complications. However, the role of this pathway in dermatological disease is essentially unexplored. We describe 6 patients presenting with recurrent inflammatory and/or infectious skin conditions who also demonstrated severely low MBL levels. One patient also had a defect in the MASP2 gene. Genotype analysis revealed specific point mutations in the MBL2 promoter in all 6 patients and a variant MASP-2 gene in one patient. Five patients presented recurrent pustular skin infections (cellulitis, folliculitis and cutaneous abscess). A case of Grover's disease and one forme fruste of Behcet's syndrome (orogenital ulcers) were also observed. The patients responded to antimicrobial therapy, although in some, recurrence of infection was the rule. It appears that MBL deficiency may contribute to recurrent skin infections and to certain forms of inflammatory skin disease. The mechanisms may relate to the role of this pathway in innate immunity, removal of apoptotic cells and in immune complexes. Further study of MBL pathway defects in dermatological disease is required. PMID:20338057

  13. Inhibition of the alternative complement pathway by antisense oligonucleotides targeting complement factor B improves lupus nephritis in mice.

    PubMed

    Grossman, Tamar R; Hettrick, Lisa A; Johnson, Robert B; Hung, Gene; Peralta, Raechel; Watt, Andrew; Henry, Scott P; Adamson, Peter; Monia, Brett P; McCaleb, Michael L

    2016-06-01

    Systemic lupus erythematosus is an autoimmune disease that manifests in widespread complement activation and deposition of complement fragments in the kidney. The complement pathway is believed to play a significant role in the pathogenesis and in the development of lupus nephritis. Complement factor B is an important activator of the alternative complement pathway and increasing evidence supports reducing factor B as a potential novel therapy to lupus nephritis. Here we investigated whether pharmacological reduction of factor B expression using antisense oligonucleotides could be an effective approach for the treatment of lupus nephritis. We identified potent and well tolerated factor B antisense oligonucleotides that resulted in significant reductions in hepatic and plasma factor B levels when administered to normal mice. To test the effects of factor B antisense oligonucleotides on lupus nephritis, we used two different mouse models, NZB/W F1 and MRL/lpr mice, that exhibit lupus nephritis like renal pathology. Antisense oligonucleotides mediated reductions in circulating factor B levels were associated with significant improvements in renal pathology, reduced glomerular C3 deposition and proteinuria, and improved survival. These data support the strategy of using factor B antisense oligonucleotides for treatment of lupus nephritis in humans.

  14. Review on complement analysis method and the roles of glycosaminoglycans in the complement system.

    PubMed

    Li, Lian; Li, Yan; Ijaz, Muhammad; Shahbaz, Muhammad; Lian, Qianqian; Wang, Fengshan

    2015-12-10

    Complement system is composed of over 30 proteins and it plays important roles in self-defence and inflammation. There are three activation pathways, including classical pathway, alternative pathway and lectin pathway, in complement system, and they are associated with many diseases such as osteoarthritis and age-related macular degeneration. Modulation of the complement system may be a promising strategy in the treatment of related diseases. Glycosaminoglycans are anionic linear polysaccharides without branches. They are one kind of multi-functional macromolecules which have great potential in regulating complement system. This review is organized around two aspects between the introduction of complement system and the interaction of glycosaminoglycans with complement system. Three complement activation pathways and the biological significance were introduced first. Then functional analysis methods were compared to provide a strategy for potential glycosaminoglycans screen. Finally, the roles of glycosaminoglycans played in the complement system were summed up.

  15. Blockade of Alternative Complement Pathway in Dense Deposit Disease

    PubMed Central

    Sacquépée, Mathieu; Fila, Marc; Peuchmaur, Michel; Perrier-Cornet, Emilia; Frémeaux-Bacchi, Véronique; Deschênes, Georges

    2014-01-01

    A patient aged 17 with dense deposit disease associated with complement activation, circulating C3 Nef, and Factor H mutation presented with nephrotic syndrome and hypertension. Steroid therapy, plasma exchange, and rituximab failed to improve proteinuria and hypertension despite a normalization of the circulating sC5b9 complex. Eculizumab, a monoclonal antibody directed against C5, was used to block the terminal product of the complement cascade. The dose was adapted to achieve a CH50 below 10%, but proteinuria and blood pressure were not improved after 3 months of treatment. PMID:24672732

  16. Alternative pathway of complement activation by stimulated T lymphocytes. II. Elevation of cytotoxic potential against complement receptor-carrying cell lines.

    PubMed

    Ramos, O F; Sármay, G; Eggertsen, G; Nilsson, B; Klein, E; Gergely, J

    1987-07-01

    Exposure of lectin-stimulated (concanavalin A, phytohemagglutinin and pokeweed mitogen) blood lymphocytes to human serum or to purified C3 increased their cytotoxic capacity towards complement receptor positive targets such as Raji and Daudi cells. The lysis of complement receptor-negative lymphoblastoid cell lines was not influenced. The lytic capacity of lymphocytes exposed to 12-O-tetradecanoylphorbol 13-acetate was not elevated by human serum. Lectin-stimulated lymphocytes were previously shown to activate and bind C3. The results using lymphocytes activated in different ways and targets with or without complement receptor expression suggest that the C3b deposited on lymphocytes binds to the complement receptor on the targets. This contact elevates the avidity between the two cells as indicated also by the increased frequency of the lymphocyte-target conjugates. On the basis of immune adherence the C3 fragment bound on the lymphocytes was identified as C3b. The increase of the conjugate formation and cytotoxicity was abrogated when the target cells, Raji, were pre-exposed to purified C3d which occupy the CR2 receptor. The majority of lymphocytes responsible for the cytotoxicity were CD8+. PMID:3111863

  17. Humoral pattern recognition and the complement system.

    PubMed

    Degn, S E; Thiel, S

    2013-08-01

    In the context of immunity, pattern recognition is the art of discriminating friend from foe and innocuous from noxious. The basis of discrimination is the existence of evolutionarily conserved patterns on microorganisms, which are intrinsic to these microorganisms and necessary for their function and existence. Such immutable or slowly evolving patterns are ideal handles for recognition and have been targeted by early cellular immune defence mechanisms such as Toll-like receptors, NOD-like receptors, RIG-I-like receptors, C-type lectin receptors and by humoral defence mechanisms such as the complement system. Complement is a proteolytic cascade system comprising around 35 different soluble and membrane-bound proteins. It constitutes a central part of the innate immune system, mediating several major innate effector functions and modulating adaptive immune responses. The complement cascade proceeds via controlled, limited proteolysis and conformational changes of constituent proteins through three activation pathways: the classical pathway, the alternative pathway and the lectin pathway, which converge in common effector functions. Here, we review the nature of the pattern recognition molecules involved in complement activation, as well as their close relatives with no or unknown capacity for activating complement. We proceed to examine the composition of the pattern recognition complexes involved in complement activation, focusing on those of the lectin pathway, and arrive at a new model for their mechanism of operation, supported by recently emerging evidence.

  18. Studies on activation and levels of haemolytic complement of buffalo (Bubalus bubalis). 1. Classical complement pathway.

    PubMed

    Jain, A; Goel, M C

    1989-12-01

    Optimum conditions for haemolytic complement (HC) assay in buffalo serum were standardized. In all, 11 indicator systems of red blood cells (RBC) and haemolysins were investigated. Maximum HC CH50 titre was obtained with rabbit RBC sensitized with goat haemolysin. The effect of pH, Ca2+ and Mg2+ concentration, ionic strength, time and temperature were studied. Of all the variables, ionic strength influenced the HC activity most significantly. The standard system for titrating the HC consisted of rabbit RBC sensitized with goat haemolysin, sucrose-veronal buffer with pH 7.5, ionic strength 0.023 M and Ca2+ and Mg2+ concentrations 6 x 10(-4) and 2 x 10(-3) M, respectively. Incubation at 37 degrees C for 2 h gave highest haemolytic activity. With this protocol 5-7-fold higher HC activity was recorded than with prestandardized conditions. Levels of HC were determined in the sera of 98 buffaloes aged from 1 month to 12 years. The lowest mean CH50 units of 401 +/- 0.35 per ml were recorded in buffalo calves below 3 months of age. The mean HC levels increased with age, reaching peak values of 2349 +/- 62.25 CH50 units/ml in 2-3-year-old buffalo. Animals in the age group 5-12 years had significantly decreased (P less than 0.05) mean HC levels of 1545 +/- 68.94.

  19. The dual role of complement in the progression of renal disease in NZB/W F(1) mice and alternative pathway inhibition.

    PubMed

    Sekine, Hideharu; Ruiz, Phillip; Gilkeson, Gary S; Tomlinson, Stephen

    2011-10-01

    Complement plays a dual role in the progression of systemic lupus erythematosus since it has important protective functions, such as the clearance of immune complexes and apoptotic cells, but is also a mediator of renal inflammation. To investigate this balance in a clinically relevant setting, we investigated how targeted inhibition of all complement pathways vs. targeted inhibition of only the alternative pathway impacts immune and therapeutic outcomes in NZB/W F(1) mice. Following onset of proteinuria, mice were injected twice weekly with CR2-fH (inhibits alternative pathway), CR2-Crry (inhibits all pathways at C3 activation step), sCR2 (C3d targeting vehicle) or saline. Sera were analyzed every 2 weeks for anti-dsDNA antibody levels, and urinary albumin excretion was determined. Kidneys were collected for histological evaluation at 32 weeks. Compared to the control group, all CR2-fH, CR2-Crry and sCR2 treated groups showed significantly reduced serum anti-dsDNA antibody levels and strong trends towards reduced glomerular IgG deposition levels. Glomerular C3 deposition levels were also significantly reduced in all three-treated groups. However, significant reductions of disease activity (albuminuria and glomerulonephritis) were only seen in the CR2-fH treated group. These data highlight the dual role played by complement in the pathogenesis of lupus, and demonstrate a benefit of selectively inhibiting the alternative complement pathway, presumably because of protective contributions from the classical and/or lectin pathways. The sCR2 targeting moiety appears to be contributing to therapeutic outcome via modulation of autoimmunity. Furthermore, these results are largely consistent with our previous data using the MRL/lpr lupus model, thus broadening the significance of these findings.

  20. The dual role of complement in the progression of renal disease in NZB/W F(1) mice and alternative pathway inhibition.

    PubMed

    Sekine, Hideharu; Ruiz, Phillip; Gilkeson, Gary S; Tomlinson, Stephen

    2011-10-01

    Complement plays a dual role in the progression of systemic lupus erythematosus since it has important protective functions, such as the clearance of immune complexes and apoptotic cells, but is also a mediator of renal inflammation. To investigate this balance in a clinically relevant setting, we investigated how targeted inhibition of all complement pathways vs. targeted inhibition of only the alternative pathway impacts immune and therapeutic outcomes in NZB/W F(1) mice. Following onset of proteinuria, mice were injected twice weekly with CR2-fH (inhibits alternative pathway), CR2-Crry (inhibits all pathways at C3 activation step), sCR2 (C3d targeting vehicle) or saline. Sera were analyzed every 2 weeks for anti-dsDNA antibody levels, and urinary albumin excretion was determined. Kidneys were collected for histological evaluation at 32 weeks. Compared to the control group, all CR2-fH, CR2-Crry and sCR2 treated groups showed significantly reduced serum anti-dsDNA antibody levels and strong trends towards reduced glomerular IgG deposition levels. Glomerular C3 deposition levels were also significantly reduced in all three-treated groups. However, significant reductions of disease activity (albuminuria and glomerulonephritis) were only seen in the CR2-fH treated group. These data highlight the dual role played by complement in the pathogenesis of lupus, and demonstrate a benefit of selectively inhibiting the alternative complement pathway, presumably because of protective contributions from the classical and/or lectin pathways. The sCR2 targeting moiety appears to be contributing to therapeutic outcome via modulation of autoimmunity. Furthermore, these results are largely consistent with our previous data using the MRL/lpr lupus model, thus broadening the significance of these findings. PMID:22000720

  1. Functional characterization of a ficolin-mediated complement pathway in amphioxus.

    PubMed

    Huang, Huiqing; Huang, Shengfeng; Yu, Yingcai; Yuan, Shaochun; Li, Rui; Wang, Xin; Zhao, Hongchen; Yu, Yanhong; Li, Jun; Yang, Manyi; Xu, Liqun; Chen, Shangwu; Xu, Anlong

    2011-10-21

    The ficolin-mediated complement pathway plays an important role in vertebrate immunity, but it is not clear whether this pathway exists in invertebrates. Here we identified homologs of ficolin pathway components from the cephalochordate amphioxus and investigated whether they had been co-opted into a functional ficolin pathway. Four of these homologs, ficolin FCN1, serine protease MASP1 and MASP3, and complement component C3, were highly expressed in mucosal tissues and gonads, and were significantly up-regulated following bacterial infection. Recombinant FCN1 could induce hemagglutination, discriminate among sugar components, and specifically recognize and aggregate several bacteria (especially gram-positive strains) without showing bactericidal activity. This suggested that FCN1 is a dedicated pattern-recognition receptor. Recombinant serine protease MASP1/3 formed complexes with recombinant FCN1 and facilitated the activation of native C3 protein in amphioxus humoral fluid, in which C3 acted as an immune effector. We conclude that amphioxus have developed a functional ficolin-complement pathway. Because ficolin pathway components have not been reported in non-chordate species, our findings supported the idea that this pathway may represent a chordate-specific innovation in the evolution of the complement system.

  2. Alternative complement pathway activation is essential for inflammation and joint destruction in the passive transfer model of collagen-induced arthritis.

    PubMed

    Banda, Nirmal K; Thurman, Joshua M; Kraus, Damian; Wood, Allyson; Carroll, Michael C; Arend, William P; Holers, V Michael

    2006-08-01

    Activation of each complement initiation pathway (classical, alternative, and lectin) can lead to the generation of bioactive fragments with resulting inflammation in target organs. The objective of the current study was to determine the role of specific complement activation pathways in the pathogenesis of experimental anti-type II collagen mAb-passive transfer arthritis. C57BL/6 mice were used that were genetically deficient in either the alternative pathway protein factor B (Bf(-/-)) or in the classical pathway component C4 (C4(-/-)). Clinical disease activity was markedly decreased in Bf(-/-) compared with wild-type (WT) mice (0.5 +/- 0.22 (n = 6) in Bf(-/-) vs 8.83 +/- 0.41 (n = 6) in WT mice (p < 0.0001)). Disease activity scores were not different between C4(-/-) and WT mice. Analyses of joints showed that C3 deposition, inflammation, pannus, cartilage, and bone damage scores were all significantly less in Bf(-/-) as compared with WT mice. There were significant decreases in mRNA levels of C3, C4, CR2, CR3, C3aR, and C5aR in the knees of Bf(-/-) as compared with C4(-/-) and WT mice with arthritis; mRNA levels for complement regulatory proteins did not differ between the three strains. These results indicate that the alternative pathway is absolutely required for the induction of arthritis following injection of anti-collagen Abs. The mechanisms by which these target organ-specific mAbs bypass the requirements for engagement of the classical pathway remain to be defined but do not appear to involve a lack of alternative pathway regulatory proteins. PMID:16849503

  3. Isolated compounds from Sorghum bicolor L. inhibit the classical pathway of the complement.

    PubMed

    Moon, Hyung-In; Lee, Young-Choon; Lee, Jai-Heon

    2012-04-01

    The present study evaluated the anticomplement effects from isolated compounds of Sorghum bicolor in classical pathway complement system. Using column chromatograph, three compounds; Sorgoleone-362 (1), Sorgoleone-360 (2) and Sorgoleone-386 (3) were isolated and evaluated for in vitro anticomplement activity. Sorgoleone-386 showed inhibitory activity against complement system with 50% inhibitory concentrations (IC(50)) values of 148.3μg/ml. This is the first report of anticomplement activity of isolated compounds from Sorghum bicolor.

  4. The complement system in human cardiometabolic disease.

    PubMed

    Hertle, E; Stehouwer, C D A; van Greevenbroek, M M J

    2014-10-01

    The complement system has been implicated in obesity, fatty liver, diabetes and cardiovascular disease (CVD). Complement factors are produced in adipose tissue and appear to be involved in adipose tissue metabolism and local inflammation. Thereby complement links adipose tissue inflammation to systemic metabolic derangements, such as low-grade inflammation, insulin resistance and dyslipidaemia. Furthermore, complement has been implicated in pathophysiological mechanisms of diet- and alcohol induced liver damage, hyperglycaemia, endothelial dysfunction, atherosclerosis and fibrinolysis. In this review, we summarize current evidence on the role of the complement system in several processes of human cardiometabolic disease. C3 is the central component in complement activation, and has most widely been studied in humans. C3 concentrations are associated with insulin resistance, liver dysfunction, risk of the metabolic syndrome, type 2 diabetes and CVD. C3 can be activated by the classical, the lectin and the alternative pathway of complement activation; and downstream activation of C3 activates the terminal pathway. Complement may also be activated via extrinsic proteases of the coagulation, fibrinolysis and the kinin systems. Studies on the different complement activation pathways in human cardiometabolic disease are limited, but available evidence suggests that they may have distinct roles in processes underlying cardiometabolic disease. The lectin pathway appeared beneficial in some studies on type 2 diabetes and CVD, while factors of the classical and the alternative pathway were related to unfavourable cardiometabolic traits. The terminal complement pathway was also implicated in insulin resistance and liver disease, and appears to have a prominent role in acute and advanced CVD. The available human data suggest a complex and potentially causal role for the complement system in human cardiometabolic disease. Further, preferably longitudinal studies are needed to

  5. Current Understanding of the Role of Complement in IgA Nephropathy.

    PubMed

    Maillard, Nicolas; Wyatt, Robert J; Julian, Bruce A; Kiryluk, Krzysztof; Gharavi, Ali; Fremeaux-Bacchi, Veronique; Novak, Jan

    2015-07-01

    Complement activation has a role in the pathogenesis of IgA nephropathy, an autoimmune disease mediated by pathogenic immune complexes consisting of galactose-deficient IgA1 bound by antiglycan antibodies. Of three complement-activation pathways, the alternative and lectin pathways are involved in IgA nephropathy. IgA1 can activate both pathways in vitro, and pathway components are present in the mesangial immunodeposits, including properdin and factor H in the alternative pathway and mannan-binding lectin, mannan-binding lectin-associated serine proteases 1 and 2, and C4d in the lectin pathway. Genome-wide association studies identified deletion of complement factor H-related genes 1 and 3 as protective against the disease. Because the corresponding gene products compete with factor H in the regulation of the alternative pathway, it has been hypothesized that the absence of these genes could lead to more potent inhibition of complement by factor H. Complement activation can take place directly on IgA1-containing immune complexes in circulation and/or after their deposition in the mesangium. Notably, complement factors and their fragments may serve as biomarkers of IgA nephropathy in serum, urine, or renal tissue. A better understanding of the role of complement in IgA nephropathy may provide potential targets and rationale for development of complement-targeting therapy of the disease.

  6. Alternative Complement Pathway Deficiency Ameliorates Chronic Smoke-Induced Functional and Morphological Ocular Injury

    PubMed Central

    Woodell, Alex; Coughlin, Beth; Kunchithapautham, Kannan; Casey, Sarah; Williamson, Tucker; Ferrell, W. Drew; Atkinson, Carl; Jones, Bryan W.; Rohrer, Bärbel

    2013-01-01

    Background Age-related macular degeneration (AMD), a complex disease involving genetic variants and environmental insults, is among the leading causes of blindness in Western populations. Genetic and histologic evidence implicate the complement system in AMD pathogenesis; and smoking is the major environmental risk factor associated with increased disease risk. Although previous studies have demonstrated that cigarette smoke exposure (CE) causes retinal pigment epithelium (RPE) defects in mice, and smoking leads to complement activation in patients, it is unknown whether complement activation is causative in the development of CE pathology; and if so, which complement pathway is required. Methods Mice were exposed to cigarette smoke or clean, filtered air for 6 months. The effects of CE were analyzed in wildtype (WT) mice or mice without a functional complement alternative pathway (AP; CFB−/−) using molecular, histological, electrophysiological, and behavioral outcomes. Results CE in WT mice exhibited a significant reduction in function of both rods and cones as determined by electroretinography and contrast sensitivity measurements, concomitant with a thinning of the nuclear layers as measured by SD-OCT imaging and histology. Gene expression analyses suggested that alterations in both photoreceptors and RPE/choroid might contribute to the observed loss of function, and visualization of complement C3d deposition implies the RPE/Bruch's membrane (BrM) complex as the target of AP activity. RPE/BrM alterations include an increase in mitochondrial size concomitant with an apical shift in mitochondrial distribution within the RPE and a thickening of BrM. CFB−/− mice were protected from developing these CE-mediated alterations. Conclusions Taken together, these findings provide clear evidence that ocular pathology generated in CE mice is dependent on complement activation and requires the AP. Identifying animal models with RPE/BrM damage and verifying which

  7. Functional analysis of the classical, alternative, and MBL pathways of the complement system: standardization and validation of a simple ELISA.

    PubMed

    Seelen, M A; Roos, A; Wieslander, J; Mollnes, T E; Sjöholm, A G; Wurzner, R; Loos, M; Tedesco, F; Sim, R B; Garred, P; Alexopoulos, E; Turner, M W; Daha, M R

    2005-01-01

    Primary defence against invading microorganisms depends on a functional innate immune system and the complement system plays a major role in such immunity. Deficiencies in one of the components of the complement system can cause severe and recurrent infections, systemic diseases, such as systemic lupus erythematosus (SLE) and renal disease. Screening for complement deficiencies in the classical or alternative complement pathways has mainly been performed by haemolytic assays. Here, we describe a simple ELISA-based format for the evaluation of three pathways of complement activation. The assays are based on specific coatings for each pathway in combination with specific buffer systems. We have standardized these assays and defined cut off values to detect complement deficiencies at the different levels of the complement system. The results demonstrate the value of these ELISA-based procedures for the functional assessment of complement deficiencies in clinical practice. The assay is now available commercially in kit form.

  8. CspA from Borrelia burgdorferi Inhibits the Terminal Complement Pathway

    PubMed Central

    Hallström, Teresia; Siegel, Corinna; Mörgelin, Matthias; Kraiczy, Peter; Skerka, Christine; Zipfel, Peter F.

    2013-01-01

    ABSTRACT In order to survive and persist in an immunocompetent human host, Borrelia burgdorferi controls the human immune attack and blocks the damaging effects of the activated complement system. These Gram-negative spirochetes use CspA (CRASP-1) and four additional immune evasion proteins to bind combinations of human plasma regulators, including factor H, factor H-like protein 1 (FHL-1), complement factor H-related protein 1 (CFHR1), CFHR2, CFHR5, and plasminogen. As many microbial immune evasion proteins have multiple functions, we hypothesized that CspA has additional roles in complement or immune control. Here, we identify CspA as a terminal complement inhibitor. Borrelial CspA binds the human terminal complement components C7 and C9 and blocks assembly and membrane insertion of the terminal complement complex (TCC). CspA inhibits TCC assembly at the level of C7, as revealed by hemolytic assays, and inhibits polymerization of C9. CspA, when ectopically expressed on the surface of serum-sensitive Borrelia garinii, blocks TCC assembly on the level of C7 and induces serum resistance in the transformed bacteria. This CspA-mediated serum resistance and terminal complement pathway inhibition allow B. burgdorferi to survive in the hostile environment of human plasma. PMID:23943762

  9. CLASSICAL COMPLEMENT PATHWAY ACTIVATION IN THE KIDNEYS OF WOMEN WITH PREECLAMPSIA

    PubMed Central

    Penning, Marlies; Chua, Jamie S.; van Kooten, Cees; Zandbergen, Malu; Buurma, Aletta; Schutte, Joke; Bruijn, Jan Anthonie; Khankin, Eliyahu. V.; Bloemenkamp, Kitty; Karumanchi, S. Ananth.; Baelde, Hans

    2015-01-01

    A growing body of evidence suggests that complement dysregulation plays a role in the pathogenesis of preeclampsia. The kidney is one of the major organs affected in preeclampsia. Because the kidney is highly susceptible to complement activation, we hypothesized that preeclampsia is associated with renal complement activation. We performed a nationwide search for renal autopsy material in the Netherlands using a computerized database (PALGA). Renal tissue was obtained from 11 women with preeclampsia, 25 pregnant controls, and 14 non-pregnant controls with hypertension. The samples were immunostained for C4d, C1q, MBL, properdin, C3d, C5b-9, IgA, IgG, and IgM. Preeclampsia was significantly associated with renal C4d—a stable marker of complement activation—and the classical pathway marker C1q. In addition, the prevalence of IgM was significantly higher in the kidneys of the preeclamptic women. No other complement markers studied differed between the groups. Our findings in human samples were validated using a soluble fms-like tyrosine kinase 1 (sFlt-1) mouse model of preeclampsia. The kidneys in the sFlt-1–injected mice had significantly more C4 deposits than the control mice. The association between preeclampsia and renal C4d, C1q, and IgM levels suggests that the classical complement pathway is involved in the renal injury in preeclampsia. Moreover, our finding that sFlt-1–injected mice develop excess C4 deposits indicates that angiogenic dysregulation may play a role in complement activation within the kidney. We suggest that inhibiting complement activation may be beneficial for preventing the renal manifestations of preeclampsia. PMID:25941343

  10. Activation of the alternative complement pathway in canine normal serum by Paracoccidioides brasiliensis

    PubMed Central

    Bianchini, A.A.C.; Petroni, T.F.; Fedatto, P.F.; Bianchini, R.R.; Venancio, E.J.; Itano, E.N.; Ono, M.A.

    2009-01-01

    The dimorphic fungus Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis, a human granulomatous disease. Recently the first case of natural disease in dogs was reported. The complement system is an important effector component of humoral immunity against infectious agents. Therefore, the aim of this study was to evaluate the activation of the dog alternative complement pathway by P. brasiliensis. Initially, the ability of erythrocytes of guinea pig, rabbit, sheep, chicken and swine to activate the dog alternative pathway was evaluated. The guinea pig erythrocytes showed the greatest capacity to activate dog alternative pathway. The alternative (AH50) hemolytic activity was evaluated in 27 serum samples from healthy dogs and the mean values were 87.2 AH50/ml. No significant differences were observed in relation to sex and age. The alternative pathway activation by P. brasiliensis was higher in serum samples from adult dogs when compared to puppies and aged dogs (p ≤ 0.05). This is the first report of dog alternative complement pathway activation by P. brasiliensis and suggests that it may play a protective role in canine paracoccidioidomycosis. PMID:24031350

  11. Alternative pathway of complement activation in full term and premature infants.

    PubMed

    Strunk, R C; Fenton, L J; Gaines, J A

    1979-05-01

    Classical and alternative pathway complement levels were measured in the cord blood sera of 60 newly born infants, with weights ranging from 1200--4165 g. The impact of maternal illness and infant illness on the complement levels was also evaluated. The mean values for CH50, C3, C4, PH50, factor B, and properdin were all significantly less than normal adult levels (P less than 0.0001). All of the above determinations were significantly correlated with one another except for the relationship between properdin and factor B. CH50, PH50, C4, and properdin levels were significantly correlated with birth weight although there was much residual scatter. Neither maternal illness nor mild to moderate illness in the newborn altered the birth weight-complement relationships. Severe infant illness did significantly alter the relationship between birth weight and complement. However, the impact of this variable on the birth weight-complement relationships was not consistent among the various components. These inconsistencies and the small sample size preclude drawing any strong conclusions about severe illness and complement levels. PMID:471596

  12. Alternative pathway of complement activation in full term and premature infants.

    PubMed

    Strunk, R C; Fenton, L J; Gaines, J A

    1979-05-01

    Classical and alternative pathway complement levels were measured in the cord blood sera of 60 newly born infants, with weights ranging from 1200--4165 g. The impact of maternal illness and infant illness on the complement levels was also evaluated. The mean values for CH50, C3, C4, PH50, factor B, and properdin were all significantly less than normal adult levels (P less than 0.0001). All of the above determinations were significantly correlated with one another except for the relationship between properdin and factor B. CH50, PH50, C4, and properdin levels were significantly correlated with birth weight although there was much residual scatter. Neither maternal illness nor mild to moderate illness in the newborn altered the birth weight-complement relationships. Severe infant illness did significantly alter the relationship between birth weight and complement. However, the impact of this variable on the birth weight-complement relationships was not consistent among the various components. These inconsistencies and the small sample size preclude drawing any strong conclusions about severe illness and complement levels.

  13. The role of complement in membranous nephropathy

    PubMed Central

    Ma, Hong; Sandor, Dana G.; Beck, Laurence H.

    2013-01-01

    Membranous nephropathy (MN) describes a histopathological pattern of injury marked by glomerular subepithelial immune deposits and collectively represents one of the most common causes of adult nephrotic syndrome. Studies in Heymann nephritis, an experimental model of MN, have established a paradigm in which these deposits locally activate complement to cause podocyte injury, culminating in cytoskeletal reorganization, loss of slit diaphragms, and proteinuria. There is much circumstantial evidence for a prominent role of complement in human MN, as C3 and C5b-9 are consistently found within immune deposits. Secondary MN often exhibits the additional presence of C1q, implicating the classical pathway of complement activation. Primary MN, however, is IgG4-predominant and IgG4 is considered incapable of binding C1q and activating the complement pathway. Recent studies have identified the M-type phospholipase A2 receptor (PLA2R) as the major target antigen in primary MN. Early evidence hints that IgG4 anti-PLA2R autoantibodies can bind mannan-binding lectin and activate the lectin complement pathway. The identification of anti-PLA2R antibodies as likely participants in the pathogenesis of disease will allow focused investigation into the role of complement in MN. Definitive therapy for MN is immunosuppression, although future therapeutic agents that specifically target complement activation may represent an effective temporizing measure to forestall further glomerular injury. PMID:24161038

  14. Current Understanding of the Role of Complement in IgA Nephropathy

    PubMed Central

    Maillard, Nicolas; Wyatt, Robert J.; Julian, Bruce A.; Kiryluk, Krzysztof; Gharavi, Ali; Fremeaux-Bacchi, Veronique

    2015-01-01

    Complement activation has a role in the pathogenesis of IgA nephropathy, an autoimmune disease mediated by pathogenic immune complexes consisting of galactose-deficient IgA1 bound by antiglycan antibodies. Of three complement-activation pathways, the alternative and lectin pathways are involved in IgA nephropathy. IgA1 can activate both pathways in vitro, and pathway components are present in the mesangial immunodeposits, including properdin and factor H in the alternative pathway and mannan-binding lectin, mannan–binding lectin–associated serine proteases 1 and 2, and C4d in the lectin pathway. Genome–wide association studies identified deletion of complement factor H–related genes 1 and 3 as protective against the disease. Because the corresponding gene products compete with factor H in the regulation of the alternative pathway, it has been hypothesized that the absence of these genes could lead to more potent inhibition of complement by factor H. Complement activation can take place directly on IgA1–containing immune complexes in circulation and/or after their deposition in the mesangium. Notably, complement factors and their fragments may serve as biomarkers of IgA nephropathy in serum, urine, or renal tissue. A better understanding of the role of complement in IgA nephropathy may provide potential targets and rationale for development of complement-targeting therapy of the disease. PMID:25694468

  15. Evolution of the complement system.

    PubMed

    Nonaka, Masaru

    2014-01-01

    The mammalian complement system constitutes a highly sophisticated body defense machinery comprising more than 30 components. Research into the evolutionary origin of the complement system has identified a primitive version composed of the central component C3 and two activation proteases Bf and MASP in cnidaria. This suggests that the complement system was established in the common ancestor of eumetazoa more than 500 million years ago. The original activation mechanism of the original complement system is believed to be close to the mammalian lectin and alternative activation pathways, and its main role seems to be opsonization and induction of inflammation. This primitive complement system has been retained by most deuterostomes without major change until the appearance of jawed vertebrates. At this stage, duplication of the C3, Bf and MASP genes as well as recruitment of membrane attack components added the classical and lytic pathways to the primitive complement system, converting it to the modern complement system. In contrast, the complement system was lost multiple times independently in the protostome lineage.

  16. A single-CRD C-type lectin from oyster Crassostrea gigas mediates immune recognition and pathogen elimination with a potential role in the activation of complement system.

    PubMed

    Li, Hui; Zhang, Huan; Jiang, Shuai; Wang, Weilin; Xin, Lusheng; Wang, Hao; Wang, Lingling; Song, Linsheng

    2015-06-01

    C-type lectins (CTLs), serving as pattern recognition receptors (PRRs), are a superfamily of Ca(2+)-dependent carbohydrate-recognition proteins that participate in nonself-recognition and pathogen elimination. In the present study, a single carbohydrate-recognition domain (CRD) CTL was identified from oyster Crassostrea gigas (designated as CgCLec-2). There was only one CRD within the deduced amino acid sequence of CgCLec-2 consisting of 129 amino acid residues. A conserved EPN (Glu246-Pro247-Asn248) motif was found in Ca(2+)-binding site 2 of CgCLec-2. The CgCLec-2 mRNA could be detected in all the examined tissues at different expression levels in oysters. The mRNA expression of CgCLec-2 in hemocytes was up-regulated significantly at 6 h post Vibrio splendidus challenge. The recombinant CgCLec-2 (rCgCLec-2) could bind various Pathogen-Associated Molecular Patterns (PAMPs), including lipopolysaccharide, mannan and peptidoglycan, and displayed strong binding abilities to Vibrio anguillarum, V. splendidus and Yarrowiali polytica and week binding ability to Staphylococcus aureus. It could also enhance the phagocytic activity of oyster hemocytes to V. splendidus and exhibited growth suppression activity against gram-positive bacteria S. aureus but no effect on gram-negative bacteria V. splendidus. Furthermore, the interaction between rCgCLec-2 and rCgMASPL-1 was confirmed by GST Pull down. The results suggested that CgCLec-2 served as not only a PRR in immune recognition but also a regulatory factor in pathogen elimination, and played a potential role in the activation of complement system. PMID:25800112

  17. A single-CRD C-type lectin from oyster Crassostrea gigas mediates immune recognition and pathogen elimination with a potential role in the activation of complement system.

    PubMed

    Li, Hui; Zhang, Huan; Jiang, Shuai; Wang, Weilin; Xin, Lusheng; Wang, Hao; Wang, Lingling; Song, Linsheng

    2015-06-01

    C-type lectins (CTLs), serving as pattern recognition receptors (PRRs), are a superfamily of Ca(2+)-dependent carbohydrate-recognition proteins that participate in nonself-recognition and pathogen elimination. In the present study, a single carbohydrate-recognition domain (CRD) CTL was identified from oyster Crassostrea gigas (designated as CgCLec-2). There was only one CRD within the deduced amino acid sequence of CgCLec-2 consisting of 129 amino acid residues. A conserved EPN (Glu246-Pro247-Asn248) motif was found in Ca(2+)-binding site 2 of CgCLec-2. The CgCLec-2 mRNA could be detected in all the examined tissues at different expression levels in oysters. The mRNA expression of CgCLec-2 in hemocytes was up-regulated significantly at 6 h post Vibrio splendidus challenge. The recombinant CgCLec-2 (rCgCLec-2) could bind various Pathogen-Associated Molecular Patterns (PAMPs), including lipopolysaccharide, mannan and peptidoglycan, and displayed strong binding abilities to Vibrio anguillarum, V. splendidus and Yarrowiali polytica and week binding ability to Staphylococcus aureus. It could also enhance the phagocytic activity of oyster hemocytes to V. splendidus and exhibited growth suppression activity against gram-positive bacteria S. aureus but no effect on gram-negative bacteria V. splendidus. Furthermore, the interaction between rCgCLec-2 and rCgMASPL-1 was confirmed by GST Pull down. The results suggested that CgCLec-2 served as not only a PRR in immune recognition but also a regulatory factor in pathogen elimination, and played a potential role in the activation of complement system.

  18. Identification of peptidic inhibitors of the alternative complement pathway based on Staphylococcus aureus SCIN proteins.

    PubMed

    Summers, Brady J; Garcia, Brandon L; Woehl, Jordan L; Ramyar, Kasra X; Yao, Xiaolan; Geisbrecht, Brian V

    2015-10-01

    The complement system plays a central role in a number of human inflammatory diseases, and there is a significant need for development of complement-directed therapies. The discovery of an arsenal of anti-complement proteins secreted by the pathogen Staphylococcus aureus brought with it the potential for harnessing the powerful inhibitory properties of these molecules. One such family of inhibitors, the SCINs, interact with a functional "hot-spot" on the surface of C3b. SCINs not only stabilize an inactive form of the alternative pathway (AP) C3 convertase (C3bBb), but also overlap the C3b binding site of complement factors B and H. Here we determined that a conserved Arg residue in SCINs is critical for function of full-length SCIN proteins. Despite this, we also found SCIN-specific differences in the contributions of other residues found at the C3b contact site, which suggested that a more diverse repertoire of residues might be able to recognize this region of C3b. To investigate this possibility, we conducted a phage display screen aimed at identifying SCIN-competitive 12-mer peptides. In total, seven unique sequences were identified and all exhibited direct C3b binding. A subset of these specifically inhibited the AP in assays of complement function. The mechanism of AP inhibition by these peptides was probed through surface plasmon resonance approaches, which revealed that six of the seven peptides disrupted C3bBb formation by interfering with factor B/C3b binding. To our knowledge this study has identified the first small molecules that retain inhibitory properties of larger staphylococcal immune evasion proteins.

  19. The Role of Complement System in Septic Shock

    PubMed Central

    Charchaflieh, Jean; Wei, Jiandong; Labaze, Georges; Hou, Yunfang Joan; Babarsh, Benjamin; Stutz, Helen; Lee, Haekyung; Worah, Samrat; Zhang, Ming

    2012-01-01

    Septic shock is a critical clinical condition with a high mortality rate. A better understanding of the underlying mechanisms is important to develop effective therapies. Basic and clinical studies suggest that activation of complements in the common cascade, for example, complement component 3 (C3) and C5, is involved in the development of septic shock. The involvement of three upstream complement pathways in septic shock is more complicated. Both the classical and alternative pathways appear to be activated in septic shock, but the alternative pathway may be activated earlier than the classical pathway. Activation of these two pathways is essential to clear endotoxin. Recent investigations have shed light on the role of lectin complement pathway in septic shock. Published reports suggest a protective role of mannose-binding lectin (MBL) against sepsis. Our preliminary study of MBL-associated serine protease-2 (MASP-2) in septic shock patients indicated that acute decrease of MASP-2 in the early phase of septic shock might correlate with in-hospital mortality. It is unknown whether excessive activation of these three upstream complement pathways may contribute to the detrimental effects in septic shock. This paper also discusses additional complement-related pathogenic mechanisms and intervention strategies for septic shock. PMID:23049598

  20. Complement alternative pathway genetic variation and Dengue infection in the Thai population.

    PubMed

    Kraivong, R; Vasanawathana, S; Limpitikul, W; Malasit, P; Tangthawornchaikul, N; Botto, M; Screaton, G R; Mongkolsapaya, J; Pickering, M C

    2013-11-01

    Dengue disease is a mosquito-borne infection caused by Dengue virus. Infection may be asymptomatic or variably manifest as mild Dengue fever (DF) to the most severe form, Dengue haemorrhagic fever (DHF). Mechanisms that influence disease severity are not understood. Complement, an integral component of the immune system, is activated during Dengue infection and the degree of activation increases with disease severity. Activation of the complement alternative pathway is influenced by polymorphisms within activation (factor B rs12614/rs641153, C3 rs2230199) and regulatory [complement factor H (CFH) rs800292] proteins, collectively termed a complotype. Here, we tested the hypothesis that the complotype influences disease severity during secondary Dengue infection. In addition to the complotype, we also assessed two other disease-associated CFH polymorphisms (rs1061170, rs3753394) and a structural polymorphism within the CFH protein family. We did not detect any significant association between the examined polymorphisms and Dengue infection severity in the Thai population. However, the minor allele frequencies of the factor B and C3 polymorphisms were less than 10%, so our study was not sufficiently powered to detect an association at these loci. We were also unable to detect a direct interaction between CFH and Dengue NS1 using both recombinant NS1 and DV2-infected culture supernatants. We conclude that the complotype does not influence secondary Dengue infection severity in the Thai population.

  1. Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex.

    PubMed

    Garcia, Brandon L; Zhi, Hui; Wager, Beau; Höök, Magnus; Skare, Jon T

    2016-01-01

    Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems.

  2. Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex

    PubMed Central

    Wager, Beau; Höök, Magnus; Skare, Jon T.

    2016-01-01

    Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems. PMID:26808924

  3. A Zebrafish Model for Uremic Toxicity: Role of the Complement Pathway

    PubMed Central

    Thurman, Josh; Reinecke, James; Raff, Amanda C.; Melamed, Michal L.; Reinecke, James; Quan, Zhe; Evans, Todd; Meyer, Timothy W.; Hostetter, Thomas H

    2016-01-01

    Many organic solutes accumulate in ESRD and some are poorly removed removed with urea based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients pre-dialysis or from normal subjects. Zebrafish embryos 24 hours post fertilization were exposed to experimental media at a ratio of 3:1 water:human serum. Those exposed to serum from uremic subjects had significantly reduced survival at 8 hours (19% +/− 18% vs. 94% +/− 6%; p < 0.05, uremic serum vs control, respectively). Embryos exposed to serum from ESRD subjects fractionated at 50kD showed significantly greater toxicity with the larger molecular weight fraction (83% +/− 11% vs 7% +/−17% survival, p < 0.05, <50kD vs >50 kD, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96%+/− 5% vs 28%+/− 20% survival, p < 0.016, chelated vs non chelated serum respectively). Anti- factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98% +/− 6% vs. 3% +/− 9% survival, p < 0.016, anti- factor B treated vs non treated, respectively).Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and non-specific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement. PMID:23689420

  4. A zebrafish model for uremic toxicity: role of the complement pathway.

    PubMed

    Berman, Nathaniel; Lectura, Melisa; Thurman, Joshua M; Reinecke, James; Raff, Amanda C; Melamed, Michal L; Quan, Zhe; Evans, Todd; Meyer, Timothy W; Hostetter, Thomas H

    2013-01-01

    Many organic solutes accumulate in end-stage renal disease (ESRD) and some are poorly removed with urea-based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients predialysis or from normal subjects. Zebrafish embryos 24 h postfertilization were exposed to experimental media at a water:human serum ratio of 3:1. Those exposed to serum from uremic subjects had significantly reduced survival at 8 h (19 ± 18 vs. 94 ± 6%, p < 0.05, uremic serum vs. control, respectively). Embryos exposed to serum from ESRD subjects fractionated at 50 kDa showed significantly greater toxicity with the larger molecular weight fraction (83 ± 11 vs. 7 ± 17% survival, p < 0.05, <50 vs. >50 kDa, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96 ± 5 vs. 28 ± 20% survival, p < 0.016, chelated vs. nonchelated serum, respectively). Anti-factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98 ± 6 vs. 3 ± 9% survival, p < 0.016, anti-factor B treated vs. nontreated, respectively). Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and nonspecific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement.

  5. A zebrafish model for uremic toxicity: role of the complement pathway.

    PubMed

    Berman, Nathaniel; Lectura, Melisa; Thurman, Joshua M; Reinecke, James; Raff, Amanda C; Melamed, Michal L; Quan, Zhe; Evans, Todd; Meyer, Timothy W; Hostetter, Thomas H

    2013-01-01

    Many organic solutes accumulate in end-stage renal disease (ESRD) and some are poorly removed with urea-based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients predialysis or from normal subjects. Zebrafish embryos 24 h postfertilization were exposed to experimental media at a water:human serum ratio of 3:1. Those exposed to serum from uremic subjects had significantly reduced survival at 8 h (19 ± 18 vs. 94 ± 6%, p < 0.05, uremic serum vs. control, respectively). Embryos exposed to serum from ESRD subjects fractionated at 50 kDa showed significantly greater toxicity with the larger molecular weight fraction (83 ± 11 vs. 7 ± 17% survival, p < 0.05, <50 vs. >50 kDa, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96 ± 5 vs. 28 ± 20% survival, p < 0.016, chelated vs. nonchelated serum, respectively). Anti-factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98 ± 6 vs. 3 ± 9% survival, p < 0.016, anti-factor B treated vs. nontreated, respectively). Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and nonspecific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement. PMID:23689420

  6. Genetic Investigation of Complement Pathway Genes in Type 2 Diabetic Retinopathy: An Inflammatory Perspective

    PubMed Central

    Yang, Ming Ming; Wang, Jun; Ren, Hong; Sun, Yun Duan; Fan, Jiao Jie; Teng, Yan; Li, Yan Bo

    2016-01-01

    Diabetic retinopathy (DR) has complex multifactorial pathogenesis. This study aimed to investigate the association of complement pathway genes with susceptibility to DR. Eight haplotype-tagging SNPs of SERPING1 and C5 were genotyped in 570 subjects with type 2 diabetes: 295 DR patients (138 nonproliferative DR [NPDR] and 157 proliferative DR [PDR]) and 275 diabetic controls. Among the six C5 SNPs, a marginal association was first detected between rs17611 and total DR patients (P = 0.009, OR = 0.53 for recessive model). In stratification analysis, a significant decrease in the frequencies of G allele and GG homozygosity for rs17611 was observed in PDR patients compared with diabetic controls (Pcorr = 0.032, OR = 0.65 and Pcorr = 0.016, OR = 0.37, resp.); it was linked with a disease progression. A haplotype AA defined by the major alleles of rs17611 and rs1548782 was significantly predisposed to PDR with increased risk of 1.54 (Pcorr = 0.023). Regarding other variants in C5 and SERPING1, none of the tagging SNPs had a significant association with DR and its subgroups (all P > 0.05). Our study revealed an association between DR and C5 polymorphisms with clinical significance, whereas SERPING1 is not a major genetic component of DR. Our data suggest a link of complement pathway with DR pathogenesis. PMID:26989329

  7. NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways

    PubMed Central

    Yuen, Joshua; Pluthero, Fred G.; Douda, David N.; Riedl, Magdalena; Cherry, Ahmed; Ulanova, Marina; Kahr, Walter H. A.; Palaniyar, Nades; Licht, Christoph

    2016-01-01

    Neutrophils deposit antimicrobial proteins, such as myeloperoxidase and proteases on chromatin, which they release as neutrophil extracellular traps (NETs). Neutrophils also carry key components of the complement alternative pathway (AP) such as properdin or complement factor P (CFP), complement factor B (CFB), and C3. However, the contribution of these complement components and complement activation during NET formation in the presence and absence of bacteria is poorly understood. We studied complement activation on NETs and a Gram-negative opportunistic bacterial pathogen Pseudomonas aeruginosa (PA01, PAKwt, and PAKgfp). Here, we show that anaphylatoxin C5a, formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol myristate acetate (PMA), which activates NADPH oxidase, induce the release of CFP, CFB, and C3 from neutrophils. In response to PMA or P. aeruginosa, neutrophils secrete CFP, deposit it on NETs and bacteria, and induce the formation of terminal complement complexes (C5b–9). A blocking anti-CFP antibody inhibited AP-mediated but not non-AP-mediated complement activation on NETs and P. aeruginosa. Therefore, NET-mediated complement activation occurs via both AP- and non AP-based mechanisms, and AP-mediated complement activation during NETosis is dependent on CFP. These findings suggest that neutrophils could use their “AP tool kit” to readily activate complement on NETs and Gram-negative bacteria, such as P. aeruginosa, whereas additional components present in the serum help to fix non-AP-mediated complement both on NETs and bacteria. This unique mechanism may play important roles in host defense and help to explain specific roles of complement activation in NET-related diseases. PMID:27148258

  8. Complement factor D homolog involved in the alternative complement pathway of rock bream (Oplegnathus fasciatus): Molecular and functional characterization and immune responsive mRNA expression analysis.

    PubMed

    Godahewa, G I; Perera, N C N; Bathige, S D N K; Nam, Bo-Hye; Noh, Jae Koo; Lee, Jehee

    2016-08-01

    The complement system serves conventional role in the innate defense against common invading pathogens. Complement factor D (CfD) is vital to alternative complement pathway activation in cleaving complement factor B. This catalytic reaction forms the alternative C3 convertase that is crucial for complement-mediated pathogenesis. In this study, rock bream (Oplegnathus fasciatus) CfD (OfCfD) was characterized and OfCfD mRNA expression was investigated. OfCfD encodes 277 amino acids (aa) for a 30-kDa polypeptide. A domain analysis of the deduced OfCfD aa sequence showed a single serine protease trypsin superfamily domain, a serine active region, three active sites, and three substrate-binding sites. Pairwise sequence comparisons indicated that OfCfD has the highest identity (84.5%) with Oreochromis niloticus CfD. The phylogenetic tree revealed a common ancestral origin of CfD members, with fish CfD distinct from other vertebrate orthologs. The structural arrangement of the OfCfD gene (2451 bp) contained five exons interrupted by four introns. A spatial transcriptional analysis indicated that OfCfD transcripts constitutively expressed in all of the examined rock bream tissues, and that they were highest in the spleen and liver. In addition, OfCfD transcripts were immunologically upregulated by lipopolysaccharide (LPS) (12 h p.i.), Streptococcus iniae (12 h p.i.), rock bream iridovirus (RBIV) (6-12 h p.i.), and poly I:C (6 h p.i.) in spleen tissue. OfCfD is a trypsin protease and its recombinant protein showed strong protease activity similar to that of trypsin, indicating its catalytic function in the alternative pathway. Together, our findings suggest that OfCfD might be involved in immune responses in rock bream.

  9. Complement factor D homolog involved in the alternative complement pathway of rock bream (Oplegnathus fasciatus): Molecular and functional characterization and immune responsive mRNA expression analysis.

    PubMed

    Godahewa, G I; Perera, N C N; Bathige, S D N K; Nam, Bo-Hye; Noh, Jae Koo; Lee, Jehee

    2016-08-01

    The complement system serves conventional role in the innate defense against common invading pathogens. Complement factor D (CfD) is vital to alternative complement pathway activation in cleaving complement factor B. This catalytic reaction forms the alternative C3 convertase that is crucial for complement-mediated pathogenesis. In this study, rock bream (Oplegnathus fasciatus) CfD (OfCfD) was characterized and OfCfD mRNA expression was investigated. OfCfD encodes 277 amino acids (aa) for a 30-kDa polypeptide. A domain analysis of the deduced OfCfD aa sequence showed a single serine protease trypsin superfamily domain, a serine active region, three active sites, and three substrate-binding sites. Pairwise sequence comparisons indicated that OfCfD has the highest identity (84.5%) with Oreochromis niloticus CfD. The phylogenetic tree revealed a common ancestral origin of CfD members, with fish CfD distinct from other vertebrate orthologs. The structural arrangement of the OfCfD gene (2451 bp) contained five exons interrupted by four introns. A spatial transcriptional analysis indicated that OfCfD transcripts constitutively expressed in all of the examined rock bream tissues, and that they were highest in the spleen and liver. In addition, OfCfD transcripts were immunologically upregulated by lipopolysaccharide (LPS) (12 h p.i.), Streptococcus iniae (12 h p.i.), rock bream iridovirus (RBIV) (6-12 h p.i.), and poly I:C (6 h p.i.) in spleen tissue. OfCfD is a trypsin protease and its recombinant protein showed strong protease activity similar to that of trypsin, indicating its catalytic function in the alternative pathway. Together, our findings suggest that OfCfD might be involved in immune responses in rock bream. PMID:27311435

  10. A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury.

    PubMed

    Huang, Yuxiang; Qiao, Fei; Atkinson, Carl; Holers, V Michael; Tomlinson, Stephen

    2008-12-01

    Bioavailability and therapeutic efficacy of soluble Crry, a mouse inhibitor of all complement activation pathways, is significantly enhanced when linked to a fragment of complement receptor 2 (CR2), a receptor that targets C3 activation products. In this study, we characterize alternative pathway-specific inhibitors consisting of a single or dimeric N-terminal region of mouse factor H (fH; short consensus repeats 1-5) linked to the same CR2 fragment (CR2-fH and CR2-fHfH). Both CR2-fH and CR2-fHfH were highly effective at inhibiting the alternative pathway in vitro and demonstrated a higher specific activity than CR2-Crry. CR2-fH was also more effective than endogenous serum fH in blocking target deposition of C3. Target binding and complement inhibitory activity of CR2-fH/CR2-fHfH was dependent on CR2- and C3-mediated interactions. The alternative pathway of complement plays a role in intestine ischemia/reperfusion injury. However, serum fH fails to provide protection against intestine ischemia/reperfusion injury although it can bind to and provide cell surfaces with protection from complement and is present in plasma at a high concentration. In a mouse model, CR2-fH and CR2-fHfH provided complete protection from local (intestine) and remote (lung) injury. CR2-fH targeted to the site of local injury and greatly reduced levels of tissue C3 deposition. Thus, the targeting mechanism significantly enhances alternative pathway-specific complement inhibitory activity of the N-terminal domain of fH and has the potential to reduce side effects that may be associated with systemic complement blockade. The data further indicate alternative pathway dependence for local and remote injury following intestinal ischemia/reperfusion in a clinically relevant therapeutic paradigm.

  11. A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury.

    PubMed

    Huang, Yuxiang; Qiao, Fei; Atkinson, Carl; Holers, V Michael; Tomlinson, Stephen

    2008-12-01

    Bioavailability and therapeutic efficacy of soluble Crry, a mouse inhibitor of all complement activation pathways, is significantly enhanced when linked to a fragment of complement receptor 2 (CR2), a receptor that targets C3 activation products. In this study, we characterize alternative pathway-specific inhibitors consisting of a single or dimeric N-terminal region of mouse factor H (fH; short consensus repeats 1-5) linked to the same CR2 fragment (CR2-fH and CR2-fHfH). Both CR2-fH and CR2-fHfH were highly effective at inhibiting the alternative pathway in vitro and demonstrated a higher specific activity than CR2-Crry. CR2-fH was also more effective than endogenous serum fH in blocking target deposition of C3. Target binding and complement inhibitory activity of CR2-fH/CR2-fHfH was dependent on CR2- and C3-mediated interactions. The alternative pathway of complement plays a role in intestine ischemia/reperfusion injury. However, serum fH fails to provide protection against intestine ischemia/reperfusion injury although it can bind to and provide cell surfaces with protection from complement and is present in plasma at a high concentration. In a mouse model, CR2-fH and CR2-fHfH provided complete protection from local (intestine) and remote (lung) injury. CR2-fH targeted to the site of local injury and greatly reduced levels of tissue C3 deposition. Thus, the targeting mechanism significantly enhances alternative pathway-specific complement inhibitory activity of the N-terminal domain of fH and has the potential to reduce side effects that may be associated with systemic complement blockade. The data further indicate alternative pathway dependence for local and remote injury following intestinal ischemia/reperfusion in a clinically relevant therapeutic paradigm. PMID:19017999

  12. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

    PubMed Central

    Lintner, Katherine E.; Wu, Yee Ling; Yang, Yan; Spencer, Charles H.; Hauptmann, Georges; Hebert, Lee A.; Atkinson, John P.; Yu, C. Yung

    2016-01-01

    The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases. PMID:26913032

  13. A Targeted Inhibitor of the Alternative Complement Pathway Accelerates Recovery From Smoke-Induced Ocular Injury

    PubMed Central

    Woodell, Alex; Jones, Bryan W.; Williamson, Tucker; Schnabolk, Gloriane; Tomlinson, Stephen; Atkinson, Carl; Rohrer, Bärbel

    2016-01-01

    Purpose Morphologic and genetic evidence exists that an overactive complement system driven by the complement alternative pathway (AP) is involved in pathogenesis of age-related macular degeneration (AMD). Smoking is the only modifiable risk factor for AMD. As we have shown that smoke-related ocular pathology can be prevented in mice that lack an essential activator of AP, we ask here whether this pathology can be reversed by increasing inhibition in AP. Methods Mice were exposed to either cigarette smoke (CS) or filtered air (6 hours/day, 5 days/week, 6 months). Smoke-exposed animals were then treated with the AP inhibitor (CR2-fH) or vehicle control (PBS) for the following 3 months. Spatial frequency and contrast sensitivity were assessed by optokinetic response paradigms at 6 and 9 months; additional readouts included assessment of retinal morphology by electron microscopy (EM) and gene expression analysis by quantitative RT-PCR. Results The CS mice treated with CR2-fH showed significant improvement in contrast threshold compared to PBS-treated mice, whereas spatial frequency was unaffected by CS or pharmacologic intervention. Treatment with CR2-fH in CS animals reversed thinning of the retina observed in PBS-treated mice as analyzed by spectral-domain optical coherence tomography, and reversed most morphologic changes in RPE and Bruch's membrane seen in CS animals by EM. Conclusions Taken together, these findings suggest that AP inhibitors not only prevent, but have the potential to accelerate the clearance of complement-mediated ocular injury. Improving our understanding of the regulation of the AP is paramount to developing novel treatment approaches for AMD. PMID:27064393

  14. Peptide Inhibitor of Complement C1 (PIC1) Rapidly Inhibits Complement Activation after Intravascular Injection in Rats.

    PubMed

    Sharp, Julia A; Hair, Pamela S; Pallera, Haree K; Kumar, Parvathi S; Mauriello, Clifford T; Nyalwidhe, Julius O; Phelps, Cody A; Park, Dalnam; Thielens, Nicole M; Pascal, Stephen M; Chen, Waldon; Duffy, Diane M; Lattanzio, Frank A; Cunnion, Kenji M; Krishna, Neel K

    2015-01-01

    The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1). In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases. PMID:26196285

  15. Complement regulators in human disease: lessons from modern genetics.

    PubMed

    K Liszewski, M; Atkinson, J P

    2015-03-01

    First identified in human serum in the late 19th century as a 'complement' to antibodies in mediating bacterial lysis, the complement system emerged more than a billion years ago probably as the first humoral immune system. The contemporary complement system consists of nearly 60 proteins in three activation pathways (classical, alternative and lectin) and a terminal cytolytic pathway common to all. Modern molecular biology and genetics have not only led to further elucidation of the structure of complement system components, but have also revealed function-altering rare variants and common polymorphisms, particularly in regulators of the alternative pathway, that predispose to human disease by creating 'hyperinflammatory complement phenotypes'. To treat these 'complementopathies', a monoclonal antibody against the initiator of the membrane attack complex, C5, has received approval for use. Additional therapeutic reagents are on the horizon.

  16. Therapeutic inhibition of the early phase of complement activation.

    PubMed

    Roos, Anja; Ramwadhdoebé, Tamara H; Nauta, Alma J; Hack, C Erik; Daha, Mohamed R

    2002-09-01

    The complement system is a key component of innate immunity against invading pathogens. However, undesired activation of complement is involved in inflammation and associated tissue damage in a number of pathological conditions, such as ischemia/reperfusion injury, autoimmune diseases, and rejection of allo- and xenografts. During recent years, various therapeutically active complement inhibitors have been developed. In vivo studies using these inhibitors underscored the value of complement inhibition in the prevention of tissue damage. The currently available complement inhibitors mainly target the effector phase of the complement system that is common to all three activation pathways. Such a complete block of complement activation breaks the innate anti-microbial barrier, thereby increasing the risk for infection. Therefore, the development of potent complement inhibitors that interfere in the recognition phase of a specific complement activation pathway will generate important novel possibilities for treatment. The present review is focused on molecules that are able to inhibit the function of C1q and MBL, the recognition units of the classical pathway and the lectin pathway of complement, respectively. The potential value of these molecules for the development of therapeutically active complement inhibitors is discussed.

  17. MytiLec, a Mussel R-Type Lectin, Interacts with Surface Glycan Gb3 on Burkitt’s Lymphoma Cells to Trigger Apoptosis through Multiple Pathways

    PubMed Central

    Hasan, Imtiaj; Sugawara, Shigeki; Fujii, Yuki; Koide, Yasuhiro; Terada, Daiki; Iimura, Naoya; Fujiwara, Toshiyuki; Takahashi, Keisuke G.; Kojima, Nobuhiko; Rajia, Sultana; Kawsar, Sarkar M. A.; Kanaly, Robert A.; Uchiyama, Hideho; Hosono, Masahiro; Ogawa, Yukiko; Fujita, Hideaki; Hamako, Jiharu; Matsui, Taei; Ozeki, Yasuhiro

    2015-01-01

    MytiLec; a novel lectin isolated from the Mediterranean mussel (Mytilus galloprovincialis); shows strong binding affinity to globotriose (Gb3: Galα1-4Galβ1-4Glc). MytiLec revealed β-trefoil folding as also found in the ricin B-subunit type (R-type) lectin family, although the amino acid sequences were quite different. Classification of R-type lectin family members therefore needs to be based on conformation as well as on primary structure. MytiLec specifically killed Burkitt's lymphoma Ramos cells, which express Gb3. Fluorescein-labeling assay revealed that MytiLec was incorporated inside the cells. MytiLec treatment of Ramos cells resulted in activation of both classical MAPK/ extracellular signal-regulated kinase and extracellular signal-regulated kinase (MEK-ERK) and stress-activated (p38 kinase and JNK) Mitogen-activated protein kinases (MAPK) pathways. In the cells, MytiLec treatment triggered expression of tumor necrosis factor (TNF)-α (a ligand of death receptor-dependent apoptosis) and activation of mitochondria-controlling caspase-9 (initiator caspase) and caspase-3 (activator caspase). Experiments using the specific MEK inhibitor U0126 showed that MytiLec-induced phosphorylation of the MEK-ERK pathway up-regulated expression of the cyclin-dependent kinase inhibitor p21, leading to cell cycle arrest and TNF-α production. Activation of caspase-3 by MytiLec appeared to be regulated by multiple different pathways. Our findings, taken together, indicate that the novel R-type lectin MytiLec initiates programmed cell death of Burkitt’s lymphoma cells through multiple pathways (MAPK cascade, death receptor signaling; caspase activation) based on interaction of the lectin with Gb3-containing glycosphingolipid-enriched microdomains on the cell surface. PMID:26694420

  18. Pseudomonas aeruginosa Uses Dihydrolipoamide Dehydrogenase (Lpd) to Bind to the Human Terminal Pathway Regulators Vitronectin and Clusterin to Inhibit Terminal Pathway Complement Attack

    PubMed Central

    Hallström, Teresia; Uhde, Melanie; Singh, Birendra; Skerka, Christine; Riesbeck, Kristian; Zipfel, Peter F.

    2015-01-01

    The opportunistic human pathogen Pseudomonas aeruginosa controls host innate immune and complement attack. Here we identify Dihydrolipoamide dehydrogenase (Lpd), a 57 kDa moonlighting protein, as the first P. aeruginosa protein that binds the two human terminal pathway inhibitors vitronectin and clusterin. Both human regulators when bound to the bacterium inhibited effector function of the terminal complement, blocked C5b-9 deposition and protected the bacterium from complement damage. P. aeruginosa when challenged with complement active human serum depleted from vitronectin was severely damaged and bacterial survival was reduced by over 50%. Similarly, when in human serum clusterin was blocked by a mAb, bacterial survival was reduced by 44%. Thus, demonstrating that Pseudomonas benefits from attachment of each human regulator and controls complement attack. The Lpd binding site in vitronectin was localized to the C-terminal region, i.e. to residues 354–363. Thus, Lpd of P. aeruginosa is a surface exposed moonlighting protein that binds two human terminal pathway inhibitors, vitronectin and clusterin and each human inhibitor when attached protected the bacterial pathogen from the action of the terminal complement pathway. Our results showed insights into the important function of Lpd as a complement regulator binding protein that might play an important role in virulence of P. aeruginosa. PMID:26368530

  19. Effects of complement activation on allograft injury

    PubMed Central

    Sheen, Joong Hyuk; Heeger, Peter S.

    2015-01-01

    Purpose of review To summarize the current knowledge regarding mechanisms linking the complement system to transplant injury, highlighting findings reported since 2013. Recent findings Building upon the documentation that complement activation is a pathogenic mediator of post-transplant ischemia-reperfusion (IR) injury, emerging evidence indicates blocking either the classical or lectin pathways attenuates IR injury in animal models. Immune cell-derived and locally activated complement, including intracellular C3 positively modulates allo-reactive T cell activation and expansion, while simultaneously inhibiting regulatory T cell induction and function, together promoting transplant rejection. While alloantibody-initiated complement activation directly injures target cells, complement-dependent signals activate endothelial cells to facilitate T cell dependent inflammation. Complement activation within allografts contributes to progressive chronic injury and fibrosis. Summary The complement cascade, traditionally considered relevant to transplantation only as an effector mechanism of antibody-initiated allograft injury, is now understood to damage the allograft through multiple mechanisms. Complement activation promotes post-transplant IR injury, formation and function of allo-antibody, differentiation and function of alloreactive T cells, and contributes to chronic progressive allograft failure. The recognition that complement impacts transplant injury at many levels provides a foundation for targeting complement as a therapy to prolong transplant survival and improve patient health. PMID:26132735

  20. Design and development of TT30, a novel C3d-targeted C3/C5 convertase inhibitor for treatment of human complement alternative pathway-mediated diseases.

    PubMed

    Fridkis-Hareli, Masha; Storek, Michael; Mazsaroff, Istvan; Risitano, Antonio M; Lundberg, Ante S; Horvath, Christopher J; Holers, V Michael

    2011-10-27

    To selectively modulate human complement alternative pathway (CAP) activity implicated in a wide range of acute and chronic inflammatory conditions and to provide local cell surface and tissue-based inhibition of complement-induced damage, we developed TT30, a novel therapeutic fusion protein linking the human complement receptor type 2 (CR2/CD21) C3 fragment (C3frag = iC3b, C3dg, C3d)-binding domain with the CAP inhibitory domain of human factor H (fH). TT30 efficiently blocks ex vivo CAP-dependent C3frag accumulation on activated surfaces, membrane attack complex (MAC) formation and hemolysis of RBCs in a CR2-dependent manner, and with a ∼ 150-fold potency gain over fH, without interference of C3 activation or MAC formation through the classic and lectin pathways. TT30 protects RBCs from hemolysis and remains bound and detectable for at least 24 hours. TT30 selectively inhibits CAP in cynomolgus monkeys and is bioavailable after subcutaneous injection. Using a unique combination of targeting and effector domains, TT30 controls cell surface CAP activation and has substantial potential utility for the treatment of human CAP-mediated diseases.

  1. Design and development of TT30, a novel C3d-targeted C3/C5 convertase inhibitor for treatment of human complement alternative pathway-mediated diseases.

    PubMed

    Fridkis-Hareli, Masha; Storek, Michael; Mazsaroff, Istvan; Risitano, Antonio M; Lundberg, Ante S; Horvath, Christopher J; Holers, V Michael

    2011-10-27

    To selectively modulate human complement alternative pathway (CAP) activity implicated in a wide range of acute and chronic inflammatory conditions and to provide local cell surface and tissue-based inhibition of complement-induced damage, we developed TT30, a novel therapeutic fusion protein linking the human complement receptor type 2 (CR2/CD21) C3 fragment (C3frag = iC3b, C3dg, C3d)-binding domain with the CAP inhibitory domain of human factor H (fH). TT30 efficiently blocks ex vivo CAP-dependent C3frag accumulation on activated surfaces, membrane attack complex (MAC) formation and hemolysis of RBCs in a CR2-dependent manner, and with a ∼ 150-fold potency gain over fH, without interference of C3 activation or MAC formation through the classic and lectin pathways. TT30 protects RBCs from hemolysis and remains bound and detectable for at least 24 hours. TT30 selectively inhibits CAP in cynomolgus monkeys and is bioavailable after subcutaneous injection. Using a unique combination of targeting and effector domains, TT30 controls cell surface CAP activation and has substantial potential utility for the treatment of human CAP-mediated diseases. PMID:21860027

  2. The complement system in systemic autoimmune disease.

    PubMed

    Chen, Min; Daha, Mohamed R; Kallenberg, Cees G M

    2010-05-01

    Complement is part of the innate immune system. Its major function is recognition and elimination of pathogens via direct killing and/or stimulation of phagocytosis. Activation of the complement system is, however, also involved in the pathogenesis of the systemic autoimmune diseases. Activation via the classical pathway has long been recognized in immune complex-mediated diseases such as cryoglobulinemic vasculitis and systemic lupus erythematosus (SLE). In SLE, the role of complement is somewhat paradoxical. It is involved in autoantibody-initiated tissue damage on the one hand, but, on the other hand, it appears to have protective features as hereditary deficiencies of classical pathway components are associated with an increased risk for SLE. There is increasing evidence that the alternative pathway of complement, even more than the classical pathway, is involved in many systemic autoimmune diseases. This is true for IgA-dominant Henoch Schönlein Purpura, in which additional activation of the lectin pathway contributes to more severe disease. In anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis the complement system was considered not to be involved since immunoglobulin deposition is generally absent in the lesions. However, recent studies, both in human and animal models, demonstrated complement activation via the alternative pathway as a major pathogenic mechanism. Insight into the role of the various pathways of complement in the systemic autoimmune diseases including the vasculitides opens up new ways of treatment by blocking effector pathways of complement. This has been demonstrated for monoclonal antibodies to C5 or C5a in experimental anti-phospholipid antibody syndrome and ANCA-associated vasculitis.

  3. The Alternative Pathway of Complement and the Evolving Clinical-Pathophysiological Spectrum of Atypical Hemolytic Uremic Syndrome.

    PubMed

    Berger, Bruce E

    2016-08-01

    Complement-mediated atypical hemolytic uremic syndrome (aHUS) comprises approximately 90% of cases of aHUS, and results from dysregulation of endothelial-anchored complement activation with resultant endothelial damage. The discovery of biomarker ADAMTS13 has enabled a more accurate diagnosis of thrombotic thrombocytopenic purpura (TTP) and an appreciation of overlapping clinical features of TTP and aHUS. Given our present understanding of the pathogenic pathways involved in aHUS, it is unlikely that a specific test will be developed. Rather the use of biomarker data, complement functional analyses, genomic analyses and clinical presentation will be required to diagnose aHUS. This approach would serve to clarify whether a thrombotic microangiopathy present in a complement-amplifying condition arises from the unmasking of a genetically driven aHUS versus a time-limited complement storm-mediated aHUS due to direct endothelial damage in which no genetic predisposition is present. Although both scenarios result in the phenotypic expression of aHUS and involve the alternate pathway of complement activation, long-term management would differ.

  4. The Alternative Pathway of Complement and the Evolving Clinical-Pathophysiological Spectrum of Atypical Hemolytic Uremic Syndrome.

    PubMed

    Berger, Bruce E

    2016-08-01

    Complement-mediated atypical hemolytic uremic syndrome (aHUS) comprises approximately 90% of cases of aHUS, and results from dysregulation of endothelial-anchored complement activation with resultant endothelial damage. The discovery of biomarker ADAMTS13 has enabled a more accurate diagnosis of thrombotic thrombocytopenic purpura (TTP) and an appreciation of overlapping clinical features of TTP and aHUS. Given our present understanding of the pathogenic pathways involved in aHUS, it is unlikely that a specific test will be developed. Rather the use of biomarker data, complement functional analyses, genomic analyses and clinical presentation will be required to diagnose aHUS. This approach would serve to clarify whether a thrombotic microangiopathy present in a complement-amplifying condition arises from the unmasking of a genetically driven aHUS versus a time-limited complement storm-mediated aHUS due to direct endothelial damage in which no genetic predisposition is present. Although both scenarios result in the phenotypic expression of aHUS and involve the alternate pathway of complement activation, long-term management would differ. PMID:27524217

  5. Sequences and expression of pathway-specific complement components in developing red-tailed phascogale (Phascogale calura).

    PubMed

    Ong, Oselyne T W; Young, Lauren J; Old, Julie M

    2016-12-01

    Marsupials are born immunologically premature, relying on cells and molecules in maternal milk for immune protection. Both immunoglobulin and complement proteins have been identified in marsupial milk, but the expression of specific complement proteins remains largely unexplored. We report partial cDNA sequences for two complement-activating proteins, C3, C1r, CFP and MASP2, in liver tissues from red-tailed phascogale (Phascogale calura). Conservation of functionally relevant motifs were identified in the translated cDNA sequences from phascogale C3, CFP and MASP2 and their eutherian homologues. Gene expression of representative molecules from each of the major complement pathways was also investigated in whole body tissues from 1 to 18 day old animals and liver tissues from 31-day to 14-month old animals. Average complement expression in whole bodies and liver tissues of C1r, CFP, MASP2 and C3 increased significantly in juveniles compared to pouch young, presumably due to the maturation of the young's own complement system. Comparing expression in liver tissues only, we found that the average CFP expression were higher in pouch young compared to juveniles, while results were still statistically similar to the average expression of all tissues for C1r, MASP2 and C3. The average complement expression then significantly decreased as the animals aged into adulthood. PMID:27514577

  6. Activation of the alternative complement pathway by natural antibody to glycolipids in guinea-pig serum.

    PubMed Central

    Okada, N; Yasuda, T; Tsumita, T; Okada, H

    1983-01-01

    Liposomes containing paragloboside (PG) on their membrane were readily lysed by C4-deficient guinea-pig serum (C4D-GPS) through activation of the alternative complement pathway (ACP). Therefore we examined the reactivity of several types of guinea-pig serum (GPS) on PG-liposomes and determined that all GPS except that from specific pathogen-free (SPF) Hartley guinea-pigs had lytic capacity in Mg-EGTA-GVB (gelatin veronal-buffered saline containing Mg++ and ethyleneglycol-bis(beta-aminoethyl ether)N,N'-tetraacetate). This lytic capacity of GPS corresponded with the amount of natural antibody to PG in those sera. Although GPS of SPF guinea-pigs (SPF-GPS) could not lyse PG-liposomes in Mg-EGTA-GVB, it could lyse the liposomes when heated C4D-GPS or Hartley GPS was added. Natural antibody to PG in the heated sera was regarded to have sensitized PG-liposomes to lysis by SPF-GPS via ACP activation. Since the antibody to PG-liposomes was removed by lacto-N-nor-hexaosylceramide which has the same chemical structure in the terminal oligosaccharide, the antibody to PG in GPS was suggested to have a specificity to the terminal structure of oligosaccharide shared by lacto-N-nor-hexaosylceramide. Furthermore, the IgM fraction, which had been prepared by gel filtration of heated C4D-GPS on a Sephadex G200 column, could also sensitize PG-liposomes to lytic reaction of SPF-GPS in Mg-EGTA-GVB. This sensitizing capacity of heated C4D-GPS was suppressed by absorption of the serum or its IgM fraction with anti-guinea-pig mu-chain antibody coupled to Sepharose. Therefore, it was concluded that the lysis of PG-liposomes by GPS in Mg-EGTA-GVB was a result of ACP activation mediated by natural antibodies to PG of the IgM type which are present in usual GPS. This conclusion indicated that natural antibodies of the IgM type might play a role with ACP in host defence, especially in C4-deficient guinea-pigs where the classical complement pathway is impaired. PMID:6193057

  7. Polymorphisms in the Mannose-Binding Lectin Gene are Associated with Defective Mannose-Binding Lectin Functional Activity in Crohn's Disease Patients.

    PubMed

    Choteau, Laura; Vasseur, Francis; Lepretre, Frederic; Figeac, Martin; Gower-Rousseau, Corine; Dubuquoy, Laurent; Poulain, Daniel; Colombel, Jean-Frederic; Sendid, Boualem; Jawhara, Samir

    2016-01-01

    Mannose-binding lectin, together with mannose-associated serine proteases, activates the lectin pathway of the complement system and subsequent inflammatory mechanisms. An association between mannose-binding lectin deficiency and anti-Saccharomyces cerevisiae antibody levels is observed in Crohn's disease and this deficiency is frequently associated with a severe Crohn's disease phenotype. In the present study, we assessed the relationship between serum concentrations of mannose-binding lectin, mannose-binding lectin functional activity, MBL2 and NOD2 polymorphisms, anti-S. cerevisiae antibody levels and clinical Crohn's disease phenotype in 69 Crohn's disease patients and 30 age- and sex-matched healthy controls. The results show that the MBL2 variant rs5030737 at codon 52 was associated with a low level of mannose-binding lectin and impaired mannose-binding lectin-mannose-associated serine protease (MBL-MASP) functional activity in Crohn's disease patients. This MBL2 variant was also associated with a higher level of anti-S. cerevisiae antibodies. In addition, the NOD2 variant rs2066844, which is associated with susceptibility to Crohn's disease, was significantly correlated with an impairment in MBL-MASP functional activity. These results provide evidence that Crohn's disease patients have an impairment in MBL-MASP functional activity and that this defect is associated with MBL2 and NOD2 variants.

  8. Characterization of a Factor H Mutation That Perturbs the Alternative Pathway of Complement in a Family with Membranoproliferative GN

    PubMed Central

    Wong, Edwin K.S.; Anderson, Holly E.; Herbert, Andrew P.; Challis, Rachel C.; Brown, Paul; Reis, Geisilaine S.; Tellez, James O.; Strain, Lisa; Fluck, Nicholas; Humphrey, Ann; Macleod, Alison; Richards, Anna; Ahlert, Daniel; Santibanez-Koref, Mauro; Barlow, Paul N.; Marchbank, Kevin J.; Harris, Claire L.; Goodship, Timothy H.J.

    2014-01-01

    Complement C3 activation is a characteristic finding in membranoproliferative GN (MPGN). This activation can be caused by immune complex deposition or an acquired or inherited defect in complement regulation. Deficiency of complement factor H has long been associated with MPGN. More recently, heterozygous genetic variants have been reported in sporadic cases of MPGN, although their functional significance has not been assessed. We describe a family with MPGN and acquired partial lipodystrophy. Although C3 nephritic factor was shown in family members with acquired partial lipodystrophy, it did not segregate with the renal phenotype. Genetic analysis revealed a novel heterozygous mutation in complement factor H (R83S) in addition to known risk polymorphisms carried by individuals with MPGN. Patients with MPGN had normal levels of factor H, and structural analysis of the mutant revealed only subtle alterations. However, functional analysis revealed profoundly reduced C3b binding, cofactor activity, and decay accelerating activity leading to loss of regulation of the alternative pathway. In summary, this family showed a confluence of common and rare functionally significant genetic risk factors causing disease. Data from our analysis of these factors highlight the role of the alternative pathway of complement in MPGN. PMID:24722444

  9. Activation of the alternative complement pathway by exposure of phosphatidylethanolamine and phosphatidylserine on erythrocytes from sickle cell disease patients.

    PubMed Central

    Wang, R H; Phillips, G; Medof, M E; Mold, C

    1993-01-01

    Deoxygenation of erythrocytes from sickle cell anemia (SCA) patients alters membrane phospholipid distribution with increased exposure of phosphatidylethanolamine (PE) and phosphatidylserine (PS) on the outer leaflet. This study investigated whether altered membrane phospholipid exposure on sickle erythrocytes results in complement activation. In vitro deoxygenation of sickle but not normal erythrocytes resulted in complement activation measured by C3 binding. Additional evidence indicated that this activation was the result of the alterations in membrane phospholipids. First, complement was activated by normal erythrocytes after incubation with sodium tetrathionate, which produces similar phospholipid changes. Second, antibody was not required for complement activation by sickle or tetrathionate-treated erythrocytes. Third, the membrane regulatory proteins, decay-accelerating factor (CD55) and the C3b/C4b receptor (CD35), were normal on sickle and tetrathionate-treated erythrocytes. Finally, insertion of PE or PS into normal erythrocytes induced alternative pathway activation. SCA patients in crisis exhibited increased plasma factor Bb levels compared with baseline, and erythrocytes isolated from hospitalized SCA patients had increased levels of bound C3, indicating that alternative pathway activation occurs in vivo. Activation of complement may be a contributing factor in sickle crisis episodes, shortening the life span of erythrocytes and decreasing host defense against infections. Images PMID:7690777

  10. Antibody directs properdin-dependent activation of the complement alternative pathway in a mouse model of abdominal aortic aneurysm.

    PubMed

    Zhou, Hui-Fang; Yan, Huimin; Stover, Cordula M; Fernandez, Tamara Montes; Rodriguez de Cordoba, Santiago; Song, Wen-Chao; Wu, Xiaobo; Thompson, Robert W; Schwaeble, Wilhelm J; Atkinson, John P; Hourcade, Dennis E; Pham, Christine T N

    2012-02-14

    Abdominal aortic aneurysm (AAA) is a complex inflammatory vascular disease. There are currently limited treatment options for AAA when surgery is inapplicable. Therefore, insights into molecular mechanisms underlying AAA pathogenesis may reveal therapeutic targets that could be manipulated pharmacologically or biologically to halt disease progression. Using an elastase-induced AAA mouse model, we previously established that the complement alternative pathway (AP) plays a critical role in the development of AAA. However, the mechanism by which complement AP is initiated remains undefined. The complement protein properdin, traditionally viewed as a positive regulator of the AP, may also initiate complement activation by binding directly to target surfaces. In this study, we sought to determine whether properdin serves as a focal point for the initiation of the AP complement activation in AAA. Using a properdin loss of function mutation in mice and a mutant form of the complement factor B protein that produces a stable, properdin-free AP C3 convertase, we show that properdin is required for the development of elastase-induced AAA in its primary role as a convertase stabilizer. Unexpectedly, we find that, in AAA, natural IgG antibodies direct AP-mediated complement activation. The absence of IgG abrogates C3 deposition in elastase-perfused aortic wall and protects animals from AAA development. We also determine that blockade of properdin activity prevents aneurysm formation. These results indicate that an innate immune response to self-antigens activates the complement system and initiates the inflammatory cascade in AAA. Moreover, the study suggests that properdin-targeting strategies may halt aneurysmal growth.

  11. Down-regulation of complement receptors on the surface of host monocyte even as in vitro complement pathway blocking interferes in dengue infection.

    PubMed

    Marinho, Cintia Ferreira; Azeredo, Elzinandes Leal; Torrentes-Carvalho, Amanda; Marins-Dos-Santos, Alessandro; Kubelka, Claire Fernandes; de Souza, Luiz José; Cunha, Rivaldo Venâncio; de-Oliveira-Pinto, Luzia Maria

    2014-01-01

    In dengue virus (DENV) infection, complement system (CS) activation appears to have protective and pathogenic effects. In severe dengue fever (DF), the levels of DENV non-structural-1 protein and of the products of complement activation, including C3a, C5a and SC5b-9, are higher before vascular leakage occurs, supporting the hypothesis that complement activation contributes to unfavourable outcomes. The clinical manifestations of DF range from asymptomatic to severe and even fatal. Here, we aimed to characterise CS by their receptors or activation product, in vivo in DF patients and in vitro by DENV-2 stimulation on monocytes. In comparison with healthy controls, DF patients showed lower expression of CR3 (CD11b), CR4 (CD11c) and, CD59 on monocytes. The DF patients who were high producers of SC5b-9 were also those that showed more pronounced bleeding or vascular leakage. Those findings encouraged us to investigate the role of CS in vitro, using monocytes isolated from healthy subjects. Prior blocking with CR3 alone (CD11b) or CR3 (CD11b/CD18) reduced viral infection, as quantified by the levels of intracellular viral antigen expression and soluble DENV non-structural viral protein. However, we found that CR3 alone (CD11b) or CR3 (CD11b/CD18) blocking did not influence major histocompatibility complex presentation neither active caspase-1 on monocytes, thus probably ruling out inflammasome-related mechanisms. Although it did impair the secretion of tumour necrosis factor alpha and interferon alpha. Our data provide strategies of blocking CR3 (CD11b) pathways could have implications for the treatment of viral infection by antiviral-related mechanisms.

  12. Down-Regulation of Complement Receptors on the Surface of Host Monocyte Even as In Vitro Complement Pathway Blocking Interferes in Dengue Infection

    PubMed Central

    Marinho, Cintia Ferreira; Azeredo, Elzinandes Leal; Torrentes-Carvalho, Amanda; Marins-Dos-Santos, Alessandro; Kubelka, Claire Fernandes; de Souza, Luiz José; Cunha, Rivaldo Venâncio; de-Oliveira-Pinto, Luzia Maria

    2014-01-01

    In dengue virus (DENV) infection, complement system (CS) activation appears to have protective and pathogenic effects. In severe dengue fever (DF), the levels of DENV non-structural-1 protein and of the products of complement activation, including C3a, C5a and SC5b-9, are higher before vascular leakage occurs, supporting the hypothesis that complement activation contributes to unfavourable outcomes. The clinical manifestations of DF range from asymptomatic to severe and even fatal. Here, we aimed to characterise CS by their receptors or activation product, in vivo in DF patients and in vitro by DENV-2 stimulation on monocytes. In comparison with healthy controls, DF patients showed lower expression of CR3 (CD11b), CR4 (CD11c) and, CD59 on monocytes. The DF patients who were high producers of SC5b-9 were also those that showed more pronounced bleeding or vascular leakage. Those findings encouraged us to investigate the role of CS in vitro, using monocytes isolated from healthy subjects. Prior blocking with CR3 alone (CD11b) or CR3 (CD11b/CD18) reduced viral infection, as quantified by the levels of intracellular viral antigen expression and soluble DENV non-structural viral protein. However, we found that CR3 alone (CD11b) or CR3 (CD11b/CD18) blocking did not influence major histocompatibility complex presentation neither active caspase-1 on monocytes, thus probably ruling out inflammasome-related mechanisms. Although it did impair the secretion of tumour necrosis factor alpha and interferon alpha. Our data provide strategies of blocking CR3 (CD11b) pathways could have implications for the treatment of viral infection by antiviral-related mechanisms. PMID:25061945

  13. Molecules Great and Small: The Complement System

    PubMed Central

    Mathern, Douglas R.

    2015-01-01

    The complement cascade, traditionally considered an effector arm of innate immunity required for host defense against pathogens, is now recognized as a crucial pathogenic mediator of various kidney diseases. Complement components produced by the liver and circulating in the plasma undergo activation through the classical and/or mannose-binding lectin pathways to mediate anti-HLA antibody-initiated kidney transplant rejection and autoantibody-initiated GN, the latter including membranous glomerulopathy, antiglomerular basement membrane disease, and lupus nephritis. Inherited and/or acquired abnormalities of complement regulators, which requisitely limit restraint on alternative pathway complement activation, contribute to the pathogenesis of the C3 nephropathies and atypical hemolytic uremic syndrome. Increasing evidence links complement produced by endothelial cells and/or tubular cells to the pathogenesis of kidney ischemia-reperfusion injury and progressive kidney fibrosis. Data emerging since the mid-2000s additionally show that immune cells, including T cells and antigen-presenting cells, produce alternative pathway complement components during cognate interactions. The subsequent local complement activation yields production of the anaphylatoxins C3a and C5a, which bind to their respective receptors (C3aR and C5aR) on both partners to augment effector T-cell proliferation and survival, while simultaneously inhibiting regulatory T-cell induction and function. This immune cell–derived complement enhances pathogenic alloreactive T-cell immunity that results in transplant rejection and likely contributes to the pathogenesis of other T cell–mediated kidney diseases. C5a/C5aR ligations on neutrophils have additionally been shown to contribute to vascular inflammation in models of ANCA-mediated renal vasculitis. New translational immunology efforts along with the development of pharmacologic agents that block human complement components and receptors now permit

  14. Molecules Great and Small: The Complement System.

    PubMed

    Mathern, Douglas R; Heeger, Peter S

    2015-09-01

    The complement cascade, traditionally considered an effector arm of innate immunity required for host defense against pathogens, is now recognized as a crucial pathogenic mediator of various kidney diseases. Complement components produced by the liver and circulating in the plasma undergo activation through the classical and/or mannose-binding lectin pathways to mediate anti-HLA antibody-initiated kidney transplant rejection and autoantibody-initiated GN, the latter including membranous glomerulopathy, antiglomerular basement membrane disease, and lupus nephritis. Inherited and/or acquired abnormalities of complement regulators, which requisitely limit restraint on alternative pathway complement activation, contribute to the pathogenesis of the C3 nephropathies and atypical hemolytic uremic syndrome. Increasing evidence links complement produced by endothelial cells and/or tubular cells to the pathogenesis of kidney ischemia-reperfusion injury and progressive kidney fibrosis. Data emerging since the mid-2000s additionally show that immune cells, including T cells and antigen-presenting cells, produce alternative pathway complement components during cognate interactions. The subsequent local complement activation yields production of the anaphylatoxins C3a and C5a, which bind to their respective receptors (C3aR and C5aR) on both partners to augment effector T-cell proliferation and survival, while simultaneously inhibiting regulatory T-cell induction and function. This immune cell-derived complement enhances pathogenic alloreactive T-cell immunity that results in transplant rejection and likely contributes to the pathogenesis of other T cell-mediated kidney diseases. C5a/C5aR ligations on neutrophils have additionally been shown to contribute to vascular inflammation in models of ANCA-mediated renal vasculitis. New translational immunology efforts along with the development of pharmacologic agents that block human complement components and receptors now permit

  15. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways.

    PubMed

    van Deventer, S J; Büller, H R; ten Cate, J W; Aarden, L A; Hack, C E; Sturk, A

    1990-12-15

    Endotoxemia was evoked by bolus injection of Escherichia coli endotoxin (2 ng/kg body weight) in six healthy subjects to investigate the early kinetics of cytokine release in relation to the development of clinical and hematologic abnormalities frequently seen in gram-negative septicemia. The plasma concentration of tumor necrosis factor (TNF) increased markedly after 30 to 45 minutes, and reached a maximal level after 60 to 90 minutes. In each volunteer, the initial increase of plasma interleukin 6 (IL-6) concentrations occurred 15 minutes after the initial TNF increase, and maximal IL-6 concentrations were reached at 120 to 150 minutes. A transient increase in body temperature and pulse rate occurred simultaneously with the initial TNF and IL-6 increases, whereas a significant decrease in blood pressure occurred after 120 minutes. These changes were proportional to the changes in TNF and IL-6 concentrations. Coagulation activation, as assessed by a rise of prothrombin fragments and thrombin-antithrombin III complexes, was noted after 120 minutes, in the absence of activation of the contact system. A two- to sixfold increase in the concentrations of tissue plasminogen activator (t-PA) and von Willebrand factor antigen indicated endothelial cell activation. This increase started at 120 and 90 minutes, respectively. The release of t-PA coincided with activation of the fibrinolytic pathway, as measured by plasmin-alpha 2-antiplasmin complexes. The fibrinolytic activity of t-PA was subsequently offset by release of plasminogen activator inhibitor, observed 150 minutes after the endotoxin injection, and reaching a peak at 240 minutes. No complement activation was detected. These results show that in humans endotoxin induces an early, rapidly counteracted fibrinolytic response, and a more long-lasting activation of thrombin by a mechanism other than contact system activation. In addition, our data suggest that endotoxin-induced leukopenia and endothelial cell activation

  16. The alternative complement pathway control protein H binds to immune complexes and serves their detection

    SciTech Connect

    Nydegger, U.E.; Corvetta, A.; Spaeth, P.J.; Spycher, M.

    1983-01-01

    During solubilization of immune complexes C3b becomes fixed to the immunoglobulin part and serves as a receptor for the alternative complement pathway control protein H. The H-C3b immune complex interaction can be made detectable using 4% polyethyleneglycol to separate free from bound /sup 125/I-H. Tetanus toxoid (Te)/anti-Te complexes kept soluble with fresh serum and containing 125 IU of specific antibody bound 18% of /sup 125/I-H; when fresh serum was chelated with 10 mM EDTA, /sup 125/I-H binding was only 5%. On sucrose density gradients, the H-binding material sedimented in the range of 12 to 30 S. In 36 serum samples from rheumatoid arthritis (RA) patients and in 12 serum samples from patients with systemic lupus erythematosus (SLE), /sup 125/I-H binding was significantly elevated to 9.5 +/- 4.7% (mean +/- 1 SD) and 13.3 +/- 5.6%, respectively, while /sup 125/I-H binding by 36 normal human sera was 4 +/- 2%. RA samples (17/36, 47%) and SLE samples (9/12, 75%) had H-binding values increased by more than 2 SD above the normal mean. The serum samples were also assessed for conglutinin- and C1q-binding activities; a significant correlation between H and C1q binding was observed (P less than 0.001); there was no correlation between H and conglutinin binding. Although binding to immune complexes through its interaction with C3b, H clearly detects a population of complexes other than conglutinin, thus expanding the possibilities of further characterizing pathological complexes.

  17. Complement-Mediated Death of Ciliate Tetrahymena pyriformis Caused by Human Blood Serum.

    PubMed

    Ivanov, P A; Faktor, M I; Karpova, N S; Cheremnykh, E G; Brusov, O S

    2016-04-01

    Toxicity of human blood serum for ciliate Tetrahymena pyriformis is determined by the complement system. When ciliate are dying after being exposed to blood serum, cell membrane permeability for low-molecular-weight compounds significantly increases, probably due to pore formation. Serine protease inhibitors or exposure to physical factors inducing complement inactivation (e.g., heating up to 56°C) completely prevented ciliate death under the effect of human serum. Activation of serum complement upon interaction with Tetrahymena cells occurred by the classical or lectin pathway, while the contribution of the alternative activation pathway was negligible.

  18. Polymorphisms in the Mannose-Binding Lectin Gene are Associated with Defective Mannose-Binding Lectin Functional Activity in Crohn’s Disease Patients

    PubMed Central

    Choteau, Laura; Vasseur, Francis; Lepretre, Frederic; Figeac, Martin; Gower-Rousseau, Corine; Dubuquoy, Laurent; Poulain, Daniel; Colombel, Jean-Frederic; Sendid, Boualem; Jawhara, Samir

    2016-01-01

    Mannose-binding lectin, together with mannose-associated serine proteases, activates the lectin pathway of the complement system and subsequent inflammatory mechanisms. An association between mannose-binding lectin deficiency and anti-Saccharomyces cerevisiae antibody levels is observed in Crohn’s disease and this deficiency is frequently associated with a severe Crohn’s disease phenotype. In the present study, we assessed the relationship between serum concentrations of mannose-binding lectin, mannose-binding lectin functional activity, MBL2 and NOD2 polymorphisms, anti-S. cerevisiae antibody levels and clinical Crohn’s disease phenotype in 69 Crohn’s disease patients and 30 age- and sex-matched healthy controls. The results show that the MBL2 variant rs5030737 at codon 52 was associated with a low level of mannose-binding lectin and impaired mannose-binding lectin–mannose-associated serine protease (MBL-MASP) functional activity in Crohn’s disease patients. This MBL2 variant was also associated with a higher level of anti-S. cerevisiae antibodies. In addition, the NOD2 variant rs2066844, which is associated with susceptibility to Crohn’s disease, was significantly correlated with an impairment in MBL-MASP functional activity. These results provide evidence that Crohn’s disease patients have an impairment in MBL-MASP functional activity and that this defect is associated with MBL2 and NOD2 variants. PMID:27404661

  19. Activation of the Complement Classical Pathway (C1q Binding) by Mesophilic Aeromonas hydrophila Outer Membrane Protein

    PubMed Central

    Merino, Susana; Nogueras, Maria Mercedes; Aguilar, Alicia; Rubires, Xavier; Albertí, Sebastian; Benedí, Vicente Javier; Tomás, Juan M.

    1998-01-01

    The mechanism of killing of Aeromonas hydrophila serum-sensitive strains in nonimmune serum by the complement classical pathway has been studied. The bacterial cell surface component that binds C1q more efficiently was identified as a major outer membrane protein of 39 kDa, presumably the porin II described by D. Jeanteur, N. Gletsu, F. Pattus, and J. T. Buckley (Mol. Microbiol. 6:3355–3363, 1992), of these microorganisms. We have demonstrated that the purified form of porin II binds C1q and activates the classical pathway in an antibody-independent manner, with the subsequent consumption of C4 and reduction of the serum total hemolytic activity. Activation of the classical pathway has been observed in human nonimmune serum and agammaglobulinemic serum (both depleted of factor D). Binding of C1q to other components of the bacterial outer membrane, in particular to rough lipopolysaccharide, could not be demonstrated. Activation of the classical pathway by this lipopolysaccharide was also much less efficient than activation by the outer membrane protein. The strains possessing O-antigen lipopolysaccharide bind less C1q than the serum-sensitive strains, because the outer membrane protein is less accessible, and are resistant to complement-mediated killing. Finally, a similar or identical outer membrane protein (presumably porin II) that binds C1q was shown to be present in strains from the most common mesophilic Aeromonas O serogroups. PMID:9673268

  20. Complement contributes to the pathogenesis of Shiga toxin-associated hemolytic uremic syndrome.

    PubMed

    Karpman, Diana; Tati, Ramesh

    2016-10-01

    Complement is activated during Shiga toxin-producing Escherichia coli-associated hemolytic uremic syndrome (STEC-HUS). There is evidence of complement activation via the alternative pathway in STEC-HUS patients as well as from in vivo and in vitro models. Ozaki et al. demonstrate activation of the mannose-binding lectin (MBL) pathway in Shiga toxin-treated mice expressing human MBL2, but lacking murine Mbls. Treatment with anti-human MBL2 antibody was protective, suggesting that MBL pathway activation also contributes to Shiga toxin-mediated renal injury. PMID:27633864

  1. The activation of the C3b feedback cycle with human complement components. I. Through the classical pathway.

    PubMed

    Mak, L W; Lachmann, P J; Majewski, J

    1977-11-01

    Reaction between the fourth, the oxidized second and the activated first components of human complement generated the stable enzyme C4oxy2 capable of cleaving the third component and depleting total complement in human serum. This enzyme was shown further to activate the C3b feedback cycle as shown by its ability to consume factor B in serum and the reduction in the extent of complement consumption in the presence of EDTA. OxyC2 on its own gave rise to C3 cleavage in normal human serum by a pathway needing classical pathway components. This unexpected finding suggests that there may be a 'C-1 tickover' in serum analogous to the 'C3b tickover'; the presence of oxyC2 allowing the 'capture' of the trivial amounts of C42 normally formed. In preliminary experiments in the rat, C4oxy2 was successfully formed in vivo, where it gave rise to cleavage of C3, consumption of C5, depletion of cobra venom factor cofactors and a biphasic change in the neutrophil count.

  2. A recombinant two-module form of human properdin is an inhibitor of the complement alternative pathway.

    PubMed

    Kouser, Lubna; Abdul-Aziz, Munirah; Tsolaki, Anthony G; Singhal, Dipti; Schwaeble, Wilhelm J; Urban, Britta C; Khan, Haseeb A; Sim, Robert B; Kishore, Uday

    2016-05-01

    Properdin upregulates the alternative complement pathway by binding and stabilising the C3 convertase complex (C3bBb). Properdin is a soluble glycoprotein and its flexible rod-like 53kDa monomers form cyclic polymers (dimers, trimers, tetramers and pentamers). The properdin monomer consists of seven thrombospondin type I repeats (TSR 0-6), which are similar and homologous to domains found in circumsporozoite and thrombospondin-related anonymous proteins of Plasmodium species, ETP100 of Eimeria tenella, various complement components C6-C9, and thrombospondin I and II. Using deletion constructs, TSR4 and TSR5 of human properdin were implicated in C3b binding and stabilising C3 convertase. However, individually expressed TSR4 or TSR5 failed to bind properdin ligands. Here, we have expressed and characterized biologically active TSR4 and TSR5 together (TSR4+5) in tandem in Escherichia coli, fused to maltose-binding protein. MBP-TSR4+5 bind solid-phase C3b, sulfatides and glycosaminoglycans. In addition, functionally active recombinant TSR4+5 modules inhibit the alternative pathway of complement. PMID:27060503

  3. Synthesis and classical pathway Complement inhibitory activity of C7-functionalized filifolinol derivatives, inspired in K-76 COOH.

    PubMed

    Larghi, Enrique L; Operto, María A; Torres, Rene; Kaufman, Teodoro S

    2012-09-01

    A series of carboxylic acids carrying various functionalization on C-7 of their common 3H-spiro[benzofuran-2,1'-cyclohexane] skeleton were synthesized from filifolinol, as analogs of the natural Complement inhibitor K-76 COOH. In order to probe the relevance of the C-7 functionalization on their bioactivity, the ability of the analogs to inhibit Complement activation through the classical pathway was determined. The observed results suggest that functionalization of C-7 can modulate the inhibitory activity of the tested compounds. The 7-trifluoromethyl derivative was the compound with the lowest IC(50) value among the tested analogs (IC(50) = 100 μM), being more potent than K-76 COOH (IC(50) = 570 μM).

  4. Selective lysis of early embryonic cells by the alternative pathway of complement--a possible mechanism for programmed cell death in embryogenesis.

    PubMed

    Kircheis, R; Kircheis, L; Oshima, H; Kohchi, C; Soma, G; Mizuno, D

    1996-01-01

    Early embryonic cells and early mouse embryos were shown to activate the alternative pathway of complement, and to be highly sensitive to complement-mediated cytolysis (Kircheis et al, In Vivo 9: 85-98, 1995). Under further development embryonic cells become resistant. The induction of resistance to the alternative pathway of complement correlates with: a) altered splicing of Cr2-transcript and b) changes in the acidic glycolipids under differentiation. Early embryonic cells have low amounts of sialic acid-containing glycolipids or express mainly GM3. The induction of differentiation changes the glycolipid pattern leading to an increase in membrane-bound sialic acid. The importance of membrane-bound sialic acid in the restriction of complement activation is demonstrated by increased sensitivity to complement after pre-treatment of cells with neuraminidase. The results indicate that there is target-specific lysis of early embryonic cells by the alternative pathway of complement. Early embryonic cells activate the alternative pathway of complement by expressing activators and low levels of membrane-bound sialic acid. Induction of differentiation changes the glycolipid pattern, leading to an increase in membrane-bound sialic acid sufficient to restrict complement-activation on the cell surface. PMID:8839785

  5. Impact of mannose-binding lectin deficiency on radiocontrast-induced renal dysfunction.

    PubMed

    Osthoff, Michael; Trendelenburg, Marten

    2013-01-01

    Contrast-induced nephropathy (CIN) is the third leading cause of acute renal failure in hospitalized patients. Endothelial dysfunction, renal medullary ischemia, and tubular toxicity are regarded as the most important factors in the pathogenesis of CIN. Mannose-binding lectin (MBL), a pattern recognition protein of the lectin pathway of complement, has been found to aggravate and mediate tissue damage during experimental renal ischemia/reperfusion (I/R) injury which was alleviated by inhibition with C1 inhibitor, a potent MBL, and lectin pathway inhibitor. In this paper, we highlight the potential role of MBL in the pathogenesis of human CIN. In experimental I/R models, MBL was previously found to induce tubular cell death independent of the complement system. In addition, after binding to vascular endothelial cells, MBL and its associated serine proteases were able to trigger a proinflammatory reaction and contribute to endothelial dysfunction. In humans, urinary MBL was increased after administration of contrast media and in individuals with CIN. Moreover, individuals with normal/high MBL levels were at increased risk to develop radiocontrast-induced renal dysfunction. Hence, MBL and the lectin pathway seem to be a promising target given that a licensed, powerful, human recombinant inhibitor exits to be added to the scarce armamentarium currently available for prophylaxis of CIN.

  6. Impact of Mannose-Binding Lectin Deficiency on Radiocontrast-Induced Renal Dysfunction

    PubMed Central

    Osthoff, Michael; Trendelenburg, Marten

    2013-01-01

    Contrast-induced nephropathy (CIN) is the third leading cause of acute renal failure in hospitalized patients. Endothelial dysfunction, renal medullary ischemia, and tubular toxicity are regarded as the most important factors in the pathogenesis of CIN. Mannose-binding lectin (MBL), a pattern recognition protein of the lectin pathway of complement, has been found to aggravate and mediate tissue damage during experimental renal ischemia/reperfusion (I/R) injury which was alleviated by inhibition with C1 inhibitor, a potent MBL, and lectin pathway inhibitor. In this paper, we highlight the potential role of MBL in the pathogenesis of human CIN. In experimental I/R models, MBL was previously found to induce tubular cell death independent of the complement system. In addition, after binding to vascular endothelial cells, MBL and its associated serine proteases were able to trigger a proinflammatory reaction and contribute to endothelial dysfunction. In humans, urinary MBL was increased after administration of contrast media and in individuals with CIN. Moreover, individuals with normal/high MBL levels were at increased risk to develop radiocontrast-induced renal dysfunction. Hence, MBL and the lectin pathway seem to be a promising target given that a licensed, powerful, human recombinant inhibitor exits to be added to the scarce armamentarium currently available for prophylaxis of CIN. PMID:24386641

  7. PpsA-mediated alternative pathway to complement RNase E essentiality in Escherichia coli.

    PubMed

    Tamura, Masaru; Honda, Naoko; Fujimoto, Hirofumi; Cohen, Stanley N; Kato, Atsushi

    2016-07-01

    Escherichia coli cells require RNase E, encoded by the essential gene rne, to propagate. The growth properties on different carbon sources of E. coli cells undergoing suppression of RNase E production suggested that reduction in RNase E is associated with decreased expression of phosphoenolpyruvate synthetase (PpsA), which converts pyruvate to phosphoenolpyruvate during gluconeogenesis. Western blotting and genetic complementation confirmed the role of RNase E in PpsA expression. Adventitious ppsA overexpression from a multicopy plasmid was sufficient to restore colony formation of ∆rne E. coli on minimal media containing glycerol or succinate as the sole carbon source. Complementation of ∆rne by ppsA overproduction was observed during growth on solid media but was only partial, and bacteria showed slowed cell division and grew as filamentous chains. We found that restoration of colony-forming ability by ppsA complementation occurred independent of the presence of endogenous RNase G or second-site suppressors of RNase E essentiality. Our investigations demonstrate the role of phosphoryl transfer catalyzable by PpsA as a determinant of RNase E essentiality in E. coli.

  8. Inhibition effects of isolated compounds from Artemisia rubripes Nakai of the classical pathway on the complement system.

    PubMed

    Jung, Seil; Lee, Jai-Heon; Lee, Young-Choon; Moon, Hyung-In

    2012-04-01

    The study evaluated the anticomplement activity from isolated compounds from Artemisia rubripes Nakai from South Korea on the classical pathway. In the previous works, Artemisia rubripes chloroform extracts showed inhibitory activity against complement system. The chromatographic separation of a chloroform chloride extract of Artemisia rubripes led to the isolation of three compounds. Their structures were characterized to be scopoletin (1), 11,(13)-triene-6,12-olide (2), and 1β,6α-dihydroxy-4(15)-eudesmene (3) by spectroscopic data. This is the first report of anticomplement activity of isolated compounds from Artemisia rubripes.

  9. Isolation, cloning, and characterization of a novel phosphomannan-binding lectin from porcine serum.

    PubMed

    Ma, Bruce Yong; Nakamura, Natsuko; Dlabac, Vladimir; Naito, Haruna; Yamaguchi, Shinsuke; Ishikawa, Makiko; Nonaka, Motohiro; Ishiguro, Masaji; Kawasaki, Nobuko; Oka, Shogo; Kawasaki, Toshisuke

    2007-04-27

    Mannan-binding protein (MBP) is a C-type serum lectin that is an important constituent of the innate immune defense because it activates the complement system via the lectin pathway. While the pig has been proposed to be an attractive source of xenotransplantable tissues and organs, little is known about porcine MBP. In our previous studies, phosphomannan, but not mannan, was found to be an effective inhibitor of the C1q-independent bactericidal activity of newborn piglet serum against some rough strains of Gram-negative bacteria. In contrast, the inhibitory activities of phosphomannan and mannan were very similar in the case of MBP-dependent bactericidal activity against rough strains of Escherichia coli K-12 and S-16. Based on these findings, we inferred that an MBP-like lectin with slightly or completely different carbohydrate binding specificity might exist in newborn piglet serum and be responsible for the C1q-independent bactericidal activity. Herein we report that a novel phosphomannan-binding lectin (PMBL) of 33 kDa under reducing conditions was isolated from both newborn and adult porcine serum and characterized. Porcine PMBL functionally activated the complement system via the lectin pathway triggered by binding with both phosphomannan (P-mannan) and mannan, which, unlike MBP, was effectively inhibited by mannose 6-phosphate- or galatose-containing oligosaccharides. Our observations suggest that porcine PMBL plays a critical role in the innate immune defense from the newborn stage to adult-hood, and the establishment of a newborn piglet experimental model for the innate immune system studies is a valuable step toward elucidation of the physiological function and molecular mechanism of lectin pathway. PMID:17324926

  10. Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity

    PubMed Central

    Khoa, D. V. A.; Wimmers, K.

    2015-01-01

    The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative) leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs) in pigs of the breeds Hampshire (HS), Duroc (DU), Berlin miniature pig (BMP), German Landrace (LR), Pietrain (PIE), and Muong Khuong (Vietnamese potbelly pig). Genotyping was performed in 417 F2 animals of a resource population (DUMI: DU×BMP) that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE) show higher allele frequency of these SNPs than Vietnamese porcine breed (MK). Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9) as a candidate gene to improve general animal health in the future. PMID:26194222

  11. TNF Regulates Essential Alternative Complement Pathway Components and Impairs Activation of Protein C in Human Glomerular Endothelial Cells.

    PubMed

    Sartain, Sarah E; Turner, Nancy A; Moake, Joel L

    2016-01-15

    Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy with severe renal injury secondary to an overactive alternative complement pathway (AP). aHUS episodes are often initiated or recur during inflammation. We investigated gene expression of the surface complement regulatory proteins (CD55, CD59, CD46, and CD141 [thrombomodulin]) and AP components in human glomerular microvascular endothelial cells (GMVECs) and in HUVECs, a frequently used investigational model of endothelial cells. Surface complement regulatory proteins were also quantified by flow cytometry. All experiments were done with and without exposure to IL-1β or TNF. Without cytokine stimulation, we found that GMVECs had greater AP activation than did HUVECs. With TNF stimulation, THBD gene expression and corresponding CD141 surface presence in HUVECs and GMVECs were reduced, and gene expression of complement components C3 (C3) and factor B (CFB) was increased. Consequently, AP activation, measured by Ba production, was increased, and conversion of protein C (PC) to activated PC by CD141-bound thrombin was decreased, in GMVECs and HUVECs exposed to TNF. IL-1β had similar, albeit lesser, effects on HUVEC gene expression, and it only slightly affected GMVEC gene expression. To our knowledge, this is the first detailed study of the expression/display of AP components and surface regulatory proteins in GMVECs with and without cytokine stimulation. In aHUS patients with an underlying overactive AP, additional stimulation of the AP and inhibition of activated PC-mediated anticoagulation in GMVECs by the inflammatory cytokine TNF are likely to provoke episodes of renal failure. PMID:26673143

  12. Role of complement in IgA nephropathy.

    PubMed

    Daha, Mohamed R; van Kooten, Cees

    2016-02-01

    Immunoglobulin A nephropathy (IgAN) is characterized by the deposition of IgA in the mesangium of glomeruli. This mesangial IgA has been found to consist mainly of polymeric IgA1 which drives the activation of the mesangial cells and results in excessive production of several inflammatory mediators. The activation of mesangial cells is amplified by the ability of IgA to activate the complement system, originally thought to occur mainly via the alternative pathway of complement. However more recent studies indicate that lectin pathway involvement has a strong association with progression of renal disease. In this review we summarize the contribution of complement to the IgA- mediated inflammatory process.

  13. Soluble Collectin-12 (CL-12) Is a Pattern Recognition Molecule Initiating Complement Activation via the Alternative Pathway.

    PubMed

    Ma, Ying Jie; Hein, Estrid; Munthe-Fog, Lea; Skjoedt, Mikkel-Ole; Bayarri-Olmos, Rafael; Romani, Luigina; Garred, Peter

    2015-10-01

    Soluble defense collagens including the collectins play important roles in innate immunity. Recently, a new member of the collectin family named collectin-12 (CL-12 or CL-P1) has been identified. CL-12 is highly expressed in umbilical cord vascular endothelial cells as a transmembrane receptor and may recognize certain bacteria and fungi, leading to opsonophagocytosis. However, based on its structural and functional similarities with soluble collectins, we hypothesized the existence of a fluid-phase analog of CL-12 released from cells, which may function as a soluble pattern-recognition molecule. Using recombinant CL-12 full length or CL-12 extracellular domain, we determined the occurrence of soluble CL-12 shed from in vitro cultured cells. Western blot showed that soluble recombinant CL-12 migrated with a band corresponding to ∼ 120 kDa under reducing conditions, whereas under nonreducing conditions it presented multimeric assembly forms. Immunoprecipitation and Western blot analysis of human umbilical cord plasma enabled identification of a natural soluble form of CL-12 having an electrophoretic mobility pattern close to that of shed soluble recombinant CL-12. Soluble CL-12 could recognize Aspergillus fumigatus partially through the carbohydrate-recognition domain in a Ca(2+)-independent manner. This led to activation of the alternative pathway of complement exclusively via association with properdin on A. fumigatus as validated by detection of C3b deposition and formation of the terminal complement complex. These results demonstrate the existence of CL-12 in a soluble form and indicate a novel mechanism by which the alternative pathway of complement may be triggered directly by a soluble pattern-recognition molecule.

  14. CNL, a ricin B-like lectin from mushroom Clitocybe nebularis, induces maturation and activation of dendritic cells via the toll-like receptor 4 pathway

    PubMed Central

    Švajger, Urban; Pohleven, Jure; Kos, Janko; Štrukelj, Borut; Jeras, Matjaž

    2011-01-01

    A novel lectin, isolated from the basidiomycete mushroom Clitocybe nebularis and termed C. nebularis lectin (CNL), exhibits an immunostimulatory effect on the most potent antigen-presenting cells, the dendritic cells (DCs). Treatment of human monocyte-derived DCs with CNL in doses from 1 to 10 μg/ml resulted in a dose-dependent induction of overall DC maturation characteristics. Exposure of DCs to CNL for 48 hr resulted in extensive up-regulation of co-stimulatory molecules CD80 and CD86, as well as of the maturation marker CD83 and HLA-DR molecules. Such CNL-matured DCs (CNL-DCs) were capable of inducing a T helper type 1-polarized response in naive CD4+ CD45RA+ T cells in 5-day allogeneic co-cultures. The allostimulatory potential of CNL-DCs was significantly increased relative to untreated controls, as was their capacity to produce several pro-inflammatory cytokines such as interleukin-6, interleukin-8 and tumour necrosis factor-α. By using a specific Toll-like receptor 4 (TLR4) signalling inhibitor, CLI-095, as well as Myd88 inhibitory peptide, we have shown that DC activation by CNL is completely dependent on the TLR4 activation pathway. Furthermore, activation of TLR4 by CNL was confirmed via TLR4 reporter assay. Measurement of p65 nuclear factor-κB and p38 mitogen-activated protein kinase (MAPK) phosphorylation levels following CNL stimulation of DCs revealed primarily an increase in nuclear factor-κB activity, with less effect on the induction of p38 MAPK signalling than of lipopolysaccharide-matured DCs. The CNL had the ability to activate human DCs in such a way as to subsequently direct T helper type 1 T-cell responses. Our results encourage the use of mushroom-derived lectins for use in therapeutic strategies with aims such as to strengthen anti-tumour immune responses. PMID:22044067

  15. Complement System Part I – Molecular Mechanisms of Activation and Regulation

    PubMed Central

    Merle, Nicolas S.; Church, Sarah Elizabeth; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure–function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors. PMID:26082779

  16. Ouabain rescues rat nephrogenesis during intrauterine growth restriction by regulating the complement and coagulation cascades and calcium signaling pathway.

    PubMed

    Chen, L; Yue, J; Han, X; Li, J; Hu, Y

    2016-02-01

    Intrauterine growth restriction (IUGR) is associated with a reduction in the numbers of nephrons in neonates, which increases the risk of hypertension. Our previous study showed that ouabain protects the development of the embryonic kidney during IUGR. To explore this molecular mechanism, IUGR rats were induced by protein and calorie restriction throughout pregnancy, and ouabain was delivered using a mini osmotic pump. RNA sequencing technology was used to identify the differentially expressed genes (DEGs) of the embryonic kidneys. DEGs were submitted to the Database for Annotation and Visualization and Integrated Discovery, and gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted. Maternal malnutrition significantly reduced fetal weight, but ouabain treatment had no significant effect on body weight. A total of 322 (177 upregulated and 145 downregulated) DEGs were detected between control and the IUGR group. Meanwhile, 318 DEGs were found to be differentially expressed (180 increased and 138 decreased) between the IUGR group and the ouabain-treated group. KEGG pathway analysis indicated that maternal undernutrition mainly disrupts the complement and coagulation cascades and the calcium signaling pathway, which could be protected by ouabain treatment. Taken together, these two biological pathways may play an important role in nephrogenesis, indicating potential novel therapeutic targets against the unfavorable effects of IUGR.

  17. Complement and membrane-bound complement regulatory proteins as biomarkers and therapeutic targets for autoimmune inflammatory disorders, RA and SLE.

    PubMed

    Das, Nibhriti

    2015-11-01

    Complement system is a major effecter system of the innate immunity that bridges with adaptive immunity. The system consists of about 40 humoral and cell surface proteins that include zymogens, receptors and regulators. The zymogens get activated in a cascade fashion by antigen-antibody complex, antigen alone or by polymannans, respectively, by the classical, alternative and mannose binding lectin (MBL) pathways. The ongoing research on complement regulators and complement receptors suggest key role of these proteins in the initiation, regulation and effecter mechanisms of the innate and adaptive immunity. Although, the complement system provides the first line of defence against the invading pathogens, its aberrant uncontrolled activation causes extensive self tissue injury. A large number of humoral and cell surface complement regulatory protein keep the system well-regulated in healthy individuals. Complement profiling had brought important information on the pathophysiology of several infectious and chronic inflammatory disorders. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases that affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This brief review discusses on the complement system, its functions and its importance as biomarkers and therapeutic targets for autoimmune diseases with focus on SLE and RA.

  18. Heparin-protamine complexes and C-reactive protein induce activation of the classical complement pathway: studies in patients undergoing cardiac surgery and in vitro.

    PubMed

    Bruins, P; te Velthuis, H; Eerenberg-Belmer, A J; Yazdanbakhsh, A P; de Beaumont, E M; Eijsman, L; Trouwborst, A; Hack, C E

    2000-08-01

    The administration of protamine to patients undergoing cardiopulmonary bypass (CPB) to neutralize heparin and to reduce the risk of bleeding, induces activation of the classical complement pathway mainly by heparin-protamine complexes. We investigated whether C-reactive protein (CRP) contributes to protamine-induced complement activation. In 24 patients during myocardial revascularization, we measured complement, CRP, and complement-CRP complexes, reflecting CRP-mediated complement activation in vivo. We also incubated plasma from healthy volunteers and patients with heparin and protamine in vitro to study CRP-mediated complement activation. During CPB, CRP levels remained unchanged while C3 activation products increased. C4 activation occurred after protamine administration. CRP-complement complexes increased at the end of CPB and upon protamine administration. Incubation of plasma with heparin and protamine in vitro generated complement-CRP complexes, which was blocked by phosphorylcholine and stimulated by exogenous CRP. C4d-CRP complex formation after protamine administration correlated clinically with the incidence of postoperative arrhythmia. Protamine administration during cardiac surgery induces complement activation which in part is CRP-dependent, and correlates with postoperative arrhythmia.

  19. Response gene to complement 32 protein promotes macrophage phagocytosis via activation of protein kinase C pathway.

    PubMed

    Tang, Rui; Zhang, Gui; Chen, Shi-You

    2014-08-15

    Macrophage phagocytosis plays an important role in host defense. The molecular mechanism, especially factors regulating the phagocytosis, however, is not completely understood. In the present study, we found that response gene to complement 32 (RGC-32) is an important regulator of phagocytosis. Although RGC-32 is induced and abundantly expressed in macrophage during monocyte-macrophage differentiation, RGC-32 appears not to be important for this process because RGC-32-deficient bone marrow progenitor can normally differentiate to macrophage. However, both peritoneal macrophages and bone marrow-derived macrophages with RGC-32 deficiency exhibit significant defects in phagocytosis, whereas RGC-32-overexpressed macrophages show increased phagocytosis. Mechanistically, RGC-32 is recruited to macrophage membrane where it promotes F-actin assembly and the formation of phagocytic cups. RGC-32 knock-out impairs F-actin assembly. RGC-32 appears to interact with PKC to regulate PKC-induced phosphorylation of F-actin cross-linking protein myristoylated alanine-rich protein kinase C substrate. Taken together, our results demonstrate for the first time that RGC-32 is a novel membrane regulator for macrophage phagocytosis.

  20. C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation.

    PubMed

    Färber, Katrin; Cheung, Giselle; Mitchell, Daniel; Wallis, Russell; Weihe, Eberhard; Schwaeble, Wilhelm; Kettenmann, Helmut

    2009-02-15

    Microglia, central nervous system (CNS) resident phagocytic cells, persistently police the integrity of CNS tissue and respond to any kind of damage or pathophysiological changes. These cells sense and rapidly respond to danger and inflammatory signals by changing their cell morphology; by release of cytokines, chemokines, or nitric oxide; and by changing their MHC expression profile. We have shown previously that microglial biosynthesis of the complement subcomponent C1q may serve as a reliable marker of microglial activation ranging from undetectable levels of C1q biosynthesis in resting microglia to abundant C1q expression in activated, nonramified microglia. In this study, we demonstrate that cultured microglial cells respond to extrinsic C1q with a marked intracellular Ca(2+) increase. A shift toward proinflammatory microglial activation is indicated by the release of interleukin-6, tumor necrosis factor-alpha, and nitric oxide and the oxidative burst in rat primary microglial cells, an activation and differentiation process similar to the proinflammatory response of microglia to exposure to lipopolysaccharide. Our findings indicate 1) that extrinsic plasma C1q is involved in the initiation of microglial activation in the course of CNS diseases with blood-brain barrier impairment and 2) that C1q synthesized and released by activated microglia is likely to contribute in an autocrine/paracrine way to maintain and balance microglial activation in the diseased CNS tissue. PMID:18831010

  1. Anti-Mouse Properdin TSR 5/6 Monoclonal Antibodies Block Complement Alternative Pathway-dependent Pathogenesis

    PubMed Central

    Bertram, Paula; Akk, Antonina M.; Zhou, Hui-fang; Mitchell, Lynne M.; Pham, Christine T.N.

    2015-01-01

    The complement alternative pathway (AP) is a major contributor to a broad and growing spectrum of diseases that includes age-related macular degeneration, atypical hemolytic uremic syndrome, and preeclampsia. As a result, there is much interest in the therapeutic disruption of AP activity. Properdin, the only positive regulator of the AP, is a particularly promising AP target. Several issues need to be clarified before the potential for properdin-directed therapy can be realized. In this report we use a portion of the mouse properdin protein, expressed in a bacterial system, to raise rabbit polyclonal and hamster monoclonal antibodies that block properdin-dependent pathogenesis. These antibodies, when employed with AP-dependent mouse disease models, can help evaluate the feasibility of properdin-directed therapy. PMID:25723276

  2. A Low-Abundance Biofilm Species Orchestrates Inflammatory Periodontal Disease through the Commensal Microbiota and the Complement Pathway

    PubMed Central

    Hajishengallis, George; Liang, Shuang; Payne, Mark A.; Hashim, Ahmed; Jotwani, Ravi; Eskan, Mehmet A.; McIntosh, Megan L.; Alsam, Asil; Kirkwood, Keith L.; Lambris, John D.; Darveau, Richard P.; Curtis, Michael A.

    2011-01-01

    SUMMARY Porphyromonas gingivalis is a low-abundance oral anaerobic bacterium implicated in periodontitis, a polymicrobial inflammatory disease, and the associated systemic conditions. However, the mechanism by which P. gingivalis contributes to inflammation and disease has remained elusive. Here we show that P. gingivalis, at very low colonization levels, triggers changes to the amount and composition of the oral commensal microbiota leading to inflammatory periodontal bone loss. The commensal microbiota and the complement pathway were both required for P. gingivalis-induced bone loss as germ-free mice or conventionally raised C3a and C5a receptor deficient mice did not develop bone loss after inoculation with P. gingivalis. These findings demonstrate that a single, low-abundance species can disrupt host-microbial homeostasis to cause inflammatory disease. The identification and targeting of similar low-abundance pathogens with community-wide impact may be important for treating inflammatory diseases of polymicrobial etiology. PMID:22036469

  3. Regulation of C3 Activation by the Alternative Complement Pathway in the Mouse Retina

    PubMed Central

    Williams, Jennifer A. E.; Stampoulis, Dimitris; Gunter, Chloe E.; Greenwood, John; Adamson, Peter

    2016-01-01

    The purpose of this study was to examine the retinas of mice carrying hemizygous and null double deletions of Cfb-/- and Cfh-/-, and to compare these with the single knockouts of Cfb, Cfh and Cfd. Retinas were isolated from wild type (WT), Cfb-/-/Cfh-/-, Cfb-/-/Cfh+/-, Cfh-/-/Cfb+/-, Cfb-/-, Cfh-/- Cfd-/-, and Cfd+/- mice. Complement proteins were evaluated by western blotting, ELISA and immunocytochemistry, and retinal morphology was assessed using toluidine blue stained semi-thin sections. WT mice showed staining for C3 and its breakdown products in the retinal vasculature and the basal surface of the retinal pigment epithelium (RPE). Cfb-/- mice exhibited a similar C3 staining pattern to WT in the retinal vessels but a decrease in C3 and its breakdown products at the basal surface of the RPE. Deletion of both Cfb and Cfh restored C3 to levels similar to those observed in WT mice, however this reversal of phenotype was not observed in Cfh-/-/Cfb+/- or Cfb-/-/Cfh+/- mice. Loss of CFD caused an increase in C3 and a decrease in C3 breakdown products along the basal surface of the RPE. Overall the retinal morphology and retinal vasculature did not appear different across the various genotypes. We observed that C3 accumulates at the basal RPE in Cfb-/-, Cfb-/-/Cfh-/-, Cfb-/-/Cfh+/-, Cfd-/- and WT mice, but is absent in Cfh-/- and Cfh-/-/Cfb+/- mice, consistent with its consumption in the serum of mice lacking CFH when CFB is present. C3 breakdown products along the surface of the RPE were either decreased or absent when CFB, CFH or CFD was deleted or partially deleted. PMID:27564415

  4. Regulation of C3 Activation by the Alternative Complement Pathway in the Mouse Retina.

    PubMed

    Williams, Jennifer A E; Stampoulis, Dimitris; Gunter, Chloe E; Greenwood, John; Adamson, Peter; Moss, Stephen E

    2016-01-01

    The purpose of this study was to examine the retinas of mice carrying hemizygous and null double deletions of Cfb-/- and Cfh-/-, and to compare these with the single knockouts of Cfb, Cfh and Cfd. Retinas were isolated from wild type (WT), Cfb-/-/Cfh-/-, Cfb-/-/Cfh+/-, Cfh-/-/Cfb+/-, Cfb-/-, Cfh-/- Cfd-/-, and Cfd+/- mice. Complement proteins were evaluated by western blotting, ELISA and immunocytochemistry, and retinal morphology was assessed using toluidine blue stained semi-thin sections. WT mice showed staining for C3 and its breakdown products in the retinal vasculature and the basal surface of the retinal pigment epithelium (RPE). Cfb-/- mice exhibited a similar C3 staining pattern to WT in the retinal vessels but a decrease in C3 and its breakdown products at the basal surface of the RPE. Deletion of both Cfb and Cfh restored C3 to levels similar to those observed in WT mice, however this reversal of phenotype was not observed in Cfh-/-/Cfb+/- or Cfb-/-/Cfh+/- mice. Loss of CFD caused an increase in C3 and a decrease in C3 breakdown products along the basal surface of the RPE. Overall the retinal morphology and retinal vasculature did not appear different across the various genotypes. We observed that C3 accumulates at the basal RPE in Cfb-/-, Cfb-/-/Cfh-/-, Cfb-/-/Cfh+/-, Cfd-/- and WT mice, but is absent in Cfh-/- and Cfh-/-/Cfb+/- mice, consistent with its consumption in the serum of mice lacking CFH when CFB is present. C3 breakdown products along the surface of the RPE were either decreased or absent when CFB, CFH or CFD was deleted or partially deleted. PMID:27564415

  5. Viral bimolecular fluorescence complementation: a novel tool to study intracellular vesicular trafficking pathways.

    PubMed

    Dirk, Brennan S; Jacob, Rajesh Abraham; Johnson, Aaron L; Pawlak, Emily N; Cavanagh, P Craig; Van Nynatten, Logan; Haeryfar, S M Mansour; Dikeakos, Jimmy D

    2015-01-01

    The Human Immunodeficiency Virus type 1 (HIV-1) accessory protein Nef interacts with a multitude of cellular proteins, manipulating the host membrane trafficking machinery to evade immune surveillance. Nef interactions have been analyzed using various in vitro assays, co-immunoprecipitation studies, and more recently mass spectrometry. However, these methods do not evaluate Nef interactions in the context of viral infection nor do they define the sub-cellular location of these interactions. In this report, we describe a novel bimolecular fluorescence complementation (BiFC) lentiviral expression tool, termed viral BiFC, to study Nef interactions with host cellular proteins in the context of viral infection. Using the F2A cleavage site from the foot and mouth disease virus we generated a viral BiFC expression vector capable of concurrent expression of Nef and host cellular proteins; PACS-1, MHC-I and SNX18. Our studies confirmed the interaction between Nef and PACS-1, a host membrane trafficking protein involved in Nef-mediated immune evasion, and demonstrated co-localization of this complex with LAMP-1 positive endolysosomal vesicles. Furthermore, we utilized viral BiFC to localize the Nef/MHC-I interaction to an AP-1 positive endosomal compartment. Finally, viral BiFC was observed between Nef and the membrane trafficking regulator SNX18. This novel demonstration of an association between Nef and SNX18 was localized to AP-1 positive vesicles. In summary, viral BiFC is a unique tool designed to analyze the interaction between Nef and host cellular proteins by mapping the sub-cellular locations of their interactions during viral infection. PMID:25915798

  6. Viral Bimolecular Fluorescence Complementation: A Novel Tool to Study Intracellular Vesicular Trafficking Pathways

    PubMed Central

    Johnson, Aaron L.; Pawlak, Emily N.; Cavanagh, P. Craig; Van Nynatten, Logan; Haeryfar, S. M. Mansour; Dikeakos, Jimmy D.

    2015-01-01

    The Human Immunodeficiency Virus type 1 (HIV-1) accessory protein Nef interacts with a multitude of cellular proteins, manipulating the host membrane trafficking machinery to evade immune surveillance. Nef interactions have been analyzed using various in vitro assays, co-immunoprecipitation studies, and more recently mass spectrometry. However, these methods do not evaluate Nef interactions in the context of viral infection nor do they define the sub-cellular location of these interactions. In this report, we describe a novel bimolecular fluorescence complementation (BiFC) lentiviral expression tool, termed viral BiFC, to study Nef interactions with host cellular proteins in the context of viral infection. Using the F2A cleavage site from the foot and mouth disease virus we generated a viral BiFC expression vector capable of concurrent expression of Nef and host cellular proteins; PACS-1, MHC-I and SNX18. Our studies confirmed the interaction between Nef and PACS-1, a host membrane trafficking protein involved in Nef-mediated immune evasion, and demonstrated co-localization of this complex with LAMP-1 positive endolysosomal vesicles. Furthermore, we utilized viral BiFC to localize the Nef/MHC-I interaction to an AP-1 positive endosomal compartment. Finally, viral BiFC was observed between Nef and the membrane trafficking regulator SNX18. This novel demonstration of an association between Nef and SNX18 was localized to AP-1 positive vesicles. In summary, viral BiFC is a unique tool designed to analyze the interaction between Nef and host cellular proteins by mapping the sub-cellular locations of their interactions during viral infection. PMID:25915798

  7. Laboratory tests for disorders of complement and complement regulatory proteins.

    PubMed

    Shih, Angela R; Murali, Mandakolathur R

    2015-12-01

    The complement pathway is a cascade of proteases that is involved in immune surveillance and innate immunity, as well as adaptive immunity. Dysfunction of the complement cascade may be mediated by aberrations in the pathways of activation, complement regulatory proteins, or complement deficiencies, and has been linked to a number of hematologic disorders, including paroxysmal noctural hemoglobinuria (PNH), hereditary angioedema (HAE), and atypical hemolytic-uremic syndrome (aHUS). Here, current laboratory tests for disorders of the complement pathway are reviewed, and their utility and limitations in hematologic disorders and systemic diseases are discussed. Current therapeutic advances targeting the complement pathway in treatment of complement-mediated hematologic disorders are also reviewed.

  8. Inhibitor(s) of the classical complement pathway in mouse serum limit the utility of mice as experimental models of neuromyelitis optica.

    PubMed

    Ratelade, Julien; Verkman, A S

    2014-11-01

    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which anti-aquaporin-4 (AQP4) autoantibodies (AQP4-IgG) cause damage to astrocytes by complement-dependent cytotoxicity (CDC). Various approaches have been attempted to produce NMO lesions in rodents, some involving genetically modified mice with altered immune cell function. Here, we found that mouse serum strongly inhibits complement from multiple species, preventing AQP4-IgG-dependent CDC. Effects of mouse serum on complement activation were tested in CDC assays in which AQP4-expressing cells were incubated with AQP4-IgG and complement from different species. Biochemical assays and mass spectrometry were used to characterize complement inhibitor(s) in mouse serum. Sera from different strains of mice produced almost no AQP4-IgG-dependent CDC compared with human, rat and guinea pig sera. Remarkably, addition of mouse serum prevented AQP4-IgG-dependent CDC caused by human, rat or guinea pig serum, with 50% inhibition at <5% mouse serum. Hemolysis assays indicated that the inhibitor(s) in mouse serum target the classical and not the alternative complement pathway. We found that the complement inhibitor(s) in mouse serum were contained in a serum fraction purified with protein-A resin; however, the inhibitor was not IgG as determined using serum from IgG-deficient mice. Mass spectrometry on the protein A-purified fraction produced several inhibitor candidates. The low intrinsic complement activity of mouse serum and the presence of complement inhibitor(s) limit the utility of mouse models to study disorders, such as NMO, involving the classical complement pathway.

  9. Inhibitor(s) of the classical complement pathway in mouse serum limit the utility of mice as experimental models of neuromyelitis optica

    PubMed Central

    Ratelade, Julien; Verkman, A.S.

    2015-01-01

    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which anti-aquaporin-4 (AQP4) autoantibodies (AQP4-IgG) cause damage to astrocytes by complement-dependent cytotoxicity (CDC). Various approaches have been attempted to produce NMO lesions in rodents, some involving genetically modified mice with altered immune cell function. Here, we found that mouse serum strongly inhibits complement from multiple species, preventing AQP4-IgG-dependent CDC. Effects of mouse serum on complement activation were tested in CDC assays in which AQP4-expressing cells were incubated with AQP4-IgG and complement from different species. Biochemical assays and mass spectrometry were used to characterize complement inhibitor(s) in mouse serum. Sera from different strains of mice produced almost no AQP4-IgG-dependent CDC compared with human, rat and guinea pig sera. Remarkably, addition of mouse serum prevented AQP4-IgG-dependent CDC caused by human, rat or guinea pig serum, with 50% inhibition at <5% mouse serum. Hemolysis assays indicated that the inhibitor(s) in mouse serum target the classical and not the alternative complement pathway. We found that the complement inhibitor(s) in mouse serum were contained in a serum fraction purified with protein-A resin; however, the inhibitor was not IgG as determined using serum from IgG-deficient mice. Mass spectrometry on the protein A-purified fraction produced several inhibitor candidates. The low intrinsic complement activity of mouse serum and the presence of complement inhibitor(s) limit the utility of mouse models to study disorders, such as NMO, involving the classical complement pathway. PMID:24980869

  10. A comparative study of mammalian and reptilian alternative pathway of complement-mediated killing of the Lyme disease spirochete (Borrelia burgdorferi).

    PubMed

    Kuo, M M; Lane, R S; Giclas, P C

    2000-12-01

    The potential bactericidal activity of the alternative complement pathway of mammalian and reptilian sera to Borrelia burgdorferi sensu stricto (s.s.) was evaluated in vitro. Complement-mediated killing was observed when cultured spirochetes were inoculated into sera from the western fence lizard (Sceloporus occidentalis) and from the southern alligator lizard (Elgaria multicarinata), but not when they were inoculated into serum from either the deer mouse (Peromyscus maniculatus) or from humans. Spirochetes were still alive after 4 hr in lizard serum that had been preheated at 56 C for 30 min to inactivate complement. Furthermore, when lizard serum was chelated with 10 mM ethylenediaminetetraacetic acid to block all complement activation, borreliacidal activity was arrested. When lizard serum was chelated with 10 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid plus 4 mM MgCl2 to block only classical complement pathway activation, >85% of spirochetes were immobilized within 1 hr. Differences in B. burgdorferi s.s. mortality were not observed when chelators with or without MgCl2 were added to serum from either deer mice or humans. Proteins comprising the alternative complement pathway are responsible for the borreliacidal activity observed in the blood of S. occidentalis and E. multicarinata. PMID:11191895

  11. Role of the complement anaphylatoxin C5a-receptor pathway in atopic dermatitis in mice

    PubMed Central

    DANG, LIN; HE, LEI; WANG, YAN; XIONG, JIKUI; BAI, BINGXUE; LI, YUZHEN

    2015-01-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease with a genetic background. The C5a-receptor (C5aR) pathway has been reported to be involved in AD; however, the precise pathogenesis remains to be elucidated. In the present study, the contribution of the C5aR pathway to AD in mice was investigated. A BALB/c mouse model of AD was induced by application of 2,4-dinitrochlorobenzene (DNCB) onto hairless dorsal skin. Following DNCB application for 2 weeks, C5aR expression in skin tissue was assessed by reverse transcription quantitative polymerase chain reaction. C5aR expression in skin tissue was significantly increased in mice with AD. In an additional experiment, C5aR antagonist (C5aRA) intracutaneously injected in combination with DNCB treatment. The skin-fold thickness, number of total infiltrating leukocytes and mast cells infiltrating in skin tissue were measured. Interleukin-4 (IL-4) and interferon-γ (IFN-γ) levels in skin tissue and IL-4, IFN-γ, histamine and immunoglobulin E (IgE) levels in serum were measured using ELISA. The skin-fold thickness, numbers of total infiltrating leukocytes and mast cells in skin tissue, as well as levels of IL-4, IFN-γ, histamine and IgE were significantly increased in mice with AD. However, simultaneous treatment with C5aRA significantly attenuated increases in skin fold thickness and the numbers of total infiltrating leukocytes and mast cells in skin tissue. Treatment with C5aRA also decreased IL-4 and IFN-γ levels in skin tissue, as well as the levels of IL-4, IFN-γ, histamine and IgE in the serum. In conclusion, C5aRA inhibited AD in mice, possibly through suppression of the C5aR-mediated cascade action of mast cells. PMID:25650554

  12. Complement-mediated ischemia-reperfusion injury: lessons learned from animal and clinical studies.

    PubMed

    Diepenhorst, Gwendolyn M P; van Gulik, Thomas M; Hack, C Erik

    2009-06-01

    Ischemia-reperfusion (I/R) injury provides a substantial limitation to further improvements in the development of therapeutic strategies for ischemia-related diseases. Studies in animal I/R models, including intestinal, hindlimb, kidney, and myocardial I/R models, have established a key role of the complement system in mediation of I/R injury using complement inhibitors and knock-out animal models. As complement activation has been shown to be an early event in I/R injury, inhibiting its activation or its components may offer tissue protection after reperfusion. However, clinical study results using complement inhibitors have largely been disappointing. Therefore, identification of a more specific pathogenic target for therapeutic intervention seems to be warranted. For this purpose more detailed knowledge of the responsible pathway of complement activation in I/R injury is required. Recent evidence from in vitro and in vivo models suggests involvement of both the classic and the lectin pathways in I/R injury via exposition of neo-epitopes in ischemic membranes. However, most of these findings have been obtained in knock-out murine models and have for a large part remained unconfirmed in the human setting. The observation that the relative role of each pathway seems to differ among organs complicates matters further. Whether a defective complement system protects from I/R injury in humans remains largely unknown. Most importantly, involvement of mannose-binding lectin as the main initiator of the lectin pathway has not been demonstrated at tissue level in human I/R injury to date. Thus, conclusions drawn from animal I/R studies should be extrapolated to the human setting with caution.

  13. Complement modulatory activity of bisbenzylisoquinoline alkaloids isolated from Isopyrum thalictroides--I. Influence on classical pathway in human serum.

    PubMed

    Ivanovska, N; Nikolova, P; Hristova, M; Philipov, S; Istatkova, R

    1999-05-01

    Eleven bisbenzylisoquinoline alkaloids (BBI) were isolated from the plant Isopyrum thalictroides (L.). Treatment of normal human serum (NHS) with BBI resulted in a diminution of the haemolytic activity of the classical pathway (CP). The mode of action of the main alkaloids isopyruthaline (It1), fangchinoline (It2) and isotalictrine (It3) on CP activation was investigated in vitro. The inhibition was time- and temperature-related and for Itl and It3 depended on the concentration of Ca2+ and Mg2+ ions. It was established that the substances reduced C1 haemolytic activity. It2 and It3 enhanced the complement consumption caused by heat aggregated human IgG (HAGG). The BBI prevented the formation of C3 convertase of the classical pathway. The loss of haemolytic activity was partially restored by the addition of C142 reagent (zymosan-treated guinea pig serum) to alkaloids-treated NHS. The addition of the late components C3-9 (EDTA-treated rat sera) recovered to some extent the haemolytic activity of It1-treated NHS, but not of It2- and It3-treated NHS. PMID:10408629

  14. Functional Complementation Analysis (FCA): A Laboratory Exercise Designed and Implemented to Supplement the Teaching of Biochemical Pathways.

    PubMed

    Hudson, André O; Harkness, Taylor C M; Savka, Michael A

    2016-06-24

    Functional complementation assay (FCA) is an in vivo assay that is widely used to elucidate the function/role of genes/enzymes. This technique is very common in biochemistry, genetics and many other disciplines. A comprehensive overview of the technique to supplement the teaching of biochemical pathways pertaining to amino acids, peptidoglycan and the bacterial stringent response is reported in this manuscript. Two cDNAs from the model plant organism Arabidopsis thaliana that are involved in the metabolism of lysine (L,L-diaminopimelate aminotransferase (dapL) and tyrosine aminotransferase (tyrB) involved in the metabolism of tyrosine and phenylalanine are highlighted. In addition, the bacterial peptidoglycan anabolic pathway is highlighted through the analysis of the UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-meso-2,6-diaminopimelate ligase (murE) gene from the bacterium Verrucomicrobium spinosum involved in the cross-linking of peptidoglycan. The bacterial stringent response is also reported through the analysis of the rsh (relA/spoT homolog) bifunctional gene responsible for a hyper-mucoid phenotype in the bacterium Novosphingobium sp. Four examples of FCA are presented. The video will focus on three of them, namely lysine, peptidoglycan and the stringent response.

  15. Complement analysis 2016: Clinical indications, laboratory diagnostics and quality control.

    PubMed

    Prohászka, Zoltán; Nilsson, Bo; Frazer-Abel, Ashley; Kirschfink, Michael

    2016-11-01

    In recent years, complement analysis of body fluids and biopsies, going far beyond C3 and C4, has significantly enhanced our understanding of the disease process. Such expanded complement analysis allows for a more precise differential diagnosis and for critical monitoring of complement-targeted therapy. These changes are a result of the growing understanding of the involvement of complement in a diverse set of disorders. To appreciate the importance of proper complement analysis, it is important to understand the role it plays in disease. Historically, it was the absence of complement as manifested in severe infection that was noted. Since then complement has been connected to a variety of inflammatory disorders, such as autoimmune diseases and hereditary angioedema. While the role of complement in the rejection of renal grafts has been known longer, the significant impact of complement. In certain nephropathies has now led to the reclassification of some rare kidney diseases and an increased role for complement analysis in diagnosis. Even more unexpected is that complement has also been implicated in neural, ophtalmological and dermatological disorders. With this level of involvement in some varied and impactful health issues proper complement testing is clearly important; however, analysis of the complement system varies widely among laboratories. Except for a few proteins, such as C3 and C4, there are neither well-characterized standard preparations nor calibrated assays available. This is especially true for the inter-laboratory variation of tests which assess classical, alternative, or lectin pathway function. In addition, there is a need for the standardization of the measurement of complement activation products that are so critical in determining whether clinically relevant complement activation has occurred in vivo. Finally, autoantibodies to complement proteins (e.g. anti-C1q), C3 and C4 convertases (C3 and C4 nephritic factor) or to regulatory proteins

  16. Complement analysis 2016: Clinical indications, laboratory diagnostics and quality control.

    PubMed

    Prohászka, Zoltán; Nilsson, Bo; Frazer-Abel, Ashley; Kirschfink, Michael

    2016-11-01

    In recent years, complement analysis of body fluids and biopsies, going far beyond C3 and C4, has significantly enhanced our understanding of the disease process. Such expanded complement analysis allows for a more precise differential diagnosis and for critical monitoring of complement-targeted therapy. These changes are a result of the growing understanding of the involvement of complement in a diverse set of disorders. To appreciate the importance of proper complement analysis, it is important to understand the role it plays in disease. Historically, it was the absence of complement as manifested in severe infection that was noted. Since then complement has been connected to a variety of inflammatory disorders, such as autoimmune diseases and hereditary angioedema. While the role of complement in the rejection of renal grafts has been known longer, the significant impact of complement. In certain nephropathies has now led to the reclassification of some rare kidney diseases and an increased role for complement analysis in diagnosis. Even more unexpected is that complement has also been implicated in neural, ophtalmological and dermatological disorders. With this level of involvement in some varied and impactful health issues proper complement testing is clearly important; however, analysis of the complement system varies widely among laboratories. Except for a few proteins, such as C3 and C4, there are neither well-characterized standard preparations nor calibrated assays available. This is especially true for the inter-laboratory variation of tests which assess classical, alternative, or lectin pathway function. In addition, there is a need for the standardization of the measurement of complement activation products that are so critical in determining whether clinically relevant complement activation has occurred in vivo. Finally, autoantibodies to complement proteins (e.g. anti-C1q), C3 and C4 convertases (C3 and C4 nephritic factor) or to regulatory proteins

  17. ON VASCULAR STENOSIS, RESTENOSIS AND MANNOSE BINDING LECTIN

    PubMed Central

    KAHLOW, Barbara Stadler; NERY, Rodrigo Araldi; SKARE, Thelma L; RIBAS, Carmen Australia Paredes Marcondes; RAMOS, Gabriela Piovezani; PETISCO, Roberta Dombroski

    2016-01-01

    Mannose binding lectin is a lectin instrumental in the innate immunity. It recognizes carbohydrate patterns found on the surface of a large number of pathogenic micro-organisms, activating the complement system. However, this protein seems to increase the tissue damage after ischemia. In this paper is reviewed some aspects of harmful role of the mannose binding lectin in ischemia/reperfusion injury. PMID:27120743

  18. A targeted inhibitor of the complement alternative pathway reduces RPE injury and angiogenesis in models of age-related macular degeneration.

    PubMed

    Rohrer, Bärbel; Long, Qin; Coughlin, Beth; Renner, Brandon; Huang, Yuxiang; Kunchithapautham, Kannan; Ferreira, Viviana P; Pangburn, Michael K; Gilkeson, Gary S; Thurman, Joshua M; Tomlinson, Stephen; Holers, V Michael

    2010-01-01

    Genetic variations in complement factor H (fH), an inhibitor of the complement alternative pathway (CAP), and oxidative stress are associated with age-related macular degeneration (AMD). Recently, novel complement therapeutics have been created with the capacity to be "targeted" to sites of complement activation. One example is our recombinant form of fH, CR2-fH, which consists of the N-terminus of mouse fH that contains the CAP-inhibitory domain, linked to a complement receptor 2 (CR2) targeting fragment that binds complement activation products. CR2-fH was investigated in vivo in the mouse model of choroidal neovascularization (CNV) and in vitro in oxidatively stressed RPE cell monolayers. RPE deterioration and CNV development were found to require CAP activation, and specific CAP inhibition by CR2-fH reduced the loss of RPE integrity and angiogenesis in CNV. In both the in vivo and in vitro paradigm of RPE damage, a model requiring molecular events known to be involved in AMD, complement-dependent VEGF production, was confirmed. These data may open new avenues for AMD treatment strategies.

  19. A targeted inhibitor of the complement alternative pathway reduces RPE injury and angiogenesis in models of age-related macular degeneration.

    PubMed

    Rohrer, Bärbel; Long, Qin; Coughlin, Beth; Renner, Brandon; Huang, Yuxiang; Kunchithapautham, Kannan; Ferreira, Viviana P; Pangburn, Michael K; Gilkeson, Gary S; Thurman, Joshua M; Tomlinson, Stephen; Holers, V Michael

    2010-01-01

    Genetic variations in complement factor H (fH), an inhibitor of the complement alternative pathway (CAP), and oxidative stress are associated with age-related macular degeneration (AMD). Recently, novel complement therapeutics have been created with the capacity to be "targeted" to sites of complement activation. One example is our recombinant form of fH, CR2-fH, which consists of the N-terminus of mouse fH that contains the CAP-inhibitory domain, linked to a complement receptor 2 (CR2) targeting fragment that binds complement activation products. CR2-fH was investigated in vivo in the mouse model of choroidal neovascularization (CNV) and in vitro in oxidatively stressed RPE cell monolayers. RPE deterioration and CNV development were found to require CAP activation, and specific CAP inhibition by CR2-fH reduced the loss of RPE integrity and angiogenesis in CNV. In both the in vivo and in vitro paradigm of RPE damage, a model requiring molecular events known to be involved in AMD, complement-dependent VEGF production, was confirmed. These data may open new avenues for AMD treatment strategies. PMID:20711712

  20. Genome-wide pathway-based association study implicates complement system in the development of Kashin-Beck disease in Han Chinese.

    PubMed

    Zhang, Feng; Wen, Yan; Guo, Xiong; Zhang, Yingang; Wang, Sen; Yang, Tielin; Shen, Hui; Chen, Xiangding; Tan, Lijun; Tian, Qing; Deng, Hong-Wen

    2015-02-01

    Kashin-Beck disease (KBD) is a chronic osteochondropathy. The pathogenesis of KBD remains unknown. To identify relevant biological pathways for KBD, we conducted a genome-wide pathway-based association study (GWPAS) following by replication analysis, totally using 2743 Chinese Han adults. A modified gene set enrichment algorithm was used to detect association between KBD and 963 biological pathways. Cartilage gene expression analysis and serum complement measurement were performed to evaluate the functional relevance of identified pathway with KBD. We found that the Complement and Coagulation Cascades (CACC) pathway was significantly associated with KBD (P value=3.09×10(-5), false-discovery rate=0.042). Within the CACC pathway, the most significant association was observed at rs1656966 (P value=1.97×10(-4)) of KNG1 gene. Further replication study observed that rs1656966 (P value=0.037) was significantly associated with KBD in an independent validation sample of 1026 subjects. Gene expression analysis observed that CFD (ratio=3.39±2.68), A2M (ratio=3.67±5.63), C5 (ratio=2.65±2.52) and CD46 (ratio=2.29±137) genes of the CACC pathway were up-regulated in KBD articular cartilage compared to healthy articular cartilage. The serum level of complement C5 in KBD patients were significantly higher than that in healthy controls (P value=0.038). Our study is the first to suggest that complement system-related CACC pathway contributed to the development of KBD.

  1. Immunologic Defect of the Alternate Pathway-of-Complement Activation Postsplenectomy: A Possible Relation Between Splenectomy and Infection

    PubMed Central

    de Ciutiis, Alfred; Polley, Margaret J.; Metakis, Linda J.; Peterson, Charles M.

    1978-01-01

    Total hemolytic complement (CH50) and activation of the alternate mechanism were measured in eight patients before and after splenectomy and compared to similar measurements made in a control group of patients following other abdominal surgery. In the splenectomy group, alternate-pathway-mediated activation of C3 was significantly different from the controls. The mean five-day postsplenectomy value of 16 percent for the immunoelectrophoretic conversion of C3 to C3i was depressed (p<0.001) from the presplenectomy value of 85 percent and five-month postsplenectomy level of 71 percent (p<0.01). The difference between presplenectomy and five-month postsplenectomy values was not significant. Further, activation of C3 in patients five days postsplenectomy was significantly less (p<0.01) than in the five-day postoperative controls. In both the splenectomized patients and control group, five-day postoperative determinations indicated an increase in CH50 values and a decrease in degree of activation of Factor B. The spleen appears to manufacture certain substances required for activation of C3 via the alternate mechanism. That the manufacture is eventually assumed by other immune-competent organs is shown by the eventual increase of activation toward preoperative levels five months postsplenectomy. This defect in C3 activation may account for the tendency of splenectomized patients to have an increased incidence of bacterial infections and sepsis in the postoperative period. PMID:702600

  2. Immunologic injury of cultured cells infected with measles virus. I. role of IfG antibody and the alternative complement pathway

    PubMed Central

    1975-01-01

    In these studies, a number of human cell lines including epithelial, neural, glial, and lymphoid cells infected with several strains of measles virus were found to be lysed upon incubation with fresh sera from humans containing antibody measles virus. In all instances, the cytolytic event was mediated by alternative complement (C) pathway without a significant contribution from classical pathway. In contrast, isolated measles virus in conjunction with antibody was found to selectively activate the classical C pathway. Measles antibodies of the IgG class, but not the IgA class, possessed cytolytic potential against cells infected with measles virus. Human IgG antibodies could directly activate the alternative C pathway. No defect was found in cytolytic measles antibody in sera or cerebrospinal fluid from patients with subacute sclerosing panencephalitis, nor was the alternative C pathway impaired in sera from these patients. Sera from newborn humans exhibited a functional alternative C pathway. PMID:1092789

  3. Mycobacterial antigen 85 complex (Ag85) as a target for ficolins and mannose-binding lectin.

    PubMed

    Świerzko, Anna S; Bartłomiejczyk, Marcin A; Brzostek, Anna; Łukasiewicz, Jolanta; Michalski, Mateusz; Dziadek, Jarosław; Cedzyński, Maciej

    2016-06-01

    The pattern recognition molecules (PRMs) able to activate complement via the lectin pathway are suspected to be involved in the interaction between pathogenic Mycobacteria and the host immune response. Recently, we have found strong interactions between 25 and 35kDa mycobacterial cell fractions and mannose-binding lectin (MBL) and ficolins. Here we demonstrate that two biologically important mycobacterial structures, mannosylated lipoarabinomannan (ManLAM) and the antigen 85 (Ag85) complex, induce activation of the lectin pathway of complement. The strong interaction of recombinant MBL with purified ManLAM was confirmed, but no binding of recombinant ficolins (ficolin-1, -2, -3) with this structure was observed. Interestingly, all PRMs tested reacted with the mycobacterial antigen 85 (Ag85) complex. Based on the use of specific inhibitors (mannan for MBL, acetylated bovine serum albumin for ficolin-1 and -2, Hafnia alvei PCM 1200 lipopolysaccharide for ficolin-3), we concluded that carbohydrate-recognition (MBL) and fibrinogen-like domains (ficolins) were involved in these interactions. Our results indicate that the mycobacterial antigen 85 complex is a target for ficolins and MBL. Furthermore, those PRMs also bound to fibronectin and therefore might influence the Ag85 complex-dependent interaction of Mycobacterium with the extracellular matrix. PMID:27141819

  4. SALSA: A Regulator of the Early Steps of Complement Activation on Mucosal Surfaces

    PubMed Central

    Reichhardt, Martin Parnov; Meri, Seppo

    2016-01-01

    Complement is present mainly in blood. However, following mechanical damage or inflammation, serous exudates enter the mucosal surfaces. Here, the complement proteins interact with other endogenous molecules to keep microbes from entering the parenteral tissues. One of the mucosal proteins known to interact with the early complement components of both the classical and the lectin pathway is the salivary scavenger and agglutinin (SALSA). SALSA is also known as deleted in malignant brain tumors 1 and gp340. It is found both attached to the epithelium and secreted into the surrounding fluids of most mucosal surfaces. SALSA has been shown to bind directly to C1q, mannose-binding lectin, and the ficolins. Through these interactions SALSA regulates activation of the complement system. In addition, SALSA interacts with surfactant proteins A and D, secretory IgA, and lactoferrin. Ulcerative colitis and Crohn’s disease are examples of diseases, where complement activation in mucosal tissues may occur. This review describes the latest advances in our understanding of how the early complement components interact with the SALSA molecule. Furthermore, we discuss how these interactions may affect disease propagation on mucosal surfaces in immunological and inflammatory diseases. PMID:27014265

  5. Genetically-Defined Deficiency of Mannose-Binding Lectin Is Associated with Protection after Experimental Stroke in Mice and Outcome in Human Stroke

    PubMed Central

    Cervera, Alvaro; Planas, Anna M.; Justicia, Carles; Urra, Xabier; Jensenius, Jens C.; Torres, Ferran; Lozano, Francisco; Chamorro, Angel

    2010-01-01

    Background The complement system is a major effector of innate immunity that has been involved in stroke brain damage. Complement activation occurs through the classical, alternative and lectin pathways. The latter is initiated by mannose-binding lectin (MBL) and MBL-associated serine proteases (MASPs). Here we investigated whether the lectin pathway contributes to stroke outcome in mice and humans. Methodology/Principal Findings Focal cerebral ischemia/reperfusion in MBL-null mice induced smaller infarctions, better functional outcome, and diminished C3 deposition and neutrophil infiltration than in wild-type mice. Accordingly, reconstitution of MBL-null mice with recombinant human MBL (rhMBL) enhanced brain damage. In order to investigate the clinical relevance of these experimental observations, a study of MBL2 and MASP-2 gene polymorphism rendering the lectin pathway dysfunctional was performed in 135 stroke patients. In logistic regression adjusted for age, gender and initial stroke severity, unfavourable outcome at 3 months was associated with MBL-sufficient genotype (OR 10.85, p = 0.008) and circulating MBL levels (OR 1.29, p = 0.04). Individuals carrying MBL-low genotypes (17.8%) had lower C3, C4, and CRP levels, and the proinflammatory cytokine profile was attenuated versus MBL-sufficient genotypes. Conclusions/Significance In conclusion, genetically defined MBL-deficiency is associated with a better outcome after acute stroke in mice and humans. PMID:20140243

  6. Complement system in zebrafish.

    PubMed

    Zhang, Shicui; Cui, Pengfei

    2014-09-01

    Zebrafish is recently emerging as a model species for the study of immunology and human diseases. Complement system is the humoral backbone of the innate immune defense, and our knowledge as such in zebrafish has dramatically increased in the recent years. This review summarizes the current research progress of zebrafish complement system. The global searching for complement components in genome database, together with published data, has unveiled the existence of all the orthologues of mammalian complement components identified thus far, including the complement regulatory proteins and complement receptors, in zebrafish. Interestingly, zebrafish complement components also display some distinctive features, such as prominent levels of extrahepatic expression and isotypic diversity of the complement components. Future studies should focus on the following issues that would be of special importance for understanding the physiological role of complement components in zebrafish: conclusive identification of complement genes, especially those with isotypic diversity; analysis and elucidation of function and mechanism of complement components; modulation of innate and adaptive immune response by complement system; and unconventional roles of complement-triggered pathways.

  7. PTX3 as a paradigm for the interaction of pentraxins with the complement system.

    PubMed

    Inforzato, Antonio; Doni, Andrea; Barajon, Isabella; Leone, Roberto; Garlanda, Cecilia; Bottazzi, Barbara; Mantovani, Alberto

    2013-02-01

    Pentraxins are highly conserved components of the humoral arm of innate immunity. They include the short pentraxins C reactive protein (CRP) and serum amyloid P component (SAP), and the long pentraxin PTX3. These are soluble pattern-recognition molecules that are present in the blood and body fluids, and share the ability to recognize pathogens and promote their disposal. CRP and SAP are produced systemically in the liver while PTX3 is produced locally in a number of tissues, macrophages and neutrophils being major sources of this long pentraxin. Pentraxins interact with components of the classical and lectin pathways of Complement as well as with Complement regulators. In particular, PTX3 recognizes C1q, factor H, MBL and ficolins, where these interactions amplify the repertoire of microbial recognition and effector functions of the Complement system. The complex interaction of pentraxins with the Complement system at different levels has broad implications for host defence and regulation of inflammation.

  8. Role of the complement system in rheumatoid arthritis and psoriatic arthritis: relationship with anti-TNF inhibitors.

    PubMed

    Ballanti, Eleonora; Perricone, Carlo; di Muzio, Gioia; Kroegler, Barbara; Chimenti, Maria Sole; Graceffa, Dario; Perricone, Roberto

    2011-08-01

    The complement system is an essential component of innate immunity and also plays an important role in modulating adaptive immunity. It comprises more than 30 plasma and membrane-bound proteins and can be activated through three pathways: the classical, the alternative and the lectin pathways. Its activation contributes to the pathogenesis of several autoimmune and inflammatory conditions. The evidence of complement activation in synovial fluid of Rheumatoid Arthritis (RA) patients is abundant, while few data exist in Psoriatic Arthritis (PsA) patients. Levels of complement proteins are generally depressed in the synovial fluid of patients with RA, reflecting consumption of complement. On the other hand, elevated levels of several complement cleavage products have been observed in synovial fluid. Involvement of complement in the pathogenesis of RA was also confirmed in animal models of arthritis: mice deficient for complement proteins are protected against the development of collagen-induced arthritis and administration of the anti-C5 monoclonal antibody prevents the onset of this arthritis. In the last decade anti-tumor necrosis factor agents have shown to be effective for the treatment of both RA and PsA and some studies suggest that the interaction between TNFα and complement system may contribute to the pathogenesis of these diseases. Reduction of the complement activation could be one of the mechanism by which TNFα-inhibitors exert their effectiveness in inflammatory arthritides. Because of these findings, complement could be an attractive therapeutic target both in RA and in PsA.

  9. Sundanese Complementation

    ERIC Educational Resources Information Center

    Kurniawan, Eri

    2013-01-01

    The focus of this thesis is the description and analysis of clausal complementation in Sundanese, an Austronesian language spoken in Indonesia. The thesis examined a range of clausal complement types in Sundanese, which consists of (i) "yen/(wi)rehna" "that" complements, (ii) "pikeun" "for" complements,…

  10. The complement system of elasmobranches revealed by liver transcriptome analysis of a hammerhead shark, Sphyrna zygaena.

    PubMed

    Goshima, Masayuki; Sekiguchi, Reo; Matsushita, Misao; Nonaka, Masaru

    2016-08-01

    Comprehensive studies of the complement genes in basal vertebrates have revealed that cyclostomes have apparently primitive complement systems whereas bony fish have well-developed complement systems comparable to those of mammals. Here we have performed liver transcriptome analysis of a hammerhead shark, Sphyrna zygaeana, to elucidate the early history of vertebrate complement evolution. Identified genes were; one C1qB, one C1r, one C1s, one MASP-1/-3, one MASP-2, two factor B/C2, one C3, three C4, one C5, one C6, one C7, one C8A, three C8B, one C8G, one C9, two factor I and one S protein. No MBL, ficolin, C1qA or C1qC were found. These results indicate that the lectin, classical, alternative and lytic pathways were established in the common ancestor of jawed vertebrates. In addition to the absence of MBL and ficolin, the MASP transcripts lacked the serine protease domain, suggesting that the lectin pathway was lost in the hammerhead shark lineage. PMID:26987526

  11. Trypanosoma cruzi carrying a monoallelic deletion of the calreticulin (TcCRT) gene are susceptible to complement mediated killing and defective in their metacyclogenesis.

    PubMed

    Sánchez Valdéz, Fernando J; Pérez Brandán, Cecilia; Zago, M Paola; Labriola, Carlos; Ferreira, Arturo; Basombrío, Miguel Ángel

    2013-03-01

    Trypanosoma cruzi calreticulin (TcCRT) can hijack complement C1, mannan-binding lectin and ficolins from serum thus inhibiting the classical and lectin complement pathway activation respectively. To understand the in vivo biological functions of TcCRT in T. cruzi we generated a clonal cell line lacking one TcCRT allele (TcCRT+/-) and another clone overexpressing it (TcCRT+). Both clones were derived from the TCC T. cruzi strain. As expected, TcCRT+/- epimastigotes showed impairment on TcCRT synthesis, whereas TcCRT+ ones showed increased protein levels. In correlation to this, monoallelic mutant parasites were significantly susceptible to killing by the complement machinery. On the contrary, TcCRT+ parasites showed higher levels of resistance to killing mediate by the classical and lectin but not the alternative pathway. The involvement of surface TcCRT in depleting C1 was demonstrated through restoration of serum killing activity by addition of exogenous C1. In axenic cultures, a reduced propagation rate of TcCRT+/- parasites was observed. Moreover, TcCRT+/- parasites presented a reduced rate of differentiation in in vitro assays. As shown by down- or upregulation of TcCRT expression this gene seems to play a major role in providing T. cruzi with the ability to resist complement system. PMID:22954747

  12. The role of complement in the pathogenesis of renal ischemia-reperfusion injury and fibrosis

    PubMed Central

    2014-01-01

    The complement system is a major component of innate immunity and has been commonly identified as a central element in host defense, clearance of immune complexes, and tissue homeostasis. After ischemia-reperfusion injury (IRI), the complement system is activated by endogenous ligands that trigger proteolytic cleavage of complement components via the classical, lectin and/or alternative pathway. The result is the formation of terminal complement components C3a, C5a, and the membrane attack complex (C5b-9 or MAC), all of which play pivotal roles in the amplification of the inflammatory response, chemotaxis, neutrophil/monocyte recruitment and activation, and direct tubular cell injury. However, recent evidence suggests that complement activity transcends innate host defense and there is increasing data suggesting complement as a regulator in processes such as allo-immunity, stem cell differentiation, tissue repair, and progression to fibrosis. In this review, we discuss recent advances addressing the role of complement as a regulator of IRI and renal fibrosis after organ donation for transplantation. We will also briefly discuss currently approved therapies that target complement activity in kidney ischemia-reperfusion and transplantation. PMID:25383094

  13. Complement C5a induces PD-L1 expression and acts in synergy with LPS through Erk1/2 and JNK signaling pathways.

    PubMed

    An, Ling-Ling; Gorman, Jacob V; Stephens, Geoffrey; Swerdlow, Bonnie; Warrener, Paul; Bonnell, Jessica; Mustelin, Tomas; Fung, Michael; Kolbeck, Roland

    2016-01-01

    Severe bacterial infection results in both uncontrolled inflammation and immune suppression in septic patients. Although there is ample evidence that complement activation provokes overwhelming pro-inflammatory responses, whether or not it plays a role in immune suppression in this case is unclear. Here, we identify that complement C5a directly participates in negative regulation of immune responses to bacteria-induced inflammation in an ex vivo model of human whole blood. Challenge of whole blood with heat-killed Pseudomonas aeruginosa induces PD-L1 expression on monocytes and the production of IL-10 and TGF-β, which we show to be inhibited by C5a blockade. The induction of PD-L1 expression by C5a is via C5aR1but not C5aR2. Furthermore, C5a synergises with P. aeruginosa LPS in both PD-L1 expression and the production of IL-10 and TGF-β. Mechanistically, C5a contributes to the synergy in PD-L1 expression by specifically activating Erk1/2 and JNK signaling pathways. Our study reveals a new role for C5a in directly promoting immunosuppressive responses. Therefore, aberrant production of complement C5a during bacterial infection could have broader effect on compromising host defense including the induction of immune suppression. PMID:27624143

  14. Complement C5a induces PD-L1 expression and acts in synergy with LPS through Erk1/2 and JNK signaling pathways

    PubMed Central

    An, Ling-Ling; Gorman, Jacob V.; Stephens, Geoffrey; Swerdlow, Bonnie; Warrener, Paul; Bonnell, Jessica; Mustelin, Tomas; Fung, Michael; Kolbeck, Roland

    2016-01-01

    Severe bacterial infection results in both uncontrolled inflammation and immune suppression in septic patients. Although there is ample evidence that complement activation provokes overwhelming pro-inflammatory responses, whether or not it plays a role in immune suppression in this case is unclear. Here, we identify that complement C5a directly participates in negative regulation of immune responses to bacteria-induced inflammation in an ex vivo model of human whole blood. Challenge of whole blood with heat-killed Pseudomonas aeruginosa induces PD-L1 expression on monocytes and the production of IL-10 and TGF-β, which we show to be inhibited by C5a blockade. The induction of PD-L1 expression by C5a is via C5aR1but not C5aR2. Furthermore, C5a synergises with P. aeruginosa LPS in both PD-L1 expression and the production of IL-10 and TGF-β. Mechanistically, C5a contributes to the synergy in PD-L1 expression by specifically activating Erk1/2 and JNK signaling pathways. Our study reveals a new role for C5a in directly promoting immunosuppressive responses. Therefore, aberrant production of complement C5a during bacterial infection could have broader effect on compromising host defense including the induction of immune suppression. PMID:27624143

  15. Clusterin and the terminal complement pathway synthesized by human umbilical vein endothelial cells are closely linked when detected on co-cultured agarose beads.

    PubMed

    Berge, V; Johnson, E; Høgåsen, K

    1997-01-01

    Clusterin and the terminal complement pathway synthesized by human umbilical vein endothelial cells are closely linked when detected on co-cultured agarose beads. Clusterin is a multifunctional regulatory protein rendering the terminal complement complex (TCC) soluble and unable to insert into cell membranes. The aim of the present study was to examine whether clusterin was an integral part of serum-derived TCC bound to agarose beads which activate the alternative pathway of complement. Further, we searched for evidence of clusterin synthesis in human umbilical vein endothelial cells (EC) and whether this synthesis was regulated by various proinflammatory cytokines (IL-1, IL-6, and TNF) and IFN-gamma. The clusterin and TCC on co-incubated beads were measured by radioimmunoassay based on primary anti-complement antibodies (anti-C3c, anti-TCC, anti-clusterin). We found that clusterin in serum experiments is bound to C9 in agarose bound TCC and not directly to the agarose. Addition of the protein synthesis inhibitor cycloheximide to cultured human umbilical vein cells resulted in a strong reduction (about 70%) of anti-clusterin binding to co-cultured beads, which strongly supports de novo synthesis of clusterin in EC. The results indicate that clusterin derived from the EC is linked with the TCC on the co-incubated beads for the following reasons: First, in serum experiments clusterin like vitronectin, was co-deposited with C9 in agarose-bound TCC. Second, cytokine stimulation of the EC with proinflammatory cytokines such as IL-1, IL-6 and TNF, known to increase the detection of bound TCC, also increased the amount of clusterin detected on the beads. Third, IFN-gamma, which reduces the concentration of bound TCC, exhibited the same effect on the amount of clusterin detected on such beads. There was a strong and dose-dependent reduction of anti-TCC binding from about 45% to about 95% when clusterin (5-40 micrograms/ml) was added to EC cultures. This effect was also

  16. Early graft failure of GalTKO pig organs in baboons is reduced by expression of a human complement pathway-regulatory protein.

    PubMed

    Azimzadeh, Agnes M; Kelishadi, Sean S; Ezzelarab, Mohamed B; Singh, Avneesh K; Stoddard, Tiffany; Iwase, Hayato; Zhang, Tianshu; Burdorf, Lars; Sievert, Evelyn; Avon, Chris; Cheng, Xiangfei; Ayares, David; Horvath, Keith A; Corcoran, Philip C; Mohiuddin, Muhammad M; Barth, Rolf N; Cooper, David K C; Pierson, Richard N

    2015-01-01

    We describe the incidence of early graft failure (EGF, defined as loss of function from any cause within 3 days after transplant) in a large cohort of GalTKO pig organs transplanted into baboons in three centers, and the effect of additional expression of a human complement pathway-regulatory protein, CD46 or CD55 (GalTKO.hCPRP). Baboon recipients of life-supporting GalTKO kidney (n = 7) or heterotopic heart (n = 14) grafts received either no immunosuppression (n = 4), or one of several partial or full immunosuppressive regimens (n = 17). Fourteen additional baboons received a GalTKO.hCPRP kidney (n = 5) or heart (n = 9) and similar treatment regimens. Immunologic, pathologic, and coagulation parameters were measured at frequent intervals. EGF of GalTKO organs occurred in 9/21 baboons (43%). hCPRP expression reduced the GalTKO EGF incidence to 7% (1/14; P < 0.01 vs. GalTKO alone). At 30 mins, complement deposits were more intense in organs in which EGF developed (P < 0.005). The intensity of peri-transplant platelet activation (as β-thromboglobulin release) correlated with EGF, as did the cumulative coagulation score (P < 0.01). We conclude that (i) the transgenic expression of a hCPRP on the vascular endothelium of a GalTKO pig reduces the incidence of EGF and reduces complement deposition, (ii) complement deposition and platelet activation correlate with early GalTKO organ failure, and (iii) the expression of a hCPRP reduces EGF but does not prevent systemic coagulation activation. Additional strategies will be required to control coagulation activation.

  17. Gene array analysis of a rat model of liver transplant tolerance identifies increased complement C3 and the STAT-1/IRF-1 pathway during tolerance induction.

    PubMed

    Cordoba, Shaun P; Wang, Chuanmin; Williams, Rohan; Li, Jian; Smit, Lynn; Sharland, Alexandra; Allen, Richard; McCaughan, Geoffrey; Bishop, Alex

    2006-04-01

    This study aimed to define the molecular mechanism during induction of spontaneous liver transplant tolerance using microarrays and to focus on molecular pathways associated with tolerance by meta-analysis with published studies. The differences in the early immune response between PVG to DA liver transplant recipients that are spontaneously tolerant (TOL) and PVG to Lewis liver transplants that reject (REJ) were examined. Spleens from TOL and REJ on days 1 and 3 were compared by 2 color microarray. Forty-six of 199 genes differentially expressed between TOL and REJ had an immunological function. More immune genes were increased in TOL vs. REJ on day 1, including STAT-1, IRF-1 and complement C3. Differential expression of selected genes was confirmed by quantitative RT-PCR. The results were compared to two published high-throughput studies of rat liver transplant tolerance and showed that C3 was increased in all three models, while STAT-1 and IRF-1 were increased in two models. The early increases in immune genes in TOL confirmed previous reports of an active early immune response in TOL. In conclusion, the increase in STAT-1, IRF-1 and complement component C3 in several models of liver transplant tolerance suggests that the STAT-1/IRF-1 apoptotic pathway and C3 may be involved in the tolerogenic mechanism.

  18. Complement in hemolytic anemia.

    PubMed

    Brodsky, Robert A

    2015-11-26

    Complement is increasingly being recognized as an important driver of human disease, including many hemolytic anemias. Paroxysmal nocturnal hemoglobinuria (PNH) cells are susceptible to hemolysis because of a loss of the complement regulatory proteins CD59 and CD55. Patients with atypical hemolytic uremic syndrome (aHUS) develop a thrombotic microangiopathy (TMA) that in most cases is attributable to mutations that lead to activation of the alternative pathway of complement. For optimal therapy, it is critical, but often difficult, to distinguish aHUS from other TMAs, such as thrombotic thrombocytopenic purpura; however, novel bioassays are being developed. In cold agglutinin disease (CAD), immunoglobulin M autoantibodies fix complement on the surface of red cells, resulting in extravascular hemolysis by the reticuloendothelial system. Drugs that inhibit complement activation are increasingly being used to treat these diseases. This article discusses the pathophysiology, diagnosis, and therapy for PNH, aHUS, and CAD.

  19. Complement in hemolytic anemia.

    PubMed

    Brodsky, Robert A

    2015-01-01

    Complement is increasingly being recognized as an important driver of human disease, including many hemolytic anemias. Paroxysmal nocturnal hemoglobinuria (PNH) cells are susceptible to hemolysis because of a loss of the complement regulatory proteins CD59 and CD55. Patients with atypical hemolytic uremic syndrome (aHUS) develop a thrombotic microangiopathy (TMA) that in most cases is attributable to mutations that lead to activation of the alternative pathway of complement. For optimal therapy, it is critical, but often difficult, to distinguish aHUS from other TMAs, such as thrombotic thrombocytopenic purpura; however, novel bioassays are being developed. In cold agglutinin disease (CAD), immunoglobulin M autoantibodies fix complement on the surface of red cells, resulting in extravascular hemolysis by the reticuloendothelial system. Drugs that inhibit complement activation are increasingly being used to treat these diseases. This article discusses the pathophysiology, diagnosis, and therapy for PNH, aHUS, and CAD.

  20. New insight into the effects of heparinoids on complement inhibition by C1-inhibitor.

    PubMed

    Poppelaars, F; Damman, J; de Vrij, E L; Burgerhof, J G M; Saye, J; Daha, M R; Leuvenink, H G; Uknis, M E; Seelen, M A J

    2016-06-01

    Complement activation is of major importance in numerous pathological conditions. Therefore, targeted complement inhibition is a promising therapeutic strategy. C1-esterase inhibitor (C1-INH) controls activation of the classical pathway (CP) and the lectin pathway (LP). However, conflicting data exist on inhibition of the alternative pathway (AP) by C1-INH. The inhibitory capacity of C1-INH for the CP is potentiated by heparin and other glycosaminoglycans, but no data exist for the LP and AP. The current study investigates the effects of C1-INH in the presence or absence of different clinically used heparinoids on the CP, LP and AP. Furthermore, the combined effects of heparinoids and C1-INH on coagulation were investigated. C1-INH, heparinoids or combinations were analysed in a dose-dependent fashion in the presence of pooled serum. Functional complement activities were measured simultaneously using the Wielisa(®) -kit. The activated partial thrombin time was determined using an automated coagulation analyser. The results showed that all three complement pathways were inhibited significantly by C1-INH or heparinoids. Next to their individual effects on complement activation, heparinoids also enhanced the inhibitory capacity of C1-INH significantly on the CP and LP. For the AP, significant potentiation of C1-INH by heparinoids was found; however, this was restricted to certain concentration ranges. At low concentrations the effect on blood coagulation by combining heparinoids with C1-INH was minimal. In conclusion, our study shows significant potentiating effects of heparinoids on the inhibition of all complement pathways by C1-INH. Therefore, their combined use is a promising and a potentially cost-effective treatment option for complement-mediated diseases.

  1. New insight into the effects of heparinoids on complement inhibition by C1-inhibitor.

    PubMed

    Poppelaars, F; Damman, J; de Vrij, E L; Burgerhof, J G M; Saye, J; Daha, M R; Leuvenink, H G; Uknis, M E; Seelen, M A J

    2016-06-01

    Complement activation is of major importance in numerous pathological conditions. Therefore, targeted complement inhibition is a promising therapeutic strategy. C1-esterase inhibitor (C1-INH) controls activation of the classical pathway (CP) and the lectin pathway (LP). However, conflicting data exist on inhibition of the alternative pathway (AP) by C1-INH. The inhibitory capacity of C1-INH for the CP is potentiated by heparin and other glycosaminoglycans, but no data exist for the LP and AP. The current study investigates the effects of C1-INH in the presence or absence of different clinically used heparinoids on the CP, LP and AP. Furthermore, the combined effects of heparinoids and C1-INH on coagulation were investigated. C1-INH, heparinoids or combinations were analysed in a dose-dependent fashion in the presence of pooled serum. Functional complement activities were measured simultaneously using the Wielisa(®) -kit. The activated partial thrombin time was determined using an automated coagulation analyser. The results showed that all three complement pathways were inhibited significantly by C1-INH or heparinoids. Next to their individual effects on complement activation, heparinoids also enhanced the inhibitory capacity of C1-INH significantly on the CP and LP. For the AP, significant potentiation of C1-INH by heparinoids was found; however, this was restricted to certain concentration ranges. At low concentrations the effect on blood coagulation by combining heparinoids with C1-INH was minimal. In conclusion, our study shows significant potentiating effects of heparinoids on the inhibition of all complement pathways by C1-INH. Therefore, their combined use is a promising and a potentially cost-effective treatment option for complement-mediated diseases. PMID:26874675

  2. Combined biochemical and cytological analysis of membrane trafficking using lectins.

    PubMed

    Morgan, Gareth W; Kail, Mark; Hollinshead, Michael; Vaux, David J

    2013-10-01

    We have tested the application of high-mannose-binding lectins as analytical reagents to identify N-glycans in the early secretory pathway of HeLa cells during subcellular fractionation and cytochemistry. Post-endoplasmic reticulum (ER) pre-Golgi intermediates were separated from the ER on Nycodenz-sucrose gradients, and the glycan composition of each gradient fraction was profiled using lectin blotting. The fractions containing the post-ER pre-Golgi intermediates are found to contain a subset of N-linked α-mannose glycans that bind the lectins Galanthus nivalis agglutinin (GNA), Pisum sativum agglutinin (PSA), and Lens culinaris agglutinin (LCA) but not lectins binding Golgi-modified glycans. Cytochemical analysis demonstrates that high-mannose-containing glycoproteins are predominantly localized to the ER and the early secretory pathway. Indirect immunofluorescence microscopy revealed that GNA colocalizes with the ER marker protein disulfide isomerase (PDI) and the COPI coat protein β-COP. In situ competition with concanavalin A (ConA), another high-mannose specific lectin, and subsequent GNA lectin histochemistry refined the localization of N-glyans containing nonreducing mannosyl groups, accentuating the GNA vesicular staining. Using GNA and treatments that perturb ER-Golgi transport, we demonstrate that lectins can be used to detect changes in membrane trafficking pathways histochemically. Overall, we find that conjugated plant lectins are effective tools for combinatory biochemical and cytological analysis of membrane trafficking of glycoproteins.

  3. Accelerated Tumor Growth Mediated by Sub-lytic Levels of Antibody-Induced Complement Activation is Associated with Activation of the PI3K/AKT Survival Pathway

    PubMed Central

    Wu, Xiaohong; Ragupathi, Govind; Panageas, Katherine; Hong, Feng; Livingston, Philip O.

    2013-01-01

    Purpose We addressed the possibility that low levels of tumor cell bound antibodies targeting gangliosides might accelerate tumor growth. Experimental Design To test this hypothesis, we treated mice with a range of mAb doses against GM2, GD2, GD3 and CD20 after challenge with tumors expressing these antigens and tested the activity of the same mAbs in-vitro. We also explored the mechanisms behind the complement-mediated tumor growth acceleration that we observed and an approach to overcome it. Results Serologically detectable levels of IgM-mAb against GM2 are able to delay or prevent tumor growth of high GM2-expressing cell lines both in-vitro and in a SCID mouse model, while very low levels of this mAb resulted in slight but consistent acceleration of tumor growth in both settings. Surprisingly, this is not restricted to IgM antibodies targeting GM2 but consistent against IgG-mAb targeting GD3 as well. These findings were mirrored by in-vitro studies with antibodies against these antigens as well as GD2 and CD20 (with Rituxan), and shown to be complement-dependent in all cases. Complement-mediated accelerated growth of cultured tumor cell lines initiated by low mAb levels was associated with activation of the PI3K/AKT survival pathway and significantly elevated levels of both p-AKT and p-PRAS40. This complement-mediated PI3K-activation and accelerated tumor growth in-vitro and in-vivo are eliminated by PI3K-inhibitors NVP-BEZ235 and Wortmannin. These PI3K-inhibitors also significantly increased efficacy of high doses of these 4 mAbs. Conclusion Our findings suggest that manipulation of the PI3K/AKT pathway and its signaling network can significantly increase the potency of passively administered mAbs and vaccine-induced-antibodies targeting a variety of tumor-cell-surface-antigens. PMID:23833306

  4. Lectins from edible mushrooms.

    PubMed

    Singh, Senjam Sunil; Wang, Hexiang; Chan, Yau Sang; Pan, Wenliang; Dan, Xiuli; Yin, Cui Ming; Akkouh, Ouafae; Ng, Tzi Bun

    2014-12-31

    Mushrooms are famous for their nutritional and medicinal values and also for the diversity of bioactive compounds they contain including lectins. The present review is an attempt to summarize and discuss data available on molecular weights, structures, biological properties, N-terminal sequences and possible applications of lectins from edible mushrooms. It further aims to update and discuss/examine the recent advancements in the study of these lectins regarding their structures, functions, and exploitable properties. A detailed tabling of all the available data for N-terminal sequences of these lectins is also presented here.

  5. Complement Test

    MedlinePlus

    ... helpful? Also known as: C1; C1q; C2; C3; C4; CH50; CH100 (among others) Formal name: Complement Activity; ... whether the system is functioning normally. C3 and C4 are the most frequently measured complement proteins. Total ...

  6. Sushi domain-containing protein 4 (SUSD4) inhibits complement by disrupting the formation of the classical C3 convertase.

    PubMed

    Holmquist, Emelie; Okroj, Marcin; Nodin, Björn; Jirström, Karin; Blom, Anna M

    2013-06-01

    Recently discovered Sushi domain-containing protein 4 (SUSD4) contains several Sushi or complement control protein domains; therefore, we hypothesized that it may act as complement inhibitor. Two isoforms of human SUSD4, fused to the Fc part of human IgG, were recombinantly expressed in Chinese hamster ovary (CHO) cells. The secreted soluble isoform of SUSD4 (SUSD4b) inhibited the classical and lectin complement pathways by 50% at a concentration of 0.5 μM. This effect was due to the fact that 1 μM SUSD4b inhibited the formation of the classical C3 convertase by 90%. The membrane-bound isoform (SUSD4a) inhibited the classical and alternative complement pathways when expressed on the surface of CHO cells but not when expressed as a soluble, truncated protein. In all functional studies, we used known complement inhibitors as positive controls, while Coxsackie adenovirus receptor, which has no effect on complement, expressed with Fc tag, was a negative control. We also studied the mRNA expression of both isoforms of SUSD4 in a panel of human tissues using quantitative PCR and primarily found SUSD4a in esophagus and brain, while SUSD4b was highly expressed in esophagus, ovary, and heart. Overall, our results show that SUSD4 is a novel complement inhibitor with restricted expression.

  7. A single-CRD C-type lectin is important for bacterial clearance in the silkworm.

    PubMed

    Zhan, Ming-Yue; Shahzad, Toufeeq; Yang, Pei-Jin; Liu, Su; Yu, Xiao-Qiang; Rao, Xiang-Jun

    2016-12-01

    C-type lectins (CTLs) depend on the carbohydrate-recognition domain (CRD) to recognize carbohydrates by a Ca(2+)-dependent mechanism. In animals, CTLs play critical roles in pathogen recognition, activation of the complement system and signaling pathways. Immulectins (Dual-CRD CTLs) in lepidopteran are involved in recognizing pathogens. However, little is known about the immune-related functions of insect single-CRD CTLs. Here, we reported the characterization of C-type lectin-S3 (CTL-S3), a single-CRD CTL from the domesticated silkmoth Bombyx mori (Lepidoptera: Bombycidae). The ORF of CTL-S3 gene is 672 bp, which encodes a putative protein of 223 amino acids. CTL-S3 gene was expressed in a variety of tissues. Levels of CTL-S3 mRNA in fertilized eggs and whole larvae were elevated upon bacterial challenges. CTL-S3 was secreted to larval hemolymph. The recombinant protein (rCTL-S3) binds to bacterial cell wall components and bacteria. CTL-S3 inhibited the growth of Bacillus subtilis and caused agglutination of Staphylococcus aureus. More importantly, CTL-S3 facilitated the rapid clearance of Escherichia coli and Staphylococcus aureus from the body cavity of larvae. Taken together, our results suggested that CTL-S3 may function as an opsonin in larval hemolymph to enhance the clearance of pathogens. PMID:27519466

  8. Application of a monoclonal antibody against a neoepitope on activated C4 in an ELISA for the quantification of complement activation via the classical pathway.

    PubMed

    Wolbink, G J; Bollen, J; Baars, J W; ten Berge, R J; Swaak, A J; Paardekooper, J; Hack, C E

    1993-07-01

    In order to study the activation of the complement system via the classical pathway we have attempted to raise antibodies specific for C4 activation products. Of 20 mouse monoclonal antibodies (mAbs) obtained, one appeared to react with an activation dependent epitope exposed on the activation products C4b, C4bi, C4c (C4b/c) as well as on iC4, but not on native C4. Using this antibody as a capture antibody and polyclonal biotinylated antibodies against C4 as detecting antibodies we developed an ELISA for the quantification of C4b/c in biological fluids. The lower limit of detection was approximately 0.025 nmol C4b/c per litre. Mean C4b/c levels in plasma samples collected from healthy volunteers in tubes containing 10 mM EDTA and 0.05% (w/v) polybrene, final concentrations, appeared to be 30 nmol/l. The potential of the ELISA procedure for evaluating complement activation in clinical samples was demonstrated.

  9. New insights on the structural/functional properties of recombinant human mannan-binding lectin and its variants.

    PubMed

    Rajagopalan, Rema; Salvi, Veena P; Jensenius, Jens Chr; Rawal, Nenoo

    2009-04-27

    Inefficient activation of complement lectin pathway in individuals with variant mannan-binding lectin (MBL) genotypes has been attributed to poor formation of higher order oligomers by MBL. But recent studies have shown the presence of large oligomers of MBL (approximately 450 kDa) in serum of individuals with variant MBL alleles. The recombinant forms of MBL (rMBL) variants except MBL/B that assemble into higher order oligomers have not yet been reported. In the present study, structural/functional properties of recombinant forms of wild type MBL (rMBL/A) and its three structural variants, rMBL/B, C, and D generated in insect cells were examined. Western blot analysis indicated covalently linked monomers to hexamers while gel filtration chromatography exhibited non-covalently linked higher order oligomers in addition to prevalent low oligomeric forms. Mannan binding determined by ELISA showed rMBL/A but not the structural variants bind to mannan. Apparent avidity of monoclonal antibody used was found to be about 18- to 52-fold weaker for rMBL structural variants than rMBL/A. Complement activation varied with maximum impairment apparent in rMBL/C followed by rMBL/B, but rMBL/D was functional to the same extent as rMBL/A. Comparison of rMBL/A to MBL purified from plasma (pMBL/A) indicated 8- and 24-fold weaker binding to mannan by BIAcore analysis and ELISA and about 5-fold lesser efficiency in activating complement. The findings provide new insights on the structural/functional properties of rMBL variants and imply that lectin pathway activation may be impaired in individuals, homozygous for the mutant alleles, MBL/C and to a lesser extent MBL/B but not MBL/D. PMID:19428558

  10. Surface-bound capsular polysaccharide of type Ia group B Streptococcus mediates C1 binding and activation of the classic complement pathway

    SciTech Connect

    Levy, N.J.; Kasper, D.L.

    1986-06-01

    The role of surface-bound type Ia group B Streptococcus (GBS) capsular polysaccharide in anti-body-independent binding of C1 and activation of the classic component pathway was investigated. In a radiolabeled bacterial-polymorphonuclear leukocyte (PMN) association assay, a measure of bacterial opsonization, preincubation of /sup 3/H-type Ia GBS with purified F(ab')/sub 2/ to the organism blocked the association of the bacteria with PMN', and the inhibitory effect was dose dependent. The specificity of F(ab')/sub 2/ blocking was shown after adsorption of F(ab')/sub 2/ with type Ia polysaccharide-sensitized erythrocytes. Polysaccharide-adsorbed F(ab')/sub 2/ had a 70% decrease in ability to block the association of bacteria with PMN. Neuraminidase digestion removed 80% of the terminal sialic acid residues from the native polysaccharide. These neuraminidase-digested organisms had a 72% decrease in binding and transfer of purified C1 compared with non-enzyme-treated organisms. Type Ia capsular polysaccharide bound to sheep erythrocytes promoted classic complement pathway-mediated hemolysis of the cells. The role of C1 inhibitor (INH) in modulation of C1 activation by the organisms was investigated. The possibility existed that the C1 INH could be bound by the bacteria, allowing C1 activation to occur in the fluid phase. The inhibitor was purified from human serum, and its activity was measured before and after incubation with type Ia GBS. The organisms had no effect on C1 INH activity. Thus surface-bound capsular polysacchardie of type Ia GBS mediates C1 binding and classic pathway activation, and this does not involve the C1 INH.

  11. Inhibition of the alternative pathway of nonhuman infant complement by porin B2 contributes to virulence of Neisseria meningitidis in the infant rat model.

    PubMed

    Lewis, Lisa A; Vu, David M; Granoff, Dan M; Ram, Sanjay

    2014-06-01

    Neisseria meningitidis utilizes capsular polysaccharide, lipooligosaccharide (LOS) sialic acid, factor H binding protein (fHbp), and neisserial surface protein A (NspA) to regulate the alternative pathway (AP) of complement. Using meningococcal mutants that lacked all four of the above-mentioned molecules (quadruple mutants), we recently identified a role for PorB2 in attenuating the human AP; inhibition was mediated by human fH, a key downregulatory protein of the AP. Previous studies showed that fH downregulation of the AP via fHbp or NspA is specific for human fH. Here, we report that PorB2-expressing quadruple mutants also regulate the AP of baby rabbit and infant rat complement. Blocking a human fH binding region on PorB2 of the quadruple mutant of strain 4243 with a chimeric protein that comprised human fH domains 6 and 7 fused to murine IgG Fc enhanced AP-mediated baby rabbit C3 deposition, which provided evidence for an fH-dependent mechanism of nonhuman AP regulation by PorB2. Using isogenic mutants of strain H44/76 that differed only in their PorB molecules, we confirmed a role for PorB2 in resistance to killing by infant rat serum. The PorB2-expressing strain also caused higher levels of bacteremia in infant rats than its isogenic PorB3-expressing counterpart, thus providing a molecular basis for increased survival of PorB2 isolates in this model. These studies link PorB2 expression with infection of infant rats, which could inform the choice of meningococcal strains for use in animal models, and reveals, for the first time, that PorB2-expressing strains of N. meningitidis regulate the AP of baby rabbits and rats.

  12. Thrombotic Microangiopathy Care Pathway: A Consensus Statement for the Mayo Clinic Complement Alternative Pathway-Thrombotic Microangiopathy (CAP-TMA) Disease-Oriented Group.

    PubMed

    Go, Ronald S; Winters, Jeffrey L; Leung, Nelson; Murray, David L; Willrich, Maria A; Abraham, Roshini S; Amer, Hatem; Hogan, William J; Marshall, Ariela L; Sethi, Sanjeev; Tran, Cheryl L; Chen, Dong; Pruthi, Rajiv K; Ashrani, Aneel A; Fervenza, Fernando C; Cramer, Carl H; Rodriguez, Vilmarie; Wolanskyj, Alexandra P; Thomé, Stephan D; Hook, C Christopher

    2016-09-01

    Thrombotic microangiopathies (TMAs) comprise a heterogeneous set of conditions linked by a common histopathologic finding of endothelial damage resulting in microvascular thromboses and potentially serious complications. The typical clinical presentation is microangiopathic hemolytic anemia accompanied by thrombocytopenia with varying degrees of organ ischemia. The differential diagnoses are generally broad, while the workup is frequently complex and can be confusing. This statement represents the joint recommendations from a multidisciplinary team of Mayo Clinic physicians specializing in the management of TMA. It comprises a series of evidence- and consensus-based clinical pathways developed to allow a uniform approach to the spectrum of care including when to suspect TMA, what differential diagnoses to consider, which diagnostic tests to order, and how to provide initial empiric therapy, as well as some guidance on subsequent management. PMID:27497856

  13. Thrombotic Microangiopathy Care Pathway: A Consensus Statement for the Mayo Clinic Complement Alternative Pathway-Thrombotic Microangiopathy (CAP-TMA) Disease-Oriented Group.

    PubMed

    Go, Ronald S; Winters, Jeffrey L; Leung, Nelson; Murray, David L; Willrich, Maria A; Abraham, Roshini S; Amer, Hatem; Hogan, William J; Marshall, Ariela L; Sethi, Sanjeev; Tran, Cheryl L; Chen, Dong; Pruthi, Rajiv K; Ashrani, Aneel A; Fervenza, Fernando C; Cramer, Carl H; Rodriguez, Vilmarie; Wolanskyj, Alexandra P; Thomé, Stephan D; Hook, C Christopher

    2016-09-01

    Thrombotic microangiopathies (TMAs) comprise a heterogeneous set of conditions linked by a common histopathologic finding of endothelial damage resulting in microvascular thromboses and potentially serious complications. The typical clinical presentation is microangiopathic hemolytic anemia accompanied by thrombocytopenia with varying degrees of organ ischemia. The differential diagnoses are generally broad, while the workup is frequently complex and can be confusing. This statement represents the joint recommendations from a multidisciplinary team of Mayo Clinic physicians specializing in the management of TMA. It comprises a series of evidence- and consensus-based clinical pathways developed to allow a uniform approach to the spectrum of care including when to suspect TMA, what differential diagnoses to consider, which diagnostic tests to order, and how to provide initial empiric therapy, as well as some guidance on subsequent management.

  14. C1q-targeted monoclonal antibody prevents complement-dependent cytotoxicity and neuropathology in in vitro and mouse models of neuromyelitis optica

    PubMed Central

    Phuan, Puay-Wah; Zhang, Hua; Asavapanumas, Nithi; Leviten, Michael; Rosenthal, Arnon; Tradtrantip, Lukmanee

    2014-01-01

    Neuromyelitis optica (NMO) is an autoimmune disorder with inflammatory demyelinating lesions in the central nervous system, particularly in the spinal cord and optic nerve. NMO pathogenesis is thought to involve binding of anti-aquaporin-4 (AQP4) autoantibodies to astrocytes, which causes complement-dependent cytotoxicity (CDC) and downstream inflammation leading to oligo-dendrocyte and neuronal injury. Vasculocentric deposition of activated complement is a prominent feature of NMO pathology. Here, we show that a neutralizing monoclonal antibody against the C1q protein in the classical complement pathway prevents AQP4 autoantibody-dependent CDC in cell cultures and NMO lesions in ex vivo spinal cord slice cultures and in mice. A monoclonal antibody against human C1q with 11 nM binding affinity prevented CDC caused by NMO patient serum in AQP4-transfected cells and primary astrocyte cultures, and prevented complement-dependent cell-mediated cytotoxicity (CDCC) produced by natural killer cells. The anti-C1q antibody prevented astrocyte damage and demyelination in mouse spinal cord slice cultures exposed to AQP4 autoantibody and human complement. In a mouse model of NMO produced by intracerebral injection of AQP4 autoantibody and human complement, the inflammatory demyelinating lesions were greatly reduced by intracerebral administration of the anti-C1q antibody. These results provide proof-of-concept for C1q-targeted monoclonal antibody therapy in NMO. Targeting of C1q inhibits the classical complement pathway directly and causes secondary inhibition of CDCC and the alternative complement pathway. As C1q-targeted therapy leaves the lectin complement activation pathway largely intact, its side-effect profile is predicted to differ from that of therapies targeting downstream complement proteins. PMID:23677375

  15. Lectin purified from Musca domestica pupa up-regulates NO and iNOS production via TLR4/NF-κB signaling pathway in macrophages.

    PubMed

    Cao, Xiaohong; Zhou, Minghui; Wang, Chunling; Hou, Lihua; Zeng, Bin

    2011-04-01

    The present study reported that nitric oxide (NO) was up-regulated by the induction of lectin purified from Musca domestica pupa (MPL) in macrophages without cytotoxicity. The mRNA expression and protein secretion of inducible nitric oxide synthase (iNOS) were strongly induced by MPL treatments. Subsequent investigation revealed that the nuclear factor-κB (NF-κB) inhibitory κB (IκB) in endochylema was inhibited and NF-κB translocated into the nucleus after MPL treatment. Meanwhile, the IKKβ was strongly induced and the production of the toll-like receptor 4 (TLR4) was significantly up-regulated. Moreover, MPL increased NO production via inducing the expression of iNOS through the activation of NF-κB, which suggested that MPL probably acted as an activating agent of the NF-κB activation.

  16. Association of complement receptor 2 polymorphisms with innate resistance to HIV-1 infection.

    PubMed

    Herrero, R; Real, L M; Rivero-Juárez, A; Pineda, J A; Camacho, Á; Macías, J; Laplana, M; Konieczny, P; Márquez, F J; Souto, J C; Soria, J M; Saulle, I; Lo Caputo, S; Biasin, M; Rivero, A; Fibla, J; Caruz, A

    2015-03-01

    HIV-1 induces activation of complement through the classical and lectin pathways. However, the virus incorporates several membrane-bound or soluble regulators of complement activation (RCA) that inactivate complement. HIV-1 can also use the complement receptors (CRs) for complement-mediated antibody-dependent enhancement of infection (Ć-ADE). We hypothesize that hypofunctional polymorphisms in RCA or CRs may protect from HIV-1 infection. For this purpose, 139 SNPs located in 19 RCA and CRs genes were genotyped in a population of 201 Spanish HIV-1-exposed seronegative individuals (HESN) and 250 HIV-1-infected patients. Two SNPs were associated with infection susceptibility, rs1567190 in CR2 (odds ratio (OR) = 2.27, P = 1 × 10(-4)) and rs2842704 in C4BPA (OR = 2.11, P = 2 × 10(-4)). To replicate this finding, we analyzed a cohort of Italian, sexually HESN individuals. Although not significant (P = 0.25, OR = 1.57), similar genotypic proportions were obtained for the CR2 marker rs1567190. The results of the two association analyses were combined through a random effect meta-analysis, with a significant P-value of 2.6 x 10(-5) (OR = 2.07). Furthermore, we found that the protective CR2 genotype is correlated with lower levels CR2 mRNA as well as differences in the ratio of the long and short CR2 isoforms.

  17. Mild hypothermia inhibits systemic and cerebral complement activation in a swine model of cardiac arrest

    PubMed Central

    Gong, Ping; Zhao, Hong; Hua, Rong; Zhang, Mingyue; Tang, Ziren; Mei, Xue; Cui, Juan; Li, Chunsheng

    2015-01-01

    Complement activation has been implicated in ischemia/reperfusion injury. This study aimed to determine whether mild hypothermia (HT) inhibits systemic and cerebral complement activation after resuscitation from cardiac arrest. Sixteen minipigs resuscitated from 8 minutes of untreated ventricular fibrillation were randomized into two groups: HT group (n=8), treated with HT (33°C) for 12 hours; and normothermia group (n=8), treated similarly as HT group except for cooling. Blood samples were collected at baseline and 0.5, 6, 12, and 24 hours after return of spontaneous circulation (ROSC). The brain cortex was harvested 24 hours after ROSC. Complement and pro-inflammatory markers were detected using enzyme-linked immunosorbent assay. Neurologic deficit scores were evaluated 24 hours after ROSC. C1q, Bb, mannose-binding lectin (MBL), C3b, C3a, C5a, interleukin-6, and tumor necrosis factor-α levels were significantly increased under normothermia within 24 hours after ROSC. However, these increases were significantly reduced by HT. Hypothermia decreased brain C1q, MBL, C3b, and C5a contents 24 hours after ROSC. Hypothermic pigs had a better neurologic outcome than normothermic pigs. In conclusion, complement is activated through classic, alternative, and MBL pathways after ROSC. Hypothermia inhibits systemic and cerebral complement activation, which may provide an additional mechanism of cerebral protection. PMID:25757755

  18. Complement research in the 18th-21st centuries: Progress comes with new technology.

    PubMed

    Sim, R B; Schwaeble, W; Fujita, T

    2016-10-01

    The complement system has been studied for about 120 years. Progress in defining this large and complex system has been dependent on the research technologies available, but since the introduction of protein chromatography, electrophoresis, and antibody-based assay methods in the 1950s and 60s, and sequencing of proteins and DNA in the 70s and 80s, there has been very rapid accumulation of data. With more recent improvements in 3D structure determination (nmr and X-ray crystallography), the structures of most of the complement proteins have now been solved. Complement research since 1990 has been greatly stimulated by the discoveries of the multiple proteins in the lectin pathway, the strong association of Factor H, C3, Factor B allelic variants with adult macular degeneration and atypical haemolytic uremic syndrome, and the introduction of the anti-C5 monoclonal antibody as a therapy for paroxysmal nocturnal hemoglobinuria and atypical haemolytic uremic syndrome. Potential new roles for complement in tissue development and the search for novel therapeutics suggest a very active future for complement research. PMID:27371361

  19. Mild hypothermia inhibits systemic and cerebral complement activation in a swine model of cardiac arrest.

    PubMed

    Gong, Ping; Zhao, Hong; Hua, Rong; Zhang, Mingyue; Tang, Ziren; Mei, Xue; Cui, Juan; Li, Chunsheng

    2015-08-01

    Complement activation has been implicated in ischemia/reperfusion injury. This study aimed to determine whether mild hypothermia (HT) inhibits systemic and cerebral complement activation after resuscitation from cardiac arrest. Sixteen minipigs resuscitated from 8 minutes of untreated ventricular fibrillation were randomized into two groups: HT group (n=8), treated with HT (33°C) for 12 hours; and normothermia group (n=8), treated similarly as HT group except for cooling. Blood samples were collected at baseline and 0.5, 6, 12, and 24 hours after return of spontaneous circulation (ROSC). The brain cortex was harvested 24 hours after ROSC. Complement and pro-inflammatory markers were detected using enzyme-linked immunosorbent assay. Neurologic deficit scores were evaluated 24 hours after ROSC. C1q, Bb, mannose-binding lectin (MBL), C3b, C3a, C5a, interleukin-6, and tumor necrosis factor-α levels were significantly increased under normothermia within 24 hours after ROSC. However, these increases were significantly reduced by HT. Hypothermia decreased brain C1q, MBL, C3b, and C5a contents 24 hours after ROSC. Hypothermic pigs had a better neurologic outcome than normothermic pigs. In conclusion, complement is activated through classic, alternative, and MBL pathways after ROSC. Hypothermia inhibits systemic and cerebral complement activation, which may provide an additional mechanism of cerebral protection.

  20. The Role of Complement in Cnidarian-Dinoflagellate Symbiosis and Immune Challenge in the Sea Anemone Aiptasia pallida.

    PubMed

    Poole, Angela Z; Kitchen, Sheila A; Weis, Virginia M

    2016-01-01

    The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP) have been characterized in invertebrates and while most studies have focused on their conserved role in defense against pathogens, little is known about their role in managing beneficial microbes. The purpose of this study was to (1) characterize complement pathway genes in the symbiotic sea anemone Aiptasia pallida, (2) investigate the evolution of complement genes in invertebrates, and (3) examine the potential dual role of complement genes Factor B and MASP in the onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge using qPCR based studies. The results demonstrate that A. pallida has multiple Factor B genes (Ap_Bf-1, Ap_Bf-2a, and Ap_Bf-2b) and one MASP gene (Ap_MASP). Phylogenetic analysis indicates that the evolutionary history of complement genes is complex, and there have been many gene duplications or gene loss events, even within members of the same phylum. Gene expression analyses revealed a potential role for complement in both onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge. Specifically, Ap_Bf-1 and Ap_MASP are significantly upregulated in the light at the onset of symbiosis and in response to challenge with the pathogen Serratia marcescens suggesting that they play a role in the initial recognition of both beneficial and harmful microbes. Ap_Bf-2b in contrast, was generally downregulated during the onset and maintenance of symbiosis and in response to challenge with S. marcescens. Therefore, the exact role of Ap_Bf-2b in response to microbes remains unclear, but the results suggest that the presence of microbes leads to repressed expression. Together, these results indicate functional divergence between Ap_Bf-1

  1. The Role of Complement in Cnidarian-Dinoflagellate Symbiosis and Immune Challenge in the Sea Anemone Aiptasia pallida

    PubMed Central

    Poole, Angela Z.; Kitchen, Sheila A.; Weis, Virginia M.

    2016-01-01

    The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP) have been characterized in invertebrates and while most studies have focused on their conserved role in defense against pathogens, little is known about their role in managing beneficial microbes. The purpose of this study was to (1) characterize complement pathway genes in the symbiotic sea anemone Aiptasia pallida, (2) investigate the evolution of complement genes in invertebrates, and (3) examine the potential dual role of complement genes Factor B and MASP in the onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge using qPCR based studies. The results demonstrate that A. pallida has multiple Factor B genes (Ap_Bf-1, Ap_Bf-2a, and Ap_Bf-2b) and one MASP gene (Ap_MASP). Phylogenetic analysis indicates that the evolutionary history of complement genes is complex, and there have been many gene duplications or gene loss events, even within members of the same phylum. Gene expression analyses revealed a potential role for complement in both onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge. Specifically, Ap_Bf-1 and Ap_MASP are significantly upregulated in the light at the onset of symbiosis and in response to challenge with the pathogen Serratia marcescens suggesting that they play a role in the initial recognition of both beneficial and harmful microbes. Ap_Bf-2b in contrast, was generally downregulated during the onset and maintenance of symbiosis and in response to challenge with S. marcescens. Therefore, the exact role of Ap_Bf-2b in response to microbes remains unclear, but the results suggest that the presence of microbes leads to repressed expression. Together, these results indicate functional divergence between Ap_Bf-1

  2. Effect of the extract of the tamarind (Tamarindus indica) fruit on the complement system: studies in vitro and in hamsters submitted to a cholesterol-enriched diet.

    PubMed

    Landi Librandi, Ana Paula; Chrysóstomo, Taís Nader; Azzolini, Ana Elisa C S; Recchia, Carem Gledes Vargas; Uyemura, Sérgio Akira; de Assis-Pandochi, Ana Isabel

    2007-08-01

    This work evaluated a crude hydroalcoholic extract (ExT) from the pulp of the tamarind (Tamarindus indica) fruit as a source of compounds active on the complement system (CS) in vitro. ExT, previously characterized by other authors, had time and concentration dependent effects on the lytic activity of the CS. The activity of 0.8 mg/mL of the extract on the classical/lectin pathways (CP/LP) increased after 30 min of pre-incubation, while that of the alternative pathway (AP) decreased after 15 min at 1mg/mL. Since the CS is a mediator of inflammation, studies were also made in vivo, taking advantage of a model of hypercholesterolemia in hamsters to investigate the role of CS in the phase preceding the inflammatory process of atherosclerosis. Hamsters submitted to a diet rich in cholesterol showed increased lytic activity of the CP/LP and AP after 45 days. The activity levels of C2 and factor B components on respectively, classical/lectin and alternative pathways of the CS also increased. Early events cooperating to trigger the process of atherosclerotic lesions are not completely understood, and these alterations of complement may participate in these events. When treatment with a diet rich in cholesterol was associated to the furnishing of ExT, evaluation of complement components and complement lytic activity showed values similar to those of the controls, showing that treatment with ExT blocked the increase of complement activity caused by the cholesterol-rich diet. By itself, ExT had no effect on the complement system in vivo. ExT activity on the CS may be of interest for therapy and research purposes.

  3. Mannose-binding lectin and ficolin-2 do not influence humoral immune response to hepatitis B vaccine

    PubMed Central

    Osthoff, Michael; Irungu, Elizabeth; Ngure, Kenneth; Mugo, Nelly; Thomas, Katherine K.; Baeten, Jared M.; Eisen, Damon P

    2015-01-01

    Background Host genetics appear to be an important factor in the failure to generate a protective immune response after hepatitis B (HBV) vaccination. Mannose-binding lectin (MBL) and ficolin-2 (FCN2), two pattern recognition receptors of the lectin pathway of complement, influence the clinical outcome of HBV, and MBL deficiency has been shown to augment the humoral response to HBV vaccination in several experimental models. Here, we investigated the association of MBL and FCN2 with the humoral response to HBV vaccination in a candidate gene and functional study. Patients and methods A post hoc analysis of a prospective, interventional HBV vaccination study among human immunodeficiency virus type 1 (HIV-1) uninfected individuals in Kenya was conducted. Serum levels and polymorphisms of MBL and FCN2 were analysed in relation to the immune response to HBV vaccination. Results Protective hepatitis B surface antibody levels (≥10 mIU/ml) were evident in 251/293 (85.7%) individuals. Median MBL and FCN2 levels were similar in responders vs. non-responders with a weak trend towards lower median MBL levels in non-responders (1.0 vs. 1.6 μg/ml, p=0.1). Similarly, there was no difference in four MBL and six FCN2 polymorphisms analysed in the two groups with the exception of an increased frequency of a homozygous MBL codon 57 mutation in non-responders (4 (9.5%) vs. 8 (3.2%), p=0.05) corresponding to lower MBL levels. Results were similar after adjusting for age and sex. Conclusions Our study does not support a prominent role of the lectin pathway of complement in general and MBL and FCN2 in particular in the humoral immune response to HBV vaccination in African adults. PMID:25024112

  4. Lectins: production and practical applications

    PubMed Central

    2010-01-01

    Lectins are proteins found in a diversity of organisms. They possess the ability to agglutinate erythrocytes with known carbohydrate specificity since they have at least one non-catalytic domain that binds reversibly to specific monosaccharides or oligosaccharides. This articles aims to review the production and practical applications of lectins. Lectins are isolated from their natural sources by chromatographic procedures or produced by recombinant DNA technology. The yields of animal lectins are usually low compared with the yields of plant lectins such as legume lectins. Lectins manifest a diversity of activities including antitumor, immunomodulatory, antifungal, HIV-1 reverse transcriptase inhibitory, and anti-insect activities, which may find practical applications. A small number of lectins demonstrate antibacterial and anti-nematode activities. PMID:20890754

  5. A Serine Protease Isolated from the Bristles of the Amazonic Caterpillar, Premolis semirufa, Is a Potent Complement System Activator

    PubMed Central

    Villas Boas, Isadora Maria; Pidde-Queiroz, Giselle; Magnoli, Fabio Carlos; Gonçalves-de-Andrade, Rute M.; van den Berg, Carmen W.; Tambourgi, Denise V.

    2015-01-01

    Background The caterpillar of the moth Premolis semirufa, commonly named pararama, is found in the Brazilian Amazon region. Accidental contact with the caterpillar bristles causes an intense itching sensation, followed by symptoms of an acute inflammation, which last for three to seven days after the first incident. After multiple accidents a chronic inflammatory reaction, called “Pararamose”, characterized by articular synovial membrane thickening with joint deformities common to chronic synovitis, frequently occurs. Although complement mediated inflammation may aid the host defense, inappropriate or excessive activation of the complement system and generation of anaphylatoxins can lead to inflammatory disorder and pathologies. The aim of the present study was to evaluate, in vitro, whether the Premolis semirufa’s bristles extract could interfere with the human complement system. Results The bristles extract was able to inhibit the haemolytic activity of the alternative pathway, as well as the activation of the lectin pathway, but had no effect on the classical pathway, and this inhibition seemed to be caused by activation and consumption of complement components. The extract induced the production of significant amounts of all three anaphylatoxins, C3a, C4a and C5a, promoted direct cleavage of C3, C4 and C5 and induced a significant generation of terminal complement complexes in normal human serum. By using molecular exclusion chromatography, a serine protease of 82 kDa, which activates complement, was isolated from P. semirufa bristles extract. The protease, named here as Ps82, reduced the haemolytic activity of the alternative and classical pathways and inhibited the lectin pathway. In addition, Ps82 induced the cleavage of C3, C4 and C5 and the generation of C3a and C4a in normal human serum and it was capable to cleave human purified C5 and generate C5a. The use of Phenanthroline, metalloprotease inhibitor, in the reactions did not significantly

  6. Lectins with anti-HIV activity: a review.

    PubMed

    Akkouh, Ouafae; Ng, Tzi Bun; Singh, Senjam Sunil; Yin, Cuiming; Dan, Xiuli; Chan, Yau Sang; Pan, Wenliang; Cheung, Randy Chi Fai

    2015-01-01

    Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata (banana) lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus). The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed. PMID:25569520

  7. Lectins with anti-HIV activity: a review.

    PubMed

    Akkouh, Ouafae; Ng, Tzi Bun; Singh, Senjam Sunil; Yin, Cuiming; Dan, Xiuli; Chan, Yau Sang; Pan, Wenliang; Cheung, Randy Chi Fai

    2015-01-01

    Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata (banana) lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus). The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed.

  8. Model-Driven Redox Pathway Manipulation for Improved Isobutanol Production in Bacillus subtilis Complemented with Experimental Validation and Metabolic Profiling Analysis

    PubMed Central

    Qi, Haishan; Li, Shanshan; Zhao, Sumin; Huang, Di; Xia, Menglei; Wen, Jianping

    2014-01-01

    To rationally guide the improvement of isobutanol production, metabolic network and metabolic profiling analysis were performed to provide global and profound insights into cell metabolism of isobutanol-producing Bacillus subtilis. The metabolic flux distribution of strains with different isobutanol production capacity (BSUL03, BSUL04 and BSUL05) drops a hint of the importance of NADPH on isobutanol biosynthesis. Therefore, the redox pathways were redesigned in this study. To increase NADPH concentration, glucose-6-phosphate isomerase was inactivated (BSUL06) and glucose-6-phosphate dehydrogenase was overexpressed (BSUL07) successively. As expected, NADPH pool size in BSUL07 was 4.4-fold higher than that in parental strain BSUL05. However, cell growth, isobutanol yield and production were decreased by 46%, 22%, and 80%, respectively. Metabolic profiling analysis suggested that the severely imbalanced redox status might be the primary reason. To solve this problem, gene udhA of Escherichia coli encoding transhydrogenase was further overexpressed (BSUL08), which not only well balanced the cellular ratio of NAD(P)H/NAD(P)+, but also increased NADH and ATP concentration. In addition, a straightforward engineering approach for improving NADPH concentrations was employed in BSUL05 by overexpressing exogenous gene pntAB and obtained BSUL09. The performance for isobutanol production by BSUL09 was poorer than BSUL08 but better than other engineered strains. Furthermore, in fed-batch fermentation the isobutanol production and yield of BSUL08 increased by 11% and 19%, up to the value of 6.12 g/L and 0.37 C-mol isobutanol/C-mol glucose (63% of the theoretical value), respectively, compared with parental strain BSUL05. These results demonstrated that model-driven complemented with metabolic profiling analysis could serve as a useful approach in the strain improvement for higher bio-productivity in further application. PMID:24705866

  9. Lectin-dependent enhancement of Ebola virus infection via soluble and transmembrane C-type lectin receptors.

    PubMed

    Brudner, Matthew; Karpel, Marshall; Lear, Calli; Chen, Li; Yantosca, L Michael; Scully, Corinne; Sarraju, Ashish; Sokolovska, Anna; Zariffard, M Reza; Eisen, Damon P; Mungall, Bruce A; Kotton, Darrell N; Omari, Amel; Huang, I-Chueh; Farzan, Michael; Takahashi, Kazue; Stuart, Lynda; Stahl, Gregory L; Ezekowitz, Alan B; Spear, Gregory T; Olinger, Gene G; Schmidt, Emmett V; Michelow, Ian C

    2013-01-01

    Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active

  10. Decreased material-activation of the complement system using low-energy plasma polymerized poly(vinyl pyrrolidone) coatings.

    PubMed

    Andersen, Thomas E; Palarasah, Yaseelan; Skjødt, Mikkel-Ole; Ogaki, Ryosuke; Benter, Maike; Alei, Mojagan; Kolmos, Hans J; Koch, Claus; Kingshott, Peter

    2011-07-01

    In the current study we investigate the activation of blood complement on medical device silicone rubber and present a plasma polymerized vinyl pyrrolidone (ppVP) coating which strongly decreases surface-activation of the blood complement system. We show that uncoated silicone and polystyrene are both potent activators of the complement system, measured both as activated, deposited C3b and quantifying fluid-phase release of the cleavage fragment C3c. The ppVP coated silicone exhibits approximately 90% reduced complement activation compared to untreated silicone. Quartz crystal microbalance with dissipation (QCM-D) measurements show relatively strong adsorption of blood proteins including native C3 to the ppVP surface, indicating that reduction of complement activation on ppVP is neither a result of low protein adsorption nor lower direct C3-binding, and is therefore possibly a consequence of differences in the adsorbed protein layer composition. The alternative and classical complement pathways are barely detectable on ppVP while the lectin pathway through MBL/ficolin-2 deposition remains active on ppVP suggesting this pathway is responsible for the remaining subtle activation on the ppVP coated surface. The ppVP surface is furthermore characterized physically and chemically using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR), which indicates preservation of chemical functionality by the applied plasma process. Overall, the ppVP coating shows a potential for increasing complement-compatibility of blood-contacting devices.

  11. Targeting Mannose Binding Lectin Confers Long Lasting Protection with a Surprisingly Wide Therapeutic Window in Cerebral Ischemia

    PubMed Central

    Orsini, Franca; Villa, Pia; Parrella, Sara; Zangari, Rosalia; Zanier, Elisa R.; Gesuete, Raffaella; Stravalaci, Matteo; Fumagalli, Stefano; Ottria, Roberta; Reina, Josè J.; Paladini, Alessandra; Micotti, Edoardo; Ribeiro-Viana, Renato; Rojo, Javier; Pavlov, Vasile I.; Stahl, Gregory L.; Bernardi, Anna; Gobbi, Marco; De Simoni, Maria-Grazia

    2012-01-01

    Background The involvement of complement system in brain injury has been scarcely investigated. Here we document the pivotal role of mannose binding lectin (MBL), one of the recognition molecules of the lectin complement pathway, in brain ischemic injury. Methods and Results Focal cerebral ischemia was induced in mice (by permanent or transient middle cerebral artery occlusion) and rats (by 3-vessels occlusion). We first observed that MBL is deposited on ischemic vessels up to 48h after injury and that functional MBL/MASP2 complexes are increased. Next we demonstrated that: 1) MBL−/− mice are protected from both transient and permanent ischemic injury; 2) Polyman2, the newly synthesized mannosylated molecule selected for its binding to MBL, improves neurological deficits and infarct volume when given up to 24h after ischemia in mice; 3) anti-MBL-A antibody improves neurological deficits and infarct volume when given up to 18h after ischemia, as assessed following 28d in rats. Conclusions Our data show an important role for MBL in the pathogenesis of brain ischemic injury and provide a strong support to the concept that MBL inhibition may be a relevant therapeutic target in humans, one with a wide therapeutic window of application. PMID:22879370

  12. Innate Immune Proteins C1q and Mannan-Binding Lectin Enhance Clearance of Atherogenic Lipoproteins by Human Monocytes and Macrophages

    PubMed Central

    Fraser, Deborah A.; Tenner, Andrea J.

    2012-01-01

    Atherosclerosis is a chronic inflammatory disorder that is characterized by the accumulation of modified lipoproteins in the arterial intima. C1q and mannan-binding lectin (MBL) are not only recognition components involved in activation of inflammation via the complement cascade, but they are also able to directly modulate phagocyte activation. Studies in C1q−/− and MBL−/− mice suggest that these molecules play a protective role in the early atherosclerotic lesion in the absence of, or prior to, expression of other complement components. However, in later stages, complement activation becomes an inappropriate inflammatory response, contributing to disease pathology. Therefore, to investigate possible molecular interactions of C1q and MBL in atherosclerotic lesions, we examined the influence of C1q and MBL in the clearance of native and modified lipoproteins by human monocytes and monocyte-derived macrophages. Both C1q and MBL are shown to bind and enhance the monocyte/monocyte-derived macrophage clearance of modified forms of low-density lipoprotein (LDL), including oxidized LDL and acetylated LDL, but not native LDL. Modified forms of LDL activate the classical complement pathway, but no lectin pathway activation was detected. Interestingly, monocytes that ingested modified LDL in the presence of C1q or MBL upregulated surface CD80 and CD31, as well as CCL2 chemokine gene expression. However, C1q and MBL also significantly reduced levels of free cholesterol accumulation in monocytes and human monocyte-derived macrophages that ingested oxidized LDL, while enhancing high-density lipoprotein–specific cholesterol efflux from these cells. These results suggest a novel pathway in which C1q and MBL influence removal and metabolism of atherogenic forms of LDL in the early stages of atherosclerosis. PMID:20833838

  13. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1

    PubMed Central

    Avirutnan, Panisadee; Fuchs, Anja; Hauhart, Richard E.; Somnuke, Pawit; Youn, Soonjeon

    2010-01-01

    The complement system plays an essential protective role in the initial defense against many microorganisms. Flavivirus NS1 is a secreted nonstructural glycoprotein that accumulates in blood, is displayed on the surface of infected cells, and has been hypothesized to have immune evasion functions. Herein, we demonstrate that dengue virus (DENV), West Nile virus (WNV), and yellow fever virus (YFV) NS1 attenuate classical and lectin pathway activation by directly interacting with C4. Binding of NS1 to C4 reduced C4b deposition and C3 convertase (C4b2a) activity. Although NS1 bound C4b, it lacked intrinsic cofactor activity to degrade C4b, and did not block C3 convertase formation or accelerate decay of the C3 and C5 convertases. Instead, NS1 enhanced C4 cleavage by recruiting and activating the complement-specific protease C1s. By binding C1s and C4 in a complex, NS1 promotes efficient degradation of C4 to C4b. Through this mechanism, NS1 protects DENV from complement-dependent neutralization in solution. These studies define a novel immune evasion mechanism for restricting complement control of microbial infection. PMID:20308361

  14. Lectin binding in meningiomas.

    PubMed

    Kleinert, R; Radner, H

    1987-01-01

    Forty-two meningiomas of different morphological sub-type were examined to determine their pattern of binding to 11 different lectins which characterize cell surface components such as carbohydrate residues. Histiocytic and xanthoma cells within meningiomas could be demonstrated with six different lectins: wheat germ agglutinin (WGA), peanut agglutinin (PNA) Bauhinia purpurea agglutinin (BPA), Helix pomatia agglutinin (HPA), Vicia fava agglutinin (VFA) and Soyabean agglutinin (SBA). Vascular elements including endothelial cells and intimal cells, bound Ulex europaeus agglutinin type 1 (UEA 1), WGA and HPA. The fibrous stroma in fibrous and fibroblastic meningiomas bound PNA, Laburnum alpinum agglutinin (LAA) and SBA. Tumour cells in meningotheliomatous meningiomas and some areas of anaplastic meningiomas bound Concanavalin A, PNA, LAA and VFA whereas tumour cells in fibrous and fibroblastic meningiomas bound BPA, LAA and VFA. Lectin binding has proved to be of value in detecting histiocytic and xanthoma cells together with vascular elements within meningiomas. In addition, the different lectin binding patterns allow different histological sub-types of meningioma to be distinguished although the biological significance of the binding patterns is unclear. PMID:3658105

  15. Lectin from Abelmoschus esculentus reduces zymosan-induced temporomandibular joint inflammatory hypernociception in rats via heme oxygenase-1 pathway integrity and tnf-α and il-1β suppression.

    PubMed

    Freitas, Raul Sousa; do Val, Danielle Rocha; Fernandes, Maria Ester Frota; Gomes, Francisco Isaac Fernandes; de Lacerda, José Thalles Jocelino Gomes; SantiGadelha, Tatiane; de Almeida Gadelha, Carlos Alberto; de Paulo Teixeira Pinto, Vicente; Cristino-Filho, Gerardo; Pereira, Karuza Maria Alves; de Castro Brito, Gerly Anne; Bezerra, Mirna Marques; Chaves, Hellíada Vasconcelos

    2016-09-01

    Temporomandibular joint (TMJ) disorders show inflammatory components, heavily impacting on quality of life. Abelmoschus esculentus is largely cultivated in Northeastern Brazil for medicinal purposes, having it shown anti-inflammatory activity. We evaluated A. esculentus lectin (AEL) efficacy in reducing zymosan-induced temporomandibular joint inflammatory hypernociception in rats along with the mechanism of action through which it exerts anti-inflammatory activity. Animals were pre-treated with AEL (0.01, 0.1 or 1mg/kg) before zymosan (Zy) injection in the TMJ to determine anti-inflammatory activity. To analyse the possible effect of the hemeoxygenase-1 (HO-1) and the nitric oxide (NO) pathways on AEL efficacy, animals were pre-treated with ZnPP-IX (3mg/kg), a specific HO-1 inhibitor, or aminoguanidine (30mg/kg), a selective iNOS inhibitor, before AEL administration. Von Frey test evaluated inflammatory hypernociception, synovial fluid collection was performed to determine leukocyte counting and myeloperoxidase (MPO) activity 6h after Zy injection, and Evans Blue extravasation determined vascular permeability. TMJ tissue was collected for histopathological analysis (H&E) and immunohistochemistry (TNF-α, IL-1β, HO-1). In addition, TMJ tissue and trigeminal ganglion collection was performed for TNF-α and IL-1β dosage (ELISA). AEL increased inflammatory nociceptive threshold, reduced leukocyte influx along with MPO activity, leukocyte influx into the synovial membrane, and Evans Blue extravasation. It promoted HO-1 overexpression whilst decreased TNF-α and IL-1β expression in the TMJ tissue. AEL reduced TNF-α and IL-1β levels in TMJ tissue and trigeminal ganglion. AEL effects, however, were not observed in the presence of ZnPP-IX. These findings suggest that AEL efficacy depends on TNF-α/IL-1β inhibition and HO-1 pathway integrity.

  16. Lectin from Abelmoschus esculentus reduces zymosan-induced temporomandibular joint inflammatory hypernociception in rats via heme oxygenase-1 pathway integrity and tnf-α and il-1β suppression.

    PubMed

    Freitas, Raul Sousa; do Val, Danielle Rocha; Fernandes, Maria Ester Frota; Gomes, Francisco Isaac Fernandes; de Lacerda, José Thalles Jocelino Gomes; SantiGadelha, Tatiane; de Almeida Gadelha, Carlos Alberto; de Paulo Teixeira Pinto, Vicente; Cristino-Filho, Gerardo; Pereira, Karuza Maria Alves; de Castro Brito, Gerly Anne; Bezerra, Mirna Marques; Chaves, Hellíada Vasconcelos

    2016-09-01

    Temporomandibular joint (TMJ) disorders show inflammatory components, heavily impacting on quality of life. Abelmoschus esculentus is largely cultivated in Northeastern Brazil for medicinal purposes, having it shown anti-inflammatory activity. We evaluated A. esculentus lectin (AEL) efficacy in reducing zymosan-induced temporomandibular joint inflammatory hypernociception in rats along with the mechanism of action through which it exerts anti-inflammatory activity. Animals were pre-treated with AEL (0.01, 0.1 or 1mg/kg) before zymosan (Zy) injection in the TMJ to determine anti-inflammatory activity. To analyse the possible effect of the hemeoxygenase-1 (HO-1) and the nitric oxide (NO) pathways on AEL efficacy, animals were pre-treated with ZnPP-IX (3mg/kg), a specific HO-1 inhibitor, or aminoguanidine (30mg/kg), a selective iNOS inhibitor, before AEL administration. Von Frey test evaluated inflammatory hypernociception, synovial fluid collection was performed to determine leukocyte counting and myeloperoxidase (MPO) activity 6h after Zy injection, and Evans Blue extravasation determined vascular permeability. TMJ tissue was collected for histopathological analysis (H&E) and immunohistochemistry (TNF-α, IL-1β, HO-1). In addition, TMJ tissue and trigeminal ganglion collection was performed for TNF-α and IL-1β dosage (ELISA). AEL increased inflammatory nociceptive threshold, reduced leukocyte influx along with MPO activity, leukocyte influx into the synovial membrane, and Evans Blue extravasation. It promoted HO-1 overexpression whilst decreased TNF-α and IL-1β expression in the TMJ tissue. AEL reduced TNF-α and IL-1β levels in TMJ tissue and trigeminal ganglion. AEL effects, however, were not observed in the presence of ZnPP-IX. These findings suggest that AEL efficacy depends on TNF-α/IL-1β inhibition and HO-1 pathway integrity. PMID:27344040

  17. Insights into the Effects of Complement Factor H on the Assembly and Decay of the Alternative Pathway C3 Proconvertase and C3 Convertase.

    PubMed

    Bettoni, Serena; Bresin, Elena; Remuzzi, Giuseppe; Noris, Marina; Donadelli, Roberta

    2016-04-01

    The activated fragment of C3 (C3b) and factor B form the C3 proconvertase (C3bB), which is cleaved by factor D to C3 convertase (C3bBb). Older studies (Conrad, D. H., Carlo, J. R., and Ruddy, S. (1978)J. Exp. Med.147, 1792-1805; Pangburn, M. K., and Müller-Eberhard, H. J. (1978)Proc. Natl. Acad. Sci. U.S.A.75, 2416-2420; Kazatchkine, M. D., Fearon, D. T., and Austen, K. F. (1979)J. Immunol.122, 75-81) indicated that the complement alternative pathway regulator factor H (FH) competes with factor B for C3b binding; however, the capability of FH to prevent C3bB assembly has not been formally investigated. Moreover, in the few published studies FH did not favor C3bB dissociation. Whether FH may affect C3bBb formation from C3bB is unknown. We set up user-friendly assays based on combined microplate/Western blotting techniques that specifically detect either C3bB or C3bBb, with the aim of investigating the effect of FH on C3bB assembly and decay and C3bBb formation and decay. We document that FH does not affect C3bB assembly, indicating that FH does not efficiently compete with factor B for C3b binding. We also found that FH does not dissociate C3bB. FH showed a strong C3bBb decay-accelerating activity, as reported previously, and also exerted an apparent inhibitory effect on C3bBb formation. The latter effect was not fully attributable to a rapid FH-mediated dissociation of C3bBb complexes, because blocking decay with properdin and C3 nephritic factor did not restore C3bBb formation. FH almost completely prevented release of the smaller cleavage subunit of FB (Ba), without modifying the amount of C3bB complexes, suggesting that FH inhibits the conversion of C3bB to C3bBb. Thus, the inhibitory effect of FH on C3bBb formation is likely the sum of inhibition of C3bB conversion to C3bBb and of C3bBb decay acceleration. Further studies are required to confirm these findings in physiological cell-based settings.

  18. Mannose-Binding Lectin Inhibits the Motility of Pathogenic Salmonella by Affecting the Driving Forces of Motility and the Chemotactic Response

    PubMed Central

    Nakamura, Shuichi; Islam, Md. Shafiqul; Guo, Yijie; Ihara, Kohei; Tomioka, Rintaro; Masuda, Mizuki; Yoneyama, Hiroshi; Isogai, Emiko

    2016-01-01

    Mannose-binding lectin (MBL) is a key pattern recognition molecule in the lectin pathway of the complement system, an important component of innate immunity. MBL functions as an opsonin which enhances the sequential immune process such as phagocytosis. We here report an inhibitory effect of MBL on the motility of pathogenic bacteria, which occurs by affecting the energy source required for motility and the signaling pathway of chemotaxis. When Salmonella cells were treated with a physiological concentration of MBL, their motile fraction and free-swimming speed decreased. Rotation assays of a single flagellum showed that the flagellar rotation rate was significantly reduced by the addition of MBL. Measurements of the intracellular pH and membrane potential revealed that MBL affected a driving force for the Salmonella flagellum, the electrochemical potential difference of protons. We also found that MBL treatment increased the reversal frequency of Salmonella flagellar rotation, which interfered with the relative positive chemotaxis toward an attractive substrate. We thus propose that the motility inhibition effect of MBL may be secondarily involved in the attack against pathogens, potentially facilitating the primary role of MBL in the complement system. PMID:27104738

  19. The Serine Protease Pic From Enteroaggregative Escherichia coli Mediates Immune Evasion by the Direct Cleavage of Complement Proteins.

    PubMed

    Abreu, Afonso G; Fraga, Tatiana R; Granados Martínez, Adriana P; Kondo, Marcia Y; Juliano, Maria A; Juliano, Luiz; Navarro-Garcia, Fernando; Isaac, Lourdes; Barbosa, Angela S; Elias, Waldir P

    2015-07-01

    Enteroaggregative and uropathogenic Escherichia coli, Shigella flexneri 2a, and the hybrid enteroaggregative/Shiga toxin-producing E. coli strain (O104:H4) are important pathogens responsible for intestinal and urinary tract infections, as well as sepsis and hemolytic uremic syndrome. They have in common the production of a serine protease called Pic. Several biological roles for Pic have been described, including protection of E. coli DH5α from complement-mediated killing. Hereby we showed that Pic significantly reduces complement activation by all 3 pathways. Pic cleaves purified C3/C3b and other proteins from the classic and lectin pathways, such as C4 and C2. Cleavage fragments of C3, C4, and C2 were also observed with HB101(pPic1) culture supernatants, and C3 cleavage sites were mapped by fluorescence resonance energy transfer peptides. Experiments using human serum as a source of complement proteins confirmed Pic proteolytic activity on these proteins. Furthermore, Pic works synergistically with the human complement regulators factor I and factor H, promoting inactivation of C3b. In the presence of both regulators, further degradation of C3 α' chain was observed. Therefore, Pic may contribute to immune evasion of E. coli and S. flexneri, favoring invasiveness and increasing the severity of the disorders caused by these pathogens.

  20. Lectins in human pathogenic fungi.

    PubMed

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  1. Lectins in human pathogenic fungi.

    PubMed

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). PMID:24270074

  2. Effect of functionalization of carbon nanotubes with psychosine on complement activation and protein adsorption.

    PubMed

    Rybak-Smith, Malgorzata J; Tripisciano, Carla; Borowiak-Palen, Ewa; Lamprecht, Constanze; Sim, Robert B

    2011-12-01

    Carbon nanotubes possess interesting physicochemical properties which make them potentially usable in medicine. Single-walled carbon nanotubes and multi-walled carbon nanotubes, for example, may carry and deliver anticancer drugs, such as cisplatin. Magnetic nanoparticles, like iron filled MWCNT, can be used in hyperthermia therapy. However, their hydrophobic character is a major difficulty, as preparation of stable dispersions of carbon nanotubes in biological buffers is an essential step towards biomedical applications. Recently, a novel treatment using the glycolipid, Galactosyl-beta1-sphingosine (psychosine), was employed to make stable suspensions of psychosine-functionalized carbon nanotubes in biological buffers. In this paper, the interactions of psychosine-functionalized carbon nanotubes with a part of the human immune system, complement, is presented. To investigate if human serum complement proteins can interact with psychosine-functionalized carbon nanotubes, complement consumption (depletion) assays were conducted. Moreover, direct protein binding studies, to analyze the interaction of plasma proteins with the psychosine-functionalized carbon nanotubes, using affinity chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis techniques, were applied. The psychosine-functionalized carbon nanotubes activate human complement via the classical pathway. Interestingly, as the hydrophilic part of the glycolipid may bind to ficolins, the lectin pathway could also be involved. Binding of human plasma proteins is very selective as only very few proteins adsorb to the psychosine-functionalized carbon nanotube surface, when placed in contact with human plasma. Bovine serum albumin-coated carbon nanotubes were used as a standard to find the differences in complement activation and protein adsorption patterns, caused by various non-covalent coatings of carbon nanotubes.

  3. Characterization of the human submandibular/sublingual saliva glycoproteome using lectin affinity chromatography coupled to Multidimensional Protein Identification Technology

    PubMed Central

    Gonzalez-Begne, Mireya; Lu, Bingwen; Liao, Lujian; Xu, Tao; Bedi, Gurrinder; Melvin, James E.; Yates, John R.

    2011-01-01

    In-depth analysis of the salivary proteome is fundamental to understanding the functions of salivary proteins in the oral cavity and to reveal disease biomarkers involved in different pathophysiological conditions, with the ultimate goal of improving patient diagnosis and prognosis. Submandibular and sublingual glands contribute saliva rich in glycoproteins to the total saliva output, making them valuable sources for glycoproteomic analysis. Lectin-affinity chromatography coupled to mass spectrometry-based shotgun proteomics was used to explore the submandibular/sublingual (SM/SL) saliva glycoproteome. A total of 262 N- and O-linked glycoproteins were identified by multidimensional protein identification technology (MudPIT). Only 38 were previously described in SM and SL salivas from the human salivary N-linked glycoproteome, while 224 were unique. Further comparison analysis with SM/SL saliva of the human saliva proteome, revealed 125 glycoproteins not formerly reported in this secretion. KEGG pathway analyses demonstrated that many of these glycoproteins are involved in processes such as complement and coagulation cascades, cell communication, glycosphingolipid biosynthesis neo-lactoseries, O-glycan biosynthesis, glycan structures-biosynthesis 2, starch and sucrose metabolism, peptidoglycan biosynthesis or others pathways. In summary, lectin-affinity chromatography coupled to MudPIT mass spectrometry identified many novel glycoproteins in SM/SL saliva. These new additions to the salivary proteome may prove to be a critical step for providing reliable biomarkers in the diagnosis of a myriad of oral and systemic diseases. PMID:21936497

  4. Glycan and lectin biosensors

    PubMed Central

    Belický, Štefan; Katrlík, Jaroslav

    2016-01-01

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  5. Glycan and lectin biosensors.

    PubMed

    Belický, Štefan; Katrlík, Jaroslav; Tkáč, Ján

    2016-06-30

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  6. The C-Type Lectin OCILRP2 Costimulates EL4 T Cell Activation via the DAP12-Raf-MAP Kinase Pathway

    PubMed Central

    Lou, Qiang; Zhang, Wei; Liu, Guangchao; Ma, Yuanfang

    2014-01-01

    OCILRP2 is a typical Type-II transmembrane protein that is selectively expressed in activated T lymphocytes, dendritic cells, and B cells and functions as a novel co-stimulator of T cell activation. However, the signaling pathways underlying OCILRP2 in T cell activation are still not completely understood. In this study, we found that the knockdown of OCILRP2 expression with shRNA or the blockage of its activity by an anti-OCILRP2 antagonist antibody reduced CD3/CD28-costimulated EL4 T cell viability and IL-2 production, inhibit Raf1, MAPK3, and MAPK8 activation, and impair NFAT and NF-κB transcriptional activities. Furthermore, immunoprecipitation results indicated that OCILRP2 could interact with the DAP12 protein, an adaptor containing an intracellular ITAM motif that can transduce signals to induce MAP kinase activation for T cell activation. Our data reveal that after binding with DAP12, OCILRP2 activates the Raf-MAP kinase pathways, resulting in T cell activation. PMID:25411776

  7. RNase activity of sialic acid-binding lectin from bullfrog eggs drives antitumor effect via the activation of p38 MAPK to caspase-3/7 signaling pathway in human breast cancer cells

    PubMed Central

    Kariya, Yukiko; Tatsuta, Takeo; Sugawara, Shigeki; Kariya, Yoshinobu; Nitta, Kazuo; Hosono, Masahiro

    2016-01-01

    Sialic acid-binding lectin obtained from bullfrog eggs (SBL) induces cell death in cancer cells but not in normal cells. This antitumor effect is mediated through its ribo-nuclease (RNase) activity. However, the underlying molecular mechanisms remain unclear. We found that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was activated when SBL induced cell death in three human breast cancer cell lines: SK-BR-3, MCF-7, and MDA-MB231. The suppression of p38 MAPK phosphorylation by a p38 MAPK inhibitor as well as short interference RNA knockdown of p38 MAPK expression significantly decreased cell death and increased the cell viability of SBL-treated MDA-MB231 cells. H103A, an SBL mutant lacking in RNase activity, showed decreased SBL-induced cell death compared with native SBL. However, the loss of RNase activity of SBL had no effect on its internalization into cells. The H103A mutant also displayed decreased phosphorylation of p38 MAPK. Moreover, SBL promoted caspase-3/7 activation followed by a cleavage of poly (ADP-ribose)-polymerase, whereas the SBL mutant, H103A, lost this ability. The SBL-induced caspase-3/7 activation was suppressed by the p38 MAPK inhibitor, SB203580, as well as pan-caspase inhibitor, zVAD-fmk. In the presence of zVAD-fmk, the SBL-induced cell death was decreased. In addition, the cell viability of SBL-treated MDA-MB231 cells recovered by zVAD-fmk treatment. Taken together, our results suggest that the RNase activity of SBL leads to breast cancer cell death through the activation of p38 MAPK followed by the activation of caspase-3/7. PMID:27513956

  8. The outer membrane protease PgtE of Salmonella enterica interferes with the alternative complement pathway by cleaving factors B and H

    PubMed Central

    Riva, Rauna; Korhonen, Timo K.; Meri, Seppo

    2015-01-01

    The virulence factor PgtE is an outer membrane protease (omptin) of the zoonotic pathogen Salmonella enterica that causes diseases ranging from gastroenteritis to severe enteric fever. It is surface exposed in bacteria that have a short-chain, i.e., rough LPS, as observed e.g., in bacteria residing inside macrophages or just emerging from them. We investigated whether PgtE cleaves the complement factors B (B) and H (H), key proteins controlling formation and inactivation of the complement protein C3b and thereby the activity of the complement system. S. enterica serovar Typhimurium or omptin-expressing recombinant E. coli bacteria were incubated with purified human complement proteins or recombinant H fragments. PgtE cleaved both B and H, whereas its close homolog Pla of Yersinia pestis cleaved only H. H was cleaved at both N- and C-termini, while the central region resisted proteolysis. Because of multiple effects of PgtE on complement components (cleavage of C3, C3b, B, and H) we assessed its effect on the opsonophagocytosis of Salmonella. In human serum, C3 cleavage was dependent on proteolytically active PgtE. Human neutrophils interacted less with serum-opsonized FITC-stained S. enterica 14028R than with the isogenic ΔpgtE strain, as analyzed by flow cytometry. In conclusion, cleavage of B and H by PgtE, together with C3 cleavage, affects the C3-mediated recognition of S. enterica by human neutrophils, thus thwarting the immune protection against Salmonella. PMID:25705210

  9. Complement fixation by rheumatoid factor.

    PubMed Central

    Tanimoto, K; Cooper, N R; Johnson, J S; Vaughan, J H

    1975-01-01

    The capacity for fixation and activation of hemolytic complement by polyclonal IgM rheumatoid factors (RF) isolated from sera of patients with rheumatoid arthritis and monoclonal IgM-RF isolated from the cryoprecipitates of patients with IgM-IgG mixed cryoglobulinemia was examined. RF mixed with aggregated, reduced, and alkylated human IgG (Agg-R/A-IgG) in the fluid phase failed to significantly reduce the level of total hemolytic complement, CH50, or of individual complement components, C1, C2, C3, and C5. However, sheep erythrocytes (SRC) coated with Agg-R/A-IgG or with reduced and alkylated rabbit IgG anti-SRC antibody were hemolyzed by complement in the presence of polyclonal IgM-RF. Human and guinea pig complement worked equally well. The degree of hemolysis was in direct proportion to the hemagglutination titer of the RF against the same coated cells. Monoclonal IgM-RF, normal human IgM, and purified Waldenström macroglobulins without antiglobulin activity were all inert. Hemolysis of coated SRC by RF and complement was inhibited by prior treatment of the complement source with chelating agents, hydrazine, cobra venom factor, specific antisera to C1q, CR, C5, C6, or C8, or by heating at 56 degrees C for 30 min. Purified radiolabeled C4, C3, and C8 included in the complement source were bound to hemolysed SRC in direct proportion to the degree of hemolysis. These data indicate that polyclonal IgM-RF fix and activate complement via the classic pathway. The system described for assessing complement fixation by isolated RF is readily adaptable to use with whole human serum. PMID:1078825

  10. Characterization and expression analysis of a complement component gene in sea cucumber ( Apostichopus japonicus)

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Zhou, Zunchun; Yang, Aifu; Dong, Ying; Guan, Xiaoyan; Jiang, Bei; Wang, Bai

    2015-12-01

    The complement system plays a crucial role in the innate immune system of animals. It can be activated by distinct yet overlapping classical, alternative and lectin pathways. In the alternative pathway, complement factor B (Bf) serves as the catalytic subunit of complement component 3 (C3) convertase, which plays the central role among three activation pathways. In this study, the Bf gene in sea cucumber ( Apostichopus japonicus), termed AjBf, was obtained by rapid amplification of cDNA ends (RACE). The full-length cDNA of AjBf was 3231 bp in length barring the poly (A) tail. It contained an open reading frame (ORF) of 2742 bp encoding 913 amino acids, a 105 bp 5'-UTR (5'-terminal untranslated region) and a 384 bp 3'-UTR. AjBf was a mosaic protein with six CCP (complement control protein) domains, a VWA (von Willebrand factor A) domain, and a serine protease domain. The deduced molecular weight of AjBf protein was 101 kDa. Quantitative real time PCR (qRT-PCR) analysis indicated that the expression level of AjBf in A. japonicus was obviously higher at larval stage than that at embryonic stage. Expression detection in different tissues showed that AjBf expressed higher in coelomocytes than in other four tissues. In addation, AjBf expression in different tissues was induced significantly after LPS or PolyI:C challenge. These results indicated that AjBf plays an important role in immune responses to pathogen infection.

  11. Complement: an overview for the clinician.

    PubMed

    Varela, Juan Carlos; Tomlinson, Stephen

    2015-06-01

    The complement system is an essential component of the immune system. It is a highly integrative system and has a number of functions, including host defense, removal of injured cells and debris, modulation of metabolic and regenerative processes, and regulation of adaptive immunity. Complement is activated via different pathways and it is regulated tightly by several mechanisms to prevent host injury. Imbalance between complement activation and regulation can manifest in disease and injury to self. This article provides an outline of complement activation pathways, regulatory mechanisms, and normal physiologic functions of the system.

  12. Decay-accelerating factor induction by tumour necrosis factor-alpha, through a phosphatidylinositol-3 kinase and protein kinase C-dependent pathway, protects murine vascular endothelial cells against complement deposition.

    PubMed

    Ahmad, Saifur R; Lidington, Elaine A; Ohta, Rieko; Okada, Noriko; Robson, Michael G; Davies, Kevin A; Leitges, Michael; Harris, Claire L; Haskard, Dorian O; Mason, Justin C

    2003-10-01

    We have shown that human endothelial cells (EC) are protected against complement-mediated injury by the inducible expression of decay-accelerating factor (DAF). To understand further the importance of DAF regulation, we characterized EC DAF expression on murine EC in vitro and in vivo using a model of glomerulonephritis. Flow cytometry using the monoclonal antibody (mAb) Riko-3 [binds transmembrane- and glycosylphosphatidylinositol (GPI)-anchored DAF], mAb Riko-4 (binds GPI-anchored DAF) and reverse transcription-polymerase chain reaction (RT-PCR), demonstrated that murine EC DAF is GPI-anchored. Tumour necrosis factor-alpha (TNF-alpha) increased EC DAF expression, detectable at 6 hr and maximal at 24-48 hr poststimulation. DAF upregulation required increased steady-state DAF mRNA and protein synthesis. In contrast, no increased expression of the murine complement receptor-related protein-Y (Crry) was seen with TNF-alpha. DAF upregulation was mediated via a protein kinase C (PKC)alpha, phosphoinositide-3 kinase (PI-3 kinase), p38 mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-kappaB)-dependent pathway. The increased DAF was functionally relevant, resulting in a marked reduction in C3 deposition following complement activation. In a nephrotoxic nephritis model, DAF expression on glomerular capillaries was significantly increased 2 hr after the induction of disease. The demonstration of DAF upregulation above constitutive levels suggests that this may be important in the maintenance of vascular integrity during inflammation, when the risk of complement-mediated injury is increased. The mouse represents a suitable model for the study of novel therapeutic approaches by which vascular endothelium may be conditioned against complement-mediated injury.

  13. The Complement System and Adverse Pregnancy Outcomes

    PubMed Central

    Regal, Jean F.; Gilbert, Jeffrey S.; Burwick, Richard M.

    2015-01-01

    Adverse pregnancy outcomes significantly contribute to morbidity and mortality for mother and child, with lifelong health consequences for both. The innate and adaptive immune system must be regulated to insure survival of the feta allograft, and the complement system is no exception. An intact complement system optimizes placental development and function and is essential to maintain host defense and fetal survival. Complement regulation is apparent at the placental interface from early pregnancy with some degree of complement activation occurring normally throughout gestation. However, a number of pregnancy complications including early pregnancy loss, fetal growth restriction, hypertensive disorders of pregnancy and preterm birth are associated with excessive or misdirected complement activation, and are more frequent in women with inherited or acquired complement system disorders or complement gene mutations. Clinical studies employing complement biomarkers in plasma and urine implicate dysregulated complement activation in components of each of the adverse pregnancy outcomes. In addition, mechanistic studies in rat and mouse models of adverse pregnancy outcomes address the complement pathways or activation products of importance and allow critical analysis of the pathophysiology. Targeted complement therapeutics are already in use to control adverse pregnancy outcomes in select situations. A clearer understanding of the role of the complement system in both normal pregnancy and complicated or failed pregnancy will allow a rational approach to future therapeutic strategies for manipulating complement with the goal of mitigating adverse pregnancy outcomes, preserving host defense, and improving long term outcomes for both mother and child. PMID:25802092

  14. The complement system and adverse pregnancy outcomes.

    PubMed

    Regal, Jean F; Gilbert, Jeffrey S; Burwick, Richard M

    2015-09-01

    Adverse pregnancy outcomes significantly contribute to morbidity and mortality for mother and child, with lifelong health consequences for both. The innate and adaptive immune system must be regulated to insure survival of the fetal allograft, and the complement system is no exception. An intact complement system optimizes placental development and function and is essential to maintain host defense and fetal survival. Complement regulation is apparent at the placental interface from early pregnancy with some degree of complement activation occurring normally throughout gestation. However, a number of pregnancy complications including early pregnancy loss, fetal growth restriction, hypertensive disorders of pregnancy and preterm birth are associated with excessive or misdirected complement activation, and are more frequent in women with inherited or acquired complement system disorders or complement gene mutations. Clinical studies employing complement biomarkers in plasma and urine implicate dysregulated complement activation in components of each of the adverse pregnancy outcomes. In addition, mechanistic studies in rat and mouse models of adverse pregnancy outcomes address the complement pathways or activation products of importance and allow critical analysis of the pathophysiology. Targeted complement therapeutics are already in use to control adverse pregnancy outcomes in select situations. A clearer understanding of the role of the complement system in both normal pregnancy and complicated or failed pregnancy will allow a rational approach to future therapeutic strategies for manipulating complement with the goal of mitigating adverse pregnancy outcomes, preserving host defense, and improving long term outcomes for both mother and child.

  15. The mechanisms of complement activation in normal bovine serum and normal horse serum against Yersinia enterocolitica O:9 strains with different outer membrane proteins content.

    PubMed

    Miętka, K; Brzostek, K; Guz-Regner, K; Bugla-Płoskońska, G

    2016-01-01

    Yersinia enterocolitica is a common zoonotic pathogen and facultative intracellular bacterium which can survive within blood cells. Cattle and horses are considered a reservoir of Y. enterocolitica which often causes several serious syndromes associated with yersiniosis such as abortions, premature births or infertility. The aim of our investigation was to determine the vitality of Y. enterocolitica O:9 strains (Ye9) in bovine and horse sera (NBS and NHrS) and explain the role of outer membrane proteins (OMPs) in serum resistance of these bacteria. Our previous studies demonstrated moderate human serum (NHS) resistance of the wild type Ye9 strain, whereas mutants lacking YadA, Ail or OmpC remained sensitive to the bactericidal activity of NHS. The present study showed that the wild type of Ye9 strain was resistant to the bactericidal activity of both NHrS and NBS, while Ye9 mutants lacking the YadA, Ail and OmpC proteins were sensitive to NHrS and NBS as well as to NHS. The mechanisms of complement activation against Ye9 strains lacking Ail and YadA were distinguished, i.e. activation of the classical/lectin pathways decisive in the bactericidal mechanism of complement activation of NBS, parallel activation of the classical/lectin and alternative pathways of NHrS. In this research the mechanism of independent activation of the classical/lectin or the alternative pathway of NBS and NHrS against Ye9 lacking OmpC porin was also established. The results indicate that serum resistance of Ye9 is multifactorial, in which extracellular structures, i.e. outer membrane proteins (OMPs) such as Ail, OmpC or YadA, play the main role. PMID:27096793

  16. The mechanisms of complement activation in normal bovine serum and normal horse serum against Yersinia enterocolitica O:9 strains with different outer membrane proteins content.

    PubMed

    Miętka, K; Brzostek, K; Guz-Regner, K; Bugla-Płoskońska, G

    2016-01-01

    Yersinia enterocolitica is a common zoonotic pathogen and facultative intracellular bacterium which can survive within blood cells. Cattle and horses are considered a reservoir of Y. enterocolitica which often causes several serious syndromes associated with yersiniosis such as abortions, premature births or infertility. The aim of our investigation was to determine the vitality of Y. enterocolitica O:9 strains (Ye9) in bovine and horse sera (NBS and NHrS) and explain the role of outer membrane proteins (OMPs) in serum resistance of these bacteria. Our previous studies demonstrated moderate human serum (NHS) resistance of the wild type Ye9 strain, whereas mutants lacking YadA, Ail or OmpC remained sensitive to the bactericidal activity of NHS. The present study showed that the wild type of Ye9 strain was resistant to the bactericidal activity of both NHrS and NBS, while Ye9 mutants lacking the YadA, Ail and OmpC proteins were sensitive to NHrS and NBS as well as to NHS. The mechanisms of complement activation against Ye9 strains lacking Ail and YadA were distinguished, i.e. activation of the classical/lectin pathways decisive in the bactericidal mechanism of complement activation of NBS, parallel activation of the classical/lectin and alternative pathways of NHrS. In this research the mechanism of independent activation of the classical/lectin or the alternative pathway of NBS and NHrS against Ye9 lacking OmpC porin was also established. The results indicate that serum resistance of Ye9 is multifactorial, in which extracellular structures, i.e. outer membrane proteins (OMPs) such as Ail, OmpC or YadA, play the main role.

  17. Complement in Lupus Nephritis: New Perspectives

    PubMed Central

    Bao, Lihua; Cunningham, Patrick N.; Quigg, Richard J.

    2015-01-01

    Background Systemic lupus erythematosus (SLE) is an autoimmune disorder caused by loss of tolerance to self-antigens, the production of autoantibodies and deposition of complement-fixing immune complexes (ICs) in injured tissues. SLE is characterized by a wide range of clinical manifestations and targeted organs, with lupus nephritis being one of the most serious complications. The complement system consists of three pathways and is tightly controlled by a set of regulatory proteins to prevent injudicious complement activation on host tissue. The involvement of the complement system in the pathogenesis of SLE is well accepted; yet, its exact role is still not clear. Summary Complement plays dual roles in the pathogenesis of SLE. On the one hand, the complement system appears to have protective features in that hereditary homozygous deficiencies of classical pathway components, such as C1q and C4, are associated with an increased risk for SLE. On the other hand, IC-mediated activation of complement in affected tissues is clearly evident in both experimental and human SLE along with pathological features that are logical consequences of complement activation. Studies in genetically altered mice have shown that lack of complement inhibitors, such as complement factor H (CFH) or decay-accelerating factor (DAF) accelerates the development of experimental lupus nephritis, while treatment with recombinant protein inhibitors, such as Crry-Ig, CR2-Crry, CR2-DAF and CR2-CFH, ameliorates the disease development. Complement-targeted drugs, including soluble complement receptor 1 (TP10), C1 esterase inhibitor and a monoclonal anti-C5 antibody (eculizumab), have been shown to inhibit complement safely, and are now being investigated in a variety of clinical conditions. Key Messages SLE is an autoimmune disorder which targets multiple systems. Complement is centrally involved and plays dual roles in the pathogenesis of SLE. Studies from experimental lupus models and clinical

  18. β-Glucan enhances complement-mediated hematopoietic recovery after bone marrow injury

    PubMed Central

    Cramer, Daniel E.; Allendorf, Daniel J.; Baran, Jarek T.; Hansen, Richard; Marroquin, Jose; Li, Bing; Ratajczak, Janina; Ratajczak, Mariusz Z.; Yan, Jun

    2006-01-01

    Myelotoxic injury in the bone marrow (BM) as a consequence of total body irradiation (TBI) or granulocyte colony-stimulating factor (G-CSF) mobilization results in the deposition of iC3b on BM stroma (stroma-iC3b). In the present study, we have examined how stroma-iC3b interacts with hematopoietic progenitor cells (HPCs) and the role of complement (C) and complement receptor 3 (CR3) in BM injury/repair. We demonstrate here that stroma-iC3b tethers HPCs via the inserted (I) domain of HPC complement receptor 3 (CR3, CD11b/CD18, Mac-1). Following irradiation, stroma-iC3b was observed in the presence of purified IgM and normal mouse serum (NMS), but not serum from Rag-2-/- mice, implicating a role for antibody (Ab) and the classic pathway of C activation. Furthermore, a novel role for soluble yeast β-glucan, a ligand for the CR3 lectin-like domain (LLD), in the priming of CR3+ HPC is suggested. Soluble yeast β-glucan could enhance the proliferation of tethered HPCs, promote leukocyte recovery following sublethal irradiation, and increase the survival of lethally irradiated animals following allogeneic HPC transplantation in a CR3-dependent manner. Taken together, these observations suggest a novel role for C, CR3, and β-glucan in the restoration of hematopoiesis following injury. (Blood. 2006;107:835-840) PMID:16179370

  19. Protein engineering to target complement evasion in cancer.

    PubMed

    Carter, Darrick; Lieber, André

    2014-01-21

    The complement system is composed of soluble factors in plasma that enhance or "complement" immune-mediated killing through innate and adaptive mechanisms. Activation of complement causes recruitment of immune cells; opsonization of coated cells; and direct killing of affected cells through a membrane attack complex (MAC). Tumor cells up-regulate complement inhibitory factors - one of several strategies to evade the immune system. In many cases as the tumor progresses, dramatic increases in complement inhibitory factors are found on these cells. This review focuses on the classic complement pathway and the role of major complement inhibitory factors in cancer immune evasion as well as on how current protein engineering efforts are being employed to increase complement fixing or to reverse complement resistance leading to better therapeutic outcomes in oncology. Strategies discussed include engineering of antibodies to enhance complement fixation, antibodies that neutralize complement inhibitory proteins as well as engineered constructs that specifically target inhibition of the complement system.

  20. The novel complement inhibitor human CUB and Sushi multiple domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b and C3b and inhibits the membrane attack complex assembly.

    PubMed

    Escudero-Esparza, Astrid; Kalchishkova, Nikolina; Kurbasic, Emila; Jiang, Wen G; Blom, Anna M

    2013-12-01

    CUB and Sushi multiple domains 1 (CSMD1) is a transmembrane protein containing 15 consecutive complement control protein (CCP) domains, which are characteristic for complement inhibitors. We expressed a membrane-bound fragment of human CSMD1 composed of the 15 C-terminal CCP domains and demonstrated that it inhibits deposition of C3b by the classical pathway on the surface of Chinese hamster ovary cells by 70% at 6% serum and of C9 (component of membrane attack complex) by 90% at 1.25% serum. Furthermore, this fragment of CSMD1 served as a cofactor to factor I-mediated degradation of C3b. In all functional assays performed, well-characterized complement inhibitors were used as positive controls, whereas Coxsackie adenovirus receptor, a protein with no effect on complement, was a negative control. Moreover, attenuation of expression in human T47 breast cancer cells that express endogenous CSMD1 significantly increased C3b deposition on these cells by 45% at 8% serum compared with that for the controls. Furthermore, by expressing a soluble 17-21 CCP fragment of CSMD1, we found that CSMD1 inhibits complement by promoting factor I-mediated C4b/C3b degradation and inhibition of MAC assembly at the level of C7. Our results revealed a novel complement inhibitor for the classical and lectin pathways.

  1. The novel complement inhibitor human CUB and Sushi multiple domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b and C3b and inhibits the membrane attack complex assembly.

    PubMed

    Escudero-Esparza, Astrid; Kalchishkova, Nikolina; Kurbasic, Emila; Jiang, Wen G; Blom, Anna M

    2013-12-01

    CUB and Sushi multiple domains 1 (CSMD1) is a transmembrane protein containing 15 consecutive complement control protein (CCP) domains, which are characteristic for complement inhibitors. We expressed a membrane-bound fragment of human CSMD1 composed of the 15 C-terminal CCP domains and demonstrated that it inhibits deposition of C3b by the classical pathway on the surface of Chinese hamster ovary cells by 70% at 6% serum and of C9 (component of membrane attack complex) by 90% at 1.25% serum. Furthermore, this fragment of CSMD1 served as a cofactor to factor I-mediated degradation of C3b. In all functional assays performed, well-characterized complement inhibitors were used as positive controls, whereas Coxsackie adenovirus receptor, a protein with no effect on complement, was a negative control. Moreover, attenuation of expression in human T47 breast cancer cells that express endogenous CSMD1 significantly increased C3b deposition on these cells by 45% at 8% serum compared with that for the controls. Furthermore, by expressing a soluble 17-21 CCP fragment of CSMD1, we found that CSMD1 inhibits complement by promoting factor I-mediated C4b/C3b degradation and inhibition of MAC assembly at the level of C7. Our results revealed a novel complement inhibitor for the classical and lectin pathways. PMID:23964079

  2. Identification of mannose-binding lectin as a mechanism in progressive immunoglobulin A nephropathy

    PubMed Central

    Shi, Beili; Wang, Ling; Mou, Shan; Zhang, Minfang; Wang, Qin; Qi, Chaojun; Cao, Liou; Che, Xiajing; Fang, Wei; Gu, Leyi; Yan, Yucheng; Qian, Jiaqi; Ni, Zhaohui

    2015-01-01

    Immunoglobulin A nephropathy (IgAN), the pathogenesis of which remained still unclear is one of the leading courses of end-stage renal disease in approximately 50% affected patients. On the basis of several researches, the activation of complement mannose-binding lectin (MBL) pathway might be the underlying mechanism in disease progress. In order to investigate the relationship between MBL pathway and IgAN, we discussed the MBL gene polymorphism as well as its expressed level in serum, urine and renal parenchymal, with renal outcome in IgAN patients. The significantly down-regulated expression of MBL was discovered, which may serve as a potential urinary biomarker in progressive IgAN according to the results of difference in gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry. The single nucleotide polymorphisms of MBL gene in promoter and exon region were found and confirmed relating with the poor prognosis of progressive IgAN patients. As a result, the deficient activation of MBL pathway caused by the mutation of MBL accompanied with low expressed level of MBL in serum might be the potential inspiring regulation in IgAN, and will attract a promising insight in remedy of IgAN to inhibit further progress. PMID:25973081

  3. Role of complement in experiment silicosis

    SciTech Connect

    Callis, A.H.; Sohnle, P.G.; Mandel, G.S.; Mandel, N.S.

    1986-08-01

    The role of the complement system in the pathogenesis of crystal-induced pulmonary inflammation and fibrosis was evaluated using a mouse model of silicosis and congenitally complement-deficient mice. Mice lacking the fifth component of complement (B10.D2/o) were compared to C5-sufficient animals (B10.D2/n) for pulmonary changes following intratracheal instillation of silica crystals. Complement-deficient mice demonstrated a significant reduction compared to complement-sufficient mice in both cell number and protein content of lung lavage fluid throughout the 12 weeks following silica exposure. Lung hydroxyproline content (indicative of collagen deposition) was equivalent for both strains and significantly higher than controls at all times points following silica instillation. Moreover, studies in vitro have shown that silica crystals are capable of activating complement via the alternative pathway. These studies indicate that the complement system may be responsible for some of the pulmonary inflammation, but not fibrosis elicited by silica exposure.

  4. Meningococcal disease and the complement system

    PubMed Central

    Lewis, Lisa A; Ram, Sanjay

    2014-01-01

    Despite considerable advances in the understanding of the pathogenesis of meningococcal disease, this infection remains a major cause of morbidity and mortality globally. The role of the complement system in innate immune defenses against invasive meningococcal disease is well established. Individuals deficient in components of the alternative and terminal complement pathways are highly predisposed to invasive, often recurrent meningococcal infections. Genome-wide analysis studies also point to a central role for complement in disease pathogenesis. Here we review the pathophysiologic events pertinent to the complement system that accompany meningococcal sepsis in humans. Meningococci use several often redundant mechanisms to evade killing by human complement. Capsular polysaccharide and lipooligosaccharide glycan composition play critical roles in complement evasion. Some of the newly described protein vaccine antigens interact with complement components and have sparked considerable research interest. PMID:24104403

  5. Complement inhibitor C4b-binding protein-friend or foe in the innate immune system?

    PubMed

    Blom, Anna M; Villoutreix, Bruno O; Dahlbäck, Björn

    2004-04-01

    The complement system constitutes an important component of the defence against foreign organisms, functioning both in innate and adaptive immune systems. It is potentially harmful also to the own organism and is therefore tightly regulated by a number of membrane-bound and soluble factors. C4b-binding protein (C4BP) is a potent circulating soluble inhibitor of the classical and lectin pathways of complement. In recent years, the relationships between the structure of C4BP and its functions have been elucidated using a combination of computer-based molecular analysis and recombinant DNA technologies. Moreover, two novel functions have recently been ascribed to C4BP. One is the ability of C4BP to localize complement regulatory activity to the surface of apoptotic cells via its interaction with the membrane-binding vitamin K-dependent protein S. The other is the ability of C4BP to act as a survival factor for B cells due to an interaction with CD40. The complement regulatory activity of C4BP is not only beneficial because it is also explored by pathogens such as Neisseria gonorrhoeae, Bordetella pertussis, Streptococcus pyogenes, Escherichia coli K1, and Candida albicans, that bind C4BP to their surfaces. This contributes to the serum resistance and the pathogenicity of these bacteria. In this review, the structural requirements and functional importance of the interactions between C4BP and its various ligands are discussed.

  6. A novel L-type lectin was required for the multiplication of WSSV in red swamp crayfish (Procambarus clakii).

    PubMed

    Dai, Yunjia; Wang, Yuqing; Zhao, Lingling; Qin, Zhendong; Yuan, Junfa; Qin, Qiwei; Lin, Li; Lan, Jiangfeng

    2016-08-01

    L-type lectins are involved in glycoproteins secretory pathways and are associated with many immune responses. There is growing evidence that L-type lectins are also involved in viral replication. In this study, a novel L-type lectin (named as PcL-lectin) was identified from red swamp crayfish (Procambarus clakii). Gene sequencing and phylogenetic tree analysis results showed that the PcL-lectin was a kind of endoplasmic reticulum Golgi intermediate compartment-53 (ERGIC-53). The expression level of PcL-lectin was significantly down regulated in crayfish after challenged with white spot syndrome virus (WSSV). Recombinant PcL-lectin protein facilitated the replication of WSSV in crayfish. In addition, WSSV replication was decreased when endogenous PcL-lectin was knocked down by RNA interference in crayfish. Furthermore, PcL-lectin may interact with VP24, an envelope protein of WSSV. Our results suggest that PcL-lectin may be required for the multiplication of WSSV, and will pave a new way for the developing of strategies against WSSV infection. PMID:27208793

  7. Mannan-Binding Lectin Is Involved in the Protection against Renal Ischemia/Reperfusion Injury by Dietary Restriction.

    PubMed

    Shushimita, Shushimita; van der Pol, Pieter; W F de Bruin, Ron; N M Ijzermans, Jan; van Kooten, Cees; Dor, Frank J M F

    2015-01-01

    Preoperative fasting and dietary restriction offer robust protection against renal ischemia/reperfusion injury (I/RI) in mice. We recently showed that Mannan-binding lectin (MBL), the initiator of the lectin pathway of complement activation, plays a pivotal role in renal I/RI. Based on these findings, we investigated the effect of short-term DR (30% reduction of total food intake) or three days of water only fasting on MBL in 10-12 weeks old male C57/Bl6 mice. Both dietary regimens significantly reduce the circulating levels of MBL as well as its mRNA expression in liver, the sole production site of MBL. Reconstitution of MBL abolished the protection afforded by dietary restriction, whereas in the fasting group the protection persisted. These data show that modulation of MBL is involved in the protection against renal I/RI induced by dietary restriction, and suggest that the mechanisms of protection induced by dietary restriction and fasting may be different.

  8. Gender-specific modulation of immune system complement gene expression in marine medaka Oryzias melastigma following dietary exposure of BDE-47.

    PubMed

    Ye, Roy R; Lei, Elva N Y; Lam, Michael H W; Chan, Alice K Y; Bo, Jun; van de Merwe, Jason P; Fong, Amy C C; Yang, Michael M S; Lee, J S; Segner, Helmut E; Wong, Chris K C; Wu, Rudolf S S; Au, Doris W T

    2011-08-01

    BDE-47 is one of the most widely found congeners of PBDEs in marine environments. The potential immunomodulatory effects of BDE-47 on fish complement system were studied using the marine medaka Oryzias melastigma as a model fish. Three-month-old O. melastigma were subjected to short-term (5 days) and long-term (21 days) exposure to two concentrations of BDE-47 (low dose at 290 ± 172 ng/day; high dose at 580 ± 344 ng/day) via dietary uptake of BDE-47 encapsulated in Artemia nauplii. Body burdens of BDE-47 and other metabolic products were analyzed in the exposed and control fish. Only a small amount of debrominated product, BDE-28, was detected, while other metabolic products were all under detection limit. Transcriptional expression of six major complement system genes involved in complement activation: C1r/s (classical pathway), MBL-2 (lectin pathway), CFP (alternative pathway), F2 (coagulation pathway), C3 (the central component of complement system), and C9 (cell lysis) were quantified in the liver of marine medaka. Endogenous expression of all six complement system genes was found to be higher in males than in females (p < 0.05). Upon dietary exposure of marine medaka to BDE-47, expression of all six complement genes were downregulated in males at day 5 (or longer), whereas in females, MBl-2, CFP, and F2 mRNAs expression were upregulated, but C3 and C9 remained stable with exposure time and dose. A significant negative relationship was found between BDE-47 body burden and mRNA expression of C1r/s, CFP, and C3 in male fish (r = -0.8576 to -0.9447). The above findings on changes in complement gene expression patterns indicate the complement system may be compromised in male O. melastigma upon dietary exposure to BDE-47. Distinct gender difference in expression of six major complement system genes was evident in marine medaka under resting condition and dietary BDE-47 challenge. The immunomodulatory effects of BDE-47 on transcriptional

  9. Gender-specific modulation of immune system complement gene expression in marine medaka Oryzias melastigma following dietary exposure of BDE-47.

    PubMed

    Ye, Roy R; Lei, Elva N Y; Lam, Michael H W; Chan, Alice K Y; Bo, Jun; van de Merwe, Jason P; Fong, Amy C C; Yang, Michael M S; Lee, J S; Segner, Helmut E; Wong, Chris K C; Wu, Rudolf S S; Au, Doris W T

    2011-08-01

    BDE-47 is one of the most widely found congeners of PBDEs in marine environments. The potential immunomodulatory effects of BDE-47 on fish complement system were studied using the marine medaka Oryzias melastigma as a model fish. Three-month-old O. melastigma were subjected to short-term (5 days) and long-term (21 days) exposure to two concentrations of BDE-47 (low dose at 290 ± 172 ng/day; high dose at 580 ± 344 ng/day) via dietary uptake of BDE-47 encapsulated in Artemia nauplii. Body burdens of BDE-47 and other metabolic products were analyzed in the exposed and control fish. Only a small amount of debrominated product, BDE-28, was detected, while other metabolic products were all under detection limit. Transcriptional expression of six major complement system genes involved in complement activation: C1r/s (classical pathway), MBL-2 (lectin pathway), CFP (alternative pathway), F2 (coagulation pathway), C3 (the central component of complement system), and C9 (cell lysis) were quantified in the liver of marine medaka. Endogenous expression of all six complement system genes was found to be higher in males than in females (p < 0.05). Upon dietary exposure of marine medaka to BDE-47, expression of all six complement genes were downregulated in males at day 5 (or longer), whereas in females, MBl-2, CFP, and F2 mRNAs expression were upregulated, but C3 and C9 remained stable with exposure time and dose. A significant negative relationship was found between BDE-47 body burden and mRNA expression of C1r/s, CFP, and C3 in male fish (r = -0.8576 to -0.9447). The above findings on changes in complement gene expression patterns indicate the complement system may be compromised in male O. melastigma upon dietary exposure to BDE-47. Distinct gender difference in expression of six major complement system genes was evident in marine medaka under resting condition and dietary BDE-47 challenge. The immunomodulatory effects of BDE-47 on transcriptional

  10. Lectins in the investigation of receptors

    NASA Astrophysics Data System (ADS)

    Lakhtin, V. M.; Yamskov, Igor A.

    1991-08-01

    Problems of the purification and characterisation are considered for approximately 270 receptors (including cell surface and organelle enzymes), which are glycoconjugates (mainly glycoproteins) from animals, plants and microorganisms, using various lectins (mainly lectin sorbents). An analysis has been carried out of the stages of lectin affinity chromatography of receptors (choice of detergent, use of organic solvents, elution with carbohydrates, etc.). Examples are given of procedures for the purification of receptors, including the use of paired columns and combination chromatography on lectins. The possibility of separating sub-populations of receptors using lectins has been demonstrated. Examples are given of the use of lectins in the analysis of the oligosaccharide structure of receptors. Cases are recorded of the interaction of receptors with endogenous lectins and of receptor lectins with endogenous glycoconjugates. It has been shown that lectins, in combination with glycosidases and antibodies, may be useful in the investigation of receptors. The bibliography contains 406 references.

  11. Use of lectins in immunohematology

    PubMed Central

    Gorakshakar, Ajit C.; Ghosh, Kanjaksha

    2016-01-01

    Lectins are carbohydrate binding proteins present in seeds of many plants, especially corals and beans, in fungi and bacteria, and in animals. Apart from their hemagglutinating property, a wide range of functions have been attributed to them. Their importance in the area of immunohematology is immense. They are used to detect specific red cell antigens, to activate different types of lymphocytes, in order to resolve problems related to polyagglutination and so on. The introduction of advanced biotechnological tools generates new opportunities to exploit the properties of lectins, which were not used earlier. Stem cell research is a very important area in transplant medicine. Certain lectins detect surface markers of stem cell. Hence, they are used to understand the developmental biology of stem cells. The role of various lectins in the areas of transfusion and transplant medicine is discussed in detail in this review. PMID:27011665

  12. A review of fish lectins.

    PubMed

    Ng, Tzi Bun; Fai Cheung, Randy Chi; Wing Ng, Charlene Cheuk; Fang, Evandro Fei; Wong, Jack Ho

    2015-01-01

    Lectins have been reported from various tissues of a diversity of fish species including Japanese eel, conger eel, electric eel, bighead carp, gibel carp, grass carp, Arabian Gulf catfish, channel catfish, blue catfish, catfish, pike perch, perch, powan, zebrafish, toxic moray, cobia fish, steelhead trout, Japanese trout, Atlantic salmon, chinook salmon, olive rainbow smelt, rainbow smelt, white-spotted charr, tilapia, blue gourami, ayu, Potca fish, Spanish mackerel, gilt head bream, tench, roach, rudd, common skate, and sea lamprey. The tissues from which the lectins were isolated comprise gills, eggs, electric organ, stomach, intestine, and liver. Lectins have also been isolated from skin, mucus serum, and plasma. The lectins differ in molecular weight, number of subunits, glycosylation, sugar binding specificity and amino acid sequence. Their activities include antimicrobial, antitumor, immunoregulatory and a role in development. PMID:25929869

  13. Use of lectins in immunohematology.

    PubMed

    Gorakshakar, Ajit C; Ghosh, Kanjaksha

    2016-01-01

    Lectins are carbohydrate binding proteins present in seeds of many plants, especially corals and beans, in fungi and bacteria, and in animals. Apart from their hemagglutinating property, a wide range of functions have been attributed to them. Their importance in the area of immunohematology is immense. They are used to detect specific red cell antigens, to activate different types of lymphocytes, in order to resolve problems related to polyagglutination and so on. The introduction of advanced biotechnological tools generates new opportunities to exploit the properties of lectins, which were not used earlier. Stem cell research is a very important area in transplant medicine. Certain lectins detect surface markers of stem cell. Hence, they are used to understand the developmental biology of stem cells. The role of various lectins in the areas of transfusion and transplant medicine is discussed in detail in this review.

  14. Characterisation of Jack fruit lectin.

    PubMed

    Arslan, M I; Chulavatnatol, M

    2000-04-01

    Jack fruit (Artocarpus Heterophyllus) seed extract contains a lectin termed Jack fruit lectin (JFL) which possesses diversed biological properties. A detailed analysis of its properties has been lacking. The present investigation was initiated to study the detail properties of JFL. After extraction and purification on affigel galactosamine-agarose column, JFL was subjected to ND-PAGE. Several different charged species from ND-PAGE upon SDS-PAGE gave rise to two dissimilar trimeric subunit at 12.5 and 15.0 KDa and retain biological activity. It was possible to elute the subunit bands separately from polyacrylamide gel to investigate their biological activity. Each subunit was found to be retained the lectin activity. Agglutinating activity of smaller subunit was found to be more, may be due to the greater amount of the subunit. This also suggests that each unit of trimeric JFL have similar lectin activity.

  15. Viral complement regulatory proteins.

    PubMed

    Rosengard, A M; Ahearn, J M

    1999-05-01

    The inactivation of complement provides cells and tissues critical protection from complement-mediated attack and decreases the associated recruitment of other inflammatory mediators. In an attempt to evade the host immune response, viruses have evolved two mechanisms to acquire complement regulatory proteins. They can directly seize the host cell complement regulators onto their outer envelope and/or they can produce their own proteins which are either secreted into the neighboring intercellular space or expressed as membrane-bound proteins on the infected host cell. The following review will concentrate on the viral homologues of the mammalian complement regulatory proteins, specifically those containing complement control protein (CCP) repeats. PMID:10408371

  16. Nutritional complementation of oxidative glucose metabolism in Escherichia coli via pyrroloquinoline quinone-dependent glucose dehydrogenase and the Entner-Doudoroff pathway

    SciTech Connect

    Adamowicz, M.; Conway, T.; Nickerson, K.W. )

    1991-07-01

    Two glucose-negative Escherichia coli mutants (ZSC113 and DF214) were unable to grow on glucose as the sole carbon source unless supplemented with pyrroloquinoline quinone (PQQ). PQQ is the cofactor for the periplasmic enzyme glucose dehydrogenase, which converts glucose to gluconate. Aerobically, E. Coli ZSC113 grew on glucose plus PQQ with a generation time of 65 min, a generation time about the same as that for wild-type E. coli in a defined glucose-salts medium. Thus, for E. coli ZSC113 the Entner-Doudoroff pathway was fully able to replace the Embden-Meyerhof-Parnas pathway. In the presence of 5% sodium dodecyl sulfate, PQQ no longer acted as a growth factor. Sodium dodecyl sulfate inhibited the formation of gluconate from glucose but not gluconate metabolism. Adaptation to PQQ-dependent growth exhibited long lag periods, except under low-phosphate conditions, in which the PhoE porin would be expressed. The authors suggest that E. coli has maintained the apoenzyme for glucose dehydrogenase and the Entner-Doudoroff pathway as adaptations to an aerobic, low-phosphate, and low-detergent aquatic environment.

  17. Infectious diseases associated with complement deficiencies.

    PubMed

    Figueroa, J E; Densen, P

    1991-07-01

    The complement system consists of both plasma and membrane proteins. The former influence the inflammatory response, immune modulation, and host defense. The latter are complement receptors, which mediate the cellular effects of complement activation, and regulatory proteins, which protect host cells from complement-mediated injury. Complement activation occurs via either the classical or the alternative pathway, which converge at the level of C3 and share a sequence of terminal components. Four aspects of the complement cascade are critical to its function and regulation: (i) activation of the classical pathway, (ii) activation of the alternative pathway, (iii) C3 convertase formation and C3 deposition, and (iv) membrane attack complex assembly and insertion. In general, mechanisms evolved by pathogenic microbes to resist the effects of complement are targeted to these four steps. Because individual complement proteins subserve unique functional activities and are activated in a sequential manner, complement deficiency states are associated with predictable defects in complement-dependent functions. These deficiency states can be grouped by which of the above four mechanisms they disrupt. They are distinguished by unique epidemiologic, clinical, and microbiologic features and are most prevalent in patients with certain rheumatologic and infectious diseases. Ethnic background and the incidence of infection are important cofactors determining this prevalence. Although complement undoubtedly plays a role in host defense against many microbial pathogens, it appears most important in protection against encapsulated bacteria, especially Neisseria meningitidis but also Streptococcus pneumoniae, Haemophilus influenzae, and, to a lesser extent, Neisseria gonorrhoeae. The availability of effective polysaccharide vaccines and antibiotics provides an immunologic and chemotherapeutic rationale for preventing and treating infection in patients with these deficiencies.

  18. Infectious diseases associated with complement deficiencies.

    PubMed Central

    Figueroa, J E; Densen, P

    1991-01-01

    The complement system consists of both plasma and membrane proteins. The former influence the inflammatory response, immune modulation, and host defense. The latter are complement receptors, which mediate the cellular effects of complement activation, and regulatory proteins, which protect host cells from complement-mediated injury. Complement activation occurs via either the classical or the alternative pathway, which converge at the level of C3 and share a sequence of terminal components. Four aspects of the complement cascade are critical to its function and regulation: (i) activation of the classical pathway, (ii) activation of the alternative pathway, (iii) C3 convertase formation and C3 deposition, and (iv) membrane attack complex assembly and insertion. In general, mechanisms evolved by pathogenic microbes to resist the effects of complement are targeted to these four steps. Because individual complement proteins subserve unique functional activities and are activated in a sequential manner, complement deficiency states are associated with predictable defects in complement-dependent functions. These deficiency states can be grouped by which of the above four mechanisms they disrupt. They are distinguished by unique epidemiologic, clinical, and microbiologic features and are most prevalent in patients with certain rheumatologic and infectious diseases. Ethnic background and the incidence of infection are important cofactors determining this prevalence. Although complement undoubtedly plays a role in host defense against many microbial pathogens, it appears most important in protection against encapsulated bacteria, especially Neisseria meningitidis but also Streptococcus pneumoniae, Haemophilus influenzae, and, to a lesser extent, Neisseria gonorrhoeae. The availability of effective polysaccharide vaccines and antibiotics provides an immunologic and chemotherapeutic rationale for preventing and treating infection in patients with these deficiencies. PMID

  19. Complement associated pathogenic mechanisms in myasthenia gravis.

    PubMed

    Tüzün, Erdem; Christadoss, Premkumar

    2013-07-01

    The complement system is profoundly involved in the pathogenesis of acetylcholine receptor (AChR) antibody (Ab) related myasthenia gravis (MG) and its animal model experimental autoimmune myasthenia gravis (EAMG). The most characteristic finding of muscle pathology in both MG and EAMG is the abundance of IgG and complement deposits at the nerve-muscle junction (NMJ), suggesting that AChR-Ab induces muscle weakness by complement pathway activation and consequent membrane attack complex (MAC) formation. This assumption has been supported with EAMG resistance of complement factor C3 knockout (KO), C4 KO and C5 deficient mice and amelioration of EAMG symptoms following treatment with complement inhibitors such as cobra venom factor, soluble complement receptor 1, anti-C1q, anti-C5 and anti-C6 Abs. Moreover, the complement inhibitor decay accelerating factor (DAF) KO mice exhibit increased susceptibility to EAMG. These findings have brought forward improvisation of novel therapy methods based on inhibition of classical and common complement pathways in MG treatment.

  20. Complement and autoimmunity.

    PubMed

    Ballanti, Eleonora; Perricone, Carlo; Greco, Elisabetta; Ballanti, Marta; Di Muzio, Gioia; Chimenti, Maria Sole; Perricone, Roberto

    2013-07-01

    The complement system is a component of the innate immune system. Its main function was initially believed to be limited to the recognition and elimination of pathogens through direct killing or stimulation of phagocytosis. However, in recent years, the immunoregulatory functions of the complement system were demonstrated and it was determined that the complement proteins play an important role in modulating adaptive immunity and in bridging innate and adaptive responses. When the delicate mechanisms that regulate this sophisticated enzymatic system are unbalanced, the complement system may cause damage, mediating tissue inflammation. Dysregulation of the complement system has been involved in the pathogenesis and clinical manifestations of several autoimmune diseases, such as systemic lupus erythematosus, vasculitides, Sjögren's syndrome, antiphospholipid syndrome, systemic sclerosis, dermatomyositis, and rheumatoid arthritis. Complement deficiencies have been associated with an increased risk to develop autoimmune disorders. Because of its functions, the complement system is an attractive therapeutic target for a wide range of diseases. Up to date, several compounds interfering with the complement cascade have been studied in experimental models for autoimmune diseases. The main therapeutic strategies are inhibition of complement activation components, inhibition of complement receptors, and inhibition of membrane attack complex. At present, none of the available agents was proven to be both safe and effective for treatment of autoimmune diseases in humans. Nonetheless, data from preclinical studies and initial clinical trials suggest that the modulation of the complement system could constitute a viable strategy for the treatment of autoimmune conditions in the decades to come.

  1. Antinutritional properties of plant lectins.

    PubMed

    Vasconcelos, Ilka M; Oliveira, José Tadeu A

    2004-09-15

    Lectins are carbohydrate binding (glyco)proteins which are ubiquitous in nature. In plants, they are distributed in various families and hence ingested daily in appreciable amounts by both humans and animals. One of the most nutritionally important features of plant lectins is their ability to survive digestion by the gastrointestinal tract of consumers. This allows the lectins to bind to membrane glycosyl groups of the cells lining the digestive tract. As a result of this interaction a series of harmful local and systemic reactions are triggered placing this class of molecules as antinutritive and/or toxic substances. Locally, they can affect the turnover and loss of gut epithelial cells, damage the luminal membranes of the epithelium, interfere with nutrient digestion and absorption, stimulate shifts in the bacterial flora and modulate the immune state of the digestive tract. Systemically, they can disrupt lipid, carbohydrate and protein metabolism, promote enlargement and/or atrophy of key internal organs and tissues and alter the hormonal and immunological status. At high intakes, lectins can seriously threaten the growth and health of consuming animals. They are also detrimental to numerous insect pests of crop plants although less is presently known about their insecticidal mechanisms of action. This current review surveys the recent knowledge on the antinutritional/toxic effects of plant lectins on higher animals and insects. PMID:15302522

  2. Lectin microarrays for glycomic analysis.

    PubMed

    Gupta, Garima; Surolia, Avadhesha; Sampathkumar, Srinivasa-Gopalan

    2010-08-01

    Glycomics is the study of comprehensive structural elucidation and characterization of all glycoforms found in nature and their dynamic spatiotemporal changes that are associated with biological processes. Glycocalyx of mammalian cells actively participate in cell-cell, cell-matrix, and cell-pathogen interactions, which impact embryogenesis, growth and development, homeostasis, infection and immunity, signaling, malignancy, and metabolic disorders. Relative to genomics and proteomics, glycomics is just growing out of infancy with great potential in biomedicine for biomarker discovery, diagnosis, and treatment. However, the immense diversity and complexity of glycan structures and their multiple modes of interactions with proteins pose great challenges for development of analytical tools for delineating structure function relationships and understanding glyco-code. Several tools are being developed for glycan profiling based on chromatography, mass spectrometry, glycan microarrays, and glyco-informatics. Lectins, which have long been used in glyco-immunology, printed on a microarray provide a versatile platform for rapid high throughput analysis of glycoforms of biological samples. Herein, we summarize technological advances in lectin microarrays and critically review their impact on glycomics analysis. Challenges remain in terms of expansion to include nonplant derived lectins, standardization for routine clinical use, development of recombinant lectins, and exploration of plant kingdom for discovery of novel lectins. PMID:20726799

  3. Lectin microarrays for glycomic analysis.

    PubMed

    Gupta, Garima; Surolia, Avadhesha; Sampathkumar, Srinivasa-Gopalan

    2010-08-01

    Glycomics is the study of comprehensive structural elucidation and characterization of all glycoforms found in nature and their dynamic spatiotemporal changes that are associated with biological processes. Glycocalyx of mammalian cells actively participate in cell-cell, cell-matrix, and cell-pathogen interactions, which impact embryogenesis, growth and development, homeostasis, infection and immunity, signaling, malignancy, and metabolic disorders. Relative to genomics and proteomics, glycomics is just growing out of infancy with great potential in biomedicine for biomarker discovery, diagnosis, and treatment. However, the immense diversity and complexity of glycan structures and their multiple modes of interactions with proteins pose great challenges for development of analytical tools for delineating structure function relationships and understanding glyco-code. Several tools are being developed for glycan profiling based on chromatography, mass spectrometry, glycan microarrays, and glyco-informatics. Lectins, which have long been used in glyco-immunology, printed on a microarray provide a versatile platform for rapid high throughput analysis of glycoforms of biological samples. Herein, we summarize technological advances in lectin microarrays and critically review their impact on glycomics analysis. Challenges remain in terms of expansion to include nonplant derived lectins, standardization for routine clinical use, development of recombinant lectins, and exploration of plant kingdom for discovery of novel lectins.

  4. Age-related macular degeneration and the complement system.

    PubMed

    Khandhadia, S; Cipriani, V; Yates, J R W; Lotery, A J

    2012-02-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. It is a complex multifactorial disease, and despite new advances in treatment, many patients still succumb to visual impairment. The complement pathway has been implicated in the pathogenesis of many diseases, and recently variants in several genes encoding complement pathway proteins have been associated with AMD. Complement proteins have been found in histological specimens of eyes with AMD. Altered levels of both intrinsic complement proteins and activated products have been found in the circulation of patients with AMD. Complement activation may be triggered by oxidative stress, resulting from retinal exposure to incoming light; indeed an inter-play between these two pathological processes seems to exist. Finally, complement inhibitors are currently being evaluated in clinical trials. This article reviews the role of the complement system in AMD, and the potential of complement inhibition in preventing the devastating blindness resulting from this disease.

  5. Paroxysmal nocturnal hemoglobinuria: a complement-mediated hemolytic anemia.

    PubMed

    DeZern, Amy E; Brodsky, Robert A

    2015-06-01

    Paroxysmal nocturnal hemoglobinuria is manifests with a chronic hemolytic anemia from uncontrolled complement activation, a propensity for thrombosis and marrow failure. The hemolysis is largely mediated by the alternative pathway of complement. Clinical manifestations result from the lack of specific cell surface proteins, CD55 and CD59, on PNH cells. Complement inhibition by eculizumab leads to dramatic clinical improvement. While this therapeutic approach is effective, there is residual complement activity resulting from specific clinical scenarios as well as from upstream complement components that can account for suboptimal responses in some patients. Complement inhibition strategies are an area of active research.

  6. Complement sensitivity of Entamoeba histolytica and various nonpathogenic amoeba species.

    PubMed

    Förster, B; Ebert, F; Horstmann, R D

    1994-12-01

    Culture forms of the potentially pathogenic Entamoeba histolytica were compared to those of the nonpathogenic species of E. dispar, E. hartmanni, E. coli, Endolimax nana, and E. moshkovskii regarding the sensitivity to lysis by human complement activated through the alternative pathway. E. dispar was found unique in its complement resistance; all other nonpathogenic isolates resembled E. histolytica in that they were complement sensitive. Thus, a state of complement sensitivity is not a particular property of potentially pathogenic amoebae. PMID:7716404

  7. Complement activation in progressive renal disease

    PubMed Central

    Fearn, Amy; Sheerin, Neil Stephen

    2015-01-01

    Chronic kidney disease (CKD) is common and the cause of significant morbidity and mortality. The replacement of functioning nephrons by fibrosis is characteristic of progressive disease. The pathways that lead to fibrosis are not fully understood, although chronic non-resolving inflammation in the kidney is likely to drive the fibrotic response that occurs. In patients with progressive CKD there is histological evidence of inflammation in the interstitium and strategies that reduce inflammation reduce renal injury in pre-clinical models of CKD. The complement system is an integral part of the innate immune system but also augments adaptive immune responses. Complement activation is known to occur in many diverse renal diseases, including glomerulonephritis, thrombotic microangiopathies and transplant rejection. In this review we discuss current evidence that complement activation contributes to progression of CKD, how complement could cause renal inflammation and whether complement inhibition would slow progression of renal disease. PMID:25664245

  8. Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot

    PubMed Central

    Gulla, Krishana C; Gupta, Kshitij; Krarup, Anders; Gal, Peter; Schwaeble, Wilhelm J; Sim, Robert B; O’Connor, C David; Hajela, Krishnan

    2010-01-01

    The lectin pathway of complement is activated upon binding of mannan-binding lectin (MBL) or ficolins (FCNs) to their targets. Upon recognition of targets, the MBL-and FCN-associated serine proteases (MASPs) are activated, allowing them to generate the C3 convertase C4b2a. Recent findings indicate that the MASPs also activate components of the coagulation system. We have previously shown that MASP-1 has thrombin-like activity whereby it cleaves and activates fibrinogen and factor XIII. MASP-2 has factor Xa-like activity and activates prothrombin through cleavage to form thrombin. We now report that purified L-FCN-MASPs complexes, bound from serum to N-acetylcysteine-Sepharose, or MBL-MASPs complexes, bound to mannan-agarose, generate clots when incubated with calcified plasma or purified fibrinogen and factor XIII. Plasmin digestion of the clot and analysis using anti-D-dimer antibodies revealed that the clot was made up of fibrin and was similar to that generated by thrombin in normal human plasma. Fibrinopeptides A and B (FPA and FPB, respectively) were released after fibrinogen cleavage by L-FCN-MASPs complexes captured on N-acetylcysteine-Sepharose. Studies of inhibition of fibrinopeptide release indicated that the dominant pathway for clotting catalysed by the MASPs is via MASP-2 and prothrombin activation, as hirudin, a thrombin inhibitor that does not inhibit MASP-1 and MASP-2, substantially inhibits fibrinopeptide release. In the light of their potent chemoattractant effects on neutrophil and fibroblast recruitment, the MASP-mediated release of FPA and FPB may play a role in early immune activation. Additionally, MASP-catalysed deposition and polymerization of fibrin on the surface of micro-organisms may be protective by limiting the dissemination of infection. PMID:20002787

  9. Targeted inhibition of complement using complement receptor 2-conjugated inhibitors attenuates EAE.

    PubMed

    Hu, Xianzhen; Tomlinson, Stephen; Barnum, Scott R

    2012-11-30

    Multiple sclerosis (MS) is the most common autoimmune demyelinating disease, affecting millions of individuals worldwide. In the last two decades, many therapeutic options for the treatment of MS have become available, however they are limited in terms of effectiveness and some remain plagued by safety issues. The currently available treatment options target relapsing remitting forms of MS and are not effective against the more progressive forms of the disease. These limitations highlight a significant unmet treatment need for MS. In experimental autoimmune encephalomyelitis (EAE) studies from our laboratory, we have previously shown, using a number of complement mutant and transgenic mice, that inhibition of the alternative complement pathway and the C3 convertase confers significant protection from disease. We report here that targeted inhibition of complement activation using complement receptor 2 (CR2)-conjugated inhibitors significantly attenuates EAE. Administration of CR2-Crry (blocks all complement pathways at C3 activation) and CR2-fH (specifically blocks the alternative pathway) just prior to and during the onset of EAE blocks progression of both acute and chronic disease. These data indicate that inhibition of complement may offer an effective therapeutic approach to treating both acute and chronic forms of demyelinating disease through blocking the alternative pathway or complement convertases. PMID:23079547

  10. Properdin in complement activation and tissue injury.

    PubMed

    Lesher, Allison M; Nilsson, Bo; Song, Wen-Chao

    2013-12-15

    The plasma protein properdin is the only known positive regulator of complement activation. Although regarded as an initiator of the alternative pathway of complement activation at the time of its discovery more than a half century ago, the role and mechanism of action of properdin in the complement cascade has undergone significant conceptual evolution since then. Despite the long history of research on properdin, however, new insight and unexpected findings on the role of properdin in complement activation, pathogen infection and host tissue injury are still being revealed by ongoing investigations. In this article, we provide a brief review on recent studies that shed new light on properdin biology, focusing on the following three topics: (1) its role as a pattern recognition molecule to direct and trigger complement activation, (2) its context-dependent requirement in complement activation on foreign and host cell surfaces, and (3) its involvement in alternative pathway complement-mediated immune disorders and considerations of properdin as a potential therapeutic target in human diseases.

  11. Complement activation in discordant hepatic xenotransplantation.

    PubMed

    Tector, A J; Chen, X; Soderland, C; Tchervenkov, J I

    1998-11-01

    Little is known about hyperacute rejection in hepatic xenotransplantation. Information from clinical xenoperfusions suggests that the liver may be rejected by a mechanism less vigorous than either kidney or heart xenografts. We used the in vitro model of porcine hepatic sinusoidal endothelial cells (PHEC) incubated with either complement replete or deficient human serum to determine the relative roles of the classical and alternate pathways of complement in the immediate response to hepatic xenotransplantation. Our results suggest that either the classical or alternate pathways are capable of independently activating the complement cascade upon exposure to the porcine hepatic sinusoidal endothelium. Our results also imply that either pathway alone is capable of initiating similar degrees of injury as the entire cascade. PMID:9915253

  12. The Role of Mannose-Binding Lectin in Severe Sepsis and Septic Shock

    PubMed Central

    De Pascale, Gennaro; Cutuli, Salvatore Lucio; Pennisi, Mariano Alberto; Antonelli, Massimo

    2013-01-01

    Severe sepsis and septic shock are a primary cause of death in patients in intensive care unit (ICU). Investigations upon genetic susceptibility profile to systemic complications during severe infections are a field of increasing scientific interest. Particularly when adaptive immune system is compromised or immature, innate immunity plays a key role in the immediate defense against invasive pathogens. Mannose-binding lectin (MBL) is a serum protein that recognizes a wide range of pathogenic microorganisms and activates complement cascade via the antibody-independent pathway. More than 30% of humans harbor mutations in MBL gene (MBL2) resulting in reduced plasmatic levels and activity. Increased risk of infection acquisition has been largely documented in MBL-deficient patients, but the real impact of this form of innate immunosuppression upon clinical outcome is not clear. In critically ill patients higher incidence and worse prognosis of severe sepsis/septic shock appear to be associated with low-producers haplotypes. However an excess of MBL activation might be also harmful due to the possibility of an unbalanced proinflammatory response and an additional host injury. Strategies of replacement therapies in critically ill patients with severe infections are under investigation but still far to be applied in clinical practice. PMID:24223476

  13. C-reactive protein collaborates with plasma lectins to boost immune response against bacteria.

    PubMed

    Ng, Patricia M L; Le Saux, Agnès; Lee, Chia M; Tan, Nguan S; Lu, Jinhua; Thiel, Steffen; Ho, Bow; Ding, Jeak L

    2007-07-25

    Although human C-reactive protein (CRP) becomes upregulated during septicemia, its role remains unclear, since purified CRP showed no binding to many common pathogens. Contrary to previous findings, we show that purified human CRP (hCRP) binds to Salmonella enterica, and that binding is enhanced in the presence of plasma factors. In the horseshoe crab, Carcinoscorpius rotundicauda, CRP is a major hemolymph protein. Incubation of hemolymph with a range of bacteria resulted in CRP binding to all the bacteria tested. Lipopolysaccharide-affinity chromatography of the hemolymph co-purified CRP, galactose-binding protein (GBP) and carcinolectin-5 (CL5). Yeast two-hybrid and pull-down assays suggested that these pattern recognition receptors (PRRs) form pathogen recognition complexes. We show the conservation of PRR crosstalk in humans, whereby hCRP interacts with ficolin (CL5 homologue). This interaction stabilizes CRP binding to bacteria and activates the lectin-mediated complement pathway. We propose that CRP does not act alone but collaborates with other plasma PRRs to form stable pathogen recognition complexes when targeting a wide range of bacteria for destruction. PMID:17581635

  14. Lectindb: a plant lectin database.

    PubMed

    Chandra, Nagasuma R; Kumar, Nirmal; Jeyakani, Justin; Singh, Desh Deepak; Gowda, Sharan B; Prathima, M N

    2006-10-01

    Lectins, a class of carbohydrate-binding proteins, are now widely recognized to play a range of crucial roles in many cell-cell recognition events triggering several important cellular processes. They encompass different members that are diverse in their sequences, structures, binding site architectures, quaternary structures, carbohydrate affinities, and specificities as well as their larger biological roles and potential applications. It is not surprising, therefore, that the vast amount of experimental data on lectins available in the literature is so diverse, that it becomes difficult and time consuming, if not impossible to comprehend the advances in various areas and obtain the maximum benefit. To achieve an effective use of all the data toward understanding the function and their possible applications, an organization of these seemingly independent data into a common framework is essential. An integrated knowledge base ( Lectindb, http://nscdb.bic.physics.iisc.ernet.in ) together with appropriate analytical tools has therefore been developed initially for plant lectins by collating and integrating diverse data. The database has been implemented using MySQL on a Linux platform and web-enabled using PERL-CGI and Java tools. Data for each lectin pertain to taxonomic, biochemical, domain architecture, molecular sequence, and structural details as well as carbohydrate and hence blood group specificities. Extensive links have also been provided for relevant bioinformatics resources and analytical tools. Availability of diverse data integrated into a common framework is expected to be of high value not only for basic studies in lectin biology but also for basic studies in pursuing several applications in biotechnology, immunology, and clinical practice, using these molecules.

  15. Drug-mediated sensitization to TRAIL-induced apoptosis in caspase-8-complemented neuroblastoma cells proceeds via activation of intrinsic and extrinsic pathways and caspase-dependent cleavage of XIAP, Bcl-xL and RIP.

    PubMed

    Mühlethaler-Mottet, Annick; Bourloud, Katia Balmas; Auderset, Katya; Joseph, Jean-Marc; Gross, Nicole

    2004-07-15

    Neuroblastoma (NB) is a childhood neoplasm which heterogeneous behavior can be explained by differential regulation of apoptosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces rapid apoptosis in most tumor cells and thus represents a promising anticancer agent. We have reported silencing of caspase-8 expression in highly malignant NB cells as a possible mechanism of resistance to TRAIL-induced apoptosis. To explore the particular contribution of caspase-8 in such resistance, retroviral-mediated stable caspase-8 expression was induced in the IGR-N91 cells. As a result, sensitivity to TRAIL was fully restored in the caspase-8-complemented cells. TRAIL-induced cell death could be further enhanced by cotreatment of IGR-N91-C8 and SH-EP cells with cycloheximide or subtoxic concentrations of chemotherapeutic drugs in a caspase-dependent manner. Sensitization to TRAIL involved enhanced death receptor DR5 expression, activation of Bid and the complete caspases cascade. Interestingly, combined treatments also enhanced the cleavage-mediated inactivation of antiapoptotic molecules, XIAP, Bcl-x(L) and RIP. Our results show that restoration of active caspase-8 expression in a caspase-8-deficient NB cell line is necessary and sufficient to fully restore TRAIL sensitivity. Moreover, the synergistic effect of drugs and TRAIL results from activation of the caspase cascade via a mitochondrial pathway-mediated amplification loop and from the inactivation of apoptosis inhibitors. PMID:15094781

  16. Lectins as markers for blood grouping.

    PubMed

    Khan, Fauzia; Khan, Rizwan H; Sherwani, Asma; Mohmood, Sameena; Azfer, Md A

    2002-12-01

    Lectins are unique proteins of varying biological importance. They are characterized by specific binding to carbohydrate residues, whether monosaccharides, disaccharides or polysaccharides. The sugar heads on the surface of the erythrocyte specify the different blood groups. Lectins, as an antigenic determinant of blood group, have come to be an important tool in the identification of different blood groups. A handful of lectins may be considered excellent reagents for anti-A, anti-B, anti-N etc, but the anti-A and anti-M are not yet regarded as commercially suitable antisera. Lectin from Vicia cracca has been proved to be a good anti-A, lectin from Dolichus biflorus can be used as anti-A1, and lectin from Griffonia simplicifolia as anti-B. Lectin from Vicia graminea is said to be a good typing reagent as Anti-N. On the other hand, the lectins involved in polyagglutination are absolutely essential as the reagent of choice and these cannot as yet be replaced by antibodies of any kind. Erythrocytes with exposed cryptantigens are significantly more sensitive to agglutination by certain lectins than by polyclonal antibodies. Peanut agglutinin (PNA), Polybrene, and Glycine max lectins are frequently used for the identification of different cryptantigens. The application of lectins as an anti-B reagent has proven to be as useful as human polyclonal or mouse monoclonal antibodies. Besides their specificity, lectins are excellent reagents because of their lower cost and indigenous production. The importance of various lectins used as markers for blood grouping is discussed.

  17. Role of Complement and Complement Regulatory Proteins in the Complications of Diabetes

    PubMed Central

    Ghosh, Pamela; Sahoo, Rupam; Vaidya, Anand; Chorev, Michael

    2015-01-01

    It is well established that the organ damage that complicates human diabetes is caused by prolonged hyperglycemia, but the cellular and molecular mechanisms by which high levels of glucose cause tissue damage in humans are still not fully understood. The prevalent hypothesis explaining the mechanisms that may underlie the pathogenesis of diabetes complications includes overproduction of reactive oxygen species, increased flux through the polyol pathway, overactivity of the hexosamine pathway causing intracellular formation of advanced glycation end products, and activation of protein kinase C isoforms. In addition, experimental and clinical evidence reported in past decades supports a strong link between the complement system, complement regulatory proteins, and the pathogenesis of diabetes complications. In this article, we summarize the body of evidence that supports a role for the complement system and complement regulatory proteins in the pathogenesis of diabetic vascular complications, with specific emphasis on the role of the membrane attack complex (MAC) and of CD59, an extracellular cell membrane-anchored inhibitor of MAC formation that is inactivated by nonenzymatic glycation. We discuss a pathogenic model of human diabetic complications in which a combination of CD59 inactivation by glycation and hyperglycemia-induced complement activation increases MAC deposition, activates pathways of intracellular signaling, and induces the release of proinflammatory, prothrombotic cytokines and growth factors. Combined, complement-dependent and complement-independent mechanisms induced by high glucose promote inflammation, proliferation, and thrombosis as characteristically seen in the target organs of diabetes complications. PMID:25859860

  18. Role of complement and complement regulatory proteins in the complications of diabetes.

    PubMed

    Ghosh, Pamela; Sahoo, Rupam; Vaidya, Anand; Chorev, Michael; Halperin, Jose A

    2015-06-01

    It is well established that the organ damage that complicates human diabetes is caused by prolonged hyperglycemia, but the cellular and molecular mechanisms by which high levels of glucose cause tissue damage in humans are still not fully understood. The prevalent hypothesis explaining the mechanisms that may underlie the pathogenesis of diabetes complications includes overproduction of reactive oxygen species, increased flux through the polyol pathway, overactivity of the hexosamine pathway causing intracellular formation of advanced glycation end products, and activation of protein kinase C isoforms. In addition, experimental and clinical evidence reported in past decades supports a strong link between the complement system, complement regulatory proteins, and the pathogenesis of diabetes complications. In this article, we summarize the body of evidence that supports a role for the complement system and complement regulatory proteins in the pathogenesis of diabetic vascular complications, with specific emphasis on the role of the membrane attack complex (MAC) and of CD59, an extracellular cell membrane-anchored inhibitor of MAC formation that is inactivated by nonenzymatic glycation. We discuss a pathogenic model of human diabetic complications in which a combination of CD59 inactivation by glycation and hyperglycemia-induced complement activation increases MAC deposition, activates pathways of intracellular signaling, and induces the release of proinflammatory, prothrombotic cytokines and growth factors. Combined, complement-dependent and complement-independent mechanisms induced by high glucose promote inflammation, proliferation, and thrombosis as characteristically seen in the target organs of diabetes complications.

  19. Therapeutic complement inhibition in complement-mediated hemolytic anemias: Past, present and future.

    PubMed

    Risitano, Antonio M; Marotta, Serena

    2016-06-01

    The introduction in the clinic of anti-complement agents represented a major achievement which gave to physicians a novel etiologic treatment for different human diseases. Indeed, the first anti-complement agent eculizumab has changed the treatment paradigm of paroxysmal nocturnal hemoglobinuria (PNH), dramatically impacting its severe clinical course. In addition, eculizumab is the first agent approved for atypical Hemolytic Uremic Syndrome (aHUS), a life-threatening inherited thrombotic microangiopathy. Nevertheless, such remarkable milestone in medicine has brought to the fore additional challenges for the scientific community. Indeed, the list of complement-mediated anemias is not limited to PNH and aHUS, and other human diseases can be considered for anti-complement treatment. They include other thrombotic microangiopathies, as well as some antibody-mediated hemolytic anemias. Furthermore, more than ten years of experience with eculizumab led to a better understanding of the individual steps of the complement cascade involved in the pathophysiology of different human diseases. Based on this, new unmet clinical needs are emerging; a number of different strategies are currently under development to improve current anti-complement treatment, trying to address these specific clinical needs. They include: (i) alternative anti-C5 agents, which may improve the heaviness of eculizumab treatment; (ii) broad-spectrum anti-C3 agents, which may improve the efficacy of anti-C5 treatment by intercepting the complement cascade upstream (i.e., preventing C3-mediated extravascular hemolysis in PNH); (iii) targeted inhibitors of selective complement activating pathways, which may prevent early pathogenic events of specific human diseases (e.g., anti-classical pathway for antibody-mediated anemias, or anti-alternative pathway for PNH and aHUS). Here we briefly summarize the status of art of current and future complement inhibition for different complement-mediated anemias

  20. Factor H-related proteins determine complement-activating surfaces.

    PubMed

    Józsi, Mihály; Tortajada, Agustin; Uzonyi, Barbara; Goicoechea de Jorge, Elena; Rodríguez de Córdoba, Santiago

    2015-06-01

    Complement factor H-related proteins (FHRs) are strongly associated with different diseases involving complement dysregulation, which suggests a major role for these proteins regulating complement activation. Because FHRs are evolutionarily and structurally related to complement inhibitor factor H (FH), the initial assumption was that the FHRs are also negative complement regulators. Whereas weak complement inhibiting activities were originally reported for these molecules, recent developments indicate that FHRs may enhance complement activation, with important implications for the role of these proteins in health and disease. We review these findings here, and propose that FHRs represent a complex set of surface recognition molecules that, by competing with FH, provide improved discrimination of self and non-self surfaces and play a central role in determining appropriate activation of the complement pathway.

  1. Lectin cDNA and transgenic plants derived therefrom

    SciTech Connect

    Raikhel, Natasha V.

    2000-10-03

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties.

  2. Autocrine effects of tumor-derived complement.

    PubMed

    Cho, Min Soon; Vasquez, Hernan G; Rupaimoole, Rajesha; Pradeep, Sunila; Wu, Sherry; Zand, Behrouz; Han, Hee-Dong; Rodriguez-Aguayo, Cristian; Bottsford-Miller, Justin; Huang, Jie; Miyake, Takahito; Choi, Hyun-Jin; Dalton, Heather J; Ivan, Cristina; Baggerly, Keith; Lopez-Berestein, Gabriel; Sood, Anil K; Afshar-Kharghan, Vahid

    2014-03-27

    We describe a role for the complement system in enhancing cancer growth. Cancer cells secrete complement proteins that stimulate tumor growth upon activation. Complement promotes tumor growth via a direct autocrine effect that is partially independent of tumor-infiltrating cytotoxic T cells. Activated C5aR and C3aR signal through the PI3K/AKT pathway in cancer cells, and silencing the PI3K or AKT gene in cancer cells eliminates the progrowth effects of C5aR and C3aR stimulation. In patients with ovarian or lung cancer, higher tumoral C3 or C5aR mRNA levels were associated with decreased overall survival. These data identify a role for tumor-derived complement proteins in promoting tumor growth, and they therefore have substantial clinical and therapeutic implications.

  3. [Complement system regulation and C3 glomerulopathy].

    PubMed

    Xiao, Hui-jie; He, Rui-juan

    2013-04-18

    Complement system is a key system for immune surveillance and homeostasis. Excessive activation of complement system,especially the activation of alternative pathway may play a very important role in the pathogenesis of primary and secondary glomerulonephritis. C3 glomerulopathy is a newly named disease characterized by evident C3 deposition in the glomeruli with little or no immunoglobulin under immunofluorescence (IF). Its clinical and pathological manifestations vary a lot. The decreased plasma C3 and Factor H(FH)suggest that abnormal regulation of complement system plays an importment role in its pathogenesis. C3 glomerulopathy varies a lot as to its clinical manifestation, treatment and prognosis. The inhibition of excessive complement activation might be the key to treating C3 glomerulopathy.

  4. Plant as a plenteous reserve of lectin

    PubMed Central

    Hivrale, AU; Ingale, AG

    2013-01-01

    Lectins are clusters of glycoproteins of nonimmune foundation that combine specifically and reversibly to carbohydrates, mainly the sugar moiety of glycoconjugates, resulting in cell agglutination and precipitation of glycoconjugates. They are universally distributed in nature, being established in plants, fungi, viruses, bacteria, crustacea, insects, and animals, but leguminacae plants are rich source of lectins. The present review reveals the structure, biological properties, and application of plant lectins. PMID:24084524

  5. CSF coccidioides complement fixation

    MedlinePlus

    ... eds. Henry's Clinical Diagnosis and Management by Laboratory Methods . 22nd ed. Philadelphia, PA: Elsevier Saunders; 2011:chap 61. Read More Complement Update Date 5/1/2015 Updated by: Jatin M. Vyas, MD, ...

  6. Infections Revealing Complement Deficiency in Adults

    PubMed Central

    Audemard-Verger, A.; Descloux, E.; Ponard, D.; Deroux, A.; Fantin, B.; Fieschi, C.; John, M.; Bouldouyre, A.; Karkowsi, L.; Moulis, G.; Auvinet, H.; Valla, F.; Lechiche, C.; Davido, B.; Martinot, M.; Biron, C.; Lucht, F.; Asseray, N.; Froissart, A.; Buzelé, R.; Perlat, A.; Boutboul, D.; Fremeaux-Bacchi, V.; Isnard, S.; Bienvenu, B.

    2016-01-01

    Abstract Complement system is a part of innate immunity, its main function is to protect human from bacterial infection. As genetic disorders, complement deficiencies are often diagnosed in pediatric population. However, complement deficiencies can also be revealed in adults but have been poorly investigated. Herein, we describe a case series of infections revealing complement deficiency in adults to study clinical spectrum and management of complement deficiencies. A nationwide retrospective study was conducted in French university and general hospitals in departments of internal medicine, infectious diseases enrolling patients older than 15 years old who had presented at least one infection leading to a complement deficiency diagnosis. Forty-one patients included between 2002 and 2015 in 19 different departments were enrolled in this study. The male-to-female ratio was 1.3 and the mean age at diagnosis was 28 ± 14 (15–67) years. The main clinical feature was Neisseria meningitidis meningitis 75% (n = 31/41) often involving rare serotype: Y (n = 9) and W 135 (n = 7). The main complement deficiency observed was the common final pathway deficiency 83% (n = 34/41). Half of the cohort displayed severe sepsis or septic shock at diagnosis (n = 22/41) but no patient died. No patient had family history of complement deficiency. The mean follow-up was 1.15 ± 1.95 (0.1–10) years. Half of the patients had already suffered from at least one infection before diagnosis of complement deficiency: meningitis (n = 13), pneumonia (n = 4), fulminans purpura (n = 1), or recurrent otitis (n = 1). Near one-third (n = 10/39) had received prophylactic antibiotics (cotrimoxazole or penicillin) after diagnosis of complement deficiency. The vaccination coverage rate, at the end of the follow-up, for N meningitidis, Streptococcus pneumonia, and Haemophilius influenzae were, respectively, 90% (n = 33/37), 47% (n = 17/36), and 35

  7. The structure of C2b, a fragment of complement component C2 produced during C3 convertase formation

    SciTech Connect

    Krishnan, Vengadesan; Xu, Yuanyuan; Macon, Kevin; Volanakis, John E.; Narayana, Sthanam V. L.

    2009-03-01

    The crystal structure of C2b has been determined at 1.8 Å resolution, which reveals the arrangement of its three complement control protein (CCP) modules. A model for complement component C2 is presented and its conformational changes during the C3-convertase formation are also discussed. The second component of complement (C2) is a multi-domain serine protease that provides catalytic activity for the C3 and C5 convertases of the classical and lectin pathways of human complement. The formation of these convertases requires the Mg{sup 2+}-dependent binding of C2 to C4b and the subsequent cleavage of C2 by C1s or MASP2, respectively. The crystal structure of full-length C2 is not yet available, although the structure of its C-terminal catalytic segment C2a has been determined. The crystal structure of the N-terminal segment C2b of C2 determined to 1.8 Å resolution presented here reveals the arrangement of its three CCP domains. The domains are arranged differently compared with most other CCP-domain assemblies, but their arrangement is similar to that found in the Ba part of the full-length factor B structure. The crystal structures of C2a, C2b and full-length factor B are used to generate a model for C2 and a discussion of the domain association and possible interactions with C4b during formation of the C4b–C2 complex is presented. The results of this study also suggest that upon cleavage by C1s, C2a domains undergo conformational rotation while bound to C4b and the released C2b domains may remain folded together similar to as observed in the intact protein.

  8. Lectins and their application to clinical microbiology.

    PubMed Central

    Slifkin, M; Doyle, R J

    1990-01-01

    Lectins are generally associated with plant or animal components, selectively bind carbohydrates, and interact with procaryotic and eucaryotic cells. Lectins have various specificities that are associated with their ability to interact with acetylaminocarbohydrates, aminocarbohydrates, sialic acids, hexoses, pentoses, and as other carbohydrates. Microbial surfaces generally contain many of the sugar residues that react with lectins. Lectins are presently used in the clinical laboratory to type blood cells and are used in a wide spectrum of applications, including, in part, as carriers of chemotherapeutic agents, as mitogens, for fractionation of animal cells, and for investigations of cellular surfaces. Numerous studies have shown that lectins can be used to identify rapidly certain microorganisms isolated from a clinical specimen or directly in a clinical specimen. Lectins have been demonstrated to be important diagnostic reagents in the major realms of clinical microbiology. Thus, they have been applied in bacteriology, mycology, mycobacteriology, and virology for the identification and/or differentiation of various microorganisms. Lectins have been used successfully as epidemiologic as well as taxonomic markers of specific microorganisms. Lectins provide the clinical microbiologist with cost-effective and potential diagnostic reagents. This review describes the applications of lectins in clinical microbiology. Images PMID:2200603

  9. Mannose-Binding Lectin (MBL) and MBL-associated serine protease-2 (MASP-2) in women with malignant and benign ovarian tumours.

    PubMed

    Swierzko, Anna St; Szala, Agnieszka; Sawicki, Sambor; Szemraj, Janusz; Sniadecki, Marcin; Sokolowska, Anna; Kaluzynski, Andrzej; Wydra, Dariusz; Cedzynski, Maciej

    2014-11-01

    Mannose-Binding Lectin (MBL) is a serum pattern recognition molecule, able to activate complement in association with MASP proteases. Serum levels of MBL and MASP-2, activities of MBL-MASP complexes, single nucleotide polymorphisms of the MBL2 and MASP2 genes and/or their specific mRNA expression in ovarian sections were investigated in 128 patients suffering from primary ovarian cancer (OC) and compared with 197 controls (C), encompassing both patients with benign ovarian tumours (n = 123) and others with no ovarian pathology (n = 74). MBL deficiency-associated genotypes were more common among OC patients than among controls. The O/O group of genotypes was associated with ovarian cancer (OR 3.5, p = 0.02). In A/A homozygotes, MBL concentrations and activities were elevated in the OC group and correlated with C-reactive protein. Moreover, high MBL serum levels were associated with more advanced disease stage. No differences in distribution of the MASP2 +359 A>G (D120G) SNP or MASP-2 serum levels were found between cancer patients and their controls. However, the highest frequency of the A/G (MASP2) and LXA/O or O/O (MBL2) genotypes was found among OC patients with tumours of G1-2 grade (well/moderately differentiated). Furthermore, MBL deficiency-associated genotypes predicted prolonged survival. None of the parameters investigated correlated with CA125 antigen or patients' age. The local expression of MBL2 and MASP2 genes was higher in women with ovarian cancer compared with controls. It is concluded that the expression of MBL and MASP-2 is altered in ovarian cancer, possibly indicating involvement of the lectin pathway of complement activation in the disease.

  10. Anti-tumor and anti-viral activities of Galanthus nivalis agglutinin (GNA)-related lectins.

    PubMed

    Wu, Lei; Bao, Jin-Ku

    2013-04-01

    Galanthus nivalis agglutinin (GNA)-related lectin family, a superfamily of strictly mannose-binding specific lectins widespread among monocotyledonous plants, is well-known to possess a broad range of biological functions such as anti-tumor, anti-viral and anti-fungal activities. Herein, we mainly focused on exploring the precise molecular mechanisms by which GNA-related lectins induce cancer cell apoptotic and autophagic death targeting mitochondria-mediated ROS-p38-p53 apoptotic or autophagic pathway, Ras-Raf and PI3K-Akt anti-apoptotic or anti-autophagic pathways. In addition, we further discussed the molecular mechanisms of GNA-related lectins exerting anti-viral activities by blocking the entry of the virus into its target cells, preventing transmission of the virus as well as forcing virus to delete glycan in its envelope protein and triggering neutralizing antibody. In conclusion, these findings may provide a new perspective of GNA-related lectins as potential drugs for cancer and virus therapeutics in the future.

  11. Human seminal plasma inhibition of complement.

    PubMed

    Petersen, B H; Lammel, C J; Stites, D P; Brooks, G F

    1980-10-01

    Recent studies have shown that human seminal plasma contains chemically and biologically distinct factors which inhibit lymphocyte functions and the serum bactericidal and opsonic activities associated with the killing of gram-negative organisms. Because of the direct association between complement action and serum bactericidal and opsonic activities, inhibition of complement may be one of the possible mechanisms of action of seminal plasma immunoinhibitory factors. Complement hemolytic activity was measured for C3 and C4 in serum Neisseria gonorrhoeae and Escherichia coli bactericidal reaction mixtures with and without addition of seminal plasma. In the presence of seminal plasma, where there was no bactericidal action, C3 and titers were reduced to approximately 50% of the titers in the reactions with complement donor serum. The C3 titers were lower than in the reaction mixtures with immune serum and complement donor serum, where N. gonorrhoeae bactericidal activity occurred. Individual human seminal plasma specimens depressed CH50 activity of pooled normal human sera up to 50% of normal levels. There were no differences in inhibition by seminal plasma specimens from normal or vasectomized men. Treatment with seminal plasma depressed the functional activity of complement components C1 and C3 by more than 50%. Seminal plasma also inhibited alternate pathway activity. Cleavage of factor B was demonstrated. The seminal plasma factor which inhibited complement was of low molecular weight. DPF blocked the seminal plasma complement-inhibitory factor. However, amidolytic activity for serine protease substrates could not be demonstrated. It is likely that the seminal plasma complement inhibitor is a protease inhibitor acting singly or in combination.

  12. The ancestral complement system in sea urchins.

    PubMed

    Smith, L C; Clow, L A; Terwilliger, D P

    2001-04-01

    The origin of adaptive immunity in the vertebrates can be traced to the appearance of the ancestral RAG genes in the ancestral jawed vertebrate; however, the innate immune system is more ancient. A central subsystem within innate immunity is the complement system, which has been identified throughout and seems to be restricted to the deuterostomes. The evolutionary history of complement can be traced from the sea urchins (members of the echinoderm phylum), which have a simplified system homologous to the alternative pathway, through the agnathans (hagfish and lamprey) and the elasmobranchs (sharks and rays) to the teleosts (bony fish) and tetrapods, with increases in the numbers of complement components and duplications in complement pathways. Increasing complexity in the complement system parallels increasing complexity in the deuterostome animals. This review focuses on the simplest of the complement systems that is present in the sea urchin. Two components have been identified that show significant homology to vertebrate C3 and factor B (Bf), called SpC3 and SpBf, respectively. Sequence analysis from both molecules reveals their ancestral characteristics. Immune challenge of sea urchins indicates that SpC3 is inducible and is present in coelomic fluid (the body fluids) in relatively high concentrations, while SpBf expression is constitutive and is present in much lower concentrations. Opsonization of foreign cells and particles followed by augmented uptake by phagocytic coelomocytes appears to be a central function for this simpler complement system and important for host defense in the sea urchin. These activities are similar to some of the functions of the homologous proteins in the vertebrate complement system. The selective advantage for the ancestral deuterostome may have been the amplification feedback loop that is still of central importance in the alternative pathway of complement in higher vertebrates. Feedback loop functions would quickly coat

  13. Lectin engineering, a molecular evolutionary approach to expanding the lectin utilities.

    PubMed

    Hu, Dan; Tateno, Hiroaki; Hirabayashi, Jun

    2015-01-01

    In the post genomic era, glycomics--the systematic study of all glycan structures of a given cell or organism--has emerged as an indispensable technology in various fields of biology and medicine. Lectins are regarded as "decipherers of glycans", being useful reagents for their structural analysis, and have been widely used in glycomic studies. However, the inconsistent activity and availability associated with the plant-derived lectins that comprise most of the commercially available lectins, and the limit in the range of glycan structures covered, have necessitated the development of innovative tools via engineering of lectins on existing scaffolds. This review will summarize the current state of the art of lectin engineering and highlight recent technological advances in this field. The key issues associated with the strategy of lectin engineering including selection of template lectin, construction of a mutagenesis library, and high-throughput screening methods are discussed.

  14. Mannose-binding lectin levels and major infections in a cohort of very long-term survivors after allogeneic stem cell transplantation

    PubMed Central

    Osthoff, Michael; Rovó, Alicia; Stern, Martin; Danner, Doris; Gratwohl, Alois; Tichelli, André; Trendelenburg, Marten

    2010-01-01

    Background Life-threatening infections are a major cause of death after allogeneic stem cell transplantation. Complement Mannose-binding lectin is a key component of innate immunity. Functional deficiency of mannose-binding lectin due to genetic polymorphism is frequent. Previous reports showed conflicting results with respect to the influence of functional mannose-binding lectin deficiency on infectious risk after allogeneic stem cell transplantation. The aim of this study was to clarify the impact of low mannose-binding lectin levels on infectious risk in a unique cohort of very long-term survivors after stem cell transplantation. Design and Methods Incidence of major infections was evaluable in 43 out of 44 very long-term survivors (over ten years) and studied retrospectively in relation to mannose-binding lectin serum concentrations. Results Recipients with mannose-binding lectin levels below 1,000 ng/mL were at increased risk to suffer from one or more major infections (P=0.002) during entire follow up. Infectious susceptibility was increased after neutrophil recovery, particularly until 24 months (Hazard Ratio 3.4) with sustained effects afterwards (Hazard Ratio 2.9). Mannose-binding lectin serum concentrations below 1,000 ng/mL were independently associated with major infections after neutrophil recovery (P=0.009). In subgroup analyses occurrence of severe herpes virus infections in particular was associated with significantly lower mannose-binding lectin levels (P=0.02). Conclusions Our findings indicate that low mannose-binding lectin levels may predict markedly increased susceptibility to severe infections with sustained effects even late after allogeneic stem cell transplantation. Determinations of mannose-binding lectin status should therefore be included into pre-transplantation risk assessment. PMID:20418242

  15. Ixodes dammini: salivary anti-complement activity.

    PubMed

    Ribeiro, J M

    1987-12-01

    Saliva of the tick Ixodes dammini prevents hemolysis of rabbit erythrocytes by the human alternative pathway of complement. Deposition of C3b to activating surfaces and concomitant C3a release are inhibited. C3b deposition to activating surfaces is inhibited regardless the origin (humans, rat, mouse, guinea pig, and hamster) of the serum. The inhibitor elutes as a single peak upon gel filtration, with an apparent molecular weight of 49,000. Salivary anti-complement may contribute to successful feeding of I. dammini in their natural hosts. PMID:3119364

  16. Complement component 3 (C3)

    MedlinePlus

    C3 and C4 are the most commonly measured complement components. A complement test may be used to monitor people with an ... normal levels of the complement proteins C3 and C4 . Complement activity varies throughout the body. For example, ...

  17. Verbal Complementizers in Arabic

    ERIC Educational Resources Information Center

    Ahmed, Hossam Eldin Ibrahim

    2015-01-01

    A class of Modern Standard Arabic complementizers known as "'?inna' and its sisters" demonstrate unique case and word order restrictions. While CPs in Arabic allow both Subject-Verb (SV) and Verb-Subject (VS) word order and their subjects show nominative morphology, CPs introduced by "?inna" ban a verb from directly following…

  18. [Effect of lectins from Azospirillum brasilense to peroxidase and oxalate oxidase activity regulation in wheat roots].

    PubMed

    Alen'kina, S A; Nikitina, V E

    2010-01-01

    Lectins were extracted from the surface of nitrogen-fixing soil bacteria Azospirillum brasilense Sp7 and from its mutant A. brasilense Sp7.2.3 defective in lectin activity. The ability oflectins to stimulate the rapid formation of hydrogen peroxide related to increase of oxalate oxidase and peroxidase activity in the roots of wheat seedlings has been demonstrated. The most rapid induced pathway of hydrogen peroxide formation in the roots of wheat seedlings was the oxalic acid oxidation by oxalate oxidase which is the effect oflectin in under 10 min in a concentration of 10 microg/ml. The obtained results show that lectins from Azospirillum are capable of inducing the adaptation processes in the roots of wheat seedlings.

  19. Complement activation in chronic liver disease.

    PubMed Central

    Munoz, L E; De Villiers, D; Markham, D; Whaley, K; Thomas, H C

    1982-01-01

    Patients with HBsAg positive chronic active liver disease (CALD) and primary biliary cirrhosis (PBC) exhibit increased C3d concentrations and changes in the serum concentrations of the complement components consistent with activation of the classical and alternative pathways. In these patients the concentrations of the regulatory proteins, C3b inactivator (C3bINA) and beta IH globulin, are normal. Patients with HBsAg negative CALD and alcohol induced liver disease (ALD) exhibit no evidence of an increased level of complement system activation. In these patients diminished serum concentrations of complement components appear to be related to diminished hepatic synthetic function. C4 synthesis may be specifically reduced in autoimmune chronic active liver disease. PMID:7083631

  20. The Complement System in Lupus Nephritis.

    PubMed

    Birmingham, Daniel J; Hebert, Lee A

    2015-09-01

    The complement system is composed of a family of soluble and membrane-bound proteins that historically has been viewed as a key component of the innate immune system, with a primary role of providing a first-line defense against microorganisms. Although this role indeed is important, complement has many other physiological roles, including the following: (1) influencing appropriate immune responses, (2) disposing of waste in the circulation (immune complexes, cellular debris), and (3) contributing to damage of self-tissue through inflammatory pathways. These three roles are believed to be significant factors in the pathogenesis of systemic lupus erythematosus, particularly its renal manifestation (lupus nephritis), contributing both protective and damaging effects. In this review, we provide an overview of the human complement system and its functions, and discuss its intricate and seemingly contradictory roles in the pathogenesis of lupus nephritis.

  1. Lectin-based glycoproteomics to explore and analyze hepatocellular carcinoma-related glycoprotein markers.

    PubMed

    Dai, Zhi; Zhou, Jian; Qiu, Shuang-Jian; Liu, Yin-Kun; Fan, Jia

    2009-09-01

    More and more new diagnostic biomarkers of hepatocellular carcinoma (HCC) have been found in association with advances in the standardization of 2-DE coupled with MS analysis. However, the diagnosis of HCC is still detected in the late stages of the disease, when treatment options are limited and prognosis is poor. The glycosylation of proteins is known to change in tumor cells during the development of HCC as the result of alterations in the levels of glycosyltransferases, such as increased fucosylation of Golgi Protein 73 and alpha-fetoprotein. These structural changes can influence the function or physiochemical properties of a protein, resulting in abnormal cancer cell behavior. Therefore, identification of HCC-related glycoprotein markers and analysis of glycan structural alterations might assist in the early detection of HCC. Here, we summarize lectin-based glycoproteomic strategies for the discovery of relevant biomarkers of HCC. The carbohydrate-binding specificities of different lectins offer a biological affinity approach that complements existing MS capabilities. These strategies involve the enrichment of glycoproteins or glycopeptides by lectins, followed by releasing carbohydrates with peptide-N-glycosidase F or reductive beta-elimination. The obtained glycopeptides are then identified by automated MS/MS and structural analysis of glycans is performed through modern methods such as quadrupole IT-TOF, MALDI-TOF/TOF and lectin microarray. These strategies will lead to faster and more clinically adaptable tests with greater sensitivity and specificity.

  2. Complement--tapping into new sites and effector systems.

    PubMed

    Kolev, Martin; Le Friec, Gaelle; Kemper, Claudia

    2014-12-01

    Complement is traditionally known to be a system of serum proteins that provide protection against pathogens through direct cell lysis and the mobilization of innate and adaptive immunity. However, recent work indicates that the complement system has additional physiological roles beyond those in host defence. In this Opinion article, we describe the new modes and locations of complement activation that enable it to interact with other cell effector systems, such as growth factor receptors, inflammasomes and metabolic pathways. We propose that the location of complement activation dictates its function.

  3. Activation of Complement Following Total Hip Replacement.

    PubMed

    Thordardottir, S; Vikingsdottir, T; Bjarnadottir, H; Jonsson, H; Gudbjornsson, B

    2016-03-01

    The aim of this study was to investigate whether complement activation, via the classical and alternative pathways, occurs following a cemented total hip replacement (THR) surgery due to osteoarthritis. Blood samples were collected systematically from 12 patients - six male and six women, with a median age of 75 (range: 59-90 years) - preoperatively, 6 h post-operatively and on the first, second and third post-operative day. Total function of classical (CH50) and alternative pathways (AH50) was evaluated, along with the determination of serum concentrations of the complement proteins C3, C4, C3d, the soluble terminal complement complex (sTCC) sC5b-9, as well as C-reactive protein (CRP) and albumin. Measurements of CRP and albumin levels elucidated a marked inflammatory response following the operation. The CH50, AH50 and C3 and C4 levels were significantly lower 6 h after the surgery compared with the preoperative levels, but elevated above the preoperative levels during the following 3 days. The complement activation product C3d levels increased continually during the whole observation period, from 13.5 AU/ml (range: 8-19 AU/ml) preoperative to 20 AU/ml (range: 12-34 AU/ml) on the third post-operative day. Furthermore, we observed an increase in the sC5b-9 levels between the preoperative and the third post-operative day. These results demonstrate a significant activation of the complement system following cemented THR. Further studies are needed to elucidate the time frame and the pathogenic role of this observed complement activation.

  4. The X-ray Crystal Structure of Mannose-binding Lectin-associated Serine Proteinase-3 Reveals the Structural Basis for Enzyme Inactivity Associated with the Carnevale, Mingarelli, Malpuech, and Michels (3MC) Syndrome*

    PubMed Central

    Yongqing, Tang; Wilmann, Pascal G.; Reeve, Shane B.; Coetzer, Theresa H.; Smith, A. Ian; Whisstock, James C.; Pike, Robert N.; Wijeyewickrema, Lakshmi C.

    2013-01-01

    The mannose-binding lectin associated-protease-3 (MASP-3) is a member of the lectin pathway of the complement system, a key component of human innate and active immunity. Mutations in MASP-3 have recently been found to be associated with Carnevale, Mingarelli, Malpuech, and Michels (3MC) syndrome, a severe developmental disorder manifested by cleft palate, intellectual disability, and skeletal abnormalities. However, the molecular basis for MASP-3 function remains to be understood. Here we characterize the substrate specificity of MASP-3 by screening against a combinatorial peptide substrate library. Through this approach, we successfully identified a peptide substrate that was 20-fold more efficiently cleaved than any other identified to date. Furthermore, we demonstrated that mutant forms of the enzyme associated with 3MC syndrome were completely inactive against this substrate. To address the structural basis for this defect, we determined the 2.6-Å structure of the zymogen form of the G666E mutant of MASP-3. These data reveal that the mutation disrupts the active site and perturbs the position of the catalytic serine residue. Together, these insights into the function of MASP-3 reveal how a mutation in this enzyme causes it to be inactive and thus contribute to the 3MC syndrome. PMID:23792966

  5. Structure-activity relationships within the N-terminal short consensus repeats (SCR) of human CR1 (C3b/C4b receptor, CD35): SCR 3 plays a critical role in inhibition of the classical and alternative pathways of complement activation.

    PubMed

    Mossakowska, D; Dodd, I; Pindar, W; Smith, R A

    1999-06-01

    Genes coding for between one and four short consensus repeats (SCR) of the N-terminal region of human complement receptor 1 (CR1) were synthesized from oligonucleotides and those encoding SCR(1-2), SCR(1-3), SCR(1-4), SCR3 and SCR(3-4) were expressed as inclusion bodies in Escherichia coli. Following solubilization in urea, the proteins were partially purified and refolded and the activity of each protein was assessed in both classical and alternative pathway complement assays. All fragments showed a varying degree of activity with the general order being SCR(1-3) = SCR(1-4) > SCR(1-2). Addition of SCR3 to SCR(1-2) significantly improved potency, whereas the addition of SCR4 conferred no additional benefit. This observation, coupled with the ability of the single-domain SCR3 to inhibit classical pathway mediated lysis with an IH50% (inhibition of hemolysis by 50%) of 4.8 microM, demonstrates that SCR3 provides key binding interactions with activated complement components. SCR(1-3) was able to inhibit both classical and alternative pathways of complement activation, showing that the N-terminal SCR of CR1 retain the ability to interact with C3b. Assays for CR1-like cofactor activity for factor I using C4b-like C4 or C3b-like C3 as substrates showed that SCR(1-3) possessed such cofactor activity and that C4b-like C4 was a better substrate. When compared to full-length (30 SCR) soluble CR1 (sCR1), SCR(1-3) was significantly less potent in accord with a model involving multi-valent binding of C3b/C4b to CR1.

  6. CRP-mediated activation of complement in vivo: assessment by measuring circulating complement-C-reactive protein complexes.

    PubMed

    Wolbink, G J; Brouwer, M C; Buysmann, S; ten Berge, I J; Hack, C E

    1996-07-01

    The in vivo function of C-reactive protein (CRP) is unknown. Among the in vitro functions assigned to CRP is the ability to activate complement via the classical pathway. To date, there is no evidence supporting that CRP exerts this function in vivo. We here show a novel approach to assess CRP-mediated complement activation in vivo, which is based on the property that activated complement factors C3 and C4 fix to CRP during complement activation induced by this acute phase protein. We developed specific ELISAs for complexes between CRP and C4b, C4d, C3b, or C3d. We established that in vitro complement-CRP complexes were formed only during CRP-dependent activation, and not during activation by other activators, even in the presence of high CRP levels. Circulating levels of complement-CRP complexes were undetectable in normal donors, but significantly increased in nine patients following implantation of a renal allograft. Importantly, levels of complement-CRP complexes did not change in these patients upon a bolus infusion of mAb OKT3, which induces activation of the classical complement pathway, demonstrating in vivo that complement-CRP complexes are not formed during CRP-independent activation of complement, even when CRP is elevated. We conclude that measurement of complement-CRP complexes provides a suitable tool to study CRP-mediated activation of complement in vivo. Furthermore, increased levels of these complexes occur in clinical samples, indicating that CRP may induce activation of complement in vivo.

  7. Maggot excretions affect the human complement system.

    PubMed

    Cazander, Gwendolyn; Schreurs, Marco W J; Renwarin, Lennaert; Dorresteijn, Corry; Hamann, Dörte; Jukema, Gerrolt N

    2012-01-01

    The complement system plays an important role in the activation of the inflammatory response to injury, although inappropriate complement activation (CA) can lead to severe tissue damage. Maggot therapy is successfully used to treat infected wounds. In this study, we hypothesized that maggot excretions/secretions influence CA in order to modulate the host's inflammatory response. Therefore, the effect of maggot excretions on CA was investigated in preoperatively and postoperatively obtained sera from patients. Our results show that maggot excretions reduce CA in healthy and postoperatively immune-activated human sera up to 99.9%, via all pathways. Maggot excretions do not specifically initiate or inhibit CA, but break down complement proteins C3 and C4 in a cation-independent manner and this effect proves to be temperature tolerant. This study indicates a CA-reducing substrate that is already successfully used in clinical practice and may explain part of the improved wound healing caused by maggot therapy. Furthermore, the complement activation-reducing substance present in maggot excretions could provide a novel treatment modality for several diseases, resulting from an (over)active complement system.

  8. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.

    PubMed

    Hess, Christoph; Kemper, Claudia

    2016-08-16

    Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings. PMID:27533012

  9. Galactose-specific seed lectins from Cucurbitaceae.

    PubMed

    Swamy, Musti J; Marapakala, Kavitha; Sultan, Nabil Ali M; Kenoth, Roopa

    2015-01-01

    Lectins, the carbohydrate binding proteins have been studied extensively in view of their ubiquitous nature and wide-ranging applications. As they were originally found in plant seed extracts, much of the work on them was focused on plant seed lectins, especially those from legume seeds whereas much less attention was paid to the lectins from other plant families. During the last two decades many studies have been reported on lectins from the seeds of Cucurbitaceae species. The main focus of the present review is to provide an overview of the current knowledge on these proteins, especially with regard to their physico-chemical characterization, interaction with carbohydrates and hydrophobic ligands, 3-dimensional structure and similarity to type-II ribosome inactivating proteins. The future outlook of research on these galactose-specific proteins is also briefly considered.

  10. Mannose-binding dietary lectins induce adipogenic differentiation of the marrow-derived mesenchymal cells via an active insulin-like signaling mechanism.

    PubMed

    Bajaj, Manmohan; Hinge, Ashwini; Limaye, Lalita S; Gupta, Rajesh Kumar; Surolia, Avadhesha; Kale, Vaijayanti P

    2011-04-01

    We have recently demonstrated that the mannose-binding lectins, namely banana lectin (BL) and garlic lectin (GL), interacted with the insulin receptors on M210B4 cells--an established mesenchymal cell line of murine marrow origin--and initiate mitogen-activated protein kinase kinase (MEK)-dependent extracellular signal-regulated kinase (ERK) signaling in them. In this study, we show that this lectin-mediated active ERK signaling culminates into an adipogenic differentiation of these cells. Gene expression studies indicate that the effect takes place at the transcriptional level. Experiments carried out with pharmacological inhibitors show that MEK-dependent ERK and phosphatidylinositol 3-kinase-dependent AKT pathways are positive regulators of the lectin- and insulin-mediated adipogenic differentiation, while stress-activated kinase/c-jun N-terminal kinase pathway acts as a negative one. Since both lectins could efficiently substitute for insulin in the standard adipogenic induction medium, they may perhaps serve as molecular tools to study the mechanistic aspects of the adipogenic process that are independent of cell proliferation. Our study clearly demonstrates the ability of BL and GL to activate insulin-like signaling in the mesenchymal cells in vitro leading to their adipocytic differentiation. The dietary origin of these lectins underscores an urgent need to examine their in vivo effects on tissue homeostasis.

  11. Binding of Streptococcus pneumoniae endopeptidase O (PepO) to complement component C1q modulates the complement attack and promotes host cell adherence.

    PubMed

    Agarwal, Vaibhav; Sroka, Magdalena; Fulde, Marcus; Bergmann, Simone; Riesbeck, Kristian; Blom, Anna M

    2014-05-30

    The Gram-positive species Streptococcus pneumoniae is a human pathogen causing severe local and life-threatening invasive diseases associated with high mortality rates and death. We demonstrated recently that pneumococcal endopeptidase O (PepO) is a ubiquitously expressed, multifunctional plasminogen and fibronectin-binding protein facilitating host cell invasion and evasion of innate immunity. In this study, we found that PepO interacts directly with the complement C1q protein, thereby attenuating the classical complement pathway and facilitating pneumococcal complement escape. PepO binds both free C1q and C1 complex in a dose-dependent manner based on ionic interactions. Our results indicate that recombinant PepO specifically inhibits the classical pathway of complement activation in both hemolytic and complement deposition assays. This inhibition is due to direct interaction of PepO with C1q, leading to a strong activation of the classical complement pathway, and results in consumption of complement components. In addition, PepO binds the classical complement pathway inhibitor C4BP, thereby regulating downstream complement activation. Importantly, pneumococcal surface-exposed PepO-C1q interaction mediates bacterial adherence to host epithelial cells. Taken together, PepO facilitates C1q-mediated bacterial adherence, whereas its localized release consumes complement as a result of its activation following binding of C1q, thus representing an additional mechanism of human complement escape by this versatile pathogen.

  12. CancerLectinDB: a database of lectins relevant to cancer.

    PubMed

    Damodaran, Deepa; Jeyakani, Justin; Chauhan, Alok; Kumar, Nirmal; Chandra, Nagasuma R; Surolia, Avadhesha

    2008-04-01

    The role of lectins in mediating cancer metastasis, apoptosis as well as various other signaling events has been well established in the past few years. Data on various aspects of the role of lectins in cancer is being accumulated at a rapid pace. The data on lectins available in the literature is so diverse, that it becomes difficult and time-consuming, if not impossible to comprehend the advances in various areas and obtain the maximum benefit. Not only do the lectins vary significantly in their individual functional roles, but they are also diverse in their sequences, structures, binding site architectures, quaternary structures, carbohydrate affinities and specificities as well as their potential applications. An organization of these seemingly independent data into a common framework is essential in order to achieve effective use of all the data towards understanding the roles of different lectins in different aspects of cancer and any resulting applications. An integrated knowledge base (CancerLectinDB) together with appropriate analytical tools has therefore been developed for lectins relevant for any aspect of cancer, by collating and integrating diverse data. This database is unique in terms of providing sequence, structural, and functional annotations for lectins from all known sources in cancer and is expected to be a useful addition to the number of glycan related resources now available to the community. The database has been implemented using MySQL on a Linux platform and web-enabled using Perl-CGI and Java tools. Data for individual lectins pertain to taxonomic, biochemical, domain architecture, molecular sequence and structural details as well as carbohydrate specificities. Extensive links have also been provided for relevant bioinformatics resources and analytical tools. Availability of diverse data integrated into a common framework is expected to be of high value for various studies on lectin cancer biology. CancerLectinDB can be accessed through

  13. Increased expression of a novel splice variant of the complement component 4 (C4A) gene in mastitis-infected dairy cattle.

    PubMed

    Yang, Y; Huang, J M; Ju, Z H; Li, Q L; Zhou, L; Li, R L; Li, J B; Shi, F X; Zhong, J F; Wang, C F

    2012-08-29

    The complement system helps in the direct lysis of invading pathogens and modulates phagocytic, humoral and cellular immune responses. Complement 4 is a critical component in complement activity and protection against many bacterial pathogens because it is essential to classical and lectin activation pathways. We used reverse transcription and PCR to investigate alternative splicing and expression of the complement component 4 (C4A) gene in Chinese Holstein cattle. The PCR products were cloned and sequenced. A novel splice variant involving intron 10 was identified, which we named C4A-AS. To examine how C4A gene activity is affected by bovine mastitis, six Chinese Holstein cattle were divided into healthy (non-mastitic) and Staphylococcus aureus-induced mastitic groups. Real-time quantitative PCR (qRT-PCR) revealed that the C4A-complete and C4A-AS transcripts are expressed at significantly different levels in healthy cows, while there were no significant differences in the mastitic group (P = 0.257). Expression of C4A-AS increased significantly when mastitis developed. We also examined the expression of C4A-complete and C4A-AS in several tissues (liver, heart, spleen, lung, kidney, tongue, and muscle). The two transcripts were expressed in all of these tissues but there were no significant differences in expression between healthy and mastitic cows. We therefore conclude that the C4A-complete transcript is the main transcript under normal physiological conditions, while C4A-AS is augmented when mastitis develops.

  14. Mannose-Binding Lectin Deficiency Is Associated With Smaller Infarction Size and Favorable Outcome in Ischemic Stroke Patients

    PubMed Central

    Fluri, Felix; Schuetz, Philipp; Bingisser, Roland; Kappos, Ludwig; Steck, Andreas J.; Engelter, Stefan T.; Mueller, Beat; Christ-Crain, Mirjam; Trendelenburg, Marten

    2011-01-01

    Background The Mannose-binding lectin (MBL) pathway of complement plays a pivotal role in the pathogenesis of ischemia/reperfusion (I/R) injury after experimental ischemic stroke. As comparable data in human ischemic stroke are limited, we investigated in more detail the association of MBL deficiency with infarction volume and functional outcome in a large cohort of patients receiving intravenous thrombolysis or conservative treatment. Methodology/Principal Findings In a post hoc analysis of a prospective cohort study, admission MBL concentrations were determined in 353 consecutive patients with an acute ischemic stroke of whom 287 and 66 patients received conservative and thrombolytic treatment, respectively. Stroke severity, infarction volume, and functional outcome were studied in relation to MBL concentrations at presentation to the emergency department. MBL levels on admission were not influenced by the time from symptom onset to presentation (p = 0.53). In the conservative treatment group patients with mild strokes at presentation, small infarction volumes or favorable outcomes after three months demonstrated 1.5 to 2.6-fold lower median MBL levels (p = 0.025, p = 0.0027 and p = 0.046, respectively) compared to patients with more severe strokes. Moreover, MBL deficient patients (<100 ng/ml) were subject to a considerably decreased risk of an unfavorable outcome three months after ischemic stroke (adjusted odds ratio 0.38, p<0.05) and showed smaller lesion volumes (mean size 0.6 vs. 18.4 ml, p = 0.0025). In contrast, no association of MBL concentration with infarction volume or functional outcome was found in the thrombolysis group. However, the small sample size limits the significance of this observation. Conclusions MBL deficiency is associated with smaller cerebral infarcts and favorable outcome in patients receiving conservative treatment. Our data suggest an important role of the lectin pathway in the pathophysiology of cerebral I

  15. Trichinella spiralis Paramyosin Binds Human Complement C1q and Inhibits Classical Complement Activation

    PubMed Central

    Sun, Ran; Zhao, Xi; Wang, Zixia; Yang, Jing; Zhao, Limei; Zhan, Bin; Zhu, Xinping

    2015-01-01

    Background Trichinella spiralis expresses paramyosin (Ts-Pmy) as a defense mechanism. Ts-Pmy is a functional protein with binding activity to human complement C8 and C9 and thus plays a role in evading the attack of the host’s immune system. In the present study, the binding activity of Ts-Pmy to human complement C1q and its ability to inhibit classical complement activation were investigated. Methods and Findings The binding of recombinant and natural Ts-Pmy to human C1q were determined by ELISA, Far Western blotting and immunoprecipitation, respectively. Binding of recombinant Ts-Pmy (rTs-Pmy) to C1q inhibited C1q binding to IgM and consequently inhibited C3 deposition. The lysis of antibody-sensitized erythrocytes (EAs) elicited by the classical complement pathway was also inhibited in the presence of rTs-Pmy. In addition to inhibiting classical complement activation, rTs-Pmy also suppressed C1q binding to THP-1-derived macrophages, thereby reducing C1q-induced macrophages migration. Conclusion Our results suggest that T. spiralis paramyosin plays an important role in immune evasion by interfering with complement activation through binding to C1q in addition to C8 and C9. PMID:26720603

  16. Complement activation promotes muscle inflammation during modified muscle use

    NASA Technical Reports Server (NTRS)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  17. Complement activation and protein adsorption by carbon nanotubes.

    PubMed

    Salvador-Morales, Carolina; Flahaut, Emmanuel; Sim, Edith; Sloan, Jeremy; Green, Malcolm L H; Sim, Robert B

    2006-02-01

    As a first step to validate the use of carbon nanotubes as novel vaccine or drug delivery devices, their interaction with a part of the human immune system, complement, has been explored. Haemolytic assays were conducted to investigate the activation of the human serum complement system via the classical and alternative pathways. Western blot and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) techniques were used to elucidate the mechanism of activation of complement via the classical pathway, and to analyse the interaction of complement and other plasma proteins with carbon nanotubes. We report for the first time that carbon nanotubes activate human complement via both classical and alternative pathways. We conclude that complement activation by nanotubes is consistent with reported adjuvant effects, and might also in various circumstances promote damaging effects of excessive complement activation, such as inflammation and granuloma formation. C1q binds directly to carbon nanotubes. Protein binding to carbon nanotubes is highly selective, since out of the many different proteins in plasma, very few bind to the carbon nanotubes. Fibrinogen and apolipoproteins (AI, AIV and CIII) were the proteins that bound to carbon nanotubes in greatest quantity.

  18. How antibodies use complement to regulate antibody responses.

    PubMed

    Sörman, Anna; Zhang, Lu; Ding, Zhoujie; Heyman, Birgitta

    2014-10-01

    Antibodies, forming immune complexes with their specific antigen, can cause complete suppression or several 100-fold enhancement of the antibody response. Immune complexes containing IgG and IgM may activate complement and in such situations also complement components will be part of the immune complex. Here, we review experimental data on how antibodies via the complement system upregulate specific antibody responses. Current data suggest that murine IgG1, IgG2a, and IgG2b upregulate antibody responses primarily via Fc-receptors and not via complement. In contrast, IgM and IgG3 act via complement and require the presence of complement receptors 1 and 2 (CR1/2) expressed on both B cells and follicular dendritic cells. Complement plays a crucial role for antibody responses not only to antigen complexed to antibodies, but also to antigen administered alone. Lack of C1q, but not of Factor B or MBL, severely impairs antibody responses suggesting involvement of the classical pathway. In spite of this, normal antibody responses are found in mice lacking several activators of the classical pathway (complement activating natural IgM, serum amyloid P component (SAP), specific intracellular adhesion molecule-grabbing non-integrin R1 (SIGN-R1) or C-reactive protein. Possible explanations to these observations will be discussed.

  19. A two-nucleotide deletion renders the mannose-binding lectin 2 (MBL2) gene nonfunctional in Danish Landrace and Duroc pigs.

    PubMed

    Bergman, I M; Edman, K; van As, P; Huisman, A; Juul-Madsen, Helle Risdahl

    2014-03-01

    The mannose-binding lectins (MBLs) are central components of innate immunity, facilitating phagocytosis and inducing the lectin activation pathway of the complement system. Previously, it has been found that certain single-nucleotide polymorphisms (SNPs) in porcine MBL1 and MBL2 (pMBL1, pMBL2) affect mRNA expression, serum concentration, and susceptibility to disease, but the combinatory effect of pMBL1 and pMBL2 genotypes needs further elucidation. In the present study, pMBL1 and pMBL2 alleles, combined pMBL haplotypes, and MBL-A concentration in serum were analyzed in purebred Landrace (N = 30) and Duroc (N = 10) pigs. Furthermore, the combined pMBL haplotypes of 89 Piètrain × (Large White × Landrace) crossbred pigs were studied, and the genotypes of 67 crossbreds challenged with Escherichia coli were compared to their individual disease records. In the purebred animals, three non-synonymous SNPs and a two-nucleotide deletion were detected in the coding sequence of pMBL2. The two-nucleotide deletion was present at a frequency of 0.88 in the Landrace pigs and 0.90 in the Duroc pigs, respectively. In the crossbreds, the T allele of the SNP G949T in pMBL1-previously shown to have profound effect on MBL-A concentration even in the heterozygote condition-was detected in 47 % of the animals. Finally, an association was found between low-producing MBL genotypes and low body weight on the day of weaning in the same animals. PMID:24477343

  20. Epidemiological characterization of Neisseria gonorrhoeae by lectins.

    PubMed Central

    Schalla, W O; Whittington, W L; Rice, R J; Larsen, S A

    1985-01-01

    A total of 101 isolates of penicillinase-producing and non-penicillinase-producing Neisseria gonorrhoeae with known nutritional requirements, plasmid content, and serovars, were examined for lectin agglutination patterns. These isolates were from outbreaks in Georgia, California, Hawaii, and Pennsylvania. Cell suspensions made from 16- to 18-h cultures were mixed with 14 different lectins, and the resultant agglutination patterns were classified as agglutination groups. Among the 101 isolates tested, 24 different agglutination groups were demonstrated. Of the organisms tested, 55% were located in 3 of the 24 groups, and 86% of the isolates reacted with the lectins Trichosanthes kinlowii, Griffonia simplicifolia I, peanut agglutinin, soybean agglutinin, potato agglutinin, and wheat germ agglutinin. One isolate did not react with peanut or potato agglutinin, five isolates lacked reactivity with potato agglutinin, and six isolates did not react with wheat germ agglutinin. Of the wheat germ-negative isolates, four were from Pennsylvania and were identical with regard to auxotype, plasmid content, serovar, and lectin group. The other two wheat germ-negative isolates were from California and were unrelated by the same criteria to the four Pennsylvania isolates and to each other. Among the isolates tested, there were no differences in lectin groups with regard to the sex of the patient. In the Georgia collection, agglutination with one lectin group was confined to isolates of serogroup IA. This association was not observed for the other geographic areas. Some isolates showing identical auxotype, plasmid content, and serovars could be differentiated based on lectin agglutination patterns, whereas other isolates were identical by all testing criteria. PMID:3930560

  1. Sugared biomaterial binding lectins: achievements and perspectives.

    PubMed

    Bojarová, P; Křen, V

    2016-07-19

    Lectins, a distinct group of glycan-binding proteins, play a prominent role in the immune system ranging from pathogen recognition and tuning of inflammation to cell adhesion or cellular signalling. The possibilities of their detailed study expanded along with the rapid development of biomaterials in the last decade. The immense knowledge of all aspects of glycan-lectin interactions both in vitro and in vivo may be efficiently used in bioimaging, targeted drug delivery, diagnostic and analytic biological methods. Practically applicable examples comprise photoluminescence and optical biosensors, ingenious three-dimensional carbohydrate microarrays for high-throughput screening, matrices for magnetic resonance imaging, targeted hyperthermal treatment of cancer tissues, selective inhibitors of bacterial toxins and pathogen-recognising lectin receptors, and many others. This review aims to present an up-to-date systematic overview of glycan-decorated biomaterials promising for interactions with lectins, especially those applicable in biology, biotechnology or medicine. The lectins of interest include galectin-1, -3 and -7 participating in tumour progression, bacterial lectins from Pseudomonas aeruginosa (PA-IL), E. coli (Fim-H) and Clostridium botulinum (HA33) or DC-SIGN, receptors of macrophages and dendritic cells. The spectrum of lectin-binding biomaterials covered herein ranges from glycosylated organic structures, calixarene and fullerene cores over glycopeptides and glycoproteins, functionalised carbohydrate scaffolds of cyclodextrin or chitin to self-assembling glycopolymer clusters, gels, micelles and liposomes. Glyconanoparticles, glycan arrays, and other biomaterials with a solid core are described in detail, including inorganic matrices like hydroxyapatite or stainless steel for bioimplants. PMID:27075026

  2. Complementing Gender Analysis Methods.

    PubMed

    Kumar, Anant

    2016-01-01

    The existing gender analysis frameworks start with a premise that men and women are equal and should be treated equally. These frameworks give emphasis on equal distribution of resources between men and women and believe that this will bring equality which is not always true. Despite equal distribution of resources, women tend to suffer and experience discrimination in many areas of their lives such as the power to control resources within social relationships, and the need for emotional security and reproductive rights within interpersonal relationships. These frameworks believe that patriarchy as an institution plays an important role in women's oppression, exploitation, and it is a barrier in their empowerment and rights. Thus, some think that by ensuring equal distribution of resources and empowering women economically, institutions like patriarchy can be challenged. These frameworks are based on proposed equality principle which puts men and women in competing roles. Thus, the real equality will never be achieved. Contrary to the existing gender analysis frameworks, the Complementing Gender Analysis framework proposed by the author provides a new approach toward gender analysis which not only recognizes the role of economic empowerment and equal distribution of resources but suggests to incorporate the concept and role of social capital, equity, and doing gender in gender analysis which is based on perceived equity principle, putting men and women in complementing roles that may lead to equality. In this article the author reviews the mainstream gender theories in development from the viewpoint of the complementary roles of gender. This alternative view is argued based on existing literature and an anecdote of observations made by the author. While criticizing the equality theory, the author offers equity theory in resolving the gender conflict by using the concept of social and psychological capital. PMID:25941756

  3. Complementing Gender Analysis Methods.

    PubMed

    Kumar, Anant

    2016-01-01

    The existing gender analysis frameworks start with a premise that men and women are equal and should be treated equally. These frameworks give emphasis on equal distribution of resources between men and women and believe that this will bring equality which is not always true. Despite equal distribution of resources, women tend to suffer and experience discrimination in many areas of their lives such as the power to control resources within social relationships, and the need for emotional security and reproductive rights within interpersonal relationships. These frameworks believe that patriarchy as an institution plays an important role in women's oppression, exploitation, and it is a barrier in their empowerment and rights. Thus, some think that by ensuring equal distribution of resources and empowering women economically, institutions like patriarchy can be challenged. These frameworks are based on proposed equality principle which puts men and women in competing roles. Thus, the real equality will never be achieved. Contrary to the existing gender analysis frameworks, the Complementing Gender Analysis framework proposed by the author provides a new approach toward gender analysis which not only recognizes the role of economic empowerment and equal distribution of resources but suggests to incorporate the concept and role of social capital, equity, and doing gender in gender analysis which is based on perceived equity principle, putting men and women in complementing roles that may lead to equality. In this article the author reviews the mainstream gender theories in development from the viewpoint of the complementary roles of gender. This alternative view is argued based on existing literature and an anecdote of observations made by the author. While criticizing the equality theory, the author offers equity theory in resolving the gender conflict by using the concept of social and psychological capital.

  4. Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential.

    PubMed

    Gardères, Johan; Bourguet-Kondracki, Marie-Lise; Hamer, Bojan; Batel, Renato; Schröder, Heinz C; Müller, Werner E G

    2015-08-07

    An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest.

  5. Complement and HIV-I infection/HIV-associated neurocognitive disorders.

    PubMed

    Liu, Fengming; Dai, Shen; Gordon, Jennifer; Qin, Xuebin

    2014-04-01

    The various neurological complications associated with HIV-1 infection, specifically HIV-associated neurocognitive disorders (HAND) persist as a major public health burden worldwide. Despite the widespread use of anti-retroviral therapy, the prevalence of HAND is significantly high. HAND results from the direct effects of an HIV-1 infection as well as secondary effects of HIV-1-induced immune reaction and inflammatory response. Complement, a critical mediator of innate and acquired immunity, plays important roles in defeating many viral infections by the formation of a lytic pore or indirectly by opsonization and recruitment of phagocytes. While the role of complement in the pathogenesis of HIV-1 infection and HAND has been previously recognized for over 15 years, it has been largely underestimated thus far. Complement can be activated through HIV-1 envelope proteins, mannose-binding lectins (MBL), and anti-HIV-1 antibodies. Complement not only fights against HIV-1 infection but also enhances HIV-1 infection. In addition, HIV-1 can hijack complement regulators such as CD59 and CD55 and can utilize these regulators and factor H to escape from complement attack. Normally, complement levels in brain are much lower than plasma levels and there is no or little complement deposition in brain cells. Interestingly, local production and deposition of complement are dramatically increased in HIV-1-infected brain, indicating that complement may contribute to the pathogenesis of HAND. Here, we review the current understanding of the role of complement in HIV-1 infection and HAND, as well as potential therapeutic approaches targeting the complement system for the treatment and eradications of HIV-1 infection.

  6. Anti-complement sesquiterpenes from Viola yedoensis.

    PubMed

    Du, Dongsheng; Cheng, Zhihong; Chen, Daofeng

    2015-03-01

    Two new germacrane sesquiterpenes, yedoensins A (1) and B (2), together with 8 known ones (3-10) were isolated from the herb of Viola yedoensis. The structures of the new compounds were established by extensive spectroscopic means including 1D ((1)H and (13)C) and 2D NMR experiments (HSQC, HMBC, and NOESY) as well as HR-ESI-MS analysis. The absolute configurations of the known sesquiterpenes versicolactone B (3) and madolin W (6) were determined by a modified Mosher's method for the first time. The sesquiterpenes 1-3, and 5-9 exhibited anti-complement activity against the classical pathway (CP) and the alternative pathway (AP) with the CH50 and AP50 values ranging from 0.14 to 0.37mg/mL and 0.32 to 0.54mg/mL, respectively. Preliminary mechanism study using complement-depleted sera showed that yedoensin A (1) and versicolactone B (3) acted on C1q, C3 and C9, while madolin W (6), aristoyunnolin E (7) and madolin Y (9) interacted with C1q, C3, C5 and C9 components in the complement activation cascade.

  7. Complement Activation and Inhibition in Retinal Diseases.

    PubMed

    Kleinman, Mark E; Ambati, Jayakrishna

    2016-01-01

    Within the past several decades, a brigade of dedicated researchers from around the world has provided essential insights into the critical niche of immune-mediated inflammation in the pathogenesis of age-related macular degeneration (AMD). Yet, the question has lingered as to whether disease-initiating events are more or less dependent on isolated immune-related responses, unimpeded inflammation, endogenous pathways of age-related cell senescence and oxidative stress, or any of the other numerous molecular derangements that have been identified in the natural history of AMD. There is now an abundant cache of data signifying immune system activation as an impetus in the pathogenesis of this devastating condition. Furthermore, recent rigorous investigations have revealed multiple inciting factors, including several important complement-activating components, thus creating a new array of disease-modulating targets for the research and development of molecular therapeutic interventions. While the precise in vivo effects of complement activation and inhibition in the progression and treatment of AMD remain to be determined, ongoing clinical trials of the first generation of complement-targeted therapeutics are hoped to yield critical data on the contribution of this pathway to the disease process. PMID:26501209

  8. Lectin affinity chromatography of glycolipids

    SciTech Connect

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  9. Complement-Coagulation Cross-Talk: A Potential Mediator of the Physiological Activation of Complement by Low pH

    PubMed Central

    Kenawy, Hany Ibrahim; Boral, Ismet; Bevington, Alan

    2015-01-01

    The complement system is a major constituent of the innate immune system. It not only bridges innate and adaptive arms of the immune system but also links the immune system with the coagulation system. Current understanding of the role of complement has extended far beyond fighting of infections, and now encompasses maintenance of homeostasis, tissue regeneration, and pathophysiology of multiple diseases. It has been known for many years that complement activation is strongly pH sensitive, but only relatively recently has the physiological significance of this been appreciated. Most complement assays are carried out at the physiological pH 7.4. However, pH in some extracellular compartments, for example, renal tubular fluid in parts of the tubule, and extracellular fluid at inflammation loci, is sufficiently acidic to activate complement. The exact molecular mechanism of this activation is still unclear, but possible cross-talk between the contact system (intrinsic pathway) and complement may exist at low pH with subsequent complement activation. The current article reviews the published data on the effect of pH on the contact system and complement activity, the nature of the pH sensor molecules, and the clinical implications of these effects. Of particular interest is chronic kidney disease (CKD) accompanied by metabolic acidosis, in which therapeutic alkalinization of urine has been shown significantly to reduce tubular complement activation products, an effect, which may have important implications for slowing progression of CKD. PMID:25999953

  10. The complement system in ischemia-reperfusion injuries.

    PubMed

    Gorsuch, William B; Chrysanthou, Elvina; Schwaeble, Wilhelm J; Stahl, Gregory L

    2012-11-01

    Tissue injury and inflammation following ischemia and reperfusion of various organs have been recognized for many years. Many reviews have been written over the last several decades outlining the role of complement in ischemia/reperfusion injury. This short review provides a current state of the art knowledge on the complement pathways activated, complement components involved and a review of the clinical biologics/inhibitors used in the clinical setting of ischemia/reperfusion. This is not a complete review of the complement system in ischemia and reperfusion injury but will give the reader an updated view point of the field, potential clinical use of complement inhibitors, and the future studies needed to advance the field.

  11. Activation of Complement by Cells Infected with Respiratory Syncytial Virus

    PubMed Central

    Smith, Thomas F.; Mcintosh, Kenneth; Fishaut, Mark; Henson, Peter M.

    1981-01-01

    The ability of respiratory syncytial virus (RSV)-infected HEp-2 cells in culture to activate complement was investigated. After incubation of cells with various complement sources and buffer, binding of C3b to surfaces of infected cells was demonstrated by immunofluorescence with a double-staining technique. Nonsyncytial and syncytial (i.e., fused, multinucleated) cells were separately enumerated. Also, lysis of RSV-infected cells was assessed by lactic dehydrogenase release. In this system only RSV-infected cells stained for C3b, and they did so only after incubation with functionally active complement. Blocking of classical pathway activation with ethylenediaminetetraacetic acid diminished the number of infected nonsyncytial cells positively stained for C3b, but had no effect on staining of syncytial cells. Blocking of alternative pathway activation with either zymosan incubation or heat treatment decreased the number of both syncytial and nonsyncytial cells stained for C3b. Decreasing immunoglobulin concentration of the serum used as the complement source also decreased numbers of both cell types stained for C3b. Eliminating specific anti-RSV antibody diminished numbers of both cell types stained for C3b, but staining was not eliminated. Lastly, incubation with functionally active complement markedly increased lactic dehydrogenase release from infected cells. This study demonstrated that RSV-infected nonsyncytial and syncytial cells are able to activate complement by both classical and alternative pathways. Activation of complement by syncytial cells appears to be less dependent on the classical pathway than is activation by nonsyncytial cells, and activation by syncytial cells may require immunoglobulin but not specific antibody. These experiments suggest the possibility of complement activation during respiratory tract infection by RSV. Implications of this are discussed. Images PMID:7263071

  12. The complement cascade in kidney disease: from sideline to center stage.

    PubMed

    McCaughan, Jennifer A; O'Rourke, Declan M; Courtney, Aisling E

    2013-09-01

    Activation of the complement pathway is implicated in the pathogenesis of many kidney diseases. The pathologic and clinical features of these diseases are determined in part by the mechanism and location of complement activation within the kidney parenchyma. This review describes the physiology, action, and control of the complement cascade and explains the role of complement overactivation and dysregulation in kidney disease. There have been recent advances in the understanding of the effects of upregulation of the complement cascade after kidney transplantation. Complement plays an important role in initiating and propagating damage to transplanted kidneys in ischemia-reperfusion injury, antibody-mediated rejection, and cell-mediated rejection. Complement-targeting therapies presently are in development, and the first direct complement medication for kidney disease was licensed in 2011. The potential therapeutic targets for anticomplement drugs in kidney disease are described. Clinical and experimental studies are ongoing to identify further roles for complement-targeting therapy.

  13. Determination of sugar specificity of jackfruit lectin by a simple sugar-lectin binding assay using microtiter plate.

    PubMed

    Wetprasit, N; Chulavatnatol, M

    1997-06-01

    Sugar-lectin binding assay was developed as a simple method which employed direct coating of microtiter plate with galactose-binding lectins. Biotin-galactose conjugate was used to bind to the immobilized lectins. The bound conjugate was then detected using streptavidin-horseradish peroxidase. Using the assay in conjunction with various competing carbohydrates, jackfruit lectin from Artocarpus heterophyllus was found to be specific for alpha-anomer of galactoside with an aromatic residue.

  14. Complement: the Iceman of immunology?

    PubMed

    Würzner, R

    1997-12-01

    Complement provides an important host defence system involved in a multitude of immune reactions, including opsonisation of micro-organisms, enhancement of inflammatory response, immunomodulation, clearance of immune complexes and cell lysis. The 6th European Meeting on Complement in Human Disease, 12-15 March 1997 in Innsbruck, Austria, the preservation site of the neolithic Iceman, addressed the functional role of complement and its regulators in human disease. The scientific presentations clearly demonstrated that complement is not a redundant fossil, evolving since the dawn of vertebrate existence on the earth, but remains continuously important for mankind.

  15. Complement system in lung disease.

    PubMed

    Pandya, Pankita H; Wilkes, David S

    2014-10-01

    In addition to its established contribution to innate immunity, recent studies have suggested novel roles for the complement system in the development of various lung diseases. Several studies have demonstrated that complement may serve as a key link between innate and adaptive immunity in a variety of pulmonary conditions. However, the specific contributions of complement to lung diseases based on innate and adaptive immunity are just beginning to emerge. Elucidating the role of complement-mediated immune regulation in these diseases will help to identify new targets for therapeutic interventions.

  16. Complement in disease: a defence system turning offensive.

    PubMed

    Ricklin, Daniel; Reis, Edimara S; Lambris, John D

    2016-07-01

    Although the complement system is primarily perceived as a host defence system, a more versatile, yet potentially more harmful side of this innate immune pathway as an inflammatory mediator also exists. The activities that define the ability of the complement system to control microbial threats and eliminate cellular debris - such as sensing molecular danger patterns, generating immediate effectors, and extensively coordinating with other defence pathways - can quickly turn complement from a defence system to an aggressor that drives immune and inflammatory diseases. These host-offensive actions become more pronounced with age and are exacerbated by a variety of genetic factors and autoimmune responses. Complement can also be activated inappropriately, for example in response to biomaterials or transplants. A wealth of research over the past two decades has led to an increasingly finely tuned understanding of complement activation, identified tipping points between physiological and pathological behaviour, and revealed avenues for therapeutic intervention. This Review summarizes our current view of the key activating, regulatory, and effector mechanisms of the complement system, highlighting important crosstalk connections, and, with an emphasis on kidney disease and transplantation, discusses the involvement of complement in clinical conditions and promising therapeutic approaches.

  17. Bullous pemphigoid autoantibodies directly induce blister formation without complement activation.

    PubMed

    Ujiie, Hideyuki; Sasaoka, Tetsumasa; Izumi, Kentaro; Nishie, Wataru; Shinkuma, Satoru; Natsuga, Ken; Nakamura, Hideki; Shibaki, Akihiko; Shimizu, Hiroshi

    2014-11-01

    Complement activation and subsequent recruitment of inflammatory cells at the dermal/epidermal junction are thought to be essential for blister formation in bullous pemphigoid (BP), an autoimmune blistering disease induced by autoantibodies against type XVII collagen (COL17); however, this theory does not fully explain the pathological features of BP. Recently, the involvement of complement-independent pathways has been proposed. To directly address the question of the necessity of the complement activation in blister formation, we generated C3-deficient COL17-humanized mice. First, we show that passive transfer of autoantibodies from BP patients induced blister formation in neonatal C3-deficient COL17-humanized mice without complement activation. By using newly generated human and murine mAbs against the pathogenic noncollagenous 16A domain of COL17 with high (human IgG1, murine IgG2), low (murine IgG1), or no (human IgG4) complement activation abilities, we demonstrate that the deposition of Abs, and not complements, is relevant to the induction of blister formation in neonatal and adult mice. Notably, passive transfer of BP autoantibodies reduced the amount of COL17 in lesional mice skin, as observed in cultured normal human keratinocytes treated with the same Abs. Moreover, the COL17 depletion was associated with a ubiquitin/proteasome pathway. In conclusion, the COL17 depletion induced by BP autoantibodies, and not complement activation, is essential for the blister formation under our experimental system.

  18. Purification and characterization of Dolichos lablab lectin.

    PubMed

    Mo, H; Meah, Y; Moore, J G; Goldstein, I J

    1999-02-01

    The mannose/glucose-binding Dolichos lablab lectin (designated DLL) has been purified from seeds of Dolichos lablab (hyacinth bean) to electrophoretic homogeneity by affinity chromatography on an ovalbumin-Sepharose 4B column. The purified lectin gave a single symmetric protein peak with an apparent molecular mass of 67 kDa on gel filtration chromatography, and five bands ranging from 10 kDa to 22 kDa upon SDS-PAGE. N-Terminal sequence analysis of these bands revealed subunit heterogeneity due to posttranslational proteolytic truncation at different sites mostly at the carboxyl terminus. The carbohydrate binding properties of the purified lectin were investigated by three different approaches: hemagglutination inhibition assay, quantitative precipitation inhibition assay, and ELISA. On the basis of these studies, it is concluded that the Dolichos lablab lectin has neither an extended carbohydrate combining site, nor a hydrophobic binding site adjacent to it. The carbohydrate combining site of DLL appears to most effectively accommodate a nonreducing terminal alpha-d-mannosyl unit, and to be complementary to the C-3, C-4, and C-6 equatorial hydroxyl groups of alpha-d-mannopyranosyl and alpha-d-glucopyranosyl residues. DLL strongly precipitates murine IgM but not IgG, and the recent finding that this lectin interacts specifically with NIH 3T3 fibroblasts transfected with the Flt3 tyrosine kinase receptor and preserves human cord blood stem cells and progenitors in a quiescent state for prolonged periods in culture, make this lectin a valuable tool in biomedical research. PMID:9949194

  19. Diversity of lectins in Macrobrachium rosenbergii and their expression patterns under spiroplasma MR-1008 stimulation.

    PubMed

    Zhu, Huanxi; Du, Jie; Hui, Kai-Min; Liu, Peng; Chen, Jing; Xiu, Yunji; Yao, Wei; Wu, Ting; Meng, Qingguo; Gu, Wei; Ren, Qian; Wang, Wen

    2013-08-01

    Lectins play important roles in crustacean innate immunity through recognition of foreign pathogens. In this study, 20 lectins including C-type lectins [dual-carbohydrate recognition domain (CRD) type and single-CRD type], L-type lectin, and lectin with low-density lipoprotein class A (LDLa) domain were identified from the freshwater prawn Macrobrachium rosenbergii. The tissue distribution and expression patterns of these lectins under spiroplasma strain MR-1008 challenge were investigated. Most of the lectins were found to be mainly distributed in the hepatopancreas. Lectin5, Lectin14, Lectin17, and Lectin18 exhibited the highest expression level in the hemocytes, nerve, intestine, and heart, respectively. MrLec1 to MrLec6 (dual-CRD lectins) in the hepatopancreas were up-regulated by spiroplasma challenge. Single-CRD lectins reached the highest level at 72 h after spiroplasma challenge. Lectin9 and Lectin15 both belong to L-type lectins. At post-spiroplasma challenge, Lectin9 expression was up-regulated, whereas Lectin15 expression was down-regulated. Lectin11 with LDLa domain showed the highest level after 12 h Lectin18 and Lectin20, namely, CD209, were also up-regulated by spiroplasma challenge. Lectin14, a C-type lectin, quickly reached the highest level after 2 h Lectin16 showed the highest level after 72 h Lectin5 reached the highest level in cultured hemocytes after 6 h Lectin17 in the intestine and Lectin14 in the nerve were slightly up-regulated after 6 and 2 h, respectively. Our research results indicate that lectins may play important roles in early or late immune responses against spiroplasma challenge.

  20. Detection of complement activation by counterimmunoelectrophoresis (CIE).

    PubMed

    Arroyave, C M; Tan, E M

    1976-01-01

    Counterimmunoelectrophoresis (CIE) was used as a method of detecting activation of the third component of the complement system (C3). Highly purified C3, normal human serum (NHS), EDTA-treated plasma and serum activated with aggregated human immunoglobulin (agg-IgG) or inulin were used as sources of C3 and/or C3 split products. Activation of the alternative pathway of complement was assayed in the presence of EGTA (10 mM) and MgCl2 (0.3 mM), conditions which block activation of the classical pathway. When purified native C3, fresh NHS and fresh EDTA-plasma were tested in CIE against either antisera to whole C3 or to C3 split products, only one precipitin line was found, which was identified as native C3. However, when serum activated with agg-IgG or inulin were tested against the same reagents, two precipitin lines were seen. The first, with more cathodal mobility was identical to that of native C3. The second line had a more anodal mobility, was distinctly separated from the first and contained C3c and C3d as shown immunochemically with specific antisera. Native C3 and split products of C3 were identified by this CIE method in patients showing evidence of activated complement by having subnormal total complement (CH50) levels. When C3 split products were identified, the C3c-C3d precipitin line could always be distinguished from native C3 by its different electrophoretic mobility, even when C3 concentrations in serum varied from 0.25 mg/ml to 1.5 mg/ml. The sensitivity of CIE was compared to that of CH50 by asssaying at different time intervals after agg-IgG was added to fresh NHS. C3c-C3d split products were detected by CIE before any fall in CH50 and at all times when a significant decrease in CH50 was present. This study shows that the CIE technique is a highly sensitive, specific and rapid method for detecting activation of the complement system via classical or alternative pathways in human disease.

  1. Anti-Gal binds to pili of Neisseria meningitidis: the immunoglobulin A isotype blocks complement-mediated killing.

    PubMed Central

    Hamadeh, R M; Estabrook, M M; Zhou, P; Jarvis, G A; Griffiss, J M

    1995-01-01

    alpha 1,3-Galactosyl antibodies (anti-Gal) are ubiquitous natural human serum and secretory polyclonal antibodies that bind to terminal galactose-alpha 1,3-galactose (alpha-galactosyl) residues. Serum immunoglobulin G (IgG) anti-Gal can block alternative complement pathway-mediated lysis of representative gram-negative enteric bacteria that bind it to lipopolysaccharide alpha-galactosyl structures, thereby promoting survival of such bacteria in the nonimmune host. We wanted to know whether anti-Gal also could bind to the lipooligosaccharides (LOS) of Neisseria meningitidis. To our surprise, we found that serum and secretory anti-Gal bound to pili but not to LOS of certain strains. This suggested the presence of an immunogenic pilus carbohydrate epitope. Mild periodate oxidation of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated outer membrane preparations from strains that bound anti-Gal followed by labeling of the neoaldehyde groups resulted in the labeling of bands that corresponded to pilin and LOS, confirming that pilin contains carbohydrate structures. A Bandeiraea simplicifolia lectin that also binds terminal alpha 1,3-galactosyl residues also bound to pilin. Serum IgG, IgA, and IgM anti-Gal as well as colostral secretory IgA anti-Gal bound to pilin, as judged by immunoblotting, and to the pili of intact piliated organisms, as judged by immunoelectron microscopy. Total serum anti-Gal (IgG, IgA, and IgM) and purified serum IgA1 anti-Gal, but not its purified IgG isotype, blocked complement-mediated lysis of a piliated meningococcal strain that bound anti-Gal to its pili. Colostral anti-Gal secretory IgA blocked killing of the same strain. Thus, anti-Gal IgA may promote disease when it binds to the pili of N. meningitidis strains. PMID:7591153

  2. Role of Lectins in Plant-Microorganism Interactions

    PubMed Central

    Pueppke, Steven G.; Bauer, Wolfgang D.; Keegstra, Kenneth; Ferguson, Ardene L.

    1978-01-01

    Three different assay procedures have been used to quantitate the levels of soybean (Glycine max [L.] Merr.) lectin in various tissues of soybean plants. The assays used were a standard hemagglutination assay, a radioimmunoassay, and an isotope dilution assay. Most of the lectin in seeds was found in the cotyledons, but lectin was also detected in the embryo axis and the seed coat. Soybean lectin was present in all of the tissues of young seedlings, but decreased as the plants matured and was not detectable in plants older than 2 to 3 weeks. Soybean lectin isolated from seeds of several soybean varieties were identical when compared by several methods. PMID:16660384

  3. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation.

    PubMed

    Song, Hongbin; He, Chun; Knaak, Christian; Guthridge, Joel M; Holers, V Michael; Tomlinson, Stephen

    2003-06-01

    In a strategy to specifically target complement inhibitors to sites of complement activation and disease, recombinant fusion proteins consisting of a complement inhibitor linked to a C3 binding region of complement receptor (CR) 2 were prepared and characterized. Natural ligands for CR2 are C3 breakdown products deposited at sites of complement activation. Fusion proteins were prepared consisting of a human CR2 fragment linked to either the N terminus or C terminus of soluble forms of the membrane complement inhibitors decay accelerating factor (DAF) or CD59. The targeted complement inhibitors bound to C3-opsonized cells, and all were significantly more effective (up to 20-fold) than corresponding untargeted inhibitors at protecting target cells from complement. CR2 fusion proteins also inhibited CR3-dependent adhesion of U937 cells to C3 opsonized erythrocytes, indicating a second potential anti-inflammatory mechanism of CR2 fusion proteins, since CR3 is involved in endothelial adhesion and diapedesis of leukocytes at inflammatory sites. Finally, the in vivo validity of the targeting strategy was confirmed by the demonstration that CR2-DAF, but not soluble DAF, targets to the kidney in mouse models of lupus nephritis that are associated with renal complement deposition.

  4. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation.

    PubMed

    Song, Hongbin; He, Chun; Knaak, Christian; Guthridge, Joel M; Holers, V Michael; Tomlinson, Stephen

    2003-06-01

    In a strategy to specifically target complement inhibitors to sites of complement activation and disease, recombinant fusion proteins consisting of a complement inhibitor linked to a C3 binding region of complement receptor (CR) 2 were prepared and characterized. Natural ligands for CR2 are C3 breakdown products deposited at sites of complement activation. Fusion proteins were prepared consisting of a human CR2 fragment linked to either the N terminus or C terminus of soluble forms of the membrane complement inhibitors decay accelerating factor (DAF) or CD59. The targeted complement inhibitors bound to C3-opsonized cells, and all were significantly more effective (up to 20-fold) than corresponding untargeted inhibitors at protecting target cells from complement. CR2 fusion proteins also inhibited CR3-dependent adhesion of U937 cells to C3 opsonized erythrocytes, indicating a second potential anti-inflammatory mechanism of CR2 fusion proteins, since CR3 is involved in endothelial adhesion and diapedesis of leukocytes at inflammatory sites. Finally, the in vivo validity of the targeting strategy was confirmed by the demonstration that CR2-DAF, but not soluble DAF, targets to the kidney in mouse models of lupus nephritis that are associated with renal complement deposition. PMID:12813023

  5. Expression of frutalin, an alpha-D-galactose-binding jacalin-related lectin, in the yeast Pichia pastoris.

    PubMed

    Oliveira, Carla; Felix, Wagner; Moreira, Renato A; Teixeira, José A; Domingues, Lucília

    2008-08-01

    Frutalin is an alpha-D-galactose-binding lectin expressed in breadfruit seeds. Its isolation from plant is time-consuming and results in a heterogeneous mixture of different lectin isoforms. In order to improve and facilitate the availability of the breadfruit lectin, we cloned an optimised codifying frutalin mature sequence into the pPICZalphaA expression vector. This expression vector, designed for protein expression in the methylotrophic yeast Pichia pastoris, contains the Saccharomyces alpha-factor preprosequence to direct recombinant proteins into the secretory pathway. Soluble recombinant frutalin was detected in the culture supernatants and recognised by native frutalin antibody. Approximately 18-20 mg of recombinant lectin per litre medium was obtained from a typical small scale methanol-induced culture purified by size-exclusion chromatography. SDS-PAGE and Edman degradation analysis revealed that frutalin was expressed as a single chain protein since the four amino-acid linker peptide "T-S-S-N", which connects alpha and beta chains, was not cleaved. In addition, incomplete processing of the signal sequence resulted in recombinant frutalin with one Glu-Ala N-terminal repeat derived from the alpha-factor prosequence. Endoglycosidase treatment and SDS-PAGE analysis revealed that the recombinant frutalin was partly N-glycosylated. Further characterisation of the recombinant lectin revealed that it specifically binds to the monosaccharide Me-alpha-galactose presenting, nevertheless, lesser affinity than the native frutalin. Recombinant frutalin eluted from a size-exclusion chromatography column with a molecular mass of about 62-64 kDa, suggesting a tetrameric structure, however it did not agglutinate rabbit erythrocytes as native frutalin does. This work shows that the galactose-binding jacalin-related lectins four amino-acid linker peptide "T-S-S-N" does not undergo any proteolytic cleavage in the yeast P. pastoris and also that linker cleavage might not be

  6. Interactions of histidine-rich glycoprotein with immunoglobulins and proteins of the complement system.

    PubMed

    Manderson, G A; Martin, M; Onnerfjord, P; Saxne, T; Schmidtchen, A; Mollnes, T E; Heinegård, D; Blom, A M

    2009-10-01

    This study describes how the serum protein histidine-rich glycoprotein (HRG) affects the complement system. We show that HRG binds strongly to several complement proteins: C1q, factor H and C4b-binding protein and that it is found complexed with these proteins in human sera and synovial fluids of rheumatoid arthritis patients. HRG also binds C8 and to a lesser extent mannose-binding lectin, C4 and C3. However, HRG alone neither activates nor inhibits complement. Both HRG and C1q bind to necrotic cells and increase their phagocytosis. We found that C1q competes weakly with HRG for binding to necrotic cells whilst HRG does not compete with C1q. Furthermore, HRG enhances complement activation on necrotic cells measured as deposition of C3b. We show that HRG inhibits the formation of immune complexes of ovalbumin/anti-ovalbumin, whilst the reverse holds for C1q. Immune complexes formed in the presence of HRG show enhanced complement activation, whilst those formed in the presence of C1q show diminished complement activation. Taken together, HRG may assist in the maintenance of normal immune function by mediating the clearance of necrotic material, inhibiting the formation of insoluble immune complexes and enhancing their ability to activate complement, resulting in faster clearance.

  7. Fruit-specific lectins from banana and plantain.

    PubMed

    Peumans, W J; Zhang, W; Barre, A; Houlès Astoul, C; Balint-Kurti, P J; Rovira, P; Rougé, P; May, G D; Van Leuven, F; Truffa-Bachi, P; Van Damme, E J

    2000-09-01

    One of the predominant proteins in the pulp of ripe bananas (Musa acuminata L.) and plantains (Musa spp.) has been identified as a lectin. The banana and plantain agglutinins (called BanLec and PlanLec, respectively) were purified in reasonable quantities using a novel isolation procedure, which prevented adsorption of the lectins onto insoluble endogenous polysaccharides. Both BanLec and PlanLec are dimeric proteins composed of two identical subunits of 15 kDa. They readily agglutinate rabbit erythrocytes and exhibit specificity towards mannose. Molecular cloning revealed that BanLec has sequence similarity to previously described lectins of the family of jacalin-related lectins, and according to molecular modelling studies has the same overall fold and three-dimensional structure. The identification of BanLec and PlanLec demonstrates the occurrence of jacalin-related lectins in monocot species, suggesting that these lectins are more widespread among higher plants than is actually believed. The banana and plantain lectins are also the first documented examples of jacalin-related lectins, which are abundantly present in the pulp of mature fruits but are apparently absent from other tissues. However, after treatment of intact plants with methyl jasmonate, BanLec is also clearly induced in leaves. The banana lectin is a powerful murine T-cell mitogen. The relevance of the mitogenicity of the banana lectin is discussed in terms of both the physiological role of the lectin and the impact on food safety.

  8. Mushroom lectins: specificity, structure and bioactivity relevant to human disease.

    PubMed

    Hassan, Mohamed Ali Abol; Rouf, Razina; Tiralongo, Evelin; May, Tom W; Tiralongo, Joe

    2015-04-08

    Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell-cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity.

  9. Comprehensive list of lectins: origins, natures, and carbohydrate specificities.

    PubMed

    Kobayashi, Yuka; Tateno, Hiroaki; Ogawa, Haruko; Yamamoto, Kazuo; Hirabayashi, Jun

    2014-01-01

    More than 100 years have passed since the first lectin ricin was discovered. Since then, a wide variety of lectins (lect means "select" in Latin) have been isolated from plants, animals, fungi, bacteria, as well as viruses, and their structures and properties have been characterized. At present, as many as 48 protein scaffolds have been identified as functional lectins from the viewpoint of three-dimensional structures as described in this chapter. In this chapter, representative 53 lectins are selected, and their major properties that include hemagglutinating activity, mitogen activity, blood group specificity, molecular weight, metal requirement, and sugar specificities are summarized as a comprehensive table. The list will provide a practically useful, comprehensive list for not only experienced lectin users but also many other non-expert researchers, who are not familiar to lectins and, therefore, have no access to advanced lectin biotechnologies described in other chapters. PMID:25117264

  10. Mushroom Lectins: Specificity, Structure and Bioactivity Relevant to Human Disease

    PubMed Central

    Hassan, Mohamed Ali Abol; Rouf, Razina; Tiralongo, Evelin; May, Tom W.; Tiralongo, Joe

    2015-01-01

    Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell–cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity. PMID:25856678

  11. Von Willebrand factor regulates complement on endothelial cells.

    PubMed

    Noone, Damien G; Riedl, Magdalena; Pluthero, Fred G; Bowman, Mackenzie L; Liszewski, M Kathryn; Lu, Lily; Quan, Yi; Balgobin, Steve; Schneppenheim, Reinhard; Schneppenheim, Sonja; Budde, Ulrich; James, Paula; Atkinson, John P; Palaniyar, Nades; Kahr, Walter H A; Licht, Christoph

    2016-07-01

    Atypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura have traditionally been considered separate entities. Defects in the regulation of the complement alternative pathway occur in atypical hemolytic uremic syndrome, and defects in the cleavage of von Willebrand factor (VWF)-multimers arise in thrombotic thrombocytopenic purpura. However, recent studies suggest that both entities are related as defects in the disease-causing pathways overlap or show functional interactions. Here we investigate the possible functional link of VWF-multimers and the complement system on endothelial cells. Blood outgrowth endothelial cells (BOECs) were obtained from 3 healthy individuals and 2 patients with Type 3 von Willebrand disease lacking VWF. Cells were exposed to a standardized complement challenge via the combination of classical and alternative pathway activation and 50% normal human serum resulting in complement fixation to the endothelial surface. Under these conditions we found the expected release of VWF-multimers causing platelet adhesion onto BOECs from healthy individuals. Importantly, in BOECs derived from patients with von Willebrand disease complement C3c deposition and cytotoxicity were more pronounced than on BOECs derived from normal individuals. This is of particular importance as primary glomerular endothelial cells display a heterogeneous expression pattern of VWF with overall reduced VWF abundance. Thus, our results support a mechanistic link between VWF-multimers and the complement system. However, our findings also identify VWF as a new complement regulator on vascular endothelial cells and suggest that VWF has a protective effect on endothelial cells and complement-mediated injury. PMID:27236750

  12. Killing of Gram-negative bacteria with normal human serum and normal bovine serum: use of lysozyme and complement proteins in the death of Salmonella strains O48.

    PubMed

    Bugla-Płoskońska, G; Kiersnowski, A; Futoma-Kołoch, B; Doroszkiewicz, W

    2009-08-01

    Serum is an environment in which bacterial cells should not exist. The serum complement system provides innate defense against microbial infections. It consists of at least 35 proteins, mostly in pre-activated enzymatic forms. The activation of complement is achieved through three major pathways: the classical, alternative, and lectin. Lysozyme, widely present in body fluids, catalyzes the hydrolysis of beta 1,4 linkage between N-acetyloglucosamine and N-acetylmuramic acid in the bacterial cell wall and cooperates with the complement system in the bactericidal action of serum. In this study, ten strains of serotype O48 Salmonella, mainly associated with warm-blooded vertebrates and clinically important causing diarrhea in infants and children, were tested. The results demonstrated that the most efficient killing of Salmonella O48 occurred when all the components of normal bovine serum (NBS) and normal human serum (NHS) cooperated. To prove the role of lysozyme in the bactericidal activity of bovine and human serum, the method of serum adsorption onto bentonite (montmorillonite, MMT) was used. In order to investigate structural transitions accompanying the adsorption of serum components, we applied X-ray diffraction methods. The results of this investigation suggested that apart from lysozyme, other proteins (as, e.g., C3 protein or IgG immunoglobulin) were adsorbed on MMT particles. It was also shown that Ca(2+) cations can be adsorbed on bentonite. This may explain the different sensitivities of the serovars belonging to the same O48 Salmonella serotype to NBS and NHS devoid of lysozyme.

  13. Killing of Gram-negative bacteria with normal human serum and normal bovine serum: use of lysozyme and complement proteins in the death of Salmonella strains O48.

    PubMed

    Bugla-Płoskońska, G; Kiersnowski, A; Futoma-Kołoch, B; Doroszkiewicz, W

    2009-08-01

    Serum is an environment in which bacterial cells should not exist. The serum complement system provides innate defense against microbial infections. It consists of at least 35 proteins, mostly in pre-activated enzymatic forms. The activation of complement is achieved through three major pathways: the classical, alternative, and lectin. Lysozyme, widely present in body fluids, catalyzes the hydrolysis of beta 1,4 linkage between N-acetyloglucosamine and N-acetylmuramic acid in the bacterial cell wall and cooperates with the complement system in the bactericidal action of serum. In this study, ten strains of serotype O48 Salmonella, mainly associated with warm-blooded vertebrates and clinically important causing diarrhea in infants and children, were tested. The results demonstrated that the most efficient killing of Salmonella O48 occurred when all the components of normal bovine serum (NBS) and normal human serum (NHS) cooperated. To prove the role of lysozyme in the bactericidal activity of bovine and human serum, the method of serum adsorption onto bentonite (montmorillonite, MMT) was used. In order to investigate structural transitions accompanying the adsorption of serum components, we applied X-ray diffraction methods. The results of this investigation suggested that apart from lysozyme, other proteins (as, e.g., C3 protein or IgG immunoglobulin) were adsorbed on MMT particles. It was also shown that Ca(2+) cations can be adsorbed on bentonite. This may explain the different sensitivities of the serovars belonging to the same O48 Salmonella serotype to NBS and NHS devoid of lysozyme. PMID:19294463

  14. Bimolecular fluorescence complementation.

    PubMed

    Wong, Katy A; O'Bryan, John P

    2011-01-01

    Defining the subcellular distribution of signaling complexes is imperative to understanding the output from that complex. Conventional methods such as immunoprecipitation do not provide information on the spatial localization of complexes. In contrast, BiFC monitors the interaction and subcellular compartmentalization of protein complexes. In this method, a fluororescent protein is split into amino- and carboxy-terminal non-fluorescent fragments which are then fused to two proteins of interest. Interaction of the proteins results in reconstitution of the fluorophore (Figure 1). A limitation of BiFC is that once the fragmented fluorophore is reconstituted the complex is irreversible. This limitation is advantageous in detecting transient or weak interactions, but precludes a kinetic analysis of complex dynamics. An additional caveat is that the reconstituted flourophore requires 30min to mature and fluoresce, again precluding the observation of real time interactions. BiFC is a specific example of the protein fragment complementation assay (PCA) which employs reporter proteins such as green fluorescent protein variants (BiFC), dihydrofolate reductase, b-lactamase, and luciferase to measure protein:protein interactions. Alternative methods to study protein:protein interactions in cells include fluorescence co-localization and Förster resonance energy transfer (FRET). For co-localization, two proteins are individually tagged either directly with a fluorophore or by indirect immunofluorescence. However, this approach leads to high background of non-interacting proteins making it difficult to interpret co-localization data. In addition, due to the limits of resolution of confocal microscopy, two proteins may appear co-localized without necessarily interacting. With BiFC, fluorescence is only observed when the two proteins of interest interact. FRET is another excellent method for studying protein:protein interactions, but can be technically challenging. FRET

  15. Lectin genes in the Frankia alni genome.

    PubMed

    Pujic, Petar; Fournier, Pascale; Alloisio, Nicole; Hay, Anne-Emmanuelle; Maréchal, Joelle; Anchisi, Stéphanie; Normand, Philippe

    2012-01-01

    Frankia alni strain ACN14a's genome was scanned for the presence of determinants involved in interactions with its host plant, Alnus spp. One such determinant type is lectin, proteins that bind specifically to sugar motifs. The genome of F. alni was found to contain 7 such lectin-coding genes, five of which were of the ricinB-type. The proteins coded by these genes contain either only the lectin domain, or also a heat shock protein or a serine-threonine kinase domain upstream. These lectins were found to have several homologs in Streptomyces spp., and a few in other bacterial genomes among which none in Frankia EAN1pec and CcI3 and two in strain EUN1f. One of these F. alni genes, FRAAL0616, was cloned in E. coli, fused with a reporter gene yielding a fusion protein that was found to bind to both root hairs and to bacterial hyphae. This protein was also found to modify the dynamics of nodule formation in A. glutinosa, resulting in a higher number of nodules per root. Its role could thus be to permit binding of microbial cells to root hairs and help symbiosis to occur under conditions of low Frankia cell counts such as in pioneer situations. PMID:22159868

  16. Development and Applications of the Lectin Microarray.

    PubMed

    Hirabayashi, Jun; Kuno, Atsushi; Tateno, Hiroaki

    2015-01-01

    The lectin microarray is an emerging technology for glycomics. It has already found maximum use in diverse fields of glycobiology by providing simple procedures for differential glycan profiling in a rapid and high-throughput manner. Since its first appearance in the literature in 2005, many application methods have been developed essentially on the same platform, comprising a series of glycan-binding proteins immobilized on an appropriate substrate such as a glass slide. Because the lectin microarray strategy does not require prior liberation of glycans from the core protein in glycoprotein analysis, it should encourage researchers not familiar with glycotechnology to use glycan analysis in future work. This feasibility should provide a broader range of experimental scientists with good opportunities to investigate novel aspects of glycoscience. Applications of the technology include not only basic sciences but also the growing fields of bio-industry. This chapter describes first the essence of glycan profiling and the basic fabrication of the lectin microarray for this purpose. In the latter part the focus is on diverse applications to both structural and functional glycomics, with emphasis on the wide applicability now available with this new technology. Finally, the importance of developing advanced lectin engineering is discussed.

  17. Jacalin: an IgA-binding lectin.

    PubMed

    Roque-Barreira, M C; Campos-Neto, A

    1985-03-01

    We previously reported that seeds of Artocarpus integrifolia (jackfruit) contain a lectin, which we call jacalin, that is both a potent T cell mitogen and an apparently T cell-independent activator of human B cells for the secretion of immunoglobulins. During the above experiments we noted a massive precipitation in cell cultures stimulated with greater than or equal to 100 micrograms of lectin. In this paper, we show that the precipitate is formed after the interaction of jacalin and the serum protein added to the culture medium. More importantly, we demonstrate that IgA is probably the major serum constituent precipitated by the lectin and that no IgG or IgM can be detected in the precipitates. In secretions such as colostrum, IgA is the only protein precipitated by jacalin. On the basis of this specificity we describe a simple and reliable affinity chromatography procedure for the purification of both human serum and colostrum IgA. Jacalin is a D-Gal binding lectin and should be a useful tool for studying of serum and secretory IgA.

  18. A mushroom lectin from ascomycete Cordyceps militaris.

    PubMed

    Jung, Eui Cha; Kim, Ki Don; Bae, Chan Hyung; Kim, Ju Cheol; Kim, Dae Kyong; Kim, Ha Hyung

    2007-05-01

    A mushroom lectin has been purified from ascomycete Cordyceps militaris, which is one of the most popular mushrooms in eastern Asia used as a nutraceutical and in traditional Chinese medicine. This lectin, designated CML, exhibited hemagglutination activity in mouse and rat erythrocytes, but not in human ABO erythrocytes. SDS-PAGE of CML revealed a single band with a molecular mass of 31.0 kDa under both nonreducing and reducing conditions that was stained by silver nitrate, and a 31.4 kDa peak in a Superdex-200 HR gel-filtration column. The hemagglutination activity was inhibited by sialoglycoproteins, but not in by mono- or disaccharides, asialoglycoproteins, or de-O-acetylated glycoprotein. The activity was maximal at pH 6.0-9.1 and at temperatures below 50 degrees C. Circular dichroism spectrum analysis revealed that CML comprises 27% alpha-helix, 12% beta-sheets, 29% beta-turns, and 32% random coils. Its binding specificity and secondary structure are similar to those of a fungal lectin from Arthrobotrys oligospora. However, the N-terminal amino acid sequence of CML differs greatly from those of other lectins. CML exhibits mitogenic activity against mouse splenocytes. PMID:17306462

  19. Bacteria under stress by complement and coagulation.

    PubMed

    Berends, Evelien T M; Kuipers, Annemarie; Ravesloot, Marietta M; Urbanus, Rolf T; Rooijakkers, Suzan H M

    2014-11-01

    The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria.

  20. Displacement phenomena in lectin affinity chromatography.

    PubMed

    Cho, Wonryeon

    2015-10-01

    The work described here examines displacement phenomena that play a role in lectin affinity chromatography and their potential to impact reproducibility. This was achieved using Lycopersicon esculentum lectin (LEL), a lectin widely used in monitoring cancer. Four small identical LEL columns were coupled in series to form a single affinity chromatography system with the last in the series connected to an absorbance detector. The serial affinity column set (SACS) was then loaded with human plasma proteins. At the completion of loading, the column set was disassembled, the four columns were eluted individually, the captured proteins were trypsin digested, the peptides were deglycosylated with PNGase F, and the parent proteins were identified through mass spectral analyses. Significantly different sets of glycoproteins were selected by each column, some proteins appearing to be exclusively bound to the first column while others were bound further along in the series. Clearly, sample displacement chromatography (SDC) occurs. Glycoproteins were bound at different places in the column train, identifying the presence of glycoforms with different affinity on a single glycoprotein. It is not possible to see these phenomena in the single column mode of chromatography. Moreover, low abundance proteins were enriched, which facilitates detection. The great advantage of this method is that it differentiates between glycoproteins on the basis of their binding affinity. Displacement phenomena are concluded to be a significant component of the separation mechanism in heavily loaded lectin affinity chromatography columns. This further suggests that care must be exercised in sample loading of lectin columns to prevent analyte displacement with nonretained proteins. PMID:26348026

  1. Complement-dependent cytotoxicity crossmatch.

    PubMed

    Peña, Jeremy Ryan; Fitzpatrick, Donna; Saidman, Susan L

    2013-01-01

    The complement-dependent cytotoxic crossmatch is an informative test that detects alloantibodies in pre- and post-transplant patients, which may dictate clinical management of transplant patients. While challenging to perform, the cytotoxic crossmatch represents the only assay that provides direct evidence for the presence of potentially pathologic (i.e., cytotoxic) alloantibodies. The cytotoxic crossmatch combines patient (recipient) serum and donor cells. If donor-reactive alloantibodies are present in patient serum, these antibodies can bind donor cells. Antibody-antigen complexes, in turn, can activate the complement cascade, leading to complement-mediated cytotoxicity. Two commonly performed cytotoxic crossmatches, using donor lymphocytes as target cells, are described.

  2. Differentiation of Bacillus anthracis and other Bacillus species by lectins.

    PubMed Central

    Cole, H B; Ezzell, J W; Keller, K F; Doyle, R J

    1984-01-01

    Bacillus anthracis was agglutinated by several lectins, including those from Griffonia simplicifolia, Glycine max, Abrus precatorius, and Ricinus communis. Some strains of Bacillus cereus var. mycoides (B. mycoides) were strongly reactive with the lectin from Helix pomatia and weakly reactive with the G. max lectin. The differential interactions between Bacillus species and lectins afforded a means of distinguishing B. anthracis from other bacilli. B. cereus strains exhibited heterogeneity with respect to agglutination patterns by lectins but could readily be differentiated from B. anthracis and the related B. mycoides. Spores of B. anthracis and B. mycoides retained lectin receptors, although the heating of spores or vegetative cells at 100 degrees C resulted in a decrease in their ability to be specifically agglutinated. Fluorescein-conjugated lectin of G. max stained vegetative cells of B. anthracis uniformly, suggesting that the distribution of lectin receptors was continuous over the entire cellular surface. B. anthracis cells grown under conditions to promote the production of capsular poly(D-glutamyl peptide) were also readily agglutinated by the lectins, suggesting that the lectin reactive sites penetrate the polypeptide layer. Trypsin, subtilisin, lysozyme, and mutanolysin did not modify the reactivity of B. anthracis with the G. max agglutinin, although the same enzymes markedly diminished the interaction between the lectin and B. mycoides. Because the lectins which interact with B. anthracis are specific for alpha-D-galactose or 2-acetamido-2-deoxy-alpha-D-galactose residues, it is likely that the bacteria possess cell surface polymers which contain these sugars. Lectins may prove useful in the laboratory identification of B. anthracis and possibly other pathogenic Bacillus species, such as B. cereus. Images PMID:6418761

  3. Complement - a key system for immune surveillance and homeostasis

    PubMed Central

    Ricklin, Daniel; Hajishengallis, George; Yang, Kun; Lambris, John D.

    2010-01-01

    Nearly a century after the significance of the human complement system was recognized we have come to realize that its versatile functions extend far beyond the elimination of microbes. Indeed, complement acts as a rapid and efficient immune surveillance system that has distinct effects on healthy and altered host cells and foreign intruders. By eliminating cellular debris and infectious microbes, orchestrating immune responses, and sending `danger' signals, complement contributes substantially to homeostasis, but it may also take action against healthy cells if not properly controlled. This review describes our updated view of the function, structure, and dynamics of the complement network, highlights its interconnection with immunity at large and with other endogenous pathways, and illustrates its dual role in homeostasis and disease. PMID:20720586

  4. Dissociation and re-association studies on the interaction domains of mannan-binding lectin (MBL)-associated serine proteases, MASP-1 and MASP-2, provide evidence for heterodimer formation.

    PubMed

    Paréj, Katalin; Hermann, Agnes; Donáth, Nóra; Závodszky, Péter; Gál, Péter; Dobó, József

    2014-05-01

    Activation of the lectin pathway of complement begins with the activation of mannan-binding lectin (MBL)-associated serine proteases, MASP-1 and MASP-2, which are bound to the recognition molecules, MBL and ficolins. MASPs are Ca(2+)-dependent dimers. Dimerization and Ca(2+)-dependent association with the recognition molecules occurs via the first 3 domains, the CUB1-EGF-CUB2 region. The CUB1-EGF-CUB2 (D1-3) regions of MASP-1 and MASP-2, and also their tagged versions, were expressed in E. coli, refolded and purified. The first three domains of MASP-1 are identical with the respective regions of MASP-3 and MAp44, which are also associated with MBL and ficolins. The functionality of the fragments was checked by inhibition of C3 deposition from human serum. Time-course of the dissociation and re-association was examined by size exclusion chromatography. Both refolded proteins are tight Ca(2+)-dependent dimers, as expected. In buffer containing EDTA MASP-1_D1-3 dissociated to monomers, however it took about 1h to reach an equilibrium. Upon re-calcification dimers were re-formed, but this process was even slower; only after overnight incubation was the dimerization completed. MASP-2_D1-3 showed a somewhat different behavior: dissociation by EDTA was even slower, less complete, and higher MW aggregates also appeared. Heterodimer formation was detected by native PAGE. As modeled by the D1-3 fragments, MASP-1 and MASP-2 can readily form heterodimers after dissociation and re-association, however, in the presence of Ca(2+) exchange of subunits is slow between the homodimers. MASP-1:MASP-3 heterodimer formation was modeled by the tagged and untagged D1-3 fragments, and data indicate that subunits of these proteins are readily exchanged even in the presence of Ca(2+). The existence of heterodimers influences the current view on the composition of lectin pathway complexes and their activation.

  5. Expression of complement 3 and complement 5 in newt limb and lens regeneration.

    PubMed

    Kimura, Yuko; Madhavan, Mayur; Call, Mindy K; Santiago, William; Tsonis, Panagiotis A; Lambris, John D; Del Rio-Tsonis, Katia

    2003-03-01

    Some urodele amphibians possess the capacity to regenerate their body parts, including the limbs and the lens of the eye. The molecular pathway(s) involved in urodele regeneration are largely unknown. We have previously suggested that complement may participate in limb regeneration in axolotls. To further define its role in the regenerative process, we have examined the pattern of distribution and spatiotemporal expression of two key components, C3 and C5, during limb and lens regeneration in the newt Notophthalmus viridescens. First, we have cloned newt cDNAs encoding C3 and C5 and have generated Abs specifically recognizing these molecules. Using these newt-specific probes, we have found by in situ hybridization and immunohistochemical analysis that these molecules are expressed during both limb and lens regeneration, but not in the normal limb and lens. The C3 and C5 proteins were expressed in a complementary fashion during limb regeneration, with C3 being expressed mainly in the blastema and C5 exclusively in the wound epithelium. Similarly, during the process of lens regeneration, C3 was detected in the iris and cornea, while C5 was present in the regenerating lens vesicle as well as the cornea. The distinct expression profile of complement proteins in regenerative tissues of the urodele lens and limb supports a nonimmunologic function of complement in tissue regeneration and constitutes the first systematic effort to dissect its involvement in regenerative processes of lower vertebrate species. PMID:12594255

  6. Identification and confirmation of differentially expressed fucosylated glycoproteins in the serum of ovarian cancer patients using a lectin array and LC-MS/MS.

    PubMed

    Wu, Jing; Xie, Xiaolei; Liu, Yashu; He, Jintang; Benitez, Ricardo; Buckanovich, Ronald J; Lubman, David M

    2012-09-01

    In order to discover potential glycoprotein biomarkers in ovarian cancer, we applied a lectin array and Exactag labeling based quantitative glycoproteomics approach. A lectin array strategy was used to detect overall lectin-specific glycosylation changes in serum proteins from patients with ovarian cancer and those with benign conditions. Lectins, which showed significant differential response for fucosylation, were used to extract glycoproteins that had been labeled using isobaric chemical tags. The glycoproteins were then identified and quantified by LC-MS/MS, and five glycoproteins were found to be differentially expressed in the serum of ovarian cancer patients compared to benign diseases. The differentially expressed glycoproteins were further confirmed by lectin-ELISA and ELISA assay. Corticosteroid-binding globulin (CBG), serum amyloid p component (SAP), complement factor B (CFAB), and histidine-rich glycoprotein (HRG) were identified as potential markers for differentiating ovarian cancer from benign diseases or healthy controls. A combination of CBG and HRG (AUC = 0.825) showed comparable performance to CA125 (AUC = 0.829) in differentiating early stage ovarian cancer from healthy controls. The combination of CBG, SAP, and CA125 showed improved performance for distinguishing stage III ovarian cancer from benign diseases compared to CA125 alone. The ability of CBG, SAP, HRG, and CFAB to differentiate the serum of ovarian cancer patients from that of controls was tested using an independent set of samples. Our findings suggest that glycoprotein modifications may be a means to identify novel diagnostic markers for detection of ovarian cancer.

  7. Heat differentiated complement factor profiling.

    PubMed

    Hamsten, Carl; Skattum, Lillemor; Truedsson, Lennart; von Döbeln, Ulrika; Uhlén, Mathias; Schwenk, Jochen M; Hammarström, Lennart; Nilsson, Peter; Neiman, Maja

    2015-08-01

    Complement components and their cascade of reactions are important defense mechanisms within both innate and adaptive immunity. Many complement deficient patients still remain undiagnosed because of a lack of high throughput screening tools. Aiming towards neonatal proteome screening for immunodeficiencies, we used a multiplex profiling approach with antibody bead arrays to measure 9 complement proteins in serum and dried blood spots. Several complement components have been described as heat sensitive, thus their heat-dependent detectability was investigated. Using sera from 16 patients with complement deficiencies and 23 controls, we confirmed that the proteins C1q, C2, C3, C6, C9 and factor H were positively affected by heating, thus the identification of deficient patients was improved when preheating samples. Measurements of C7, C8 and factor I were negatively affected by heating and non-heated samples should be used in analysis of these components. In addition, a proof of concept study demonstrated the feasibility of labeling eluates from dried blood spots to perform a subsequent correct classification of C2-deficiencies. Our study demonstrates the potential of using multiplexed single binder assays for screening of complement components that open possibilities to expand such analysis to other forms of deficiencies.

  8. Deficiencies and excessive human complement system activation in disorders of multifarious etiology.

    PubMed

    Tichaczek-Goska, Dorota

    2012-01-01

    Complement is an integral part of the immune system protecting the host organism against invasion and proliferation of various microorganisms. It is also involved in the removal of the body's own damaged and altered cells. Activation of the complement system is a very precise process and it is strictly controlled by regulatory proteins present in both plasma and at host cells' surfaces. C3 protein plays a major role in the complement activation and generation of immune responses. Deficiencies of the C3 and other complement components, so-called early and late complement proteins, contribute to the emergence of recurrent bacterial, viral and fungal infections. The low level of mannose-binding lectin is also important. This protein plays a protective role in the early stages of infection and in the control of inflammation. Its deficit is one of the most common reasons for human immunodeficiency, observed in microbial infections as well as in autoimmune diseases such as rheumatoid arthritis. On the other hand, the excessive activation of complement proteins is often discovered to be the reason for many diseases. These include e.g. autoimmune diseases, Alzheimer's syndrome, schizophrenia, atypical hemolytic-uremic syndrome, angioedema, macular degeneration, and Crohn's disease.

  9. Factor D of the alternative pathway of human complement. Purification, alignment and N-terminal amino acid sequences of the major cyanogen bromide fragments, and localization of the serine residue at the active site.

    PubMed Central

    Johnson, D M; Gagnon, J; Reid, K B

    1980-01-01

    The serine esterase factor D of the complement system was purified from outdated human plasma with a yield of 20% of the initial haemolytic activity found in serum. This represented an approx. 60 000-fold purification. The final product was homogeneous as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis (with an apparent mol.wt. of 24 000), its migration as a single component in a variety of fractionation procedures based on size and charge, and its N-terminal amino-acid-sequence analysis. The N-terminal amino acid sequence of the first 36 residues of the intact molecule was found to be homologous with the N-terminal amino acid sequences of the catalytic chains of other serine esterases. Factor D showed an especially strong homology (greater than 60% identity) with rat 'group-specific protease' [Woodbury, Katunuma, Kobayashi, Titani, & Neurath (1978) Biochemistry 17, 811-819] over the first 16 amino acid residues. This similarity is of interest since it is considered that both enzymes may be synthesized in their active, rather than zymogen, forms. The three major CNBr fragments of factor D, which had apparent mol.wts. of 15 800, 6600 and 1700, were purified and then aligned by N-terminal amino acid sequence analysis and amino acid analysis. By using factor D labelled with di-[1,3-14C]isopropylphosphofluoridate it was shown that the CNBr fragment of apparent mol.wt. 6600, which is located in the C-terminal region of factor D, contained the active serine residue. The amino acid sequence around this residue was determined. Images Fig. 1. Fig. 2. PMID:6821372

  10. CR2-mediated targeting of complement inhibitors: bench-to-bedside using a novel strategy for site-specific complement modulation.

    PubMed

    Holers, V Michael; Rohrer, Bärbel; Tomlinson, Stephen

    2013-01-01

    Recent approval of the first human complement pathway-directed therapeutics, along with high-profile genetic association studies, has catalyzed renewed biopharmaceutical interest in developing drugs that modulate the complement system. Substantial challenges remain, however, that must be overcome before widespread application of complement inhibitors in inflammatory and autoimmune diseases becomes possible. Among these challenges are the following: (1) defining the complement pathways and effector mechanisms that cause tissue injury in humans and determining whether the relative importance of each varies by disease, (2) blocking or modulating, using traditional small molecule or biologic approaches, the function of complement proteins whose circulating levels are very high and whose turnover rates are relatively rapid, especially in the setting of acute and chronic autoimmune diseases, and (3) avoiding infectious complications or impairment of other important physiological functions of complement when using systemically active complement-blocking agents. This chapter will review data that address these challenges to therapeutic development, with a focus on the development of a novel strategy of blocking specific complement pathways by targeting inhibitors using a recombinant portion of the human complement receptor type 2 (CR2/CD21) which specifically targets to sites of local complement C3 activation where C3 fragments are covalently fixed. Recently, the first of these CR2-targeted proteins has entered human phase I studies in the human disease paroxysmal nocturnal hemoglobinuria. The results of murine translational studies using CR2-targeted inhibitors strongly suggest that a guiding principle going forward in complement therapeutic development may well be to focus on developing strategies to modulate the pathway as precisely as possible by physically localizing therapeutic inhibitory effects.

  11. CR2-mediated targeting of complement inhibitors: bench-to-bedside using a novel strategy for site-specific complement modulation.

    PubMed

    Holers, V Michael; Rohrer, Bärbel; Tomlinson, Stephen

    2013-01-01

    Recent approval of the first human complement pathway-directed therapeutics, along with high-profile genetic association studies, has catalyzed renewed biopharmaceutical interest in developing drugs that modulate the complement system. Substantial challenges remain, however, that must be overcome before widespread application of complement inhibitors in inflammatory and autoimmune diseases becomes possible. Among these challenges are the following: (1) defining the complement pathways and effector mechanisms that cause tissue injury in humans and determining whether the relative importance of each varies by disease, (2) blocking or modulating, using traditional small molecule or biologic approaches, the function of complement proteins whose circulating levels are very high and whose turnover rates are relatively rapid, especially in the setting of acute and chronic autoimmune diseases, and (3) avoiding infectious complications or impairment of other important physiological functions of complement when using systemically active complement-blocking agents. This chapter will review data that address these challenges to therapeutic development, with a focus on the development of a novel strategy of blocking specific complement pathways by targeting inhibitors using a recombinant portion of the human complement receptor type 2 (CR2/CD21) which specifically targets to sites of local complement C3 activation where C3 fragments are covalently fixed. Recently, the first of these CR2-targeted proteins has entered human phase I studies in the human disease paroxysmal nocturnal hemoglobinuria. The results of murine translational studies using CR2-targeted inhibitors strongly suggest that a guiding principle going forward in complement therapeutic development may well be to focus on developing strategies to modulate the pathway as precisely as possible by physically localizing therapeutic inhibitory effects. PMID:23402024

  12. Two Chitotriose-Specific Lectins Show Anti-Angiogenesis, Induces Caspase-9-Mediated Apoptosis and Early Arrest of Pancreatic Tumor Cell Cycle

    PubMed Central

    Sarkar, Dhiman; Suresh, C. G.

    2016-01-01

    The antiproliferative activity of two chito- specific agglutinins purified from Benincasa hispida (BhL) and Datura innoxia (DiL9) of different plant family origin was investigated on various cancer cell lines. Both lectins showed chitotriose specificity, by inhibiting lectin hemagglutinating activity. On further studies, it was revealed that these agglutinins caused remarkable concentration-dependent antiproliferative effect on human pancreatic cancerous cells but not on the normal human umbilical vein endothelial cells even at higher doses determined using MTT assay. The GI50 values were approximately 8.4 μg ml-1 (0.247 μM) and 142 μg ml-1(14.8 μM) for BhL and DiL9, respectively, against PANC-1 cells. The growth inhibitory effect of these lectins on pancreatic cancer cells were shown to be a consequence of lectin cell surface binding and triggering G0/G1 arrest, mitochondrial membrane depolarization, sustained increase of the intracellular calcium release and the apoptotic signal is amplified by activation of caspases executing cell death. Interestingly, these lectins also showed anti-angiogenic activity by disrupting the endothelial tubulogenesis. Therefore, we report for the first time two chito-specific lectins specifically binding to tumor glycans; they can be considered to be a class of molecules with antitumor activity against pancreatic cancer cells mediated through caspase dependent mitochondrial apoptotic pathway. PMID:26795117

  13. Two Chitotriose-Specific Lectins Show Anti-Angiogenesis, Induces Caspase-9-Mediated Apoptosis and Early Arrest of Pancreatic Tumor Cell Cycle.

    PubMed

    Singh, Ruby; Nawale, Laxman; Sarkar, Dhiman; Suresh, C G

    2016-01-01

    The antiproliferative activity of two chito-specific agglutinins purified from Benincasa hispida (BhL) and Datura innoxia (DiL9) of different plant family origin was investigated on various cancer cell lines. Both lectins showed chitotriose specificity, by inhibiting lectin hemagglutinating activity. On further studies, it was revealed that these agglutinins caused remarkable concentration-dependent antiproliferative effect on human pancreatic cancerous cells but not on the normal human umbilical vein endothelial cells even at higher doses determined using MTT assay. The GI50 values were approximately 8.4 μg ml(-1) (0.247 μM) and 142 μg ml(-1) (14.8 μM) for BhL and DiL9, respectively, against PANC-1 cells. The growth inhibitory effect of these lectins on pancreatic cancer cells were shown to be a consequence of lectin cell surface binding and triggering G0/G1 arrest, mitochondrial membrane depolarization, sustained increase of the intracellular calcium release and the apoptotic signal is amplified by activation of caspases executing cell death. Interestingly, these lectins also showed anti-angiogenic activity by disrupting the endothelial tubulogenesis. Therefore, we report for the first time two chito-specific lectins specifically binding to tumor glycans; they can be considered to be a class of molecules with antitumor activity against pancreatic cancer cells mediated through caspase dependent mitochondrial apoptotic pathway. PMID:26795117

  14. Using Single Lectins to Enrich Glycoproteins in Conditioned Media.

    PubMed

    Sethi, Manveen K; Fanayan, Susan

    2015-08-03

    Lectins are sugar-binding proteins that can recognize and bind to carbohydrates conjugated to proteins and lipids. Coupled with mass spectrometry technologies, lectin affinity chromatography is becoming a popular approach for identification and quantification of glycoproteins in complex samples such as blood, tumor tissues, and cell lines. Given the commercial availability of a large number of lectins that recognize diverse sugar structures, it is now possible to isolate and study glycoproteins for biological and medical research. This unit provides a general guide to single-lectin-based enrichment of glycoproteins from serum-free conditioned media. Due to the unique carbohydrate specificity of most lectins and the complexity of the samples, optimization steps may be required to evaluate different elution buffers and methods as well as binding conditions, for each lectin, for optimal recovery of bound glycoproteins.

  15. Specific Endocytosis Blockade of Trypanosoma cruzi Exposed to a Poly-LAcNAc Binding Lectin Suggests that Lectin-Sugar Interactions Participate to Receptor-Mediated Endocytosis

    PubMed Central

    Brosson, Sébastien; Fontaine, Frédéric; Vermeersch, Marjorie; Perez-Morga, David; Pays, Etienne; Bousbata, Sabrina; Salmon, Didier

    2016-01-01

    Trypanosoma cruzi is a protozoan parasite transmitted by a triatomine insect, and causing human Chagas disease in South America. This parasite undergoes a complex life cycle alternating between non-proliferative and dividing forms. Owing to their high energy requirement, replicative epimastigotes of the insect midgut display high endocytic activity. This activity is mainly restricted to the cytostome, by which the cargo is taken up and sorted through the endosomal vesicular network to be delivered to reservosomes, the final lysosomal-like compartments. In African trypanosomes tomato lectin (TL) and ricin, respectively specific to poly-N-acetyllactosamine (poly-LacNAc) and β-D-galactose, allowed the identification of giant chains of poly-LacNAc in N-glycoproteins of the endocytic pathway. We show that in T. cruzi epimastigote forms also, glycoproteins of the endocytic pathway are characterized by the presence of N-linked glycans binding to both ricin and TL. Affinity chromatography using both TL and Griffonia simplicifolia lectin II (GSLII), specific to non-reducing terminal residue of N-acetylglucosamine (GlcNAc), led to an enrichment of glycoproteins of the trypanosomal endocytic pathway. Incubation of live parasites with TL, which selectively bound to the cytostome/cytopharynx, specifically inhibited endocytosis of transferrin (Tf) but not dextran, a marker of fluid endocytosis. Taken together, our data suggest that N-glycan modification of endocytic components plays a crucial role in receptor-mediated endocytosis of T. cruzi. PMID:27685262

  16. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, N.V.

    1994-01-04

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon. .

  17. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, Natasha V.

    1994-01-04

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.

  18. Mannose-binding lectin in HIV infection

    PubMed Central

    Eisen, Sarah; Dzwonek, Agnieszka; Klein, Nigel J

    2010-01-01

    Infection with HIV represents a significant global health problem, with high infection rates and high mortality worldwide. Treatment with antiretroviral therapy is inaccessible to many patients and efficacy is limited by development of resistance and side effects. The interactions of HIV with the human immune system, both innate and humoral, are complex and complicated by the profound ability of the virus to disable the host immune response. Mannose-binding lectin, a component of the innate immune system, has been demonstrated to play a role in host-virus interactions. This protein may have a key role in determining host susceptibility to infection, pathogenesis and progression of disease, and may contribute to the extensive variability of host response to infection. Further understanding and manipulation of the mannose-binding lectin response may represent a target for immunomodulation in HIV infection, which may, in conjunction with highly active antiretroviral therapy, allow development of a novel therapeutic approach to HIV infection. PMID:21218140

  19. Microvascular alterations and the role of complement in dermatomyositis.

    PubMed

    Lahoria, Rajat; Selcen, Duygu; Engel, Andrew G

    2016-07-01

    Different mechanisms have been proposed to explain the pathological basis of perifascicular muscle fibre atrophy in dermatomyositis. These include ischaemia due to immune-mediated microvascular injury, enhanced expression of type 1 interferon-induced gene transcripts in perifascicular capillaries and muscle fibres, and occlusion of larger perimysial blood vessels. Microvascular complement deposition is a feature of dermatomyositis pathology but the trigger for complement activation, the predominant complement pathway involved, or its role in the pathogenesis of the disease, has not been clearly defined. In the first step of this study we examined the density of capillaries and transverse vessels and searched for occlusion or depletion of larger perimysial blood vessels in 10 patients with dermatomyositis. This revealed an invariable association of perifascicular atrophy with capillary and transverse vessel depletion. The capillary and transverse vessel densities in non-atrophic fibre regions were not significantly different from those in muscle specimens of 10 age-matched controls. Next, in the same 10, as well as in 40 additional dermatomyositis patients, we searched for vascular deposits of IgG, IgM, and the C5b-9 complement membrane attack complex. Thirty-one of 50 dermatomyositis specimens contained C5b-9 reactive endomysial microvessels but none of these or other vessels reacted for IgG. Ten of 50 specimens harboured IgM-positive capillaries but only a few of these reacted for C5b-9. Finally, we analysed and compared different pathways of complement activation in dermatomyositis, lupus nephritis, and necrotic muscle fibres in Duchenne dystrophy. In lupus nephritis, C5-b9 deposits co-localized with IgG, IgM, C1q, and C4d, consistent with immune complex dependent activation of the classical complement pathway. In both dermatomyositis and Duchenne dystrophy, C5-b9 deposits co-localized with C1q and C4d and rarely with IgM indicating activation of the classical

  20. Concept, strategy and realization of lectin-based glycan profiling.

    PubMed

    Hirabayashi, Jun

    2008-08-01

    Lectins are a diverse group of carbohydrate-binding proteins. Each lectin has its own specificity profile. It is believed that lectins exist in all living organisms that produce glycans. From a practical viewpoint, lectins have been used extensively in biochemical fields including proteomics due to their usefulness as detection and enrichment tools for specific glycans. Nevertheless, they have often been underestimated as probes, especially compared with antibodies, because of their low affinity and broad specificity. However, together with the concept of glycomics, such properties of lectins are now considered to be suitable for the task of 'profiling' in order to cover a wider range of ligands. Recently there has been rapid movement in the field of proteomics aimed at the investigation of glycan-related biomarkers. This is partly because of limitations of the present approach of simply following changes in protein-level expression, without paying sufficient attention to the fact and effects of glycosylation. The trend is reflected in the frequent use of lectins in the contexts of glycoprotein enrichment and glycan profiling. However, there are many aspects to be considered in using lectins, which differ considerably from antibodies. In this article, the author, as a developer of two unique methodologies, frontal affinity chromatography (FAC) and the lectin microarray, describes critical points concerning the use of lectins, together with the concept, strategy and means to achieve advances in these emerging glycan profiling technologies. PMID:18390573

  1. Are vicilins another major class of legume lectins?

    PubMed

    Ribeiro, Ana C; Monteiro, Sara V; Carrapiço, Belmira M; Ferreira, Ricardo B

    2014-01-01

    Legume lectins comprise a structurally related, Ca/Mn-dependent, widespread, abundant and well characterized lectin family when compared to the large number of lectins from other sources described in the literature. Strangely enough, no specific function has been assigned to them aside from a possible role in storage and/or defense. Using a recent and fine-tuned methodology capable of specific lectin identification, β-conglutin, Vicia faba vicilin and β-lathyrin, the vicilin storage globulins from Lupinus albus, V. faba and Lathyrus sativus, respectively, were shown to be capable of affinity binding to thoroughly washed erythrocyte membranes and of specific elution with appropriate sugars. Based on this evidence and on sparse data published in the literature, a second family of legume lectins is proposed: the 7S family of storage proteins from leguminous seeds, or family II of legume lectins. These lectins are also structurally related, widespread and well characterized. In addition, they self-aggregate in a Ca/Mg, electrostatic dependent manner and are even more abundant than the family I of legume lectins. Using the same evidence, reserve and defense roles may be attributed to family II of legume lectins.

  2. Antifungal properties of lectin and new chitinases from potato tubers.

    PubMed

    Gozia, O; Ciopraga, J; Bentia, T; Lungu, M; Zamfirescu, I; Tudor, R; Roseanu, A; Nitu, F

    1993-08-01

    We have purified from potato tubers, the lectin STA devoid of chitinase activity and two chitinases devoid of lectin activity. Both enzymes are 16 kDa glycoproteins, and probably belong to a new family of plant chitinases. The respective antifungal properties of lectin and chitinases were studied by following their effects against early developmental stages of Fusarium oxysporum, a fungal potato pathogen. Here we demonstrate that: (1) lectin does not inhibit mycelial growth but irreversibly inhibits conidia germination and alters the germ tubes; and (2) chitinases block mycelial growth as well as conidia germination and lyse germ tubes.

  3. Lectins discriminate between pathogenic and nonpathogenic South American trypanosomes

    SciTech Connect

    de Miranda Santos, I.K.; Pereira, M.E.

    1984-09-01

    Cell surface carbohydrates of Trypanosoma cruzi, Trypanosoma rangeli, and Trypanosoma conorhini were analyzed by a micro-agglutination assay employing 27 highly purified lectins and by binding assays using various /sup 125/I-labeled lectins. The following seven lectins discriminated between the trypanosomes: 1) tomato lectin (an N-acetyl-D-glucosamine-binding protein), both in purified form and as crude tomato juice; 2) Bauhinea purpurea and Sophora japonica lectins (both N-acetyl-D-galactosamine-binding proteins), which selectively agglutinated T. cruzi; 3) Vicia villosa (an N-acetyl-D-galactosamine-binding protein) which was specific for T. rangeli; 4) peanut lectin (a D-galactose-binding protein) both in purified form and as crude saline extract; and 5) Ulex europaeus and Lotus tetragonolobus (both L-fucose-binding proteins) lectins which reacted only with T. conorhini. Binding studies with 125I-labeled lectins were performed to find whether unagglutinated cells of the three different species of trypanosomes might have receptors for these lectins, in which case absence of agglutination could be due to a peculiar arrangement of the receptors. These assays essentially confirmed the agglutination experiments.

  4. Tomato lectin histochemistry for microglial visualization.

    PubMed

    Villacampa, Nàdia; Almolda, Beatriz; González, Berta; Castellano, Bernardo

    2013-01-01

    The use of different lectins for the study of microglial cells in the central nervous system (CNS) is a valuable tool that has been extensively used in the last years for the selective staining of this glial cell population, not only in normal physiological conditions, but also in a wide range of pathological situations where the normal homeostasis of the parenchyma is disturbed. In this chapter we accurately describe the methodology for the selective labelling of microglial cells by using the tomato lectin (TL), a protein lectin obtained from Lycopersicum esculentum with specific affinity for poly-N-acetyl lactosamine sugar residues which are found on the plasma membrane and in the cytoplasm of microglia. Here we describe how to perform this technique on vibratome, frozen, and paraffin sections for optical microscopy, as well as for transmission electron microscopy (TEM) studies. Using this methodology it is possible to visualize amoeboid microglia in the developing brain, ramified microglia in the adult, and activated/reactive microglia in the experimentally damaged brain. In addition, as TL also recognized sugar residues in endothelial cells, this technique is very useful for the study of the relationship established between microglia and the CNS vasculature. PMID:23813385

  5. Complement activation in the context of stem cells and tissue repair

    PubMed Central

    Schraufstatter, Ingrid U; Khaldoyanidi, Sophia K; DiScipio, Richard G

    2015-01-01

    The complement pathway is best known for its role in immune surveillance and inflammation. However, its ability of opsonizing and removing not only pathogens, but also necrotic and apoptotic cells, is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation, to increased survival of various cell types in the presence of split products of complement, and to the production of trophic factors by cells activated by the anaphylatoxins C3a and C5a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3a and C5a. PMID:26435769

  6. Metabolic Complementation in Bacterial Communities: Necessary Conditions and Optimality

    PubMed Central

    Mori, Matteo; Ponce-de-León, Miguel; Peretó, Juli; Montero, Francisco

    2016-01-01

    Bacterial communities may display metabolic complementation, in which different members of the association partially contribute to the same biosynthetic pathway. In this way, the end product of the pathway is synthesized by the community as a whole. However, the emergence and the benefits of such complementation are poorly understood. Herein, we present a simple model to analyze the metabolic interactions among bacteria, including the host in the case of endosymbiotic bacteria. The model considers two cell populations, with both cell types encoding for the same linear biosynthetic pathway. We have found that, for metabolic complementation to emerge as an optimal strategy, both product inhibition and large permeabilities are needed. In the light of these results, we then consider the patterns found in the case of tryptophan biosynthesis in the endosymbiont consortium hosted by the aphid Cinara cedri. Using in-silico computed physicochemical properties of metabolites of this and other biosynthetic pathways, we verified that the splitting point of the pathway corresponds to the most permeable intermediate. PMID:27774085

  7. In silico analysis of molecular mechanisms of Galanthus nivalis agglutinin-related lectin-induced cancer cell death from carbohydrate-binding motif evolution hypothesis.

    PubMed

    Yu, Qi-Jia; Li, Zi-Yue; Yao, Shun; Ming, Miao; Wang, Shu-Ya; Liu, Bo; Bao, Jin-Ku

    2011-10-01

    Galanthus nivalis agglutinin-related lectins, a superfamily of strictly mannose-binding-specific lectins widespread amongst monotyledonous plants, have drawn a rising attention for their remarkable anti-proliferative and apoptosis-inducing activities toward various types of cancer cells; however, the precise molecular mechanisms by which they induce tumor cell apoptosis are still only rudimentarily understood. Herein, we found that the three conserved motifs "QXDXNXVXY," the mannose-specific binding sites, could mutate at one or more amino acid sites, which might be a driving force for the sequential evolution and thus ultimately leading to the complete disappearance of the three conserved motifs. In addition, we found that the motif evolution could result in the diversification of sugar-binding types that G. nivalis agglutinin-related lectins could bind from specific mannose receptors to more types of sugar-containing receptors in cancer cells. Subsequently, we indicated that some sugar-containing receptors such as TNFR1, EGFR, Hsp90, and Hsp70 could block downstream anti-apoptotic or survival signaling pathways, which, in turn, resulted in tumor cell apoptosis. Taken together, our hypothesis that carbohydrate-binding motif evolution may impact the G. nivalis agglutinin-related lectin-induced survival or anti-apoptotic pathways would provide a new perspective for further elucidating the intricate relationships between the carbohydrate-binding specificities and complex molecular mechanisms by which G. nivalis agglutinin-related lectins induce cancer cell death.

  8. Staphylococcal proteases aid in evasion of the human complement system.

    PubMed

    Jusko, Monika; Potempa, Jan; Kantyka, Tomasz; Bielecka, Ewa; Miller, Halie K; Kalinska, Magdalena; Dubin, Grzegorz; Garred, Peter; Shaw, Lindsey N; Blom, Anna M

    2014-01-01

    Staphylococcus aureus is an opportunistic pathogen that presents severe health care concerns due to the prevalence of multiple antibiotic-resistant strains. New treatment strategies are urgently needed, which requires an understanding of disease causation mechanisms. Complement is one of the first lines of defense against bacterial pathogens, and S. aureus expresses several specific complement inhibitors. The effect of extracellular proteases from this bacterium on complement, however, has been the subject of limited investigation, except for a recent report regarding cleavage of the C3 component by aureolysin (Aur). We demonstrate here that four major extracellular proteases of S. aureus are potent complement inhibitors. Incubation of human serum with the cysteine proteases staphopain A and staphopain B, the serine protease V8 and the metalloproteinase Aur resulted in a drastic decrease in the hemolytic activity of serum, whereas two staphylococcal serine proteases D and E, had no effect. These four proteases were found to inhibit all pathways of complement due to the efficient degradation of several crucial components. Furthermore, S. aureus mutants lacking proteolytic enzymes were found to be more efficiently killed in human blood. Taken together, the major proteases of S. aureus appear to be important for pathogen-mediated evasion of the human complement system.

  9. Biosynthesis of the Snowdrop (Galanthus nivalis) Lectin in Ripening Ovaries.

    PubMed

    Van Damme, E J; Peumans, W J

    1988-03-01

    The biosynthesis and processing of the Galanthus nivalis agglutinin were studied in vivo in ripening snowdrop ovaries. Using labeling and pulse chase labeling experiments it could be demonstrated that the snowdrop lectin is synthesized as a precursor of relative molecular weight (M(r)) 15,000 which is posttranslationally converted into the authentic lectin polypeptide of M(r) 13,000 with a half-life of about 6 hours. Gel filtration of an extract of [(3)H]leucine labeled ovaries on Sepharose 4B showed that a significant portion of the newly synthesized lectin is associated with the particulate fraction. When the organellar fraction was fractionated on isopycnic sucrose gradients this lectin banded in the same density region as the endoplasmic reticulum (ER) marker enzyme NADH cytochrome c reductase. Both radioactivity in lectin and in enzyme activity shifted towards a higher density in the presence of 2 millimolar Mg-acetate indicating that the labeled lectin was associated with the rough ER. Labeled lectin could be chased from the ER with a half-life of 4 hours and then accumulated in the soluble fraction. Whereas the ER-associated lectin contains exclusively polypeptides of M(r) 15,000 the soluble fraction contains both precursor molecules and mature lectin polypeptides. The snowdrop lectin in the ER is fully capable of binding immobilized mannose. It is associated into tetramers with an appropriate molecular weight of 60,000. These results indicate that newly synthesized snowdrop lectin is transiently associated with the ER before transport and processing.

  10. Exploring the Innate Immune System: Using Complement-Medicated Cell Lysis in the Classroom

    ERIC Educational Resources Information Center

    Fuller, Kevin G.

    2008-01-01

    The protein complement pathway comprises an important part of the innate immunity. The use of serum to demonstrate complement-mediated destruction across a series of bacterial dilutions allows an instructor to introduce a number of important biological concepts such as bacterial growth, activation cascades, and adaptive versus innate immunity.

  11. The role of complement in gonococcal infection of cervical epithelia.

    PubMed

    Edwards, Jennifer L

    2008-12-30

    Neisseria gonorrhoeae is an exclusive human pathogen that causes the sexually transmitted disease, gonorrhea. The gonococcus has developed an exquisite repertoire of mechanisms by which it is able to evade host innate and adaptive immune responses. Our previous data indicate that the predominately asymptomatic nature ofgonococcal cervicitis may, in part, be attributed to the ability of these bacteria to subvert the normal function of complement to promote cervical disease. Herein we describe the interaction of N. gonorrhoeae with the complement alternative pathway with a particular focus on the importance of this interaction in promoting gonococcal cervicitis.

  12. Improvisation: A Complement to Curriculum

    ERIC Educational Resources Information Center

    Ronald, Green A.

    2006-01-01

    With the growth of standardized assessment benchmarks in both the public and private paradigms, testing performance matters to institutions more than ever. In an attempt to take as many hindering variables out of this process, such as test anxiety, socioeconomic influences, and latency in cognition, Improvisation: A Complement to Curriculum seeks…

  13. Frutalin, a galactose-binding lectin, induces chemotaxis and rearrangement of actin cytoskeleton in human neutrophils: involvement of tyrosine kinase and phosphoinositide 3-kinase.

    PubMed

    Brando-Lima, Aline C; Saldanha-Gama, Roberta F; Henriques, Maria das Graças M O; Monteiro-Moreira, Ana C O; Moreira, Renato A; Barja-Fidalgo, Christina

    2005-10-15

    Several lectin-like molecules have been shown as potent activators of leukocytes. Galactose-binding lectins are of special interest since they could interact with several endogenous molecules involved in the innate and specific immune responses. The effects of Frutalin (FTL), an alpha-D-galactose (Gal)-binding plant lectin, on the modulation of neutrophil (PMN) functions were investigated. FTL induced a dose-dependent PMN migration in mice pleural cavity. Moreover, FTL was also a potent direct chemotactic for human PMN, in vitro, and triggered oxidative burst in these cells. These effects were accompanied by a rearrangement of the actin cytoskeleton dynamic, activation of tyrosine kinase (TK) pathways, increase in focal adhesion kinase (FAK) phosphorylation, and its subsequent association to phosphoinositide3-kinase (PI3K). All those effects were inhibited in the presence of Gal, suggesting specific carbohydrate recognition for FTL effects. The activations of TK and PI3K pathways are essential events for FTL-induced chemotaxis, since inhibitors of these pathways, genistein and LY294002, inhibited neutrophil migration in vitro. The data indicate that sugar-protein interactions between a soluble lectin and galacto-components on neutrophil surface trigger the TK pathway, inducing FAK and PI3K activation, interfering with cell motility and oxidative response.

  14. Effects of lectins with different carbohydrate-binding specificities on hepatoma, choriocarcinoma, melanoma and osteosarcoma cell lines.

    PubMed

    Wang, H; Ng, T B; Ooi, V E; Liu, W K

    2000-03-01

    The effects of lectins with different carbohydrate-binding specificities on human hepatoma (H3B), human choriocarcinoma (JAr), mouse melanoma (B16) and rat osteosarcoma (ROS) cell lines were investigated. Cell viability was estimated by uptake of crystal violet. Wheat germ lectin was the lectin with the most deleterious effect on the viability of H3B, JAr and ROS cell lines. The cytotoxicity of lectins with similar sugar-binding specificity to wheat germ lectin, including Maackia amurensis lectin and Solanum tuberosum lectin, was weaker than that of wheat germ lectin. N-acetylgalactosamine-and galactose-binding Tricholoma mongolicum lectin ranked third, after wheat germ lectin and Maackia amurensis lectin, with regard to its effect on H3B, and ranked, together with Maackia amurensis lectin, as the lectins with the second most pronounced effects on ROS. However, the cytotoxic effects of Tricholoma mongolicum lectin on JAr were much weaker than those of Maackia amurensis lectin, Solanum tuberosum lectin and Anguilla anguilla lectin. Artocarpus integrifolia lectin, Lens culinaris lectin and Anguilla anguilla lectin possessed milder cytotoxicity than the remaining lectins. which were approximately equipotent. The mannose-binding Narcissus pseudonarcissus and Lens culinaris lectins were only weakly cytotoxic, the exception being a stronger effect on H3B. The N-acetylgalactosamine-binding Glycine max lectin and methylgalactose-binding Artocarpus integrifolia lectin similarly exhibited low cytotoxicity. It can thus be concluded that in general the ranking was wheat germ lectin > Maackia amurensis lectin approximately Trichloma mongolicum lectins > other aforementioned lectins in cytotoxicity. A particular lectin may manifest more conspicuous toxicity on certain cell lines and less on others.

  15. Assessment of lectin inactivation by heat and digestion.

    PubMed

    Pusztai, A; Grant, G

    1998-01-01

    Proteins/glycoproteins from plants, particularly lectins, are more resistant to heat denaturation than animal proteins (1, 2). With legume seeds, whose lectin content is appreciable, this presents potentially serious problems in nutritional practice. Therefore, before they can be used safely, legume-based food/ feeds usually require thorough and expensive heat processing to inactivate antinutritive components. Indeed, dry or moist heating of seeds at 70°C for several h has little or no effect on their lectin activity (Fig. 1) and treatment at much higher temperatures is needed to inactivate the biological and antinutritional effects of legume lectins (1, 2). The safety aspect is even more serious with some monocot lectins, such as wheatgerm agglutinin or a number of oilseed lectins, such as peanut agglutinin and many others because they are extremely heat stable and normal cooking or other conventional heat treatments may fail to inactivate them (3) Thus, the best way to avoid potential harmful effects of these heat-resistant lectins is to limit their dietary intake to a minimum. Fig. 1. Loss of lectin activity during aqueous heat treatment of soybean at various temperatures. PMID:21374488

  16. Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential

    PubMed Central

    Gardères, Johan; Bourguet-Kondracki, Marie-Lise; Hamer, Bojan; Batel, Renato; Schröder, Heinz C.; Müller, Werner E. G.

    2015-01-01

    An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest. PMID:26262628

  17. Lectin-binding properties of Aeromonas caviae strains

    PubMed Central

    Rocha-de-Souza, Cláudio M.; Hirata-Jr, Raphael; Mattos-Guaraldi, Ana L.; Freitas-Almeida, Angela C.; Andrade, Arnaldo F. B.

    2008-01-01

    The cell surface carbohydrates of four strains of Aeromonas caviae were analyzed by agglutination and lectin-binding assays employing twenty highly purified lectins encompassing all sugar specificities. With the exception of L-fucose and sialic acid, the sugar residues were detected in A. caviae strains. A marked difference, however, in the pattern of cell surface carbohydrates in different A. caviae isolates was observed. Specific receptors for Tritricum vulgaris (WGA), Lycopersicon esculentum (LEL) and Solanum tuberosum (STA) (D-GlcNAc-binding lectins) were found only in ATCC 15468 strain, whereas Euonymus europaeus (EEL, D-Gal-binding lectin) sites were present exclusively in AeQ32 strain, those for Helix pomatia (HPA, D-GalNAc-binding lectin) in AeC398 and AeV11 strains, and for Canavalia ensiformes (Con A, D-Man-binding lectin) in ATCC 15468, AeC398, AeQ32 and AeV11 strains, after bacterial growing at 37°C. On the other hand, specific receptors for WGA and EEL were completely abrogated growing the bacteria at 22°C. Binding studies with 125I- labeled lectins from WGA, EEL and Con A were performed. These assays essentially confirmed the selectivity, demonstrated in the agglutination assays of these lectins for the A. caviae strains. PMID:24031204

  18. Plant Lectins: Wheat Defense Strategy Against Hessian Fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants produce a variety of defense proteins, including lectins in response to attack by phytophagous insects. Ultrastructural studies reveal that binding to insect gut structures and resistance to proteolytic degradation by insect digestive enzymes are the two main prerequisites for the lectins to...

  19. Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential.

    PubMed

    Gardères, Johan; Bourguet-Kondracki, Marie-Lise; Hamer, Bojan; Batel, Renato; Schröder, Heinz C; Müller, Werner E G

    2015-08-01

    An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest. PMID:26262628

  20. Interaction of native and asialo rat sublingual glycoproteins with lectins.

    PubMed

    Wu, A M; Herp, A; Song, S C; Wu, J H; Chang, K S

    1995-01-01

    The binding properties of the rat sublingual glycoprotein (RSL) and its asialo product with lectins were characterized by quantitative precipitin(QPA) and precipitin inhibition(QPIA) assays. Among twenty lectins tested for QPA, native RSL reacted well only with Artocarpus integrifolia (jacalin), but weakly or not at all with the other lectins. However, its asialo product (asialo-RSL) reacted strongly with many Gal and GalNAc specific lectins-it bound best to three of the GalNAc alpha 1-->Ser/Thr (Tn) and/or Gal beta 1-->4GlcNAc (II) active lectins [jacalin, Wistaria floribunda and Ricinus communis agglutinins] and completely precipitated each of these three lectins. Asialo-RSL also reacted well with Abrus precatorius, Glycine max, Bauhinia purpurea alba, and Maclura pomifera agglutinins, and abrin-a, but not with Arachis hypogeae and Dolichos biflorus agglutinins. The interaction between asialo-RSL and lectins were inhibited by either Gal beta 1-->4GlcNAc, p-NO2-phenyl alpha-GalNAc or both. The mapping of the precipitation and inhibition profiles leads to the conclusion that the asialo rat sublingual glycoprotein provides important ligands for II (Gal beta 1-->4GlcNAc beta 1-->) and Tn (GalNAc alpha 1-->Ser/Thr) active lectins.

  1. Antibodies That Efficiently Form Hexamers upon Antigen Binding Can Induce Complement-Dependent Cytotoxicity under Complement-Limiting Conditions

    PubMed Central

    Cook, Erika M.; Lindorfer, Margaret A.; van der Horst, Hilma; Oostindie, Simone; Beurskens, Frank J.; Schuurman, Janine; Zent, Clive S.; Burack, Richard; Parren, Paul W. H. I.

    2016-01-01

    Recently, we demonstrated that IgG Abs can organize into ordered hexamers after binding their cognate Ags expressed on cell surfaces. This process is dependent on Fc:Fc interactions, which promote C1q binding, the first step in classical pathway complement activation. We went on to engineer point mutations that stimulated IgG hexamer formation and complement-dependent cytotoxicity (CDC). The hexamer formation–enhanced (HexaBody) CD20 and CD38 mAbs support faster, more robust CDC than their wild-type counterparts. To further investigate the CDC potential of these mAbs, we used flow cytometry, high-resolution digital imaging, and four-color confocal microscopy to examine their activity against B cell lines and primary chronic lymphocytic leukemia cells in sera depleted of single complement components. We also examined the CDC activity of alemtuzumab (anti-CD52) and mAb W6/32 (anti-HLA), which bind at high density to cells and promote substantial complement activation. Although we observed little CDC for mAb-opsonized cells reacted with sera depleted of early complement components, we were surprised to discover that the Hexabody mAbs, as well as ALM and W6/32, were all quite effective at promoting CDC in sera depleted of individual complement components C6 to C9. However, neutralization studies conducted with an anti-C9 mAb verified that C9 is required for CDC activity against cell lines. These highly effective complement-activating mAbs efficiently focus activated complement components on the cell, including C3b and C9, and promote CDC with a very low threshold of MAC binding, thus providing additional insight into their enhanced efficacy in promoting CDC. PMID:27474078

  2. cDNA cloning, characterization, and pharmacologic evaluation of anticancer activity of a lectin gene in Pinellia integrifolia.

    PubMed

    Liu, L L; Yang, Z J; Peng, Z S

    2016-01-01

    Plant lectins are proteins that possess at least one non-catalytic domain, which could reversibly bind to specific monosaccharides or oligosaccharides. The important roles played by plant lectins in immune regulation, signaling pathways, and plant defense could be attributed to their specific binding activities with carbohydrates. In this study, a Pinellia integrifolia lectin gene, designated pia, was cloned using rapid amplification of cDNA ends. The open reading frame (ORF) of pia was constructed into the pET-28a vector, and a 33-kDa recombinant protein was induced in Escherichia coli BL21. The hemagglutination and anticancer properties of the purified recombinant protein were assayed in vitro. The results indicated that the full-length cDNA of pia was 1210 bp long, containing an 807-bp ORF encoding a 268-amino acid peptide. The putative P. integrifolia lectin protein (PIA) contained three mannose-binding sites. The agglutinating activity exhibited by PIA was inhibited by D-mannose. PIA was also shown to exert an anti-proliferative activity against nasopharyngeal carcinoma, human cervical carcinoma, and human breast cancer cell lines in vitro. These results could be applied to determine the function of PIA in the future. PMID:27525949

  3. Complement in lupus nephritis: the good, the bad, and the unknown.

    PubMed

    Bao, Lihua; Quigg, Richard J

    2007-01-01

    The complement system consists of 3 pathways and more than 30 proteins, including those with biological activity that directly or indirectly mediate the effects of this system, plus a set of regulatory proteins necessary to prevent injudicious complement activation on host tissue. The role for complement in the pathogenesis of systemic lupus erythematosus (SLE) is paradoxic. On one hand, the complement system appears to have protective features in that hereditary homozygous deficiencies of classic pathway components are associated with an increased risk for SLE. On the other hand, immune complex-mediated activation of complement in affected tissues is clearly evident in both experimental and human SLE along with pathologic features that are logical consequences of complement activation. By using accurate mouse models of SLE, we have gained remarkable insights into pathogenic features likely relevant to the human disease, and the ability to test potential therapies, some of which have made it to standard clinical use. Studies in genetically altered mice and using recombinant protein inhibitors of complement have confirmed what was believed but unproven-early complement proteins C1q and C4 are protective whereas complement activation later in the pathways is proinflammatory and deleterious. Two complement inhibitors, soluble complement receptor 1 (TP10, Avant Immunotherapeutics, Needham, MA) and a monoclonal anti-C5 antibody (Eculizumab, Alexion Pharmaceuticals, Inc., Cheshire, CT) have been shown to inhibit complement safely and now are being investigated in a variety of clinical conditions. Although these and others earlier in their clinical development hold promise to be used therapeutically in lupus nephritis, this optimism must be tempered by the fact that the clinical trials to prove this remain fraught with obstacles.

  4. Biotoxicity assays for fruiting body lectins and other cytoplasmic proteins.

    PubMed

    Künzler, Markus; Bleuler-Martinez, Silvia; Butschi, Alex; Garbani, Mattia; Lüthy, Peter; Hengartner, Michael O; Aebi, Markus

    2010-01-01

    Recent studies suggest that a specific class of fungal lectins, commonly referred to as fruiting body lectins, play a role as effector molecules in the defense of fungi against predators and parasites. Hallmarks of these fungal lectins are their specific expression in reproductive structures, fruiting bodies, and/or sclerotia and their synthesis on free ribosomes in the cytoplasm. Fruiting body lectins are released upon damage of the fungal cell and bind to specific carbohydrate structures of predators and parasites, which leads to deterrence, inhibition of growth, and development or even killing of these organisms. Here, we describe assays to assess the toxicity of such lectins and other cytoplasmic proteins toward three different model organisms: the insect Aedes aegypti, the nematode Caenorhabditis elegans, and the amoeba Acanthamoeba castellanii. All three assays are based on heterologous expression of the examined proteins in the cytoplasm of Escherichia coli and feeding of these recombinant bacteria to omnivorous and bacterivorous organisms. PMID:20816208

  5. Diversified Carbohydrate-Binding Lectins from Marine Resources

    PubMed Central

    Ogawa, Tomohisa; Watanabe, Mizuki; Naganuma, Takako; Muramoto, Koji

    2011-01-01

    Marine bioresources produce a great variety of specific and potent bioactive molecules including natural organic compounds such as fatty acids, polysaccharides, polyether, peptides, proteins, and enzymes. Lectins are also one of the promising candidates for useful therapeutic agents because they can recognize the specific carbohydrate structures such as proteoglycans, glycoproteins, and glycolipids, resulting in the regulation of various cells via glycoconjugates and their physiological and pathological phenomenon through the host-pathogen interactions and cell-cell communications. Here, we review the multiple lectins from marine resources including fishes and sea invertebrate in terms of their structure-activity relationships and molecular evolution. Especially, we focus on the unique structural properties and molecular evolution of C-type lectins, galectin, F-type lectin, and rhamnose-binding lectin families. PMID:22312473

  6. Mitogenic effect of Parkia speciosa seed lectin on human lymphocytes.

    PubMed

    Suvachittanont, W; Jaranchavanapet, P

    2000-12-01

    Mitogenic activity of a lectin, purified from Parkia speciosa seeds, on the isolated peripheral blood lymphocytes taken from normal blood donors and patients with esophageal carcinoma was examined using [3H]thymidine incorporation. The lectin increases the incorporation of [3H]thymidine into DNA of human lymphocytes. The activity of the lectin increased as its concentration was increased and then declined once the concentration passed an optimum point. The stimulant effect was also expressed using a proliferation index (PI): the ratio of [3H]thymidine incorporated into lymphocytes in the presence and absence of the lectin. The mitogenic activity of the lectin is comparable to those of the known T-cell mitogens, such as concanavalin A, phytohaemagglutinin, and pokeweed mitogen. Only slightly less responsiveness was observed in the case of lymphocytes from esophageal cancer compared to lymphocytes from normal donors. PMID:11199124

  7. Structure-function relationship of monocot mannose-binding lectins.

    PubMed Central

    Barre, A; Van Damme, E J; Peumans, W J; Rougé, P

    1996-01-01

    The monocot mannose-binding lectins are an extended superfamily of structurally and evolutionarily related proteins, which until now have been isolated from species of the Amaryllidaceae, Alliaceae, Araceae, Orchidaceae, and Liliaceae. To explain the obvious differences in biological activities, the structure-function relationships of the monocot mannose-binding lectins were studied by a combination of glycan-binding studies and molecular modeling using the deduced amino acid sequences of the currently known lectins. Molecular modeling indicated that the number of active mannose-binding sites per monomer varies between three and zero. Since the number of binding sites is fairly well correlated with the binding activity measured by surface plasmon resonance, and is also in good agreement with the results of previous studies of the biological activities of the mannose-binding lectins, molecular modeling is of great value for predicting which lectins are best suited for a particular application. PMID:8972598

  8. A Molecular Insight into Complement Evasion by the Staphylococcal Complement Inhibitor Protein Family1

    PubMed Central

    Ricklin, Daniel; Tzekou, Apostolia; Garcia, Brandon L.; Hammel, Michal; McWhorter, William J.; Sfyroera, Georgia; Wu, You-Qiang; Holers, V. Michael; Herbert, Andrew P.; Barlow, Paul N.; Geisbrecht, Brian V.; Lambris, John D.

    2010-01-01

    Staphylococcus aureus possesses an impressive arsenal of complement evasion proteins that help the bacterium escape attack of the immune system. The staphylococcal complement inhibitor (SCIN) protein exhibits a particularly high potency and was previously shown to block complement by acting at the level of the C3 convertases. However, many details about the exact binding and inhibitory mechanism remained unclear. In this study, we demonstrate that SCIN directly binds with nanomolar affinity to a functionally important area of C3b that lies near the C terminus of its β-chain. Direct competition of SCIN with factor B for C3b slightly decreased the formation of surface-bound convertase. However, the main inhibitory effect can be attributed to an entrapment of the assembled convertase in an inactive state. Whereas native C3 is still able to bind to the blocked convertase, no generation and deposition of C3b could be detected in the presence of SCIN. Furthermore, SCIN strongly competes with the binding of factor H to C3b and influences its regulatory activities: the SCIN-stabilized convertase was essentially insensitive to decay acceleration by factor H and the factor I- and H-mediated conversion of surface-bound C3b to iC3b was significantly reduced. By targeting a key area on C3b, SCIN is able to block several essential functions within the alternative pathway, which explains the high potency of the inhibitor. Our findings provide an important insight into complement evasion strategies by S. aureus and may act as a base for further functional studies. PMID:19625656

  9. Identification of hot spots in the variola virus complement inhibitor (SPICE) for human complement regulation.

    PubMed

    Yadav, Viveka Nand; Pyaram, Kalyani; Mullick, Jayati; Sahu, Arvind

    2008-04-01

    Variola virus, the causative agent of smallpox, encodes a soluble complement regulator named SPICE. Previously, SPICE has been shown to be much more potent in inactivating human complement than the vaccinia virus complement control protein (VCP), although they differ only in 11 amino acid residues. In the present study, we have expressed SPICE, VCP, and mutants of VCP by substituting each or more of the 11 non-variant VCP residues with the corresponding residue of SPICE to identify hot spots that impart functional advantage to SPICE over VCP. Our data indicate that (i) SPICE is approximately 90-fold more potent than VCP in inactivating human C3b, and the residues Y98, Y103, K108 and K120 are predominantly responsible for its enhanced activity; (ii) SPICE is 5.4-fold more potent in inactivating human C4b, and residues Y98, Y103, K108, K120 and L193 mainly dictate this increase; (iii) the classical pathway decay-accelerating activity of activity is only twofold higher than that of VCP, and the 11 mutations in SPICE do not significantly affect this activity; (iv) SPICE possesses significantly greater binding ability to human C3b compared to VCP, although its binding to human C4b is lower than that of VCP; (v) residue N144 is largely responsible for the increased binding of SPICE to human C3b; and (vi) the human specificity of SPICE is dictated primarily by residues Y98, Y103, K108, and K120 since these are enough to formulate VCP as potent as SPICE. Together, these results suggest that principally 4 of the 11 residues that differ between SPICE and VCP partake in its enhanced function against human complement.

  10. Membrane-bound complement regulatory activity is decreased on vaccinia virus-infected cells.

    PubMed Central

    Baranyi, L; Okada, N; Baranji, K; Takizawa, H; Okada, H

    1994-01-01

    Decay accelerating factor (DAF), membrane cofactor protein (MCP), complement receptor 1 and mouse Crry are cell surface-bound complement regulatory proteins capable of inhibiting C3 convertase activity on cell membranes, and therefore provide a substantial protection from attack by homologous complement activated either by the classical or by the alternative pathway. Decrease in complement regulatory activity might lead to spontaneous complement deposition and subsequent cell injury. MoAb 5I2 can inhibit the complement regulatory activity of molecules on rat cells, resulting in deposition of homologous complement. The antigen recognized by 5I2 MoAb in rats is homologous to mouse Crry. Fifteen to 20 h after infection with vaccinia virus, in vitro cultured KDH-8 rat hepatoma cells show a strong decrease in expression of Crry-like antigen, and proved to be sensitive to complement deposition when 1:5 diluted normal rat serum was added to the culture medium as a source of complement. Addition of complement to the cultured KDH-8 cells infected with a very low dose of vaccinia virus (1 plaque-forming unit (PFU)/1000 cells) substantially reduced spreading of virus infection in the cell culture, while inactivation of complement by heat or zymosan treatment abrogated the protective effect. PMID:7923872

  11. Nutritional evaluation of lectin-free soybeans for poultry.

    PubMed

    Douglas, M W; Parsons, C M; Hymowitz, T

    1999-01-01

    This study evaluated the nutritional value of raw lectin-free soybeans in comparison with raw Kunitz trypsin inhibitor-free soybeans, raw conventional soybeans, and commercial heat processed soybean meal (SBM). Analyzed lectin values (milligrams per kilogram) were 7.2, 7.1, and < 0.00015 for the Kunitz-free, conventional, and lectin-free soybeans, respectively. Three experiments were conducted using New Hampshire x Columbian male chicks fed 23% CP dextrose-soybean diets from 8 to 17 d of age. Growth performance of chicks fed lectin-free soybeans was greater (P < 0.05) than that of chicks fed raw conventional soybeans in all three experiments. However, performance of chicks fed lectin-free soybeans was lower than that of chicks fed Kunitz-free soybeans or SBM. The SBM yielded weight gains and feed efficiencies that were much higher than those observed from any of the raw soybeans. True amino acid digestibility and TMEn of the lectin-free and conventional soybeans were determined using the precision-fed cecectomized rooster assay. Seven roosters were crop-intubated with 30 g of soybeans and excreta were collected for 48 h. Digestibility coefficients of most amino acids for lectin-free soybeans were 5 to 8 percentage units higher than those for conventional soybeans, but the differences were not significant (P > 0.05). Likewise, the TMEn for lectin-free soybeans was 11% higher than that for raw conventional soybeans (3.577 vs 3.227 kcal/g DM) but the difference was not significant (P > 0.05). The results of this study indicate that the nutritional value of raw lectin-free soybeans is greater than raw conventional soybeans but is less than raw Kunitz-free soybeans and SBM, suggesting that trypsin inhibitor is a greater antinutritional factor than lectins. PMID:10023754

  12. Lectin activity in mycelial extracts of Fusarium species.

    PubMed

    Bhari, Ranjeeta; Kaur, Bhawanpreet; Singh, Ram S

    2016-01-01

    Lectins are non-immunogenic carbohydrate-recognizing proteins that bind to glycoproteins, glycolipids, or polysaccharides with high affinity and exhibit remarkable ability to agglutinate erythrocytes and other cells. In the present study, ten Fusarium species previously not explored for lectins were screened for the presence of lectin activity. Mycelial extracts of F. fujikuroi, F. beomiformii, F. begoniae, F. nisikadoi, F. anthophilum, F. incarnatum, and F. tabacinum manifested agglutination of rabbit erythrocytes. Neuraminidase treatment of rabbit erythrocytes increased lectin titers of F. nisikadoi and F. tabacinum extracts, whereas the protease treatment resulted in a significant decline in agglutination by most of the lectins. Results of hapten inhibition studies demonstrated unique carbohydrate specificity of Fusarium lectins toward O-acetyl sialic acids. Activity of the majority of Fusarium lectins exhibited binding affinity to d-ribose, l-fucose, d-glucose, l-arabinose, d-mannitol, d-galactosamine hydrochloride, d-galacturonic acid, N-acetyl-d-galactosamine, N-acetyl-neuraminic acid, 2-deoxy-d-ribose, fetuin, asialofetuin, and bovine submaxillary mucin. Melibiose and N-glycolyl neuraminic acid did not inhibit the activity of any of the Fusarium lectins. Mycelial extracts of F. begoniae, F. nisikadoi, F. anthophilum, and F. incarnatum interacted with most of the carbohydrates tested. F. fujikuroi and F. anthophilum extracts displayed strong interaction with starch. The expression of lectin activity as a function of culture age was investigated. Most species displayed lectin activity on the 7th day of cultivation, and it varied with progressing of culture age. PMID:27237111

  13. The Liverwort Contains a Lectin That Is Structurally and Evolutionary Related to the Monocot Mannose-Binding Lectins1

    PubMed Central

    Peumans, Willy J.; Barre, Annick; Bras, Julien; Rougé, Pierre; Proost, Paul; Van Damme, Els J.M.

    2002-01-01

    A mannose (Man)-binding lectin has been isolated and characterized from the thallus of the liverwort Marchantia polymorpha. N-terminal sequencing indicated that the M. polymorpha agglutinin (Marpola) shares sequence similarity with the superfamily of monocot Man-binding lectins. Searches in the databases yielded expressed sequence tags encoding Marpola. Sequence analysis, molecular modeling, and docking experiments revealed striking structural similarities between Marpola and the monocot Man-binding lectins. Activity and specificity studies further indicated that Marpola is a much stronger agglutinin than the Galanthus nivalis agglutinin and exhibits a preference for methylated Man and glucose, which is unprecedented within the family of monocot Man-binding lectins. The discovery of Marpola allows us, for the first time, to corroborate the evolutionary relationship between a lectin from a lower plant and a well-established lectin family from flowering plants. In addition, the identification of Marpola sheds a new light on the molecular evolution of the superfamily of monocot Man-binding lectins. Beside evolutionary considerations, the occurrence of a G. nivalis agglutinin homolog in a lower plant necessitates the rethinking of the physiological role of the whole family of monocot Man-binding lectins. PMID:12114560

  14. MMBL proteins: from lectin to bacteriocin.

    PubMed

    Ghequire, Maarten G K; Loris, Remy; De Mot, René

    2012-12-01

    Arguably, bacteriocins deployed in warfare among related bacteria are among the most diverse proteinacous compounds with respect to structure and mode of action. Identification of the first prokaryotic member of the so-called MMBLs (monocot mannose-binding lectins) or GNA (Galanthus nivalis agglutinin) lectin family and discovery of its genus-specific killer activity in the Gram-negative bacteria Pseudomonas and Xanthomonas has added yet another kind of toxin to this group of allelopathic molecules. This novel feature is reminiscent of the protective function, on the basis of antifungal, insecticidal, nematicidal or antiviral activity, assigned to or proposed for several of the eukaryotic MMBL proteins that are ubiquitously distributed among monocot plants, but also occur in some other plants, fish, sponges, amoebae and fungi. Direct bactericidal activity can also be effected by a C-type lectin, but this is a mammalian protein that limits mucosal colonization by Gram-positive bacteria. The presence of two divergent MMBL domains in the novel bacteriocins raises questions about task distribution between modules and the possible role of carbohydrate binding in the specificity of target strain recognition and killing. Notably, bacteriocin activity was also demonstrated for a hybrid MMBL protein with an accessory protease-like domain. This association with one or more additional modules, often with predicted peptide-hydrolysing or -binding activity, suggests that additional bacteriotoxic proteins may be found among the diverse chimaeric MMBL proteins encoded in prokaryotic genomes. A phylogenetic survey of the bacterial MMBL modules reveals a mosaic pattern of strongly diverged sequences, mainly occurring in soil-dwelling and rhizosphere bacteria, which may reflect a trans-kingdom acquisition of the ancestral genes. PMID:23176516

  15. Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins

    NASA Astrophysics Data System (ADS)

    Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team

    The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  16. Role of complement in host-microbe homeostasis of the periodontium.

    PubMed

    Hajishengallis, George; Abe, Toshiharu; Maekawa, Tomoki; Hajishengallis, Evlambia; Lambris, John D

    2013-02-01

    Complement plays a key role in immunity and inflammation through direct effects on immune cells or via crosstalk and regulation of other host signaling pathways. Deregulation of these finely balanced complement activities can link infection to inflammatory tissue damage. Periodontitis is a polymicrobial community-induced chronic inflammatory disease that can destroy the tooth-supporting tissues. In this review, we summarize and discuss evidence that complement is involved in the dysbiotic transformation of the periodontal microbiota and in the inflammatory process that leads to the destruction of periodontal bone. Recent insights into the mechanisms of complement involvement in periodontitis have additionally provided likely targets for therapeutic intervention against this oral disease.

  17. CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcγ Receptor- and Complement Receptor 3-Dependent Mechanisms.

    PubMed

    Amash, Alaa; Wang, Lin; Wang, Yawen; Bhakta, Varsha; Fairn, Gregory D; Hou, Ming; Peng, Jun; Sheffield, William P; Lazarus, Alan H

    2016-04-15

    Targeting CD44, a major leukocyte adhesion molecule, using specific Abs has been shown beneficial in several models of autoimmune and inflammatory diseases. The mechanisms contributing to the anti-inflammatory effects of CD44 Abs, however, remain poorly understood. Phagocytosis is a key component of immune system function and can play a pivotal role in autoimmune states where CD44 Abs have shown to be effective. In this study, we show that the well-known anti-inflammatory CD44 Ab IM7 can inhibit murine macrophage phagocytosis of RBCs. We assessed three selected macrophage phagocytic receptor systems: Fcγ receptors (FcγRs), complement receptor 3 (CR3), and dectin-1. Treatment of macrophages with IM7 resulted in significant inhibition of FcγR-mediated phagocytosis of IgG-opsonized RBCs. The inhibition of FcγR-mediated phagocytosis was at an early stage in the phagocytic process involving both inhibition of the binding of the target RBC to the macrophages and postbinding events. This CD44 Ab also inhibited CR3-mediated phagocytosis of C3bi-opsonized RBCs, but it did not affect the phagocytosis of zymosan particles, known to be mediated by the C-type lectin dectin-1. Other CD44 Abs known to have less broad anti-inflammatory activity, including KM114, KM81, and KM201, did not inhibit FcγR-mediated phagocytosis of RBCs. Taken together, these findings demonstrate selective inhibition of FcγR and CR3-mediated phagocytosis by IM7 and suggest that this broadly anti-inflammatory CD44 Ab inhibits these selected macrophage phagocytic pathways. The understanding of the immune-regulatory effects of CD44 Abs is important in the development and optimization of therapeutic strategies for the potential treatment of autoimmune conditions.

  18. CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcγ Receptor- and Complement Receptor 3-Dependent Mechanisms.

    PubMed

    Amash, Alaa; Wang, Lin; Wang, Yawen; Bhakta, Varsha; Fairn, Gregory D; Hou, Ming; Peng, Jun; Sheffield, William P; Lazarus, Alan H

    2016-04-15

    Targeting CD44, a major leukocyte adhesion molecule, using specific Abs has been shown beneficial in several models of autoimmune and inflammatory diseases. The mechanisms contributing to the anti-inflammatory effects of CD44 Abs, however, remain poorly understood. Phagocytosis is a key component of immune system function and can play a pivotal role in autoimmune states where CD44 Abs have shown to be effective. In this study, we show that the well-known anti-inflammatory CD44 Ab IM7 can inhibit murine macrophage phagocytosis of RBCs. We assessed three selected macrophage phagocytic receptor systems: Fcγ receptors (FcγRs), complement receptor 3 (CR3), and dectin-1. Treatment of macrophages with IM7 resulted in significant inhibition of FcγR-mediated phagocytosis of IgG-opsonized RBCs. The inhibition of FcγR-mediated phagocytosis was at an early stage in the phagocytic process involving both inhibition of the binding of the target RBC to the macrophages and postbinding events. This CD44 Ab also inhibited CR3-mediated phagocytosis of C3bi-opsonized RBCs, but it did not affect the phagocytosis of zymosan particles, known to be mediated by the C-type lectin dectin-1. Other CD44 Abs known to have less broad anti-inflammatory activity, including KM114, KM81, and KM201, did not inhibit FcγR-mediated phagocytosis of RBCs. Taken together, these findings demonstrate selective inhibition of FcγR and CR3-mediated phagocytosis by IM7 and suggest that this broadly anti-inflammatory CD44 Ab inhibits these selected macrophage phagocytic pathways. The understanding of the immune-regulatory effects of CD44 Abs is important in the development and optimization of therapeutic strategies for the potential treatment of autoimmune conditions. PMID:26944929

  19. Interaction of human mannose-binding lectin (MBL) with Yersinia enterocolitica lipopolysaccharide.

    PubMed

    Kasperkiewicz, Katarzyna; Swierzko, Anna S; Bartlomiejczyk, Marcin A; Cedzynski, Maciej; Noszczynska, Magdalena; Duda, Katarzyna A; Michalski, Mateusz; Skurnik, Mikael

    2015-09-01

    The lipopolysaccharide (LPS) is involved in the interaction between Gram-negative pathogenic bacteria and host. Mannose-binding lectin (MBL), complement-activating soluble pattern-recognition receptor targets microbial glycoconjugates, including LPS. We studied its interactions with a set of Yersinia enterocolitica O:3 LPS mutants. The wild-type strain LPS consists of lipid A (LA) substituted with an inner core oligosaccharide (IC) which in turn is substituted either with the O-specific polysaccharide (OPS) or the outer core hexasaccharide (OC), and sometimes also with the enterobacterial common antigen (ECA). The LPS mutants produced truncated LPS, missing OPS, OC or both, or, in addition, different IC constituents or ECA. MBL bound to LA-IC, LA-IC-OPS and LA-IC-ECA but not LA-IC-OC structures. Moreover, LA-IC substitution with both OPS and ECA prevented the lectin binding. Sequential truncation of the IC heptoses demonstrated that the MBL targets the IC heptose region. Furthermore, microbial growth temperature influenced MBL binding; binding was stronger to bacteria grown at room temperature (22°C) than to bacteria grown at 37°C. In conclusion, our results demonstrate that MBL can interact with Y. enterocolitica LPS, however, the in vivo significance of that interaction remains to be elucidated. PMID:26188838

  20. Herbal complement inhibitors in the treatment of neuroinflammation: future strategy for neuroprotection.

    PubMed

    Kulkarni, Amod P; Kellaway, Laurie A; Kotwal, Girish J

    2005-11-01

    The upregulated complement system plays a damaging role in disorders of the central nervous system (CNS). The classical and alternate pathways are two major pathways activated in neuroinflammatory disorders such as Alzheimer's disease, multiple sclerosis, traumatic brain injury, spinal cord injury, HIV-associated dementia, Parkinson's disease, and mad cow disease. Failure of currently available anti-inflammatory agents, especially cyclooxygenase inhibitors, in offering significant neuroprotection in large epidemiologic clinical trials of CNS disorders suggests an urgent need for the development of new neuroprotective agents. The positive preclinical outcomes in treating CNS disorders by complement regulatory molecules, such as vaccinia virus complement control protein, suggest the possibility of using complement-inhibitory molecules as neuroprotective agents. Several active ingredients of herbal origin are found to have complement-inhibitory activity. These herbal ingredients along with other anti-inflammatory roles might be useful in treating neuroinflammation associated with CNS disorders. Active ingredients of herbal origin with complement inhibitory ingredients are summarized and classified according to their chemical nature and specificity towards the major pathways activating the complement system. The structure activity relationship of some specific examples is also discussed in this report. This information might be helpful in formulating a natural panacea against complement-mediated neuroinflammation. PMID:16387706

  1. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome

    PubMed Central

    de Jorge, Elena Goicoechea; Harris, Claire L.; Esparza-Gordillo, Jorge; Carreras, Luis; Arranz, Elena Aller; Garrido, Cynthia Abarrategui; López-Trascasa, Margarita; Sánchez-Corral, Pilar; Morgan, B. Paul; de Córdoba, Santiago Rodríguez

    2007-01-01

    Hemolytic uremic syndrome (HUS) is an important cause of acute renal failure in children. Mutations in one or more genes encoding complement-regulatory proteins have been reported in approximately one-third of nondiarrheal, atypical HUS (aHUS) patients, suggesting a defect in the protection of cell surfaces against complement activation in susceptible individuals. Here, we identified a subgroup of aHUS patients showing persistent activation of the complement alternative pathway and found within this subgroup two families with mutations in the gene encoding factor B (BF), a zymogen that carries the catalytic site of the complement alternative pathway convertase (C3bBb). Functional analyses demonstrated that F286L and K323E aHUS-associated BF mutations are gain-of-function mutations that result in enhanced formation of the C3bBb convertase or increased resistance to inactivation by complement regulators. These data expand our understanding of the genetic factors conferring predisposition to aHUS, demonstrate the critical role of the alternative complement pathway in the pathogenesis of aHUS, and provide support for the use of complement-inhibition therapies to prevent or reduce tissue damage caused by dysregulated complement activation. PMID:17182750

  2. The relationship between the variants of the bovine MBL2 gene and milk production traits, mastitis, serum MBL-C levels and complement activity.

    PubMed

    Wang, Xinju; Ju, Zhihua; Huang, Jinming; Hou, Minghai; Zhou, Lei; Qi, Chao; Zhang, Yan; Gao, Qing; Pan, Qing; Li, Guorong; Zhong, Jifeng; Wang, Changfa

    2012-08-15

    Mannose-binding lectin (MBL), a calcium-dependent collagenous lectin, plays an important role in the host immune defence against a wide range of pathogens. There are MBL1 and MBL2 genes which encode the MBL-A and MBL-C proteins, respectively. This study was carried out to investigate the relationship between the variants of the bovine MBL2 gene and milk production traits, mastitis, serum MBL-C levels and hemolytic complement activity in both classical pathway (CH50) and alternative pathway (ACH50) in Chinese Holstein cattle. Four single-nucleotide polymorphisms (SNPs) in the exon 1 of the MBL2 gene in Chinese Holstein cattle and Luxi yellow cattle were identified by the direct sequencing method. The SNP g.201 G>A was identified as a non-synonymous mutation (codon 31, Arg>Gln) at the N-terminus cysteine-rich domain and the SNPs g.234 C>A and g.235 G>A (codon 42) made Pro to Gln at the 1st Gly-X-Y repeat of the collagen-like domain, while the SNP g.244 T>C (codon 45) was identified as a synonymous mutation (Asn>Asn) at the 2 th Gly-X-Y repeat of the collagen-like domain. The SNP markers (g.201 G>A, and g.234 C>A) were significantly correlated with somatic cell score (SCS) (P<0.05). The concentration of MBL-C protein in serum ranges from 0.8 to 7.4 μg/mL by enzyme-linked immunosorbent assay. Six combinations of different haplotypes from the four SNPs were identified in Chinese Holstein cattle. Statistical analysis revealed that cows with the haplotype combination H4H5 exhibited the lowest SCS. The CH50 value of H4H5 and H5H5 cow are significantly higher than H2H5 haplotype combination (P<0.05). The association analysis results showed that the haplotype combination H4H5 may be used as a tolerance haplotype combination for the bovine mastitis.

  3. Function of Serum Complement in Drinking Water Arsenic Toxicity

    PubMed Central

    Islam, Laila N.; Zahid, M. Shamim Hasan; Nabi, A. H. M. Nurun; Hossain, Mahmud

    2012-01-01

    Serum complement function was evaluated in 125 affected subjects suffering from drinking water arsenic toxicity. Their mean duration of exposure was 7.4 ± 5.3 yrs, and the levels of arsenic in drinking water and urine samples were 216 ± 211 and 223 ± 302 μg/L, respectively. The mean bactericidal activity of complement from the arsenic patients was 92% and that in the unexposed controls was 99% (P < 0.01), but heat-inactivated serum showed slightly elevated activity than in controls. In patients, the mean complement C3 was 1.56 g/L, and C4 was 0.29 g/L compared to 1.68 g/L and 0.25 g/L, respectively, in the controls. The mean IgG in the arsenic patients was 24.3 g/L that was highly significantly elevated (P < 0.001). Arsenic patients showed a significant direct correlation between C3 and bactericidal activity (P = 0.014). Elevated levels of C4 indicated underutilization and possibly impaired activity of the classical complement pathway. We conclude reduced function of serum complement in drinking water arsenic toxicity. PMID:22545044

  4. Misfolded Proteins Induce Aggregation of the Lectin Yos9*

    PubMed Central

    Smith, Melanie H.; Rodriguez, Edwin H.; Weissman, Jonathan S.

    2014-01-01

    A substantial fraction of nascent proteins delivered into the endoplasmic reticulum (ER) never reach their native conformations. Eukaryotes use a series of complementary pathways to efficiently recognize and dispose of these terminally misfolded proteins. In this process, collectively termed ER-associated degradation (ERAD), misfolded proteins are retrotranslocated to the cytosol, polyubiquitinated, and degraded by the proteasome. Although there has been great progress in identifying ERAD components, how these factors accurately identify substrates remains poorly understood. The targeting of misfolded glycoproteins in the ER lumen for ERAD requires the lectin Yos9, which recognizes the glycan species found on terminally misfolded proteins. In a role that remains poorly characterized, Yos9 also binds the protein component of ERAD substrates. Here, we identified a 45-kDa domain of Yos9, consisting of residues 22–421, that is proteolytically stable, highly structured, and able to fully support ERAD in vivo. In vitro binding studies show that Yos9(22–421) exhibits sequence-specific recognition of linear peptides from the ERAD substrate, carboxypeptidase Y G255R (CPY*), and binds a model unfolded peptide ΔEspP and protein Δ131Δ in solution. Binding of Yos9 to these substrates results in their cooperative aggregation. Although the physiological consequences of this substrate-induced aggregation remain to be seen, it has the potential to play a role in the regulation of ERAD. PMID:25086047

  5. Noncovalent PEGylation via Lectin-Glycopolymer Interactions.

    PubMed

    Antonik, Paweł M; Eissa, Ahmed M; Round, Adam R; Cameron, Neil R; Crowley, Peter B

    2016-08-01

    PEGylation, the covalent modification of proteins with polyethylene glycol, is an abundantly used technique to improve the pharmacokinetics of therapeutic proteins. The drawback with this methodology is that the covalently attached PEG can impede the biological activity (e.g., reduced receptor-binding capacity). Protein therapeutics with "disposable" PEG modifiers have potential advantages over the current technology. Here, we show that a protein-polymer "Medusa complex" is formed by the combination of a hexavalent lectin with a glycopolymer. Using NMR spectroscopy, small-angle X-ray scattering (SAXS), size exclusion chromatography, and native gel electrophoresis it was demonstrated that the fucose-binding lectin RSL and a fucose-capped polyethylene glycol (Fuc-PEG) form a multimeric assembly. All of the experimental methods provided evidence of noncovalent PEGylation with a concomitant increase in molecular mass and hydrodynamic radius. The affinity of the protein-polymer complex was determined by ITC and competition experiments to be in the micromolar range, suggesting that such systems have potential biomedical applications. PMID:27403588

  6. Therapeutic targeting of complement to modify disease course and improve outcomes in neurological conditions.

    PubMed

    Brennan, Faith H; Lee, John D; Ruitenberg, Marc J; Woodruff, Trent M

    2016-06-01

    The recognition that complement proteins are abundantly present and can have pathological roles in neurological conditions offers broad scope for therapeutic intervention. Accordingly, an increasing number of experimental investigations have explored the potential of harnessing the unique activation pathways, proteases, receptors, complexes, and natural inhibitors of complement, to mitigate pathology in acute neurotrauma and chronic neurodegenerative diseases. Here, we review mechanisms of complement activation in the central nervous system (CNS), and explore the effects of complement inhibition in cerebral ischemic-reperfusion injury, traumatic brain injury, spinal cord injury, Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. We consider the challenges and opportunities arising from these studies. As complement therapies approach clinical translation, we provide perspectives on how promising complement-targeted therapeutics could become part of novel and effective future treatment options to improve outcomes in the initiation and progression stages of these debilitating CNS disorders. PMID:27049459

  7. Molecular modeling of lectin-like protein from Acacia farnesiana reveals a possible anti-inflammatory mechanism in Carrageenan-induced inflammation.