Peterson, Sheri L.; Nguyen, Hal X.; Mendez, Oscar A.
2015-01-01
Traumatic injury to CNS fiber tracts is accompanied by failure of severed axons to regenerate and results in lifelong functional deficits. The inflammatory response to CNS trauma is mediated by a diverse set of cells and proteins with varied, overlapping, and opposing effects on histological and behavioral recovery. Importantly, the contribution of individual inflammatory complement proteins to spinal cord injury (SCI) pathology is not well understood. Although the presence of complement components increases after SCI in association with axons and myelin, it is unknown whether complement proteins affect axon growth or regeneration. We report a novel role for complement C1q in neurite outgrowth in vitro and axon regrowth after SCI. In culture, C1q increased neurite length on myelin. Protein and molecular assays revealed that C1q interacts directly with myelin associated glycoprotein (MAG) in myelin, resulting in reduced activation of growth inhibitory signaling in neurons. In agreement with a C1q-outgrowth-enhancing mechanism in which C1q binding to MAG reduces MAG signaling to neurons, complement C1q blocked both the growth inhibitory and repulsive turning effects of MAG in vitro. Furthermore, C1q KO mice demonstrated increased sensory axon turning within the spinal cord lesion after SCI with peripheral conditioning injury, consistent with C1q-mediated neutralization of MAG. Finally, we present data that extend the role for C1q in axon growth and guidance to include the sprouting patterns of descending corticospinal tract axons into spinal gray matter after dorsal column transection SCI. PMID:25762679
Identification of C1q as a Binding Protein for Advanced Glycation End Products.
Chikazawa, Miho; Shibata, Takahiro; Hatasa, Yukinori; Hirose, Sayumi; Otaki, Natsuki; Nakashima, Fumie; Ito, Mika; Machida, Sachiko; Maruyama, Shoichi; Uchida, Koji
2016-01-26
Advanced glycation end products (AGEs) make up a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with the free amino groups of proteins. The abundance of AGEs in a variety of age-related diseases, including diabetic complications and atherosclerosis, and their pathophysiological effects suggest the existence of innate defense mechanisms. Here we examined the presence of serum proteins that are capable of binding glycated bovine serum albumin (AGEs-BSA), prepared upon incubation of BSA with dehydroascorbate, and identified complement component C1q subcomponent subunit A as a novel AGE-binding protein in human serum. A molecular interaction analysis showed the specific binding of C1q to the AGEs-BSA. In addition, we identified DNA-binding regions of C1q, including a collagen-like domain, as the AGE-binding site and established that the amount of positive charge on the binding site was the determining factor. C1q indeed recognized several other modified proteins, including acylated proteins, suggesting that the binding specificity of C1q might be ascribed, at least in part, to the electronegative potential of the ligand proteins. We also observed that C1q was involved in the AGEs-BSA-activated deposition of complement proteins, C3b and C4b. In addition, the AGEs-BSA mediated the proteolytic cleavage of complement protein 5 to release C5a. These findings provide the first evidence of AGEs as a new ligand recognized by C1q, stimulating the C1q-dependent classical complement pathway.
Gao, Zhan; Li, Mengyang; Ma, Jie; Zhang, Shicui
2014-12-01
The origin of the classical complement pathway remains open during chordate evolution. A C1q-like member, BjC1q, was identified in the basal chordate amphioxus. It is predominantly expressed in the hepatic caecum, hindgut, and notochord, and is significantly upregulated following challenge with bacteria or lipoteichoic acid and LPS. Recombinant BjC1q and its globular head domain specifically interact with lipoteichoic acid and LPS, but BjC1q displays little lectin activity. Moreover, rBjC1q can assemble to form the high molecular weight oligomers necessary for binding to proteases C1r/C1s and for complement activation, and binds human C1r/C1s/mannan-binding lectin-associated serine protease-2 as well as amphioxus serine proteases involved in the cleavage of C4/C2, and C3 activation. Importantly, rBjC1q binds with human IgG as well as an amphioxus Ig domain containing protein, resulting in the activation of the classical complement pathway. This is the first report showing that a C1q-like protein in invertebrates is able to initiate classical pathway, raising the possibility that amphioxus possesses a C1q-mediated complement system. It also suggests a new scenario for the emergence of the classical complement pathway, in contrast to the proposal that the lectin pathway evolved into the classical pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoewall, Christopher; Wetteroe, Jonas; Bengtsson, Torbjoern
2007-01-05
C-reactive protein (CRP) interacts with phosphorylcholine (PC), Fc{gamma} receptors, complement factor C1q and cell nuclear constituents, yet its biological roles are insufficiently understood. The aim was to characterize CRP-induced complement activation by ellipsometry. PC conjugated with keyhole limpet hemocyanin (PC-KLH) was immobilized to cross-linked fibrinogen. A low-CRP serum with different amounts of added CRP was exposed to the PC-surfaces. The total serum protein deposition was quantified and deposition of IgG, C1q, C3c, C4, factor H, and CRP detected with polyclonal antibodies. The binding of serum CRP to PC-KLH dose-dependently triggered activation of the classical pathway. Unexpectedly, the activation was efficientlymore » down-regulated at CRP levels >150 mg/L. Using radial immunodiffusion, CRP-C1q interaction was observed in serum samples with high CRP concentrations. We propose that the underlying mechanism depends on fluid-phase interaction between C1q and CRP. This might constitute another level of complement regulation, which has implications for systemic lupus erythematosus where CRP is often low despite flare-ups.« less
Atomic resolution model of the antibody Fc interaction with the complement C1q component.
Schneider, Sebastian; Zacharias, Martin
2012-05-01
The globular C1q heterotrimer is a subunit of the C1 complement factor. Binding of the C1q subunit to the constant (Fc) part of antibody molecules is a first step and key event of complement activation. Although three-dimensional structures of C1q and antibody Fc subunits have been determined experimentally no atomic resolution structure of the C1q-Fc complex is known so far. Based on systematic protein-protein docking searches and Molecular Dynamics simulations a structural model of the C1q-IgG1-Fc-binding geometry has been obtained. The structural model is compatible with available experimental data on the interaction between the two partner proteins. It predicts a binding geometry that involves mainly the B-subunit of the C1q-trimer and both subunits of the IgG1-Fc-dimer with small conformational adjustments with respect to the unbound partners to achieve high surface complementarity. In addition to several charge-charge and polar contacts in the rim region of the interface it also involves nonpolar contacts between the two proteins and is compatible with the carbohydrate moiety of the Fc subunit. The model for the complex structure provides a working model for rationalizing available biochemical data on this important interaction and can form the basis for the design of Fc variants with a greater capacity to activate the complement system for example on binding to cancer cells or other target structures. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua
2015-01-01
In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. PMID:26231209
Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua
2015-09-11
In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Role of collectins and complement protein C1q in pregnancy and parturition.
Madhukaran, Shanmuga Priyaa; Alhamlan, Fatimah S; Kale, Kavita; Vatish, Manu; Madan, Taruna; Kishore, Uday
2016-11-01
Collectins such as surfactant proteins SP-A, SP-D, and mannan-binding lectin (MBL), as well as complement protein C1q are evolutionarily conserved innate immune molecules. They are known to opsonize a range of microbial pathogens (bacteria, fungi, virus, and parasites) and trigger effector clearance mechanisms involving phagocytosis and/or complement activation. Collectins and C1q have also attracted attention in studies involving pregnancy as they are expressed in the female reproductive tissues during pregnancy; a unique state of immune suppression with increased susceptibility to infectious diseases. Recent studies are beginning to unravel their functional significance in implantation, placentation, pregnancy maintenance and parturition in normal and adverse pregnancies. Collectins and C1q, expressed in gestational tissues during pregnancy, might alter the status of mother's immune response to the allogenic fetus and the microenvironment, thereby serving as important regulators of fetus-mother interaction. Here, we discuss the functional roles that have been assigned to SP-A, SP-D, MBL and C1q in pregnancy and parturition. Copyright © 2016 Elsevier GmbH. All rights reserved.
Trichinella spiralis Calreticulin Binds Human Complement C1q As an Immune Evasion Strategy.
Zhao, Limei; Shao, Shuai; Chen, Yi; Sun, Ximeng; Sun, Ran; Huang, Jingjing; Zhan, Bin; Zhu, Xinping
2017-01-01
As a multicellular parasitic nematode, Trichinella spiralis regulates host immune responses by producing a variety of immunomodulatory molecules to escape from host immune attack, but the mechanisms underlying the immune evasion are not well understood. Here, we identified that T. spiralis calreticulin ( Ts -CRT), a Ca 2+ -binding protein, facilitated T. spiralis immune evasion by interacting with the first component of human classical complement pathway, C1q. In the present study, Ts -CRT was found to be expressed on the surface of different developmental stages of T. spiralis as well as in the secreted products of adult and muscle larval worms. Functional analysis identified that Ts -CRT was able to bind to human C1q, resulting in the inhibition of C1q-initiated complement classical activation pathway reflected by reduced C4/C3 generation and C1q-dependent lysis of antibody-sensitized sheep erythrocytes. Moreover, recombinant Ts -CRT (r Ts -CRT) binding to C1q suppressed C1q-induced THP-1-derived macrophages chemotaxis and reduced monocyte-macrophages release of reactive oxygen intermediates (ROIs). Blocking Ts -CRT on the surface of newborn larvae (NBL) of T. spiralis with anti- Ts -CRT antibody increased the C1q-mediated adherence of monocyte-macrophages to larvae and impaired larval infectivity. All of these results suggest that T. spiralis -expressed Ts -CRT plays crucial roles in T. spiralis immune evasion and survival in host mostly by directly binding to host complement C1q, which not only reduces C1q-mediated activation of classical complement pathway but also inhibits the C1q-induced non-complement activation of macrophages.
Trichinella spiralis Calreticulin Binds Human Complement C1q As an Immune Evasion Strategy
Zhao, Limei; Shao, Shuai; Chen, Yi; Sun, Ximeng; Sun, Ran; Huang, Jingjing; Zhan, Bin; Zhu, Xinping
2017-01-01
As a multicellular parasitic nematode, Trichinella spiralis regulates host immune responses by producing a variety of immunomodulatory molecules to escape from host immune attack, but the mechanisms underlying the immune evasion are not well understood. Here, we identified that T. spiralis calreticulin (Ts-CRT), a Ca2+-binding protein, facilitated T. spiralis immune evasion by interacting with the first component of human classical complement pathway, C1q. In the present study, Ts-CRT was found to be expressed on the surface of different developmental stages of T. spiralis as well as in the secreted products of adult and muscle larval worms. Functional analysis identified that Ts-CRT was able to bind to human C1q, resulting in the inhibition of C1q-initiated complement classical activation pathway reflected by reduced C4/C3 generation and C1q-dependent lysis of antibody-sensitized sheep erythrocytes. Moreover, recombinant Ts-CRT (rTs-CRT) binding to C1q suppressed C1q-induced THP-1-derived macrophages chemotaxis and reduced monocyte–macrophages release of reactive oxygen intermediates (ROIs). Blocking Ts-CRT on the surface of newborn larvae (NBL) of T. spiralis with anti-Ts-CRT antibody increased the C1q-mediated adherence of monocyte–macrophages to larvae and impaired larval infectivity. All of these results suggest that T. spiralis-expressed Ts-CRT plays crucial roles in T. spiralis immune evasion and survival in host mostly by directly binding to host complement C1q, which not only reduces C1q-mediated activation of classical complement pathway but also inhibits the C1q-induced non-complement activation of macrophages. PMID:28620388
Macedo, Ana Catarina Lunz; Isaac, Lourdes
2016-01-01
The complement system plays an important role in the innate and acquired immune response against pathogens. It consists of more than 30 proteins found in soluble form or attached to cell membranes. Most complement proteins circulate in inactive forms and can be sequentially activated by the classical, alternative, or lectin pathways. Biological functions, such as opsonization, removal of apoptotic cells, adjuvant function, activation of B lymphocytes, degranulation of mast cells and basophils, and solubilization and clearance of immune complex and cell lysis, are dependent on complement activation. Although the activation of the complement system is important to avoid infections, it also can contribute to the inflammatory response triggered by immune complex deposition in tissues in autoimmune diseases. Paradoxically, the deficiency of early complement proteins from the classical pathway (CP) is strongly associated with development of systemic lupus erythematous (SLE) – mainly C1q deficiency (93%) and C4 deficiency (75%). The aim of this review is to focus on the deficiencies of early components of the CP (C1q, C1r, C1s, C4, and C2) proteins in SLE patients. PMID:26941740
Johnson, S A; Lampert-Etchells, M; Pasinetti, G M; Rozovsky, I; Finch, C E
1992-01-01
This study describes evidence in the adult human and rat brain for mRNAs that encode two complement (C) proteins, C1qB and C4. C proteins are important effectors of humoral immunity and inflammation in peripheral tissues but have not been considered as normally present in brain. Previous immunocytochemical studies showed that C proteins are associated with plaques, tangles, and dystrophic neurites in Alzheimer's disease (AD), but their source is unknown. Combined immunocytochemistry and in situ hybridization techniques show C4 mRNA in pyramidal neurons and C1qB mRNA in microglia. Primary rat neuron cultures also show C1qB mRNA. In the cortex from AD brains, there were two- to threefold increases of C1qB mRNA and C4 mRNA, and increased C1qB mRNA prevalence was in part associated with microglia. As a model for AD, we examined entorhinal cortex perforant path transection in the rat brain, which caused rapid increases of C1qB mRNA in the ipsilateral, but not contralateral, hippocampus and entorhinal cortex. The role of brain-derived acute and chronic C induction during AD and experimental lesions can now be considered in relation to functions of C proteins that pertain to cell degeneration and/or cell preservation and synaptic plasticity.
21 CFR 866.5240 - Complement components immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids, and tissues. Complement is a group of serum proteins which destroy infectious agents. Measurements of these...
21 CFR 866.5240 - Complement components immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids, and tissues. Complement is a group of serum proteins which destroy infectious agents. Measurements of these...
21 CFR 866.5240 - Complement components immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids, and tissues. Complement is a group of serum proteins which destroy infectious agents. Measurements of these...
21 CFR 866.5240 - Complement components immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids, and tissues. Complement is a group of serum proteins which destroy infectious agents. Measurements of these...
2017-01-01
Tamm-Horsfall protein (THP) is an abundant urinary protein of renal origin. We hypothesize that THP can act as an inhibitor of complement since THP binds complement 1q (C1q) of the classical complement pathway, inhibits activation of this pathway, and is important in decreasing renal ischemia-reperfusion injury (a complement-mediated condition). In this study, we began to investigate whether THP interacted with the alternate complement pathway via complement factor H (CFH). THP was shown to bind CFH using ligand blots and in an ELISA (KD of 1 × 10−6 M). Next, the ability of THP to alter CFH’s normal action as it functioned as a cofactor in complement factor I (CFI)–mediated complement 3b (C3b) degradation was investigated. Unexpectedly, control experiments in these in vitro assays suggested that THP, without added CFH, could act as a cofactor in CFI-mediated C3b degradation. This cofactor activity was present equally in THP isolated from 10 different individuals. While an ELISA demonstrated small amounts of CFH contaminating THP samples, these CFH amounts were insufficient to explain the degree of cofactor activity present in THP. An ELISA demonstrated that THP directly bound C3b (KD ~ 5 × 10−8 m), a prerequisite for a protein acting as a C3b degradation cofactor. The cofactor activity of THP likely resides in the protein portion of THP since partially deglycosylated THP still retained cofactor activity. In conclusion, THP appears to participate directly in complement inactivation by its ability to act as a cofactor for C3b degradation, thus adding support to the hypothesis that THP might act as an endogenous urinary tract inhibitor of complement. PMID:28742158
Tavano, Regina; Gabrielli, Luca; Lubian, Elisa; Fedeli, Chiara; Visentin, Silvia; Polverino De Laureto, Patrizia; Arrigoni, Giorgio; Geffner-Smith, Alessandra; Chen, Fangfang; Simberg, Dmitri; Morgese, Giulia; Benetti, Edmondo M; Wu, Linping; Moghimi, Seyed Moein; Mancin, Fabrizio; Papini, Emanuele
2018-05-23
Poly(2-methyl-2-oxazoline) (PMOXA) is an alternative promising polymer to poly(ethylene glycol) (PEG) for design and engineering of macrophage-evading nanoparticles (NPs). Although PMOXA-engineered NPs have shown comparable pharmacokinetics and in vivo performance to PEGylated stealth NPs in the murine model, its interaction with elements of the human innate immune system has not been studied. From a translational angle, we studied the interaction of fully characterized PMOXA-coated vinyltriethoxysilane-derived organically modified silica NPs (PMOXA-coated NPs) of approximately 100 nm in diameter with human complement system, blood leukocytes, and macrophages and compared their performance with PEGylated and uncoated NP counterparts. Through detailed immunological and proteomic profiling, we show that PMOXA-coated NPs extensively trigger complement activation in human sera exclusively through the classical pathway. Complement activation is initiated by the sensing molecule C1q, where C1q binds with high affinity ( K d = 11 ± 1 nM) to NP surfaces independent of immunoglobulin binding. C1q-mediated complement activation accelerates PMOXA opsonization with the third complement protein (C3) through the amplification loop of the alternative pathway. This promoted NP recognition by human blood leukocytes and monocyte-derived macrophages. The macrophage capture of PMOXA-coated NPs correlates with sera donor variability in complement activation and opsonization but not with other major corona proteins, including clusterin and a wide range of apolipoproteins. In contrast to these observations, PMOXA-coated NPs poorly activated the murine complement system and were marginally recognized by mouse macrophages. These studies provide important insights into compatibility of engineered NPs with elements of the human innate immune system for translational steps.
Complement C1q formation of immune complexes with milk caseins and wheat glutens in schizophrenia
Severance, Emily G.; Gressitt, Kristin; Halling, Meredith; Stallings, Cassie R.; Origoni, Andrea E.; Vaughan, Crystal; Khushalani, Sunil; Alaedini, Armin; Dupont, Didier; Dickerson, Faith B.; Yolken, Robert H.
2012-01-01
Immune system factors including complement pathway activation are increasingly linked to the etiology and pathophysiology of schizophrenia. Complement protein, C1q, binds to and helps to clear immune complexes composed of immunoglobulins coupled to antigens. The antigenic stimuli for C1q activation in schizophrenia are not known. Food sensitivities characterized by elevated IgG antibodies to bovine milk caseins and wheat glutens have been reported in individuals with schizophrenia. Here, we examined the extent to which these food products might comprise the antigen component of complement C1q immune complexes in individuals with recent onset schizophrenia (n=38), non-recent onset schizophrenia (n=61) and non-psychiatric controls (n=63). C1q seropositivity was significantly associated with both schizophrenia groups (recent onset, odds ratio (OR)=8.02, p≤0.008; non-recent onset, OR=3.15, p≤0.03) compared to controls (logistic regression models corrected for age, sex, race and smoking status). Casein- and/or gluten-IgG binding to C1q was significantly elevated in the non-recent onset group compared to controls (OR=4.36, p≤0.01). Significant amounts of C1q-casein/gluten-related immune complexes and C1q correlations with a marker for gastrointestinal inflammation in non-recent onset schizophrenia suggests a heightened rate of food antigens in the systemic circulation, perhaps via a disease-associated altered intestinal permeability. In individuals who are in the early stages of disease onset, C1q activation may reflect the formation of immune complexes with non-casein- or non-gluten-related antigens, the presence of C1q autoantibodies, and/or a dissociated state of immune complex components. In conclusion, complement activation may be a useful biomarker to diagnose schizophrenia early during the course of the disease. Future prospective studies should evaluate the impacts of casein- and gluten-free diets on C1q activation in schizophrenia. PMID:22801085
Boyle, Michelle J; Reiling, Linda; Feng, Gaoqian; Langer, Christine; Osier, Faith H; Aspeling-Jones, Harvey; Cheng, Yik Sheng; Stubbs, Janine; Tetteh, Kevin K A; Conway, David J; McCarthy, James S; Muller, Ivo; Marsh, Kevin; Anders, Robin F; Beeson, James G
2015-03-17
Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C') inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C' inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Braun, L; Ghebrehiwet, B; Cossart, P
2000-04-03
InlB is a Listeria monocytogenes protein that promotes entry of the bacterium into mammalian cells by stimulating tyrosine phosphorylation of the adaptor proteins Gab1, Cbl and Shc, and activation of phosphatidyl- inositol (PI) 3-kinase. Using affinity chromatography and enzyme-linked immunosorbent assay, we demonstrate a direct interaction between InlB and the mammalian protein gC1q-R, the receptor of the globular part of the complement component C1q. Soluble C1q or anti-gC1q-R antibodies impair InlB-mediated entry. Transient transfection of GPC16 cells, which are non-permissive to InlB-mediated entry, with a plasmid-expressing human gC1q-R promotes entry of InlB-coated beads. Furthermore, several experiments indicate that membrane recruitment and activation of PI 3-kinase involve an InlB-gC1q-R interaction and that gC1q-R associates with Gab1 upon stimulation of Vero cells with InlB. Thus, gC1q-R constitutes a cellular receptor involved in InlB-mediated activation of PI 3-kinase and tyrosine phosphorylation of the adaptor protein Gab1. After E-cadherin, the receptor for internalin, gC1q-R is the second identified mammalian receptor promoting entry of L. monocytogenes into mammalian cells.
Agostinis, Chiara; Vidergar, Romana; Belmonte, Beatrice; Mangogna, Alessandro; Amadio, Leonardo; Geri, Pietro; Borelli, Violetta; Zanconati, Fabrizio; Tedesco, Francesco; Confalonieri, Marco; Tripodo, Claudio; Kishore, Uday; Bulla, Roberta
2017-01-01
C1q is the first recognition subcomponent of the complement classical pathway, which acts toward the clearance of pathogens and apoptotic cells. C1q is also known to modulate a range of functions of immune and non-immune cells, and has been shown to be involved in placental development and sensorial synaptic pruning. We have recently shown that C1q can promote tumor by encouraging their adhesion, migration, and proliferation in addition to angiogenesis and metastasis. In this study, we have examined the role of human C1q in the microenvironment of malignant pleural mesothelioma (MPM), a rare form of cancer commonly associated with exposure to asbestos. We found that C1q was highly expressed in all MPM histotypes, particularly in epithelioid rather than in sarcomatoid histotype. C1q avidly bound high and low molecular weight hyaluronic acid (HA) via its globular domain. C1q bound to HA was able to induce adhesion and proliferation of mesothelioma cells (MES) via enhancement of ERK1/2, SAPK/JNK, and p38 phosphorylation; however, it did not activate the complement cascade. Consistent with the modular organization of the globular domain, we demonstrated that C1q may bind to HA through ghA module, whereas it may interact with human MES through the ghC. In conclusion, C1q highly expressed in MPM binds to HA and enhances the tumor growth promoting cell adhesion and proliferation. These data can help develop novel diagnostic markers and molecular targets for MPM. PMID:29209316
Agostinis, Chiara; Vidergar, Romana; Belmonte, Beatrice; Mangogna, Alessandro; Amadio, Leonardo; Geri, Pietro; Borelli, Violetta; Zanconati, Fabrizio; Tedesco, Francesco; Confalonieri, Marco; Tripodo, Claudio; Kishore, Uday; Bulla, Roberta
2017-01-01
C1q is the first recognition subcomponent of the complement classical pathway, which acts toward the clearance of pathogens and apoptotic cells. C1q is also known to modulate a range of functions of immune and non-immune cells, and has been shown to be involved in placental development and sensorial synaptic pruning. We have recently shown that C1q can promote tumor by encouraging their adhesion, migration, and proliferation in addition to angiogenesis and metastasis. In this study, we have examined the role of human C1q in the microenvironment of malignant pleural mesothelioma (MPM), a rare form of cancer commonly associated with exposure to asbestos. We found that C1q was highly expressed in all MPM histotypes, particularly in epithelioid rather than in sarcomatoid histotype. C1q avidly bound high and low molecular weight hyaluronic acid (HA) via its globular domain. C1q bound to HA was able to induce adhesion and proliferation of mesothelioma cells (MES) via enhancement of ERK1/2, SAPK/JNK, and p38 phosphorylation; however, it did not activate the complement cascade. Consistent with the modular organization of the globular domain, we demonstrated that C1q may bind to HA through ghA module, whereas it may interact with human MES through the ghC. In conclusion, C1q highly expressed in MPM binds to HA and enhances the tumor growth promoting cell adhesion and proliferation. These data can help develop novel diagnostic markers and molecular targets for MPM.
Biró, Éva; Nieuwland, Rienk; Tak, Paul P; Pronk, Loes M; Schaap, Marianne C L; Sturk, Augueste; Hack, C Erik
2007-01-01
Objectives In vitro, microparticles can activate complement via the classical pathway. If demonstrable ex vivo, this mechanism may contribute to the pathogenesis of rheumatoid arthritis (RA). We therefore investigated the presence of activated complement components and complement activator molecules on the surface of cell‐derived microparticles of RA patients and healthy individuals. Methods Microparticles from synovial fluid (n = 8) and plasma (n = 9) of 10 RA patients and plasma of sex‐ and age‐matched healthy individuals (n = 10) were analysed by flow cytometry for bound complement components (C1q, C4, C3) and complement activator molecules (C‐reactive protein (CRP), serum amyloid P component (SAP), immunoglobulin (Ig) M, IgG). Results Microparticles with bound C1q, C4, and/or C3 were abundant in RA synovial fluid, while in RA and control plasma much lower levels were present. Microparticles with bound C1q correlated with those with bound C3 in synovial fluid (r = 0.961, p = 0.0001), and with those with bound C4 in plasma (RA: r = 0.908, p = 0.0007; control: r = 0.632, p = 0.0498), indicating classical pathway activation. In synovial fluid, microparticles with IgM and IgG correlated with those with C1q (r = 0.728, p = 0.0408; r = 0.952, p = 0.0003, respectively), and in plasma, microparticles with CRP correlated with those with C1q (RA: r = 0.903, p = 0.0021; control: r = 0.683, p = 0.0296), implicating IgG and IgM in the classical pathway activation in RA synovial fluid, and CRP in the low level classical pathway activation in plasma. Conclusions This study demonstrates the presence of bound complement components and activator molecules on microparticles ex vivo, and supports their role in low grade complement activation in plasma and increased complement activation in RA synovial fluid. PMID:17261534
Shark complement: an assessment.
Smith, S L
1998-12-01
The classical (CCP) and alternative (ACP) pathways of complement activation have been established for the nurse shark (Ginglymostoma cirratum). The isolation of a cDNA clone encoding a mannan-binding protein-associated serine protease (MASP)-1-like protein from the Japanese dogfish (Triakis scyllia) suggests the presence of a lectin pathway. The CCP consists of six functionally distinct components: C1n, C2n, C3n, C4n, C8n and C9n, and is activated by immune complexes in the presence of Ca++ and Mg++ ions. The ACP is antibody independent, requiring Mg++ ions and a heat-labile 90 kDa factor B-like protein for activity. Proteins considered homologues of C1q, C3 and C4 (C2n) of the mammalian complement system have been isolated from nurse shark serum. Shark C1q is composed of at least two chain types each showing 50% identity to human C1q chains A and B. Partial sequence of the globular domain of one of the chains shows it to be C1q-like rather than like mannan-binding protein. N-terminal amino acid sequences of the alpha and beta chain of shark C3 and C4 molecules show significant identity with corresponding human C3 and C4 chains. A sequence representing shark C4 gamma chain, shows little similarity to human C4 gamma chain. The terminal shark components C8n and C9n are functional analogues of mammalian C8 and C9. Anaphylatoxin activity has been demonstrated in activated shark serum, and porcine C5a desArg induces shark leucocyte chemotaxis. The deduced amino acid sequence of a partial C3 cDNA clone from the nurse shark shows 50%, 30% and 24% homology with the corresponding region of mammalian C3, C4 and alpha 2-macroglobulin. Deduced amino acid sequence data from partial Bf/C2 cDNA clones, two from the nurse shark and one from the Japanese dogfish, suggest that at least one species of elasmobranch has two distinct Bf/C2 genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yun; Kwon, Young-Chan; Kim, Soo-In
Hantaan virus (HTNV) is a pathogenic hantavirus that causes hemorrhagic fever with renal syndrome (HFRS). HTNV infection is mediated by {alpha}v{beta}3 integrin. We used protein blots of Vero E6 cell homogenates to demonstrate that radiolabeled HTNV virions bind to gC1qR/p32, the acidic 32-kDa protein known as the receptor for the globular head domain of complement C1q. RNAi-mediated suppression of gC1qR/p32 markedly reduced HTNV binding and infection in human lung epithelial A549 cells. Conversely, transient expression of either simian or human gC1qR/p32 rendered non-permissive CHO cells susceptible to HTNV infection. These results suggest an important role for gC1qR/p32 in HTNV infectionmore » and pathogenesis.« less
Allonso, Diego; Nogueira, Mauricio L.; Mohana-Borges, Ronaldo
2013-01-01
Dengue constitutes a global health concern. The clinical manifestation of this disease varies from mild febrile illness to severe hemorrhage and/or fatal hypovolemic shock. Flavivirus nonstructural protein 1 (NS1) is a secreted glycoprotein that is displayed on the surface of infected cells but is absent in viral particles. NS1 accumulates at high levels in the plasma of dengue virus (DENV)-infected patients, and previous reports highlight its involvement in immune evasion, dengue severity, liver dysfunction and pathogenesis. In the present study, we performed a yeast two-hybrid screen to search for DENV2 NS1-interacting partners using a human liver cDNA library. We identified fifty genes, including human complement component 1 (C1q), which was confirmed by coimmunoprecipitation, ELISA and immunofluorescence assays, revealing for the first time the direct binding of this protein to NS1. Furthermore, the majority of the identified genes encode proteins that are secreted into the plasma of patients, and most of these proteins are classified as acute-phase proteins (APPs), such as plasminogen, haptoglobin, hemopexin, α-2-HS-glycoprotein, retinol binding protein 4, transferrin, and C4. The results presented here confirm the direct interaction of DENV NS1 with a key protein of the complement system and suggest a role for this complement protein in the pathogenesis of DENV infection. PMID:23516407
Ramos-Sevillano, Elisa; Urzainqui, Ana; Campuzano, Susana; Moscoso, Miriam; González-Camacho, Fernando; Domenech, Mirian; Rodríguez de Córdoba, Santiago; Sánchez-Madrid, Francisco; Brown, Jeremy S.; García, Ernesto
2014-01-01
The complement system is a key component of the host immune response for the recognition and clearance of Streptococcus pneumoniae. In this study, we demonstrate that the amidase LytA, the main pneumococcal autolysin, inhibits complement-mediated immunity independently of effects on pneumolysin by a complex process of impaired complement activation, increased binding of complement regulators, and direct degradation of complement C3. The use of human sera depleted of either C1q or factor B confirmed that LytA prevented activation of both the classical and alternative pathways, whereas pneumolysin inhibited only the classical pathway. LytA prevented binding of C1q and the acute-phase protein C-reactive protein to S. pneumoniae, thereby reducing activation of the classical pathway on the bacterial surface. In addition, LytA increased recruitment of the complement downregulators C4BP and factor H to the pneumococcal cell wall and directly cleaved C3b and iC3b to generate degradation products. As a consequence, C3b deposition and phagocytosis increased in the absence of LytA and were markedly enhanced for the lytA ply double mutant, confirming that a combination of LytA and Ply is essential for the establishment of pneumococcal pneumonia and sepsis in a murine model of infection. These data demonstrate that LytA has pleiotropic effects on complement activation, a finding which, in combination with the effects of pneumolysin on complement to assist with pneumococcal complement evasion, confirms a major role of both proteins for the full virulence of the microorganism during septicemia. PMID:25404032
Expression and regulation of complement C1q by human THP-1-derived macrophages.
Walker, D G
1998-01-01
The regulation of C1q expression was examined in the human monocytic cell line THP-1. Since these cells can be differentiated into cells with macrophage properties and induced to express C1q, they were used as models for mature human monocyte/macrophages and indirectly microglia. Interferon-gamma (IFN-gamma) and the anti-inflammatory steroid agents dexamethasone and prednisone were powerful stimulators of C1q production, alone or in combination. Interleukin-6 (IL-6) and lipopolysaccharide (LPS) also had significant stimulatory activity. Phorbol myristate acetate, a protein kinase C activator, reduced C1q expression. Four additional classes of pharmacological agents were tested for their effect on C1q secretion. Tacrine, but not indomethacin, cimetidine, or propentofylline, showed activity in inhibiting C1q secretion by IFN-gamma treated THP-1-derived macrophages.
Wells, Laura A; Guo, Hongbo; Emili, Andrew; Sefton, Michael V
2017-02-01
Polymer beads made of 45% methacrylic acid co methyl methacrylate (MAA beads) promote vascular regenerative responses in contrast to control materials without methacrylic acid (here polymethyl methacrylate beads, PMMA). In vitro and in vivo studies suggest that MAA copolymers induce differences in macrophage phenotype and polarization and inflammatory responses, presumably due to protein adsorption differences between the beads. To explore differences in protein adsorption in an unbiased manner, we used high resolution shotgun mass spectrometry to identify and compare proteins that adsorb from human plasma or serum onto MAA and PMMA beads. From plasma, MAA beads adsorbed many complement proteins, such as C1q, C4-related proteins and the complement inhibitor factor H, while PMMA adsorbed proteins, such as albumin, C3 and apolipoproteins. Because of the differences in complement protein adsorption, follow-up studies focused on using ELISA to assess complement activation. When incubated in serum, MAA beads generated significantly lower levels of soluble C5b9 and C3a/C3a desarg in comparison to PMMA beads, indicating a decrease in complement activation with MAA beads. The differences in adsorbed protein on the two materials likely alter subsequent cell-material interactions that ultimately result in different host responses and local vascularization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Honda-Ogawa, Mariko; Sumitomo, Tomoko; Mori, Yasushi; Hamd, Dalia Talat; Ogawa, Taiji; Yamaguchi, Masaya; Nakata, Masanobu; Kawabata, Shigetada
2017-01-01
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes, PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (ΔpepO) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by ΔpepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with ΔpepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites. PMID:28154192
Cropley, Vanessa; Laskaris, Liliana; Zalesky, Andrew; Weickert, Cynthia Shannon; Biase, Maria Di; Chana, Gursharan; Baune, Bernhard; Bousman, Chad; Nelson, Barnaby; McGorry, Patrick D; Everall, Ian; Pantelis, Christos
2018-01-01
Abstract Background The complement system - a key component of the innate immune system, has been proposed to contribute to the pathogenesis of schizophrenia. Recently, complement C4 was associated with increased risk of schizophrenia, and in a mouse model, developmentally-timed synaptic pruning. These observations have led to proposals that abnormal activation of the complement system might contribute to the development of schizophrenia by disrupting synaptic pruning during key developmental periods. However, despite renewed interest in the complement system in schizophrenia it remains unclear whether peripheral complement levels differ in cases compared to controls, change over the course of illness and whether they are associated with current symptomatology and brain cortical thickness. This study aimed to: i) investigate whether peripheral complement protein levels are altered at different stages of illness, and ii) identify patterns among complement protein levels that predict clinical symptoms and grey matter thickness across the cortex. Methods Complement factors C1q, C3 and C4 were quantified in 183 participants [n=83 Healthy Controls (HC), n=10 Ultra-High Risk (UHR) for psychosis, n=40 First Episode Psychosis (FEP), n=50 Chronic schizophrenia] using Multiplex ELISA. Permutation-based t-tests were used to assess between-group differences in complement protein levels at each of the three illness stages, relative to age- and gender-matched healthy controls. Canonical correlation analysis was used to identify patterns of complement protein levels that correlated with clinical symptoms and regional thickness across the cortex. Results C3 and C4 were significantly increased in FEP and UHR patients, whereas only C4 was significantly increased in chronic patients. A molecular pattern of increased C4 and decreased C3 was associated with positive and negative symptom severity in the pooled patient sample. Increased C4 levels alone, or decreased C3 levels alone, did not correlate with symptom severity as strongly as the pattern of increased C4 in combination with decreased C3. Preliminary canonical correlation analyses revealed that, in healthy controls, a molecular pattern characterised by increased C3 and decreased C4 was associated with relatively thinner paracentral, inferior parietal and inferior temporal cortices, but relatively thicker insular, in the left hemisphere. In the pooled patient group, a trend for increased C3 in combination with decreased C1q was associated with relatively thinner left lateral occipital cortex and pars orbitalis but relatively thicker pars opercularis and precuneus. Discussion Our findings indicate that peripheral complement concentration is particularly increased early and preceding psychosis and its imbalance may be associated with symptom severity and variation in regional grey matter thickness across the cortex.
Julkunen, Heikki; Ekblom-Kullberg, Susanne; Miettinen, Aaro
2012-08-01
Associations of different assays for antibodies to C1q (anti-C1q) and to dsDNA (anti-dsDNA) and of complements C3 and C4 with disease activity in patients with systemic lupus erythematosus (SLE) were studied. The clinical manifestations of 223 SLE patients were recorded, and the disease activity was assessed by the SLEDAI score. Anti-C1q were determined by two enzyme-linked immunosorbent assays (ELISA) and anti-dsDNA by a radioimmunoassay (RIA), a Crithidia immunofluorescence (IF) assay and three ELISA assays using human telomere DNA, plasmid DNA circles, or calf thymus DNA as antigens, respectively. Complement C3 and C4 were determined by nephelometry. Control sera were obtained from 98 blood donors. In patients with SLE, the prevalence of anti-C1q was 17-18% and that of anti-dsDNA was 36-69%. Anti-C1q, anti-dsDNA, and complement C3 and C4 correlated well with the overall activity of SLE (r = 0.323-0.351, 0.353-0.566, and -0.372-0.444, respectively; P < 0.001). Sensitivity, specificity, positive predictive value, and negative predictive value for active lupus nephritis among SLE patients were 40-44, 92, 29, and 91-92% for anti-C1q and 48-68, 29-66, 11-16, and 86-91% for anti-dsDNA, respectively. Patients with active nephritis had higher levels of anti-C1q and lower levels of C3 and C4 than patients with inactive nephritis (P = 0.003-0.018). The corresponding associations of anti-dsDNA were somewhat weaker (P = 0.023-0.198). Hematological parameters reflecting disease activity correlated clearly better with anti-dsDNA and complement C3 and C4 than with anti-C1q. Anti-C1q is inferior to anti-dsDNA as a diagnostic test in SLE and in the evaluation of overall clinical activity of the disease. Anti-C1q together with complement C3 and C4 may offer useful additional information to monitor lupus nephritis activity. There are no practical differences between different assays for anti-C1q and anti-dsDNA.
Dong, Miao; Seemann, Frauke; Humble, Joseph L; Liang, Yimin; Peterson, Drew R; Ye, Rui; Ren, Honglin; Kim, Hui-Su; Lee, Jae-Seong; Au, Doris W T; Lam, Yun Wah
2017-11-01
Growing evidence suggests that the immune system of teleost is vulnerable to xenoestrogens, which are ubiquitous in the marine environment. This study detected and identified the major circulatory immune proteins deregulated by 17α-ethinylestradiol (EE2), which may be linked to fish susceptibility to pathogens in the marine medaka, Oryzias melastigma. Fish immune competence was determined using a host resistance assay to pathogenic bacteria Edwardsiella tarda. Females were consistently more susceptible to infection-induced mortality than males. Exposure to EE2 could narrow the sex gap of mortality by increasing infection-induced death in male fish. Proteomic analysis revealed that the major plasma immune proteins of adult fish were highly sexually dimorphic. EE2 induced pronounced sex-specific changes in the plasma proteome, with the male plasma composition clearly becoming "feminised". Male plasma was found to contain a higher level of fibrinogens, WAP63 and ependymin-2-like protein, which are involved in coagulation, inflammation and regeneration. For the first time, we demonstrated that expression of C1q subunit B (C1Q), an initiating factor of the classical complement pathway, was higher in males and was suppressed in both sexes in response to EE2 and bacterial challenge. Moreover, cleavage and post-translational modification of C3, the central component of the complement system, could be altered by EE2 treatment in males (C3dg down; C3g up). Multiple regression analysis indicated that C1Q is possibly an indicator of fish survival, which warrants further confirmation. The findings support the potential application of plasma immune proteins for prognosis/diagnosis of fish immune competence. Moreover, this study provides the first biochemical basis of the sex-differences in fish immunity and how these differences might be modified by xenoestrogens. Copyright © 2017 Elsevier Ltd. All rights reserved.
C1q complement component and -antibodies reflect SLE activity and kidney involvement.
Horák, P; Hermanová, Z; Zadrazil, J; Ciferská, H; Ordeltová, M; Kusá, L; Zurek, M; Tichý, T
2006-07-01
The role of the complement system in the pathogenesis of systemic diseases is very ambivalent. In systemic lupus erythematosus (SLE), many abnormalities in the activation of the complement system have been reported. The most important antibodies formed against the complement system in SLE are the ones associated with the C1q component. The aim of this study was to assess separately the anti-C1q antibodies and C1q component in the serum from 65 patients with SLE, then in individuals with (n=33) and without (n=32) lupus nephritis and with active (n=36) and nonactive (n=29) form of the disease (European Consensus Lupus Activity Measurement, ECLAM>3, ECLAM
Honda-Ogawa, Mariko; Sumitomo, Tomoko; Mori, Yasushi; Hamd, Dalia Talat; Ogawa, Taiji; Yamaguchi, Masaya; Nakata, Masanobu; Kawabata, Shigetada
2017-03-10
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes , PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (Δ pepO ) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by Δ pepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with Δ pepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Complement system biomarkers in epilepsy.
Kopczynska, Maja; Zelek, Wioleta M; Vespa, Simone; Touchard, Samuel; Wardle, Mark; Loveless, Samantha; Thomas, Rhys H; Hamandi, Khalid; Morgan, B Paul
2018-05-24
To explore whether complement dysregulation occurs in a routinely recruited clinical cohort of epilepsy patients, and whether complement biomarkers have potential to be used as markers of disease severity and seizure control. Plasma samples from 157 epilepsy cases (106 with focal seizures, 46 generalised seizures, 5 unclassified) and 54 controls were analysed. Concentrations of 10 complement analytes (C1q, C3, C4, factor B [FB], terminal complement complex [TCC], iC3b, factor H [FH], Clusterin [Clu], Properdin, C1 Inhibitor [C1Inh] plus C-reactive protein [CRP]) were measured using enzyme linked immunosorbent assay (ELISA). Univariate and multivariate statistical analysis were used to test whether combinations of complement analytes were predictive of epilepsy diagnoses and seizure occurrence. Correlation between number and type of anti-epileptic drugs (AED) and complement analytes was also performed. We found: CONCLUSION: This study adds to evidence implicating complement in pathogenesis of epilepsy and may allow the development of better therapeutics and prognostic markers in the future. Replication in a larger sample set is needed to validate the findings of the study. Copyright © 2018. Published by Elsevier Ltd.
Buyon, Jill; Furie, Richard; Putterman, Chaim; Ramsey-Goldman, Rosalind; Kalunian, Kenneth; Barken, Derren; Conklin, John; Dervieux, Thierry
2016-01-01
The relationship between cell-bound complement activation products (CB-CAPs: EC4d, EC3d), anti-C1q, soluble complement C3/C4 and disease activity in systemic lupus erythematosus (SLE) was evaluated. Per protocol, at baseline all SLE subjects enrolled in this longitudinal study presented with active disease and elevated CB-CAPs. At each monthly visit, the non-serological (ns) Safety of Estrogens in Lupus Erythematosus: National Assessment (SELENA-SLEDAI) and the British Isles Lupus Assessment Group (BILAG)-2004 index scores were determined as was a random urinary protein to creatinine ratio (uPCR). Short-form 36 (SF-36) questionnaires were also collected. All soluble markers were determined using immunoassays, while EC4d and EC3d were determined using flow cytometry. Statistical analysis consisted of linear mixed models with random intercept and fixed slopes. A total of 36 SLE subjects (mean age 34 years; 94% female) were enrolled and evaluated monthly for an average 11 visits per subject. Clinical improvements were observed during the study, with significant decreases in ns-SELENA-SLEDAI scores, BILAG-2004 index scores and uPCR, and increases in all domains of SF-36 (p<0.01). The longitudinal decrease in ns-SELENA-SLEDAI and BILAG-2004 index scores was significantly associated with reduced EC4d and EC3d levels, reduced anti-C1q titres and increased serum complement C3/C4 (p<0.05). The changes in uPCR significantly correlated with C3, C4, anti-C1q and EC4d, with EC4d outperforming C3/C4 by a multivariate analysis. The reduced EC4d or EC3d was associated with improvements in at least six out of the eight domains of SF-36 and outperformed C3/C4. Anti-dsDNA titres did not correlate with changes in disease activity. These data indicate that CB-CAPs and anti-C1q are helpful in monitoring patients with SLE.
Preeclampsia in autologous and oocyte donation pregnancy: is there a different pathophysiology?
Lashley, Lisa E E L O; Buurma, Aletta; Swings, Godelieve M J S; Eikmans, Michael; Anholts, Jacqueline D H; Bakker, Jaap A; Claas, Frans H J
2015-06-01
Oocyte donation (OD) is a specific method of artificial reproductive technology that is accompanied by a higher risk of preeclampsia during pregnancy. The pathophysiological mechanism underlying preeclampsia in OD pregnancies is thought to differ from preeclampsia in autologous pregnancies. As preeclampsia in autologous pregnancies is suggested to be associated with complement activation, we studied C4d deposition, circulating complement components and placental complement regulatory proteins in preeclamptic OD pregnancies. Women with uncomplicated and preeclamptic pregnancies after OD or spontaneous conception were selected. We stained the placentas for C4d, marker for complement activation, measured complement factors C1q, C3 and C4 in maternal sera and quantified the placental mRNA expression of complement regulatory proteins CD46, CD55 and CD59. A significantly (p < 0.03) higher incidence of C4d deposition was observed in placentas from women with preeclampsia compared with uncomplicated pregnancies, both OD and autologous. The level of complement factors in serum did not differ between the groups. Children born in the autologous preeclampsia group were significantly lower in birth weight (p < 10th percentile) compared with the preeclamptic OD group. In addition, the placental mRNA expression level of complement regulatory proteins was significantly lower in uncomplicated and preeclamptic OD compared with the autologous pregnancies. In line with autologous preeclampsia pregnancies, there is excessive activation of complement in preeclamptic OD pregnancies. However, in contrast to autologous pregnancies this is not associated with counterbalancing upregulation of complement regulatory proteins. Furthermore, C4d deposition in OD pregnancies is not related to the severity of preeclampsia, suggesting another trigger or regulatory mechanism of placental C4d deposition in preeclamptic OD pregnancies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Blanchong, Julie A.; Heisey, Dennis M.; Scribner, Kim T.; Libants, Scot V.; Johnson, Chad; Aiken, Judd M.; Langenberg, Julia A.; Samuel, Michael D.
2009-01-01
The genetic basis of susceptibility to chronic wasting disease (CWD) in free-ranging cervids is of great interest. Association studies of disease susceptibility in free-ranging populations, however, face considerable challenges including: the need for large sample sizes when disease is rare, animals of unknown pedigree create a risk of spurious results due to population admixture, and the inability to control disease exposure or dose. We used an innovative matched case–control design and conditional logistic regression to evaluate associations between polymorphisms of complement C1q and prion protein (Prnp) genes and CWD infection in white-tailed deer from the CWD endemic area in south-central Wisconsin. To reduce problems due to admixture or disease-risk confounding, we used neutral genetic (microsatellite) data to identify closely related CWD-positive (n = 68) and CWD-negative (n = 91) female deer to serve as matched cases and controls. Cases and controls were also matched on factors (sex, location, age) previously demonstrated to affect CWD infection risk. For Prnp, deer with at least one Serine (S) at amino acid 96 were significantly less likely to be CWD-positive relative to deer homozygous for Glycine (G). This is the first characterization of genes associated with the complement system in white-tailed deer. No tests for association between any C1q polymorphism and CWD infection were significant at p < 0.05. After controlling for Prnp, we found weak support for an elevated risk of CWD infection in deer with at least one Glycine (G) at amino acid 56 of the C1qC gene. While we documented numerous amino acid polymorphisms in C1q genes none appear to be strongly associated with CWD susceptibility.
Characterization of C1q in Teleosts
Hu, Yu-Lan; Pan, Xin-Min; Xiang, Li-Xin; Shao, Jian-Zhong
2010-01-01
C1qs are key components of the classical complement pathway. They have been well documented in human and mammals, but little is known about their molecular and functional characteristics in fish. In the present study, full-length cDNAs of c1qA, c1qB, and c1qC from zebrafish (Danio rerio) were cloned, revealing the conservation of their chromosomal synteny and organization between zebrafish and other species. For functional analysis, the globular heads of C1qA (ghA), C1qB (ghB), and C1qC (ghC) were expressed in Escherichia coli as soluble proteins. Hemolytic inhibitory assays showed that hemolytic activity in carp serum can be inhibited significantly by anti-C1qA, -C1qB, and -C1qC of zebrafish, respectively, indicating that C1qA, C1qB, and C1qC are involved in the classical pathway and are conserved functionally from fish to human. Zebrafish C1qs also could specifically bind to heat-aggregated zebrafish IgM, human IgG, and IgM. The involvement of globular head modules in the C1q-dependent classical pathway demonstrates the structural and functional conservation of these molecules in the classical pathway and their IgM or IgG binding sites during evolution. Phylogenetic analysis revealed that c1qA, c1qB, and c1qC may be formed by duplications of a single copy of c1qB and that the C1q family is, evolutionarily, closely related to the Emu family. This study improves current understanding of the evolutionary history of the C1q family and C1q-mediated immunity. PMID:20615881
Effects of freezer storage time on levels of complement biomarkers.
Morgan, Angharad R; O'Hagan, Caroline; Touchard, Samuel; Lovestone, Simon; Morgan, B Paul
2017-11-06
There is uncertainty regarding how stable complement analytes are during long-term storage at - 80 °C. As part of our work program we have measured 17 complement biomarkers (C1q, C1 inhibitor, C3, C3a, iC3b, C4, C5, C9, FB, FD, FH, FI, TCC, Bb, sCR1, sCR2, Clusterin) and the benchmark inflammatory marker C-reactive protein (CRP) in a large set of plasma samples (n = 720) that had been collected, processed and subsequently stored at - 80 °C over a period of 6.6-10.6 years, prior to laboratory analysis. The biomarkers were measured using solid-phase enzyme immunoassays with a combination of multiplex assays using the MesoScale Discovery Platform and single-plex enzyme-linked immunosorbent assays (ELISAs). As part of a post hoc analysis of extrinsic factors (co-variables) affecting the analyses we investigated the impact of freezer storage time on the values obtained for each complement analyte. With the exception of five analytes (C4, C9, sCR2, clusterin and CRP), storage time was significantly correlated with measured plasma concentrations. For ten analytes: C3, FI, FB, FD, C5, sCR1, C3a, iC3b, Bb and TCC, storage time was positively correlated with concentration and for three analytes: FH, C1q, and C1 inhibitor, storage time was negatively correlated with concentration. The results suggest that information on storage time should be regarded as an important co-variable and taken into consideration when analysing data to look for associations of complement biomarker levels and disease or other outcomes.
Cell-derived microparticles and complement activation in preeclampsia versus normal pregnancy.
Biró, E; Lok, C A R; Hack, C E; van der Post, J A M; Schaap, M C L; Sturk, A; Nieuwland, R
2007-01-01
Inflammation plays a major role in the vascular dysfunction seen in preeclampsia, and several studies suggest involvement of the complement system. To investigate whether complement activation on the surface of microparticles is increased in plasma of preeclamptic patients versus healthy pregnant controls. Microparticles from plasma of preeclamptic (n=10), healthy pregnant (n=10) and healthy nonpregnant (n=10) women were analyzed by flow cytometry for bound complement components (C1q, C4, C3) and complement activator molecules (C-reactive protein [CRP], serum amyloid P component [SAP], immunoglobulin [Ig]M, IgG). Fluid phase complement activation products and activator molecules were also determined. Levels of microparticles with bound complement components showed no increase in complement activation on the microparticle surface in preeclamptic women, in line with levels of fluid phase complement activation products. In healthy nonpregnant and pregnant women, bound CRP was associated with classical pathway activation on the microparticle surface, and in healthy pregnant women IgM and IgG molecules also contributed. In preeclamptic women, microparticles with bound SAP and those with IgG seemed to contribute to C1q binding without a clear association to further classical pathway activation. Furthermore, significantly increased levels of microparticles with bound CRP were present in preeclamptic compared with healthy pregnant women (median 178x10(6)/L versus 47x10(6)/L, P<0.01), but without concomitant increases in complement activation. We found no evidence of increased complement activation on the microparticle surface in preeclamptic women. Microparticles with bound CRP were significantly increased, but in contrast to healthy pregnant and nonpregnant women, this was not associated with increased classical pathway activation on the surface of the microparticles.
Pondman, Kirsten M; Sobik, Martin; Nayak, Annapurna; Tsolaki, Anthony G; Jäkel, Anne; Flahaut, Emmanuel; Hampel, Silke; Ten Haken, Bennie; Sim, Robert B; Kishore, Uday
2014-08-01
Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. Copyright © 2014 Elsevier Inc. All rights reserved.
Kim, Tae Kwon; Ibelli, Adriana Mércia Guaratini; Mulenga, Albert
2014-01-01
In this study we characterized Amblyomma americanum (Aam) tick calreticulin (CRT) homolog in tick feeding physiology. In nature, different tick species can be found feeding on the same animal host. This suggests that different tick species found feeding on the same host can modulate the same host anti-tick defense pathways to successfully feed. From this perspective it’s plausible that different tick species can utilize universally conserved proteins such as CRT to regulate and facilitate feeding. CRT is a multi-functional protein found in most taxa that is injected into the vertebrate host during tick feeding. Apart from it’s current use as a biomarker for human tick bites, role(s) of this protein in tick feeding physiology have not been elucidated. Here we show that annotated functional CRT amino acid motifs are well conserved in tick CRT. However our data show that despite high amino acid identity levels to functionally characterized CRT homologs in other organisms, AamCRT is apparently functionally different. Pichia pastoris expressed recombinant (r) AamCRT bound C1q, the first component of the classical complement system, but it did not inhibit activation of this pathway. This contrast with reports of other parasite CRT that inhibited activation of the classical complement pathway through sequestration of C1q. Furthermore rAamCRT did not bind factor Xa in contrast to reports of parasite CRT binding factor Xa, an important protease in the blood clotting system. Consistent with this observation, rAamCRT did not affect plasma clotting or platelet aggregation aggregation. We discuss our findings in the context of tick feeding physiology. PMID:25454607
Complement is activated in progressive multiple sclerosis cortical grey matter lesions.
Watkins, Lewis M; Neal, James W; Loveless, Sam; Michailidou, Iliana; Ramaglia, Valeria; Rees, Mark I; Reynolds, Richard; Robertson, Neil P; Morgan, B Paul; Howell, Owain W
2016-06-22
The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression. We analysed complement expression and activation by immunocytochemistry and in situ hybridisation in frozen or formalin-fixed paraffin-embedded post-mortem tissue blocks from 22 progressive MS cases and made comparisons to inflammatory central nervous system disease and non-neurological disease controls. Expression of the transcript for C1qA was noted in neurons and the activation fragment and opsonin C3b-labelled neurons and glia in the MS cortical and deep grey matter. The density of immunostained cells positive for the classical complement pathway protein C1q and the alternative complement pathway activation fragment Bb was significantly increased in cortical grey matter lesions in comparison to control grey matter. The number of cells immunostained for the membrane attack complex was elevated in cortical lesions, indicating complement activation to completion. The numbers of classical (C1-inhibitor) and alternative (factor H) pathway regulator-positive cells were unchanged between MS and controls, whilst complement anaphylatoxin receptor-bearing microglia in the MS cortex were found closely apposed to cortical neurons. Complement immunopositive neurons displayed an altered nuclear morphology, indicative of cell stress/damage, supporting our finding of significant neurodegeneration in cortical grey matter lesions. Complement is activated in the MS cortical grey matter lesions in areas of elevated numbers of complement receptor-positive microglia and suggests that complement over-activation may contribute to the worsening pathology that underlies the irreversible progression of MS.
Increased activity of the complement system in the liver of patients with alcoholic hepatitis.
Shen, Hong; French, Barbara A; Liu, Hui; Tillman, Brittany C; French, Samuel W
2014-12-01
Inflammation has been suggested as a mechanism underlying the development of alcoholic hepatitis (AH). The activation of the complement system plays an important role in inflammation. Although it has been shown that ethanol-induced activation of the complement system contributes to the pathophysiology of ethanol-induced liver injury in mice, whether ethanol consumption activates the complement system in the human liver has not been investigated. Using antibodies against C1q, C3, and C5, the immunoreactivity of the complement system in patients with AH was examined by immunohistochemistry and quantified by morphometric image analysis. The immunoreactivity intensity of C1q, C3, and C5 in patients with AH was significantly higher than that seen in normal controls. Further, the gene expression of C1q, C3, and C5 was examined using real-time PCR. There were increases in the levels of C1q and C5, but not C3 mRNA in AH. Moreover, the immunoreactivity of C5a receptor (C5aR) also increased in AH. To explore the functional implication of the activation of the complement system in AH, we examined the colocalization of C5aR in Mallory-Denk bodies (MDBs) forming balloon hepatocytes. C5aR was focally overexpressed in the MDB forming cells. Collectively, our study suggests that alcohol consumption increases the activity of the complement system in the liver cells, which contributes to the inflammation-associated pathogenesis of AH. Copyright © 2014 Elsevier Inc. All rights reserved.
Biró, E; van den Goor, J M; de Mol, B A; Schaap, M C; Ko, L-Y; Sturk, A; Hack, C E; Nieuwland, R
2011-01-01
To investigate whether cell-derived microparticles play a role in complement activation in pericardial blood of patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) and whether microparticles in pericardial blood contribute to systemic complement activation upon retransfusion. Pericardial blood of 13 patients was retransfused in 9 and discarded in 4 cases. Microparticles were isolated from systemic blood collected before anesthesia (T1) and at the end of CPB (T2), and from pericardial blood. The microparticles were analyzed by flow cytometry for bound complement components C1q, C4 and C3, and bound complement activator molecules C-reactive protein (CRP), serum amyloid P-component (SAP), immunoglobulin (Ig)M and IgG. Fluid-phase complement activation products (C4b/c, C3b/c) and activator molecules were determined by ELISA. Compared with systemic T1 blood, pericardial blood contained increased C4b/c and C3b/c, and increased levels of microparticles with bound complement components. In systemic T1 samples, microparticle-bound CRP, whereas in pericardial blood, microparticle-bound SAP and IgM were associated with complement activation. At the end of CPB, increased C3b/c (but not C4b/c) was present in systemic T2 blood compared with T1, while concentrations of microparticles binding complement components and of those binding complement activator molecules were similar. Concentrations of fluid-phase complement activation products and microparticles were similar in patients whether or not retransfused with pericardial blood. In pericardial blood of patients undergoing cardiac surgery with CPB, microparticles contribute to activation of the complement system via bound SAP and IgM. Retransfusion of pericardial blood, however, does not contribute to systemic complement activation.
Cell-to-cell Transmission of Polyglutamine Aggregates in C. elegans
Kim, Dong-Kyu; Cho, Kyu-Won; Ahn, Woo Jung; Perez-Acuña, Dayana; Jeong, Hyunsu; Lee, He-Jin
2017-01-01
Huntington disease (HD) is an inherited neurodegenerative disorder characterized by motor and cognitive dysfunction caused by expansion of polyglutamine (polyQ) repeat in exon 1 of huntingtin (HTT). In patients, the number of glutamine residues in polyQ tracts are over 35, and it is correlated with age of onset, severity, and disease progression. Expansion of polyQ increases the propensity for HTT protein aggregation, process known to be implicated in neurodegeneration. These pathological aggregates can be transmitted from neuron to another neuron, and this process may explain the pathological spreading of polyQ aggregates. Here, we developed an in vivo model for studying transmission of polyQ aggregates in a highly quantitative manner in real time. HTT exon 1 with expanded polyQ was fused with either N-terminal or C-terminal fragments of Venus fluorescence protein and expressed in pharyngeal muscles and associated neurons, respectively, of C. elegans. Transmission of polyQ proteins was detected using bimolecular fluorescence complementation (BiFC). Mutant polyQ (Q97) was transmitted much more efficiently than wild type polyQ (Q25) and forms numerous inclusion bodies as well. The transmission of Q97 was gradually increased with aging of animal. The animals with polyQ transmission exhibited degenerative phenotypes, such as nerve degeneration, impaired pharyngeal pumping behavior, and reduced life span. The C. elegans model presented here would be a useful in vivo model system for the study of polyQ aggregate propagation and might be applied to the screening of genetic and chemical modifiers of the propagation. PMID:29302199
Regulation of CD93 cell surface expression by protein kinase C isoenzymes.
Ikewaki, Nobunao; Kulski, Jerzy K; Inoko, Hidetoshi
2006-01-01
Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell-lines. Whereas recombinant tumor necrosis factor-alpha (rTNF-alpha) slightly up-regulated CD93 expression on the U937 cells, recombinant interleukin-1beta (rIL-1beta), recombinant interleukin-2 (rIL-2), recombinant interferon-gamma (rIFN-gamma) and lipopolysaccharide (LPS) had no effect. Taken together, these findings indicate that the regulation of CD93 expression on these cells involves the PKC isoenzymes.
Beeton, Michael L; Daha, Mohamed R; El-Shanawany, Tariq; Jolles, Stephen R; Kotecha, Sailesh; Spiller, O Brad
2012-02-01
Many Gram-negative bacteria, unlike Gram-positive, are directly lysed by complement. Ureaplasma can cause septic arthritis and meningitis in immunocompromised individuals and induce premature birth. Ureaplasma has no cell wall, cannot be Gram-stain classified and its serum susceptibility is unknown. Survival of Ureaplasma serovars (SV) 1, 3, 6 and 14 (collectively Ureaplasma parvum) were measured following incubation with normal or immunoglobulin-deficient patient serum (relative to heat-inactivated controls). Blocking monoclonal anti-C1q antibody and depletion of calcium, immunoglobulins, or lectins were used to determine the complement pathway responsible for killing. Eighty-three percent of normal sera killed SV1, 67% killed SV6 and 25% killed SV14; greater killing correlating to strong immunoblot identification of anti-Ureaplasma antibodies; killing was abrogated following ProteinA removal of IgG1. All normal sera killed SV3 in a C1q-dependent fashion, irrespective of immunoblot identification of anti-Ureaplasma antibodies; SV3 killing was unaffected by total IgG removal by ProteinG, where complement activity was retained. Only one of four common variable immunodeficient (CVID) patient sera failed to kill SV3, despite profound IgM and IgG deficiency for all; however, killing of SV3 and SV1 was restored with therapeutic intravenous immunoglobulin therapy. Only the classical complement pathway mediated Ureaplasma-cidal activity, sometimes in the absence of observable immunoblot reactive bands. Copyright © 2011 Elsevier GmbH. All rights reserved.
Zhu, Li; Zhai, Ya-Ling; Wang, Feng-Mei; Hou, Ping; Lv, Ji-Cheng; Xu, Da-Min; Shi, Su-Fang; Liu, Li-Jun; Yu, Feng; Zhao, Ming-Hui; Novak, Jan; Gharavi, Ali G; Zhang, Hong
2015-05-01
Complement activation is common in patients with IgA nephropathy (IgAN) and associated with disease severity. Our recent genome-wide association study of IgAN identified susceptibility loci on 1q32 containing the complement regulatory protein-encoding genes CFH and CFHR1-5, with rs6677604 in CFH as the top single-nucleotide polymorphism and CFHR3-1 deletion (CFHR3-1∆) as the top signal for copy number variation. In this study, to explore the clinical effects of variation in CFH, CFHR3, and CFHR1 on IgAN susceptibility and progression, we enrolled two populations. Group 1 included 1178 subjects with IgAN and available genome-wide association study data. Group 2 included 365 subjects with IgAN and available clinical follow-up data. In group 1, rs6677604 was associated with mesangial C3 deposition by genotype-phenotype correlation analysis. In group 2, we detected a linkage between the rs6677604-A allele and CFHR3-1∆ and found that the rs6677604-A allele was associated with higher serum levels of CFH and lower levels of the complement activation split product C3a. Furthermore, CFH levels were positively associated with circulating C3 levels and negatively associated with mesangial C3 deposition. Moreover, serum levels of the pathogenic galactose-deficient glycoform of IgA1 were also associated with the degree of mesangial C3 deposition in patients with IgAN. Our findings suggest that genetic variants in CFH, CFHR3, and CFHR1 affect complement activation and thereby, predispose patients to develop IgAN. Copyright © 2015 by the American Society of Nephrology.
Anti-C1q Antibodies in Systemic Lupus Erythematosus
ORBAI, ANA-MARIA; TRUEDSSON, LENNART; STURFELT, GUNNAR; NIVED, OLA; FANG, HONG; ALARCÓN, GRACIELA S.; GORDON, CAROLINE; MERRILL, JOAN T.; FORTIN, PAUL R.; BRUCE, IAN N.; ISENBERG, DAVID A.; WALLACE, DANIEL J.; RAMSEY-GOLDMAN, ROSALIND; BAE, SANG-CHEOL; HANLY, JOHN G.; SANCHEZ-GUERRERO, JORGE; CLARKE, ANN E.; ARANOW, CYNTHIA B.; MANZI, SUSAN; UROWITZ, MURRAY B.; GLADMAN, DAFNA D.; KALUNIAN, KENNETH C.; COSTNER, MELISSA I.; WERTH, VICTORIA P.; ZOMA, ASAD; BERNATSKY, SASHA; RUIZ-IRASTORZA, GUILLERMO; KHAMASHTA, MUNTHER A.; JACOBSEN, SOREN; BUYON, JILL P.; MADDISON, PETER; DOOLEY, MARY ANNE; VAN VOLLENHOVEN, RONALD F.; GINZLER, ELLEN; STOLL, THOMAS; PESCHKEN, CHRISTINE; JORIZZO, JOSEPH L.; CALLEN, JEFFREY P.; LIM, S. SAM; FESSLER, BARRI J.; INANC, MURAT; KAMEN, DIANE L.; RAHMAN, ANISUR; STEINSSON, KRISTJAN; FRANKS, ANDREW G.; SIGLER, LISA; HAMEED, SUHAIL; PHAM, NEENA; BREY, ROBIN; WEISMAN, MICHAEL H.; MCGWIN, GERALD; MAGDER, LAURENCE S.; PETRI, MICHELLE
2014-01-01
Objective Anti-C1q has been associated with systemic lupus erythematosus (SLE) and lupus nephritis in previous studies. We studied anti-C1q specificity for SLE (vs. rheumatic disease controls) and the association with SLE manifestations in an international multi-center study. Methods Information and blood samples were obtained in a cross-sectional study from patients with SLE (n=308) and other rheumatologic diseases (n=389) from 25 clinical sites (84% female, 68% Caucasian, 17% African descent, 8% Asian, 7% other). IgG anti-C1q against the collagen-like region was measured by ELISA. Results Prevalence of anti-C1q was 28% (86/308) in patients with SLE and 13% (49/389) in controls (OR=2.7, 95% CI: 1.8-4, p<0.001). Anti-C1q was associated with proteinuria (OR=3.0, 95% CI: 1.7-5.1, p<0.001), red cell casts (OR=2.6, 95% CI: 1.2-5.4, p=0.015), anti-dsDNA (OR=3.4, 95% CI: 1.9-6.1, p<0.001) and anti-Smith (OR=2.8, 95% CI: 1.5-5.0, p=0.01). Anti-C1q was independently associated with renal involvement after adjustment for demographics, ANA, anti-dsDNA and low complement (OR=2.3, 95% CI: 1.3-4.2, p<0.01). Simultaneously positive anti-C1q, anti-dsDNA and low complement was strongly associated with renal involvement (OR=14.9, 95% CI: 5.8-38.4, p<0.01). Conclusions Anti-C1q was more common in patients with SLE and those of Asian race/ethnicity. We confirmed a significant association of anti-C1q with renal involvement, independent of demographics and other serologies. Anti-C1q in combination with anti-dsDNA and low complement was the strongest serological association with renal involvement. These data support the usefulness of anti-C1q in SLE, especially in lupus nephritis. PMID:25124676
Pasquali, Christian; Stolz, Daiana; Tamm, Michael
2017-01-01
Background Bronchial epithelial cells (BEC) are primary target for Rhinovirus infection through attaching to cell membrane proteins. OM-85, a bacterial extract, improves recovery of asthma and COPD patients after viral infections, but only part of the mechanism was addressed, by focusing on defined immune cells. Objective We therefore determined the effect of OM-85 on isolated primary human BEC of controls (n = 8), asthma patients (n = 10) and COPD patients (n = 9). Methods BEC were treated with OM-85 alone (24 hours) or infected with Rhinovirus. BEC survival was monitored by manual cell counting and Rhinovirus replication by lytic activity. Immuno-blotting and ELISA were used to determine the expression of Rhinovirus interacting proteins: intracellular adhesion molecule (ICAM), major histocompatibility complex class II (MHC-2), complement component C1q receptor (C1q-R), inducible T-Cell co-stimulator (ICOS), its ligand ICOSL, and myeloid differentiation primary response gene 88 (Myd88); as well as for signal transducers Erk1/2, p38, JNK mitogen activated protein kinases MAPK), and cAMP. Results OM-85 significantly reduced Rhinovirus-induced BEC death and virus replication. OM-85 significantly increased the expression of virus interacting proteins C1q-R and β-defensin in all 3 probes and groups, which was prevented by either Erk1/2 MAPK or cAMP inhibition. In addition, OM-85 significantly reduced Rhinovirus induced expression of ICAM1 involving p38 MAPK. In BEC OM-85 had no significant effect on the expression of ICOS, ICOSL and MHC-2 membrane proteins nor on the adaptor protein MyD88. Conclusion The OM-85-induced increased of C1q-R and β-defensin, both important for antigen presentation and phagocytosis, supports its activity in host cell’s defence against Rhinovirus infection. PMID:29182620
Roth, Michael; Pasquali, Christian; Stolz, Daiana; Tamm, Michael
2017-01-01
Bronchial epithelial cells (BEC) are primary target for Rhinovirus infection through attaching to cell membrane proteins. OM-85, a bacterial extract, improves recovery of asthma and COPD patients after viral infections, but only part of the mechanism was addressed, by focusing on defined immune cells. We therefore determined the effect of OM-85 on isolated primary human BEC of controls (n = 8), asthma patients (n = 10) and COPD patients (n = 9). BEC were treated with OM-85 alone (24 hours) or infected with Rhinovirus. BEC survival was monitored by manual cell counting and Rhinovirus replication by lytic activity. Immuno-blotting and ELISA were used to determine the expression of Rhinovirus interacting proteins: intracellular adhesion molecule (ICAM), major histocompatibility complex class II (MHC-2), complement component C1q receptor (C1q-R), inducible T-Cell co-stimulator (ICOS), its ligand ICOSL, and myeloid differentiation primary response gene 88 (Myd88); as well as for signal transducers Erk1/2, p38, JNK mitogen activated protein kinases MAPK), and cAMP. OM-85 significantly reduced Rhinovirus-induced BEC death and virus replication. OM-85 significantly increased the expression of virus interacting proteins C1q-R and β-defensin in all 3 probes and groups, which was prevented by either Erk1/2 MAPK or cAMP inhibition. In addition, OM-85 significantly reduced Rhinovirus induced expression of ICAM1 involving p38 MAPK. In BEC OM-85 had no significant effect on the expression of ICOS, ICOSL and MHC-2 membrane proteins nor on the adaptor protein MyD88. The OM-85-induced increased of C1q-R and β-defensin, both important for antigen presentation and phagocytosis, supports its activity in host cell's defence against Rhinovirus infection.
Functional C1q is present in the skin mucus of Siberian sturgeon (Acipenser baerii).
Fan, Chunxin; Wang, Jian; Zhang, Xuguang; Song, Jiakun
2015-01-01
The skin mucus of fish acts as the first line of self-protection against pathogens in the aquatic environment and comprises a number of innate immune components. However, the presence of the critical classical complement component C1q, which links the innate and adaptive immune systems of mammalians, has not been explored in a primitive actinopterygian fish. In this study, we report that C1q is present in the skin mucus of the Siberian sturgeon (Acipenser baerii). The skin mucus was able to inhibit the growth of Escherichia coli. The bacteriostatic activity of the skin mucus was reduced by heating and by pre-incubation with EDTA or mouse anti-human C1q antibody. We also detected C1q protein in skin mucus using the western blot procedure and isolated a cDNA that encodes the Siberian sturgeon C1qC, which had 44.7-51.4% identity with C1qCs in teleosts and tetrapods. A phylogenetic analysis revealed that Siberian sturgeon C1qC lies at the root of the actinopterygian branch and is separate from the tetrapod branch. The C1qC transcript was expressed in many tissues as well as in skin. Our data indicate that C1q is present in the skin mucus of the Siberian sturgeon to protect against water-borne bacteria, and the C1qC found in the sturgeon may represent the primitive form of teleost and tetrapod C1qCs. © 2014 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
Rainer, Johannes; Rambach, Günter; Kaltseis, Josef; Hagleitner, Magdalena; Heiss, Silvia; Speth, Cornelia
2011-10-01
Representatives of the genus Pseudallescheria (anamorph: Scedosporium) are saprobes and the aetiologic agent of invasive mycosis in humans. After dissemination, the central nervous system (CNS) is one of the most affected organs. Prerequisites for the survival of Pseudallescheria/Scedosporium in the host are the ability to acquire nutrients and to evade the immune attack. The cleavage of complement compounds via the secretion of fungal proteases might meet both challenges since proteolytic degradation of proteins can provide nutrients and destroy the complement factors, a fast and effective immune weapon in the CNS. Therefore, we studied the capacity of different Pseudallescheria/Scedosporium species to degrade key elements of the complement cascade in the cerebrospinal fluid and investigated a correlation with the phylogenetic background. The majority of the Pseudallescheria apiosperma isolates tested were demonstrated to efficiently eliminate proteins like complement factors C3 and C1q, thus affecting two main components of a functional complement cascade, presumably by proteolytic degradation, and using them as nutrient source. In contrast, the tested strains of Pseudallescheria boydii have no or only weak capacity to eliminate these complement proteins. We hypothesise that the ability of Pseudallescheria/Scedosporium strains to acquire nutrients and to undermine the complement attack is at least partly phylogenetically determined. © 2011 Blackwell Verlag GmbH.
Classical Complement Pathway Activation in the Kidneys of Women With Preeclampsia.
Penning, Marlies; Chua, Jamie S; van Kooten, Cees; Zandbergen, Malu; Buurma, Aletta; Schutte, Joke; Bruijn, Jan Anthonie; Khankin, Eliyahu V; Bloemenkamp, Kitty; Karumanchi, S Ananth; Baelde, Hans
2015-07-01
A growing body of evidence suggests that complement dysregulation plays a role in the pathogenesis of preeclampsia. The kidney is one of the major organs affected in preeclampsia. Because the kidney is highly susceptible to complement activation, we hypothesized that preeclampsia is associated with renal complement activation. We performed a nationwide search for renal autopsy material in the Netherlands using a computerized database (PALGA). Renal tissue was obtained from 11 women with preeclampsia, 25 pregnant controls, and 14 nonpregnant controls with hypertension. The samples were immunostained for C4d, C1q, mannose-binding lectin, properdin, C3d, C5b-9, IgA, IgG, and IgM. Preeclampsia was significantly associated with renal C4d-a stable marker of complement activation-and the classical pathway marker C1q. In addition, the prevalence of IgM was significantly higher in the kidneys of the preeclamptic women. No other complement markers studied differed between the groups. Our findings in human samples were validated using a soluble fms-like tyrosine kinase 1 mouse model of preeclampsia. The kidneys in the soluble fms-like tyrosine kinase 1-injected mice had significantly more C4 deposits than the control mice. The association between preeclampsia and renal C4d, C1q, and IgM levels suggests that the classical complement pathway is involved in the renal injury in preeclampsia. Moreover, our finding that soluble fms-like tyrosine kinase 1-injected mice develop excess C4 deposits indicates that angiogenic dysregulation may play a role in complement activation within the kidney. We suggest that inhibiting complement activation may be beneficial for preventing the renal manifestations of preeclampsia. © 2015 American Heart Association, Inc.
Clay, Corey D.; Soni, Shilpa; Gunn, John S.; Schlesinger, Larry S.
2009-01-01
The bacterium Francisella tularensis (Ft) is a potential weapon of bioterrorism when aerosolized. Macrophage infection is necessary for disease progression and efficient phagocytosis by human macrophages requires serum opsonization by complement. Microbial complement activation leads to surface deposition of a highly regulated protein complex resulting in opsonization or membrane lysis. The nature of complement component C3 deposition, i.e., C3b (opsonization and lysis) or C3bi (opsonization only) fragment deposition, is central to the outcome of activation. In this study, we examine the mechanisms of Ft resistance to complement-mediated lysis, C3 component deposition on the Ft surface, and complement activation. Upon incubation in fresh nonimmune human serum, Schu S4 (Ft subsp. tularensis), Fn (Ft subsp. novicida), and LVS (Ft subsp. holarctica live vaccine strain) were resistant to complement-mediated lysis, but LVSG and LVSR (LVS strains altered in surface carbohydrate structures) were susceptible. C3 deposition, however, occurred on all strains. Complement-susceptible strains had markedly increased C3 fragment deposition, including the persistent presence of C3b compared with C3bi, which indicates that C3b inactivation results in survival of complement-resistant strains. C1q, an essential component of the classical activation pathway, was necessary for lysis of complement-susceptible strains and optimal C3 deposition on all strains. Finally, use of Francisella LPS mutants confirmed O Ag as a major regulator of complement resistance. These data provide evidence that pathogenic Francisella activate complement, but are resistant to complement-mediated lysis in part due to limited C3 deposition, rapid conversion of surface-bound C3b to C3bi, and the presence of LPS O Ag. PMID:18832715
The Surface-Exposed Protein SntA Contributes to Complement Evasion in Zoonotic Streptococcus suis.
Deng, Simin; Xu, Tong; Fang, Qiong; Yu, Lei; Zhu, Jiaqi; Chen, Long; Liu, Jiahui; Zhou, Rui
2018-01-01
Streptococcus suis is an emerging zoonotic pathogen causing streptococcal toxic shock like syndrome (STSLS), meningitis, septicemia, and even sudden death in human and pigs. Serious septicemia indicates this bacterium can evade the host complement surveillance. In our previous study, a functionally unknown protein SntA of S. suis has been identified as a heme-binding protein, and contributes to virulence in pigs. SntA can interact with the host antioxidant protein AOP2 and consequently inhibit its antioxidant activity. In the present study, SntA is identified as a cell wall anchored protein that functions as an important player in S. suis complement evasion. The C3 deposition and membrane attack complex (MAC) formation on the surface of sntA -deleted mutant strain Δ sntA are demonstrated to be significantly higher than the parental strain SC-19 and the complementary strain CΔ sntA . The abilities of anti-phagocytosis, survival in blood, and in vivo colonization of Δ sntA are obviously reduced. SntA can interact with C1q and inhibit hemolytic activity via the classical pathway. Complement activation assays reveal that SntA can also directly activate classical and lectin pathways, resulting in complement consumption. These two complement evasion strategies may be crucial for the pathogenesis of this zoonotic pathogen. Concerning that SntA is a bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase in many species of Gram-positive bacteria, these complement evasion strategies may have common biological significance.
Complement in Lupus Nephritis: New Perspectives.
Bao, Lihua; Cunningham, Patrick N; Quigg, Richard J
2015-09-01
Systemic lupus erythematosus (SLE) is an autoimmune disorder caused by loss of tolerance to self-antigens, the production of autoantibodies and deposition of complement-fixing immune complexes (ICs) in injured tissues. SLE is characterized by a wide range of clinical manifestations and targeted organs, with lupus nephritis being one of the most serious complications. The complement system consists of three pathways and is tightly controlled by a set of regulatory proteins to prevent injudicious complement activation on host tissue. The involvement of the complement system in the pathogenesis of SLE is well accepted; yet, its exact role is still not clear. Complement plays dual roles in the pathogenesis of SLE. On the one hand, the complement system appears to have protective features in that hereditary homozygous deficiencies of classical pathway components, such as C1q and C4, are associated with an increased risk for SLE. On the other hand, IC-mediated activation of complement in affected tissues is clearly evident in both experimental and human SLE along with pathological features that are logical consequences of complement activation. Studies in genetically altered mice have shown that lack of complement inhibitors, such as complement factor H (CFH) or decay-accelerating factor (DAF) accelerates the development of experimental lupus nephritis, while treatment with recombinant protein inhibitors, such as Crry-Ig, CR2-Crry, CR2-DAF and CR2-CFH, ameliorates the disease development. Complement-targeted drugs, including soluble complement receptor 1 (TP10), C1 esterase inhibitor and a monoclonal anti-C5 antibody (eculizumab), have been shown to inhibit complement safely, and are now being investigated in a variety of clinical conditions. SLE is an autoimmune disorder which targets multiple systems. Complement is centrally involved and plays dual roles in the pathogenesis of SLE. Studies from experimental lupus models and clinical trials support the use of complement-targeted therapy in the treatment of SLE.
van den Bremer, Ewald TJ; Beurskens, Frank J; Voorhorst, Marleen; Engelberts, Patrick J; de Jong, Rob N; van der Boom, Burt G; Cook, Erika M; Lindorfer, Margaret A; Taylor, Ronald P; van Berkel, Patrick HC; Parren, Paul WHI
2015-01-01
Human IgG is produced with C-terminal lysines that are cleaved off in circulation. The function of this modification was unknown and generally thought not to affect antibody function. We recently reported that efficient C1q binding and complement-dependent cytotoxicity (CDC) requires IgG hexamerization at the cell surface. Here we demonstrate that C-terminal lysines may interfere with this process, leading to suboptimal C1q binding and CDC of cells opsonized with C-terminal lysine-containing IgG. After we removed these lysines with a carboxypeptidase, maximal complement activation was observed. Interestingly, IgG1 mutants containing either a negative C-terminal charge or multiple positive charges lost CDC almost completely; however, CDC was fully restored by mixing C-terminal mutants of opposite charge. Our data indicate a novel post-translational control mechanism of human IgG: human IgG molecules are produced in a pro-form in which charged C-termini interfere with IgG hexamer formation, C1q binding and CDC. To allow maximal complement activation, C-terminal lysine processing is required to release the antibody's full cytotoxic potential. PMID:26037225
Shi, Haojun; Fang, Winston; Liu, Minda; Fu, Deliang
2017-10-01
Pancreatic cancer shows a remarkable predilection for hepatic metastasis. Complement component 1, q subcomponent binding protein (C1QBP) can mediate growth factor-induced cancer cell chemotaxis and distant metastasis by activation of receptor tyrosine kinases. Coincidentally, insulin-like growth factor-1 (IGF-1) derived from the liver and cancer cells itself has been recognized as a critical inducer of hepatic metastasis. However, the mechanism underlying IGF-1-dependent hepatic metastasis of pancreatic cancer, in which C1QBP may be involved, remains unknown. In the study, we demonstrated a significant association between C1QBP expression and hepatic metastasis in patients with pancreatic cancer. IGF-1 induced the translocation of C1QBP from cytoplasm to lipid rafts and further drove the formation of CD44 variant 6 (CD44v6)/C1QBP complex in pancreatic cancer cells. C1QBP interacting with CD44v6 in lipid rafts promoted phosphorylation of IGF-1R and thus activated downstream PI3K and MAPK signaling pathways which mediated metastatic potential of pancreatic cancer cells including proliferation, apoptosis, invasion, adhesion and energy metabolism. Furthermore, C1QBP knockdown suppressed hepatic metastasis of pancreatic cancer cells in nude mice. We therefore conclude that C1QBP in lipid rafts serves a key regulator of IGF-1/IGF-1R-induced hepatic metastasis from pancreatic cancer. Our findings about C1QBP in lipid rafts provide a novel strategy to block IGF-1/IGF-1R signaling in pancreatic cancer and a reliable premise for more efficient combined modality therapies. © 2017 UICC.
Lintner, Katherine E.; Wu, Yee Ling; Yang, Yan; Spencer, Charles H.; Hauptmann, Georges; Hebert, Lee A.; Atkinson, John P.; Yu, C. Yung
2016-01-01
The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases. PMID:26913032
Smit-McBride, Zeljka; Oltjen, Sharon L.; Radu, Roxana A.; Estep, Jason; Nguyen, Anthony T.; Gong, Qizhi
2015-01-01
Purpose To determine the localization of complement factor H (Cfh) mRNA and its protein in the mouse outer retina. Methods Quantitative real-time PCR (qPCR) was used to determine the expression of Cfh and Cfh-related (Cfhr) transcripts in the RPE/choroid. In situ hybridization (ISH) was performed using the novel RNAscope 2.0 FFPE assay to localize the expression of Cfh mRNA in the mouse outer retina. Immunohistochemistry (IHC) was used to localize Cfh protein expression, and western blots were used to characterize CFH antibodies used for IHC. Results Cfh and Cfhr2 transcripts were detected in the mouse RPE/choroid using qPCR, while Cfhr1, Cfhr3, and Cfhrc (Gm4788) were not detected. ISH showed abundant Cfh mRNA in the RPE of all mouse strains (C57BL/6, BALB/c, 129/Sv) tested, with the exception of the Cfh−/− eye. Surprisingly, the Cfh protein was detected by immunohistochemistry in photoreceptors rather than in RPE cells. The specificity of the CFH antibodies was tested by western blotting. Our CFH antibodies recognized purified mouse Cfh protein, serum Cfh protein in wild-type C57BL/6, BALB/c, and 129/Sv, and showed an absence of the Cfh protein in the serum of Cfh−/− mice. Greatly reduced Cfh protein immunohistological signals in the Cfh−/− eyes also supported the specificity of the Cfh protein distribution results. Conclusions Only Cfh and Cfhr2 genes are expressed in the mouse outer retina. Only Cfh mRNA was detected in the RPE, but no protein. We hypothesize that the steady-state concentration of Cfh protein is low in the cells due to secretion, and therefore is below the detection level for IHC. PMID:25684976
Pondman, Kirsten M; Pednekar, Lina; Paudyal, Basudev; Tsolaki, Anthony G; Kouser, Lubna; Khan, Haseeb A; Shamji, Mohamed H; Ten Haken, Bennie; Stenbeck, Gudrun; Sim, Robert B; Kishore, Uday
2015-11-01
Interaction between the complement system and carbon nanotubes (CNTs) can modify their intended biomedical applications. Pristine and derivatised CNTs can activate complement primarily via the classical pathway which enhances uptake of CNTs and suppresses pro-inflammatory response by immune cells. Here, we report that the interaction of C1q, the classical pathway recognition molecule, with CNTs involves charge pattern and classical pathway activation that is partly inhibited by factor H, a complement regulator. C1q and its globular modules, but not factor H, enhanced uptake of CNTs by macrophages and modulated the pro-inflammatory immune response. Thus, soluble complement factors can interact differentially with CNTs and alter the immune response even without complement activation. Coating CNTs with recombinant C1q globular heads offers a novel way of controlling classical pathway activation in nanotherapeutics. Surprisingly, the globular heads also enhance clearance by phagocytes and down-regulate inflammation, suggesting unexpected complexity in receptor interaction. Carbon nanotubes (CNTs) maybe useful in the clinical setting as targeting drug carriers. However, it is also well known that they can interact and activate the complement system, which may have a negative impact on the applicability of CNTs. In this study, the authors functionalized multi-walled CNT (MWNT), and investigated the interaction with the complement pathway. These studies are important so as to gain further understanding of the underlying mechanism in preparation for future use of CNTs in the clinical setting. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Gu, Yajuan; Chang, Xiaodan; Dai, Shan; Song, Qinghua; Zhao, Hongshan; Lei, Pengcheng
2017-09-10
Xeroderma pigmentosum (XP) is a rare, recessive hereditary disease characterized by sunlight hypersensitivity and high incidence of skin cancer with clinical and genetic heterogeneity. We collected two unrelated Chinese patients showing typical symptoms of XPC without neurologic symptoms. Direct sequencing of XPC gene revealed that patient 1 carried IVS1+1G>A and c.958 C>T mutations, and patient 2 carried c.545_546delTA and c.2257_2258insC mutations. All these four mutations introduced premature terminal codons (PTCs) in XPC gene. The nonsense mutation c.958 C>T yielded truncated mutant Q320X, and we studied its function for global genome repair kinetics. Overexpressed Q320X mutant can localize to site of DNA damage, but it is defective in CPD and 6-4PP repair. Readthrough of PTCs is a new approach to treatment of genetic diseases. We found that aminoglycosides could significantly increase the full length protein expression of Q320X mutant, but NER defects were not rescued in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.
McGonigal, Rhona; Cunningham, Madeleine E; Yao, Denggao; Barrie, Jennifer A; Sankaranarayanan, Sethu; Fewou, Simon N; Furukawa, Koichi; Yednock, Ted A; Willison, Hugh J
2016-03-02
Guillain-Barré syndrome (GBS) is an autoimmune disease that results in acute paralysis through inflammatory attack on peripheral nerves, and currently has limited, non-specific treatment options. The pathogenesis of the acute motor axonal neuropathy (AMAN) variant is mediated by complement-fixing anti-ganglioside antibodies that directly bind and injure the axon at sites of vulnerability such as nodes of Ranvier and nerve terminals. Consequently, the complement cascade is an attractive target to reduce disease severity. Recently, C5 complement component inhibitors that block the formation of the membrane attack complex and subsequent downstream injury have been shown to be efficacious in an in vivo anti-GQ1b antibody-mediated mouse model of the GBS variant Miller Fisher syndrome (MFS). However, since gangliosides are widely expressed in neurons and glial cells, injury in this model was not targeted exclusively to the axon and there are currently no pure mouse models for AMAN. Additionally, C5 inhibition does not prevent the production of early complement fragments such as C3a and C3b that can be deleterious via their known role in immune cell and macrophage recruitment to sites of neuronal damage. In this study, we first developed a new in vivo transgenic mouse model of AMAN using mice that express complex gangliosides exclusively in neurons, thereby enabling specific targeting of axons with anti-ganglioside antibodies. Secondly, we have evaluated the efficacy of a novel anti-C1q antibody (M1) that blocks initiation of the classical complement cascade, in both the newly developed anti-GM1 antibody-mediated AMAN model and our established MFS model in vivo. Anti-C1q monoclonal antibody treatment attenuated complement cascade activation and deposition, reduced immune cell recruitment and axonal injury, in both mouse models of GBS, along with improvement in respiratory function. These results demonstrate that neutralising C1q function attenuates injury with a consequent neuroprotective effect in acute GBS models and promises to be a useful new target for human therapy.
Dimeric, trimeric and tetrameric complexes of immunoglobulin G fix complement.
Wright, J K; Tschopp, J; Jaton, J C; Engel, J
1980-01-01
The binding of pure dimers, trimers and tetramers of randomly cross-linked non-immune rabbit immunoglobulin G to the first component and subcomponent of the complement system, C1 and C1q respectively, was studied. These oligomers possessed open linear structures. All three oligomers fixed complement with decreasing affinity in the order: tetramer, trimer, dimer. Complement fixation by dimeric immunoglobulin exhibited the strongest concentration-dependence. No clear distinction between a non-co-operative and a co-operative binding mechanism could be achieved, although the steepness of the complement-fixation curves for dimers and trimers was better reflected by the co-operative mechanism. Intrinsic binding constants were about 10(6)M-1 for dimers, 10(7)M-1 for trimers and 3 X 10(9)M-1 for tetramers, assuming non-co-operative binding. The data are consistent with a maximum valency of complement component C1 for immunoglobulin G protomers in the range 6-18. The binding of dimers to purified complement subcomponent C1q was demonstrated by sedimentation-velocity ultracentrifugation. Mild reduction of the complexes by dithioerythritol caused the immunoglobulin to revert to the monomeric state (S20,w = 6.2-6.5S) with concomitant loss of complement-fixing ability. Images Fig. 2. PMID:6985362
C3aR and C5aR1 act as key regulators of human and mouse β-cell function.
Atanes, Patricio; Ruz-Maldonado, Inmaculada; Pingitore, Attilio; Hawkes, Ross; Liu, Bo; Zhao, Min; Huang, Guo Cai; Persaud, Shanta J; Amisten, Stefan
2018-02-01
Complement components 3 and 5 (C3 and C5) play essential roles in the complement system, generating C3a and C5a peptides that are best known as chemotactic and inflammatory factors. In this study we characterised islet expression of C3 and C5 complement components, and the impact of C3aR and C5aR1 activation on islet function and viability. Human and mouse islet mRNAs encoding key elements of the complement system were quantified by qPCR and distribution of C3 and C5 proteins was determined by immunohistochemistry. Activation of C3aR and C5aR1 was determined using DiscoverX beta-arrestin assays. Insulin secretion from human and mouse islets was measured by radioimmunoassay, and intracellular calcium ([Ca 2+ ]i), ATP generation and apoptosis were assessed by standard techniques. C3 and C5 proteins and C3aR and C5aR1 were expressed by human and mouse islets, and C3 and C5 were mainly localised to β- and α-cells. Conditioned media from islets exposed for 1 h to 5.5 and 20 mM glucose stimulated C3aR and C5aR1-driven beta-arrestin recruitment. Activation of C3aR and C5aR1 potentiated glucose-induced insulin secretion from human and mouse islets, increased [Ca 2+ ]i and ATP generation, and protected islets against apoptosis induced by a pro-apoptotic cytokine cocktail or palmitate. Our observations demonstrate a functional link between activation of components of the innate immune system and improved β-cell function, suggesting that low-level chronic inflammation may improve glucose homeostasis through direct effects on β-cells.
Urade, Y; Oberdick, J; Molinar-Rode, R; Morgan, J I
1991-01-01
The cerebellum contains a hexadecapeptide, termed cerebellin, that is conserved in sequence from human to chicken. Three independent, overlapping cDNA clones have been isolated from a human cerebellum cDNA library that encode the cerebellin sequence. The longest clone codes for a protein of 193 amino acids that we term precerebellin. This protein has a significant similarity (31.3% identity, 52.2% similarity) to the globular (non-collagen-like) region of the B chain of human complement component C1q. The region of relatedness extends over approximately 145 amino acids located in the carboxyl terminus of both proteins. Unlike C1q B chain, no collagen-like motifs are present in the amino-terminal regions of precerebellin. The amino terminus of precerebellin contains three possible N-linked glycosylation sites. Although hydrophobic amino acids are clustered at the amino terminus, they do not conform to the classical signal-peptide motif, and no other obvious membrane-spanning domains are predicted from the cDNA sequence. The cDNA predicts that the cerebellin peptide is flanked by Val-Arg and Glu-Pro residues. Therefore, cerebellin is not liberated from precerebellin by the classical dibasic amino acid proteolytic-cleavage mechanism seen in many neuropeptide precursors. In Northern (RNA) blots, precerebellin transcripts, with four distinct sizes (1.8, 2.3, 2.7, and 3.0 kilobases), are abundant in cerebellum. These transcripts are present at either very low or undetectable levels in other brain areas and extraneural structures. A similar pattern of cerebellin precursor transcripts are seen in rat, mouse, and human cerebellum. Furthermore, a partial genomic fragment from mouse shows the same bands in Northern blots as the human cDNA clone. During rat development, precerebellin transcripts mirror the level of cerebellin peptide. Low levels of precerebellin mRNA are seen at birth. Levels increase modestly from postpartum day 1 to 8, then increase more dramatically between day 5 and 15, and eventually reach peak values between day 21 and 56. Because cerebellin-like immunoreactivity is associated with Purkinje cell postsynaptic structures, these data raise interesting possibilities concerning the function of the cerebellin precursor in synaptic physiology. Images PMID:1704129
Xu, Ting; Xie, Jiasong; Li, Jianming; Luo, Ming; Ye, Shigen; Wu, Xinzhong
2012-06-01
A SMARTer™ cDNA library of hemocyte from Rickettsia-like organism (RLO) challenged oyster, Crassostrea ariakensis Gould was constructed. Random clones (400) were selected and single-pass sequenced, resulted in 200 unique sequences containing 96 known genes and 104 unknown genes. The 96 known genes were categorized into 11 groups based on their biological process. Furthermore, we identified and characterized three complement-related fragments (CaC1q1, CaC1q2 and CaC3). Tissue distribution analysis revealed that all of three fragments were ubiquitously expressed in all tissues studied including hemocyte, gills, mantle, digestive glands, gonads and adductor muscle, while the highest level was seen in the hemocyte. Temporal expression profile in the hemocyte monolayers reveled that the mRNA expression levels of three fragments presented huge increase after the RLO incubation at 3 h and 6 h in post-challenge, respectively. And the maximal expression levels at 3 h in post-challenge are about 256, 104 and 64 times higher than the values detected in the control of CaC1q1, CaC1q2 and CaC3, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mehlhop, Erin; Diamond, Michael S
2006-05-15
West Nile virus (WNV) causes a severe infection of the central nervous system in several vertebrate animals including humans. Prior studies have shown that complement plays a critical role in controlling WNV infection in complement (C) 3(-/-) and complement receptor 1/2(-/-) mice. Here, we dissect the contributions of the individual complement activation pathways to the protection from WNV disease. Genetic deficiencies in C1q, C4, factor B, or factor D all resulted in increased mortality in mice, suggesting that all activation pathways function together to limit WNV spread. In the absence of alternative pathway complement activation, WNV disseminated into the central nervous system at earlier times and was associated with reduced CD8+ T cell responses yet near normal anti-WNV antibody profiles. Animals lacking the classical and lectin pathways had deficits in both B and T cell responses to WNV. Finally, and somewhat surprisingly, C1q was required for productive infection in the spleen but not for development of adaptive immune responses after WNV infection. Our results suggest that individual pathways of complement activation control WNV infection by priming adaptive immune responses through distinct mechanisms.
High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation.
Kim, Sook Young; Son, Myoungsun; Lee, Sang Eun; Park, In Ho; Kwak, Man Sup; Han, Myeonggil; Lee, Hyun Sook; Kim, Eun Sook; Kim, Jae-Young; Lee, Jong Eun; Choi, Ji Eun; Diamond, Betty; Shin, Jeon-Soo
2018-01-01
High-mobility group box 1 (HMGB1), a well-known danger-associated molecular pattern molecule, acts as a pro-inflammatory molecule when secreted by activated immune cells or released after necrotic cell damage. HMGB1 binds to immunogenic bacterial components and augments septic inflammation. In this study, we show how HMGB1 mediates complement activation, promoting sterile inflammation. We show that HMGB1 activates the classical pathway of complement system in an antibody-independent manner after binding to C1q. The C3a complement activation product in human plasma and C5b-9 membrane attack complexes on cell membrane surface are detected after the addition of HMGB1. In an acetaminophen (APAP)-induced hepatotoxicity model, APAP injection reduced HMGB1 levels and elevated C3 levels in C1q-deficient mouse serum samples, compared to that in wild-type (WT) mice. APAP-induced C3 consumption was inhibited by sRAGE treatment in WT mice. Moreover, in a mouse model of brain ischemia-reperfusion injury based on middle cerebral arterial occlusion, C5b-9 complexes were deposited on vessels where HMGB1 was accumulated, an effect that was suppressed upon HMGB1 neutralization. We propose that the HMGB1 released after cell necrosis and in ischemic condition can trigger the classical pathway of complement activation to exacerbate sterile inflammation.
High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation
Kim, Sook Young; Son, Myoungsun; Lee, Sang Eun; Park, In Ho; Kwak, Man Sup; Han, Myeonggil; Lee, Hyun Sook; Kim, Eun Sook; Kim, Jae-Young; Lee, Jong Eun; Choi, Ji Eun; Diamond, Betty; Shin, Jeon-Soo
2018-01-01
High-mobility group box 1 (HMGB1), a well-known danger-associated molecular pattern molecule, acts as a pro-inflammatory molecule when secreted by activated immune cells or released after necrotic cell damage. HMGB1 binds to immunogenic bacterial components and augments septic inflammation. In this study, we show how HMGB1 mediates complement activation, promoting sterile inflammation. We show that HMGB1 activates the classical pathway of complement system in an antibody-independent manner after binding to C1q. The C3a complement activation product in human plasma and C5b-9 membrane attack complexes on cell membrane surface are detected after the addition of HMGB1. In an acetaminophen (APAP)-induced hepatotoxicity model, APAP injection reduced HMGB1 levels and elevated C3 levels in C1q-deficient mouse serum samples, compared to that in wild-type (WT) mice. APAP-induced C3 consumption was inhibited by sRAGE treatment in WT mice. Moreover, in a mouse model of brain ischemia–reperfusion injury based on middle cerebral arterial occlusion, C5b-9 complexes were deposited on vessels where HMGB1 was accumulated, an effect that was suppressed upon HMGB1 neutralization. We propose that the HMGB1 released after cell necrosis and in ischemic condition can trigger the classical pathway of complement activation to exacerbate sterile inflammation. PMID:29696019
Effects of weak/non-complement-binding HLA antibodies on C1q-binding.
Hönger, G; Amico, P; Arnold, M-L; Spriewald, B M; Schaub, S
2017-08-01
It is unknown under what conditions and to what extent weak/non-complement (C)-binding IgG subclasses (IgG2/IgG4) can block C1q-binding triggered by C-binding IgG subclasses (IgG1/IgG3). Therefore, we investigated in vitro C1q-binding induced by IgG subclass mixtures targeting the same HLA epitope. Various mixtures of HLA class II specific monoclonal antibodies of different IgG subclasses but identical V-region were incubated with HLA DRB1*07:01 beads and monitored for C1q-binding. The lowest concentration to achieve maximum C1q-binding was measured for IgG3, followed by IgG1, while IgG2 and IgG4 did not show appreciable C1q-binding. C1q-binding occurred only after a critical amount of IgG1/3 has bound and sharply increased thereafter. When both, C-binding and weak/non-C-binding IgG subclasses were mixed, C1q-binding was diminished proportionally to the fraction of IgG2/4. A 2- to 4-fold excess of IgG2/4 inhibited C1q-binding by 50%. Very high levels (10-fold excess) almost completely abrogated C1q-binding even in the presence of significant IgG1/3 levels that would usually lead to strong C1q-binding. In sensitized renal allograft recipients, IgG subclass constellations with ≥ 2-fold excess of IgG2/4 over IgG1/3 were present in 23/66 patients (34.8%) and overall revealed slightly decreased C1q signals. However, spiking of patient sera with IgG2 targeting a different epitope than the patient's IgG1/3 synergistically increased C1q-binding. In conclusion, if targeting the same epitope, an excess of IgG2/4 is repressing the extent of IgG1/3 triggered C1q-binding in vitro. Such IgG subclass constellations are present in about a third of sensitized patients and their net effect on C1q-binding is slightly inhibitory. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Giuntini, Serena; Reason, Donald C; Granoff, Dan M
2011-09-01
Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.
Charlesworth, J. A.; Quin, J. W.; Macdonald, G. J.; Lennane, R. J.; Boughton, C. R.
1978-01-01
Serial studies of complement, immunoglobulins, lymphocytotoxins and immune complexes were performed in thirteen patients with uncomplicated infectious mononucleosis (IM). Two methods were used to detect immune complexes: a C1q-binding assay (C1q-BA) and the Raji-cell radioimmunoassay (RIA). Patients were followed until there was complete serological recovery. Individual complement components were normal or elevated but three patients showed initial reduction in total haemolytic activity. IgG, IgM, and IgA rose moderately during the acute phase. All sera showed thymocyte-specific cytotoxic activity at some time during the acute phase but were negative by 6 months. The C1q-BA was positive initially in twelve patients but had returned to normal by 6 months. The standard Raji RIA was negative in fifty out of fifty-five samples tested and it is proposed that this reflects the predominant IgM antibody response in these patients. In contrast, incorporation of a multispecific anti-immunoglobulin into this assay yielded data that was frequently positive; these correlated highly with that of the C1q-BA (P<0·001). Lymphocytotoxic activity correlated with the C1q-BA (P<0·001) and the modified Raji RIA (P<0·05). Patterns of lymphocytotoxicity and immune complex reactivity suggested an inverse relationship between these two parameters. It is proposed that this lymphocytotoxicity leads to production of antibody of restricted class permitting enhanced clearance of immune complexes. PMID:737909
Feichtinger, René G; Oláhová, Monika; Kishita, Yoshihito; Garone, Caterina; Kremer, Laura S; Yagi, Mikako; Uchiumi, Takeshi; Jourdain, Alexis A; Thompson, Kyle; D'Souza, Aaron R; Kopajtich, Robert; Alston, Charlotte L; Koch, Johannes; Sperl, Wolfgang; Mastantuono, Elisa; Strom, Tim M; Wortmann, Saskia B; Meitinger, Thomas; Pierre, Germaine; Chinnery, Patrick F; Chrzanowska-Lightowlers, Zofia M; Lightowlers, Robert N; DiMauro, Salvatore; Calvo, Sarah E; Mootha, Vamsi K; Moggio, Maurizio; Sciacco, Monica; Comi, Giacomo P; Ronchi, Dario; Murayama, Kei; Ohtake, Akira; Rebelo-Guiomar, Pedro; Kohda, Masakazu; Kang, Dongchon; Mayr, Johannes A; Taylor, Robert W; Okazaki, Yasushi; Minczuk, Michal; Prokisch, Holger
2017-10-05
Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp -/- mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp -/- MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Complement Inhibition Alleviates Paraquat-Induced Acute Lung Injury
Sun, Shihui; Wang, Hanbin; Zhao, Guangyu; An, Yingbo; Guo, Yan; Du, Lanying; Song, Hongbin; Qiao, Fei; Yu, Hong; Wu, Xiaohong; Atkinson, Carl; Jiang, Shibo; Tomlinson, Stephen
2011-01-01
The widely used herbicide, paraquat (PQ), is highly toxic and claims thousands of lives from both accidental and voluntary ingestion. The pathological mechanisms of PQ poisoning–induced acute lung injury (ALI) are not well understood, and the role of complement in PQ-induced ALI has not been elucidated. We developed and characterized a mouse model of PQ-induced ALI and studied the role of complement in the pathogenesis of PQ poisoning. Intraperitoneal administration of PQ caused dose- and time-dependent lung damage and mortality, with associated inflammatory response. Within 24 hours of PQ-induced ALI, there was significantly increased expression of the complement proteins, C1q and C3, in the lung. Expression of the anaphylatoxin receptors, C3aR and C5aR, was also increased. Compared with wild-type mice, C3-deficient mice survived significantly longer and displayed significantly reduced lung inflammation and pathology after PQ treatment. Similar reductions in PQ-induced inflammation, pathology, and mortality were recorded in mice treated with the C3 inhibitors, CR2-Crry, and alternative pathway specific CR2-fH. A similar therapeutic effect was also observed by treatment with either C3a receptor antagonist or a blocking C5a receptor monoclonal antibody. Together, these studies indicate that PQ-induced ALI is mediated through receptor signaling by the C3a and C5a complement activation products that are generated via the alternative complement pathway, and that complement inhibition may be an effective clinical intervention for postexposure treatment of PQ-induced ALI. PMID:21421909
Ali, Youssif M; Kenawy, Hany I; Muhammad, Adnan; Sim, Robert B; Andrew, Peter W; Schwaeble, Wilhelm J
2013-01-01
The complement system is an essential component of the immune response, providing a critical line of defense against different pathogens including S. pneumoniae. Complement is activated via three distinct pathways: the classical (CP), the alternative (AP) and the lectin pathway (LP). The role of Pneumolysin (PLY), a bacterial toxin released by S. pneumoniae, in triggering complement activation has been studied in vitro. Our results demonstrate that in both human and mouse sera complement was activated via the CP, initiated by direct binding of even non-specific IgM and IgG3 to PLY. Absence of CP activity in C1q(-/-) mouse serum completely abolished any C3 deposition. However, C1q depleted human serum strongly opsonized PLY through abundant deposition of C3 activation products, indicating that the LP may have a vital role in activating the human complement system on PLY. We identified that human L-ficolin is the critical LP recognition molecule that drives LP activation on PLY, while all of the murine LP recognition components fail to bind and activate complement on PLY. This work elucidates the detailed interactions between PLY and complement and shows for the first time a specific role of the LP in PLY-mediated complement activation in human serum.
Binks, Michael; Sriprakash, K. S.
2004-01-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity. PMID:15213143
Binks, Michael; Sriprakash, K S
2004-07-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity.
Peng, Qi; Wu, Bin; Jiang, Mali; Jin, Jing; Hou, Zhipeng; Zheng, Jennifer; Zhang, Jiangyang; Duan, Wenzhen
2016-01-01
Huntington's disease (HD) is caused by an expansion of the trinucleotide poly (CAG) tract located in exon 1 of the huntingtin (Htt) gene leading to progressive neurodegeneration in selected brain regions, and associated functional impairments in motor, cognitive, and psychiatric domains. Since the discovery of the gene mutation that causes the disease, mouse models have been developed by different strategies. Recently, a new model, the zQ175 knock-in (KI) line, was developed in an attempt to have the Htt gene in a context and causing a phenotype that more closely mimics HD in humans. The behavioral phenotype was characterized across the independent laboratories and important features reminiscent of human HD are observed in zQ175 mice. In the current study, we characterized the zQ175 model housed in an academic laboratory under reversed dark-light cycle, including motor function, in vivo longitudinal structural MRI imaging for brain volume, MRS for striatal metabolites, neuropathology, as well as a panel of key disease marker proteins in the striatum at different ages. Our results suggest that homozygous zQ175 mice exhibited significant brain atrophy before the motor deficits and brain metabolite changes. Altered striatal medium spiny neuronal marker, postsynaptic marker protein and complement component C1qC also characterized zQ175 mice. Our results confirmed that the zQ175 KI model is valuable in understanding of HD-like pathophysiology and evaluation of potential therapeutics. Our data also provide suggestions to select appropriate outcome measurements in preclinical studies using the zQ175 mice.
Cai, Junchao; Terasaki, Paul I; Zhu, Dong; Lachmann, Nils; Schönemann, Constanze; Everly, Matthew J; Qing, Xin
2016-02-01
We have found antibodies against denatured HLA class I antigens in the serum of allograft recipients which were not significantly associated with graft failure. It is unknown whether transplant recipients also have denatured HLA class II and MICA antibodies. The effects of denatured HLA class I, class II, and MICA antibodies on long-term graft outcome were further investigated based on their ability to fix complement c1q. In this 4-year retrospective cohort study, post-transplant sera from 975 kidney transplant recipients were tested for antibodies against denatured HLA/MICA antigens and these antibodies were further classified based on their ability to fix c1q. Thirty percent of patients had antibodies against denatured HLA class I, II, or MICA antigens. Among them, 8.5% and 21.5% of all patients had c1q-fixing and non c1q-fixing antibodies respectively. There was no significant difference on graft survival between patients with or without antibodies against denatured HLA/MICA. However, when these antibodies were further classified according to their ability to fix c1q, patients with c1q-fixing antibodies had a significantly lower graft survival rate than patients without antibodies or patients with non c1q-fixing antibodies (p=0.008). In 169 patients who lost renal grafts, 44% of them had c1q-fixing antibodies against denatured HLA/MICA antigens, which was significantly higher than that in patients with functioning renal transplants (25%, p<0.0001). C1q-fixing antibodies were more significantly associated with graft failure caused by AMR (72.73%) or mixed AMR/CMR (61.9%) as compared to failure due to CMR (35.3%) or other causes (39.2%) (p=0.026). Transplant recipients had antibodies against denatured HLA class I, II, and MICA antigens. However, only c1q-fixing antibodies were associated with graft failure which was related to antibody mediated rejection. Copyright © 2015 Elsevier Inc. All rights reserved.
Dandoy-Dron, F; Guillo, F; Benboudjema, L; Deslys, J P; Lasmézas, C; Dormont, D; Tovey, M G; Dron, M
1998-03-27
To define genes associated with or responsible for the neurodegenerative changes observed in transmissible spongiform encephalopathies, we analyzed gene expression in scrapie-infected mouse brain using "mRNA differential display." The RNA transcripts of eight genes were increased 3-8-fold in the brains of scrapie-infected animals. Five of these genes have not previously been reported to exhibit increased expression in this disease: cathepsin S, the C1q B-chain of complement, apolipoprotein D, and two previously unidentified genes denominated scrapie-responsive gene (ScRG)-1 and ScRG-2, which are preferentially expressed in brain tissue. Increased expression of the three remaining genes, beta2 microglobulin, F4/80, and metallothionein II, has previously been reported to occur in experimental scrapie. Kinetic analysis revealed a concomitant increase in the levels of ScRG-1, cathepsin S, the C1q B-chain of complement, and beta2 microglobulin mRNA as well as glial fibrillary acidic protein and F4/80 transcripts, markers of astrocytosis and microglial activation, respectively. In contrast, the level of ScRG-2, apolipoprotein D, and metallothionein II mRNA was only increased at the terminal stage of the disease. ScRG-1 mRNA was found to be preferentially expressed in glial cells and to code for a short protein of 47 amino acids with a strong hydrophobic N-terminal region.
Lee, Chang-Han; Romain, Gabrielle; Yan, Wupeng; Watanabe, Makiko; Charab, Wissam; Todorova, Biliana; Lee, Jiwon; Triplett, Kendra; Donkor, Moses; Lungu, Oana I; Lux, Anja; Marshall, Nicholas; Lindorfer, Margaret A; Goff, Odile Richard-Le; Balbino, Bianca; Kang, Tae Hyun; Tanno, Hidetaka; Delidakis, George; Alford, Corrine; Taylor, Ronald P; Nimmerjahn, Falk; Varadarajan, Navin; Bruhns, Pierre; Zhang, Yan Jessie; Georgiou, George
2017-08-01
Engineered crystallizable fragment (Fc) regions of antibody domains, which assume a unique and unprecedented asymmetric structure within the homodimeric Fc polypeptide, enable completely selective binding to the complement component C1q and activation of complement via the classical pathway without any concomitant engagement of the Fcγ receptor (FcγR). We used the engineered Fc domains to demonstrate in vitro and in mouse models that for therapeutic antibodies, complement-dependent cell-mediated cytotoxicity (CDCC) and complement-dependent cell-mediated phagocytosis (CDCP) by immunological effector molecules mediated the clearance of target cells with kinetics and efficacy comparable to those of the FcγR-dependent effector functions that are much better studied, while they circumvented certain adverse reactions associated with FcγR engagement. Collectively, our data highlight the importance of CDCC and CDCP in monoclonal-antibody function and provide an experimental approach for delineating the effect of complement-dependent effector-cell engagement in various therapeutic settings.
Viglietti, Denis; Bouatou, Yassine; Kheav, Vissal David; Aubert, Olivier; Suberbielle-Boissel, Caroline; Glotz, Denis; Legendre, Christophe; Taupin, Jean-Luc; Zeevi, Adriana; Loupy, Alexandre; Lefaucheur, Carmen
2018-05-22
A major hurdle to improving clinical care in the field of kidney transplantation is the lack of biomarkers of the response to antibody-mediated rejection (ABMR) treatment. To discover these we investigated the value of complement-binding donor-specific anti-HLA antibodies (DSAs) for evaluating the response to treatment. The study encompassed a prospective cohort of 139 kidney recipients with ABMR receiving the standard of care treatment, including plasma exchange, intravenous immunoglobulin and rituximab. Patients were systematically assessed at the time of diagnosis and three months after treatment initiation for clinical and allograft histological characteristics and anti-HLA DSAs, including their C1q-binding ability. After adjusting for clinical and histological parameters, post-treatment C1q-binding anti-HLA DSA was an independent and significant determinant of allograft loss (adjusted hazard ratio 2.57 (95% confidence interval 1.29-5.12). In 101 patients without post-treatment C1q-binding anti-HLA DSA there was a significantly improved glomerular filtration rate with significantly reduced glomerulitis, peritubular capillaritis, interstitial inflammation, tubulitis, C4d deposition, and endarteritis compared with 38 patients with posttreatment C1q-binding anti-HLA DSA. A conditional inference tree model identified five prognostic groups at the time of post-treatment evaluation based on glomerular filtration rate, presence of cg lesion and C1q-binding anti-HLA DSA (cross-validated accuracy: 0.77). Thus, circulating complement-binding anti-HLA DSAs are strong and independent predictors of allograft outcome after standard of care treatment in kidney recipients with ABMR. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Charbonneau, Bridget; Maurer, Matthew J.; Fredericksen, Zachary S.; Zent, Clive S.; Link, Brian K.; Novak, Anne J.; Ansell, Stephen M.; Weiner, George J.; Wang, Alice H.; Witzig, Thomas E.; Dogan, Ahmet; Slager, Susan L.; Habermann, Thomas M.; Cerhan, James R.
2013-01-01
The complement pathway plays a central role in innate immunity, and also functions as a regulator of the overall immune response. We evaluated whether polymorphisms in complement genes are associated with event-free survival (EFS) in follicular (FL) and diffuse large B-cell (DLBCL) lymphoma. We genotyped 167 single nucleotide polymorphisms (SNPs) from 30 complement pathway genes in a prospective cohort study of newly diagnosed FL (N=107) and DLBCL (N=82) patients enrolled at the Mayo Clinic from 2002–2005. Cox regression was used to estimate Hazard Ratios (HRs) for individual SNPs with EFS, adjusting for FLIPI or IPI and treatment. For gene-level analyses, we used a principal components based gene-level test. In gene-level analyses for FL EFS, CFH (p=0.009), CD55 (p=0.006), CFHR5 (p=0.01), C9 (p=0.02), CFHR1 (p=0.03), and CD46 (p=0.03) were significant at p<0.05, and these genes remained noteworthy after accounting for multiple testing (q<0.15). SNPs in CFH, CFHR1, and CFHR5 showed stronger associations among patients receiving any rituximab, while SNPs from CD55 and CD46 showed stronger associations among patients who were observed. For DLBCL, only CLU (p=0.001) and C7 (p=0.03) were associated with EFS, but did not remain noteworthy after accounting for multiple testing (q>0.15). Genes from the Regulators of Complement Activation (CFH, CD55, CFHR1, CFHR5, CD46) at 1q32-q32.1, along with C9, were associated with FL EFS after adjusting for clinical variables, and if replicated, these findings add further support for the role of host innate immunity in FL prognosis. PMID:22718493
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nydegger, U.E.; Corvetta, A.; Spaeth, P.J.
1983-01-01
During solubilization of immune complexes C3b becomes fixed to the immunoglobulin part and serves as a receptor for the alternative complement pathway control protein H. The H-C3b immune complex interaction can be made detectable using 4% polyethyleneglycol to separate free from bound /sup 125/I-H. Tetanus toxoid (Te)/anti-Te complexes kept soluble with fresh serum and containing 125 IU of specific antibody bound 18% of /sup 125/I-H; when fresh serum was chelated with 10 mM EDTA, /sup 125/I-H binding was only 5%. On sucrose density gradients, the H-binding material sedimented in the range of 12 to 30 S. In 36 serum samplesmore » from rheumatoid arthritis (RA) patients and in 12 serum samples from patients with systemic lupus erythematosus (SLE), /sup 125/I-H binding was significantly elevated to 9.5 +/- 4.7% (mean +/- 1 SD) and 13.3 +/- 5.6%, respectively, while /sup 125/I-H binding by 36 normal human sera was 4 +/- 2%. RA samples (17/36, 47%) and SLE samples (9/12, 75%) had H-binding values increased by more than 2 SD above the normal mean. The serum samples were also assessed for conglutinin- and C1q-binding activities; a significant correlation between H and C1q binding was observed (P less than 0.001); there was no correlation between H and conglutinin binding. Although binding to immune complexes through its interaction with C3b, H clearly detects a population of complexes other than conglutinin, thus expanding the possibilities of further characterizing pathological complexes.« less
Zhang, Man Man; Tan, Bee Kang; Chen, Jing
2017-01-01
Objectives The C1q complement/TNF-related protein (CTRP) superfamily, which includes the adipokine adiponectin, has been shown in animal models to have positive metabolic and cardiovascular effects. We sought to investigate circulating CTRP1, CTRP9, CTRP12 and CTRP13 concentrations in persons with type 2 diabetes mellitus (T2DM), with age and BMI matched controls, and to examine the effects of a 2 hour 75g oral glucose tolerance test (OGTT) on serum CTRP1, CTRP9, CTRP12 and CTRP13 levels in persons with T2DM. Design Cross-sectional study [newly diagnosed T2DM (n = 124) and control (n = 139) participants]. Serum CTRP1, CTRP9, CTRP12 and CTRP13 were measured by ELISA. Results Systolic and diastolic blood pressure, total cholesterol (TCH), Low-density lipoprotein (LDL)-cholesterol, triglycerides, TCH/High-density lipoprotein (HDL) ratio, triglycerides/HDL ratio, glucose, insulin, homeostatic model assessment–insulin resistance (HOMA-IR), C-reactive protein and endothelial lipase were significantly higher, whereas leptin and adiponectin were significantly lower in T2DM participants. Serum CTRP1 were significantly higher and CTRP12 significantly lower in T2DM participants. Age, diastolic blood pressure, glucose and CTRP12 were predictive of serum CTRP1; leptin was predictive of serum CTRP9; glucose and CTRP1 were predictive of serum CTRP12; endothelial lipase was predictive of serum CTRP13. Finally, serum CTRP1 were significantly higher and CTRP12 significantly lower in T2DM participants after a 2 hour 75g OGTT. Conclusions Our data supports CTRP1 and CTRP12 as potential novel biomarkers for the prediction and early diagnosis of T2DM. Furthermore, pharmacological agents that target CTRP1 and CTRP12 could represent a new strategy in the treatment of T2DM. PMID:28207876
NASA Astrophysics Data System (ADS)
Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan
1999-02-01
Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.
Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y.; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin
2012-01-01
The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5′-flap or 5′-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772–1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found. PMID:22194614
Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin
2012-02-10
The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.
Isaac, L; Isenman, D E
1992-05-15
A unique thioester bond, formed between the side chains of neighboring C and Q residues, is present in complement components C3 and C4 and the protease inhibitor alpha 2-macroglobulin. This structure is essential for mediating covalent attachment to target acceptors and also for maintaining these proteins in their native conformation. An examination of the residues in the immediate vicinity of the C and Q reveals a very high degree of sequence similarity among the three proteins which crosses species barriers. The following is the sequence flanking the thioester residues in C3, the highly conserved amino acids being underlined and the the thioester-forming residues being indicated by italics: 1005V-T-P-S-G-C-G-E-Q-N-M-I-G-M-T-P-T1021. Through a site-directed mutagenesis and cDNA expression approach, we have examined the importance of the conserved amino acids in the formation, stability, and function of the thioester bond in C3. The behavior of the mutants fell into three categories. The potential loss in peptide backbone flexibility by the replacement of G1009 by A or S was permissive to thioester formation and function as was replacement of M1015 by the still fairly bulky residue F. In contrast, replacement of M1015 by A resulted in an alpha-chain which was highly unstable toward proteolytic degradation. The third category, which included mutant molecules P1007G, P1020G, E1012Q, and Q1013N, displayed an unusual phenotype in which both the autolytic fragmentation and the hemolytic activity characteristics of thioester-intact molecules were absent. However, like their wildtype counterpart, these molecules retained the ability to be cleaved by C3 convertase (C4b2a), a conformation-dependent property that is normally lost in the conversion of native C3 to thioester-hydrolyzed C3(H2O). Since an identical functional profile was obtained when the thioester was deliberately prevented from forming in the mutant C1010A, we conclude that if a stable thioester fails to form during biosynthesis, at least parts of the mature protein can adopt a more native-like conformation than is the case when the thioester is first formed and then hydrolyzed in the mature protein. In view of these new findings, the interpretation of the previously observed correlation between the loss of thioester integrity and the adoption of a C3b-like conformation must be reassessed.
NASA Astrophysics Data System (ADS)
Chen, Zhong; Zhou, Zunchun; Yang, Aifu; Dong, Ying; Guan, Xiaoyan; Jiang, Bei; Wang, Bai
2015-12-01
The complement system plays a crucial role in the innate immune system of animals. It can be activated by distinct yet overlapping classical, alternative and lectin pathways. In the alternative pathway, complement factor B (Bf) serves as the catalytic subunit of complement component 3 (C3) convertase, which plays the central role among three activation pathways. In this study, the Bf gene in sea cucumber ( Apostichopus japonicus), termed AjBf, was obtained by rapid amplification of cDNA ends (RACE). The full-length cDNA of AjBf was 3231 bp in length barring the poly (A) tail. It contained an open reading frame (ORF) of 2742 bp encoding 913 amino acids, a 105 bp 5'-UTR (5'-terminal untranslated region) and a 384 bp 3'-UTR. AjBf was a mosaic protein with six CCP (complement control protein) domains, a VWA (von Willebrand factor A) domain, and a serine protease domain. The deduced molecular weight of AjBf protein was 101 kDa. Quantitative real time PCR (qRT-PCR) analysis indicated that the expression level of AjBf in A. japonicus was obviously higher at larval stage than that at embryonic stage. Expression detection in different tissues showed that AjBf expressed higher in coelomocytes than in other four tissues. In addation, AjBf expression in different tissues was induced significantly after LPS or PolyI:C challenge. These results indicated that AjBf plays an important role in immune responses to pathogen infection.
Complement Interaction with Trypanosomatid Promastigotes in Normal Human Serum
Domínguez, Mercedes; Moreno, Inmaculada; López-Trascasa, Margarita; Toraño, Alfredo
2002-01-01
In normal human serum (NHS), axenic promastigotes of Crithidia, Phytomonas, and Leishmania trigger complement activation, and from 1.2 to 1.8 × 105 C3 molecules are deposited per promastigote within 2.5 min. In Leishmania, promastigote C3 binding capacity remains constant during in vitro metacyclogenesis. C3 deposition on promastigotes activated through the classical complement pathway reaches a 50% maximum after ∼50 s, and represents >85% of total C3 bound. In C1q- and C2-deficient human sera, promastigotes cannot activate the classical pathway (CP) unless purified C1q or C2 factors, respectively, are supplemented, demonstrating a requirement for CP factor in promastigote C3 opsonization. NHS depleted of natural anti-Leishmania antibodies cannot trigger promastigote CP activation, but IgM addition restores C3 binding. Furthermore, Leishmania binds natural antibodies in ethylenediaminetetracetic acid (EDTA)-treated NHS; after EDTA removal, promastigote-bound IgM triggers C3 deposition in natural antibody-depleted NHS. Serum collectins and pentraxins thus do not participate significantly in NHS promastigote C3 opsonization. Real-time kinetic analysis of promastigote CP-mediated lysis indicates that between 85–95% of parasites are killed within 2.5 min of serum contact. These data indicate that successful Leishmania infection in man must immediately follow promastigote transmission, and that Leishmania evasion strategies are shaped by the selective pressure exerted by complement. PMID:11854358
Jiang, Yiqun; Bernard, Denzil; Yu, Yanke; Xie, Yehua; Zhang, Tao; Li, Yanyan; Burnett, Joseph P.; Fu, Xueqi; Wang, Shaomeng; Sun, Duxin
2010-01-01
Hsp90 requires cochaperone Cdc37 to load its clients to the Hsp90 superchaperone complex. The purpose of this study was to utilize split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) bioluminescence to study the full-length human Hsp90-Cdc37 complex and to identity critical residues and their contributions for Hsp90/Cdc37 interaction in living cells. SRL-PFAC showed that full-length human Hsp90/Cdc37 interaction restored dramatically high luciferase activity through Hsp90-Cdc37-assisted complementation of the N and C termini of luciferase (compared with the set of controls). Immunoprecipitation confirmed that the expressed fusion proteins (NRL-Hsp90 and Cdc37-CRL) preserved their ability to interact with each other and also with native Hsp90 or Cdc37. Molecular dynamic simulation revealed several critical residues in the two interaction patches (hydrophobic and polar) at the interface of Hsp90/Cdc37. Mutagenesis confirmed the critical residues for Hsp90-Cdc37 complex formation. SRL-PFAC bioluminescence evaluated the contributions of these critical residues in Hsp90/Cdc37 interaction. The results showed that mutations in Hsp90 (Q133A, F134A, and A121N) and mutations in Cdc37 (M164A, R167A, L205A, and Q208A) reduced the Hsp90/Cdc37 interaction by 70–95% as measured by the resorted luciferase activity through Hsp90-Cdc37-assisted complementation. In comparison, mutations in Hsp90 (E47A and S113A) and a mutation in Cdc37 (A204E) decreased the Hsp90/Cdc37 interaction by 50%. In contrast, mutations of Hsp90 (R46A, S50A, C481A, and C598A) and mutations in Cdc37 (C54S, C57S, and C64S) did not change Hsp90/Cdc37 interactions. The data suggest that single amino acid mutation in the interface of Hsp90/Cdc37 is sufficient to disrupt its interaction, although Hsp90/Cdc37 interactions are through large regions of hydrophobic and polar interactions. These findings provides a rationale to develop inhibitors for disruption of the Hsp90/Cdc37 interaction. PMID:20413594
Jiang, Yiqun; Bernard, Denzil; Yu, Yanke; Xie, Yehua; Zhang, Tao; Li, Yanyan; Burnett, Joseph P; Fu, Xueqi; Wang, Shaomeng; Sun, Duxin
2010-07-02
Hsp90 requires cochaperone Cdc37 to load its clients to the Hsp90 superchaperone complex. The purpose of this study was to utilize split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) bioluminescence to study the full-length human Hsp90-Cdc37 complex and to identity critical residues and their contributions for Hsp90/Cdc37 interaction in living cells. SRL-PFAC showed that full-length human Hsp90/Cdc37 interaction restored dramatically high luciferase activity through Hsp90-Cdc37-assisted complementation of the N and C termini of luciferase (compared with the set of controls). Immunoprecipitation confirmed that the expressed fusion proteins (NRL-Hsp90 and Cdc37-CRL) preserved their ability to interact with each other and also with native Hsp90 or Cdc37. Molecular dynamic simulation revealed several critical residues in the two interaction patches (hydrophobic and polar) at the interface of Hsp90/Cdc37. Mutagenesis confirmed the critical residues for Hsp90-Cdc37 complex formation. SRL-PFAC bioluminescence evaluated the contributions of these critical residues in Hsp90/Cdc37 interaction. The results showed that mutations in Hsp90 (Q133A, F134A, and A121N) and mutations in Cdc37 (M164A, R167A, L205A, and Q208A) reduced the Hsp90/Cdc37 interaction by 70-95% as measured by the resorted luciferase activity through Hsp90-Cdc37-assisted complementation. In comparison, mutations in Hsp90 (E47A and S113A) and a mutation in Cdc37 (A204E) decreased the Hsp90/Cdc37 interaction by 50%. In contrast, mutations of Hsp90 (R46A, S50A, C481A, and C598A) and mutations in Cdc37 (C54S, C57S, and C64S) did not change Hsp90/Cdc37 interactions. The data suggest that single amino acid mutation in the interface of Hsp90/Cdc37 is sufficient to disrupt its interaction, although Hsp90/Cdc37 interactions are through large regions of hydrophobic and polar interactions. These findings provides a rationale to develop inhibitors for disruption of the Hsp90/Cdc37 interaction.
A selection that reports on protein-protein interactions within a thermophilic bacterium.
Nguyen, Peter Q; Silberg, Jonathan J
2010-07-01
Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein-protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein-protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AK(Tn)). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75 degrees C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78 degrees C by a vector that coexpresses polypeptides corresponding to residues 1-79 and 80-220 of AK(Tn). In contrast, PQN1 growth was not complemented by AK(Tn) fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein-protein interactions, since AK(Tn)-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein-protein interactions.
Kravitz, Martine Szyper; Shoenfeld, Yehuda
2006-09-01
Apoptotic defects and impaired clearance of cellular debris are considered key events in the development of autoimmunity, as they can contribute to autoantigen overload and might be involved in the initiation of an autoimmune response. The C1q protein and mannose-binding lectin are activators of the complement system. The pentraxins are a group of highly conserved proteins including the short pentraxins, C-reactive protein and serum amyloid P, and the long pentraxin family member, pentraxin 3, all of which are involved in innate immunity and in acute-phase responses. In addition to their role in innate immunity and inflammation, each of these proteins participates in the removal of damaged and apoptotic cells. In this article, we discuss the clinical significance of different levels of these proteins, their role in the induction of or protection against autoimmunity, and the presence of specific autoantibodies against them in various autoimmune diseases.
Zeng, Yan; Xiang, Jinsong; Lu, Yang; Chen, Yadong; Wang, Tianzi; Gong, Guangye; Wang, Lei; Li, Xihong; Chen, Songlin; Sha, Zhenxia
2015-01-01
The C1q family includes many proteins that contain a globular (gC1q) domain, and this family is widely conserved from bacteria to mammals. The family is divided into three subgroups: C1q, C1q-like and ghC1q. In this study, a novel C1q family member, sghC1q, was cloned and identified from Cynoglossus semilaevis (named CssghC1q). The full-length CssghC1q cDNA spans 905 bp, including an open reading frame (ORF) of 768 bp, a 5'-untranslated region (UTR) of 25 bp and a 3'-UTR of 112 bp. The ORF encodes a putative protein of 255 amino acids (aa) with a deduced molecular weight of 28 kDa. The predicted protein contains a signal peptide (aa 1-19), a coiled-coil region (aa 61-102) and a globular C1q (gC1q) domain (aa 117-255). Protein sequence alignment indicated that the C-terminus of CssghC1q is highly conserved across several species. Phylogenetic analysis indicated that CssghC1q is most closely related to Maylandia zebra C1q-like-2-like. The CssghC1q genomic sequence spanned 1562 bp, with three exons and two introns. CssghC1q is constitutively expressed in all evaluated tissues, with the highest expression in the liver and the weakest in the heart. After a challenge with Vibrio anguillarum, CssghC1q transcript levels exhibited distinct time-dependent response patterns in the blood, head kidney, skin, spleen, intestine and liver. Recombinant CssghC1q protein exhibited antimicrobial activities against Gram-negative bacteria, Gram-positive bacteria and viruses. The minimum inhibitory concentration (MIC) values against Vibrio harveyi, Vibrio anguillarum, Pseudomonas aeruginosa and Staphylococcus aureus were 0.043 mg/mL, 0.087 mg/mL, 0.174 mg/mL and 0.025 mg/mL, respectively. A low concentration (0.06 mg/mL) of CssghC1q showed significant antiviral activity in vitro against nervous necrosis virus (NNV). These results suggest that CssghC1q plays a vital role in immune defense against bacteria and viruses. Copyright © 2014 Elsevier Ltd. All rights reserved.
21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...
Trouw, Leendert A.; Groeneveld, Tom W.L.; Seelen, Marc A.; Duijs, Jacques M.G.J.; Bajema, Ingeborg M.; Prins, Frans A.; Kishore, Uday; Salant, David J.; Verbeek, J. Sjef; Kooten, Cees van; Daha, Mohamed R.
2004-01-01
Anti-C1q autoantibodies are present in sera of patients with several autoimmune diseases, including systemic lupus erythematosus (SLE). Strikingly, in SLE the presence of anti-C1q is associated with the occurrence of nephritis. We have generated mouse anti–mouse C1q mAb’s and used murine models to investigate whether anti-C1q autoantibodies actually contribute to renal pathology in glomerular immune complex disease. Administration of anti-C1q mAb JL-1, which recognizes the collagen-like region of C1q, resulted in glomerular deposition of C1q and anti-C1q autoantibodies and mild granulocyte influx, but no overt renal damage. However, combination of JL-1 with a subnephritogenic dose of C1q-fixing anti–glomerular basement membrane (anti-GBM) antibodies enhanced renal damage characterized by persistently increased levels of infiltrating granulocytes, major histological changes, and increased albuminuria. This was not observed when a non–C1q-fixing anti-GBM preparation was used. Experiments with different knockout mice showed that renal damage was dependent not only on glomerular C1q and complement activation but also on Fcγ receptors. In conclusion, anti-C1q autoantibodies deposit in glomeruli together with C1q but induce overt renal disease only in the context of glomerular immune complex disease. This provides an explanation why anti-C1q antibodies are especially pathogenic in patients with SLE. PMID:15343386
Role of different pathways of the complement cascade in experimental bullous pemphigoid
Nelson, Kelly C.; Zhao, Minglang; Schroeder, Pamela R.; Li, Ning; Wetsel, Rick A.; Diaz, Luis A.; Liu, Zhi
2006-01-01
Bullous pemphigoid (BP) is an autoimmune subepidermal blistering disease associated with autoantibodies directed against the hemidesmosomal proteins BP180 and BP230 and inflammation. Passive transfer of antibodies to the murine BP180 (mBP180) induces a skin disease that closely resembles human BP. In the present study, we defined the roles of the different complement activation pathways in this model system. Mice deficient in the alternative pathway component factor B (Fb) and injected with pathogenic anti-mBP180 IgG developed delayed and less intense subepidermal blisters. Mice deficient in the classical pathway component complement component 4 (C4) and WT mice pretreated with neutralizing antibody against the first component of the classical pathway, C1q, were resistant to experimental BP. These mice exhibited a significantly reduced level of mast cell degranulation and polymorphonuclear neutrophil (PMN) infiltration in the skin. Intradermal administration of compound 48/80, a mast cell degranulating agent, restored BP disease in C4–/– mice. Furthermore, C4–/– mice became susceptible to experimental BP after local injection of PMN chemoattractant IL-8 or local reconstitution with PMNs. These findings provide the first direct evidence to our knowledge that complement activation via the classical and alternative pathways is crucial in subepidermal blister formation in experimental BP. PMID:17024247
Mapping the Complement Factor H-Related Protein 1 (CFHR1):C3b/C3d Interactions
Laskowski, Jennifer; Thurman, Joshua M.; Hageman, Gregory S.; Holers, V. Michael
2016-01-01
Complement factor H-related protein 1 (CFHR1) is a complement regulator which has been reported to regulate complement by blocking C5 convertase activity and interfering with C5b surface association. CFHR1 also competes with complement factor H (CFH) for binding to C3b, and may act as an antagonist of CFH-directed regulation on cell surfaces. We have employed site-directed mutagenesis in conjunction with ELISA-based and functional assays to isolate the binding interaction that CFHR1 undertakes with complement components C3b and C3d to a single shared interface. The C3b/C3d:CFHR1 interface is identical to that which occurs between the two C-terminal domains (SCR19-20) of CFH and C3b. Moreover, we have been able to corroborate that dimerization of CFHR1 is necessary for this molecule to bind effectively to C3b and C3d, or compete with CFH. Finally, we have established that CFHR1 competes with complement factor H-like protein 1 (CFHL-1) for binding to C3b. CFHL-1 is a CFH gene splice variant, which is almost identical to the N-terminal 7 domains of CFH (SCR1-7). CFHR1, therefore, not only competes with the C-terminus of CFH for binding to C3b, but also sterically blocks the interaction that the N-terminus of CFH undertakes with C3b, and which is required for CFH-regulation. PMID:27814381
Unmasking of complements using proteinase-K in formalin fixed paraffin embedded renal biopsies.
Nada, R; Kumar, A; Kumar, V G; Gupta, K L; Joshi, K
2016-01-01
Renal biopsy interpretation requires histopathology, direct immunofluorescence (DIF) and electron microscopy. Formalin-fixed, paraffin-embedded tissue (FFPE) sent for light microscopy can be used for DIF after antigen retrieval. However, complement staining has not been satisfactory. We standardized DIF using proteinase-K for antigen retrieval in FFPE renal biopsies. A pilot study was conducted on known cases of membranous glomerulonephritis (MGN), membranoproliferative type-1 (MPGN-1), immunoglobulin A nephropathy (IgAN), and anti-glomerular basement disease (anti-GBM). Immunofluorescence panel included fluorescein isothiocyanate (FITC) conjugated IgG, IgA, IgM, complements (C3 and C1q), light chains (kappa, lambda) and fibrinogen antibodies. After standardization of the technique, 75 renal biopsies and 43 autopsies cases were stained. Out of 43 autopsy cases, immune-complex mediated glomerulonephritis (GN) was confirmed in 18 cases (Lupus nephritis-11, IgAN-6, MGN-1), complement-mediated dense deposit disease (DDD-1) and monoclonal diseases in 4 cases (amyloidosis-3, cast nephropathy-1). Immune-mediated injury was excluded in 17 cases (focal segmental glomerulosclerosis -3, crescentic GN-6 [pauci-immune-3, anti-GBM-3], thrombotic microangiopathy-5, atherosclerosis-3). Renal biopsies (n-75) where inadequate or no frozen sample was available; this technique classified 52 mesangiocapillary pattern as MPGN type-1-46, DDD-2 and (C3GN-4). Others were diagnosed as IgAN-3, lupus nephritis-2, MGN-4, diffuse proliferative glomerulonephritis (DPGN)-1, Non-IC crescentic GN-1, monoclonal diseases-3. In nine cases, DIF on FFPE tissue could not help in making diagnosis. Proteinase-K enzymatic digestion of FFPE renal biopsies can unmask complements (both C3 and C1q) in immune-complexes mediated and complement-mediated diseases. This method showed good results on autopsy tissues archived for as long as 15 years.
Rodriguez, E. R.; Skojec, Diane V.; Tan, Carmela D.; Zachary, Andrea A.; Kasper, Edward K.; Conte, John V.; Baldwin, William M.
2005-01-01
Antibody-mediated rejection (AMR) in human heart transplantation is an immunopathologic process in which injury to the graft is in part the result of activation of complement and it is poorly responsive to conventional therapy. We evaluated by immunofluorescence (IF), 665 consecutive endomyocardial biopsies from 165 patients for deposits of immunoglobulins and complement. Diffuse IF deposits in a linear capillary pattern greater than 2+ were considered significant. Clinical evidence of graft dysfunction was correlated with complement deposits. IF 2+ or higher was positive for IgG, 66%; IgM, 12%; IgA, 0.6%; C1q, 1.8%; C4d, 9% and C3d, 10%. In 3% of patients, concomitant C4d and C3d correlated with graft dysfunction or heart failure. In these 5 patients AMR occurred 56–163 months after transplantation, and they responded well to therapy for AMR but not to treatment with steroids. Systematic evaluation of endomyocardial biopsies is not improved by the use of antibodies for immunoglobulins or C1q. Concomitant use of C4d and C3d is very useful to diagnose AMR, when correlated with clinical parameters of graft function. AMR in heart transplant patients can occur many months or years after transplant. PMID:16212640
A selection that reports on protein–protein interactions within a thermophilic bacterium
Nguyen, Peter Q.; Silberg, Jonathan J.
2010-01-01
Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein–protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein–protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AKTn). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75°C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78°C by a vector that coexpresses polypeptides corresponding to residues 1–79 and 80–220 of AKTn. In contrast, PQN1 growth was not complemented by AKTn fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein–protein interactions, since AKTn-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein–protein interactions. PMID:20418388
Cheow, Esther Sok Hwee; Cheng, Woo Chin; Lee, Chuen Neng; de Kleijn, Dominique; Sorokin, Vitaly; Sze, Siu Kwan
2016-01-01
Myocardial infarction (MI) triggers a potent inflammatory response via the release of circulatory mediators, including extracellular vesicles (EVs) by damaged cardiac cells, necessary for myocardial healing. Timely repression of inflammatory response are critical to prevent and minimize cardiac tissue injuries, nonetheless, progression in this aspect remains challenging. The ability of EVs to trigger a functional response upon delivery of carried bioactive cargos, have made them clinically attractive diagnostic biomarkers and vectors for therapeutic interventions. Using label-free quantitative proteomics approach, we compared the protein cargo of plasma EVs between patients with MI and from patients with stable angina (NMI). We report, for the first time, the proteomics profiling on 252 EV proteins that were modulated with >1.2-fold after MI. We identified six up-regulated biomarkers with potential for clinical applications; these reflected post-infarct pathways of complement activation (Complement C1q subcomponent subunit A (C1QA), 3.23-fold change, p = 0.012; Complement C5 (C5), 1.27-fold change, p = 0.087), lipoprotein metabolism (Apoliporotein D (APOD), 1.86-fold change, p = 0.033; Apolipoprotein C-III (APOCC3), 2.63-fold change, p = 0.029) and platelet activation (Platelet glycoprotein Ib alpha chain (GP1BA), 9.18-fold change, p < 0.0001; Platelet basic protein (PPBP), 4.72-fold change, p = 0.027). The data have been deposited to the ProteomeXchange with identifier PXD002950. This novel biomarker panel was validated in 43 patients using antibody-based assays (C1QA (p = 0.005); C5 (p = 0.0047), APOD (p = 0.0267); APOC3 (p = 0.0064); GP1BA (p = 0.0031); PPBP (p = 0.0465)). We further present that EV-derived fibrinogen components were paradoxically down-regulated in MI, suggesting that a compensatory mechanism may suppress post-infarct coagulation pathways, indicating potential for therapeutic targeting of this mechanism in MI. Taken together, these data demonstrated that plasma EVs contain novel diagnostic biomarkers and therapeutic targets that can be further developed for clinical use to benefit patients with coronary artery diseases (CADs). PMID:27234505
Schwartz, Justin T.; Barker, Jason H.; Long, Matthew E.; Kaufman, Justin; McCracken, Jenna; Allen, Lee-Ann H.
2012-01-01
A fundamental step in the life cycle of F. tularensis is bacterial entry into host cells. F. tularensis activates complement, and recent data suggest that the classical pathway is required for complement factor C3 deposition on the bacterial surface. Nevertheless, C3 deposition is inefficient and neither the specific serum components necessary for classical pathway activation by F. tularensis in nonimmune human serum, nor the receptors that mediate infection of neutrophils has been defined. Herein human neutrophil uptake of GFP-expressing F. tularensis strains LVS and Schu S4 was quantified with high efficiency by flow cytometry. Using depleted sera and purified complement components we demonstrated first that C1q and C3 were essential for F. tularensis phagocytosis whereas C5 was not. Second, we used purification and immuno-depletion approaches to identify a critical role for natural IgM in this process, and then used a wbtA2 mutant to identify LPS O-antigen and capsule as prominent targets of these antibodies on the bacterial surface. Finally, we demonstrate using receptor-blocking antibodies that CR1 (CD35) and CR3 (CD11b/CD18) acted in concert for phagocytosis of opsonized F. tularensis by human neutrophils, whereas CR3 and CR4 (CD11c/CD18) mediated infection of human monocyte-derived macrophages. Altogether, our data provide fundamental insight into mechanisms of F. tularensis phagocytosis and support a model whereby natural IgM binds to surface capsular and O-antigen polysaccharides of F. tularensis and initiates the classical complement cascade via C1q to promote C3-opsonization of the bacterium and phagocytosis via CR3 and either CR1 or CR4 in a phagocyte-specific manner. PMID:22888138
2012-01-01
Background In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS) after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR), which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand. Methods Recombinant HmC1q (rHmC1q) was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques. Results rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia. Conclusions A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal leech. PMID:22356764
Tahtouh, Muriel; Garçon-Bocquet, Annelise; Croq, Françoise; Vizioli, Jacopo; Sautière, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Nagnan-le Meillour, Patricia; Pestel, Joël; Lefebvre, Christophe
2012-02-22
In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS) after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR), which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand. Recombinant HmC1q (rHmC1q) was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques. rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia. A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal leech.
Castiblanco-Valencia, Mónica M.; Fraga, Tatiana R.; Breda, Leandro C.D.; Vasconcellos, Sílvio A.; Figueira, Cláudio P.; Picardeau, Mathieu; Wunder, Elsio; Ko, Albert I.; Barbosa, Angela S.; Isaac, Lourdes
2017-01-01
Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules present in pathogenic but not in saprophytic Leptospira species. We have previously shown that Lig proteins interact with the soluble complement regulators Factor H (FH), FH like-1 (FHL-1), FH related-1 (FHR-1) and C4b Binding Protein (C4BP). In this study, we used the saprophyte L. biflexa serovar Patoc as a surrogate host to address the specific role of LigA and LigB proteins in leptospiral complement evasion. L. biflexa expressing LigA or LigB was able to acquire FH and C4BP. Bound complement regulators retained their cofactor activities of FI in the proteolytic cleavage of C3b and C4b. Moreover, heterologous expression of ligA and ligB genes in the saprophyte L. biflexa enhanced bacterial survival in human serum. Complement deposition on lig-transformed L. biflexa was assessed by flow cytometry analysis. With regard to MAC deposition, L. biflexa expressing LigA or LigB presented an intermediate profile: MAC deposition levels were greater than those found in the pathogenic L. interrogans, but lower than those observed for L. biflexa wildtype. In conclusion, Lig proteins contribute to in vitro control of complement activation on the leptospiral surface, promoting an increased bacterial survival in human serum. PMID:26976804
Oh, Ji-eun; Karlmark, Karlin Raja; Shin, Jooho; Hengstschläger, Markus; Lubec, Gert
2006-05-15
Several protein cascades, including signaling, cytoskeletal, chaperones, metabolic, and antioxidant proteins, have been shown to be involved in the process of neuronal differentiation (ND) of neuroblastoma cell lines. No systematic approach to detect hitherto unknown and unnamed proteins or structures that have been predicted upon nucleic acid sequences in ND has been published so far. We therefore decided to screen hypothetical protein (HP) expression by protein profiling. Two-dimensional gel electrophoresis with subsequent matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/TOF) identification was used for expression analysis of undifferentiated and dimethylsulfoxide-induced neuronally differentiated N1E-115 cells. We unambiguously identified six HPs: Q8C520, Q99LF4, Q9CXS1, Q9DAF8, Q91WT0, and Q8C5G2. A prefoldin domain in Q91WT0, a t-SNARE domain in Q9CXS1, and a bromodomain were observed in Q8C5G2. For the three remaining proteins, no putative function using Pfam, BLOCKS, PROSITE, PRINTS, InterPro, Superfamily, CoPS, and ExPASy could be assigned. While two proteins were present in both cell lines, Q9CXS1 was switched off (i.e., undetectably low) in differentiated cells only, and Q9DAF8, Q91WT0, and Q8C5G2 were switched on in differentiated cells exclusively. Herein, using a proteomic approach suitable for screening and identification of HP, we present HP structures that have been only predicted so far based upon nucleic acid sequences. The four differentially regulated HPs may play a putative role in the process of ND. (c) 2006 Wiley-Liss, Inc.
Rainard, P
1993-01-01
The ability of lactoferrin (Lf) bound to Streptococcus agalactiae to interfere with the deposition of complement components on the bacterial surface was investigated by enzyme-linked immunosorbent assay (ELISA). By using a strain of S. agalactiae which activates the alternative pathway of complement in the absence of antibodies, it was found that pretreatment of bacteria with Lf shortened the lag phase preceding the deposition of C3 on bacteria. The kinetics of C3 deposition was comparable to that obtained by adding antibodies against S. agalactiae to agammaglobulinaemic precolostral calf serum (PCS) heated at 56 degrees for 3 min to inactivate the alternative pathway. Accelerated C3 deposition did not occur in the absence of Ca2+ ions. Deposition of C4 on bacteria occurred only when either antibodies or Lf were added to PCS. These results demonstrate that the interaction of lactoferrin with bacteria activated the classical pathway of complement in the absence of antibodies. The binding of purified C1q to bacteria was promoted in a dose-dependent manner by Lf, suggesting that recruitment of classical pathway of complement resulted from the interaction of C1q with Lf adsorbed to the bacterial surface. Phagocytosis of bacteria opsonized with heated PCS (at 56 degrees for 3 min) and Lf was comparable to that occurring in the presence of heated PCS and antibodies. In conclusion, Lf was able to substitute for antibodies in order to activate the classical pathway of complement and to opsonize unencapsulated S. agalactiae efficiently. PMID:8406591
Candida albicans Shaving to Profile Human Serum Proteins on Hyphal Surface
Marín, Elvira; Parra-Giraldo, Claudia M.; Hernández-Haro, Carolina; Hernáez, María L.; Nombela, César; Monteoliva, Lucía; Gil, Concha
2015-01-01
Candida albicans is a human opportunistic fungus and it is responsible for a wide variety of infections, either superficial or systemic. C. albicans is a polymorphic fungus and its ability to switch between yeast and hyphae is essential for its virulence. Once C. albicans obtains access to the human body, the host serum constitutes a complex environment of interaction with C. albicans cell surface in bloodstream. To draw a comprehensive picture of this relevant step in host-pathogen interaction during invasive candidiasis, we have optimized a gel-free shaving proteomic strategy to identify both, human serum proteins coating C. albicans cells and fungi surface proteins simultaneously. This approach was carried out with normal serum (NS) and heat inactivated serum (HIS). We identified 214 human and 372 C. albicans unique proteins. Proteins identified in C. albicans included 147 which were described as located at the cell surface and 52 that were described as immunogenic. Interestingly, among these C. albicans proteins, we identified 23 GPI-anchored proteins, Gpd2 and Pra1, which are involved in complement system evasion and 7 other proteins that are able to attach plasminogen to C. albicans surface (Adh1, Eno1, Fba1, Pgk1, Tdh3, Tef1, and Tsa1). Furthermore, 12 proteins identified at the C. albicans hyphae surface induced with 10% human serum were not detected in other hypha-induced conditions. The most abundant human proteins identified are involved in complement and coagulation pathways. Remarkably, with this strategy, all main proteins belonging to complement cascades were identified on the C. albicans surface. Moreover, we identified immunoglobulins, cytoskeletal proteins, metabolic proteins such as apolipoproteins and others. Additionally, we identified more inhibitors of complement and coagulation pathways, some of them serpin proteins (serine protease inhibitors), in HIS vs. NS. On the other hand, we detected a higher amount of C3 at the C. albicans surface in NS than in HIS, as validated by immunofluorescence. PMID:26696967
Michelow, Ian C; Dong, Mingdong; Mungall, Bruce A; Yantosca, L Michael; Lear, Calli; Ji, Xin; Karpel, Marshall; Rootes, Christina L; Brudner, Matthew; Houen, Gunnar; Eisen, Damon P; Kinane, T Bernard; Takahashi, Kazue; Stahl, Gregory L; Olinger, Gene G; Spear, Gregory T; Ezekowitz, R Alan B; Schmidt, Emmett V
2010-08-06
Ebola viruses constitute a newly emerging public threat because they cause rapidly fatal hemorrhagic fevers for which no treatment exists, and they can be manipulated as bioweapons. We targeted conserved N-glycosylated carbohydrate ligands on viral envelope surfaces using novel immune therapies. Mannose-binding lectin (MBL) and L-ficolin (L-FCN) were selected because they function as opsonins and activate complement. Given that MBL has a complex quaternary structure unsuitable for large scale cost-effective production, we sought to develop a less complex chimeric fusion protein with similar ligand recognition and enhanced effector functions. We tested recombinant human MBL and three L-FCN/MBL variants that contained the MBL carbohydrate recognition domain and varying lengths of the L-FCN collagenous domain. Non-reduced chimeric proteins formed predominantly nona- and dodecameric oligomers, whereas recombinant human MBL formed octadecameric and larger oligomers. Surface plasmon resonance revealed that L-FCN/MBL76 had the highest binding affinities for N-acetylglucosamine-bovine serum albumin and mannan. The same chimeric protein displayed superior complement C4 cleavage and binding to calreticulin (cC1qR), a putative receptor for MBL. L-FCN/MBL76 reduced infection by wild type Ebola virus Zaire significantly greater than the other molecules. Tapping mode atomic force microscopy revealed that L-FCN/MBL76 was significantly less tall than the other molecules despite similar polypeptide lengths. We propose that alterations in the quaternary structure of L-FCN/MBL76 resulted in greater flexibility in the collagenous or neck region. Similarly, a more pliable molecule might enhance cooperativity between the carbohydrate recognition domains and their cognate ligands, complement activation, and calreticulin binding dynamics. L-FCN/MBL chimeric proteins should be considered as potential novel therapeutics.
Identification of a novel C1q family member in color crucian carp (Carassius auratus) ovary.
Chen, Bo; Gui, Jianfang
2004-07-01
Potential roles of C1q/tumor necrosis factor (TNF) superfamily proteins have been observed in vertebrate oogenesis and oocyte maturation, but no ovary-specific member has been identified so far. In this study, we have cloned and identified a novel member of C1q family with a C1q domain in the C-terminal from fully grown oocyte cDNA library of color crucian carp and demonstrated that the gene might be specifically expressed in ovary and therefore designated as Carassius auratus ovary-specific C1q-like factor, CaOC1q-like factor. It encodes a 213 amino acid protein with a 17 amino acid signal peptide. There is only one protein band of about 24.5 kDa in the extracts from phase I to phase IV oocytes, but two positive protein bands are detected in the extracts of mature eggs and fertilized eggs. Furthermore, the mobility shift of the smaller target protein band cannot be eliminated by phosphatase treatment, but the larger protein band increases its mobility on the gel after phosphatase treatment, suggesting that the larger protein might be a phosphorylated form. Immunofluorescence localization indicates that the CaOC1q-like proteins localize in cytoplasm, cytoplasm membrane and egg envelope of the oocytes at cortical granule stage and vitellogenesis stage, whereas they were compressed to cytoplasm margin in ovulated mature eggs and discharged into perivitelline space between cytoplasm membrane and egg envelope after egg fertilization. Further studies on distribution and translocation mechanism of the CaOC1q-like factor will be benefit to elucidate the unique function in oogenesis, oocyte maturation and egg fertilization.
A murC gene from coryneform bacteria.
Wachi, M; Wijayarathna, C D; Teraoka, H; Nagai, K
1999-02-01
The upstream flanking region of the ftsQ and ftsZ genes of Brevibacterium flavum MJ233, which belongs to the coryneform bacteria, was amplified by the inverse polymerase chain reaction method and cloned in Escherichia coli. Complementation analysis of E. coli mutant with a defective cell-wall synthesis mechanism with the cloned fragment and its DNA sequencing indicated the presence of the murC gene, encoding UDP-N-acetylmuramate:L-alanine ligase involved in peptidoglycan synthesis, just upstream from the ftsQ gene. The B. flavum murC gene could encode a protein of 486 amino acid residues with a calculated molecular mass of 51 198 Da. A 50-kDa protein was synthesized by the B. flavum murC gene in an in vitro transcription/translation system using E. coli S30 lysate. These results indicate that the genes responsible for cell-wall synthesis and cell division are located as a cluster in B. flavum similar to the E. coli mra region.
Shaner, Lance; Trott, Amy; Goeckeler, Jennifer L; Brodsky, Jeffrey L; Morano, Kevin A
2004-05-21
The Sse1/Hsp110 molecular chaperones are a poorly understood subgroup of the Hsp70 chaperone family. Hsp70 can refold denatured polypeptides via a C-terminal peptide binding domain (PBD), which is regulated by nucleotide cycling in an N-terminal ATPase domain. However, unlike Hsp70, both Sse1 and mammalian Hsp110 bind unfolded peptide substrates but cannot refold them. To test the in vivo requirement for interdomain communication, SSE1 alleles carrying amino acid substitutions in the ATPase domain were assayed for their ability to complement sse1Delta yeast. Surprisingly, all mutants predicted to abolish ATP hydrolysis (D8N, K69Q, D174N, D203N) complemented the temperature sensitivity of sse1Delta and lethality of sse1Deltasse2Delta cells, whereas mutations in predicted ATP binding residues (G205D, G233D) were non-functional. Complementation ability correlated well with ATP binding assessed in vitro. The extreme C terminus of the Hsp70 family is required for substrate targeting and heterocomplex formation with other chaperones, but mutant Sse1 proteins with a truncation of up to 44 C-terminal residues that were not included in the PBD were active. Remarkably, the two domains of Sse1, when expressed in trans, functionally complement the sse1Delta growth phenotype and interact by coimmunoprecipitation analysis. In addition, a functional PBD was required to stabilize the Sse1 ATPase domain, and stabilization also occurred in trans. These data represent the first structure-function analysis of this abundant but ill defined chaperone, and establish several novel aspects of Sse1/Hsp110 function relative to Hsp70.
Deans, Michael R.; Peterson, Jonathan M.; Wong, G. William
2010-01-01
Background The mammalian otoconial membrane is a dense extracellular matrix containing bio-mineralized otoconia. This structure provides the mechanical stimulus necessary for hair cells of the vestibular maculae to respond to linear accelerations and gravity. In teleosts, Otolin is required for the proper anchoring of otolith crystals to the sensory maculae. Otoconia detachment and subsequent entrapment in the semicircular canals can result in benign paroxysmal positional vertigo (BPPV), a common form of vertigo for which the molecular basis is unknown. Several cDNAs encoding protein components of the mammalian otoconia and otoconial membrane have recently been identified, and mutations in these genes result in abnormal otoconia formation and balance deficits. Principal Findings Here we describe the cloning and characterization of mammalian Otolin, a protein constituent of otoconia and the otoconial membrane. Otolin is a secreted glycoprotein of ∼70 kDa, with a C-terminal globular domain that is homologous to the immune complement C1q, and contains extensive posttranslational modifications including hydroxylated prolines and glycosylated lysines. Like all C1q/TNF family members, Otolin multimerizes into higher order oligomeric complexes. The expression of otolin mRNA is restricted to the inner ear, and immunohistochemical analysis identified Otolin protein in support cells of the vestibular maculae and semi-circular canal cristae. Additionally, Otolin forms protein complexes with Cerebellin-1 and Otoconin-90, two protein constituents of the otoconia, when expressed in vitro. Otolin was also found in subsets of support cells and non-sensory cells of the cochlea, suggesting that Otolin is also a component of the tectorial membrane. Conclusion Given the importance of Otolin in lower organisms, the molecular cloning and biochemical characterization of the mammalian Otolin protein may lead to a better understanding of otoconial development and vestibular dysfunction. PMID:20856818
Castiblanco-Valencia, Mónica M; Fraga, Tatiana R; Breda, Leandro C D; Vasconcellos, Sílvio A; Figueira, Cláudio P; Picardeau, Mathieu; Wunder, Elsio; Ko, Albert I; Barbosa, Angela S; Isaac, Lourdes
2016-05-01
Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules present in pathogenic but not in saprophytic Leptospira species. We have previously shown that Lig proteins interact with the soluble complement regulators Factor H (FH), FH like-1 (FHL-1), FH related-1 (FHR-1) and C4b Binding Protein (C4BP). In this study, we used the saprophyte L. biflexa serovar Patoc as a surrogate host to address the specific role of LigA and LigB proteins in leptospiral complement evasion. L. biflexa expressing LigA or LigB was able to acquire FH and C4BP. Bound complement regulators retained their cofactor activities of FI in the proteolytic cleavage of C3b and C4b. Moreover, heterologous expression of ligA and ligB genes in the saprophyte L. biflexa enhanced bacterial survival in human serum. Complement deposition on lig-transformed L. biflexa was assessed by flow cytometry analysis. With regard to MAC deposition, L. biflexa expressing LigA or LigB presented an intermediate profile: MAC deposition levels were greater than those found in the pathogenic L. interrogans, but lower than those observed for L. biflexa wildtype. In conclusion, Lig proteins contribute to in vitro control of complement activation on the leptospiral surface, promoting an increased bacterial survival in human serum. Copyright © 2016 European Federation of Immunological Societies. All rights reserved.
Homologous species restriction of the complement-mediated killing of nucleated cells.
Yamamoto, H; Blaas, P; Nicholson-Weller, A; Hänsch, G M
1990-01-01
The homologous restriction of complement (C) lysis is attributed to membrane proteins: decay-accelerating factor (DAF), C8 binding protein (C8bp) and P18/CD59. Since these proteins are also expressed on peripheral blood cells, species restriction was tested for in the complement-mediated killing of antibody-coated human leucocytes by human or rabbit complement. Killing was more efficient when rabbit complement was used. Preincubation of cells with an antibody to DAF abolished the difference. When C1-7 sites were first attached to the cells and either rabbit or human C8, C9 were added, the killing of monocytes and lymphocytes was equally efficient; only in polymorphonuclear neutrophils was a higher efficiency of rabbit C8, C9 seen. Thus, in contrast to haemolysis, restriction occurred predominantly at the C3 level and the action of the terminal complement components was not inhibited. Since C8bp isolated from peripheral blood cells showed essentially similar characteristics as the erythrocyte-derived C8bp, the failure of C8bp to inhibit the action of the terminal components on nucleated cells might reflect differences of the complement membrane interactions between erythrocytes or nucleated cells, respectively. Images Figure 5 PMID:1697561
A Review of Therapeutic Aptamer Conjugates with Emphasis on New Approaches
Bruno, John G.
2013-01-01
The potential to emulate or enhance antibodies with nucleic acid aptamers while lowering costs has prompted development of new aptamer-protein, siRNA, drug, and nanoparticle conjugates. Specific focal points of this review discuss DNA aptamers covalently bound at their 3' ends to various proteins for enhanced stability and greater pharmacokinetic lifetimes in vivo. The proteins can include Fc tails of IgG for opsonization, and the first component of complement (C1q) to trigger complement-mediated lysis of antibiotic-resistant Gram negative bacteria, cancer cells and possibly some parasites during vulnerable stages. In addition, the 3' protein adduct may be a biotoxin, enzyme, or may simply be human serum albumin (HSA) or a drug known to bind HSA, thereby retarding kidney and other organ clearance and inhibiting serum exonucleases. In this review, the author summarizes existing therapeutic aptamer conjugate categories and describes his patented concept for PCR-based amplification of double-stranded aptamers followed by covalent attachment of proteins or other agents to the chemically vulnerable overhanging 3' adenine added by Taq polymerase. PCR amplification of aptamers could dramatically lower the current $2,000/gram cost of parallel chemical oligonucleotide synthesis, thereby enabling mass production of aptamer-3'-protein or drug conjugates to better compete against expensive humanized monoclonal antibodies. PMID:24276022
CovR Regulates Streptococcus mutans Susceptibility To Complement Immunity and Survival in Blood
Alves, Lívia A.; Nomura, Ryota; Mariano, Flávia S.; Harth-Chu, Erika N.; Stipp, Rafael N.; Nakano, Kazuhiko
2016-01-01
Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro. Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans. Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization. PMID:27572331
Gao, Sansi; Yang, Wei; Yu, Hongjiang; Liu, Runqi; Dong, Zhihao; Zhang, Hongyou; Xia, Cheng; Xu, Chuang
2017-11-01
High concentrations of non-esterified fatty acid (NEFA) and β-hydroxybutyrate (BHBA) in cows' blood caused by ketosis are associated with inflammatory states. We hypothesised that ketosis in postparturient dairy cows would result in altered levels on inflammation-related proteins not only in plasma but also in the milk fat globule membranes (MFGM). Thirty cows were selected from a dairy farm in Heilongjiang, China. Inflammatory milk fat globule membrane proteins were detected using ELISA kits, and a fully automatic biochemical analyser was used to measure the concentrations of BHBA, NEFA, glucose (GLU) and triglyceride (TG) in plasma. MFGM protein from milk of ketotic cows contained significantly different concentrations of acute-phase response proteins (complement C3 (C3), prothrombin (F2), alpha-1-acid glycoprotein (ORM1), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), alpha-2-HS-glycoprotein (AHSG), complement C9 (C9), complement regulatory protein variant 4 (CD46)) in comparison with milk from non-ketotic cows. Blood concentrations of C3, complement C9 (C9), tumour necrosis factor α (TNFα), MFGM C3, monocyte differentiation antigen CD14 (CD14) and ORM1 levels were correlated with energy balance. ITIH4 and CD46 increased, and AHSG and ORM1 decreased before the onset of ketosis. These biomarkers offer potential as predictors and monitors of ketosis in at-risk cows.
Complement Evasion by Pathogenic Leptospira.
Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva
2016-01-01
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira . Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira , have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.
Complement Evasion by Pathogenic Leptospira
Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva
2016-01-01
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira, have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host. PMID:28066433
Shah, Dilip; Romero, Freddy; Zhu, Ying; Duong, Michelle; Sun, Jianxin; Walsh, Kenneth; Summer, Ross
2015-12-04
The collectin proteins are innate immune molecules found in high concentrations on the epithelial and endothelial surfaces of the lung. While these proteins are known to have important anti-inflammatory actions in the airways of the lung little is known of their functional importance in the pulmonary circulation. We recently demonstrated that the circulating collectin protein adiponectin has potent anti-inflammatory effects on the lung endothelium, leading us to reason that other structurally related proteins might have similar effects. To test this hypothesis, we investigated the anti-inflammatory actions of C1q in lung endothelial homeostasis and the pulmonary vascular response to LPS or HCl injury. We show that lung endothelium from C1q-deficient (C1q(-/-)) mice expresses higher baseline levels of the vascular adhesion markers ICAM-1, VCAM-1, and E-selectin when compared with wild-type mice. Further, we demonstrate that these changes are associated with enhanced susceptibility of the lung to injury as evident by increased expression of adhesion markers, enhanced production of pro-inflammatory cytokines, and augmented neutrophil recruitment. Additionally, we found that C1q(-/-) mice also exhibited enhanced endothelial barrier dysfunction after injury as manifested by decreased expression of junctional adherens proteins and enhanced vascular leakage. Mechanistically, C1q appears to mediate its effects by inhibiting phosphorylation of p38 mitogen-activated protein kinase (MAPK) and blocking nuclear translocation of the P65 subunit of nuclear factor (NF)-κB. In summary, our findings indicate a previously unrecognized role for C1q in pulmonary vascular homeostasis and provide added support for the hypothesis that circulating collectin proteins have protective effects on the lung endothelium. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Valenzuela, Nicole M.; Thomas, Kimberly A.; Mulder, Arend; Parry, Graham C.; Panicker, Sandip; Reed, Elaine F.
2017-01-01
Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. PMID:28640789
Alcorlo, Martín; Tortajada, Agustín; Rodríguez de Córdoba, Santiago; Llorca, Oscar
2013-01-01
Complement is an essential component of innate immunity. Its activation results in the assembly of unstable protease complexes, denominated C3/C5 convertases, leading to inflammation and lysis. Regulatory proteins inactivate C3/C5 convertases on host surfaces to avoid collateral tissue damage. On pathogen surfaces, properdin stabilizes C3/C5 convertases to efficiently fight infection. How properdin performs this function is, however, unclear. Using electron microscopy we show that the N- and C-terminal ends of adjacent monomers in properdin oligomers conform a curly vertex that holds together the AP convertase, interacting with both the C345C and vWA domains of C3b and Bb, respectively. Properdin also promotes a large displacement of the TED (thioester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains of C3b, which likely impairs C3-convertase inactivation by regulatory proteins. The combined effect of molecular cross-linking and structural reorganization increases stability of the C3 convertase and facilitates recruitment of fluid-phase C3 convertase to the cell surfaces. Our model explains how properdin mediates the assembly of stabilized C3/C5-convertase clusters, which helps to localize complement amplification to pathogen surfaces. PMID:23901101
Maneu, V; Roig, P; Gozalbo, D
2000-11-01
We have demonstrated that the expression of Candida albicans genes involved in translation and protein folding (EFB1 and SSB1) complements the phenotype of Saccharomyces cerevisiae mutants. The elongation factor 1beta (EF-1beta) is essential for growth and efb1 S. cerevisiae null mutant cells are not viable; however, viable haploid cells, carrying the disrupted chromosomal allele of the S. cerevisiae EFB1 gene and pEFB1, were isolated upon sporulation of a diploid strain which was heterozygous at the EFB1 locus and transformed with pEFB1 (a pEMBLYe23 derivative plasmid containing an 8-kb DNA fragment from the C. albicans genome which contains the EFB1 gene). This indicates that the C. albicans EFB1 gene encodes a functional EF-1beta. Expression of the SSB1 gene from C. albicans, which codes for a member of the 70-kDa heat shock protein family, in S. cerevisiae ssb1 ssb2 double mutant complements the mutant phenotype (poor growth particularly at low temperature, and sensitivity to certain protein synthesis inhibitors, such as paromomycin). This complementation indicates that C. albicans Ssbl may function as a molecular chaperone on the translating ribosomes, as described in S. cerevisiae. Northern blot analysis showed that SSB mRNA levels increased after mild cold shift (28 degrees C to 23 degrees C) and rapidly decreased after mild heat shift (from 28 degrees C to 37 degrees C, and particularly to 42 degrees C), indicating that SSB1 expression is regulated by temperature. Therefore, Ssb1 may be considered as a molecular chaperone whose pattern of expression is similar to that found in ribosomal proteins, according to its common role in translation.
C1 inhibitor-mediated myocardial protection from chronic intermittent hypoxia-induced injury
Fu, Jinrong; Guo, Furong; Chen, Cheng; Yu, Xiaoman; Hu, Ke; Li, Mingjiang
2016-01-01
The optimal treatment for chronic intermittent hypoxia (CIH)-induced cardiovascular injuries has yet to be determined. The aim of the current study was to explore the potential protective effect and mechanism of a C1 inhibitor in CIH in the myocardium. The present study used a rat model of CIH in which complement regulatory protein, known as C1 inhibitor (C1INH), was administered to the rats in the intervention groups. Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. The expression of proteins associated with the apoptotic pathway, such as B-cell lymphoma 2 (Bcl-2), Bax and caspase-3 were detected by western blot analysis. The expression of complement C3 protein and RNA were also analyzed. C1INH was observed to improve the cardiac function in rats with CIH. Myocardial myeloperoxidase activity, a marker of neutrophil infiltration, was significantly decreased in the C1INH intervention group compared with the CIH control group, and cardiomyocyte apoptosis was significantly attenuated (P<0.05). Western blotting and reverse transcription-polymerase chain reaction analysis indicated that the protein expression levels of Bcl-2 were decreased and those of Bax were increased in the CIH group compared with the normal control group, but the protein expression levels of Bcl-2 were increased and those of Bax were decreased in the C1INH intervention group, as compared with the CIH group. Furthermore, the CIH-induced expression and synthesis of complement C3 in the myocardium were also reduced in the C1INH intervention group. C1INH, in addition to inhibiting complement activation and inflammation, preserved cardiac function in CIH-mediated myocardial cell injury through an anti-apoptotic mechanism. PMID:27698713
Banadakoppa, M; Chauhan, M S; Havemann, D; Balakrishnan, M; Dominic, J S; Yallampalli, C
2014-01-01
Spontaneous abortion in early pregnancy due to unknown reasons is a common problem. The excess complement activation and consequent placental inflammation and anti-angiogenic milieu is emerging as an important associated factor in many pregnancy-related complications. In the present study we sought to examine the expression of complement inhibitory proteins at the feto–maternal interface and levels of complement split products in the circulation to understand their role in spontaneous abortion. Consenting pregnant women who either underwent elective abortion due to non-clinical reasons (n = 13) or suffered miscarriage (n = 14) were recruited for the study. Systemic levels of complement factors C3a and C5a were measured by enzyme-linked immunosorbent assay (ELISA). Plasma C5 and C3 protein levels were examined by Western blot. Expressions of complement regulatory proteins such as CD46 and CD55 in the decidua were investigated by quantitative polymerase chain reaction (PCR) and Western blot. The median of plasma C3a level was 82·83 ng/ml and 66·17 ng/ml in elective and spontaneous abortion patients, respectively. Medians of plasma C5a levels in elective and spontaneous abortion patients were 0·96 ng/ml and 1·14 ng/ml, respectively. Only plasma C5a levels but not C3a levels showed significant elevation in spontaneous abortion patients compared to elective abortion patients. Further, there was a threefold decrease in the mRNA expressions of complement inhibitory proteins CD46 and CD55 in the decidua obtained from spontaneous abortion patients compared to that of elective abortion patients. These data suggested that dysregulated complement cascade may be associated with spontaneous abortion. PMID:24802103
Russkamp, Dennis; Van Vaerenbergh, Matthias; Etzold, Stefanie; Eberlein, Bernadette; Darsow, Ulf; Schiener, Maximilian; De Smet, Lina; Absmaier, Magdalena; Biedermann, Tilo; Spillner, Edzard; Ollert, Markus; Jakob, Thilo; Schmidt-Weber, Carsten B; de Graaf, Dirk C; Blank, Simon
2018-05-26
Honeybee (Apis mellifera) venom (HBV) represents an ideal model to study the role of particular venom components in allergic reactions in sensitized individuals as well as in the eusociality of Hymenoptera species. The aim of this study was to further characterize the HBV components C1q-like protein (C1q) and PDGF/VEGF-like factor 1 (PVF1). C1q and PVF1 were produced as recombinant proteins in insect cells. Their allergenic properties were examined by determining the level of specific IgE antibodies in the sera of HBV-allergic patients (n = 26) as well as by their capacity to activate patients' basophils (n = 11). Moreover, the transcript heterogeneity of PVF1 was analyzed. It could be demonstrated that at least three PVF1 variants are present in the venom gland, which all result from alternative splicing of one transcript. Additionally, recombinant C1q and PVF1 from Spodoptera frugiperda insect cells exhibited specific IgE reactivity with approximately 38.5% of sera of HBV-allergic patients. Interestingly, both proteins were unable to activate basophils of the patients, questioning their role in the context of clinically relevant sensitization. Recombinant C1q and PVF1 can build the basis for a deeper understanding of the molecular mechanisms of Hymenoptera venoms. Moreover, the conflicting results between IgE sensitization and lack of basophil activation, might in the future contribute to the identification of factors that determine the allergenic potential of proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zallot, Rémi; Brochier-Armanet, Céline; Gaston, Kirk W; Forouhar, Farhad; Limbach, Patrick A; Hunt, John F; de Crécy-Lagard, Valérie
2014-08-15
Queuosine (Q) is a modification found at the wobble position of tRNAs with GUN anticodons. Although Q is present in most eukaryotes and bacteria, only bacteria can synthesize Q de novo. Eukaryotes acquire queuine (q), the free base of Q, from diet and/or microflora, making q an important but under-recognized micronutrient for plants, animals, and fungi. Eukaryotic type tRNA-guanine transglycosylases (eTGTs) are composed of a catalytic subunit (QTRT1) and a homologous accessory subunit (QTRTD1) forming a complex that catalyzes q insertion into target tRNAs. Phylogenetic analysis of eTGT subunits revealed a patchy distribution pattern in which gene losses occurred independently in different clades. Searches for genes co-distributing with eTGT family members identified DUF2419 as a potential Q salvage protein family. This prediction was experimentally validated in Schizosaccharomyces pombe by confirming that Q was present by analyzing tRNA(Asp) with anticodon GUC purified from wild-type cells and by showing that Q was absent from strains carrying deletions in the QTRT1 or DUF2419 encoding genes. DUF2419 proteins occur in most Eukarya with a few possible cases of horizontal gene transfer to bacteria. The universality of the DUF2419 function was confirmed by complementing the S. pombe mutant with the Zea mays (maize), human, and Sphaerobacter thermophilus homologues. The enzymatic function of this family is yet to be determined, but structural similarity with DNA glycosidases suggests a ribonucleoside hydrolase activity.
Hołubowicz, Rafał; Wojtas, Magdalena; Taube, Michał; Kozak, Maciej; Ożyhar, Andrzej; Dobryszycki, Piotr
2017-12-01
Otolin-1 is a collagen-like protein expressed in the inner ear of vertebrates. It provides an organic scaffold for otoliths in fish and otoconia in land vertebrates. In this study, the expression and purification procedure of C1q-like domain of otolin-1 from human and zebrafish was developed. The structure and stability of the proteins were investigated. The results of sedimentation velocity analytical ultracentrifugation and small-angle X-ray scattering indicated that the C1q-like domain of otolin-1 forms stable trimers in solution in the presence of calcium ions. It was also observed that calcium ions influenced the secondary structure of the proteins. C1q-like domains were stabilized by the calcium ions. The human variant was especially affected by the calcium ions. The results indicate the importance of the C1q-like domain for the assembly of the organic matrix of otoliths and otoconia. © 2017 Federation of European Biochemical Societies.
Abe, T; Morita, M; Kawai, K; Misawa, S; Kanai, H; Hirose, G; Fujita, H
1975-09-20
A case of an inherited type of D/G translocation D1-trisomy syndrome was described. A female proposita who had the clinical signs of D1-trisomy syndrome was found to have a chromosome complement of 46,XX,--G,+t(DqGq). examination of Q- and G-stained karyotypes revealed that the chromosomes involved in the translocation were members of Nos. 13 and 22, or t(13q22q) with breaks at p12 of both chromosomes. C-stained figures also showed a large heterochromatin block in its centromeric region. The t(13q22q) chromosome was transmitted from the paternal grandmother of the proposita through at least three generations.
Salam, Kazi Abdus; Wang, Richard Y; Grandinetti, Teresa; De Giorgi, Valeria; Alter, Harvey J; Allison, Robert D
2018-05-09
Erythrocytes bind circulating immune complexes (IC) and facilitate IC clearance from the circulation. Chronic hepatitis C virus (HCV) infection is associated with IC-related disorders. In this study we investigated the kinetics and mechanism of HCV and HCV-IC binding to and dissociation from erythrocytes. Cell culture-produced HCV was mixed with erythrocytes from healthy blood donors and erythrocyte-associated virus particles were quantified. Purified complement proteins, complement-depleted serum, and complement receptor antibodies were used to investigate complement-mediated HCV-erythrocyte binding. Purified HCV-specific immunoglobulin G from a chronic HCV-infected patient was used to study complement-mediated HCV-IC-erythrocyte binding. Binding of HCV to erythrocytes increased 200 to 1,000 fold after adding complement active human serum in the absence of antibody. Opsonization of free HCV occurred within 10 minutes and peak binding to erythrocytes was observed at 20-30 minutes. Complement protein C1 was required for binding, while C2, C3 and C4 significantly enhanced binding. Complement receptor 1 (CR1, CD35) antibodies blocked the binding of HCV to erythrocytes isolated from chronically infected HCV patients and healthy blood donors. HCV-ICs significantly enhanced complement-mediated binding to erythrocytes compared to unbound HCV. Dissociation of complement-opsonized HCV from erythrocytes depended on the presence of Factor I. HCV released by Factor I bound preferentially to CD19+ B cells compared to other leukocytes. These results demonstrate that complement mediates the binding of free and IC-associated HCV to CR1 on erythrocytes, and provide a mechanistic rationale for investigating the differential phenotypic expression of HCV-IC-related disease. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.
Wen, Qiong; Zhang, Li; Mao, Hai-Ping; Tang, Xue-Qing; Rong, Rong; Fan, Jin-Jin; Yu, Xue-Qing
2013-08-30
Peritoneal membranes can be categorized as high, high average, low average, and low transporters, based on the removal or transport rate of solutes. In this study, we used proteomic analysis to determine the differences in proteins removed by different types of peritoneal membranes. Peritoneal transport characteristics in patients who received peritoneal dialysis therapy were assessed by a peritoneal equilibration test. Two-dimensional differential gel electrophoresis technology followed by quantitative analysis was performed to study the variation in protein expression from peritoneal dialysis effluents (PDE) among different groups. Proteins were identified by MALDI-TOF-MS/MS analyses. Further validation in PDE or serum was performed utilizing ELISA analysis. Proteomics analysis revealed ten protein spots with significant differences in intensity levels among different groups, including vitamin D-binding protein, complement C3, apolipoprotein-A1, complement factor C4A, haptoglobin, alpha-1 antitrypsin, immunoglobulin kappa light chain, alpha-2-microglobulin, retinol-binding protein 4 and transthyretin. The levels of vitamin D-binding protein, complement C3, and apolipoprotein-A1 in PDE derived from different groups were greatly varied (P<0.05). However, no significant difference was found in the serum levels of these proteins among different groups (P>0.05 for all groups). This study provides a novel overview of the differences in PDE proteomes of four types of peritoneal membranes. Vitamin D-binding protein, complement C3, and apolipoprotein-A1 showed enhanced expression in PDE of patients with high transporter. Copyright © 2013 Elsevier Inc. All rights reserved.
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
Ali, Youssif M.; Kenawy, Hany I.; Muhammad, Adnan; Sim, Robert B.
2013-01-01
The complement system is an essential component of the immune response, providing a critical line of defense against different pathogens including S. pneumoniae. Complement is activated via three distinct pathways: the classical (CP), the alternative (AP) and the lectin pathway (LP). The role of Pneumolysin (PLY), a bacterial toxin released by S. pneumoniae, in triggering complement activation has been studied in vitro. Our results demonstrate that in both human and mouse sera complement was activated via the CP, initiated by direct binding of even non-specific IgM and IgG3 to PLY. Absence of CP activity in C1q−/− mouse serum completely abolished any C3 deposition. However, C1q depleted human serum strongly opsonized PLY through abundant deposition of C3 activation products, indicating that the LP may have a vital role in activating the human complement system on PLY. We identified that human L-ficolin is the critical LP recognition molecule that drives LP activation on PLY, while all of the murine LP recognition components fail to bind and activate complement on PLY. This work elucidates the detailed interactions between PLY and complement and shows for the first time a specific role of the LP in PLY-mediated complement activation in human serum. PMID:24349316
Chi, Shuhong; Yu, Yunxia; Shi, Juan; Zhang, Yurong; Yang, Jijuan; Yang, Lijuan; Liu, Xiaoming
2015-01-01
Objective. An early diagnosis of lupus nephritis (LN) has an important clinical implication in guiding treatments of systemic lupus erythematosus (SLE) in clinical settings. In this study, the diagnostic values of circulating autoantibodies to C1q alone or in combination with other markers for accessing active SLE and LN were evaluated. Methods. The diagnostic value of anti-C1q autoantibodies for identification of patients with active SLE disease and LN was evaluated by analyzing the level of anti-C1q antibodies in sera from 95 SLE patients, 40 non-SLE patients, and 34 healthy cohorts. Results. The prevalence of anti-C1q antibodies was significantly higher in patients with SLE (50/95, 52.6%), active SLE (40/51, 78.4%), and LN (30/35, 85.7%) in comparison with non-SLE patient controls, patients with inactive SLE, and non-LN, respectively. A combination of anti-C1q with anti-dsDNA and/or levels of complements C3 and C4 exhibited an increased specificity but a decreased sensitivity for identification of patients with active SLE and LN diseases relative to each of these markers alone. Conclusion. Anti-C1q antibodies were strongly associated with disease activity and LN in SLE patients, suggesting that it may be a reliable serological marker for identification of SLE patients with active LN and active SLE disease. PMID:26549923
Edwards, Andrew M.; Bowden, Maria Gabriela; Brown, Eric L.; Laabei, Maisem; Massey, Ruth C.
2012-01-01
Staphylococcus aureus is a leading cause of bacteraemia, which frequently results in complications such as infective endocarditis, osteomyelitis and exit from the bloodstream to cause metastatic abscesses. Interaction with endothelial cells is critical to these complications and several bacterial proteins have been shown to be involved. The S. aureus extracellular adhesion protein (Eap) has many functions, it binds several host glyco-proteins and has both pro- and anti-inflammatory activity. Unfortunately its role in vivo has not been robustly tested to date, due to difficulties in complementing its activity in mutant strains. We previously found Eap to have pro-inflammatory activity, and here show that purified native Eap triggered TNFα release in whole human blood in a dose-dependent manner. This level of TNFα increased adhesion of S. aureus to endothelial cells 4-fold via a mechanism involving protein A on the bacterial surface and gC1qR/p33 on the endothelial cell surface. The contribution this and other Eap activities play in disease severity during bacteraemia was tested by constructing an isogenic set of strains in which the eap gene was inactivated and complemented by inserting an intact copy elsewhere on the bacterial chromosome. Using a murine bacteraemia model we found that Eap expressing strains cause a more severe infection, demonstrating its role in invasive disease. PMID:22905199
Potential influences of complement factor H in autoimmune inflammatory and thrombotic disorders.
Ferluga, Janez; Kouser, Lubna; Murugaiah, Valarmathy; Sim, Robert B; Kishore, Uday
2017-04-01
Complement system homeostasis is important for host self-protection and anti-microbial immune surveillance, and recent research indicates roles in tissue development and remodelling. Complement also appears to have several points of interaction with the blood coagulation system. Deficiency and altered function due to gene mutations and polymorphisms in complement effectors and regulators, including Factor H, have been associated with familial and sporadic autoimmune inflammatory - thrombotic disorders, in which autoantibodies play a part. These include systemic lupus erythematosus, rheumatoid arthritis, atypical haemolytic uremic syndrome, anti-phospholipid syndrome and age-related macular degeneration. Such diseases are generally complex - multigenic and heterogeneous in their symptoms and predisposition/susceptibility. They usually need to be triggered by vascular trauma, drugs or infection and non-complement genetic factors also play a part. Underlying events seem to include decline in peripheral regulatory T cells, dendritic cell, and B cell tolerance, associated with alterations in lymphoid organ microenvironment. Factor H is an abundant protein, synthesised in many cell types, and its reported binding to many different ligands, even if not of high affinity, may influence a large number of molecular interactions, together with the accepted role of Factor H within the complement system. Factor H is involved in mesenchymal stem cell mediated tolerance and also contributes to self-tolerance by augmenting iC3b production and opsonisation of apoptotic cells for their silent dendritic cell engulfment via complement receptor CR3, which mediates anti-inflammatory-tolerogenic effects in the apoptotic cell context. There may be co-operation with other phagocytic receptors, such as complement C1q receptors, and the Tim glycoprotein family, which specifically bind phosphatidylserine expressed on the apoptotic cell surface. Factor H is able to discriminate between self and nonself surfaces for self-protection and anti-microbe defence. Factor H, particularly as an abundant platelet protein, may also modulate blood coagulation, having an anti-thrombotic role. Here, we review a number of interaction pathways in coagulation and in immunity, together with associated diseases, and indicate where Factor H may be expected to exert an influence, based on reports of the diversity of ligands for Factor H. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wooster, David G; Maruvada, Ravi; Blom, Anna M; Prasadarao, Nemani V
2006-01-01
Meningitis caused by Escherichia coli K1 is a serious illness in neonates with neurological sequelae in up to 50% of survivors. A high degree of bacteremia is required for E. coli K1 to cross the blood–brain barrier, which suggests that the bacterium must evade the host defence mechanisms and survive in the bloodstream. We previously showed that outer membrane protein A (OmpA) of E. coli binds C4b-binding protein (C4bp), an inhibitor of complement activation via the classical pathway. Nevertheless, the exact mechanism by which E. coli K1 survives in serum remains elusive. Here, we demonstrate that log phase (LP) OmpA+E. coli K1 avoids serum bactericidal activity more effectively than postexponential phase bacteria. OmpA–E. coli cannot survive in serum grown to either phase. The increased serum resistance of LP OmpA+E. coli is the result of increased binding of C4bp, with a concomitant decrease in the deposition of C3b and the downstream complement proteins responsible for the formation of the membrane attack complex. C4bp bound to E. coli K1 acts as a cofactor to factor I in the cleavage of both C3b and C4b, which shuts down the ensuing complement cascade. Accordingly, a peptide corresponding to the complement control protein domain 3 of C4bp sequence, was able to compete with C4bp binding to OmpA and cause increased deposition of C3b. Thus, binding of C4bp appears to be responsible for survival of E. coli K1 in human serum. PMID:16556262
Loeschenberger, Beatrix; Niess, Lea; Würzner, Reinhard; Schwelberger, Hubert; Eder, Iris E; Puhr, Martin; Guenther, Julia; Troppmair, Jakob; Rudnicki, Michael; Neuwirt, Hannes
2018-02-01
One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A clinicopathological study of C1q nephropathy at King Abdulaziz University.
Mokhtar, Ghadeer A; Jalalah, Sawsan M
2015-07-01
C1q nephropathy is a relatively rare idiopathic glomerulopathy characterized by mesangial immunoglobulin and complement deposits with dominance or co-dominance of C1q, with no evidence of systemic lupus erythematosus. We describe the incidence, clinical manifestation, histopathological features, and follow-up of patients with C1q nephropathy at our institute. Of 750 kidney biopsy specimens obtained in the period of January 2000 to December 2011, all the cases that meet the criteria for the diagnosis of C1q nephropathy were retrieved. The histological slides were examined and the clinical charts were reviewed by 2renal pathologists. We had 11 patients, all children, that met the criteria for the diagnosis of C1q nephropathy accounting for an incidence of 1.5%. The mean age at the time of presentation was 3.7 years and all the patients were presented with nephrotic syndrome. Two patients had microhematuria and 2 had hypertension. Histological examination of these cases showed variable degrees of mesangial cells hypercellularity and matrix expansion with focal segmental glomerulosclerosis observed in 2 cases. Nine patients were steroid resistant (82%) and 2 were steroid dependent. Six patients required immunosuppressive therapy and 1 patient developed end-stage renal disease. In our series, C1q nephropathy affected predominantly young children. Mesangioproliferative pattern was the most frequent histopathological finding in these patients. Clinically, despite steroid resistance, the patients had a relatively good outcome; the worst prognostic outcome was associated with collapsing glomerulopathy.
Splenic macrophages are required for protective innate immunity against West Nile virus
Bryan, Marianne A.; Giordano, Daniela; Draves, Kevin E.; Green, Richard; Gale, Michael
2018-01-01
Although the spleen is a major site for West Nile virus (WNV) replication and spread, relatively little is known about which innate cells in the spleen replicate WNV, control viral dissemination, and/or prime innate and adaptive immune responses. Here we tested if splenic macrophages (MΦs) were necessary for control of WNV infection. We selectively depleted splenic MΦs, but not draining lymph node MΦs, by injecting mice intravenously with clodronate liposomes several days prior to infecting them with WNV. Mice missing splenic MΦs succumbed to WNV infection after an increased and accelerated spread of virus to the spleen and the brain. WNV-specific Ab and CTL responses were normal in splenic MΦ-depleted mice; however, numbers of NK cells and CD4 and CD8 T cells were significantly increased in the brains of infected mice. Splenic MΦ deficiency led to increased WNV in other splenic innate immune cells including CD11b- DCs, newly formed MΦs and monocytes. Unlike other splenic myeloid subsets, splenic MΦs express high levels of mRNAs encoding the complement protein C1q, the apoptotic cell clearance protein Mertk, the IL-18 cytokine and the FcγR1 receptor. Splenic MΦ-deficient mice may be highly susceptible to WNV infection in part to a deficiency in C1q, Mertk, IL-18 or Caspase 12 expression. PMID:29408905
Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo
NASA Astrophysics Data System (ADS)
Chen, Fangfang; Wang, Guankui; Griffin, James I.; Brenneman, Barbara; Banda, Nirmal K.; Holers, V. Michael; Backos, Donald S.; Wu, Linping; Moghimi, Seyed Moein; Simberg, Dmitri
2017-05-01
When nanoparticles are intravenously injected into the body, complement proteins deposit on the surface of nanoparticles in a process called opsonization. These proteins prime the particle for removal by immune cells and may contribute toward infusion-related adverse effects such as allergic responses. The ways complement proteins assemble on nanoparticles have remained unclear. Here, we show that dextran-coated superparamagnetic iron oxide core-shell nanoworms incubated in human serum and plasma are rapidly opsonized with the third complement component (C3) via the alternative pathway. Serum and plasma proteins bound to the nanoworms are mostly intercalated into the nanoworm shell. We show that C3 covalently binds to these absorbed proteins rather than the dextran shell and the protein-bound C3 undergoes dynamic exchange in vitro. Surface-bound proteins accelerate the assembly of the complement components of the alternative pathway on the nanoworm surface. When nanoworms pre-coated with human plasma were injected into mice, C3 and other adsorbed proteins undergo rapid loss. Our results provide important insight into dynamics of protein adsorption and complement opsonization of nanomedicines.
Shah, Dilip; Romero, Freddy; Zhu, Ying; Duong, Michelle; Sun, Jianxin; Walsh, Kenneth; Summer, Ross
2015-01-01
The collectin proteins are innate immune molecules found in high concentrations on the epithelial and endothelial surfaces of the lung. While these proteins are known to have important anti-inflammatory actions in the airways of the lung little is known of their functional importance in the pulmonary circulation. We recently demonstrated that the circulating collectin protein adiponectin has potent anti-inflammatory effects on the lung endothelium, leading us to reason that other structurally related proteins might have similar effects. To test this hypothesis, we investigated the anti-inflammatory actions of C1q in lung endothelial homeostasis and the pulmonary vascular response to LPS or HCl injury. We show that lung endothelium from C1q-deficient (C1q−/−) mice expresses higher baseline levels of the vascular adhesion markers ICAM-1, VCAM-1, and E-selectin when compared with wild-type mice. Further, we demonstrate that these changes are associated with enhanced susceptibility of the lung to injury as evident by increased expression of adhesion markers, enhanced production of pro-inflammatory cytokines, and augmented neutrophil recruitment. Additionally, we found that C1q−/− mice also exhibited enhanced endothelial barrier dysfunction after injury as manifested by decreased expression of junctional adherens proteins and enhanced vascular leakage. Mechanistically, C1q appears to mediate its effects by inhibiting phosphorylation of p38 mitogen-activated protein kinase (MAPK) and blocking nuclear translocation of the P65 subunit of nuclear factor (NF)-κB. In summary, our findings indicate a previously unrecognized role for C1q in pulmonary vascular homeostasis and provide added support for the hypothesis that circulating collectin proteins have protective effects on the lung endothelium. PMID:26487714
Banadakoppa, M; Chauhan, M S; Havemann, D; Balakrishnan, M; Dominic, J S; Yallampalli, C
2014-09-01
Spontaneous abortion in early pregnancy due to unknown reasons is a common problem. The excess complement activation and consequent placental inflammation and anti-angiogenic milieu is emerging as an important associated factor in many pregnancy-related complications. In the present study we sought to examine the expression of complement inhibitory proteins at the feto-maternal interface and levels of complement split products in the circulation to understand their role in spontaneous abortion. Consenting pregnant women who either underwent elective abortion due to non-clinical reasons (n = 13) or suffered miscarriage (n = 14) were recruited for the study. Systemic levels of complement factors C3a and C5a were measured by enzyme-linked immunosorbent assay (ELISA). Plasma C5 and C3 protein levels were examined by Western blot. Expressions of complement regulatory proteins such as CD46 and CD55 in the decidua were investigated by quantitative polymerase chain reaction (PCR) and Western blot. The median of plasma C3a level was 82·83 ng/ml and 66·17 ng/ml in elective and spontaneous abortion patients, respectively. Medians of plasma C5a levels in elective and spontaneous abortion patients were 0·96 ng/ml and 1·14 ng/ml, respectively. Only plasma C5a levels but not C3a levels showed significant elevation in spontaneous abortion patients compared to elective abortion patients. Further, there was a threefold decrease in the mRNA expressions of complement inhibitory proteins CD46 and CD55 in the decidua obtained from spontaneous abortion patients compared to that of elective abortion patients. These data suggested that dysregulated complement cascade may be associated with spontaneous abortion. © 2014 British Society for Immunology.
Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from Myanmar.
Aye, Khin Saw; Charngkaew, Komgrid; Win, Ne; Wai, Kyaw Zin; Moe, Kyaw; Punyadee, Nuntaya; Thiemmeca, Somchai; Suttitheptumrong, Aroonroong; Sukpanichnant, Sanya; Prida, Malasit; Halstead, Scott B
2014-06-01
Vascular permeability, thrombocytopenia, liver pathology, complement activation, and altered hemostasis accompanying a febrile disease are the hallmarks of the dengue hemorrhagic fever/dengue shock syndrome, a major arthropod-borne viral disease that causes significant morbidity and mortality throughout tropical countries. We studied tissues from 13 children who died of acute dengue hemorrhagic fever/dengue shock syndrome at the Childrens' Hospital, Yangon, Myanmar. Dengue viral RNA from each of the 4 dengue viruses (DENVs) was detected by reverse transcriptase polymerase chain reaction in 11 cases, and dengue viral proteins (envelope, NS1, or NS3) were detected in 1 or more tissues from all 13 cases. Formalin-fixed and frozen tissues were studied for evidence of virus infection using monoclonal antibodies against DENV structural and nonstructural antigens (E, NS1, and nonsecreting NS3). In the liver, DENV infection occurred in hepatocytes and Kupffer cells but not in endothelial cells. Liver damage was associated with deposition on hepatocytes of complement components of both classical and alternative pathways. Evidence of dengue viral replication was observed in macrophage-like cells in spleens and lymph nodes. No dengue antigens were detected in endothelial cells in any organ. Germinal centers of the spleen and lymph nodes showed a marked reduction in the number of lymphocytes that were replaced by eosinophilic deposits, which contained dengue antigens as well as immunoglobulins, and complement components (C3, C1q, and C9). The latter findings had previously been reported but overlooked as a diagnostic feature. Copyright © 2014 Elsevier Inc. All rights reserved.
Conde, Jonas Nascimento; da Silva, Emiliana Mandarano; Allonso, Diego; Coelho, Diego Rodrigues; Andrade, Iamara da Silva; de Medeiros, Luciano Neves; Menezes, Joice Lima; Barbosa, Angela Silva
2016-01-01
ABSTRACT Dengue virus (DENV) infects millions of people worldwide and is a major public health problem. DENV nonstructural protein 1 (NS1) is a conserved glycoprotein that associates with membranes and is also secreted into the plasma in DENV-infected patients. The present study describes a novel mechanism by which NS1 inhibits the terminal complement pathway. We first identified the terminal complement regulator vitronectin (VN) as a novel DENV2 NS1 binding partner by using a yeast two-hybrid system. This interaction was further assessed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) assay. The NS1-VN complex was also detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the DENV2 NS1 protein, either by itself or by interacting with VN, hinders the formation of the membrane attack complex (MAC) and C9 polymerization. Finally, we showed that DENV2, West Nile virus (WNV), and Zika virus (ZIKV) NS1 proteins produced in mammalian cells inhibited C9 polymerization. Taken together, our results points to a role for NS1 as a terminal pathway inhibitor of the complement system. IMPORTANCE Dengue is the most important arthropod-borne viral disease nowadays and is caused by dengue virus (DENV). The flavivirus NS1 glycoprotein has been characterized functionally as a complement evasion protein that can attenuate the activation of the classical, lectin, and alternative pathways. The present study describes a novel mechanism by which DENV NS1 inhibits the terminal complement pathway. We identified the terminal complement regulator vitronectin (VN) as a novel DENV NS1 binding partner, and the NS1-VN complex was detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the NS1-VN complex inhibited membrane attack complex (MAC) formation, thus interfering with the complement terminal pathway. Interestingly, NS1 itself also inhibited MAC activity, suggesting a direct role of this protein in the inhibition process. Our findings imply a role for NS1 as a terminal pathway inhibitor of the complement system. PMID:27512066
Complement mutations in diacylglycerol kinase-ε-associated atypical hemolytic uremic syndrome.
Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago
2014-09-05
Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol kinase-ε and C3 mutations. Data suggest that complement dysregulation influences the onset and disease severity in carriers of diacylglycerol kinase-ε mutations and that treatments on the basis of plasma infusions and complement inhibition are potentially useful in patients with combined diacylglycerol kinase-ε and complement mutations. A comprehensive understanding of the genetic component predisposing to atypical hemolytic uremic syndrome is, therefore, critical to guide an effective treatment. Copyright © 2014 by the American Society of Nephrology.
Complement Mutations in Diacylglycerol Kinase-ε–Associated Atypical Hemolytic Uremic Syndrome
Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago
2014-01-01
Background and objectives Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Design, setting, participants, & measurements Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Results Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol kinase-ε and C3 mutations. Conclusions Data suggest that complement dysregulation influences the onset and disease severity in carriers of diacylglycerol kinase-ε mutations and that treatments on the basis of plasma infusions and complement inhibition are potentially useful in patients with combined diacylglycerol kinase-ε and complement mutations. A comprehensive understanding of the genetic component predisposing to atypical hemolytic uremic syndrome is, therefore, critical to guide an effective treatment. PMID:25135762
1988-01-01
We report the organization of the human genes encoding the complement components C4-binding protein (C4BP), C3b/C4b receptor (CR1), decay accelerating factor (DAF), and C3dg receptor (CR2) within the regulator of complement activation (RCA) gene cluster. Using pulsed field gel electrophoresis analysis these genes have been physically linked and aligned as CR1-CR2-DAF-C4BP in an 800-kb DNA segment. The very tight linkage between the CR1 and the C4BP loci, contrasted with the relative long DNA distance between these genes, suggests the existence of mechanisms interfering with recombination within the RCA gene cluster. PMID:2450163
The Murine Factor H-Related Protein FHR-B Promotes Complement Activation.
Cserhalmi, Marcell; Csincsi, Ádám I; Mezei, Zoltán; Kopp, Anne; Hebecker, Mario; Uzonyi, Barbara; Józsi, Mihály
2017-01-01
Factor H-related (FHR) proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH). While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3), and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM) extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.
Lee, Sun Eun; West, Keith P; Cole, Robert N; Schulze, Kerry J; Wu, Lee Shu-Fune; Yager, James D; Groopman, John; Christian, Parul
2016-08-01
Improving child cognition in impoverished countries is a public health priority. Yet, biological pathways and associated biomarkers of impaired cognition remain poorly understood and largely unknown, respectively. This study aimed to explore and quantify associations between functional plasma protein biomarkers and childhood intellectual test performance. We applied proteomics to quantify proteins in plasma samples of 249 rural Nepalese children, 6-8years of age who, 1year later at 7-9years of age, were administered the Universal Nonverbal Intelligence Test (UNIT). Among 751 plasma proteins quantified, 22 were associated with UNIT scores, passing a false discovery rate threshold of 5.0% (q<0.05). UNIT scores were higher by 2.3-9.2 points for every 50% increase in relative abundance of two insulin-like growth factor binding proteins (IGFBPs), six subclasses of apolipoprotein (Apo) and transthyretin, and lower by 4.0-15.3 points for each 50% increase in relative abundance of 13 proteins predominantly involved in inflammation. Among them, IGFBP-acid labile subunit, orosomucoid 1 (ORM1), Apo C-I, and pyruvate kinase isoenzymes M1/M2 jointly explained 37% of the variance in UNIT scores. After additional adjustment for height-for-age Z-score and household socio-economic status as indicators of long-term nutritional and social stress, associations with 6 proteins involved in inflammation, including ORM1, α-1-antichymotrypsin, reticulocalbin 1, and 3 components of the complement cascade, remained significant (q<0.05). Using untargeted proteomics, stable, constitutive facets of subclinical inflammation were associated with lower developmental test performance in this rural South Asian child population. Plasma proteomics may offer opportunities to identify functional, antecedent biomarkers of child cognitive development. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
SOCS1 and SOCS3 Are Targeted by Hepatitis C Virus Core/gC1qR Ligation To Inhibit T-Cell Function
Yao, Zhi Qiang; Waggoner, Stephen N.; Cruise, Michael W.; Hall, Caroline; Xie, Xuefang; Oldach, David W.; Hahn, Young S.
2005-01-01
T cells play an important role in the control of hepatitis C virus (HCV) infection. We have previously demonstrated that the HCV core inhibits T-cell responses through interaction with gC1qR. We show here that core proteins from chronic and resolved HCV patients differ in sequence, gC1qR-binding ability, and T-cell inhibition. Specifically, chronic core isolates bind to gC1qR more efficiently and inhibit T-cell proliferation as well as gamma interferon (IFN-γ) production more profoundly than resolved core isolates. This inhibition is mediated by the disruption of STAT phosphorylation through the induction of SOCS molecules. Silencing either SOCS1 or SOCS3 by small interfering RNA dramatically augments the production of IFN-γ in T cells, thereby abrogating the inhibitory effect of core. Additionally, the ability of core proteins from patients with chronic infections to induce SOCS proteins and suppress STAT activation greatly exceeds that of core proteins from patients with resolved infections. These results suggest that the HCV core/gC1qR-induced T-cell dysfunction involves the induction of SOCS, a powerful inhibitor of cytokine signaling, which represents a novel mechanism by which a virus usurps the host machinery for persistence. PMID:16306613
Kumar, Abhinav; Bicer, Elif Melis; Morgan, Anna Babin; Pfeffer, Paul E; Monopoli, Marco; Dawson, Kenneth A; Eriksson, Jonny; Edwards, Katarina; Lynham, Steven; Arno, Matthew; Behndig, Annelie F; Blomberg, Anders; Somers, Graham; Hassall, Dave; Dailey, Lea Ann; Forbes, Ben; Mudway, Ian S
2016-05-01
When inhaled nanoparticles deposit in the lungs, they transit through respiratory tract lining fluid (RTLF) acquiring a biomolecular corona reflecting the interaction of the RTLF with the nanomaterial surface. Label-free snapshot proteomics was used to generate semi-quantitative profiles of corona proteins formed around silica (SiO2) and poly(vinyl) acetate (PVAc) nanoparticles in RTLF, the latter employed as an archetype drug delivery vehicle. The evolved PVAc corona was significantly enriched compared to that observed on SiO2 nanoparticles (698 vs. 429 proteins identified); however both coronas contained a substantial contribution from innate immunity proteins, including surfactant protein A, napsin A and complement (C1q and C3) proteins. Functional protein classification supports the hypothesis that corona formation in RTLF constitutes opsonisation, preparing particles for phagocytosis and clearance from the lungs. These data highlight how an understanding of the evolved corona is necessary for the design of inhaled nanomedicines with acceptable safety and tailored clearance profiles. Inhaled nanoparticles often acquire a layer of protein corona while they go through the respiratory tract. Here, the authors investigated the identity of these proteins. The proper identification would improve the understanding of the use of inhaled nanoparticles in future therapeutics. Copyright © 2016. Published by Elsevier Inc.
Circulating Immune Complexes in Lyme Arthritis
Hardin, John A.; Walker, Lesley C.; Steere, Allen C.; Trumble, Thomas C.; Tung, Kenneth S. K.; Williams, Ralph C.; Ruddy, Shaun; Malawista, Stephen E.
1979-01-01
We have found immunoglobulin (Ig) G-containing material consistent with immune complexes in the sera of patients with Lyme arthritis. It was detected in 29 of 55 sera (55%) from 31 patients by at least one of three assays: 125I-C1q binding, C1q solid phase, or Raji cell. The presence of reactive material correlated with clinical aspects of disease activity; it was found early in the illness, was most prominent in sera from the sickest patients, was infrequent during remissions, and often fluctuated in parallel with changes in clinical status. The results in the two C1q assays showed a strong positive correlation (P<0.001). They were each elevated in 45% of the sera and were usually concordant (85%). In contrast, the Raji cell assay was less frequently positive and often discordant with the C1q assays. In sucrose density gradients, putative circulating immune complexes sedimented near 19S; they, too, were detected best by the two assays based on C1q binding. An additional 7S component was found in some sera by the 125I-C1q binding assay. Serum complement was often above the range of normal in patients with mild disease and normal in patients with severe disease but did not correlate significantly with levels of circulating immune complexes. IgM and IgG rheumatoid factors were not detectable. These findings support a role for immune complexes in the pathogenesis of Lyme arthritis. Their measurement, by either the 125I-C1q binding assay or by the C1q solid phase assay, often provides a sensitive index of disease activity. Moreover, the complexes are likely sources of disease-related antigens for further study of this new disorder. PMID:429566
Study on the immunological safety of universal plasma in the Chinese population in vitro.
Chen, Guanyi; Zhu, Liguo; Wang, Shufang; Zhuang, Yuan; Yu, Yang; Wang, Deqing
2017-04-01
The prepared procedure for universal plasma in the Chinese population has been developed. However, the immunological safety with the level of antibodies, soluble immune complexes and complements is necessary to investigate. The universal plasma was pooled at the optimal ratio of A:B:AB=6:2.5:1.5 at 22°C for 1 hour. The titer of IgM antibodies was detected by saline agglutination, and the titer of IgG antibodies was detected by a Polybrene test after IgM destroyed by 2-mereaptoethanol. The hemolysis extent of RBC was investigated by an extracorporal hemolysis test, and the concentration of free-hemoglobin was determined by the ortho-tolidine method. The levels of CIC-C1q, C3b and TCC (C5-9) were tested using an enzyme linked immunosorbent assay (ELISA). The titer of IgM and IgG in universal plasma was lower than 2 and 4, respectively. The hemolysis of the universal plasma with A, B and AB group RBCs was negative with values of 5.5, 6.8 and 5.7, respectively. The level of CIC-C1q and TCC (C5-9) in universal plasma was comparable to that in A or B type pooled plasma, but CIC-C1q was lower than that and TCC (C5-9) was higher than that in AB type pooled plasma. The level of complement C3b was comparable to that in A type pooled plasma, but lower than that in B type pooled plasma and higher than that in AB type pooled plasma. The results of this study demonstrated that the immunological levels were within an acceptable range and confirmed the safety in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.
Elson, C J; Carter, S D; Cottrell, B J; Scott, D G; Bacon, P A; Wallington, T B
1985-01-01
The relationship between complexes containing rheumatoid factor and complexes activating complement was examined in synovial fluids and sera from patients with rheumatoid arthritis (RA). In each case this was performed by quantifying the amount of rheumatoid factor bound by solid phase Fab'2 anti-C3 and/or solid phase conglutinin. Both anti-C3 coated and conglutinin coated microtitre plates bound high levels of complexes containing rheumatoid factor from sera of RA patients with vasculitis. Unexpectedly, these complexes were detected in synovial fluids from only a minority of RA patients with synovitis. However, RA synovial fluids did contain other complexes as shown by the presence of complement consuming activity, C1q binding material and immunoglobulin attaching to conglutinin. It is considered that in RA synovial fluids the complexes containing RF and those activating complement are not necessarily the same whilst in vasculitic sera the complexes containing rheumatoid factor also activate complement. PMID:3978872
Clinical roundtable monograph: Paroxysmal nocturnal hemoglobinuria: a case-based discussion.
Szer, Jeff; Hill, Anita; Weitz, Ilene Ceil
2012-11-01
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired disorder characterized by chronic intravascular hemolysis as the primary clinical manifestation and morbidities that include anemia, thrombosis, renal impairment, pulmonary hypertension, and bone marrow failure. The prevalence of the PNH clone (from <1-100% PNH granulocytes) is approximately 16 per million, and careful monitoring is required. The average age of onset of the clinical disease is the early 30s, although it can present at all ages. PNH is caused by the acquisition of a somatic mutation of the gene phosphatidylinositol glycan anchor (PIG-A) in a multipotent hematopoietic stem cell (HSC), with clonal expansion of the mutated HSC. The mutation causes a deficiency in the synthesis of glycosylphosphatidylinositol (GPI). In cells derived from normal HSCs, the complement regulatory proteins CD55 and CD59 are anchored to the hematopoietic cell membrane surface via GPI, protecting the cells from complement-mediated lysis. However, in patients with PNH, these 2 proteins, along with numerous other GPI-linked proteins, are absent from the cell surface of red cells, granulocytes, monocytes, and platelets, resulting in complement-mediated intravascular hemolysis and other complications. Lysis of red blood cells is the most obvious manifestation, but as other cell lineages are also affected, this complement-mediated attack contributes to additional complications, such as thrombosis. Eculizumab, a humanized monoclonal antibody against the C5 complement protein, is the only effective drug therapy for PNH patients. The antibody prevents cleavage of the C5 protein by C5 convertase, in turn preventing generation of C5b-9 and release of C5a, thereby protecting from hemolysis of cells lacking the CD59 surface protein and other complications associated with complement activation. Drs. Ilene C. Weitz, Anita Hill, and Jeff Szer discuss 3 recent cases of patients with PNH.
Asano, Tomoyuki; Ito, Hiromi; Kariya, Yoshinobu; Hoshi, Kyoka; Yoshihara, Akioh; Ugawa, Yoshikazu; Sekine, Hideharu; Hirohata, Shunsei; Yamaguchi, Yoshiki; Sato, Shuzo; Kobayashi, Hiroko; Migita, Kiyoshi; Ohira, Hiromasa; Hashimoto, Yasuhiro
2017-01-01
Although quotient of alpha2 macroglobulin (Qα2MG) was previously reported to be useful for the evaluation of blood–brain barrier (BBB) function, it is not commonly used. We therefore evaluated BBB function among the various subsets of neuropsychiatric systemic lupus erythematosus (NPSLE) using quotient Q α2MG. Furthermore, we determined the correlation between Q α2MG and cerebrospinal (CSF) interleukin (IL)-6 level and quotient complement component 3 (Q C3). To determine intrathecal production of C3, the C3 index (Q C3/Q α2MG) was also calculated. Fifty-six patients with SLE were included in this study. Of these, 48 were diagnosed with NPSLE, consisting of 30 diffuse NPSLE patients (acute confusional state (ACS): n = 14, non-ACS: n = 16) and 18 patients with focal NPSLE. CSF IL-6 concentration, and paired serum and CSF levels of α2MG and C3, were measured by enzyme-linked immuno solvent assay (ELISA). The Q α2MG, Q C3, and C3 index were then calculated. Q α2MG, Q C3, and IL-6 concentrations in the CSF were significantly elevated in NPSLE compared with non-NPSLE. Among the subsets of NPSLE, significant increases in Q α2MG, CSF IL-6, and Q C3 were observed in ACS compared with non-ACS or focal NPSLE. There was a positive correlation between CSF IL-6 level and Q α2MG, as well as between Q C3 and Q α2MG, in diffuse NPSLE. There were no significant differences in C3 index between NPSLE and non-NPSLE, as well as among the subgroups of NPSLE. Our study suggests that BBB disruption is present in ACS, and elevated levels of IL-6 and C3 in CSF in diffuse NPSLE, especially in ACS, might result from their entry to the CSF from the systemic circulation through the damaged BBB, as well as increased intrathecal production. Furthermore, Q α2MG might be useful for the evaluation of BBB integrity. PMID:29036223
Griffioen, A W; Rijkers, G T; Janssens-Korpela, P; Zegers, B J
1991-01-01
The immunoregulatory function of the complement system has been the focus of many investigations. In particular, fragments of complement factor C3 have been shown to play a role in B-lymphocyte activation and proliferation, lymphokine production, and the generation of in vitro antibody production. Purified pneumococcal polysaccharides (PS) can induce direct activation of C3 via the alternative pathway. Using sera of C1q-deficient patients and healthy subjects, we demonstrated that C3d, a split product of C3 that is generated after degradation of iC3b, can be bound to PS antigens. The binding of C3d to PS can occur in the absence of specific antibodies. Subsequently, we showed that PS complexed with C3d can be recognized by complement receptor type 2 that is expressed on B cells. Treatment of B cells with a monoclonal antibody recognizing the C3d-binding site of complement receptor type 2 reduces the binding of PS-C3d to the cells. In addition, we showed that PS4 complexed with C3d exerted an increased immunogenicity compared with free PS4. Our results show that the complement system plays a role in the activation of PS-specific B cells, carrying membrane receptors for C3d. Consequently, the complement system plays a regulatory role in the antibody response to T-cell-independent type 2 antigens such as PS. PMID:1826897
Lodovicho, Marina E; Costa, Tássia R; Bernardes, Carolina P; Menaldo, Danilo L; Zoccal, Karina F; Carone, Sante E; Rosa, José C; Pucca, Manuela B; Cerni, Felipe A; Arantes, Eliane C; Tytgat, Jan; Faccioli, Lúcia H; Pereira-Crott, Luciana S; Sampaio, Suely V
2017-01-04
Cysteine-rich secretory proteins (CRISPs) are commonly described as part of the protein content of snake venoms, nevertheless, so far, little is known about their biological targets and functions. Our study describes the isolation and characterization of Bj-CRP, the first CRISP isolated from Bothrops jararaca snake venom, also aiming at the identification of possible targets for its actions. Bj-CRP was purified using three chromatographic steps (Sephacryl S-200, Source 15Q and C18) and showed to be an acidic protein of 24.6kDa with high sequence identity to other snake venom CRISPs. This CRISP was devoid of proteolytic, hemorrhagic or coagulant activities, and it did not affect the currents from 13 voltage-gated potassium channel isoforms. Conversely, Bj-CRP induced inflammatory responses characterized by increase of leukocytes, mainly neutrophils, after 1 and 4h of its injection in the peritoneal cavity of mice, also stimulating the production of IL-6. Bj-CRP also acted on the human complement system, modulating some of the activation pathways and acting directly on important components (C3 and C4), thus inducing the generation of anaphylatoxins (C3a, C4a and C5a). Therefore, our results for Bj-CRP open up prospects for better understanding this class of toxins and its biological actions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A local complement response by RPE causes early-stage macular degeneration
Fernandez-Godino, Rosario; Garland, Donita L.; Pierce, Eric A.
2015-01-01
Inherited and age-related macular degenerations (AMDs) are important causes of vision loss. An early hallmark of these disorders is the formation of sub-retinal pigment epithelium (RPE) basal deposits. A role for the complement system in MDs was suggested by genetic association studies, but direct functional connections between alterations in the complement system and the pathogenesis of MD remain to be defined. We used primary RPE cells from a mouse model of inherited MD due to a p.R345W mutation in EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1) to investigate the role of the RPE in early MD pathogenesis. Efemp1R345W RPE cells recapitulate the basal deposit formation observed in vivo by producing sub-RPE deposits in vitro. The deposits share features with basal deposits, and their formation was mediated by EFEMP1R345W or complement component 3a (C3a), but not by complement component 5a (C5a). Increased activation of complement appears to occur in response to an abnormal extracellular matrix (ECM), generated by the mutant EFEMP1R345W protein and reduced ECM turnover due to inhibition of matrix metalloproteinase 2 by EFEMP1R345W and C3a. Increased production of C3a also stimulated the release of cytokines such as interleukin (IL)-6 and IL-1B, which appear to have a role in deposit formation, albeit downstream of C3a. These studies provide the first direct indication that complement components produced locally by the RPE are involved in the formation of basal deposits. Furthermore, these results suggest that C3a generated by RPE is a potential therapeutic target for the treatment of EFEMP1-associated MD as well as AMD. PMID:26199322
The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. Here we report the development of a NanoLuc®-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells.
Rajnavölgyi, E; Fazekas, G; Lund, J; Daeron, M; Teillaud, J L; Jefferis, R; Fridman, W H; Gergely, J
1995-01-01
Analysis of five monoclonal autoantibodies, rheumatoid factors produced by hybridomas generated from spleen cells of BALB/c mice repeatedly infected with A/PR/8/34 human influenza A virus, revealed that they recognized distinct but spatially related epitopes. The differing isoallotypic specificity of the IgM and IgA monoclonal antibodies correlated with the presence of Ile258 and Ala305, respectively. Although these data suggest that the epitopes recognized are within the CH2 domain, all antibodies failed to inhibit IgG antigen reactivity with Staphylococcus aureus protein A (SpA), C1q, mouse C3, human Fc gamma RI or mouse Fc gamma RII, activities known to be predominantly determined by CH2 domain structures. Reactivity of the IgA antibody, Z34, with IgG2b allowed further specificity studies using a panel of 26 mutant IgG2b proteins, each having single amino acid replacements over the surface of the CH2 domain. The only substitution that affected Z34 reactivity was Asn/Ala297, which destroyed the glycosylation sequon, resulting in secretion of an aglycosylated IgG molecule. The epitope recognized by Z34 therefore seems to be located outside of the Fc gamma R and C1q binding sites, but to be dependent on the presence of carbohydrate for expression. In contrast to the binding studies, complement activation by aggregated IgG2a, through classical or alternative pathways, was inhibited by the presence of autoantibodies. The functional significance of isotype-specific autoantibody in immune regulation is discussed. PMID:7540592
Transcriptional Changes That Characterize the Immune Reactions of Leprosy
Dupnik, Kathryn M.; Bair, Thomas B.; Maia, Andressa O.; Amorim, Francianne M.; Costa, Marcos R.; Keesen, Tatjana S. L.; Valverde, Joanna G.; Queiroz, Maria do Carmo A. P.; Medeiros, Lúcio L.; de Lucena, Nelly L.; Wilson, Mary E.; Nobre, Mauricio L.; Johnson, Warren D.; Jeronimo, Selma M. B.
2015-01-01
Background. Leprosy morbidity is increased by 2 pathologic immune reactions, reversal reaction (RR) and erythema nodosum leprosum (ENL). Methods. To discover host factors related to immune reactions, global transcriptional profiles of peripheral blood mononuclear cells were compared between 11 RR, 11 ENL, and 19 matched control patients, with confirmation by quantitative polymerase chain reaction. Encoded proteins were investigated in skin biopsy specimens by means of immunohistochemistry. Results. There were 275 genes differentially expressed in RR and 517 differentially expressed in ENL on the microarray. Pathway analysis showed immunity-related pathways represented in RR and ENL transcriptional profiles, with the “complement and coagulation” pathway common to both. Interferon γ was identified as a significant upstream regulator of the expression changes for RR and ENL. Immunohistochemical staining of skin lesions showed increased C1q in both RR and ENL. Conclusions. These data suggest a previously underrecognized role for complement in the pathogenesis of both RR and ENL, and we propose new hypotheses for reaction pathogenesis. PMID:25398459
Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W; Song, Wenchao; Dunaief, Joshua L
2015-05-08
Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W.; Song, Wenchao; Dunaief, Joshua L.
2015-01-01
Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. PMID:25802332
Du, Yiqun; Teng, Xiaoyan; Wang, Na; Zhang, Xin; Chen, Jianfeng; Ding, Peipei; Qiao, Qian; Wang, Qingkai; Zhang, Long; Yang, Chaoqun; Yang, Zhangmin; Chu, Yiwei; Du, Xiang; Zhou, Xuhui; Hu, Weiguo
2014-01-31
The complement system can be activated spontaneously for immune surveillance or induced to clear invading pathogens, in which the membrane attack complex (MAC, C5b-9) plays a critical role. CD59 is the sole membrane complement regulatory protein (mCRP) that restricts MAC assembly. CD59, therefore, protects innocent host cells from attacks by the complement system, and host cells require the constitutive and inducible expression of CD59 to protect themselves from deleterious destruction by complement. However, the mechanisms that underlie CD59 regulation remain largely unknown. In this study we demonstrate that the widely expressed transcription factor Sp1 may regulate the constitutive expression of CD59, whereas CREB-binding protein (CBP)/p300 bridge NF-κB and CREB, which surprisingly functions as an enhancer-binding protein to induce the up-regulation of CD59 during in lipopolysaccharide (LPS)-triggered complement activation, thus conferring host defense against further MAC-mediated destruction. Moreover, individual treatment with LPS, TNF-α, and the complement activation products (sublytic MAC (SC5b-9) and C5a) could increase the expression of CD59 mainly by activating NF-κB and CREB signaling pathways. Together, our findings identify a novel gene regulation mechanism involving CBP/p300, NF-κB, and CREB; this mechanism suggests potential drug targets for controlling various complement-related human diseases.
In Silico Studies of Medicinal Compounds Against Hepatitis C Capsid Protein from North India
Mathew, Shilu; Faheem, Muhammad; Archunan, Govindaraju; Ilyas, Muhammad; Begum, Nargis; Jahangir, Syed; Qadri, Ishtiaq; Qahtani, Mohammad Al; Mathew, Shiny
2014-01-01
Hepatitis viral infection is a leading cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Over one million people are estimated to be persistently infected with hepatitis C virus (HCV) worldwide. As capsid core protein is the key element in spreading HCV; hence, it is considered to be the superlative target of antiviral compounds. Novel drug inhibitors of HCV are in need to complement or replace the current treatments such as pegylated interferon’s and ribavirin as they are partially booming and beset with various side effects. Our study was conducted to predict 3D structure of capsid core protein of HCV from northern part of India. Core, the capsid protein of HCV, handles the assembly and packaging of HCV RNA genome and is the least variable of all the ten HCV proteins among the six HCV genotypes. Therefore, we screened four phytochemicals inhibitors that are known to disrupt the interactions of core and other HCV proteins such as (a) epigallocatechin gallate (EGCG), (b) ladanein, (c) naringenin, and (d) silybin extracted from medicinal plants; targeted against active site of residues of HCV-genotype 3 (G3) (Q68867) and its subtypes 3b (Q68861) and 3g (Q68865) from north India. To study the inhibitory activity of the recruited flavonoids, we conducted a quantitative structure–activity relationship (QSAR). Furthermore, docking interaction suggests that EGCG showed a maximum number of hydrogen bond (H-bond) interactions with all the three modeled capsid proteins with high interaction energy followed by naringenin and silybin. Thus, our results strongly correlate the inhibitory activity of the selected bioflavonoid. Finally, the dynamic predicted capsid protein molecule of HCV virion provides a general avenue to target structure-based antiviral compounds that support the hypothesis that the screened inhibitors for viral capsid might constitute new class of potent agents but further confirmation is necessary using in vitro and in vivo studies. PMID:25002815
Phenotypic characterization of ten methanol oxidation (Mox) mutant classes in methylobacterium AM1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunn, D.N.; Lidstrom, M.E.
Twenty-five methanol oxidation mutants of the facultative methylotroph Methylobacterium strain AM1 have been characterized by complementation analysis and assigned to ten complementation groups, Mox A1,A2,A3 and B-H. We have characterized each of the mutants belonging to the ten Mox complementation groups by PMS-DCPIP dye linked methanol dehydrogenase activity, by methanol-dependent whole cell oxygen consumption, by the presence or absence of methanol dehydrogenase protein by SDS-polyacrylamide gels and Western blotting, by the absorption spectra of purified mutant methanol dehydrogenase proteins and by the presence or absence of the soluble cytochrome c proteins of Methylobacterium AM1. We propose functions for each ofmore » the genes deficient in the mutants of the ten Mox complementation groups. These functions include two linked genes that encode the methanol dehydrogenase structural protein and the soluble cytochrome c/sub L/, a gene encoding a secretion function essential for the synthesis and export of methanol dehydrogenase and cytochrome c/sub L/, three gene functions responsible for the proper association of the PQQ prosthetic group with the methanol dehydrogenase apoprotein and four positive regulatory gene functions controlling the expression of the ability to oxidize methanol. 24 refs., 5 figs., 2 tabs.« less
Noone, D; Al-Matrafi, J; Tinckam, K; Zipfel, P F; Herzenberg, A M; Thorner, P S; Pluthero, F G; Kahr, W H A; Filler, G; Hebert, D; Harvey, E; Licht, C
2012-09-01
Antibody mediated rejection (AMR) activates the classical complement pathway and can be detrimental to graft survival. AMR can be accompanied by thrombotic microangiopathy (TMA). Eculizumab, a monoclonal C5 antibody prevents induction of the terminal complement cascade (TCC) and has recently emerged as a therapeutic option for AMR. We present a highly sensitized 13-year-old female with end-stage kidney disease secondary to spina bifida-associated reflux nephropathy, who developed severe steroid-, ATG- and plasmapheresis-resistant AMR with TMA 1 week post second kidney transplant despite previous desensitization therapy with immunoglobulin infusions. Eculizumab rescue therapy resulted in a dramatic improvement in biochemical (C3; creatinine) and hematological (platelets) parameters within 6 days. The patient was proven to be deficient in complement Factor H-related protein 3/1 (CFHR3/1), a plasma protein that regulates the complement cascade at the level of C5 conversion and has been involved in the pathogenesis of atypical hemolytic uremic syndrome caused by CFH autoantibodies (DEAP-HUS). CFHR1 deficiency may have worsened the severe clinical progression of AMR and possibly contributed to the development of donor-specific antibodies. Thus, screening for CFHR3/1 deficiency should be considered in patients with severe AMR associated with TMA. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
... of a certain protein. This protein is part of the complement system. The complement system is a group of proteins ... system and play a role in the development of inflammation. The complement system protects the body from infections, dead cells and ...
Cytoadhesion to gC1qR through Plasmodium falciparum Erythrocyte Membrane Protein 1 in Severe Malaria
Magallón-Tejada, Ariel; Machevo, Sónia; Cisteró, Pau; Lavstsen, Thomas; Aide, Pedro; Jiménez, Alfons; Turner, Louise; Gupta, Himanshu; De Las Salas, Briegel; Mandomando, Inacio; Wang, Christian W.; Petersen, Jens E. V.; Muñoz, Jose; Gascón, Joaquim; Macete, Eusebio; Alonso, Pedro L.; Chitnis, Chetan E.
2016-01-01
Cytoadhesion of Plasmodium falciparum infected erythrocytes to gC1qR has been associated with severe malaria, but the parasite ligand involved is currently unknown. To assess if binding to gC1qR is mediated through the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, we analyzed by static binding assays and qPCR the cytoadhesion and var gene transcriptional profile of 86 P. falciparum isolates from Mozambican children with severe and uncomplicated malaria, as well as of a P. falciparum 3D7 line selected for binding to gC1qR (Pf3D7gC1qR). Transcript levels of DC8 correlated positively with cytoadhesion to gC1qR (rho = 0.287, P = 0.007), were higher in isolates from children with severe anemia than with uncomplicated malaria, as well as in isolates from Europeans presenting a first episode of malaria (n = 21) than Mozambican adults (n = 25), and were associated with an increased IgG recognition of infected erythrocytes by flow cytometry. Pf3D7gC1qR overexpressed the DC8 type PFD0020c (5.3-fold transcript levels relative to Seryl-tRNA-synthetase gene) compared to the unselected line (0.001-fold). DBLβ12 from PFD0020c bound to gC1qR in ELISA-based binding assays and polyclonal antibodies against this domain were able to inhibit binding to gC1qR of Pf3D7gC1qR and four Mozambican P. falciparum isolates by 50%. Our results show that DC8-type PfEMP1s mediate binding to gC1qR through conserved surface epitopes in DBLβ12 domain which can be inhibited by strain-transcending functional antibodies. This study supports a key role for gC1qR in malaria-associated endovascular pathogenesis and suggests the feasibility of designing interventions against severe malaria targeting this specific interaction. PMID:27835682
Conde, Jonas Nascimento; da Silva, Emiliana Mandarano; Allonso, Diego; Coelho, Diego Rodrigues; Andrade, Iamara da Silva; de Medeiros, Luciano Neves; Menezes, Joice Lima; Barbosa, Angela Silva; Mohana-Borges, Ronaldo
2016-11-01
Dengue virus (DENV) infects millions of people worldwide and is a major public health problem. DENV nonstructural protein 1 (NS1) is a conserved glycoprotein that associates with membranes and is also secreted into the plasma in DENV-infected patients. The present study describes a novel mechanism by which NS1 inhibits the terminal complement pathway. We first identified the terminal complement regulator vitronectin (VN) as a novel DENV2 NS1 binding partner by using a yeast two-hybrid system. This interaction was further assessed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) assay. The NS1-VN complex was also detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the DENV2 NS1 protein, either by itself or by interacting with VN, hinders the formation of the membrane attack complex (MAC) and C9 polymerization. Finally, we showed that DENV2, West Nile virus (WNV), and Zika virus (ZIKV) NS1 proteins produced in mammalian cells inhibited C9 polymerization. Taken together, our results points to a role for NS1 as a terminal pathway inhibitor of the complement system. Dengue is the most important arthropod-borne viral disease nowadays and is caused by dengue virus (DENV). The flavivirus NS1 glycoprotein has been characterized functionally as a complement evasion protein that can attenuate the activation of the classical, lectin, and alternative pathways. The present study describes a novel mechanism by which DENV NS1 inhibits the terminal complement pathway. We identified the terminal complement regulator vitronectin (VN) as a novel DENV NS1 binding partner, and the NS1-VN complex was detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the NS1-VN complex inhibited membrane attack complex (MAC) formation, thus interfering with the complement terminal pathway. Interestingly, NS1 itself also inhibited MAC activity, suggesting a direct role of this protein in the inhibition process. Our findings imply a role for NS1 as a terminal pathway inhibitor of the complement system. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Kudumala, Sirisha; Freund, Julie; Hortsch, Michael; Godenschwege, Tanja A
2013-01-01
A large number of different pathological L1CAM mutations have been identified that result in a broad spectrum of neurological and non-neurological phenotypes. While many of these mutations have been characterized for their effects on homophilic and heterophilic interactions, as well as expression levels in vitro, there are only few studies on their biological consequences in vivo. The single L1-type CAM gene in Drosophila, neuroglian (nrg), has distinct functions during axon guidance and synapse formation and the phenotypes of nrg mutants can be rescued by the expression of human L1CAM. We previously showed that the highly conserved intracellular FIGQY Ankyrin-binding motif is required for L1CAM-mediated synapse formation, but not for neurite outgrowth or axon guidance of the Drosophila giant fiber (GF) neuron. Here, we use the GF as a model neuron to characterize the pathogenic L120V, Y1070C, C264Y, H210Q, E309K and R184Q extracellular L1CAM missense mutations and a L1CAM protein with a disrupted ezrin-moesin-radixin (ERM) binding site to investigate the signaling requirements for neuronal development. We report that different L1CAM mutations have distinct effects on axon guidance and synapse formation. Furthermore, L1CAM homophilic binding and signaling via the ERM motif is essential for axon guidance in Drosophila. In addition, the human pathological H210Q, R184Q and Y1070C, but not the E309K and L120V L1CAM mutations affect outside-in signaling via the FIGQY Ankyrin binding domain which is required for synapse formation. Thus, the pathological phenotypes observed in humans are likely to be caused by the disruption of signaling required for both, guidance and synaptogenesis.
Kudumala, Sirisha; Freund, Julie; Hortsch, Michael; Godenschwege, Tanja A.
2013-01-01
A large number of different pathological L1CAM mutations have been identified that result in a broad spectrum of neurological and non-neurological phenotypes. While many of these mutations have been characterized for their effects on homophilic and heterophilic interactions, as well as expression levels in vitro, there are only few studies on their biological consequences in vivo. The single L1-type CAM gene in Drosophila, neuroglian (nrg), has distinct functions during axon guidance and synapse formation and the phenotypes of nrg mutants can be rescued by the expression of human L1CAM. We previously showed that the highly conserved intracellular FIGQY Ankyrin-binding motif is required for L1CAM-mediated synapse formation, but not for neurite outgrowth or axon guidance of the Drosophila giant fiber (GF) neuron. Here, we use the GF as a model neuron to characterize the pathogenic L120V, Y1070C, C264Y, H210Q, E309K and R184Q extracellular L1CAM missense mutations and a L1CAM protein with a disrupted ezrin–moesin–radixin (ERM) binding site to investigate the signaling requirements for neuronal development. We report that different L1CAM mutations have distinct effects on axon guidance and synapse formation. Furthermore, L1CAM homophilic binding and signaling via the ERM motif is essential for axon guidance in Drosophila. In addition, the human pathological H210Q, R184Q and Y1070C, but not the E309K and L120V L1CAM mutations affect outside-in signaling via the FIGQY Ankyrin binding domain which is required for synapse formation. Thus, the pathological phenotypes observed in humans are likely to be caused by the disruption of signaling required for both, guidance and synaptogenesis. PMID:24155914
Disturbed secretion of mutant adiponectin associated with the metabolic syndrome.
Kishida, Ken; Nagaretani, Hiroyuki; Kondo, Hidehiko; Kobayashi, Hideki; Tanaka, Sachiyo; Maeda, Norikazu; Nagasawa, Azumi; Hibuse, Toshiyuki; Ohashi, Koji; Kumada, Masahiro; Nishizawa, Hitoshi; Okamoto, Yoshihisa; Ouchi, Noriyuki; Maeda, Kazuhisa; Kihara, Shinji; Funahashi, Tohru; Matsuzawa, Yuji
2003-06-20
Adiponectin, an adipocyte-derived protein, consists of collagen-like fibrous and complement C1q-like globular domains, and circulates in human plasma in a multimeric form. The protein exhibits anti-diabetic and anti-atherogenic activities. However, adiponectin plasma concentrations are low in obese subjects, and hypoadiponectinemia is associated with the metabolic syndrome, which is a cluster of insulin resistance, type 2 diabetes mellitus, hypertension, and dyslipidemia. We have recently reported a missense mutation in the adiponectin gene, in which isoleucine at position 164 in the globular domain is substituted with threonine (I164T). Subjects with this mutation showed markedly low level of plasma adiponectin and clinical features of the metabolic syndrome. Here, we examined the molecular characteristics of the mutant protein associated with a genetic cause of hypoadiponectinemia. The current study revealed (1) the mutant protein showed an oligomerization state similar to the wild-type as determined by gel filtration chromatography and, (2) the mutant protein exhibited normal insulin-sensitizing activity, but (3) pulse-chase study showed abnormal secretion of the mutant protein from adipose tissues. Our results suggest that I164T mutation is associated with hypoadiponectinemia through disturbed secretion into plasma, which may contribute to the development of the metabolic syndrome.
Barbosa, Angela S.; Monaris, Denize; Silva, Ludmila B.; Morais, Zenaide M.; Vasconcellos, Sílvio A.; Cianciarullo, Aurora M.; Isaac, Lourdes; Abreu, Patricia A. E.
2010-01-01
We have previously shown that pathogenic leptospiral strains are able to bind C4b binding protein (C4BP). Surface-bound C4BP retains its cofactor activity, indicating that acquisition of this complement regulator may contribute to leptospiral serum resistance. In the present study, the abilities of seven recombinant putative leptospiral outer membrane proteins to interact with C4BP were evaluated. The protein encoded by LIC11947 interacted with this human complement regulator in a dose-dependent manner. The cofactor activity of C4BP bound to immobilized recombinant LIC11947 (rLIC11947) was confirmed by detecting factor I-mediated cleavage of C4b. rLIC11947 was therefore named LcpA (for leptospiral complement regulator-acquiring protein A). LcpA was shown to be an outer membrane protein by using immunoelectron microscopy, cell surface proteolysis, and Triton X-114 fractionation. The gene coding for LcpA is conserved among pathogenic leptospiral strains. This is the first characterization of a Leptospira surface protein that binds to the human complement regulator C4BP in a manner that allows this important regulator to control complement system activation mediated either by the classical pathway or by the lectin pathway. This newly identified protein may play a role in immune evasion by Leptospira spp. and may therefore represent a target for the development of a human vaccine against leptospirosis. PMID:20404075
Autoinducer-2 Quorum Sensing Contributes to Regulation of Microcin PDI in Escherichia coli
Lu, Shao-Yeh; Zhao, Zhe; Avillan, Johannetsy J.; Liu, Jinxin; Call, Douglas R.
2017-01-01
The Escherichia coli quorum sensing (QS) signal molecule, autoinducer-2 (AI-2), reaches its maximum concentration during mid-to-late growth phase after which it quickly degrades during stationary phase. This pattern of AI-2 concentration coincides with the up- then down-regulation of a recently described microcin PDI (mccPDI) effector protein (McpM). To determine if there is a functional relationship between these systems, a prototypical mccPDI-expressing strain of E. coli 25 was used to generate ΔluxS, ΔlsrACDBFG (Δlsr), and ΔlsrR mutant strains that are deficient in AI-2 production, transportation, and AI-2 transport regulation, respectively. Trans-complementation, RT-qPCR, and western blot assays were used to detect changes of microcin expression and synthesis under co-culture and monoculture conditions. Compared to the wild-type strain, the AI-2-deficient strain (ΔluxS) and -uptake negative strain (Δlsr) were >1,000-fold less inhibitory to susceptible bacteria (P < 0.05). With in trans complementation of luxS, the AI-2 deficient mutant reduced the susceptible E. coli population by 4-log, which was within 1-log of the wild-type phenotype. RT-qPCR and western blot results for the AI-2 deficient E. coli 25 showed a 5-fold reduction in mcpM transcription with an average 2-h delay in McpM synthesis. Furthermore, overexpression of sRNA micC and micF (both involved in porin protein regulation) was correlated with mcpM regulation, consistent with a possible link between QS and mcpM regulation. This is the direct first evidence that microcin regulation can be linked to quorum sensing in a Gram-negative bacterium. PMID:29312248
Narasaki, Craig T; Mertens, Katja; Samuel, James E
2011-01-01
Coxiella burnetii, the etiologic agent of human Q fever, is a gram-negative and naturally obligate intracellular bacterium. The O-specific polysaccharide chain (O-PS) of the lipopolysaccharide (LPS) of C. burnetii is considered a heteropolymer of the two unusual sugars β-D-virenose and dihydrohydroxystreptose and mannose. We hypothesize that GDP-D-mannose is a metabolic intermediate to GDP-β-D-virenose. GDP-D-mannose is synthesized from fructose-6-phosphate in 3 successive reactions; Isomerization to mannose-6-phosphate catalyzed by a phosphomannose isomerase (PMI), followed by conversion to mannose-1-phosphate mediated by a phosphomannomutase (PMM) and addition of GDP by a GDP-mannose pyrophosphorylase (GMP). GDP-D-mannose is then likely converted to GDP-6-deoxy-D-lyxo-hex-4-ulopyranose (GDP-Sug), a virenose intermediate, by a GDP-mannose-4,6-dehydratase (GMD). To test the validity of this pathway in C. burnetii, three open reading frames (CBU0671, CBU0294 and CBU0689) annotated as bifunctional type II PMI, as PMM or GMD were functionally characterized by complementation of corresponding E. coli mutant strains and in enzymatic assays. CBU0671, failed to complement an Escherichia coli manA (PMM) mutant strain. However, complementation of an E. coli manC (GMP) mutant strain restored capsular polysaccharide biosynthesis. CBU0294 complemented a Pseudomonas aeruginosa algC (GMP) mutant strain and showed phosphoglucomutase activity (PGM) in a pgm E. coli mutant strain. Despite the inability to complement a manA mutant, recombinant C. burnetii PMI protein showed PMM enzymatic activity in biochemical assays. CBU0689 showed dehydratase activity and determined kinetic parameters were consistent with previously reported data from other organisms. These results show the biological function of three C. burnetii LPS biosynthesis enzymes required for the formation of GDP-D-mannose and GDP-Sug. A fundamental understanding of C. burnetii genes that encode PMI, PMM and GMP is critical to fully understand the biosynthesic pathway of GDP-β-D-virenose and LPS structure in C. burnetii.
C-terminal oligomerization of podocin mediates interallelic interactions.
Stráner, Pál; Balogh, Eszter; Schay, Gusztáv; Arrondel, Christelle; Mikó, Ágnes; L'Auné, Gerda; Benmerah, Alexandre; Perczel, András; K Menyhárd, Dóra; Antignac, Corinne; Mollet, Géraldine; Tory, Kálmán
2018-07-01
Interallelic interactions of membrane proteins are not taken into account while evaluating the pathogenicity of sequence variants in autosomal recessive disorders. Podocin, a membrane-anchored component of the slit diaphragm, is encoded by NPHS2, the major gene mutated in hereditary podocytopathies. We formerly showed that its R229Q variant is only pathogenic when trans-associated to specific 3' mutations and suggested the causal role of an abnormal C-terminal dimerization. Here we show by FRET analysis and size exclusion chromatography that podocin oligomerization occurs exclusively through the C-terminal tail (residues 283-382): principally through the first C-terminal helical region (H1, 283-313), which forms a coiled coil as shown by circular dichroism spectroscopy, and through the 332-348 region. We show the principal role of the oligomerization sites in mediating interallelic interactions: while the monomer-forming R286Tfs*17 podocin remains membranous irrespective of the coexpressed podocin variant identity, podocin variants with an intact H1 significantly influence each other's localization (r 2 = 0.68, P = 9.2 × 10 -32 ). The dominant negative effect resulting in intracellular retention of the pathogenic F344Lfs*4-R229Q heterooligomer occurs in parallel with a reduction in the FRET efficiency, suggesting the causal role of a conformational rearrangement. On the other hand, oligomerization can also promote the membrane localization: it can prevent the endocytosis of F344Lfs*4 or F344* podocin mutants induced by C-terminal truncation. In conclusion, C-terminal oligomerization of podocin can mediate both a dominant negative effect and interallelic complementation. Interallelic interactions of NPHS2 are not restricted to the R229Q variant and have to be considered in compound heterozygous individuals. Copyright © 2018 Elsevier B.V. All rights reserved.
Juhl, David; Marget, Matthias; Hallensleben, Michael; Görg, Siegfried; Ziemann, Malte
2017-03-01
Soon, a virtual crossmatch shall replace the complement-dependent cytotoxicity (CDC) allocation crossmatch in the Eurotransplant region. To prevent positive CDC-crossmatches in the recipient centre, careful definition of unacceptable antigens is necessary. For highly sensitized patients, this is difficult by CDC alone. Assignment of all antibodies detected by sensitive assays, however, could prevent organ allocation. To assess the usefulness of the Luminex C1q-assay to prevent positive CDC-crossmatches, all CDC-crossmatches performed prior to deceased kidney transplantation in a 16-month-period were reviewed. Sera causing positive crossmatches were investigated by the C1q-assay. 31 out of 1432 crossmatches (2.2%) were positive. Sera involved in 26 positive crossmatches were available. C1q-binding donor-specific antibodies were detected in 19 sera (73.1%). The other sera were from recipients without any HLA antibodies detectable by CDC or common solid phase assays. Three patients had known Non-HLA antibodies causing positive CDC-results. Four crossmatches were only weak positive. Therefore, avoidance of donors with HLA antigens against whom C1q-binding antibodies were detected would have prevented all positive crossmatches due to HLA antibodies. Provided that all HLA specificities against which antibodies are detected by the Luminex C1q-assay are considered as unacceptable antigens, CDC-crossmatches prior to transplantation might safely be omitted in many patients. They should be maintained in highly immunized patients, however, for whom assignment of all C1q-positive antibodies as unacceptable antigens could lead to a significant delay or even prevention of transplantation. Copyright © 2017 Elsevier B.V. All rights reserved.
Vazquez Fonseca, Luis; Doimo, Mara; Calderan, Cristina; Desbats, Maria Andrea; Acosta, Manuel J.; Cerqua, Cristina; Cassina, Matteo; Ashraf, Shazia; Hildebrandt, Friedhelm; Sartori, Geppo; Navas, Placido; Trevisson, Eva
2017-01-01
Abstract Mutations in COQ8B cause steroid‐resistant nephrotic syndrome with variable neurological involvement. In yeast, COQ8 encodes a protein required for coenzyme Q (CoQ) biosynthesis, whose precise role is not clear. Humans harbor two paralog genes: COQ8A and COQ8B (previously termed ADCK3 and ADCK4). We have found that COQ8B is a mitochondrial matrix protein peripherally associated with the inner membrane. COQ8B can complement a ΔCOQ8 yeast strain when its mitochondrial targeting sequence (MTS) is replaced by a yeast MTS. This model was employed to validate COQ8B mutations, and to establish genotype–phenotype correlations. All mutations affected respiratory growth, but there was no correlation between mutation type and the severity of the phenotype. In fact, contrary to the case of COQ2, where residual CoQ biosynthesis correlates with clinical severity, patients harboring hypomorphic COQ8B alleles did not display a different phenotype compared with those with null mutations. These data also suggest that the system is redundant, and that other proteins (probably COQ8A) may partially compensate for the absence of COQ8B. Finally, a COQ8B polymorphism, present in 50% of the European population (NM_024876.3:c.521A > G, p.His174Arg), affects stability of the protein and could represent a risk factor for secondary CoQ deficiencies or for other complex traits. PMID:29194833
Subunit composition and structure of subcomponent C1q of the first component of human complement.
Reid, K B; Porter, R R
1976-04-01
1. Unreduced human subcomponent C1q was shown by electrophoresis on polyacrylamide gels run in the presence of sodium dodecyl sulphate to be composed of two types of non-covalently linked subunits of apparent mol.wts. 69 000 and 54 000. The ratio of the two subunits was markedly affected by the ionic strength of the applied sample. At a low ionic strength of applied sample, which gave the optimum value for the 54 000-apparent mol.wt. subunit, a ratio of 1.99:1.00 was obtained for the ratio of the 69 000-apparent mol.wt. subunit to the 5400-apparent-mol.wt. subunit. The amount of the 54 000-apparent-mol.wt. subunit detected in the expected position on the gel was found to be inversely proportional to increases in the ionic strength of the applled sample. 2. Human subcomponent C1q on reduction and alkylation, or oxidation, yields equimolar amounts of three chains designated A, B and C [Reid et al. (1972) Biochem. J. 130, 749-763]. The results obtained by Yonemasu & Stroud [(1972) Immunochemistry 9, 545-554], which showed that the 69 000-apparent-mol.wt. subunit was a disulphide-linked dimer of the A and B chains and that the 54 000-apparent-mol.wt. subunit was a disulphide-linked dimer of the C chain, were confirmed. 3. Gel filtration on Sephadex G-200 in 6.0M-guanidinium chloride showed that both types of unreduced subunit were eluted together as a single symmetrical peak of apparent mol.wt. 49 000-50 000 when globular proteins were used as markers. The molecular weights of the oxidized or reduced A, B and C chains have been shown previously to be very similar all being in the range 23 000-24 000 [Reid et al. (1972) Biochem. J. 130, 749-763; Reid (1974) Biochem. J. 141, 189-203]. 4. It is proposed that subcomponent C1q (mol.wt. 410000) is composed of nine non-covalently linked subunits, i.e. six A-B dimers and three C-C dimers. 5. A structure for subcomponent C1q is proposed and is based on the assumption that the collagen-like regions of 78 residues in each of the A, B and C chains are combined to form a triple-helical structure of the same type as is found in collagens.
Complement Factor B Mutations in Atypical Hemolytic Uremic Syndrome—Disease-Relevant or Benign?
Marinozzi, Maria Chiara; Vergoz, Laura; Rybkine, Tania; Ngo, Stephanie; Bettoni, Serena; Pashov, Anastas; Cayla, Mathieu; Tabarin, Fanny; Jablonski, Mathieu; Hue, Christophe; Smith, Richard J.; Noris, Marina; Halbwachs-Mecarelli, Lise; Donadelli, Roberta; Fremeaux-Bacchi, Veronique
2014-01-01
Atypical hemolytic uremic syndrome (aHUS) is a genetic ultrarare renal disease associated with overactivation of the alternative pathway of complement. Four gain-of-function mutations that form a hyperactive or deregulated C3 convertase have been identified in Factor B (FB) ligand binding sites. Here, we studied the functional consequences of 10 FB genetic changes recently identified from different aHUS cohorts. Using several tests for alternative C3 and C5 convertase formation and regulation, we identified two gain-of-function and potentially disease-relevant mutations that formed either an overactive convertase (M433I) or a convertase resistant to decay by FH (K298Q). One mutation (R178Q) produced a partially cleaved protein with no ligand binding or functional activity. Seven genetic changes led to near-normal or only slightly reduced ligand binding and functional activity compared with the most common polymorphism at position 7, R7. Notably, none of the algorithms used to predict the disease relevance of FB mutations agreed completely with the experimental data, suggesting that in silico approaches should be undertaken with caution. These data, combined with previously published results, suggest that 9 of 15 FB genetic changes identified in patients with aHUS are unrelated to disease pathogenesis. This study highlights that functional assessment of identified nucleotide changes in FB is mandatory to confirm disease association. PMID:24652797
Castiblanco-Valencia, Mónica Marcela; Fraga, Tatiana Rodrigues; Pagotto, Ana Helena; Serrano, Solange Maria de Toledo; Abreu, Patricia Antonia Estima; Barbosa, Angela Silva; Isaac, Lourdes
2016-05-01
Plasminogen is a single-chain glycoprotein found in human plasma as the inactive precursor of plasmin. When converted to proteolytically active plasmin, plasmin(ogen) regulates both complement and coagulation cascades, thus representing an important target for pathogenic microorganisms. Leptospira interrogans binds plasminogen, which is converted to active plasmin. Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules that interact with extracellular matrix components and complement regulators, including proteins of the FH family and C4BP. In this work, we demonstrate that these multifunctional molecules also bind plasminogen through both N- and C-terminal domains. These interactions are dependent on lysine residues and are affected by ionic strength. Competition assays suggest that plasminogen does not share binding sites with C4BP or FH on Lig proteins at physiological molar ratios. Plasminogen bound to Lig proteins is converted to proteolytic active plasmin in the presence of urokinase-type plasminogen activator (uPA). Lig-bound plasmin is able to cleave the physiological substrates fibrinogen and the complement proteins C3b and C5. Taken together, our data point to a new role of LigA and LigB in leptospiral invasion and complement immune evasion. Plasmin(ogen) acquisition by these versatile proteins may contribute to Leptospira infection, favoring bacterial survival and dissemination inside the host. Copyright © 2016. Published by Elsevier GmbH.
Zhu, Yuzhen; Wu, Ying; Luo, Yin; Zou, Yu; Ma, Buyong; Zhang, Qingwen
2014-11-20
Neuronal calcium sensor-1 (NCS-1) protein has a variety of different neuronal functions and interacts with multiple binding partners mostly through a large solvent-exposed hydrophobic crevice (HC). A single R102Q mutation in human NCS-1 protein was demonstrated to be associated with autism disease. Solution NMR study reported that this R102Q mutant had long-range chemical shift effects on the HC and the C-terminal tail (L3). To understand the influence of the R102Q mutation on the HC and L3 of NCS-1, we have investigated the conformational dynamics and the structural flexibility of wild type (WT) NCS-1 and its R102Q mutant by conducting extensive all-atom molecular dynamics (MD) simulations. On the basis of six independent 450 ns MD simulations, we have found that the R102Q mutation in NCS-1 protein (1) dramatically reduces the flexibility of loops L2 and L3, (2) facilitates L3 in a more extended state to occupy the hydrophobic crevice to a larger extent, (3) significantly affects the intersegment salt bridges, and (4) changes the subspace of the free energy landscape of NCS-1 protein. Analysis of the salt bridge network in both WT and the R102Q variant demonstrates that the R102Q-mutation-induced salt bridge alternations play a critical role on the reduced flexibility of L2 and L3. These results reveal the important role of salt bridges on the structural properties of NCS-1 protein and that R102Q mutation disables the dynamic relocation of C-terminus, which may block the binding of NCS-1 protein to its receptors. This study may provide structural insights into the autistic spectrum disorder associated with R102Q mutation.
Yuan, Yujie; Ren, Jianan; Cao, Shougen; Zhang, Weiwei; Li, Jieshou
2012-01-01
The role of complement system in bridging innate and adaptive immunity has been confirmed in various invasive pathogens. It is still obscure how complement proteins promote T cell-mediated immune response during sepsis. The aim of this study is to investigate the role of exogenous C3 protein in the T-cell responses to sepsis. Sepsis was induced by colon ascendens stent peritonitis (CASP) in wild-type C57BL/6 mice, sham-operated mice for control. Human purified C3 protein (HuC3, 1 mg) was intraperitoneally injected at 6 h post-surgery, with 200 μl phosphate-buffered saline as control. The levels of C3 and cytokines, the expression of FOXP3 and NF-κB, and the percentages of CD4(+) T-cell subsets were compared among the groups at given time points. The polymicrobial sepsis produced considerable release of TNF-α and IL-10, and caused complement C3 exhaustion. Exogenous C3 administration markedly improved the 48 h survival rate, as compared with nontreatment (40% vs. 5%, P<0.01). The expression of FOXP3 protein was increased during sepsis, but can be suppressed by HuC3 administration. A single injection of HuC3 postponed the decline of differentiated Th1 cells, and depressed the activation of Th2/Th17 cells. Besides, the Th1-Th2 shift in late stage of sepsis can be controlled under C3 supplementation. The suppression of NF-κB pathway might be related to the appearance of immunocompromise. The study confirmed the important role of exogenous C3 in up-regulation of adaptive immune response to sepsis. The complement pathway would be a pivotal target for severe sepsis management. Copyright © 2011 Elsevier B.V. All rights reserved.
Allan, Christopher M.; Awad, Agape M.; Johnson, Jarrett S.; Shirasaki, Dyna I.; Wang, Charles; Blaby-Haas, Crysten E.; Merchant, Sabeeha S.; Loo, Joseph A.; Clarke, Catherine F.
2015-01-01
Coenzyme Q (Q or ubiquinone) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail and is required for mitochondrial electron transport. In the yeast Saccharomyces cerevisiae, Q is synthesized by the products of 11 known genes, COQ1–COQ9, YAH1, and ARH1. The function of some of the Coq proteins remains unknown, and several steps in the Q biosynthetic pathway are not fully characterized. Several of the Coq proteins are associated in a macromolecular complex on the matrix face of the inner mitochondrial membrane, and this complex is required for efficient Q synthesis. Here, we further characterize this complex via immunoblotting and proteomic analysis of tandem affinity-purified tagged Coq proteins. We show that Coq8, a putative kinase required for the stability of the Q biosynthetic complex, is associated with a Coq6-containing complex. Additionally Q6 and late stage Q biosynthetic intermediates were also found to co-purify with the complex. A mitochondrial protein of unknown function, encoded by the YLR290C open reading frame, is also identified as a constituent of the complex and is shown to be required for efficient de novo Q biosynthesis. Given its effect on Q synthesis and its association with the biosynthetic complex, we propose that the open reading frame YLR290C be designated COQ11. PMID:25631044
Allan, Christopher M.; Awad, Agape M.; Johnson, Jarrett S.; ...
2015-01-28
Coenzyme Q (Q or ubiquinone) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail and is required for mitochondrial electron transport. In the yeast Saccharomyces cerevisiae, Q is synthesized by the products of 11 known genes, COQ1–COQ9, YAH1, and ARH1. The function of some of the Coq proteins remains unknown, and several steps in the Q biosynthetic pathway are not fully characterized. Several of the Coq proteins are associated in a macromolecular complex on the matrix face of the inner mitochondrial membrane, and this complex is required for efficient Q synthesis. In thismore » paper, we further characterize this complex via immunoblotting and proteomic analysis of tandem affinity-purified tagged Coq proteins. We show that Coq8, a putative kinase required for the stability of the Q biosynthetic complex, is associated with a Coq6-containing complex. Additionally Q 6 and late stage Q biosynthetic intermediates were also found to co-purify with the complex. A mitochondrial protein of unknown function, encoded by the YLR290C open reading frame, is also identified as a constituent of the complex and is shown to be required for efficient de novo Q biosynthesis. Finally, given its effect on Q synthesis and its association with the biosynthetic complex, we propose that the open reading frame YLR290C be designated COQ11.« less
Cascajo, María V; Abdelmohsen, Kotb; Noh, Ji Heon; Fernández-Ayala, Daniel J M; Willers, Imke M; Brea, Gloria; López-Lluch, Guillermo; Valenzuela-Villatoro, Marina; Cuezva, José M; Gorospe, Myriam; Siendones, Emilio; Navas, Plácido
2016-07-02
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3'-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.
Okroj, Marcin; Mark, Linda; Stokowska, Anna; Wong, Scott W; Rose, Nicola; Blackbourn, David J; Villoutreix, Bruno O; Spiller, O Brad; Blom, Anna M
2009-01-02
Rhesus rhadinovirus (RRV) is currently the closest known, fully sequenced homolog of human Kaposi sarcoma-associated herpesvirus. Both these viruses encode complement inhibitors as follows: Kaposi sarcoma-associated herpesvirus-complement control protein (KCP) and RRV-complement control protein (RCP). Previously we characterized in detail the functional properties of KCP as a complement inhibitor. Here, we performed comparative analyses for two variants of RCP protein, encoded by RRV strains H26-95 and 17577. Both RCP variants and KCP inhibited human and rhesus complement when tested in hemolytic assays measuring all steps of activation via the classical and the alternative pathway. RCP variants from both RRV strains supported C3b and C4b degradation by factor I and decay acceleration of the classical C3 convertase, similar to KCP. Additionally, the 17577 RCP variant accelerated decay of the alternative C3 convertase, which was not seen for KCP. In contrast to KCP, RCP showed no affinity to heparin and is the first described complement inhibitor in which the binding site for C3b/C4b does not interact with heparin. Molecular modeling shows a structural disruption in the region of RCP that corresponds to the KCP-heparin-binding site. This makes RRV a superior model for future in vivo investigations of complement evasion, as RCP does not play a supportive role in viral attachment as KCP does.
Min, Li; Cheng, Jianbo; Zhao, Shengguo; Tian, He; Zhang, Yangdong; Li, Songli; Yang, Hongjian; Zheng, Nan; Wang, Jiaqi
2016-09-02
Heat stress (HS) has an enormous economic impact on the dairy industry. In recent years, many researchers have investigated changes in the gene expression and metabolomics profiles in dairy cows caused by HS. However, the proteomics profiles of heat-stressed dairy cows have not yet been completely elucidated. We compared plasma proteomics from HS-free and heat-stressed dairy cows using an iTRAQ labeling approach. After the depletion of high abundant proteins in the plasma, 1472 proteins were identified. Of these, 85 proteins were differentially abundant in cows exposed to HS relative to HS-free. Database searches combined with GO and KEGG pathway enrichment analyses revealed that many components of the complement and coagulation cascades were altered in heat-stressed cows compared with HS-free cows. Of these, many factors in the complement system (including complement components C1, C3, C5, C6, C7, C8, and C9, complement factor B, and factor H) were down-regulated by HS, while components of the coagulation system (including coagulation factors, vitamin K-dependent proteins, and fibrinogens) were up-regulated by HS. In conclusion, our results indicate that HS decreases plasma levels of complement system proteins, suggesting that immune function is impaired in dairy cows exposed to HS. Though many aspects of heat stress (HS) have been extensively researched, relatively little is known about the proteomics profile changes that occur during heat exposure. In this work, we employed a proteomics approach to investigate differential abundance of plasma proteins in HS-free and heat-stressed dairy cows. Database searches combined with GO and KEGG pathway enrichment analyses revealed that HS resulted in a decrease in complement components, suggesting that heat-stressed dairy cows have impaired immune function. In addition, through integrative analyses of proteomics and previous metabolomics, we showed enhanced glycolysis, lipid metabolic pathway shifts, and nitrogen repartitioning in dairy cows exposed to HS. Our findings expand our current knowledge on the effects of HS on plasma proteomics in dairy cows and offer a new perspective for future research. Copyright © 2016 Elsevier B.V. All rights reserved.
Hovingh, Elise S.; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H. M.
2017-01-01
Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis. PMID:28742139
Hovingh, Elise S; van den Broek, Bryan; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H M; Jongerius, Ilse
2017-07-01
Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis.
HlyU Is a Positive Regulator of Hemolysin Expression in Vibrio anguillarum ▿
Li, Ling; Mou, Xiangyu; Nelson, David R.
2011-01-01
The two hemolysin gene clusters previously identified in Vibrio anguillarum, the vah1 cluster and the rtxACHBDE cluster, are responsible for the hemolytic and cytotoxic activities of V. anguillarum in fish. In this study, we used degenerate PCR to identify a positive hemolysin regulatory gene, hlyU, from the unsequenced V. anguillarum genome. The hlyU gene of V. anguillarum encodes a 92-amino-acid protein and is highly homologous to other bacterial HlyU proteins. An hlyU mutant was constructed, which exhibited an ∼5-fold decrease in hemolytic activity on sheep blood agar with no statistically significant decrease in cytotoxicity of the wild-type strain. Complementation of the hlyU mutation restored both hemolytic activity and cytotoxic activity. Both semiquantitative reverse transcription-PCR (RT-PCR) and quantitative real-time RT-PCR (qRT-PCR) were used to examine expression of the hemolysin genes under exponential and stationary-phase conditions in wild-type, hlyU mutant, and hlyU complemented strains. Compared to the wild-type strain, expression of rtx genes decreased in the hlyU mutant, while expression of vah1 and plp was not affected in the hlyU mutant. Complementation of the hlyU mutation restored expression of the rtx genes and increased vah1 and plp expression to levels higher than those in the wild type. The transcriptional start sites in both the vah1-plp and rtxH-rtxB genes' intergenic regions were determined using 5′ random amplification of cDNA ends (5′-RACE), and the binding sites for purified HlyU were discovered using DNA gel mobility shift experiments and DNase protection assays. PMID:21764937
Challis, Rachel C; Araujo, Geisilaine S R; Wong, Edwin K S; Anderson, Holly E; Awan, Atif; Dorman, Anthony M; Waldron, Mary; Wilson, Valerie; Brocklebank, Vicky; Strain, Lisa; Morgan, B Paul; Harris, Claire L; Marchbank, Kevin J; Goodship, Timothy H J; Kavanagh, David
2016-06-01
The regulators of complement activation cluster at chromosome 1q32 contains the complement factor H (CFH) and five complement factor H-related (CFHR) genes. This area of the genome arose from several large genomic duplications, and these low-copy repeats can cause genome instability in this region. Genomic disorders affecting these genes have been described in atypical hemolytic uremic syndrome, arising commonly through nonallelic homologous recombination. We describe a novel CFH/CFHR3 hybrid gene secondary to a de novo 6.3-kb deletion that arose through microhomology-mediated end joining rather than nonallelic homologous recombination. We confirmed a transcript from this hybrid gene and showed a secreted protein product that lacks the recognition domain of factor H and exhibits impaired cell surface complement regulation. The fact that the formation of this hybrid gene arose as a de novo event suggests that this cluster is a dynamic area of the genome in which additional genomic disorders may arise. Copyright © 2016 by the American Society of Nephrology.
MacBeath, G; Kast, P; Hilvert, D
1998-07-14
The gene for chorismate mutase (CM) from the archaeon Methanococcus jannaschii, an extreme thermophile, was subcloned and expressed in Escherichia coli. This gene, which belongs to the aroQ class of CMs, encodes a monofunctional enzyme (AroQf) able to complement the CM deficiency of an E. coli mutant strain. The purified protein follows Michaelis-Menten kinetics (kcat = 5.7 s-1 and Km = 41 microM at 30 degreesC) and displays pH-independent activity in the range of pH 5-9. Its activation parameters [Delta H = 16.2 kcal/mol, Delta S = -1. 7 cal/(mol.K)] are similar to those of another well characterized AroQ class CM, the mesophilic AroQp domain from E. coli. Like AroQp, the thermophilic CM is an alpha-helical dimer, but approximately 5 kcal/mol more stable than its mesophilic counterpart as judged from equilibrium denaturation studies. The possible origins of the thermostability of M. jannaschii AroQf, the smallest natural CM characterized to date, are discussed in light of available sequence and tertiary structural information.
Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture*
Mauceri, Daniela; Hagenston, Anna M.; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar
2015-01-01
Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. PMID:26231212
Nature of Driving Force for Protein Folding-- A Result From Analyzing the Statistical Potential
NASA Astrophysics Data System (ADS)
Li, Hao; Tang, Chao; Wingreen, Ned S.
1998-03-01
In a statistical approach to protein structure analysis, Miyazawa and Jernigan (MJ) derived a 20× 20 matrix of inter-residue contact energies between different types of amino acids. Using the method of eigenvalue decomposition, we find that the MJ matrix can be accurately reconstructed from its first two principal component vectors as M_ij=C_0+C_1(q_i+q_j)+C2 qi q_j, with constant C's, and 20 q values associated with the 20 amino acids. This regularity is due to hydrophobic interactions and a force of demixing, the latter obeying Hildebrand's solubility theory of simple liquids.
Defective prevention of immune precipitation in autoimmune diseases is independent of C4A*Q0
Arason, G J; Kolka, R; Hreidarsson, A B; Gudjonsson, H; Schneider, P M; Fry, L; Arnason, A
2005-01-01
Increased prevalence of C4 null alleles is a common feature of autoimmune diseases. We have shown previously that complement-dependent prevention of immune precipitation (PIP) is defective in patients with systemic lupus erythematosus (SLE), and correlated this defect with C4A*Q0 and low levels of the C4A isotype. To further clarify the role of C4A in the aetiology of SLE, we now extend our studies to other diseases which have been associated with C4A*Q0. The frequency of C4A*Q0 was increased in Icelandic patients with coeliac disease (0·50; P < 0·001), Grave's disease (0·30; P = 0·002) and insulin-dependent diabetes mellitus (0·23; P = 0·04) and in British patients with dermatitis herpetiformis (0·42; P = 0·002) and this was reflected in low levels of C4A. In spite of this, PIP was normal in these patients, and in marked contrast to our previous observations on connective tissue diseases, PIP measurements in these patient groups correlated more strongly with levels of C4B (r = 0·51, P = 0·0000004) than C4A. Patients with increased levels of anti-C1q antibodies had significantly lower PIP than patients without such antibodies (P < 0·01) and a negative association of PIP with anti-C1q antibodies was also reflected in an increased prevalence (P = 0·006) and levels (P = 0·006) of anti-C1q antibodies in patients with subnormal PIP, as well as a negative correlation between PIP and anti-C1q antibodies (r = − 0·25, P = 0·02). These results show that the PIP defect cannot be explained by low levels of C4A alone and suggest that measurements of anti-C1q antibodies may be useful in future studies on the molecular cause of the PIP defect in autoimmune connective tissue disease. PMID:15932521
Njoku, Dolores B; Mellerson, Jenelle L; Talor, Monica V; Kerr, Douglas R; Faraday, Nauder R; Outschoorn, Ingrid; Rose, Noel R
2006-02-01
Idiosyncratic drug-induced hepatitis (IDDIH) is the third most common cause for acute liver failure in the United States. Previous studies have attempted to identify susceptible patients or early stages of disease with various degrees of success. To determine if total serum immunoglobulin subclasses, CYP2E1-specific subclass autoantibodies, complement components, or immune complexes could distinguish persons with IDDIH from others exposed to drugs, we studied persons exposed to halogenated volatile anesthetics, which have been associated with IDDIH and CYP2E1 autoantibodies. We found that patients with anesthetic-induced IDDIH had significantly elevated levels of CYP2E1-specific immunoglobulin G4 (IgG4) autoantibodies, while anesthetic-exposed healthy persons had significantly elevated levels of CYP2E1-specific IgG1 autoantibodies. Anesthetic IDDIH patients had significantly lower levels of C4a, C3a, and C5a compared to anesthetic-exposed healthy persons. C1q- and C3d-containing immune complexes were significantly elevated in anesthetic-exposed persons. In conclusion, our data suggest that anesthetic-exposed persons develop CYP2E1-specific IgG1 autoantibodies which may form detectable circulating immune complexes subsequently cleared by classical pathway activation of the complement system. Persons susceptible to anesthetic-induced IDDIH develop CYP2E1-specific IgG4 autoantibodies which form small, nonprecipitating immune complexes that escape clearance because of their size or by direct inhibition of complement activation.
Toropainen, Maija; Saarinen, Leena; Vidarsson, Gestur; Käyhty, Helena
2006-05-01
The relative contributions of antibody-induced complement-mediated bacterial lysis and antibody/complement-mediated phagocytosis to host immunity against meningococcal infections are currently unclear. Further, the in vivo effector functions of antibodies may vary depending on their specificity and Fc heavy-chain isotype. In this study, a mouse immunoglobulin G2a (mIgG2a) monoclonal antibody (MN12H2) to meningococcal outer membrane protein PorA (P1.16), its human IgG subclass derivatives (hIgG1 to hIgG4), and an mIgG2a monoclonal antibody (Nmb735) to serogroup B capsular polysaccharide (B-PS) were evaluated for passive protection against meningococcal serogroup B strain 44/76-SL (B:15:P1.7,16) in an infant rat infection model. Complement component C6-deficient (PVG/c-) rats were used to assess the importance of complement-mediated bacterial lysis for protection. The PorA-specific parental mIgG2a and the hIgG1 to hIgG3 derivatives all induced efficient bactericidal activity in vitro in the presence of human or infant rat complement and augmented bacterial clearance in complement-sufficient HsdBrlHan:WIST rats, while the hIgG4 was unable to do so. In C6-deficient PVG/c- rats, lacking complement-mediated bacterial lysis, the augmentation of bacterial clearance by PorA-specific mIgG2a and hIgG1 antibodies was impaired compared to that in the syngeneic complement-sufficient PVG/c+ rat strain. This was in contrast to the case for B-PS-specific mIgG2a, which conferred similar protective activity in both rat strains. These data suggest that while anti-B-PS antibody can provide protection in the infant rats without membrane attack complex formation, the protection afforded by anti-PorA antibody is more dependent on the activation of the whole complement pathway and subsequent bacterial lysis.
Song, Ya-Nan; Zhang, Gui-Biao; Hu, Xue-Qing; Lu, Yi-Yu; Zhao, Yu; Yang, Yang; Yang, Yi-Fu; Zhang, Yong-Yu; Hu, Yi-Yang; Su, Shi-Bing
2015-12-01
Chronic hepatitis B (CHB) is a kind of chronic liver disease caused by persistent hepatitis B virus (HBV) infection. The study aims to seek the factors of host resistance to HBV and investigate their roles. Protein profiles of 58 healthy controls and 121 CHB patients were obtained by SELDI-TOF/MS. Predicted protein was validated by ELISA. Protein expression was evaluated by Western blot in the persistently HBV expressing cell line HepG2.2.15 and non-HBV expressing cell line HepG2. The level of HBV DNA was subsequently detected by quantitative real-time PCR in HepG2.2.15 cells with complement C4a treatment. Significantly altered protein peaks were found through statistical analysis, and m/z 4300 was predicted by databases and successfully matched with the fragment of complement C4a. According to ELISA, serum complement C4a was found to be significantly lower in CHB patients compared with healthy controls (p < 0.001) and the area under receiver operating characteristics curve is 0.78. Furthermore, complement C4a showed lower expression in HepG2.2.5 cells and the secretion of HBV DNA was inhibited by complement C4a. The present study implied the important role of complement C4a in inhibiting the HBV DNA secretion in CHB. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gueguen, Claire; Bouley, Julien; Moussu, Hélène; Luce, Sonia; Duchateau, Magalie; Chamot-Rooke, Julia; Pallardy, Marc; Lombardi, Vincent; Nony, Emmanuel; Baron-Bodo, Véronique; Mascarell, Laurent; Moingeon, Philippe
2016-02-01
Regulatory dendritic cell (DC) markers, such as C1Q, are upregulated in PBMCs of patients with grass pollen allergy exhibiting clinical benefit during allergen immunotherapy (AIT). We sought to define markers differentially expressed in human monocyte-derived DCs differentiated toward a proallergic (DCs driving the differentiation of TH2 cells [DC2s]) phenotype and investigate whether changes in such markers in the blood correlate with AIT efficacy. Transcriptomes and proteomes of monocyte-derived DCs polarized toward DCs driving the differentiation of TH1 cells (DC1s), DC2s, or DCs driving the differentiation of regulatory T cells (DCreg cells) profiles were compared by using genome-wide cDNA microarrays and label-free quantitative proteomics, respectively. Markers differentially regulated in DC2s and DCreg cells were assessed by means of quantitative PCR in PBMCs from 80 patients with grass pollen allergy before and after 2 or 4 months of sublingual AIT in parallel with rhinoconjunctivitis symptom scores. We identified 20 and 26 new genes/proteins overexpressed in DC2s and DCreg cells, respectively. At an individual patient level, DC2-associated markers, such as CD141, GATA3, OX40 ligand, and receptor-interacting serine/threonine-protein kinase 4 (RIPK4), were downregulated after a 4-month sublingual AIT course concomitantly with an upregulation of DCreg cell-associated markers, including complement C1q subcomponent subunit A (C1QA), FcγRIIIA, ferritin light chain (FTL), and solute carrier organic anion transporter family member 2B1 (SLCO2B1), in the blood of clinical responders as opposed to nonresponders. Changes in such markers were better correlated with clinical benefit than alterations of allergen-specific CD4(+) T-cell or IgG responses. A combination of 5 markers predominantly expressed by blood DCs (ie, C1Q and CD141) or shared with lymphoid cells (ie, FcγRIIIA, GATA3, and RIPK4) reflecting changes in the balance of regulatory/proallergic responses in peripheral blood can be used as early as after 2 months to monitor the early onset of AIT efficacy. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Pietrocola, Giampiero; Rindi, Simonetta; Rosini, Roberto; Buccato, Scilla
2016-01-01
The group B Streptococcus (GBS) is a leading cause of neonatal invasive disease. GBS bacteria are surrounded by a thick capsular polysaccharide that is a potent inhibitor of complement deposition via the alternative pathway. Several of its surface molecules can however activate the classical and lectin complement pathways, rendering this species still vulnerable to phagocytic killing. In this study we have identified a novel secreted protein named complement interfering protein (CIP) that downregulates complement activation via the classical and lectin pathways, but not the alternative pathway. The CIP protein showed high affinity toward C4b and inhibited its interaction with C2, presumably preventing the formation of the C4bC2a convertase. Addition of recombinant CIP to GBS cip-negative bacteria resulted in decreased deposition of C3b on their surface and in diminished phagocytic killing in a whole-blood assay. Our data reveal a novel strategy exploited by GBS to counteract innate immunity and could be valuable for the development of anti-infective agents against this important pathogen. PMID:26608922
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, Christopher M.; Awad, Agape M.; Johnson, Jarrett S.
Coenzyme Q (Q or ubiquinone) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail and is required for mitochondrial electron transport. In the yeast Saccharomyces cerevisiae, Q is synthesized by the products of 11 known genes, COQ1–COQ9, YAH1, and ARH1. The function of some of the Coq proteins remains unknown, and several steps in the Q biosynthetic pathway are not fully characterized. Several of the Coq proteins are associated in a macromolecular complex on the matrix face of the inner mitochondrial membrane, and this complex is required for efficient Q synthesis. In thismore » paper, we further characterize this complex via immunoblotting and proteomic analysis of tandem affinity-purified tagged Coq proteins. We show that Coq8, a putative kinase required for the stability of the Q biosynthetic complex, is associated with a Coq6-containing complex. Additionally Q 6 and late stage Q biosynthetic intermediates were also found to co-purify with the complex. A mitochondrial protein of unknown function, encoded by the YLR290C open reading frame, is also identified as a constituent of the complex and is shown to be required for efficient de novo Q biosynthesis. Finally, given its effect on Q synthesis and its association with the biosynthetic complex, we propose that the open reading frame YLR290C be designated COQ11.« less
Gautam, Avneesh Kumar; Panse, Yogesh; Ghosh, Payel; Reza, Malik Johid; Mullick, Jayati; Sahu, Arvind
2015-01-01
The complement system has evolved to annul pathogens, but its improper regulation is linked with diseases. Efficient regulation of the system is primarily provided by a family of proteins termed regulators of complement activation (RCA). The knowledge of precise structural determinants of RCA proteins critical for imparting the regulatory activities and the molecular events underlying the regulatory processes, nonetheless, is still limited. Here, we have dissected the structural requirements of RCA proteins that are crucial for one of their two regulatory activities, the cofactor activity (CFA), by using the Kaposi’s sarcoma-associated herpesvirus RCA homolog Kaposica as a model protein. We have scanned the entire Kaposica molecule by sequential mutagenesis using swapping and site-directed mutagenesis, which identified residues critical for its interaction with C3b and factor I. Mapping of these residues onto the modeled structure of C3b–Kaposica–factor I complex supported the mutagenesis data. Furthermore, the model suggested that the C3b-interacting residues bridge the CUB (complement C1r-C1s, Uegf, Bmp1) and MG2 (macroglobulin-2) domains of C3b. Thus, it seems that stabilization of the CUB domain with respect to the core of the C3b molecule is central for its CFA. Identification of CFA-critical regions in Kaposica guided experiments in which the equivalent regions of membrane cofactor protein were swapped into decay-accelerating factor. This strategy allowed CFA to be introduced into decay-accelerating factor, suggesting that viral and human regulators use a common mechanism for CFA. PMID:26420870
Oliveira, Carolina F; Botoni, Fernando A; Oliveira, Clara R A; Silva, Camila B; Pereira, Helena A; Serufo, José C; Nobre, Vandack
2013-10-01
We sought to evaluate whether procalcitonin was superior to C-reactive protein in guiding antibiotic therapy in intensive care patients with sepsis. Randomized open clinical trial. Two university hospitals in Brazil. Patients with severe sepsis or septic shock. Patients were randomized in two groups: the procalcitonin group and the C-reactive protein group. Antibiotic therapy was discontinued following a protocol based on serum levels of these markers, according to the allocation group. The procalcitonin group was considered superior if the duration of antibiotic therapy was at least 25% shorter than in the C-reactive protein group. For both groups, at least seven full-days of antibiotic therapy were ensured in patients with Sequential Organ Failure Assessment greater than 10 and/or bacteremia at inclusion, and patients with evident resolution of the infectious process had antibiotics stopped after 7 days, despite biomarkers levels. Ninety-four patients were randomized: 49 patients to the procalcitonin group and 45 patients to the C-reactive protein group. The mean age was 59.8 (SD, 16.8) years. The median duration of antibiotic therapy for the first episode of infection was 7.0 (Q1-Q3, 6.0-8.5) days in the procalcitonin group and 6.0 (Q1-Q3, 5.0-7.0) days in the C-reactive protein group (p=0.13), with a hazard ratio of 1.206 (95% CI, 0.774-1.3; p=0.13). Overall, protocol overruling occurred in only 13 (13.8%) patients. Twenty-one patients died in each group (p=0.836). C-reactive protein was as useful as procalcitonin in reducing antibiotic use in a predominantly medical population of septic patients, causing no apparent harm.
Bates, Emily A; Victor, Martin; Jones, Adriana K; Shi, Yang; Hart, Anne C
2006-03-08
Expansion of a polyglutamine tract in the huntingtin protein causes neuronal degeneration and death in Huntington's disease patients, but the molecular mechanisms underlying polyglutamine-mediated cell death remain unclear. Previous studies suggest that expanded polyglutamine tracts alter transcription by sequestering glutamine rich transcriptional regulatory proteins, thereby perturbing their function. We tested this hypothesis in Caenorhabditis elegans neurons expressing a human huntingtin fragment with an expanded polyglutamine tract (Htn-Q150). Loss of function alleles and RNA interference (RNAi) were used to examine contributions of C. elegans cAMP response element-binding protein (CREB), CREB binding protein (CBP), and histone deacetylases (HDACs) to polyglutamine-induced neurodegeneration. Deletion of CREB (crh-1) or loss of one copy of CBP (cbp-1) enhanced polyglutamine toxicity in C. elegans neurons. Loss of function alleles and RNAi were then used to systematically reduce function of each C. elegans HDAC. Generally, knockdown of individual C. elegans HDACs enhanced Htn-Q150 toxicity, but knockdown of C. elegans hda-3 suppressed toxicity. Neuronal expression of hda-3 restored Htn-Q150 toxicity and suggested that C. elegans HDAC3 (HDA-3) acts within neurons to promote degeneration in response to Htn-Q150. Genetic epistasis experiments suggested that HDA-3 and CRH-1 (C. elegans CREB homolog) directly oppose each other in regulating transcription of genes involved in polyglutamine toxicity. hda-3 loss of function failed to suppress increased neurodegeneration in hda-1/+;Htn-Q150 animals, indicating that HDA-1 and HDA-3 have different targets with opposing effects on polyglutamine toxicity. Our results suggest that polyglutamine expansions perturb transcription of CREB/CBP targets and that specific targeting of HDACs will be useful in reducing associated neurodegeneration.
Ferreira, Viviana P.; Fazito Vale, Vladimir; Pangburn, Michael K.; Abdeladhim, Maha; Ferreira Mendes-Sousa, Antonio; Coutinho-Abreu, Iliano V.; Rasouli, Manoochehr; Brandt, Elizabeth A.; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Horácio Pereira, Marcos; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M. C.; Gontijo, Nelder F.; Collin, Nicolas; Valenzuela, Jesus G.
2016-01-01
Blood-feeding insects inject potent salivary components including complement inhibitors into their host’s skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases. PMID:26758086
DMT efficiently inhibits hepatic gluconeogenesis by regulating the Gαq signaling pathway.
Zhou, Ting-Ting; Ma, Fei; Shi, Xiao-Fan; Xu, Xin; Du, Te; Guo, Xiao-Dan; Wang, Gai-Hong; Yu, Liang; Rukachaisirikul, Vatcharin; Hu, Li-Hong; Chen, Jing; Shen, Xu
2017-08-01
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with complicated pathogenesis and targeting gluconeogenesis inhibition is a promising strategy for anti-diabetic drug discovery. G protein-coupled receptors (GPCRs) are classified as distinct families by heterotrimeric G proteins, primarily including Gαs, Gαi and Gαq. Gαs-coupled GPCRs function potently in the regulation of hepatic gluconeogenesis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway and Gαi-coupled GPCRs exhibit inhibitory effect on adenylyl cyclase and reduce intracellular cAMP level. However, little is known about the regulation of Gαq-coupled GPCRs in hepatic gluconeogenesis. Here, small-molecule 2-(2,4-dimethoxy-3-methylphenyl)-7-(thiophen-2-yl)-9-(trifluoromethyl)-2,3-dihydropyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4( 1H )-one (DMT) was determined to suppress hepatic glucose production and reduce mRNA levels of gluconeogenic genes. Treatment of DMT in db/db mice decreased fasting blood glucose and hemoglobin A1C (HbA1c) levels, while improved glucose tolerance and pyruvate tolerance. Mechanism study demonstrated that DMT-inhibited gluconeogenesis by regulating the Gαq/phospholipase C (PLC)/inositol-1,4,5-triphosphate receptor (IP3R)-mediated calcium (Ca 2+ )/calmodulin (CaM)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/forkhead box protein O1 (FOXO1) signaling pathway. To our knowledge, DMT might be the first reported small molecule able to suppress hepatic gluconeogenesis by regulating Gαq signaling, and our current work has also highlighted the potential of DMT in the treatment of T2DM. © 2017 Society for Endocrinology.
Kehrmann, Angela; Truong, Ha; Repenning, Antje; Boger, Regina; Klein-Hitpass, Ludger; Pascheberg, Ulrich; Beckmann, Alf; Opalka, Bertram; Kleine-Lowinski, Kerstin
2013-01-01
The fusion between human tumorigenic cells and normal human diploid fibroblasts results in non-tumorigenic hybrid cells, suggesting a dominant role for tumor suppressor genes in the generated hybrid cells. After long-term cultivation in vitro, tumorigenic segregants may arise. The loss of tumor suppressor genes on chromosome 11q13 has been postulated to be involved in the induction of the tumorigenic phenotype of human papillomavirus (HPV)18-positive cervical carcinoma cells and their derived tumorigenic hybrid cells after subcutaneous injection in immunocompromised mice. The aim of this study was the identification of novel cellular genes that may contribute to the suppression of the tumorigenic phenotype of non-tumorigenic hybrid cells in vivo. We used cDNA microarray technology to identify differentially expressed cellular genes in tumorigenic HPV18-positive hybrid and parental HeLa cells compared to non-tumorigenic HPV18-positive hybrid cells. We detected several as yet unknown cellular genes that play a role in cell differentiation, cell cycle progression, cell-cell communication, metastasis formation, angiogenesis, antigen presentation, and immune response. Apart from the known differentially expressed genes on 11q13 (e.g., phosphofurin acidic cluster sorting protein 1 (PACS1) and FOS ligand 1 (FOSL1 or Fra-1)), we detected novel differentially expressed cellular genes located within the tumor suppressor gene region (e.g., EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) and leucine rich repeat containing 32 (LRRC32) (also known as glycoprotein-A repetitions predominant (GARP)) that may have potential tumor suppressor functions in this model system of non-tumorigenic and tumorigenic HeLa x fibroblast hybrid cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Vazquez Fonseca, Luis; Doimo, Mara; Calderan, Cristina; Desbats, Maria Andrea; Acosta, Manuel J; Cerqua, Cristina; Cassina, Matteo; Ashraf, Shazia; Hildebrandt, Friedhelm; Sartori, Geppo; Navas, Placido; Trevisson, Eva; Salviati, Leonardo
2018-03-01
Mutations in COQ8B cause steroid-resistant nephrotic syndrome with variable neurological involvement. In yeast, COQ8 encodes a protein required for coenzyme Q (CoQ) biosynthesis, whose precise role is not clear. Humans harbor two paralog genes: COQ8A and COQ8B (previously termed ADCK3 and ADCK4). We have found that COQ8B is a mitochondrial matrix protein peripherally associated with the inner membrane. COQ8B can complement a ΔCOQ8 yeast strain when its mitochondrial targeting sequence (MTS) is replaced by a yeast MTS. This model was employed to validate COQ8B mutations, and to establish genotype-phenotype correlations. All mutations affected respiratory growth, but there was no correlation between mutation type and the severity of the phenotype. In fact, contrary to the case of COQ2, where residual CoQ biosynthesis correlates with clinical severity, patients harboring hypomorphic COQ8B alleles did not display a different phenotype compared with those with null mutations. These data also suggest that the system is redundant, and that other proteins (probably COQ8A) may partially compensate for the absence of COQ8B. Finally, a COQ8B polymorphism, present in 50% of the European population (NM_024876.3:c.521A > G, p.His174Arg), affects stability of the protein and could represent a risk factor for secondary CoQ deficiencies or for other complex traits. © 2017 The Authors. Human Mutation published by Wiley Periodicals, Inc.
Schaefer, S M; Süsal, C; Opelz, G; Döhler, B; Becker, L E; Klein, K; Sickmüller, S; Waldherr, R; Macher-Goeppinger, S; Schemmer, P; Beimler, J; Zeier, M; Morath, C
2016-02-01
Presensitized kidney transplant recipients are at high-risk for early antibody-mediated rejection. We studied the impact of pre- and post-transplant donor-specific human leukocyte antigen (HLA) antibodies (DSA) and T-cell-activation on the occurrence of antibody-mediated rejection episodes (AMR) and graft loss (AMR-GL) in a unique cohort of 80 desensitized high-risk kidney transplant recipients. Patients with pre-transplant DSA demonstrated more AMR episodes than patients without DSA, but did not show a significantly increased rate of AMR-GL. The rates of AMR and AMR-GL were not significantly increased in patients with complement split product (C1q)-binding pre-transplant DSA. Pre-transplant C1q-DSA became undetectable post-transplant in 11 of 13 (85%) patients; 2 (18%) of these 11 patients showed AMR but no AMR-GL. In contrast, the post-transplant presence of C1q-DSA was associated with significantly higher rates of AMR (86 vs 33 vs 0%; P < 0.001) and AMR-GL (86 vs 0 vs 0%; log-rank P < 0.001) compared with post-transplant DSA without C1q-binding or the absence of DSA. Patients with both pre-transplant DSA and evidence of pre-transplant T-cell-activation as indicated by soluble CD30-positivity showed a significantly increased risk for AMR-GL [HR = 11.1, 95% confidence interval (CI) = 1.68-73.4; log-rank P = 0.013]. In these high-risk patients, AMR-GL was associated with total DSA in combination with T-cell-activation pre-transplant, and de novo or persistent C1q-binding DSA post-transplant. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Li, Keying; Gor, Jayesh; Perkins, Stephen J
2010-10-01
Component C3 is the central protein of the complement system. During complement activation, the thioester group in C3 is slowly hydrolysed to form C3u, then the presence of C3u enables the rapid conversion of C3 into functionally active C3b. C3u shows functional similarities to C3b. To clarify this mechanism, the self-association properties and solution structures of C3 and C3u were determined using analytical ultracentrifugation and X-ray scattering. Sedimentation coefficients identified two different dimerization events in both proteins. A fast dimerization was observed in 50 mM NaCl but not in 137 mM NaCl. Low amounts of a slow dimerization was observed for C3u and C3 in both buffers. The X-ray radius of gyration RG values were unchanged for both C3 and C3u in 137 mM NaCl, but depend on concentration in 50 mM NaCl. The C3 crystal structure gave good X-ray fits for C3 in 137 mM NaCl. By randomization of the TED (thioester-containing domain)/CUB (for complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains in the C3b crystal structure, X-ray fits showed that the TED/CUB domains in C3u are extended and differ from the more compact arrangement of C3b. This TED/CUB conformation is intermediate between those of C3 and C3b. The greater exposure of the TED domain in C3u (which possesses the hydrolysed reactive thioester) accounts for the greater self-association of C3u in low-salt conditions. This conformational variability of the TED/CUB domains would facilitate their interactions with a broad range of antigenic surfaces. The second dimerization of C3 and C3u may correspond to a dimer observed in one of the crystal structures of C3b.
Structure of C3b reveals conformational changes that underlie complement activity.
Janssen, Bert J C; Christodoulidou, Agni; McCarthy, Andrew; Lambris, John D; Gros, Piet
2006-11-09
Resistance to infection and clearance of cell debris in mammals depend on the activation of the complement system, which is an important component of innate and adaptive immunity. Central to the complement system is the activated form of C3, called C3b, which attaches covalently to target surfaces to amplify complement response, label cells for phagocytosis and stimulate the adaptive immune response. C3b consists of 1,560 amino-acid residues and has 12 domains. It binds various proteins and receptors to effect its functions. However, it is not known how C3 changes its conformation into C3b and thereby exposes its many binding sites. Here we present the crystal structure at 4-A resolution of the activated complement protein C3b and describe the conformational rearrangements of the 12 domains that take place upon proteolytic activation. In the activated form the thioester is fully exposed for covalent attachment to target surfaces and is more than 85 A away from the buried site in native C3 (ref. 5). Marked domain rearrangements in the alpha-chain present an altered molecular surface, exposing hidden and cryptic sites that are consistent with known putative binding sites of factor B and several complement regulators. The structural data indicate that the large conformational changes in the proteolytic activation and regulation of C3 take place mainly in the first conversion step, from C3 to C3b. These insights are important for the development of strategies to treat immune disorders that involve complement-mediated inflammation.
Koh, Eun-Ik; Hung, Chia S.
2016-01-01
The Yersinia high-pathogenicity island (HPI) is common to multiple virulence strategies used by Escherichia coli strains associated with urinary tract infection (UTI). Among the genes in this island are ybtP and ybtQ, encoding distinctive ATP binding cassette (ABC) proteins associated with iron(III)-yersiniabactin import in Yersinia pestis. In this study, we compared the impact of ybtPQ on a model E. coli cystitis strain during in vitro culture and experimental murine infections. A ybtPQ-null mutant exhibited no growth defect under standard culture conditions, consistent with nonessentiality in this background. A growth defect phenotype was observed and genetically complemented in vitro during iron(III)-yersiniabactin-dependent growth. Following inoculation into the bladders of C3H/HEN and C3H/HeOuJ mice, this strain exhibited a profound, 106-fold competitive infection defect in the subgroup of mice that progressed to high-titer bladder infections. These results identify a virulence role for YbtPQ in the highly inflammatory microenvironment characteristic of high-titer cystitis. The profound competitive defect may relate to the apparent selection of Yersinia HPI-positive E. coli in uncomplicated clinical UTIs. PMID:26883590
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunn, D.N.; Lidstrom, M.E.
Twenty-five methanol oxidation mutants of the facultative methylotroph Methylobacterium sp. strain AM1 have been characterized by complementation analysis and assigned to 10 complementation groups, Mox A1, A2, A3, and B through H. In this study we have characterized each of the mutants belonging to the 10 Mox complementation groups for the following criteria: (i) phenazine methosulfate-dichlorophenolindophenol dye-linked methanol dehydrogenase activity; (ii) methanol-dependent whole-cell oxygen consumption; (iii) the presence or absence of methanol dehydrogenase protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting; (iv) the absorption spectra of purified mutant methanol dehydrogenase proteins; and (v) the presence or absence ofmore » the soluble cytochrome c proteins of Methylobacterium sp. strain AM1, as determined by reduced-oxidized difference spectra and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With this information, we have proposed functions for each of the genes deficient in the mutants of the 10 Mox complementation groups. These proposed gene functions include two linked genes that encode the methanol dehydrogenase structural protein and the soluble cytochrome c/sub L/, a gene encoding a secretion function essential for the synthesis and export of methanol dehydrogenase and cytochrome c/sub L/, three gene functions responsible for the proper association of the pyrrolo-quinoline quinone prosthetic group with the methanol dehydrogenase apoprotein, and four positive regulatory gene functions controlling the expression of the ability to oxidize methanol.« less
Khandhadia, Samir; Hakobyan, Svetlana; Heng, Ling Z; Gibson, Jane; Adams, David H; Alexander, Graeme J; Gibson, Jonathan M; Martin, Keith R; Menon, Geeta; Nash, Kathryn; Sivaprasad, Sobha; Ennis, Sarah; Cree, Angela J; Morgan, B Paul; Lotery, Andrew J
2013-08-01
To investigate whether modification of liver complement factor H (CFH) production, by alteration of liver CFH Y402H genotype through liver transplantation (LT), influences the development of age-related macular degeneration (AMD). Multicenter, cross-sectional study. We recruited 223 Western European patients ≥ 55 years old who had undergone LT ≥ 5 years previously. We determined AMD status using a standard grading system. Recipient CFH Y402H genotype was obtained from DNA extracted from recipient blood samples. Donor CFH Y402H genotype was inferred from recipient plasma CFH Y402H protein allotype, measured using enzyme-linked immunosorbent assays. This approach was verified by genotyping donor tissue from a subgroup of patients. Systemic complement activity was ascertained by measuring levels of plasma complement proteins using an enzyme-linked immunosorbent assay, including substrates (C3, C4), activation products (C3a, C4a, and terminal complement complex), and regulators (total CFH, C1 inhibitor). We evaluated AMD status and recipient and donor CFH Y402H genotype. In LT patients, AMD was associated with recipient CFH Y402H genotype (P = 0.036; odds ratio [OR], 1.6; 95% confidence interval [CI], 1.0-2.4) but not with donor CFH Y402H genotype (P = 0.626), after controlling for age, sex, smoking status, and body mass index. Recipient plasma CFH Y402H protein allotype predicted donor CFH Y402H genotype with 100% accuracy (n = 49). Plasma complement protein or activation product levels were similar in LT patients with and without AMD. Compared with previously reported prevalence figures (Rotterdam Study), LT patients demonstrated a high prevalence of both AMD (64.6% vs 37.1%; OR, 3.09; P<0.001) and the CFH Y402H sequence variation (41.9% vs 36.2%; OR, 1.27; P = 0.014). Presence of AMD is not associated with modification of hepatic CFH production. In addition, AMD is not associated with systemic complement activity in LT patients. These findings suggest that local intraocular complement activity is of greater importance in AMD pathogenesis. The high AMD prevalence observed in LT patients may be associated with the increased frequency of the CFH Y402H sequence variation. The authors have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breton, J.; Berger, G.; Nabedryk, E.
The photoreduction of the secondary quinone acceptor Q{sub B} in reaction centers (RCs) of the photosynthetic bacteria Rhodobacter sphaeroides and Rhodopseudomonas viridis has been investigated by light-induced FTIR difference spectroscopy of RCs reconstituted with several isotopically labeled ubiquinones. The labels used were {sup 18}O on both carbonyls and {sup 13}C either uniformly or selectively at the 1- or the 4-position, i.e., on either one of the two carbonyls. The Q{sub B}{sup {minus}}/Q{sub B} spectra of RCs reconstituted with the isotopically labeled and unlabeled quinones as well as the double differences calculated form these spectra exhibit distinct isotopic shifts for amore » numer of bands attributed to vibrations of Q{sub B} and Q{sub B}{sup {minus}}. The vibrational modes of the quinone in the Q{sub B} site are compared to those of ubiquinone in vitro, leading to band assignments for the C{double_bond}O and C{double_bond}C vibrations of the neutral Q{sub B} and for the C---O and C---C of the semiquinone. The C{double_bond}O frequency of each of the carbonyls of the unlabeled quinone is revealed at 1641 cm{sup {minus}1} for both species. This demonstrates symmetrical and weak hydrogen bonding of the two C{double_bond}O groups to the protein at the Q{sub B} site. In contrast, the C{double_bond}C vibrations are not equivalent for selective labeling at C{sub 1} or at C{sub 4}, although they both contribute to the {approximately}1611-cm{sup {minus}1} band in the Q{sub B}{sup {minus}}/Q{sub B} spectra of the two species. Compared to the vibrations of isolated ubiquinone, the C{double_bond}C mode of Q{sub B} does not involve displacement of the C{sub 4} carbon atom, while the motion of C{sub 1} is not hindered. Further analysis of the spectra suggests that the protein at the binding site imposes a specific constraint on the methoxy and/or the methyl group proximal to the C{sub 4} carbonyl. 49 refs., 5 figs.« less
Sexually divergent induction of microglial-associated neuroinflammation with hippocampal aging.
Mangold, Colleen A; Wronowski, Benjamin; Du, Mei; Masser, Dustin R; Hadad, Niran; Bixler, Georgina V; Brucklacher, Robert M; Ford, Matthew M; Sonntag, William E; Freeman, Willard M
2017-07-21
The necessity of including both males and females in molecular neuroscience research is now well understood. However, there is relatively limited basic biological data on brain sex differences across the lifespan despite the differences in age-related neurological dysfunction and disease between males and females. Whole genome gene expression of young (3 months), adult (12 months), and old (24 months) male and female C57BL6 mice hippocampus was analyzed. Subsequent bioinformatic analyses and confirmations of age-related changes and sex differences in hippocampal gene and protein expression were performed. Males and females demonstrate both common expression changes with aging and marked sex differences in the nature and magnitude of the aging responses. Age-related hippocampal induction of neuroinflammatory gene expression was sexually divergent and enriched for microglia-specific genes such as complement pathway components. Sexually divergent C1q protein expression was confirmed by immunoblotting and immunohistochemistry. Similar patterns of cortical sexually divergent gene expression were also evident. Additionally, inter-animal gene expression variability increased with aging in males, but not females. These findings demonstrate sexually divergent neuroinflammation with aging that may contribute to sex differences in age-related neurological diseases such as stroke and Alzheimer's, specifically in the complement system. The increased expression variability in males suggests a loss of fidelity in gene expression regulation with aging. These findings reveal a central role of sex in the transcriptomic response of the hippocampus to aging that warrants further, in depth, investigations.
Weinberger, Katherine; Collazo, Norberto; Aguillón, Juan Carlos; Molina, María Carmen; Rosas, Carlos; Peña, Jaime; Pizarro, Javier; Maldonado, Ismael; Cattan, Pedro E; Apt, Werner; Ferreira, Arturo
2017-02-08
Triatoma infestans is an important hematophagous vector of Chagas disease, a neglected chronic illness affecting approximately 6 million people in Latin America. Hematophagous insects possess several molecules in their saliva that counteract host defensive responses. Calreticulin (CRT), a multifunctional protein secreted in saliva, contributes to the feeding process in some insects. Human CRT (HuCRT) and Trypanosoma cruzi CRT (TcCRT) inhibit the classical pathway of complement activation, mainly by interacting through their central S domain with complement component C1. In previous studies, we have detected CRT in salivary gland extracts from T. infestans We have called this molecule TiCRT. Given that the S domain is responsible for C1 binding, we have tested its role in the classical pathway of complement activation in vertebrate blood. We have cloned and characterized the complete nucleotide sequence of CRT from T. infestans , and expressed its S domain. As expected, this S domain binds to human C1 and, as a consequence, it inhibits the classical pathway of complement, at its earliest stage of activation, namely the generation of C4b. Possibly, the presence of TiCRT in the salivary gland represents an evolutionary adaptation in hematophagous insects to control a potential activation of complement proteins, present in the massive blood meal that they ingest, with deleterious consequences at least on the anterior digestive tract of these insects. © The American Society of Tropical Medicine and Hygiene.
Pietrocola, Giampiero; Rindi, Simonetta; Rosini, Roberto; Buccato, Scilla; Speziale, Pietro; Margarit, Immaculada
2016-01-01
The group B Streptococcus (GBS) is a leading cause of neonatal invasive disease. GBS bacteria are surrounded by a thick capsular polysaccharide that is a potent inhibitor of complement deposition via the alternative pathway. Several of its surface molecules can however activate the classical and lectin complement pathways, rendering this species still vulnerable to phagocytic killing. In this study we have identified a novel secreted protein named complement interfering protein (CIP) that downregulates complement activation via the classical and lectin pathways, but not the alternative pathway. The CIP protein showed high affinity toward C4b and inhibited its interaction with C2, presumably preventing the formation of the C4bC2a convertase. Addition of recombinant CIP to GBS cip-negative bacteria resulted in decreased deposition of C3b on their surface and in diminished phagocytic killing in a whole-blood assay. Our data reveal a novel strategy exploited by GBS to counteract innate immunity and could be valuable for the development of anti-infective agents against this important pathogen. Copyright © 2015 by The American Association of Immunologists, Inc.
Caswell, Clayton C; Han, Runlin; Hovis, Kelley M; Ciborowski, Pawel; Keene, Douglas R; Marconi, Richard T; Lukomski, Slawomir
2008-02-01
Non-specific activation of the complement system is regulated by the plasma glycoprotein factor H (FH). Bacteria can avoid complement-mediated opsonization and phagocytosis through acquiring FH to the cell surface. Here, we characterize an interaction between the streptococcal collagen-like protein Scl1.6 of M6-type group A Streptococcus (GAS) and FH. Using affinity chromatography with immobilized recombinant Scl1.6 protein, we co-eluted human plasma proteins with molecular weight of 155 kDa, 43 kDa and 38 kDa. Mass spectrometry identified the 155 kDa band as FH and two other bands as isoforms of the FH-related protein-1. The identities of all three bands were confirmed by Western immunoblotting with specific antibodies. Structure-function relation studies determined that the globular domain of the Scl1.6 variant specifically binds FH while fused to collagenous tails of various lengths. This binding is not restricted to Scl1.6 as the phylogenetically linked Scl1.55 variant also binds FH. Functional analyses demonstrated the cofactor activity of the rScl1.6-bound FH for factor I-mediated cleavage of C3b. Finally, purified FH bound to the Scl1.6 protein present in the cell wall material obtained from M6-type GAS. In conclusion, we have identified a functional interaction between Scl1 and plasma FH, which may contribute to GAS evasion of complement-mediated opsonization and phagocytosis.
Olsson, Richard F; Hagelberg, Stefan; Schiller, Bodil; Ringdén, Olle; Truedsson, Lennart; Åhlin, Anders
2016-06-01
Human C1q deficiency is associated with systemic lupus erythematosus (SLE) and increased susceptibility to severe bacterial infections. These patients require extensive medical therapy and some develop treatment-resistant disease. Because C1q is produced by monocytes, it has been speculated that allogeneic hematopoietic stem cell transplantation (allo-HSCT) may cure this disorder. We have so far treated 5 patients with C1q deficiency. In 3 cases, SLE symptoms remained relatively mild after the start of medical therapy, but 2 patients developed treatment-resistant SLE, and we decided to pursue treatment with allo-HSCT. For this purpose, we chose a conditioning regimen composed of treosulfan (14 g/m) and fludarabine (30 mg/m) started on day -6 and given for 3 and 5 consecutive days, respectively. Thymoglobulin was given at a cumulative dose of 8 mg/kg, and graft-versus-host disease prophylaxis was composed of cyclosporine and methotrexate. A 9-year-old boy and a 12-year-old girl with refractory SLE restored C1q production after allo-HSCT. This resulted in normal functional properties of the classical complement pathway followed by reduced severity of SLE symptoms. The boy developed posttransplant lymphoproliferative disease, which resolved after treatment with rituximab and donor lymphocyte infusion. Unfortunately, donor lymphocyte infusion induced severe cortisone-resistant gastrointestinal graft-versus-host disease, and the patient died from multiple organ failure 4 months after transplantation. The girl is doing well 33 months after transplantation, and clinically, all signs of SLE have resolved. Allo-HSCT can cure SLE in human C1q deficiency and should be considered early in subjects resistant to medical therapy.
Byerly, Mardi S.; Petersen, Pia S.; Ramamurthy, Santosh; Seldin, Marcus M.; Lei, Xia; Provost, Elayne; Wei, Zhikui; Ronnett, Gabriele V.; Wong, G. William
2014-01-01
CTRP4 is a unique member of the C1q family, possessing two tandem globular C1q domains. Its physiological function is poorly defined. Here, we show that CTRP4 is an evolutionarily conserved, ∼34-kDa secretory protein expressed in the brain. In human, mouse, and zebrafish brain, CTRP4 expression begins early in development and is widespread in the central nervous system. Neurons, but not astrocytes, express and secrete CTRP4, and secreted proteins form higher-order oligomeric complexes. CTRP4 is also produced by peripheral tissues and circulates in blood. Its serum levels are increased in leptin-deficient obese (ob/ob) mice. Functional studies suggest that CTRP4 acts centrally to modulate energy metabolism. Refeeding following an overnight fast induced the expression of CTRP4 in the hypothalamus. Central administration of recombinant protein suppressed food intake and altered the whole-body energy balance in both chow-fed and high-fat diet-fed mice. Suppression of food intake by CTRP4 is correlated with a decreased expression of orexigenic neuropeptide (Npy and Agrp) genes in the hypothalamus. These results establish CTRP4 as a novel nutrient-responsive central regulator of food intake and energy balance. PMID:24366864
Semack, Ansley; Sandhu, Manbir; Malik, Rabia U; Vaidehi, Nagarajan; Sivaramakrishnan, Sivaraj
2016-08-19
Although the importance of the C terminus of the α subunit of the heterotrimeric G protein in G protein-coupled receptor (GPCR)-G protein pairing is well established, the structural basis of selective interactions remains unknown. Here, we combine live cell FRET-based measurements and molecular dynamics simulations of the interaction between the GPCR and a peptide derived from the C terminus of the Gα subunit (Gα peptide) to dissect the molecular mechanisms of G protein selectivity. We observe a direct link between Gα peptide binding and stabilization of the GPCR conformational ensemble. We find that cognate and non-cognate Gα peptides show deep and shallow binding, respectively, and in distinct orientations within the GPCR. Binding of the cognate Gα peptide stabilizes the agonist-bound GPCR conformational ensemble resulting in favorable binding energy and lower flexibility of the agonist-GPCR pair. We identify three hot spot residues (Gαs/Gαq-Gln-384/Leu-349, Gln-390/Glu-355, and Glu-392/Asn-357) that contribute to selective interactions between the β2-adrenergic receptor (β2-AR)-Gαs and V1A receptor (V1AR)-Gαq The Gαs and Gαq peptides adopt different orientations in β2-AR and V1AR, respectively. The β2-AR/Gαs peptide interface is dominated by electrostatic interactions, whereas the V1AR/Gαq peptide interactions are predominantly hydrophobic. Interestingly, our study reveals a role for both favorable and unfavorable interactions in G protein selection. Residue Glu-355 in Gαq prevents this peptide from interacting strongly with β2-AR. Mutagenesis to the Gαs counterpart (E355Q) imparts a cognate-like interaction. Overall, our study highlights the synergy in molecular dynamics and FRET-based approaches to dissect the structural basis of selective G protein interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Njoku, Dolores B.; Mellerson, Jenelle L.; Talor, Monica V.; Kerr, Douglas R.; Faraday, Nauder R.; Outschoorn, Ingrid; Rose, Noel R.
2006-01-01
Idiosyncratic drug-induced hepatitis (IDDIH) is the third most common cause for acute liver failure in the United States. Previous studies have attempted to identify susceptible patients or early stages of disease with various degrees of success. To determine if total serum immunoglobulin subclasses, CYP2E1-specific subclass autoantibodies, complement components, or immune complexes could distinguish persons with IDDIH from others exposed to drugs, we studied persons exposed to halogenated volatile anesthetics, which have been associated with IDDIH and CYP2E1 autoantibodies. We found that patients with anesthetic-induced IDDIH had significantly elevated levels of CYP2E1-specific immunoglobulin G4 (IgG4) autoantibodies, while anesthetic-exposed healthy persons had significantly elevated levels of CYP2E1-specific IgG1 autoantibodies. Anesthetic IDDIH patients had significantly lower levels of C4a, C3a, and C5a compared to anesthetic-exposed healthy persons. C1q- and C3d-containing immune complexes were significantly elevated in anesthetic-exposed persons. In conclusion, our data suggest that anesthetic-exposed persons develop CYP2E1-specific IgG1 autoantibodies which may form detectable circulating immune complexes subsequently cleared by classical pathway activation of the complement system. Persons susceptible to anesthetic-induced IDDIH develop CYP2E1-specific IgG4 autoantibodies which form small, nonprecipitating immune complexes that escape clearance because of their size or by direct inhibition of complement activation. PMID:16467335
Chen, MiaoMiao; Wu, Jianjun; Shi, Songshan; Chen, Yonglin; Wang, Huijun; Fan, Hongwei; Wang, Shunchun
2016-11-05
A homogenous water-soluble polysaccharide, DPSW-A, with a deduced chemical structure was extracted from the herb Taraxacum mongolicum Hand.-Mazz. Moreover, 80.813-kDa DPSW-A is composed of three types of monosaccharide, namely rhamnose, arabinose, and galactose, at a molar ratio of 1.0:10.7:11.9. The main chain of DPSW-A contains Terminal-Galp, 1,3-Galp, 1,6-Galp, 1,3,6-Galp, and 1,2,4-Rhap; the branched chain contains Terminal-Araf, 1,5-Araf, and 1,3,5-Araf. The sulfated derivatives prepared from DPSW-A showed inhibitory effects on complement activation through the classical pathway (CH50: Sul-DPSW-A, 3.94±0.43μg/mL; heparin, 104.40±3.82μg/mL) and alternative pathway (AP50: Sul-DPSW-A, 42.76±0.46μg/mL; heparin, 43.42±0.22μg/mL). Mechanism studies indicated that Sul-DPSW-A inhibited complement activation by blocking C1q, C1r, C1s, and C9, but not C2, C3, C4, and C5. In addition, Sul-DPSW-A displayed limited anticoagulant effects. These results suggest that Sul-DPSW-A prepared from DPSW-A is valuable for treating diseases caused by excessive complement system activation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Józsi, Mihály; Meri, Seppo
2014-01-01
Factor H-related proteins (CFHRs) are plasma glycoproteins related in structure and antigenicity to each other and to the complement inhibitory protein factor H. Such proteins are found in most mammals but their number and domain composition vary. This chapter summarizes our current knowledge on the human factor H-related proteins. In contrast to factor H, they have no strong complement inhibitory activity, although for some of them regulatory or complement modulatory activity has been reported. A common feature of CFHRs is that they bind to the C3b component of complement. Novel links between CFHRs and various diseases (C3 glomerulopathies, atypical hemolytic uremic syndrome and age-related macular degeneration) have been revealed in recent years, but we are still far from understanding their biological function.
1992-01-01
Serum mannose-binding protein (MBP) is a C-type lectin that binds to terminal mannose and N-acetylglucosamine moieties present on surfaces of certain pathogens and activates the classical complement pathway. In the present study, we describe the mechanism underlying the activation triggered by MBP. The human serum MBP fraction was obtained by sequential affinity chromatography on mannan-Sepharose, anti-IgM- Sepharose and anti-MBP-Sepharose in the presence of calcium ions. This fraction contained a C1s-like serine protease as assessed by C4 consumption. The C1s-like serine protease, designated MBP-associated serine protease (MASP), was separated from MBP by rechromatography on anti-MBP-Sepharose in the presence of ethylenediaminetetraacetic acid. MASP exhibited both C4- and C2-consuming activities. The molecular mass of MASP was estimated to be 83 kD with two polypeptides of heavy (66 kD) and light (L) (31 kD) chains linked by disulfide bonds. The serine residue responsible for protease activity is located on the L chain. Reconstitution experiments using MASP and MBP revealed that combination of the two components restores C4- and C2-activating capacity on mannan. Based on analyses of molecular size, antigenicity, and 11 NH2- terminal amino acid sequences of the L chain, we conclude that MASP is a novel protein different from C1r or C1s. Our findings are not in accord with a proposed mechanism by which MBP utilizes the C1r2-C1s2 complex to initiate the classical complement pathway. PMID:1460414
Butler, David C.; Messer, Anne
2011-01-01
Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by a trinucleotide (CAG)n repeat expansion in the coding sequence of the huntingtin gene, and an expanded polyglutamine (>37Q) tract in the protein. This results in misfolding and accumulation of huntingtin protein (htt), formation of neuronal intranuclear and cytoplasmic inclusions, and neuronal dysfunction/degeneration. Single-chain Fv antibodies (scFvs), expressed as intrabodies that bind htt and prevent aggregation, show promise as immunotherapeutics for HD. Intrastriatal delivery of anti-N-terminal htt scFv-C4 using an adeno-associated virus vector (AAV2/1) significantly reduces the size and number of aggregates in HDR6/1 transgenic mice; however, this protective effect diminishes with age and time after injection. We therefore explored enhancing intrabody efficacy via fusions to heterologous functional domains. Proteins containing a PEST motif are often targeted for proteasomal degradation and generally have a short half life. In ST14A cells, fusion of the C-terminal PEST region of mouse ornithine decarboxylase (mODC) to scFv-C4 reduces htt exon 1 protein fragments with 72 glutamine repeats (httex1-72Q) by ∼80–90% when compared to scFv-C4 alone. Proteasomal targeting was verified by either scrambling the mODC-PEST motif, or via proteasomal inhibition with epoxomicin. For these constructs, the proteasomal degradation of the scFv intrabody proteins themselves was reduced<25% by the addition of the mODC-PEST motif, with or without antigens. The remaining intrabody levels were amply sufficient to target N-terminal httex1-72Q protein fragment turnover. Critically, scFv-C4-PEST prevents aggregation and toxicity of httex1-72Q fragments at significantly lower doses than scFv-C4. Fusion of the mODC-PEST motif to intrabodies is a valuable general approach to specifically target toxic antigens to the proteasome for degradation. PMID:22216210
Mutation of Putative N-Glycosylation Sites on Dengue Virus NS4B Decreases RNA Replication.
Naik, Nenavath Gopal; Wu, Huey-Nan
2015-07-01
Dengue virus (DENV) nonstructural protein 4B (NS4B) is an endoplasmic reticulum (ER) membrane-associated protein, and mutagenesis studies have revealed its significance in viral genome replication. In this work, we demonstrated that NS4B is an N-glycosylated protein in virus-infected cells as well as in recombinant protein expression. NS4B is N glycosylated at residues 58 and 62 and exists in two forms, glycosylated and unglycosylated. We manipulated full-length infectious RNA clones and subgenomic replicons to generate N58Q, N62Q, and N58QN62Q mutants. Each of the single mutants had distinct effects, but the N58QN62Q mutation resulted in dramatic reduction of viral production efficiency without affecting secretion or infectivity of the virion in mammalian and mosquito C6/36 hosts. Real-time quantitative PCR (qPCR), subgenomic replicon, and trans-complementation assays indicated that the N58QN62Q mutation affected RNA replication possibly by the loss of glycans. In addition, four intragenic mutations (S59Y, S59F, T66A, and A137T) were obtained from mammalian and/or mosquito C6/36 cell culture systems. All of these second-site mutations compensated for the replication defect of the N58QN62Q mutant without creating novel glycosylation sites. In vivo protein stability analyses revealed that the N58QN62Q mutation alone or plus a compensatory mutation did not affect the stability of NS4B. Overall, our findings indicated that mutation of putative N-glycosylation sites affected the biological function of NS4B in the viral replication complex. This is the first report to identify and reveal the biological significance of dengue virus (DENV) nonstructural protein 4B (NS4B) posttranslation N-glycosylation to the virus life cycle. The study demonstrated that NS4B is N glycosylated in virus-infected cells and in recombinant protein expression. NS4B is modified by glycans at Asn-58 and Asn-62. Functional characterization implied that DENV NS4B utilizes the glycosylation machinery in both mammalian and mosquito hosts. Four intragenic mutations were found to compensate for replication and subsequent viral production deficiencies without creating novel N-glycosylation sites or modulating the stabilities of the protein, suggesting that glycans may be involved in maintaining the NS4B protein conformation. NS4B glycans may be necessary elements of the viral life cycle, but compensatory mutations can circumvent their requirement. This novel finding may have broader implications in flaviviral biology as the most likely glycan at Asn-62 of NS4B is conserved in DENV serotypes and in some related flaviviruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Luo, Shanshan; Hipler, Uta-Christina; Münzberg, Christin; Skerka, Christine; Zipfel, Peter F
2015-01-01
Candida albicans, the important human fungal pathogen uses multiple evasion strategies to control, modulate and inhibit host complement and innate immune attack. Clinical C. albicans strains vary in pathogenicity and in serum resistance, in this work we analyzed sequence polymorphisms and variations in the expression levels of two central fungal complement evasion proteins, Gpm1 (phosphoglycerate mutase 1) and Pra1 (pH-regulated antigen 1) in thirteen clinical C. albicans isolates. Four nucleotide (nt) exchanges, all representing synonymous exchanges, were identified within the 747-nt long GPM1 gene. For the 900-nt long PRA1 gene, sixteen nucleotide exchanges were identified, which represented synonymous, as well as non-synonymous exchanges. All thirteen clinical isolates had a homozygous exchange (A to G) at position 73 of the PRA1 gene. Surface levels of Gpm1 varied by 8.2, and Pra1 levels by 3.3 fold in thirteen tested isolates and these differences influenced fungal immune fitness. The high Gpm1/Pra1 expressing candida strains bound the three human immune regulators more efficiently, than the low expression strains. The difference was 44% for Factor H binding, 51% for C4BP binding and 23% for plasminogen binding. This higher Gpm1/Pra1 expressing strains result in enhanced survival upon challenge with complement active, Factor H depleted human serum (difference 40%). In addition adhesion to and infection of human endothelial cells was increased (difference 60%), and C3b surface deposition was less effective (difference 27%). Thus, variable expression levels of central immune evasion protein influences immune fitness of the human fungal pathogen C. albicans and thus contribute to fungal virulence.
Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture.
Mauceri, Daniela; Hagenston, Anna M; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar
2015-09-18
Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA.
Thomas, K A; Valenzuela, N M; Gjertson, D; Mulder, A; Fishbein, M C; Parry, G C; Panicker, S; Reed, E F
2015-08-01
Antibody-mediated rejection (AMR) of solid organ transplants (SOT) is characterized by damage triggered by donor-specific antibodies (DSA) binding donor Class I and II HLA (HLA-I and HLA-II) expressed on endothelial cells. While F(ab')2 portions of DSA cause cellular activation and proliferation, Fc regions activate the classical complement cascade, resulting in complement deposition and leukocyte recruitment, both hallmark features of AMR. We characterized the ability of an anti-C1s monoclonal antibody, TNT003, to inhibit HLA antibody (HLA-Ab)-induced complement activation. Complement deposition induced by HLA-Ab was evaluated using novel cell- and bead-based assays. Human aortic endothelial cells (HAEC) were cultured with HLA-Ab and human complement; production of activated complement proteins was measured by flow cytometry. Additionally, C3d deposition was measured on single antigen beads (SAB) mixed with HLA-Ab and human complement. TNT003 inhibited HLA-Ab mediated complement deposition on HAEC in a concentration-dependent manner; C3a, C4a and C5a anaphylatoxin production was also diminished by TNT003. Finally, TNT003 blocked C3d deposition induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-specific antibodies on SAB. These data suggest TNT003 may be useful for modulating the effects of DSA, as TNT003 inhibits complement deposition and split product formation generated by HLA-I/II-Ab in vitro. © 2015 The Authors. American Journal of Transplantation Published by Wiley Periodicals, Inc.
An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA
Thomas, K A; Valenzuela, N M; Gjertson, D; Mulder, A; Fishbein, M C; Parry, G C; Panicker, S; Reed, E F
2015-01-01
Antibody-mediated rejection (AMR) of solid organ transplants (SOT) is characterized by damage triggered by donor-specific antibodies (DSA) binding donor Class I and II HLA (HLA-I and HLA-II) expressed on endothelial cells. While F(ab′)2 portions of DSA cause cellular activation and proliferation, Fc regions activate the classical complement cascade, resulting in complement deposition and leukocyte recruitment, both hallmark features of AMR. We characterized the ability of an anti-C1s monoclonal antibody, TNT003, to inhibit HLA antibody (HLA-Ab)-induced complement activation. Complement deposition induced by HLA-Ab was evaluated using novel cell- and bead-based assays. Human aortic endothelial cells (HAEC) were cultured with HLA-Ab and human complement; production of activated complement proteins was measured by flow cytometry. Additionally, C3d deposition was measured on single antigen beads (SAB) mixed with HLA-Ab and human complement. TNT003 inhibited HLA-Ab mediated complement deposition on HAEC in a concentration-dependent manner; C3a, C4a and C5a anaphylatoxin production was also diminished by TNT003. Finally, TNT003 blocked C3d deposition induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-specific antibodies on SAB. These data suggest TNT003 may be useful for modulating the effects of DSA, as TNT003 inhibits complement deposition and split product formation generated by HLA-I/II-Ab in vitro. PMID:25904443
Engberg, Anna E; Nilsson, Per H; Huang, Shan; Fromell, Karin; Hamad, Osama A; Mollnes, Tom Eirik; Rosengren-Holmberg, Jenny P; Sandholm, Kerstin; Teramura, Yuji; Nicholls, Ian A; Nilsson, Bo; Ekdahl, Kristina N
2015-01-01
Inappropriate complement activation is often responsible for incompatibility reactions that occur when biomaterials are used. Complement activation is therefore a criterion included in legislation regarding biomaterials testing. However, no consensus is yet available regarding appropriate complement-activation-related test parameters. We examined protein adsorption in plasma and complement activation/cytokine release in whole blood incubated with well-characterized polymers. Strong correlations were found between the ratio of C4 to its inhibitor C4BP and generation of 10 (mainly pro-inflammatory) cytokines, including IL-17, IFN-γ, and IL-6. The levels of complement activation products correlated weakly (C3a) or not at all (C5a, sC5b-9), confirming their poor predictive values. We have demonstrated a direct correlation between downstream biological effects and the proteins initially adhering to an artificial surface after contact with blood. Consequently, we propose the C4/C4BP ratio as a robust, predictor of biocompatibility with superior specificity and sensitivity over the current gold standard. Copyright © 2014 Elsevier Ltd. All rights reserved.
Griffiths, Mark R; Gasque, Philippe; Neal, James W
2009-03-01
Central nervous system (CNS) tissues contain cells (i.e. glia and neurons) that have innate immune functions. These cells express a range of receptors that are capable of detecting and clearing apoptotic cells and regulating inflammatory responses. Phagocytosis of apoptotic cells is a nonphlogistic (i.e. noninflammatory) process that provides immune regulation through anti-inflammatory cytokines andregulatory T cells. Neurons and glia express cellular death signals, including CD95Fas/CD95L, FasL, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor receptor 1 (TNFR), through which they can trigger apoptosis in T cells and other infiltrating cells. Microglia, astrocytes, ependymal cells, and neurons express defense collagens and scavenger and phagocytic receptors that recognize apoptotic cells displaying apoptotic cell-associated molecular patterns, which serve as markers of "altered self." Glia also express pentraxins and complement proteins (C1q, C3b, and iC3b) that opsonize apoptotic cells, making them targets for the phagocytic receptors CR3 and CR4. Immunoregulatory molecules such as the complement regulator CD46 are lost from apoptotic cells and stimulate phagocytosis, whereas the expression of CD47 and CD200 is upregulated during apoptosis; this inhibits proinflammatory microglial cytokine expression, thereby reducing the severity of inflammation. This review outlines the cellular pathways used for the detection and phagocytosis of apoptotic cells in vitro and in experimental models of CNS inflammation.
Lee, Juhan; Park, Borae G.; Jeong, Hyang Sook; Park, Youn Hee; Kim, Sinyoung; Kim, Beom Seok; Kim, Hye Jin; Huh, Kyu Ha; Jeong, Hyeon Joo; Kim, Yu Seun
2017-01-01
Abstract Rationale: Human leukocyte antigen (HLA) is the major immunologic barrier in kidney transplantation (KT). Various desensitization protocols to overcome the HLA barrier have increased the opportunity for transplantation in sensitized patients. In addition, technological advances in solid-phase assays have permitted more comprehensive assessment of donor-specific antibodies. Although various desensitization therapies and immunologic techniques have been developed, the final transplantation decision is still based on the classic complement-dependent cytotoxicity (CDC) crossmatch (XM) technique. Some patients who fail to achieve negative XM have lost their transplant opportunities, even after receiving sufficient desensitization therapies. Patient concerns: A 57-year-old male with end-stage renal disease secondary to chronic glomerulonephritis was scheduled to have a second transplant from his son, but CDC XM was positive. Diagnoses: Initial CDC XM (Initial T-AHG 1:32) and flow-cytometry XM were positive. Anti-HLA-B59 donor specific antibody was detected by Luminex single antigen assay. Interventions: Herein, we report a successful case of KT across a positive CDC XM (T-AHG 1:8 at the time of transplantation) by using C1q assay-directed, bortezomib-assisted desensitization. After confirming a negative conversion in the C1q donor-specific antibody, we decided to perform KT accepting a positive AHG-CDC XM of 1:8 at the time of transplantation. Outcomes: The posttransplant course was uneventful and a protocol biopsy at 3 months showed no evidence of rejection. The patient had excellent graft function at 12 months posttransplant. Lessons: The results of XM test and solid-phase assay should be interpreted in the context of the individual patient. PMID:28953652
Lee, Juhan; Park, Borae G; Jeong, Hyang Sook; Park, Youn Hee; Kim, Sinyoung; Kim, Beom Seok; Kim, Hye Jin; Huh, Kyu Ha; Jeong, Hyeon Joo; Kim, Yu Seun
2017-09-01
Human leukocyte antigen (HLA) is the major immunologic barrier in kidney transplantation (KT). Various desensitization protocols to overcome the HLA barrier have increased the opportunity for transplantation in sensitized patients. In addition, technological advances in solid-phase assays have permitted more comprehensive assessment of donor-specific antibodies. Although various desensitization therapies and immunologic techniques have been developed, the final transplantation decision is still based on the classic complement-dependent cytotoxicity (CDC) crossmatch (XM) technique. Some patients who fail to achieve negative XM have lost their transplant opportunities, even after receiving sufficient desensitization therapies. A 57-year-old male with end-stage renal disease secondary to chronic glomerulonephritis was scheduled to have a second transplant from his son, but CDC XM was positive. Initial CDC XM (Initial T-AHG 1:32) and flow-cytometry XM were positive. Anti-HLA-B59 donor specific antibody was detected by Luminex single antigen assay. Herein, we report a successful case of KT across a positive CDC XM (T-AHG 1:8 at the time of transplantation) by using C1q assay-directed, bortezomib-assisted desensitization. After confirming a negative conversion in the C1q donor-specific antibody, we decided to perform KT accepting a positive AHG-CDC XM of 1:8 at the time of transplantation. The posttransplant course was uneventful and a protocol biopsy at 3 months showed no evidence of rejection. The patient had excellent graft function at 12 months posttransplant. The results of XM test and solid-phase assay should be interpreted in the context of the individual patient.
In vitro C3 Deposition on Cryptococcus Capsule Occurs Via Multiple Complement Activation Pathways
Mershon-Shier, Kileen L.; Vasuthasawat, Alex; Takahashi, Kazue; Morrison, Sherie L.; Beenhouwer, David O.
2011-01-01
Complement can be activated via three pathways: classical, alternative, and lectin. Cryptococcus gattii and C. neoformans are closely related fungal pathogens possessing a polysaccharide capsule composed mainly of glucuronoxylomannan (GXM), which serves as a site for complement activation and deposition of complement components. We determined C3 deposition on Cryptococcus spp. by flow cytometry and confocal microscopy after incubation with serum from C57BL/6J mice as well as mice deficient in complement components C4, C3, factor B, and mannose binding lectin (MBL). C. gattii and C. neoformans activate complement in EGTA-treated serum indicating that they can activate the alternative pathway. However, complement activation was seen with factor B−/− serum suggesting activation could also take place in the absence of a functional alternative pathway. Furthermore, we uncovered a role for C4 in the alternative pathway activation by Cryptococcus spp. We also identified an unexpected and complex role for MBL in complement activation by Cryptococcus spp. No complement activation occurred in the absence of MBL-A and -C proteins although activation took place when the lectin binding activity of MBL was disrupted by calcium chelation. In addition, alternative pathway activation by C. neoformans required both MBL-A and -C, while either MBL-A or -C was sufficient for alternative pathway activation by C. gattii. Thus, complement activation by Cryptococcus spp. can take place through multiple pathways and complement activation via the alternative pathway requires the presence of C4 and MBL proteins. PMID:21723612
Battelle, Barbara-Anne; Kempler, Karen E; Parker, Alexander K; Gaddie, Cristina D
2013-05-15
Dark and light adaptation in photoreceptors involve multiple processes including those that change protein concentrations at photosensitive membranes. Light- and dark-adaptive changes in protein levels at rhabdoms have been described in detail in white-eyed Drosophila maintained under artificial light. Here we tested whether protein levels at rhabdoms change significantly in the highly pigmented lateral eyes of wild-caught Limulus polyphemus maintained in natural diurnal illumination and whether these changes are under circadian control. We found that rhabdomeral levels of opsins (Ops1-2), the G protein activated by rhodopsin (G(q)α) and arrestin change significantly from day to night and that nighttime levels of each protein at rhabdoms are significantly influenced by signals from the animal's central circadian clock. Clock input at night increases Ops1-2 and G(q)α and decreases arrestin levels at rhabdoms. Clock input is also required for a rapid decrease in rhabdomeral Ops1-2 beginning at sunrise. We found further that dark adaptation during the day and the night are not equivalent. During daytime dark adaptation, when clock input is silent, the increase of Ops1-2 at rhabdoms is small and G(q)α levels do not increase. However, increases in Ops1-2 and G(q)α at rhabdoms are enhanced during daytime dark adaptation by treatments that elevate cAMP in photoreceptors, suggesting that the clock influences dark-adaptive increases in Ops1-2 and G(q)α at Limulus rhabdoms by activating cAMP-dependent processes. The circadian regulation of Ops1-2 and G(q)α levels at rhabdoms probably has a dual role: to increase retinal sensitivity at night and to protect photoreceptors from light damage during the day.
Raj, Kritika; Sarkar, Surajit
2017-05-01
Polyglutamine (poly(Q)) disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, represent a group of neurological disorders which arise due to an atypically expanded poly(Q) tract in the coding region of the affected gene. Pathogenesis of these disorders inside the cells begins with the assembly of these mutant proteins in the form of insoluble inclusion bodies (IBs), which progressively sequester several vital cellular transcription factors and other essential proteins, and finally leads to neuronal dysfunction and apoptosis. We have shown earlier that targeted upregulation of Drosophila myc (dmyc) dominantly suppresses the poly(Q) toxicity in Drosophila. The present study examines the ability of the human c-myc proto-oncogene and also identifies the specific c-Myc isoform which drives the mitigation of poly(Q)-mediated neurotoxicity, so that it could be further substantiated as a potential drug target. We report for the first time that similar to dmyc, tissue-specific induced expression of human c-myc also suppresses poly(Q)-mediated neurotoxicity by an analogous mechanism. Among the three isoforms of c-Myc, the rescue potential was maximally manifested by the full-length c-Myc2 protein, followed by c-Myc1, but not by c-MycS which lacks the transactivation domain. Our study suggests that strategies focussing on the transactivation domain of c-Myc could be a very useful approach to design novel drug molecules against poly(Q) disorders.
Immune complexes and Ross River virus disease (epidemic polyarthritis).
Fraser, J R; Cunningham, A L; Mathews, J D; Riglar, A
1988-01-01
Immune complexes were sought in serum and synovial fluid in Ross River virus disease (epidemic polyarthritis). Multiple samples from 15 patients showing varied degrees of disease activity over a 3 month period were analysed for their content of complement components C3 and C4, and for C1q solid-phase and Raji cell binding activity. Levels of C3 and C1q binding activity were normal. C4 and Raji cell binding activity were normal except for three high levels of Raji cell binding, of which two were accompanied by low levels of C4, with normal C3 and C1q binding. Synovial fluid showed anomalous Raji cell reactivity of uncertain significance. Conglutinin solid-phase binding activity and IgG rheumatoid factor were compared in the serum of 20 patients during active disease and after recovery. The results were identical and within the normal range in both phases. One patient developed IgM rheumatoid factor in a low titre late in his illness. Although these findings do not entirely exclude a role for immune complexes formed at the onset in the circulation or tissues, it is concluded from this and other evidence that circulating complexes are not commonly responsible for the persistence of syndromes in this disease.
Yang, Q; Borkovich, K A
1999-01-01
Heterotrimeric G proteins, consisting of alpha, beta, and gamma subunits, transduce environmental signals through coupling to plasma membrane-localized receptors. We previously reported that the filamentous fungus Neurospora crassa possesses a Galpha protein, GNA-1, that is a member of the Galphai superfamily. Deletion of gna-1 leads to defects in apical extension, differentiation of asexual spores, sensitivity to hyperosmotic media, and female fertility. In addition, Deltagna-1 strains have lower intracellular cAMP levels under conditions that promote morphological abnormalities. To further define the function of GNA-1 in signal transduction in N. crassa, we examined properties of strains with mutationally activated gna-1 alleles (R178C or Q204L) as the only source of GNA-1 protein. These mutations are predicted to inhibit the GTPase activity of GNA-1 and lead to constitutive signaling. In the sexual cycle, gna-1(R178C) and gna-1(Q204L) strains are female-fertile, but produce fewer and larger perithecia than wild type. During asexual development, gna-1(R178C) and gna-1(Q204L) strains elaborate abundant, long aerial hyphae, produce less conidia, and possess lower levels of carotenoid pigments in comparison to wild-type controls. Furthermore, gna-1(R178C) and gna-1(Q204L) strains are more sensitive to heat shock and exposure to hydrogen peroxide than wild-type strains, while Deltagna-1 mutants are more resistant. In contrast to Deltagna-1 mutants, gna-1(R178C) and gna-1(Q204L) strains have higher steady-state levels of cAMP than wild type. The results suggest that GNA-1 possesses several Gbetagamma-independent functions in N. crassa. We propose that GNA-1 mediates signal transduction pathway(s) that regulate aerial hyphae development and sensitivity to heat and oxidative stresses, possibly through modulation of cAMP levels. PMID:9872952
Wu, Weiqing; Liu, Yang; Zhou, Qinghua; Wang, Qin; Luo, Fuwei; Xu, Zhiyong; Geng, Qian; Li, Peining; Zhang, Hui Z; Xie, Jiansheng
2017-07-01
Fanconi Anemia (FA) is a rare genetically heterogeneous disorder with 17 known complement groups caused by mutations in different genes. FA complementation group L (FA-L, OMIM #608111) occurred in 0.2% of all FA and only eight mutant variants in the FANCL gene were documented. Phenotype and genotype correlation in FANCL associated FA is still obscure. Here we describe a Chinese girl with FA-L caused by a novel homozygous mutation c.822_823insCTTTCAGG (p.Asp275LeufsX13) in the FANCL gene. The patient's clinical course was typical for FA with progression to bone marrow failure, and death from acute myelomonocytic leukemia (AML-M4) at 9 years of age. Mutation analysis also detected a likely somatic c.2608G > A (p.Gly870Ser) in the SETBP1 gene. Consistent copy number losses of 7q and 18p and gains of 3q and 21q and accumulated non-clonal single cell chromosomal abnormalities were detected in blood leukocytes as her FA progressed. This is the first Chinese FA-L case caused by a novel FANCL mutation. The somatic gene mutation and copy number aberrations could be used to monitor disease progression and the clinical findings provide further information for genotype-phenotype correlation for FA-L. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Complement in autoimmune diseases.
Vignesh, Pandiarajan; Rawat, Amit; Sharma, Madhubala; Singh, Surjit
2017-02-01
The complement system is an ancient and evolutionary conserved element of the innate immune mechanism. It comprises of more than 20 serum proteins most of which are synthesized in the liver. These proteins are synthesized as inactive precursor proteins which are activated by appropriate stimuli. The activated forms of these proteins act as proteases and cleave other components successively in amplification pathways leading to exponential generation of final effectors. Three major pathways of complement pathways have been described, namely the classical, alternative and lectin pathways which are activated by different stimuli. However, all the 3 pathways converge on Complement C3. Cleavage of C3 and C5 successively leads to the production of the membrane attack complex which is final common effector. Excessive and uncontrolled activation of the complement has been implicated in the host of autoimmune diseases. But the complement has also been bemusedly described as the proverbial "double edged sword". On one hand, complement is the final effector of tissue injury in autoimmune diseases and on the other, deficiencies of some components of the complement can result in autoimmune diseases. Currently available tools such as enzyme based immunoassays for functional assessment of complement pathways, flow cytometry, next generation sequencing and proteomics-based approaches provide an exciting opportunity to study this ancient yet mysterious element of innate immunity. Copyright © 2017 Elsevier B.V. All rights reserved.
Zinc induces exposure of hydrophobic sites in the C-terminal domain of gC1q-R/p33.
Kumar, Rajeev; Peerschke, Ellinor I B; Ghebrehiwet, Berhane
2002-09-01
Endothelial cells and platelets are known to express gC1q-R on their surface. In addition to C1q, endothelial cell gC1q-R has been shown to bind high molecular weight kininogen (HK) and factor XII (FXII). However, unlike C1q, whose interaction with gC1q-R does not require divalent ions, the binding of HK to gC1q-R is absolutely dependent on the presence of zinc. However, the mechanism by which zinc modulates this interaction is not fully understood. To investigate the role of zinc, binding studies were done using the hydrophobic dye, bis-ANS. The fluorescence intensity of bis-ANS, greatly increases and the emission maximum is blue-shifted from 525 to 485nm upon binding to hydrophobic sites on proteins. In this report, we show that a blue-shift in emission maximum is also observed when bis-ANS binds to gC1q-R in the presence but not in the absence of zinc suggesting that zinc induces exposure of hydrophobic sites in the molecule. The binding of bis-ANS to gC1q-R is specific, dose-dependent, and reversible. In the presence of zinc, this binding is abrogated by monoclonal antibody 74.5.2 directed against gC1q-R residues 204-218. This segment of gC1q-R, which corresponds to the beta6 strand in the crystal structure, has been shown previously to be the binding site for HK. A similar trend in zinc-induced gC1q-R binding was also observed using the hydrophobic matrix octyl-Sepharose. Taken together, our data suggest that zinc can induce the exposure of hydrophobic sites in the C-terminal domain of gC1q-R involved in binding to HK/FXII.
Goodrum, K J
1987-01-01
Complement levels and complement activation are key determinants in streptococcus-induced inflammatory responses. Activation of macrophage functions, such as complement synthesis, by group B streptococci (GBS) was examined as a possible component of GBS-induced chronic inflammation. Using an enzyme-linked immunosorbent assay, secreted C3 from mouse macrophagelike cell lines (PU5-1.8 and J774A.1) was monitored after cultivation with GBS. Whole, heat-killed GBS (1 to 10 CFU per macrophage) of both type Ia and III strains induced 25 to 300% increases in secreted C3 in both cell lines after a 24-h cultivation. GBS-treated cell lines exhibited increases in secreted lysozyme (10%) and in cellular protein (25 to 50%). Inhibition of macrophage phagocytosis by cytochalasin B inhibited GBS stimulation of C3. Purified cell walls of GBS type III strain 603-79 (1 to 10 micrograms/ml) also enhanced C3 synthesis. Local enhancement of macrophage C3 production by ingested streptococci or by persistent cell wall antigens may serve to promote chronic inflammatory responses. PMID:3552987
Herrera, Alvaro I; Ploscariu, Nicoleta T; Geisbrecht, Brian V; Prakash, Om
2018-04-01
Staphylococcus aureus is a widespread and persistent pathogen of humans and livestock. The bacterium expresses a wide variety of virulence proteins, many of which serve to disrupt the host's innate immune system from recognizing and clearing bacteria with optimal efficiency. The extracellular adherence protein (Eap) is a multidomain protein that participates in various protein-protein interactions that inhibit the innate immune response, including both the complement system (Woehl et al in J Immunol 193:6161-6171, 2014) and Neutrophil Serine Proteases (NSPs) (Stapels et al in Proc Natl Acad Sci USA 111:13187-13192, 2014). The third domain of Eap, Eap3, is an ~ 11 kDa protein that was recently shown to bind complement component C4b (Woehl et al in Protein Sci 26:1595-1608, 2017) and therefore play an essential role in inhibiting the classical and lectin pathways of complement (Woehl et al in J Immunol 193:6161-6171, 2014). Since structural characterization of Eap3 is still incomplete, we acquired a series of 2D and 3D NMR spectra of Eap3 in solution. Here we report the backbone and side-chain 1 H, 15 N, and 13 C resonance assignments of Eap3 and its predicted secondary structure via the TALOS-N server. The assignment data have been deposited in the BMRB data bank under accession number 27087.
Contractor, Tanupriya; Kobayashi, Shinta; da Silva, Edaise; Clausen, Richard; Chan, Chang; Vosburgh, Evan; Tang, Laura H; Levine, Arnold J; Harris, Chris R
2016-05-24
In a mouse model for neuroendocrine tumors of the pancreas (PanNETs), liver metastasis occurred at a higher frequency in males. Male mice also had higher serum and intratumoral levels of the innate immunity protein complement C5. In mice that lost the ability to express complement C5, there was a lower frequency of metastasis, and males no longer had a higher frequency of metastasis than females. Treatment with PMX53, a small molecule antagonist of C5aR1/CD88, the receptor for complement C5a, also reduced metastasis. Mice lacking a functional gene for complement C5 had smaller primary tumors, which were less invasive and lacked the CD68+ macrophages that have previously been associated with metastasis in this type of tumor. This is the first report of a gene that causes sexual dimorphism of metastasis in a mouse model. In the human disease, which also shows sexual dimorphism for metastasis, clinically advanced tumors expressed more complement C5 than less advanced tumors.
van der Maten, Erika; van den Broek, Bryan; de Jonge, Marien I; Rensen, Kim J W; Eleveld, Marc J; Zomer, Aldert L; Cremers, Amelieke J H; Ferwerda, Gerben; de Groot, Ronald; Langereis, Jeroen D; van der Flier, Michiel
2018-04-01
The pneumococcal capsular serotype is an important determinant of complement resistance and invasive disease potential, but other virulence factors have also been found to contribute. Pneumococcal surface protein C (PspC), a highly variable virulence protein that binds complement factor H to evade C3 opsonization, is divided into two subgroups: choline-bound subgroup I and LPxTG-anchored subgroup II. The prevalence of different PspC subgroups in invasive pneumococcal disease (IPD) and functional differences in complement evasion are unknown. The prevalence of PspC subgroups in IPD isolates was determined in a collection of 349 sequenced strains of Streptococcus pneumoniae isolated from adult patients. pspC deletion mutants and isogenic pspC switch mutants were constructed to study differences in factor H binding and complement evasion in relation to capsule thickness. Subgroup I pspC was far more prevalent in IPD isolates than subgroup II pspC The presence of capsule was associated with a greater ability of bound factor H to reduce complement opsonization. Pneumococcal subgroup I PspC bound significantly more factor H and showed more effective complement evasion than subgroup II PspC in isogenic encapsulated pneumococci. We conclude that variation in the PspC subgroups, independent of capsule serotypes, affects pneumococcal factor H binding and its ability to evade complement deposition. Copyright © 2018 American Society for Microbiology.
Mulvihill, Eoin D.; Moloney, Nicola M.; Owens, Rebecca A.; Dolan, Stephen K.; Russell, Lauren; Doyle, Sean
2017-01-01
The functionality of many microsome-associated proteins which exhibit altered abundance in response to iron limitation in Aspergillus fumigatus is unknown. Here, we generate and characterize eight gene deletion strains, and of most significance reveal that MirC (AFUA_2G05730) contributes to the maintenance of intracellular siderophore [ferricrocin (FC)] levels, augments conidiation, confers protection against oxidative stress, exhibits an intracellular localization and contributes to fungal virulence in the Galleria mellonella animal model system. FC levels were unaffected following deletion of all other genes encoding microsome-associated proteins. MirC does not appear to play a role in either siderophore export from, or uptake into, A. fumigatus. Label-free quantitative proteomic analysis unexpectedly revealed increased abundance of siderophore biosynthetic enzymes. In addition, increased expression of hapX (7.2 and 13.8-fold at 48 and 72 h, respectively; p < 0.001) was observed in ΔmirC compared to wild-type under iron-replete conditions by qRT-PCR. This was complemented by significantly elevated extracellular triacetylfusarinine C (TAFC; p < 0.01) and fusarinine C (FSC; p < 0.05) siderophore secretion. We conclude that MirC plays an important role in FC biosynthesis and contributes to the maintenance of iron homeostasis in A. fumigatus. PMID:28367141
Novel Scabies Mite Serpins Inhibit the Three Pathways of the Human Complement System
Mika, Angela; Reynolds, Simone L.; Mohlin, Frida C.; Willis, Charlene; Swe, Pearl M.; Pickering, Darren A.; Halilovic, Vanja; Wijeyewickrema, Lakshmi C.; Pike, Robert N.; Blom, Anna M.; Kemp, David J.; Fischer, Katja
2012-01-01
Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement-mediated gut damage. PMID:22792350
Huebner, K; Druck, T; Croce, C M; Thiesen, H J
1991-01-01
cDNA clones encoding zinc finger structures were isolated by screening Molt4 and Jurkat cDNA libraries with zinc finger consensus sequences. Candidate clones were partially sequenced to verify the presence of zinc finger-encoding regions; nonoverlapping cDNA clones were chosen on the basis of sequences and genomic hybridization pattern. Zinc finger structure-encoding clones, which were designated by the term "Kox" and a number from 1 to 32 and which were apparently unique (i.e., distinct from each other and distinct from those isolated by other laboratories), were chosen for mapping in the human genome. DNAs from rodent-human somatic cell hybrids retaining defined complements of human chromosomes were analyzed for the presence of each of the Kox genes. Correlation between the presence of specific human chromosome regions and specific Kox genes established the chromosomal locations. Multiple Kox loci were mapped to 7q (Kox 18 and 25 and a locus detected by both Kox 8 cDNA and Kox 27 cDNA), 8q24 5' to the myc locus (Kox 9 and 32), 10cen----q24 (Kox 2, 15, 19, 21, 30, and 31), 12q13-qter (Kox 1 and 20), 17p13 (Kox 11 and 26), and 19q (Kox 5, 6, 10, 22, 24, and 28). Single Kox loci were mapped to 7p22 (Kox 3), 18q12 (Kox 17), 19p (Kox 13), 22q11 between IG lambda and BCR-1 (locus detected by both Kox 8 cDNA and Kox 27 cDNA), and Xp (Kox 14). Several of the Kox loci map to regions in which other zinc finger structure-encoding loci have already been localized, indicating possible zinc finger gene clusters. In addition, Kox genes at 8q24, 17p13, and 22q11--and perhaps other Kox genes--are located near recurrent chromosomal translocation breakpoints. Others, such as those on 7p and 7q, may be near regions specifically active in T cells. Images Figure 4 Figure 5 Figure 2 Figure 3 PMID:2014798
Persistent complement activation on tumor cells in breast cancer.
Niculescu, F.; Rus, H. G.; Retegan, M.; Vlaicu, R.
1992-01-01
The neoantigens of the C5b-9 complement complex, IgG, C3, C4, S-protein/vitronectin, fibronectin, and macrophages were localized on 17 samples of breast cancer and on 6 samples of benign breast tumors using polyclonal or monoclonal antibodies and the streptavidin-biotin-peroxidase technique. All the tissue samples with carcinoma in each the TNM stages presented C5b-9 deposits on the membranes of tumor cells, thin granules on cell remnants, and diffuse deposits in the necrotic areas. When chemotherapy and radiation therapy preceded surgery, C5b-9 deposits were more intense and extended. The C5b-9 deposits were absent in all the samples with benign lesions. S-protein/vitronectin was present as fibrillar deposits in the connective tissue matrix and as diffuse deposits around the tumor cells, less intense and extended than fibronectin. IgG, C3, and C4 deposits were present only in carcinoma samples. The presence of C5b-9 deposits is indicative of complement activation and its subsequent pathogenetic effects in breast cancer. Images Figure 1 PMID:1374587
Hamad, Islam; Al-Hanbali, Othman; Hunter, A Christy; Rutt, Kenneth J; Andresen, Thomas L; Moghimi, S Moein
2010-11-23
Nanoparticles with surface projected polyethyleneoxide (PEO) chains in "mushroom-brush" and "brush" configurations display stealth properties in systemic circulation and have numerous applications in site-specific targeting for controlled drug delivery and release as well as diagnostic imaging. We report on the "structure-activity" relationship pertaining to surface-immobilized PEO of various configurations on model nanoparticles, and the initiation of complement cascade, which is the most ancient component of innate human immunity, and its activation may induce clinically significant adverse reactions in some individuals. Conformational states of surface-projected PEO chains, arising from the block copolymer poloxamine 908 adsorption, on polystyrene nanoparticles trigger complement activation differently. Alteration of copolymer architecture on nanospheres from mushroom to brush configuration not only switches complement activation from C1q-dependent classical to lectin pathway but also reduces the level of generated complement activation products C4d, Bb, C5a, and SC5b-9. Also, changes in adsorbed polymer configuration trigger alternative pathway activation differently and through different initiators. Notably, the role for properdin-mediated activation of alternative pathway was only restricted to particles displaying PEO chains in a transition mushroom-brush configuration. Since nanoparticle-mediated complement activation is of clinical concern, our findings provide a rational basis for improved surface engineering and design of immunologically safer stealth and targetable nanosystems with polymers for use in clinical medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Norie; Department of Neurology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556; Kamiguchi, Kenjiro
Polyglutamine (polyQ) diseases comprise neurodegenerative disorders caused by expression of expanded polyQ-containing proteins. The cytotoxicity of the expanded polyQ-containing proteins is closely associated with aggregate formation. In this study, we report that a novel J-protein, DNAJ (HSP40) Homolog, Subfamily C, Member 8 (DNAJC8), suppresses the aggregation of polyQ-containing protein in a cellular model of spinocerebellar ataxia type 3 (SCA3), which is also known as Machado-Joseph disease. Overexpression of DNAJC8 in SH-SY5Y neuroblastoma cells significantly reduced the polyQ aggregation and apoptosis, and DNAJC8 was co-localized with the polyQ aggregation in the cell nucleus. Deletion mutants of DNAJC8 revealed that the C-terminalmore » domain of DNAJC8 was essential for the suppression of polyQ aggregation, whereas the J-domain was dispensable. Furthermore, 22-mer oligopeptide derived from C-termilal domain could suppress the polyQ aggregation. These results indicate that DNAJC8 can suppress the polyQ aggregation via a distinct mechanism independent of HSP70-based chaperone machinery and have a unique protective role against the aggregation of expanded polyQ-containing proteins such as pathogenic ataxin-3 proteins.« less
Medina, Eva; van Rooijen, Willemien J.; Spaan, András N.; van Kessel, Kok P. M.; Höök, Magnus; Rooijakkers, Suzan H. M.
2013-01-01
Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein. PMID:24348255
Trifonova, O P; Pastushkova, L Kh; Samenkova, N F; Chernobrovkin, A L; Karuzina, I I; Lisitsa, A V; Larina, I M
2013-05-01
We identified changes in the proteome of healthy human blood plasma caused by exposure to 105-day confinement in an isolation chamber. After removal of major proteins and concentration of minor proteins, plasma fractions were analyzed by two-dimensional electrophoresis followed by identification of significantly different protein spots by mass spectrometric analysis of the peptide fragments. The levels of α- and β-chains of fibrinogen, a fragment of complement factor C4, apolipoproteins AI and E, plasminogen factor C1 complement, and immunoglobulin M changed in participants during the isolation period. These changes probably reflect the adaptive response to altered conditions of life.
Hadarits, Ferenc; Kisfali, Péter; Mohás, Márton; Maász, Anita; Sümegi, Katalin; Szabó, Melinda; Hetyésy, Katalin; Valasek, Andrea; Janicsek, Ingrid; Wittmann, István; Melegh, Béla
2011-03-01
Apolipoprotein A5 (ApoA5) gene and its protein product play a central role in the complex regulation of circulating triglyceride levels in humans. Naturally occurring variants of the apolipoprotein A5 gene have been associated with increased triglyceride levels and have been found to confer risk for cardiovascular diseases. In our study, four polymorphisms, the T-1131C, IVS3+G476A, T1259C, and C56G alleles of APOA5 were analyzed in a total of 436 patients by polymerase chain reaction-restriction fragment length polymorphism methods. The randomly selected patients were classified into four quartile (q) groups based on triglyceride levels (q1: TG<1.31 mmol/l; q2: 1.31-2.90 mmol/l; q3: 2.91-4.85 mmol/l; q4: TG>4.85 mmol/l). We observed significant stepwise increasing association between the four APOA5 minor allele carrier frequencies and plasma triglyceride quartiles: -1131C (q1: 4.44%; q2: 8.95%; q3: 12.9%; q4: 20.6%), IVS3 + 476A (q1: 4.44%; q2: 5.79%; q3: 11.1%; q4: 19.7%), 1259C (q1: 4.44%; q2: 6.84%; q3: 11.1%; q4: 20.6%) and 56G (q1: 5.64%; q2: 6.31%; q3: 11.16%; q4: 11.9%). The serum total cholesterol and high density lipoprotein-cholesterol levels also showed allele-dependent differences in the quartiles. The findings presented here revealed a special arrangement of APOA5 minor alleles in patients with different serum triglyceride ranges in Hungarians.
Panagopoulos, Ioannis; Gorunova, Ludmila; Viset, Trond; Heim, Sverre
2016-01-01
We present an angiofibroma of soft tissue with the karyotype 46,XY,t(4;5)(q24;q31),t(5;8;17)(p15;q13;q21) [8]/46,XY,t(1;14)(p31;q32)[2]/46,XY[3]. RNA-sequencing showed that the t(4;5)(q24;q31) resulted in recombination of the genes TBCK on 4q24 and P4HA2 on 5q31.1 with generation of an in-frame TBCK-P4HA2 and the reciprocal but out-of-frame P4HA2-TBCK fusion transcripts. The putative TBCK-P4HA2 protein would contain the kinase, the rhodanese-like domain, and the Tre-2/Bub2/Cdc16 (TBC) domains of TBCK together with the P4HA2 protein which is a component of the prolyl 4-hydroxylase. The t(5;8;17)(p15;q13;q21) three-way chromosomal translocation targeted AHRR (on 5p15), NCOA2 (on 8q13), and ETV4 (on 17q21) generating the in-frame fusions AHRR-NCOA2 and NCOA2-ETV4 as well as an out-of-frame ETV4-AHRR transcript. In the AHRR-NCOA2 protein, the C-terminal part of AHRR is replaced by the C-terminal part of NCOA2 which contains two activation domains. The NCOA2-ETV4 protein would contain the helix-loop-helix, PAS_9 and PAS_11, CITED domains, the SRC-1 domain of NCOA2 and the ETS DNA-binding domain of ETV4. No fusion gene corresponding to t(1;14)(p31;q32) was found. Our findings indicate that, in spite of the recurrence of AHRR-NCOA2 in angiofibroma of soft tissue, additional genetic events (or fusion genes) might be required for the development of this tumor. PMID:27633981
Variola virus immune evasion design: expression of a highly efficient inhibitor of human complement.
Rosengard, Ariella M; Liu, Yu; Nie, Zhiping; Jimenez, Robert
2002-06-25
Variola virus, the most virulent member of the genus Orthopoxvirus, specifically infects humans and has no other animal reservoir. Variola causes the contagious disease smallpox, which has a 30-40% mortality rate. Conversely, the prototype orthopoxvirus, vaccinia, causes no disease in immunocompetent humans and was used in the global eradication of smallpox, which ended in 1977. However, the threat of smallpox persists because clandestine stockpiles of variola still exist. Although variola and vaccinia share remarkable DNA homology, the strict human tropism of variola suggests that its proteins are better suited than those of vaccinia to overcome the human immune response. Here, we demonstrate the functional advantage of a variola complement regulatory protein over that of its vaccinia homologue. Because authentic variola proteins are not available for study, we molecularly engineered and characterized the smallpox inhibitor of complement enzymes (SPICE), a homologue of a vaccinia virulence factor, vaccinia virus complement control protein (VCP). SPICE is nearly 100-fold more potent than VCP at inactivating human C3b and 6-fold more potent at inactivating C4b. SPICE is also more human complement-specific than is VCP. By inactivating complement components, SPICE serves to inhibit the formation of the C3/C5 convertases necessary for complement-mediated viral clearance. SPICE provides the first evidence that variola proteins are particularly adept at overcoming human immunity, and the decreased function of VCP suggests one reason why the vaccinia virus vaccine was associated with relatively low mortality. Disabling SPICE may be therapeutically useful if smallpox reemerges.
Variola virus immune evasion design: Expression of a highly efficient inhibitor of human complement
Rosengard, Ariella M.; Liu, Yu; Nie, Zhiping; Jimenez, Robert
2002-01-01
Variola virus, the most virulent member of the genus Orthopoxvirus, specifically infects humans and has no other animal reservoir. Variola causes the contagious disease smallpox, which has a 30–40% mortality rate. Conversely, the prototype orthopoxvirus, vaccinia, causes no disease in immunocompetent humans and was used in the global eradication of smallpox, which ended in 1977. However, the threat of smallpox persists because clandestine stockpiles of variola still exist. Although variola and vaccinia share remarkable DNA homology, the strict human tropism of variola suggests that its proteins are better suited than those of vaccinia to overcome the human immune response. Here, we demonstrate the functional advantage of a variola complement regulatory protein over that of its vaccinia homologue. Because authentic variola proteins are not available for study, we molecularly engineered and characterized the smallpox inhibitor of complement enzymes (SPICE), a homologue of a vaccinia virulence factor, vaccinia virus complement control protein (VCP). SPICE is nearly 100-fold more potent than VCP at inactivating human C3b and 6-fold more potent at inactivating C4b. SPICE is also more human complement-specific than is VCP. By inactivating complement components, SPICE serves to inhibit the formation of the C3/C5 convertases necessary for complement-mediated viral clearance. SPICE provides the first evidence that variola proteins are particularly adept at overcoming human immunity, and the decreased function of VCP suggests one reason why the vaccinia virus vaccine was associated with relatively low mortality. Disabling SPICE may be therapeutically useful if smallpox reemerges. PMID:12034872
Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M.
2012-01-01
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases. PMID:22514678
Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M
2012-01-01
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.
Brangulis, Kalvis; Petrovskis, Ivars; Kazaks, Andris; Akopjana, Inara; Tars, Kaspars
2015-05-01
Borrelia burgdorferi is the causative agent of Lyme disease, which can be acquired after the bite of an infected Ixodes tick. As a strategy to resist the innate immunity and to successfully spread and proliferate, B. burgdorferi expresses a set of outer membrane proteins that are capable of binding complement regulator factor H (CFH), factor H-like protein 1 (CFHL-1) and factor H-related proteins (CFHR) to avoid complement-mediated killing. B. burgdorferi B31 contains three proteins that belong to the Erp (OspE/F-related) protein family and are capable of binding CFH and some CFHRs, namely ErpA, ErpC and ErpP. We have determined the crystal structure of ErpP at 2.53Å resolution and the crystal structure of ErpC at 2.15Å resolution. Recently, the crystal structure of the Erp family member OspE from B. burgdorferi N40 was determined in complex with CFH domains 19-20, revealing the residues involved in the complex formation. Despite the high sequence conservation between ErpA, ErpC, ErpP and the homologous protein OspE (78-80%), the affinity for CFH and CFHRs differs markedly among the Erp family members, suggesting that ErpC may bind only CFHRs but not CFH. A comparison of the binding site in OspE with those of ErpC and ErpP revealed that the extended loop region, which is only observed in the potential binding site of ErpC, plays an important role by preventing the binding of CFH. These results can explain the inability of ErpC to bind CFH, whereas ErpP and ErpA still possess the ability to bind CFH. Copyright © 2015 Elsevier B.V. All rights reserved.
Parody, N; Soto, M; Requena, J M; Alonso, C
2004-01-01
It has been shown that vaccination with three doses of the Leishmania infantum poly-protein Q containing five genetically fused antigenic determinants from the Lip2a, Lip2b, H2A and P0 proteins, mixed with BCG induces clearance of parasites in 9 out of 10 Leishmania infantum-infected Beagle dogs, in addition to clinical protection. In the present paper we analysed the immunogenic potential of the poly-protein Q and the specificity and polarization of the response against the antigenic determinants of Q when mixed with various adjuvants. The data showed that the Q protein had high intrinsic immunogenic potential and that it was able to induce a long-lasting IgG response. The IgM immunogenic potential of the poly-protein was mainly due to the LiP2a and LiP2b determinants, whereas the IgG immunogenic potential was mainly due to the LiP2a component. It was observed that the protein itself elicited a mixed IgG2a/IgG1 response and that the determinants of Q were endowed with different IgG2a/IgG1 potential. It was also observed that the adjuvants did not influence the intensity or specificity of the IgM response but that they modulated the intensity, the specificity and the polarization of the IgG response against the determinants of Q. CpG-ODN motifs or double-stranded DNA plasmids containing CpG motifs when mixed with Q induced a predominant IgG2a response mainly observed at early stages post-immunization. The data showed that a CpG + Q mix induced significant protection against L. infantum infection in Balb/c mice.
Thermostability promotes the cooperative function of split adenylate kinases.
Nguyen, Peter Q; Liu, Shirley; Thompson, Jeremy C; Silberg, Jonathan J
2008-05-01
Proteins can often be cleaved to create inactive polypeptides that associate into functional complexes through non-covalent interactions, but little is known about what influences the cooperative function of the ensuing protein fragments. Here, we examine whether protein thermostability affects protein fragment complementation by characterizing the function of split adenylate kinases from the mesophile Bacillus subtilis (AKBs) and the hyperthermophile Thermotoga neapolitana (AKTn). Complementation studies revealed that the split AKTn supported the growth of Escherichia coli with a temperature-sensitive AK, but not the fragmented AKBs. However, weak complementation occurred when the AKBs fragments were fused to polypeptides that strongly associate, and this was enhanced by a Q16L mutation that thermostabilizes the full-length protein. To examine how the split AK homologs differ in structure and function, their catalytic activity, zinc content, and circular dichroism spectra were characterized. The reconstituted AKTn had higher levels of zinc, greater secondary structure, and >10(3)-fold more activity than the AKBs pair, albeit 17-fold less active than full-length AKTn. These findings provide evidence that the design of protein fragments that cooperatively function can be improved by choosing proteins with the greatest thermostability for bisection, and they suggest that this arises because hyperthermophilic protein fragments exhibit greater residual structure compared to their mesophilic counterparts.
Polyanion-Induced Self Association of Complement Factor H1
Pangburn, Michael K.; Rawal, Nenoo; Cortes, Claudio; Alam, M. Nurul; Ferreira, Viviana P.; Atkinson, Mark A. L.
2008-01-01
Factor H is the primary soluble regulator of activation of the alternative pathway of complement. It prevents activation of complement on host cells and tissues upon association with C3b and surface polyanions such as sialic acids, heparin and other glycosaminoglycans. Here we show that interaction with polyanions causes self-association forming tetramers of the 155,000 Da glycosylated protein. Monomeric human factor H is an extended flexible protein that exhibits an apparent size of 330,000 Da, relative to globular standards, during gel filtration chromatography in the absence of polyanions. In the presence of dextran sulfate (5,000 Da) or heparin an intermediate species of apparent m.w. 700,000 and a limit species of m.w. 1,400,000 were observed by gel filtration. Sedimentation equilibrium analysis by analytical ultracentrifugation indicated a monomer Mr of 163,000 in the absence of polyanions and a Mr of 607,000, corresponding to a tetramer, in the presence of less than a 2-fold molar excess of dextran sulfate. Increasing concentrations of dextran sulfate increased binding of factor H to zymosan-C3b 4.5-fold. This was accompanied by an increase in both the decay accelerating and cofactor activity of factor H on these cells. An expressed fragment encompassing the C-terminal polyanion binding site (complement control protein domains 18–20) also exhibited polyanion-induced self association, suggesting that the C-terminal ends of factor H mediate self-association. The results suggest that recognition of polyanionic markers on host cells and tissues by factor H, and the resulting regulation of complement activation, may involve formation of dimers and tetramers of factor H. PMID:19124749
Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe
2015-01-01
Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551
Circulating immune complexes contain citrullinated fibrinogen in rheumatoid arthritis
Zhao, Xiaoyan; Okeke, Nwora Lance; Sharpe, Orr; Batliwalla, Franak M; Lee, Annette T; Ho, Peggy P; Tomooka, Beren H; Gregersen, Peter K; Robinson, William H
2008-01-01
Introduction There is increasing evidence that autoantibodies and immune complexes (ICs) contribute to synovitis in rheumatoid arthritis (RA), yet the autoantigens incorporated in ICs in RA remain incompletely characterised. Methods We used the C1q protein to capture ICs from plasma derived from human RA and control patients. Antibodies specific for immunoglobulin were used to detect ICs, and fibrinogen antibodies were used to detect fibrinogen-containing ICs. RA and control plasma were separated by liquid chromatography, and fractions then characterised by ELISA, immunoblotting and mass spectrometry. Immunohistochemical staining was performed on rheumatoid synovial tissue. Results C1q-immunoassays demonstrated increased levels of IgG (p = 0.01) and IgM (p = 0.0002) ICs in plasma derived from RA patients possessing anti-cyclic citrullinated peptide (CCP+) autoantibodies as compared with healthy controls. About one-half of the anti-CCP+ RA possessed circulating ICs containing fibrinogen (p = 0.0004). Fractionation of whole RA plasma revealed citrullinated fibrinogen in the high molecular weight fractions that contained ICs. Positive correlations were observed between fibrinogen-containing ICs and anti-citrullinated fibrinogen autoantibodies, anti-CCP antibody, rheumatoid factor and certain clinical characteristics. Immunohistochemical staining demonstrated co-localisation of fibrinogen, immunoglobulin and complement component C3 in RA pannus tissue. Mass spectrometry analysis of immune complexes immunoprecipitated from RA pannus tissue lysates demonstrated the presence of citrullinated fibrinogen. Conclusion Circulating ICs containing citrullinated fibrinogen are present in one-half of anti-CCP+ RA patients, and these ICs co-localise with C3 in the rheumatoid synovium suggesting that they contribute to synovitis in a subset of RA patients. PMID:18710572
van Vuuren, B Jansen; Bergseth, G; Mollnes, T E; Shaw, A M
2014-01-15
Electroluminescent assays for epitopes on the complement components C3dg, terminal complement complex (TCC) and factor B/Bb (fB/Bb) have been developed with capture and detection antibodies to produce detection limits C3dg=91±9ng/mL, TCC=3±0.1ng/mL and fB=55.7±0.1ng/mL. The assay performance was assessed against a series of zymosan and heat aggregated IgG (HAIgG) in vitro activations of complement using a calibrated activated complement serum (ACS) as calibration standard. The ACS standard was stable within 20% accuracy over a 6-month period with freeze-thaw cycles as required. Differential activation of the complement cascade was observed for TCC showing a pseudo-first order formation half-life of 3.5h after activation with zymosan. The C3dg activation fragment indicates a 10% total activation for both activation agents. The kinetic-epitope analysis for fB indicates that the capture epitope is on the fB/Bb protein fragment which can then become covered by the formation of C3bBb or C3bBbP complexes during the time course of the cascade. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purvina, Maija; Hoste, Astrid; Rossignol, Jean-Michel
Highlights: Black-Right-Pointing-Pointer P20, precursor of the HBeAg, interacts with the cellular protein gC1qR. Black-Right-Pointing-Pointer HBeAg and P20 bind to T cell surface and inhibit mitogen-induced T cell division. Black-Right-Pointing-Pointer HBeAg and P20 inhibition of T cell proliferation is gC1qR and IL-1RAcP-independent. -- Abstract: The hepatitis B virus (HBV) Precore protein is processed through the secretory pathway directly as HBeAg or with the generation of an intermediate (P20). Precore gene has been shown to be implicated in viral persistence, but the functions of HBeAg and its precursors have not been fully elucidated. We show that the secreted proteins HBeAg and P20more » interact with T cell surface and alter Kit-225 and primary T cells proliferation, a process which may facilitate the establishment of HBV persistence. Our data indicate that the N-terminal end of Precore is important for these inhibitory effects and exclude that they are dependent on the association of HBeAg and P20 with two characterized cell surface ligands, the Interleukin-1 Receptor Accessory Protein and gC1qR (present study).« less
Identification of a Naegleria fowleri Membrane Protein Reactive with Anti-Human CD59 Antibody
Fritzinger, Angela E.; Toney, Denise M.; MacLean, Rebecca C.; Marciano-Cabral, Francine
2006-01-01
Naegleria fowleri, the causative agent of primary amebic meningoencephalitis, is resistant to complement lysis. The presence of a complement regulatory protein on the surface of N. fowleri was investigated. Southern blot and Northern blot analyses demonstrated hybridization of a radiolabeled cDNA probe for CD59 to genomic DNA and RNA, respectively, from pathogenic N. fowleri. An 18-kDa immunoreactive protein was detected on the membrane of N. fowleri by Western immunoblot and immunofluorescence analyses with monoclonal antibodies for human CD59. Complement component C9 immunoprecipitated with the N. fowleri “CD59-like” protein from amebae incubated with normal human serum. In contrast, a gene or protein similar to CD59 was not detected in nonpathogenic, complement-sensitive N. gruberi amebae. Collectively, our studies suggest that a protein reactive with antibodies to human CD59 is present on the surface of N. fowleri amebae and may play a role in resistance to lysis by cytolytic proteins. PMID:16428768
Adler Sørensen, Camilla; Rosbjerg, Anne; Hebbelstrup Jensen, Betina; Krogfelt, Karen Angeliki; Garred, Peter
2018-01-01
Enteroaggregative Escherichia coli (EAEC) causes acute and persistent diarrhea worldwide. Still, the involvement of host factors in EAEC infections is unresolved. Binding of recognition molecules from the lectin pathway of complement to EAEC strains have been observed, but the importance is not known. Our aim was to uncover the involvement of these molecules in innate complement dependent immune protection toward EAEC. Binding of mannose-binding lectin, ficolin-1, -2, and -3 to four prototypic EAEC strains, and ficolin-2 binding to 56 clinical EAEC isolates were screened by a consumption-based ELISA method. Flow cytometry was used to determine deposition of C4b, C3b, and the bactericidal C5b-9 membrane attack complex (MAC) on the bacteria in combination with different complement inhibitors. In addition, the direct serum bactericidal effect was assessed. Screening of the prototypic EAEC strains revealed that ficolin-2 was the major binder among the lectin pathway recognition molecules. However, among the clinical EAEC isolates only a restricted number ( n = 5) of the isolates bound ficolin-2. Using the ficolin-2 binding isolate C322-17 as a model, we found that incubation with normal human serum led to deposition of C4b, C3b, and to MAC formation. No inhibition of complement deposition was observed when a C1q inhibitor was added, while partial inhibition was observed when ficolin-2 or factor D inhibitors were used separately. Combining the inhibitors against ficolin-2 and factor D led to virtually complete inhibition of complement deposition and protection against direct bacterial killing. These results demonstrate that ficolin-2 may play an important role in innate immune protection against EAEC when an appropriate ligand is exposed, but many EAEC strains evade lectin pathway recognition and may, therefore, circumvent this strategy of innate host immune protection.
Garcia, Brandon L.; Ramyar, Kasra X.; Keightley, Andrew; Ruyken, Maartje; Syriga, Maria; Sfyroera, Georgia; Weber, Alexander B.; Zolkiewski, Michal; Ricklin, Daniel; Lambris, John D.; Rooijakkers, Suzan H.M.; Geisbrecht, Brian V.
2014-01-01
The pathogenic bacterium Staphylococcus aureus actively evades many aspects of human innate immunity by expressing a series of small inhibitory proteins. A number of these proteins inhibit the complement system, which labels bacteria for phagocytosis and generates inflammatory chemoattractants. While the majority of staphylococcal complement inhibitors act on the alternative pathway (AP) to block the amplification loop, only a few proteins act on the initial recognition cascades that constitute the classical (CP) and lectin (LP) pathways. We screened a collection of recombinant, secreted staphylococcal proteins to determine if S. aureus produces other molecules that inhibit either the CP and/or LP. Using this approach, we identified the extracellular adherence protein (Eap) as a potent, specific inhibitor of both the CP and LP. We found that Eap blocked CP/LP-dependent activation of C3, but not C4, and that Eap likewise inhibited deposition of C3b on the surface of S. aureus cells. In turn, this significantly diminished the extent of S. aureus opsonophagocytosis and killing by neutrophils. This combination of functional properties suggested that Eap acts specifically at the level of the CP/LP C3 convertase (C4b2a). Indeed, we demonstrated a direct, nanomolar-affinity interaction of Eap with C4b. Eap binding to C4b inhibited binding of both full-length C2 and its C2b fragment, which indicated that Eap disrupts formation of the CP/LP C3 pro-convertase (C4b2). As a whole, our results demonstrate that S. aureus inhibits the two initiation routes of complement by expression of the Eap protein, and thereby define a novel mechanism of immune evasion. PMID:25381436
Hu, Weiping; Niu, Guodong; Li, Hongbo; Gao, Hanyuan; Kang, Rudian; Chen, Xiaoqing; Lin, Ling
2016-11-22
Renal damage is the major cause of SLE associated mortality, and IFIT1expression was elevated in SLE cases in accordance of previous studies. Therefore, we conducted an animal study to identify the role of IFIT1 expression in renal pathological changes.18 female MRL/lpr mice and same number of female BALB/c mice were enrolled in present study. Quantitative analysis of urine protein, Complement C3 and C4, and anti-ds DNA antibody were conducted. HE and PAS staining and TEM analysis were employed to observe the pathological changes in renal tissue. Significant elevation on urine protein and anti-dsDNA and reduction on Complement C3 and C4 were observed in MRL/lpr mice when comparing the controls in same age. Staining and TEM analysis observed several pathological changes in glomerulus among MRL/lpr mice, including cellular enlargement, basement membrane thickening, and increased cellularcasts. The linear regression analysis found the optical density of IFIT1 was inversely associated with F-actin, Nephrin, and Podocin, but not Synatopodin. In summary, IFIT1 expression is associated with podocytes damage, and capable of suppressing some proteins essential to glomerular filtration.
[Multiplexing mapping of human cDNAs]. Final report, September 1, 1991--February 28, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Using PCR with automated product analysis, 329 human brain cDNA sequences have been assigned to individual human chromosomes. Primers were designed from single-pass cDNA sequences expressed sequence tags (ESTs). Primers were used in PCR reactions with DNA from somatic cell hybrid mapping panels as templates, often with multiplexing. Many ESTs mapped match sequence database records. To evaluate of these matches, the position of the primers relative to the matching region (In), the BLAST scores and the Poisson probability values of the EST/sequence record match were determined. In cases where the gene product was stringently identified by the sequence match hadmore » already been mapped, the gene locus determined by EST was consistent with the previous position which strongly supports the validity of assigning unknown genes to human chromosomes based on the EST sequence matches. In the present cases mapping the ESTs to a chromosome can also be considered to have mapped the known gene product: rolipram-sensitive cAMP phosphodiesterase, chromosome 1; protein phosphatase 2A{beta}, chromosome 4; alpha-catenin, chromosome 5; the ELE1 oncogene, chromosome 10q11.2 or q2.1-q23; MXII protein, chromosome l0q24-qter; ribosomal protein L18a homologue, chromosome 14; ribosomal protein L3, chromosome 17; and moesin, Xp11-cen. There were also ESTs mapped that were closely related to non-human sequence records. These matches therefore can be considered to identify human counterparts of known gene products, or members of known gene families. Examples of these include membrane proteins, translation-associated proteins, structural proteins, and enzymes. These data then demonstrate that single pass sequence information is sufficient to design PCR primers useful for assigning cDNA sequences to human chromosomes. When the EST sequence matches previous sequence database records, the chromosome assignments of the EST can be used to make preliminary assignments of the human gene to a chromosome.« less
Characterization of serum proteins attached to distinct sol-gel hybrid surfaces.
Araújo-Gomes, Nuno; Romero-Gavilán, Francisco; Sánchez-Pérez, Ana M; Gurruchaga, Marilo; Azkargorta, Mikel; Elortza, Felix; Martinez-Ibañez, María; Iloro, Ibon; Suay, Julio; Goñi, Isabel
2018-05-01
The success of a dental implant depends on its osseointegration, an important feature of the implant biocompatibility. In this study, two distinct sol-gel hybrid coating formulations [50% methyltrimethoxysilane: 50% 3-glycidoxypropyl-trimethoxysilane (50M50G) and 70% methyltrimethoxysilane with 30% tetraethyl orthosilicate (70M30T)] were applied onto titanium implants. To evaluate their osseointegration, in vitro and in vivo assays were performed. Cell proliferation and differentiation in vitro did not show any differences between the coatings. However, four and eight weeks after in vivo implantation, the fibrous capsule area surrounding 50M50G-implant was 10 and 4 times, respectively, bigger than the area of connective tissue surrounding the 70M30T treated implant. Thus, the in vitro results gave no prediction or explanation for the 50M50G-implant failure in vivo. We hypothesized that the first protein layer adhered to the surface may have direct implication in implant osseointegration, and perhaps correlate with the in vivo outcome. Human serum was used for adsorption analysis on the biomaterials, the first layer of serum proteins adhered to the implant surface was analyzed by proteomic analysis, using mass spectrometry (LC-MS/MS). From the 171 proteins identified; 30 proteins were significantly enriched on the 50M50G implant surface. This group comprised numerous proteins of the immune complement system, including several subcomponents of the C1 complement, complement factor H, C4b-binding protein alpha chain, complement C5 and C-reactive protein. This result suggests that these proteins enriched in 50M50G surface might trigger the cascade leading to the formation of the fibrous capsule observed. The implications of these results could open up future possibilities to predict the biocompatibility problems in vivo. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1477-1485, 2018. © 2017 Wiley Periodicals, Inc.
Swe, Pearl M; Fischer, Katja
2014-06-01
Scabies is a contagious skin disease caused by the parasitic mite Sarcoptes scabiei. The disease is highly prevalent worldwide and known to predispose to secondary bacterial infections, in particular by Streptococcus pyogenes and Staphylococcus aureus. Reports of scabies patients co-infected with methicillin resistant S. aureus (MRSA) pose a major concern for serious down-stream complications. We previously reported that a range of complement inhibitors secreted by the mites promoted the growth of S. pyogenes. Here, we show that a recently characterized mite serine protease inhibitor (SMSB4) inhibits the complement-mediated blood killing of S. aureus. Blood killing of S. aureus was measured in whole blood bactericidal assays, counting viable bacteria recovered after treatment in fresh blood containing active complement and phagocytes, treated with recombinant SMSB4. SMSB4 inhibited the blood killing of various strains of S. aureus including methicillin-resistant and methicillin-sensitive isolates. Staphylococcal growth was promoted in a dose-dependent manner. We investigated the effect of SMSB4 on the complement-mediated neutrophil functions, namely phagocytosis, opsonization and anaphylatoxin release, by flow cytometry and in enzyme linked immuno sorbent assays (ELISA). SMSB4 reduced phagocytosis of S. aureus by neutrophils. It inhibited the deposition of C3b, C4b and properdin on the bacteria surface, but did not affect the depositions of C1q and MBL. SMSB4 also inhibited C5 cleavage as indicated by a reduced C5b-9 deposition. We postulate that SMSB4 interferes with the activation of all three complement pathways by reducing the amount of C3 convertase formed. We conclude that SMSB4 interferes with the complement-dependent killing function of neutrophils, thereby reducing opsonization, phagocytosis and further recruitment of neutrophils to the site of infection. As a consequence secreted scabies mites complement inhibitors, such as SMSB4, provide favorable conditions for the onset of S. aureus co-infection in the scabies-infected microenvironment by suppressing the immediate host immune response.
[Aging and homeostasis. Chronic inflammation and aging.
Akazawa, Hiroshi
Chronic inflammation is one of the common pathological bases underlying aging and aging-related diseases. Recently, it was reported that complement C1q, a crucial regulator of innate immunity, is deeply involved in the pathogenesis of aging-related sarcopenia, heart failure, and hypertension-induced aortic remodeling. In this review, the role and function of chronic inflammation in aging and aging-related diseases will be summarized.
NASA Technical Reports Server (NTRS)
Chapes, S. K.; Woods, K. M.; Armstrong, J. W.; Spooner, B. S. (Principal Investigator)
1993-01-01
This manuscript briefly reviews ground-based and flight experiments, discusses how those experiments complement each other, and details how those experiments lead us to speculate about the gravity-sensitive nature of protein kinase C.
Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana
Bhoo, Seong Hee; Lai, Huafang; Ma, Julian; Arntzen, Charles J.; Chen, Qiang; Mason, Hugh S.
2014-01-01
Summary Filoviruses (Ebola and Marburg viruses) cause severe and often fatal hemorrhagic fever in humans and non-human primates. The US Centers for Disease Control identify Ebola and Marburg viruses as “category A” pathogens (defined as posing a risk to national security as bioterrorism agents), which has lead to a search for vaccines that could prevent the disease. Because the use of such vaccines would be in the service of public health, the cost of production is an important component of their development. The use of plant biotechnology is one possible way to cost-effectively produce subunit vaccines. In this work, a geminiviral replicon system was used to produce an Ebola immune complex (EIC) in Nicotiana benthamiana. Ebola glycoprotein (GP1) was fused at the C-terminus of the heavy chain of humanized 6D8 IgG monoclonal antibody, which specifically binds to a linear epitope on GP1. Co-expression of the GP1-heavy chain fusion and the 6D8 light chain using a geminiviral vector in leaves of Nicotiana benthamiana produced assembled immunoglobulin, which was purified by ammonium sulfate precipitation and protein G affinity chromatography. Immune complex formation was confirmed by assays to show that the recombinant protein bound the complement factor C1q. Size measurements of purified recombinant protein by dynamic light scattering and size exclusion chromatography also indicated complex formation. Subcutaneous immunization of BALB/C mice with purified EIC resulted in anti-Ebola virus antibody production at levels comparable to those obtained with a GP1 virus-like particle. These results show excellent potential for a plant-expressed EIC as a human vaccine. PMID:21281425
Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana.
Phoolcharoen, Waranyoo; Bhoo, Seong H; Lai, Huafang; Ma, Julian; Arntzen, Charles J; Chen, Qiang; Mason, Hugh S
2011-09-01
Filoviruses (Ebola and Marburg viruses) cause severe and often fatal haemorrhagic fever in humans and non-human primates. The US Centers for Disease Control identifies Ebola and Marburg viruses as 'category A' pathogens (defined as posing a risk to national security as bioterrorism agents), which has lead to a search for vaccines that could prevent the disease. Because the use of such vaccines would be in the service of public health, the cost of production is an important component of their development. The use of plant biotechnology is one possible way to cost-effectively produce subunit vaccines. In this work, a geminiviral replicon system was used to produce an Ebola immune complex (EIC) in Nicotiana benthamiana. Ebola glycoprotein (GP1) was fused at the C-terminus of the heavy chain of humanized 6D8 IgG monoclonal antibody, which specifically binds to a linear epitope on GP1. Co-expression of the GP1-heavy chain fusion and the 6D8 light chain using a geminiviral vector in leaves of N. benthamiana produced assembled immunoglobulin, which was purified by ammonium sulphate precipitation and protein G affinity chromatography. Immune complex formation was confirmed by assays to show that the recombinant protein bound the complement factor C1q. Size measurements of purified recombinant protein by dynamic light scattering and size-exclusion chromatography also indicated complex formation. Subcutaneous immunization of BALB/C mice with purified EIC resulted in anti-Ebola virus antibody production at levels comparable to those obtained with a GP1 virus-like particle. These results show excellent potential for a plant-expressed EIC as a human vaccine. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Complement System in Dermatological Diseases – Fire Under the Skin
Panelius, Jaana; Meri, Seppo
2015-01-01
The complement system plays a key role in several dermatological diseases. Overactivation, deficiency, or abnormality of the control proteins are often related to a skin disease. Autoimmune mechanisms with autoantibodies and a cytotoxic effect of the complement membrane attack complex on epidermal or vascular cells can cause direct tissue damage and inflammation, e.g., in systemic lupus erythematosus (SLE), phospholipid antibody syndrome, and bullous skin diseases like pemphigoid. By evading complement attack, some microbes like Borrelia spirochetes and staphylococci can persist in the skin and cause prolonged symptoms. In this review, we present the most important skin diseases connected to abnormalities in the function of the complement system. Drugs having an effect on the complement system are also briefly described. On one hand, drugs with free hydroxyl on amino groups (e.g., hydralazine, procainamide) could interact with C4A, C4B, or C3 and cause an SLE-like disease. On the other hand, progress in studies on complement has led to novel anti-complement drugs (recombinant C1-inhibitor and anti-C5 antibody, eculizumab) that could alleviate symptoms in diseases associated with excessive complement activation. The main theme of the manuscript is to show how relevant the complement system is as an immune effector system in contributing to tissue injury and inflammation in a broad range of skin disorders. PMID:25688346
Identification of the heme acquisition system in Vibrio vulnificus M2799.
Kawano, Hiroaki; Miyamoto, Katsushiro; Yasunobe, Megumi; Murata, Masahiro; Yamahata, Eri; Yamaguchi, Ryo; Miyaki, Yuta; Tsuchiya, Takahiro; Tanabe, Tomotaka; Funahashi, Tatsuya; Tsujibo, Hiroshi
2018-04-01
Vibrio vulnificus, the causative agent of serious, often fatal, infections in humans, requires iron for its pathogenesis. As such, it obtains iron via both vulnibactin and heme-mediated iron-uptake systems. In this study, we identified the heme acquisition system in V. vulnificus M2799. The nucleotide sequences of the genes encoding heme receptors HupA and HvtA and the ATP-binding cassette (ABC) transport system proteins HupB, HupC, and HupD were determined, and then used in the construction of deletion mutants developed from a Δics strain, which could not synthesize vulnibactin. Growth experiments using these mutants indicated that HupA and HvtA are major and minor heme receptors, respectively. The expressions of two proteins were analyzed by the quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Furthermore, complementation analyses confirmed that the HupBCD proteins are the only ABC transport system shared by both the HupA and HvtA receptors. This is the first genetic evidence that the HupBCD proteins are essential for heme acquisition by V. vulnificus. Further investigation showed that hupA, hvtA, and hupBCD are regulated by Fur. The qRT-PCR analysis of the heme receptor genes revealed that HupR, a LysR-family positive transcriptional activator, upregulates the expression of hupA, but not hvtA. In addition, ptrB was co-transcribed with hvtA, and PtrB had no influence on growth in low-iron CM9 medium supplemented with hemin, hemoglobin, or cytochrome C. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gan, Hui; Zhou, Yong; Sun, Ping; Zhu, Xiao-Xia; Wang, Quan-Li; Zhan, Lin-Sheng
2007-08-01
This study was purposed to verify the binding part of human complement C3 to complement receptor III (CRIII) in monocytes, the peptide rC3B, including the binding-site, was expressed, purified and identified. rC3B, the binding part of human complement C3 to CRIII, was selected by computer-aided modeling and summarizing researches published. Then, rC3B gene fragment was amplified by PCR, and cloned into prokaryotic vector pQE30a. The fusion protein rC3B was expressed in E.coli M15 and purified by Ni(2+)-chelating affinity chromatography. The activity of rC3B was identified by Western blot and adherence assay with monocytes. The results showed that rC3B fragment was obtained, and a prokaryotic expression vector pQE30-rC3B was constructed. rC3B was efficiently expressed and purified. In Western blot, the target protein showed the activity of binding with C3 antibody, while the purified protein showed the activity of adherence with monocytes. It is concluded that the recombinant C3B was obtained and identified, and this study lay the basis for the further functional analysis of C3.
Gene for ataxia-telangiectasia complementation group D (ATDC)
Murnane, John P.; Painter, Robert B.; Kapp, Leon N.; Yu, Loh-Chung
1995-03-07
Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for said gene are provided as well as proteins encoded by said gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of said proteins. Further disclosed are methods to detect mutations in said gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups.
Unique structure of iC3b resolved at a resolution of 24 Å by 3D-electron microscopy.
Alcorlo, Martin; Martínez-Barricarte, Ruben; Fernández, Francisco J; Rodríguez-Gallego, César; Round, Adam; Vega, M Cristina; Harris, Claire L; de Cordoba, Santiago Rodríguez; Llorca, Oscar
2011-08-09
Activation of C3, deposition of C3b on the target surface, and subsequent amplification by formation of a C3-cleaving enzyme (C3-convertase; C3bBb) triggers the effector functions of complement that result in inflammation and cell lysis. Concurrently, surface-bound C3b is proteolyzed to iC3b by factor I and appropriate cofactors. iC3b then interacts with the complement receptors (CR) of the Ig superfamily, CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) on leukocytes, down-modulating inflammation, enhancing B cell-mediated immunity, and targeting pathogens for clearance by phagocytosis. Using EM and small-angle X-ray scattering, we now present a medium-resolution structure of iC3b (24 Å). iC3b displays a unique conformation with structural features distinct from any other C3 fragment. The macroglobulin ring in iC3b is similar to that in C3b, whereas the TED (thioester-containing domain) domain and the remnants of the CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain have moved to locations more similar to where they were in native C3. A consequence of this large conformational change is the disruption of the factor B binding site, which renders iC3b unable to assemble a C3-convertase. This structural model also justifies the decreased interaction between iC3b and complement regulators and the recognition of iC3b by the CR of the Ig superfamily, CR2, CR3, and CR4. These data further illustrate the extraordinary conformational versatility of C3 to accommodate a great diversity of functional activities.
Buchner, G; Bassi, M T; Andolfi, G; Ballabio, A; Franco, B
1999-11-15
We report the identification of a new transcript homologous to the Drosophila staufen protein. This transcript, named STAU2 (HGMW-approved gene symbol and name), maps to the chromosome 8q13-q21 region. The full-length STAU2 cDNA is 4058 bp and contains an open reading frame of 479 amino acids. Analysis of the predicted protein product indicated the presence of three double-stranded RNA-binding domains. Best-fit analysis revealed a 48.5% similarity to the Drosophila protein and a 59.9% similarity to the recently described mammalian homolog hStau, indicating that at least two different transcripts with homologies to the fly protein are present in mammals. Copyright 1999 Academic Press.
Complementation of Myelodysplastic Syndrome Clones with Lentivirus Expression Libraries
2012-07-01
Description HRAS Homo sapiens v-Ha-ras Harvey rat sarcoma viral oncogene homolog (HRAS), transcript 1 CDC25C Homo sapiens cell division cycle 25...homolog C (CDC25C), transcript variant 1 MYC Homo sapiens v-myc myeloctomatosis viral oncogene homolog (avian) (MYC) MAP3K7 Homo sapiens mitogen...activated protein kinase kinase kinase 7 (MAP3K7) MAP3K8 Homo sapiens mitogen-activated protein kinase kinase kinase 8 (MAP3K8) SF3B1 Homo sapiens splicing
Complementation of Myelodysplastic Syndrome Clones with Lentivirus Expression Libraries
2013-01-01
Description HRAS Homo sapiens v-Ha-ras Harvey rat sarcoma viral oncogene homolog (HRAS), transcript 1 CDC25C Homo sapiens cell division cycle 25...homolog C (CDC25C), transcript variant 1 MYC Homo sapiens v-myc myeloctomatosis viral oncogene homolog (avian) (MYC) MAP3K7 Homo sapiens mitogen...activated protein kinase kinase kinase 7 (MAP3K7) MAP3K8 Homo sapiens mitogen-activated protein kinase kinase kinase 8 (MAP3K8) SF3B1 Homo sapiens
Strojan, Klemen; Leonardi, Adrijana; Bregar, Vladimir B; Križaj, Igor; Svete, Jurij; Pavlin, Mojca
2017-01-01
Protein corona of nanoparticles (NPs), which forms when these particles come in to contact with protein-containing fluids, is considered as an overlooked factor in nanomedicine. Through numerous studies it has been becoming increasingly evident that it importantly dictates the interaction of NPs with their surroundings. Several factors that determine the compositions of NPs protein corona have been identified in recent years, but one has remained largely ignored-the composition of media used for dispersion of NPs. Here, we determined the effect of dispersion media on the composition of protein corona of polyacrylic acid-coated cobalt ferrite NPs (PAA NPs) and silica NPs. Our results confirmed some of the basic premises such as NPs type-dependent specificity of the protein corona. But more importantly, we demonstrated the effect of the dispersion media on the protein corona composition. The differences between constituents of the media used for dispersion of NPs, such as divalent ions and macromolecules were responsible for the differences in protein corona composition formed in the presence of fetal bovine serum (FBS). Our results suggest that the protein corona composition is a complex function of the constituents present in the media used for dispersion of NPs. Regardless of the dispersion media and FBS concentration, majority of proteins from either PAA NPs or silica NPs coronas were involved in the process of transport and hemostasis. Interestingly, corona of silica NPs contained three complement system related proteins: complement factor H, complement C3 and complement C4 while PAA NPs bound only one immune system related protein, α-2-glycoprotein. Importantly, relative abundance of complement C3 protein in corona of silica NPs was increased when NPs were dispersed in NaCl, which further implies the relevance of dispersion media used to prepare NPs.
Strojan, Klemen; Leonardi, Adrijana; Bregar, Vladimir B.; Križaj, Igor; Svete, Jurij; Pavlin, Mojca
2017-01-01
Protein corona of nanoparticles (NPs), which forms when these particles come in to contact with protein-containing fluids, is considered as an overlooked factor in nanomedicine. Through numerous studies it has been becoming increasingly evident that it importantly dictates the interaction of NPs with their surroundings. Several factors that determine the compositions of NPs protein corona have been identified in recent years, but one has remained largely ignored—the composition of media used for dispersion of NPs. Here, we determined the effect of dispersion media on the composition of protein corona of polyacrylic acid-coated cobalt ferrite NPs (PAA NPs) and silica NPs. Our results confirmed some of the basic premises such as NPs type-dependent specificity of the protein corona. But more importantly, we demonstrated the effect of the dispersion media on the protein corona composition. The differences between constituents of the media used for dispersion of NPs, such as divalent ions and macromolecules were responsible for the differences in protein corona composition formed in the presence of fetal bovine serum (FBS). Our results suggest that the protein corona composition is a complex function of the constituents present in the media used for dispersion of NPs. Regardless of the dispersion media and FBS concentration, majority of proteins from either PAA NPs or silica NPs coronas were involved in the process of transport and hemostasis. Interestingly, corona of silica NPs contained three complement system related proteins: complement factor H, complement C3 and complement C4 while PAA NPs bound only one immune system related protein, α-2-glycoprotein. Importantly, relative abundance of complement C3 protein in corona of silica NPs was increased when NPs were dispersed in NaCl, which further implies the relevance of dispersion media used to prepare NPs. PMID:28052135
Doan, Ninh; Gettins, Peter G W
2007-10-01
Human alpha2M (alpha2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human alpha2M to be made. We describe here the expression and characterization of three alpha(2)M domains predicted to be involved in the stabilization of the thiol ester in native alpha2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the alpha2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of alpha2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1-MG8 of C3. TED is, as predicted, an alpha-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these alpha2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of alpha2M, and the consequent thiol ester-stabilizing domain-domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein.
Doan, Ninh; Gettins, Peter G. W.
2007-01-01
Human α2M (α2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human α2M to be made. We describe here the expression and characterization of three α2M domains predicted to be involved in the stabilization of the thiol ester in native α2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the α2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of α2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1–MG8 of C3. TED is, as predicted, an α-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these α2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of α2M, and the consequent thiol ester-stabilizing domain–domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein. PMID:17608619
Insulin regulates the novel adipokine adipolin/CTRP12: in vivo and ex vivo effects.
Tan, Bee K; Lewandowski, Krzysztof C; O'Hare, Joseph Paul; Randeva, Harpal S
2014-04-01
There has been intense interest in the adipokines of the C1q complement/TNF-related protein (CTRP) superfamily. Adipolin (CTRP12) has been described as a novel adipokine, abundantly expressed in adipose tissue with insulin-sensitising and anti-inflammatory effects. We wanted to investigate the effects of acute and chronic hyperinsulinaemia on circulating adipolin concentrations (ELISA) via a prolonged insulin-glucose infusion in humans. We also examined the effects of insulin and the insulin sensitiser, rosiglitazone, on adipolin concentrations (western blotting) in human adipose tissue explants. We found that hyperinsulinaemic induction in healthy lean human subjects significantly increased circulating levels of adipolin (P<0.05 and P<0.01). Furthermore, in subcutaneous adipose tissue explants, insulin significantly increased adipolin protein expression and secretion (P<0.05 and P<0.01). This effect was attenuated by the phosphatidylinositol 3-kinase inhibitor, LY294002 (P<0.05). Moreover, the insulin-sensitising peroxisome proliferator-activated receptor γ (PPARγ) agonist, rosiglitazone, significantly increased adipolin protein expression and secretion in subcutaneous adipose tissue explants (P<0.05 and P<0.01). This effect was inhibited by the PPARγ antagonist, GW9662 (P<0.05). Our data provide novel insights into adipolin physiology in human subjects.
de Groot, A; Koster, M; Gérard-Vincent, M; Gerritse, G; Lazdunski, A; Tommassen, J; Filloux, A
2001-02-01
Pseudomonas aeruginosa and Pseudomonas alcaligenes are gram-negative bacteria that secrete proteins using the type II or general secretory pathway, which requires at least 12 xcp gene products (XcpA and XcpP to -Z). Despite strong conservation of this secretion pathway, gram-negative bacteria usually cannot secrete exoproteins from other species. Based on results obtained with Erwinia, it has been proposed that the XcpP and/or XcpQ homologs determine this secretion specificity (M. Linderberg, G. P. Salmond, and A. Collmer, Mol. Microbiol. 20:175-190, 1996). In the present study, we report that XcpP and XcpQ of P. alcaligenes could not substitute for their respective P. aeruginosa counterparts. However, these complementation failures could not be correlated to species-specific recognition of exoproteins, since these bacteria could secrete exoproteins of each other. Moreover, when P. alcaligenes xcpP and xcpQ were expressed simultaneously in a P. aeruginosa xcpPQ deletion mutant, complementation was observed, albeit only on agar plates and not in liquid cultures. After growth in liquid culture the heat-stable P. alcaligenes XcpQ multimers were not detected, whereas monomers were clearly visible. Together, our results indicate that the assembly of a functional Xcp machinery requires species-specific interactions between XcpP and XcpQ and between XcpP or XcpQ and another, as yet uncharacterized component(s).
Weston, Michael D.; Luijendijk, Mirjam W. J.; Humphrey, Kurt D.; Möller, Claes; Kimberling, William J.
2004-01-01
Usher syndrome type II (USH2) is a genetically heterogeneous autosomal recessive disorder with at least three genetic subtypes (USH2A, USH2B, and USH2C) and is classified phenotypically as congenital hearing loss and progressive retinitis pigmentosa. The VLGR1 (MASS1) gene in the 5q14.3-q21.1 USH2C locus was considered a likely candidate on the basis of its protein motif structure and expressed-sequence-tag representation from both cochlear and retinal subtracted libraries. Denaturing high-performance liquid chromatography and direct sequencing of polymerase-chain-reaction products amplified from 10 genetically independent patients with USH2C and 156 other patients with USH2 identified four isoform-specific VLGR1 mutations (Q2301X, I2906FS, M2931FS, and T6244X) from three families with USH2C, as well as two sporadic cases. All patients with VLGR1 mutations are female, a significant deviation from random expectations. The ligand(s) for the VLGR1 protein is unknown, but on the basis of its potential extracellular and intracellular protein-protein interaction domains and its wide mRNA expression profile, it is probable that VLGR1 serves diverse cellular and signaling processes. VLGR1 mutations have been previously identified in both humans and mice and are associated with a reflex-seizure phenotype in both species. The identification of additional VLGR1 mutations to test whether a phenotype/genotype correlation exists, akin to that shown for other Usher syndrome disease genes, is warranted. PMID:14740321
Catone, Mariela V.; Ruiz, Jimena A.; Castellanos, Mildred; Segura, Daniel; Espin, Guadalupe; López, Nancy I.
2014-01-01
Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB), a short chain length polyhydroxyalkanoate (sclPHA) infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA). All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI) associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC) in comparison with the mclPHA core genome genes (phaC1 and phaC2) indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases. PMID:24887088
Parvovirus B19 induced lupus-like syndrome with nephritis.
Georges, Elodie; Rihova, Zuzana; Cmejla, Radek; Decleire, Pierre-Yves; Langen, Corinne
2016-12-01
We report a case of a 65-year-old man who developed an acute illness with fever, arthralgia and nephritic syndrome. Antinuclear antibodies were slightly positive and complement levels were low. Renal biopsy showed exudative diffuse proliferative endocapillary glomerulonephritis with diffuse immunoglobulin (IgG, IgA, IgM) and complement deposition (C3d, C4d, C1q) on immunofluorescence. The patient was first treated with corticosteroids and mycophenolate mofetil for suspected lupus with WHO class IV glomerulonephritis. The diagnosis was questioned and a diagnosis of parvovirus B19-associated nephritis was made based on elevation of serum IgM antibodies for parvovirus B19 and detection of parvovirus B19 DNA on renal biopsy. The immunosuppressive treatment was stopped and progressive spontaneous regression of clinical and laboratory abnormalities was observed. We conclude that human parvovirus B19 infection should be considered as a cause of lupus-like symptomatology and acute glomerulonephritis.
Lohman, Rink-Jan; Hamidon, Johan K; Reid, Robert C; Rowley, Jessica A; Yau, Mei-Kwan; Halili, Maria A; Nielsen, Daniel S; Lim, Junxian; Wu, Kai-Chen; Loh, Zhixuan; Do, Anh; Suen, Jacky Y; Iyer, Abishek; Fairlie, David P
2017-08-24
Complement C3a is an important protein in innate and adaptive immunity, but its specific roles in vivo remain uncertain because C3a degrades rapidly to form the C3a-desArg protein, which does not bind to the C3a receptor and is indistinguishable from C3a using antibodies. Here we develop the most potent, stable and highly selective small molecule modulators of C3a receptor, using a heterocyclic hinge to switch between agonist and antagonist ligand conformations. This enables characterization of C3 areceptor-selective pro- vs. anti-inflammatory actions in human mast cells and macrophages, and in rats. A C3a receptor-selective agonist induces acute rat paw inflammation by first degranulating mast cells before activating macrophages and neutrophils. An orally administered C3a receptor-selective antagonist inhibits mast cell degranulation, thereby blocking recruitment and activation of macrophages and neutrophils, expression of inflammatory mediators and inflammation in a rat paw edema model. These novel tools reveal the mechanism of C3a-induced inflammation and provide new insights to complement-based medicines.Complement C3a is an important protein in innate and adaptive immunity, but its roles in vivo are unclear. Here the authors develop novel chemical agonists and antagonists for the C3a receptor, and show that they modulate mast cell degranulation and inflammation in a rat paw edema model.
Structural characterization of the Man5 glycoform of human IgG3 Fc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Ishan S.; Lovell, Scott; Mehzabeen, Nurjahan
Immunoglobulin G (IgG) consists of four subclasses in humans: IgG1, IgG2, IgG3 and IgG4, which are highly conserved but have unique differences that result in subclass-specific effector functions. Though IgG1 is the most extensively studied IgG subclass, study of other subclasses is important to understand overall immune function and for development of new therapeutics. When compared to IgG1, IgG3 exhibits a similar binding profile to Fcγ receptors and stronger activation of complement. All IgG subclasses are glycosylated at N297, which is required for Fcγ receptor and C1q complement binding as well as maintaining optimal Fc conformation. We have determined themore » crystal structure of homogenously glycosylated human IgG3 Fc with a GlcNAc2Man5 (Man5) high mannose glycoform at 1.8 Å resolution and compared its structural features with published structures from the other IgG subclasses. Although the overall structure of IgG3 Fc is similar to that of other subclasses, some structural perturbations based on sequence differences were revealed. For instance, the presence of R435 in IgG3 (and H435 in the other IgG subclasses) has been implicated to result in IgG3-specific properties related to binding to protein A, protein G and the neonatal Fc receptor (FcRn). The IgG3 Fc structure helps to explain some of these differences. Additionally, protein-glycan contacts observed in the crystal structure appear to correlate with IgG3 affinity for Fcγ receptors as shown by binding studies with IgG3 Fc glycoforms. Finally, this IgG3 Fc structure provides a template for further studies aimed at engineering the Fc for specific gain of function.« less
Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori
2016-05-01
ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells. © 2016 Federation of European Biochemical Societies.
Krieter, Detlef H; Morgenroth, Andreas; Barasinski, Artur; Lemke, Horst-Dieter; Schuster, Oliver; von Harten, Bodo; Wanner, Christoph
2007-02-01
Improving the sieving characteristics of dialysis membranes enhances the clearance of low-molecular-weight (LMW) proteins and may have an impact on outcome in patients receiving haemodialysis. To approach this goal, a novel polyelectrolyte additive process was applied to a polyethersulphone (PES) membrane. Polyelectrolyte-modified PES was characterized in vitro by measuring complement activation and sieving coefficients of cytochrome c and serum albumin. In a prospective, randomized, cross-over study, instantaneous plasma water clearances and reduction rates of LMW proteins [beta(2)-microglobulin (b2m), cystatin c, myoglobin, retinol binding protein] were determined in eight patients receiving dialysis treatment with PES in comparison with polysulphone (PSU). Biocompatibility was assessed by determination of transient leucopenia, plasma levels of complement C5a, thrombin-antithrombin III (TAT), myeloperoxidase (MPO) and elastase (ELT). PES showed a steeper sieving profile and lower complement activation in vitro compared with PSU. Instantaneous clearance (69 +/- 8 vs. 58 +/- 3 ml/min; P < 0.001) and reduction rate (72.3 +/- 1 5% vs 66.2 +/- 6.1%; P < 0.001) of b2m were significantly higher with PES as compared with PSU. With higher molecular weight of proteins, differences in the solute removal between PES and PSU further increased, whereas albumin loss remained low (PES, 0.53 +/- 0.17 vs PSU, <0.22 g/dialysis). MPO, ELT and TAT did not differ between the two membranes. In contrast, leucopenia was less pronounced and C5a generation was significantly lower during dialysis with PES. Polyelectrolyte modification of PES results in a higher LMW protein removal and in optimized biocompatibility. Whether these findings translate into better outcome of patients receiving haemodialysis requires further studies.
Juneau, Andrea D.; Frankel, Laurie K.; Bricker, Terry M.; ...
2016-09-22
Here, the CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II), but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 tomore » eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S) resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juneau, Andrea D.; Frankel, Laurie K.; Bricker, Terry M.
Here, the CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II), but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 tomore » eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S) resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex.« less
Pizarro-Cerdá, Javier; Sousa, Sandra; Cossart, Pascale
2004-02-01
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection is a key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor C1q (gC1q-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans (including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells, including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis.
Genetic basis of human complement C8[beta] deficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, T.; Rittner, C.; Schneider, P.M.
1993-06-01
The eighth component of human complement (c8) is a serum protein consisting of three chains ([alpha], [beta], and [gamma]) and encoded by three different genes, C8A, C8B, and C8G. C8A and C8B are closely linked on chromosome 1p, whereas C8G is located on chromosome 9q. In the serum the [beta] subunit is non-covalently bound to the disulfide-linked [alpha]-[gamma] subunit. Patients with C8[beta] deficiency suffer from recurrent neisserial infections such as meningitis. Exon-specific polymerase chain reaction (PCR) amplification with primer pairs from the flanking intron sequences was used to amplify all 12 C8B exons separately. No difference regarding the exon sizesmore » was observed in a C8[beta]-deficient patient compared with a normal person. Therefore, direct sequence analysis of all exon-specific PCR products from normal and C8[beta]-deficient individuals was carried out. As a cause for C8[beta] deficiency, we found a single C-T exchange in exon 9 leading to a stop codon. An allele-specific PCR system was designed to detect the normal and the deficiency allele simultaneously. Using this approach as well as PCR typing of the Taql polymorphism located in intron 11, five families with 7 C8[beta]-deficient members were investigated. The mutation was not found to be restricted to one of the two Taql RFLP alleles. The mutant allele was observed in all families investigated and can therefore be regarded as a major cause of C8[beta] deficiency in the Caucasian population. In addition, two C8[beta]-deficient patients were found to be heterozygous for the C-T exchange. The molecular basis of the alleles without this point mutation also causing deficiency has not yet been defined. 23 refs., 4 figs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saar, K.; Stumm, M.; Wegner, R.D.
1997-03-01
Nijmegen breakage syndrome (NBS; Seemanova II syndrome) and Berlin breakage syndrome (BBS), also known as ataxia-telangiectasia variants, are two clinically indistinguishable autosomal recessive familial cancer syndromes that share with ataxia-telangiectasia similar cellular, immunological, and chromosomal but not clinical findings. Classification in NBS and BBS was based on complementation of their hypersensitivity to ionizing radiation in cell-fusion experiments. Recent investigations have questioned the former classification into two different disease entities, suggesting that NBS/BBS is caused by mutations in a single radiosensitivity gene. We now have performed a whole-genome screen in 14 NBS/BBS families and have localized the gene for NBS/BBS tomore » a 1-cM interval on chromosome 8q21, between markers D8S271 and D8S270, with a peak LOD score of 6.86 at D8S1811. This marker also shows strong allelic association to both Slavic NBS and German BBS patients, suggesting the existence of one major mutation of Slavic origin. Since the same allele is seen in both former complementation groups, genetic homogeneity of NBS/BBS can be considered as proved. 21 refs., 2 figs., 2 tabs.« less
Complement Evasion Strategies of Viruses: An Overview
Agrawal, Palak; Nawadkar, Renuka; Ojha, Hina; Kumar, Jitendra; Sahu, Arvind
2017-01-01
Being a major first line of immune defense, the complement system keeps a constant vigil against viruses. Its ability to recognize large panoply of viruses and virus-infected cells, and trigger the effector pathways, results in neutralization of viruses and killing of the infected cells. This selection pressure exerted by complement on viruses has made them evolve a multitude of countermeasures. These include targeting the recognition molecules for the avoidance of detection, targeting key enzymes and complexes of the complement pathways like C3 convertases and C5b-9 formation – either by encoding complement regulators or by recruiting membrane-bound and soluble host complement regulators, cleaving complement proteins by encoding protease, and inhibiting the synthesis of complement proteins. Additionally, viruses also exploit the complement system for their own benefit. For example, they use complement receptors as well as membrane regulators for cellular entry as well as their spread. Here, we provide an overview on the complement subversion mechanisms adopted by the members of various viral families including Poxviridae, Herpesviridae, Adenoviridae, Flaviviridae, Retroviridae, Picornaviridae, Astroviridae, Togaviridae, Orthomyxoviridae and Paramyxoviridae. PMID:28670306
Nosé-Thermostated Mechanical Systems on the n-Torus
NASA Astrophysics Data System (ADS)
Butler, Leo T.
2018-02-01
Let {H(q,p) = 1/2{allel p allel}^2 + V(q)} be an n-degree of freedom C r mechanical Hamiltonian on {T^{*}{T}^n} where {r > 2n+2}. When the metric {{allel \\cdot allel}} is flat, the Nosé-thermostated system associated to H is shown to have a positive-measure set of invariant tori near the infinite temperature limit. This is shown to be true for all variable mass thermostats similar to Nosé's, too. These results complement results of Bulter (Nonlinearity 11(29):3454-3463, 2016), Legoll et al. (Arch Ration Mech Anal 184(3):449-463, 2007, Nonlinearity 22(7):1673-1694, 2009).
Complement Activation in Relation to Capillary Leakage in Children with Septic Shock and Purpura
Hazelzet, Jan A.; de Groot, Ronald; van Mierlo, Gerard; Joosten, Koen F. M.; van der Voort, Edwin; Eerenberg, Anke; Suur, Marja H.; Hop, Wim C. J.; Hack, C. Erik
1998-01-01
To assess the relationship between capillary leakage and inflammatory mediators during sepsis, blood samples were taken on hospital admission, as well as 24 and 72 h later, from 52 children (median age, 3.3 years) with severe meningococcal sepsis, of whom 38 survived and 14 died. Parameters related to cytokines (interleukin 6 [IL-6] IL-8, plasma phospholipase A2, and C-reactive protein [CRP]), to neutrophil degranulation (elastase and lactoferrin), to complement activation (C3a, C3b/c, C4b/c, and C3- and C4-CRP complexes), and to complement regulation (functional and inactivated C1 inhibitor and C4BP) were determined. The degree of capillary leakage was derived from the amount of plasma infused and the severity of disease by assessing the pediatric risk of mortality (PRISM) score. Levels of IL-6, IL-8, C3b/c, C3-CRP complexes, and C4BP on admission, adjusted for the duration of skin lesions, were significantly different in survivors and nonsurvivors (C3b/c levels were on average 2.2 times higher in nonsurvivors, and C3-CRP levels were 1.9 times higher in survivors). Mortality was independently related to the levels of C3b/c and C3-CRP complexes. In agreement with this, levels of complement activation products correlated well with the PRISM score or capillary leakage. Thus, these data show that complement activation in patients with severe meningococcal sepsis is associated with a poor outcome and a more severe disease course. Further studies should reveal whether complement activation may be a target for therapeutical intervention in this disease. PMID:9784543
Scheffler, Tracy L; Park, Sungkwon; Roach, Peter J; Gerrard, David E
2016-06-01
Chronic activation of AMP-activated protein kinase (AMPK) increases glycogen content in skeletal muscle. Previously, we demonstrated that a mutation in the ryanodine receptor (RyR1(R615C)) blunts AMPK phosphorylation in longissimus muscle of pigs with a gain of function mutation in the AMPKγ3 subunit (AMPKγ3(R200Q)); this may decrease the glycogen storage capacity of AMPKγ3(R200Q) + RyR1(R615C) muscle. Therefore, our aim in this study was to utilize our pig model to understand how AMPKγ3(R200Q) and AMPK activation contribute to glycogen storage and metabolism in muscle. We selected and bred pigs in order to generate offspring with naturally occurring AMPKγ3(R200Q), RyR1(R615C), and AMPKγ3(R200Q) + RyR1(R615C) mutations, and also retained wild-type littermates (control). We assessed glycogen content and parameters of glycogen metabolism in longissimus muscle. Regardless of RyR1(R615C), AMPKγ3(R200Q) increased the glycogen content by approximately 70%. Activity of glycogen synthase (GS) without the allosteric activator glucose 6-phosphate (G6P) was decreased in AMPKγ3(R200Q) relative to all other genotypes, whereas both AMPKγ3(R200Q) and AMPKγ3(R200Q) + RyR1(R615C) muscle exhibited increased GS activity with G6P. Increased activity of GS with G6P was not associated with increased abundance of GS or hexokinase 2. However, AMPKγ3(R200Q) enhanced UDP-glucose pyrophosphorylase 2 (UGP2) expression approximately threefold. Although UGP2 is not generally considered a rate-limiting enzyme for glycogen synthesis, our model suggests that UGP2 plays an important role in increasing flux to glycogen synthase. Moreover, we have shown that the capacity for glycogen storage is more closely related to the AMPKγ3(R200Q) mutation than activity. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Kouser, Lubna; Paudyal, Basudev; Kaur, Anuvinder; Stenbeck, Gudrun; Jones, Lucy A.; Abozaid, Suhair M.; Stover, Cordula M.; Flahaut, Emmanuel; Sim, Robert B.; Kishore, Uday
2018-01-01
Development of nanoparticles as tissue-specific drug delivery platforms can be considerably influenced by the complement system because of their inherent pro-inflammatory and tumorigenic consequences. The complement activation pathways, and its recognition subcomponents, can modulate clearance of the nanoparticles and subsequent inflammatory response and thus alter the intended translational applications. Here, we report, for the first time, that human properdin, an upregulator of the complement alternative pathway, can opsonize functionalized carbon nanotubes (CNTs) via its thrombospondin type I repeat (TSR) 4 and 5. Binding of properdin and TSR4+5 is likely to involve charge pattern/polarity recognition of the CNT surface since both carboxymethyl cellulose-coated carbon nanotubes (CMC-CNT) and oxidized (Ox-CNT) bound these proteins well. Properdin enhanced the uptake of CMC-CNTs by a macrophage cell line, THP-1, mounting a robust pro-inflammatory immune response, as revealed by qRT-PCR, multiplex cytokine array, and NF-κB nuclear translocation analyses. Properdin can be locally synthesized by immune cells in an inflammatory microenvironment, and thus, its interaction with nanoparticles is of considerable importance. In addition, recombinant TSR4+5 coated on the CMC-CNTs inhibited complement consumption by CMC-CNTs, suggesting that nanoparticle decoration with TSR4+5, can be potentially used as a complement inhibitor in a number of pathological contexts arising due to exaggerated complement activation. PMID:29483907
Deletion of degQ gene enhances outer membrane vesicle production of Shewanella oneidensis cells.
Ojima, Yoshihiro; Mohanadas, Thivagaran; Kitamura, Kosei; Nunogami, Shota; Yajima, Reiki; Taya, Masahito
2017-04-01
Shewanella oneidensis is a Gram-negative facultative anaerobe that can use a wide variety of terminal electron acceptors for anaerobic respiration. In this study, S. oneidensis degQ gene, encoding a putative periplasmic serine protease, was cloned and expressed. The activity of purified DegQ was inhibited by diisopropyl fluorophosphate, a typical serine protease-specific inhibitor, indicating that DegQ is a serine protease. In-frame deletion and subsequent complementation of the degQ were carried out to examine the effect of envelope stress on the production of outer membrane vesicles (OMVs). Analysis of periplasmic proteins from the resulting S. oneidensis strain showed that deletion of degQ induced protein accumulation and resulted in a significant decrease in protease activity within the periplasmic space. OMVs from the wild-type and mutant strains were purified and observed by transmission electron microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the OMVs showed a prominent band at ~37 kDa. Nanoliquid chromatography-tandem mass spectrometry analysis identified three outer membrane porins (SO3896, SO1821, and SO3545) as dominant components of the band, suggesting that these proteins could be used as indices for comparing OMV production by S. oneidensis strains. Quantitative evaluation showed that degQ-deficient cells had a fivefold increase in OMV production compared with wild-type cells. Thus, the increased OMV production following the deletion of DegQ in S. oneidensis may be responsible for the increase in envelope stress.
Paulmurugan, R; Gambhir, S S
2003-04-01
In this study we developed an inducible synthetic renilla luciferase protein-fragment-assisted complementation-based bioluminescence assay to quantitatively measure real time protein-protein interactions in mammalian cells. We identified suitable sites to generate fragments of N and C portions of the protein that yield significant recovered activity through complementation. We validate complementation-based activation of split synthetic renilla luciferase protein driven by the interaction of two strongly interacting proteins, MyoD and Id, in five different cell lines utilizing transient transfection studies. The expression level of the system was also modulated by tumor necrosis factor alpha through NFkappaB-promoter/enhancer elements used to drive expression of the N portion of synthetic renilla luciferase reporter gene. This new system should help in studying protein-protein interactions and when used with other split reporters (e.g., split firefly luciferase) should help to monitor different components of an intracellular network.
Li, Mo-Fei; Li, Jun; Sun, Li
2016-12-23
In teleost fish, the immune functions of mannan-binding lectin (MBL) associated protein (MAP) and MBL associated serine protease (MASP) are scarcely investigated. In the present study, we examined the biological properties both MAP (CsMAP34) and MASP (CsMASP1) molecules from tongue sole (Cynoglossus semilaevis). We found that CsMAP34 and CsMASP1 expressions occurred in nine different tissues and were upregulated by bacterial challenge. CsMAP34 protein was detected in blood, especially during bacterial infection. Recombinant CsMAP34 (rCsMAP34) bound C. semilaevis MBL (rCsBML) when the latter was activated by bacteria, while recombinant CsMASP1 (rCsMASP1) bound activated rCsBML only in the presence of rCsMAP34. rCsMAP34 stimulated the hemolytic and bactericidal activities of serum complement, whereas anti-CsMAP34 antibody blocked complement activities. Knockdown of CsMASP1 in C. semilaevis resulted in significant inhibition of complement activities. Furthermore, rCsMAP34 interacted directly with peripheral blood leukocytes (PBL) and enhanced the respiratory burst, acid phosphatase activity, chemotactic activity, and gene expression of PBL. These results indicate for the first time that a teleost MAP acts one hand as a regulator that promotes the lectin pathway of complement activation via its ability to recruit MBL to MASP, and other hand as a modulator of immune cell activity.
Chang, Yi; Huang, Shu-Kuei; Wang, Su-Jane
2012-12-05
This study investigates the effects and possible mechanism of coenzyme Q10 (CoQ10) on endogenous glutamate release in the cerebral cortex nerve terminals of rats. CoQ10 inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). CoQ10 reduced the depolarization-induced increase in cytosolic [Ca2+]c but did not alter the 4-AP-mediated depolarization. The effect of CoQ10 on evoked glutamate release was abolished by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels and mitogen-activated protein kinase kinase (MEK). In addition, CoQ10 decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK. Moreover, the inhibition of glutamate release by CoQ10 was strongly attenuated in mice without synapsin I. These results suggest that CoQ10 inhibits glutamate release from cortical synaptosomes in rats through the suppression of the presynaptic voltage-dependent Ca2+ entry and ERK/synapsin I signaling pathway.
Complement research in the 18th-21st centuries: Progress comes with new technology.
Sim, R B; Schwaeble, W; Fujita, T
2016-10-01
The complement system has been studied for about 120 years. Progress in defining this large and complex system has been dependent on the research technologies available, but since the introduction of protein chromatography, electrophoresis, and antibody-based assay methods in the 1950s and 60s, and sequencing of proteins and DNA in the 70s and 80s, there has been very rapid accumulation of data. With more recent improvements in 3D structure determination (nmr and X-ray crystallography), the structures of most of the complement proteins have now been solved. Complement research since 1990 has been greatly stimulated by the discoveries of the multiple proteins in the lectin pathway, the strong association of Factor H, C3, Factor B allelic variants with adult macular degeneration and atypical haemolytic uremic syndrome, and the introduction of the anti-C5 monoclonal antibody as a therapy for paroxysmal nocturnal hemoglobinuria and atypical haemolytic uremic syndrome. Potential new roles for complement in tissue development and the search for novel therapeutics suggest a very active future for complement research. Copyright © 2016 Elsevier GmbH. All rights reserved.
Huang, Wu-Yang; Fu, Lin; Li, Chun-Yang; Xu, Li-Ping; Zhang, Li-Xia; Zhang, Wei-Min
2017-05-01
In recent years, the blueberry cultivation and processing industry developed quickly because blueberries are super-fruit with healthy function. Blueberry leaves are byproducts of the blueberry industry, which are rich in bioactive phenolics, such as quercetin (Q), hyperin (H), and chlorogenic acid (C). This study investigated protective effects of 3 phenolics (Q, H, and C) from leaves of rabbiteye blueberry Vaccinium ashei on human umbilical vein endothelial cells. The results showed that all these 3 phenolics could improve endothelial function by inhibiting oxidative damage and proinflammatory cytokines caused by tumor necrosis factor-α (TNF-α). The cell vitalities of endothelial cells pretreated with Q, H, and C were higher than those stimulated with TNF-α only. These phenolics could decrease reactive oxygen species and xanthine oxidase-1 levels and increase superoxide dismutase and heme oxygenase-1 levels in endothelial cells. They also could decrease the protein expressions of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and monocyte chemotactic protein-1 induced by TNF-α. In addition, Q, H, and C also exhibited vasodilatory effect by reducing the angiotensin I-converting enzyme (ACE) protein levels in endothelial cells. Mostly 3 phenolics exhibited bioactivities as a function of concentration, but the effects not always depended on the concentration. The antioxidant and antiinflammatory effects of Q seemed to be more pronounced than H; however, H exhibited higher cell vitalities. The results indicated that phenolics from rabbiteye blueberry leaves could be potential antioxidants, inflammation and ACE inhibitors, and rabbiteye blueberry leaves provide a new resources of phytochemicals beneficial for cardiovascular health. © 2017 Institute of Food Technologists®.
Zhang, Zhifei; Yang, Jing; Wei, Junfei; Yang, Yaping; Chen, Xiaoqin; Zhao, Xi; Gu, Yuan; Cui, Shijuan; Zhu, Xinping
2011-01-01
Background Paramyosin is a thick myofibrillar protein found exclusively in invertebrates. Evidence suggested that paramyosin from helminths serves not only as a structural protein but also as an immunomodulatory agent. We previously reported that recombinant Trichinella spiralis paramyosin (Ts-Pmy) elicited a partial protective immunity in mice. In this study, the ability of Ts-Pmy to bind host complement components and protect against host complement attack was investigated. Methods and Findings In this study, the transcriptional and protein expression levels of Ts-Pmy were determined in T. spiralis newborn larva (NBL), muscle larva (ML) and adult worm developmental stages by RT-PCR and western blot analysis. Expression of Ts-Pmy at the outer membrane was observed in NBL and adult worms using immunogold electron microscopy and immunofluorescence staining. Functional analysis revealed that recombinant Ts-Pmy(rTs-Pmy) strongly bound to complement components C8 and C9 and inhibited the polymerization of C9 during the formation of the membrane attack complex (MAC). rTs-Pmy also inhibited the lysis of rabbit erythrocytes (ER) elicited by an alternative pathway-activated complement from guinea pig serum. Inhibition of native Ts-Pmy on the surface of NBL with a specific antiserum reduced larvae viability when under the attack of complement in vitro. In vivo passive transfer of anti-Ts-Pmy antiserum and complement-treated larvae into mice also significantly reduced the number of larvae that developed to ML. Conclusion These studies suggest that the outer membrane form of T. spiralis paramyosin plays an important role in the evasion of the host complement attack. PMID:21750743
Expression of Wild-Type Rp1 Protein in Rp1 Knock-in Mice Rescues the Retinal Degeneration Phenotype
Liu, Qin; Collin, Rob W. J.; Cremers, Frans P. M.; den Hollander, Anneke I.; van den Born, L. Ingeborgh; Pierce, Eric A.
2012-01-01
Mutations in the retinitis pigmentosa 1 (RP1) gene are a common cause of autosomal dominant retinitis pigmentosa (adRP), and have also been found to cause autosomal recessive RP (arRP) in a few families. The 33 dominant mutations and 6 recessive RP1 mutations identified to date are all nonsense or frameshift mutations, and almost exclusively (38 out of 39) are located in the 4th and final exon of RP1. To better understand the underlying disease mechanisms of and help develop therapeutic strategies for RP1 disease, we performed a series of human genetic and animal studies using gene targeted and transgenic mice. Here we report that a frameshift mutation in the 3rd exon of RP1 (c.686delC; p.P229QfsX35) found in a patient with recessive RP1 disease causes RP in the homozygous state, whereas the heterozygous carriers are unaffected, confirming that haploinsufficiency is not the causative mechanism for RP1 disease. We then generated Rp1 knock-in mice with a nonsense Q662X mutation in exon 4, as well as Rp1 transgenic mice carrying a wild-type BAC Rp1 transgene. The Rp1-Q662X allele produces a truncated Rp1 protein, and homozygous Rp1-Q662X mice experience a progressive photoreceptor degeneration characterized disorganization of photoreceptor outer segments. This phenotype could be prevented by expression of a normal amount of Rp1 protein from the BAC transgene without removal of the mutant Rp1-Q662X protein. Over-expression of Rp1 protein in additional BAC Rp1 transgenic lines resulted in retinal degeneration. These findings suggest that the truncated Rp1-Q662X protein does not exert a toxic gain-of-function effect. These results also imply that in principle gene augmentation therapy could be beneficial for both recessive and dominant RP1 patients, but the levels of RP1 protein delivered for therapy will have to be carefully controlled. PMID:22927954
Gene for ataxia-telangiectasia complementation group D (ATDC)
Murnane, J.P.; Painter, R.B.; Kapp, L.N.; Yu, L.C.
1995-03-07
Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for the gene are provided as well as proteins encoded by the gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of the proteins. Further disclosed are methods to detect mutations in the gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups. 30 figs.
Comparative Salivary Proteome of Hepatitis B- and C-Infected Patients
Gonçalves, Lorena Da Rós; Campanhon, Isabele Batista; Domingues, Romênia R.; Paes Leme, Adriana F.; Soares da Silva, Márcia Regina
2014-01-01
Hepatitis B and C virus (HBV and HCV) infections are an important cause of cirrhosis and hepatocellular carcinoma. The natural history has a prominent latent phase, and infected patients may remain undiagnosed; this situation may lead to the continuing spread of these infections in the community. Compelling reasons exist for using saliva as a diagnostic fluid because it meets the demands of being an inexpensive, noninvasive and easy-to-use diagnostic method. Indeed, comparative analysis of the salivary proteome using mass spectrometry is a promising new strategy for identifying biomarkers. Our goal is to apply an Orbitrap-based quantitative approach to explore the salivary proteome profile in HBV- and HCV-infected patients. In the present study, whole saliva was obtained from 20 healthy, (control) 20 HBV-infected and 20 HCV-infected subjects. Two distinct pools containing saliva from 10 subjects of each group were obtained. The samples were ultracentrifuged and fractionated, and all fractions were hydrolyzed (trypsin) and injected into an LTQ-VELOS ORBITRAP. The identification and analyses of peptides were performed using Proteome Discoverer1.3 and ScaffoldQ + v.3.3.1. From a total of 362 distinct proteins identified, 344 proteins were identified in the HBV, 326 in the HCV and 303 in the control groups. Some blood proteins, such as flavin reductase (which converts biliverdin to bilirubin), were detected only in the HCV group. The data showed a reduced presence of complement C3, ceruloplasmin, alpha(1)-acid glycoprotein and alpha(2)-acid glycoprotein in the hepatitis-infected patients. Peptides of serotransferrin and haptoglobin were less detected in the HCV group. This study provides an integrated perspective of the salivary proteome, which should be further explored in future studies targeting specific disease markers for HBV and HCV infection. PMID:25423034
Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J; Patz, Edward F; Li, Shi-You; He, You-Wen
2016-09-01
In contrast to its inhibitory effects on many cells, IL10 activates CD8(+) tumor-infiltrating lymphocytes (TIL) and enhances their antitumor activity. However, CD8(+) TILs do not routinely express IL10, as autocrine complement C3 inhibits IL10 production through complement receptors C3aR and C5aR. CD8(+) TILs from C3-deficient mice, however, express IL10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T-cell- and IL10-dependent manner; human TILs expanded with IL2 plus IL10 increase the killing of primary tumors in vitro compared with IL2-treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8(+) TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. Our data suggest novel strategies to enhance immunotherapies: a combined blockade of complement signaling by antagonists to C3aR, C5aR, and anti-PD-1 to enhance anti-PD-1 efficacy; a targeted IL10 delivery to CD8(+) TILs using anti-PD-1-IL10 or anti-CTLA4-IL10 fusion proteins; and the addition of IL10 in TIL expansion for adoptive cellular therapy. Cancer Discov; 6(9); 1022-35. ©2016 AACR.See related commentary by Peng et al., p. 953This article is highlighted in the In This Issue feature, p. 932. ©2016 American Association for Cancer Research.
Role of Complement in Red Cell Dysfunction in Trauma
2013-12-01
fragmentation 2. Erythrocyte membrane has there major components: 1) membrane proteins, that are either transmembrane or attached to the plasma membrane...through GPI- or lipid-anchors (glycophorins, CD47, CR1, band 3, CD55, CD59, flotillin, stomatin etc.) 2) skeletal proteins, located below the plasma ...glycophorin C with spectrin skeleton 3. More recently, adducin and dematin have also been implicated in linking plasma membrane protein Glut-1
Schönermark, S; Filsinger, S; Berger, B; Hänsch, G M
1988-01-01
C8-binding protein is an intrinsic membrane protein of the human erythrocyte. It inhibits the complement (C5b-9)-mediated lysis in a species-restricting manner. In the present study we incorporated C8bp, isolated from human erythrocytes, into sheep erythrocytes (SRBC). SRBC, normally sensitive to lysis by human C5b-9, became insensitive to lysis. Furthermore, we found that C8bp is incorporated into the membrane-attack complex C5b-9, most probably by interacting with C8, since C8bp has an affinity for C8, particularly for the C8 alpha-gamma-subunit. Antibodies to C8bp react with the C8 alpha-subunits and with C9, pointing to the possibility of a partial homology between these proteins. Images Figure 4 Figure 6 Figure 7 PMID:3366469
Kang, Yuan; Dong, Xinran; Zhou, Qiongjie; Zhang, Ying; Cheng, Yan; Hu, Rong; Su, Cuihong; Jin, Hong; Liu, Xiaohui; Ma, Duan; Tian, Weidong; Li, Xiaotian
2012-03-01
This study aimed to identify candidate protein biomarkers from maternal serum for Down syndrome (DS) by integrated proteomic and bioinformatics analysis. A pregnancy DS group of 18 women and a control group with the same number were prepared, and the maternal serum proteins were analyzed by isobaric tags for relative and absolute quantitation and mass spectrometry, to identify DS differentially expressed maternal serum proteins (DS-DEMSPs). Comprehensive bioinformatics analysis was then employed to analyze DS-DEMSPs both in this paper and seven related publications. Down syndrome differentially expressed maternal serum proteins from different studies are significantly enriched with common Gene Ontology functions, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, transcription factor binding sites, and Pfam protein domains, However, the DS-DEMSPs are less functionally related to known DS-related genes. These evidences suggest that common molecular mechanisms induced by secondary effects may be present upon DS carrying. A simple scoring scheme revealed Alpha-2-macroglobulin, Apolipoprotein A1, Apolipoprotein E, Complement C1s subcomponent, Complement component 5, Complement component 8, alpha polypeptide, Complement component 8, beta polypeptide and Fibronectin as potential DS biomarkers. The integration of proteomics and bioinformatics studies provides a novel approach to develop new prenatal screening methods for noninvasive yet accurate diagnosis of DS. Copyright © 2012 John Wiley & Sons, Ltd.
Shpakovskiĭ, G V; Lebedenko, E N; Thuriaux, P
1997-02-01
The rpb10 cDNA of the fission yeast Schizosaccharomyces pombe, encoding one of the five small subunits common to all three nuclear DNA-dependent RNA polymerases, was isolated from an expression cDNA library by two independent approaches: PCR-based screening and direct suppression by means of heterospecific complementation of a temperature-sensitive mutant defective in the corresponding gene of Saccharomyces cerevisiae. The cloned Sz. pombe cDNA encodes a protein Rpb10 of 71 amino acids with an M of 8,275 Da, sharing 51 amino acids (71% identity) with the subunit ABC10 beta of RNA polymerases I-III from S. cerevisiae. All eukaryotic members of this protein family have the same general organization featuring two highly conserved motifs (RCFT/SCGK and RYCCRRM) around an atypical zinc finger and an additional invariant HVDLIEK motif toward the C-terminal end. The last motif is only characteristics for homologs from eukaryotes. In keeping with this remarkable structural conservation, the Sz. pombe cDNA also fully complemented a S. cerevisiae deletion mutant lacking subunit ABC10 beta (null allele rpb10-delta 1::HIS3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, B.J.; Long, L.; Pettenati, M.J.
Messenger RNAs encoding many oncoproteins and cytokines are relatively unstable. Their instability, which ensures appropriate levels and timing of expression, is controlled in part by proteins that bind to A + U-rich instability elements (AREs) present in the 3{prime}-untranslated regions of the mRNAs. cDNAs encoding the AUF1 family of ARE-binding proteins were cloned from human and murine cDNA libraries. In the present study monochromosomal somatic cell hybrids were used to localize two AUF1 loci to human chromosomes 4 and X. In situ hybridization analyses using P1 clones as probes identified the 4q21.1-q21.2 and Xq12 regions as the locations of themore » AUF1 genes. 10 refs., 2 figs.« less
Functional characterization of two flap endonuclease-1 homologues in rice.
Kimura, Seisuke; Furukawa, Tomoyuki; Kasai, Nobuyuki; Mori, Yoko; Kitamoto, Hiroko K; Sugawara, Fumio; Hashimoto, Junji; Sakaguchi, Kengo
2003-09-18
Flap endonuclease-1 (FEN-1) is an important enzyme involved in DNA replication and repair. Previously, we isolated and characterized a complementary DNA (cDNA) from rice (Oryza sativa) encoding a protein which shows homology with the eukaryotic flap endonuclease-1 (FEN-1). In this report, we found that rice (O. sativa L. cv. Nipponbare) possessed two FEN-1 homologues designated as OsFEN-1a and OsFEN-1b. The OsFEN-1a and OsFEN-1b genes were mapped to chromosome 5 and 3, respectively. Both genes contained 17 exons and 16 introns. Alignment of OsFEN-1a protein with OsFEN-1b protein showed a high degree of sequence similarity, particularly around the N and I domains. Northern hybridization and in situ hybridization analysis demonstrated preferential expression of OsFEN-1a and OsFEN-1b in proliferating tissues such as the shoot apical meristem or young leaves. The levels of OsFEN-1a and OsFEN-1b expression were significantly reduced when cell proliferation was temporarily halted by the removal of sucrose from the growth medium. When the growth-halted cells began to regrow following the addition of sucrose to the medium, both OsFEN-1a and OsFEN-1b were again expressed at high level. These results suggested that OsFEN-1a and OsFEN-1b are required for cell proliferation. Functional complementation assay suggested that OsFEN-1a cDNA had the ability to complement Saccharomyces cerevisiae rad27 null mutant. On the other hand, OsFEN-1b cDNA could not complement the rad27 mutant. The roles of OsFEN-1a and OsFEN-1b in plant DNA replication and repair are discussed.
Scabies Mite Peritrophins Are Potential Targets of Human Host Innate Immunity
Holt, Deborah C.; Kemp, Dave J.; Fischer, Katja
2011-01-01
Background Pruritic scabies lesions caused by Sarcoptes scabiei burrowing in the stratum corneum of human skin facilitate opportunistic bacterial infections. Emerging resistance to current therapeutics emphasizes the need to identify novel targets for protective intervention. We have characterized several protein families located in the mite gut as crucial factors for host-parasite interactions. Among these multiple proteins inhibit human complement, presumably to avoid complement-mediated damage of gut epithelial cells. Peritrophins are major components of the peritrophic matrix often found in the gut of arthropods. We hypothesized that a peritrophin, if abundant in the scabies mite gut, could be an activator of complement. Methodology/Principal Findings A novel full length scabies mite peritrophin (SsPTP1) was identified in a cDNA library from scabies mites. The amino acid sequence revealed four putative chitin binding domains (CBD). Recombinant expression of one CBD of the highly repetitive SsPTP1 sequence as TSP-hexaHis-fusion protein resulted in soluble protein, which demonstrated chitin binding activity in affinity chromatography assays. Antibodies against a recombinant SsPTP1 fragment were used to immunohistochemically localize native SsPTP1 in the mite gut and in fecal pellets within the upper epidermis, co-localizing with serum components such as host IgG and complement. Enzymatic deglycosylation confirmed strong N- and O-glycosylation of the native peritrophin. Serum incubation followed by immunoblotting with a monoclonal antibody against mannan binding lectin (MBL), the recognition molecule of the lectin pathway of human complement activation, indicated that MBL may specifically bind to glycosylated SsPTP1. Conclusions/Significance This study adds a new aspect to the accumulating evidence that complement plays a major role in scabies mite biology. It identifies a novel peritrophin localized in the mite gut as a potential target of the lectin pathway of the complement cascade. These initial findings indicate a novel role of scabies mite peritrophins in triggering a host innate immune response within the mite gut. PMID:21980545
Detection of Prostate Cancer Progression by Serum DNA Integrity
2010-04-01
qRT) Alu and direct qRT LINE1 is being optimized. We will also continue to develop circulating DNA methylated GSTP1 assay to complement the DNA...developed the LINE1 assay, assembled the manuscript on uLINE1, and performed preliminary analysis of circulating DNA GSTP1 methylation. The goal is to
Anti-GK1 antibodies damage Taenia crassiceps cysticerci through complement activation.
Núñez, Guadalupe; Villalobos, Nelly; Herrera, Cinthia P; Navarrete-Perea, José; Méndez, Adriana; Martinez-Maya, José J; Bobes, Raúl J; Fragoso, Gladis; Sciutto, Edda; Aguilar, Laura; Del Arenal, Irene P
2018-06-06
Taeniasis-cysticercosis, a zoonosis caused by Taenia solium, is prevalent in underdeveloped countries, where marginalization promotes its continued transmission. Pig cysticercosis, an essential stage for transmission, is preventable by vaccination. An efficient multiepitope vaccine against pig cysticercosis, S3Pvac, was developed. Previous studies showed that antibodies against one of the S3Pvac components, GK-1, are capable of damaging T. solium cysticerci, inhibiting their ability to transform into the adult stage in golden hamster gut. This study is aimed to evaluate one of the mechanisms that could mediate anti-GK-1 antibody-dependent protection. To this end, pig anti-GK-1 antibodies were produced and purified by using protein A. Proteomic analysis showed that the induced antibodies recognized the respective native cysticercal protein KE7 (Bobes et al. Infect Immun 85:e00395-17, 2017) and two additional T. solium proteins (endophilin B1 and Gp50). A new procedure to evaluate cysticercus viability, based on quantifying the cytochrome c released after parasite damage, was developed. Taenia crassiceps cysticerci were cultured in the presence of differing amounts of anti-GK-1 antibody and complement in a saturating concentration, along with the respective controls. Cysticercus viability was assessed by recording parasite motility, trypan blue exclusion, and cytochrome c levels in cysticercal soluble extract. Anti-GK-1 antibody significantly increased cysticercus damage as measured by all three methods. Parasite evaluation by electron microscopy after treatment with anti-GK-1 antibody plus complement demonstrated cysticercus damage as shorter, capsule-severed microtrichia; a decrease in glycocalyx length with respect to untreated cysts; and disaggregated desmosomes. These results demonstrate that anti-GK-1 antibodies damage cysticerci through classic complement activation.
1977-11-29
and direct/indirect object Many things cause burns. 3. Subject and linking verb and subjective complement This is very important. COMPOUND : Two or more...1- 1.2 13. 6 MICROCOP REOLTONTETCHR AIM UI A 0S&MM " qq4 -41 CC fn 0 0r %- q o on 41 . .-4 4 W - . .X -4 C,0I 0 mC4- 46- 14 f .1- .44 .04 9% Ci r...Imperative command, polite request D. Exclamatory exclamation * Sentence Complexity: A. Simple one full subject and predicate B. Compound two or more
Coagulation and complement system in critically ill patients.
Helling, H; Stephan, B; Pindur, G
2015-01-01
Activation of coagulation and inflammatory response including the complement system play a major role in the pathogenesis of critical illness. However, only limited data are available addressing the relationship of both pathways and its assessment of a predictive value for the clinical outcome in intense care medicine. Therefore, parameters of the coagulation and complement system were studied in patients with septicaemia and multiple trauma regarded as being exemplary for critical illness. 34 patients (mean age: 51.38 years (±16.57), 15 females, 19 males) were investigated at day 1 of admittance to the intensive care unit (ICU). Leukocytes, complement factors C3a and C5a were significantly (p < 0.0500) higher in sepsis than in trauma, whereas platelet count and plasma fibrinogen were significantly lower in multiple trauma. Activation markers of coagulation were elevated in both groups, however, thrombin-antithrombin-complex was significantly higher in multiple trauma. DIC scores of 5 were not exceeded in any of the two groups. Analysing the influences on mortality (11/34; 32.35% ), which was not different in both groups, non-survivors were significantly older, had significantly higher multiple organ failure (MOF) scores, lactate, abnormal prothrombin times and lower C1-inhibitor activities, even more pronounced in early deaths, than survivors. In septic non-survivors protein C was significantly lower than in trauma. We conclude from these data that activation of the complement system as part of the inflammatory response is a significant mechanism in septicaemia, whereas loss and consumption of blood components including parts of the coagulation and complement system is more characteristic for multiple trauma. Protein C in case of severe reduction might be of special concern for surviving in sepsis. Activation of haemostasis was occurring in both diseases, however, overt DIC was not confirmed in this study to be a leading mechanism in critically ill patients. MOF score, lactate, C1-inhibitor and prothrombin time have been the only statistically significant predictors for lethal outcome suggesting that organ function, microcirculation, haemostasis and inflammatory response are essential elements of the pathomechanism and clinical course of diseases among critically ill patients.
Fernie-King, Barbara A; Seilly, David J; Willers, Christine; Würzner, Reinhard; Davies, Alexandra; Lachmann, Peter J
2001-01-01
Streptococcal inhibitor of complement (SIC) was first described in 1996 as a putative inhibitor of the membrane attack complex of complement (MAC). SIC is a 31 000 MW protein secreted in large quantities by the virulent Streptococcus pyogenes strains M1 and M57, and is encoded by a gene which is extremely variable. In order to study further the interactions of SIC with the MAC, we have made a recombinant form of SIC (rSIC) in Escherichia coli and purified native M1 SIC which was used to raise a polyclonal antibody. SIC prevented reactive lysis of guinea pig erythrocytes by the MAC at a stage prior to C5b67 complexes binding to cell membranes, presumably by blocking the transiently expressed membrane insertion site on C7. The ability of SIC and clusterin (another putative fluid phase complement inhibitor) to inhibit complement lysis was compared, and found to be equally efficient. In parallel, by enzyme-linked immunosorbent assay both SIC and rSIC bound strongly to C5b67 and C5b678 complexes and to a lesser extent C5b-9, but only weakly to individual complement components. The implications of these data for virulence of SIC-positive streptococci are discussed, in light of the fact that Gram-positive organisms are already protected against complement lysis by the presence of their peptidoglycan cell walls. We speculate that MAC inhibition may not be the sole function of SIC. PMID:11454069
Shindo, Keisuke; Takaori-Kondo, Akifumi; Kobayashi, Masayuki; Abudu, Aierken; Fukunaga, Keiko; Uchiyama, Takashi
2003-11-07
Human immunodeficiency virus, type 1 (HIV-1) Vif protein plays an essential role in the regulation of the infectivity of HIV-1 virion. Vif functions to counteract an anti-HIV-1 cellular factor in non-permissive cells, CEM15/Apobec-3G, which shares a cytidine deaminase motif. CEM15/Apobec-3G deaminates dC to dU in the minus strand DNA of HIV-1, resulting in G to A hypermutation in the plus strand DNA. In this study, we have done the mutagenesis analysis on two cytidine deaminase motifs in CEM15/Apobec-3G and examined their antiviral functions as well as the DNA editing activity. Point mutations in the C-terminal active site such as E259Q and C291A almost completely abrogated the antiviral function, while those in the N-terminal active site such as E67Q and C100A retained this activity to a lesser extent as compared with that of the wild type. The DNA editing activities of E67Q and E259Q mutants were both retained but impaired to the same extent. This indicates that the enzymatic activity of this protein is essential but not a sole determinant of the antiviral activity. Furthermore, all the deletion mutants tested in this study lost the antiviral activity because of the loss of the activity for dimerization, suggesting that the entire protein structure is necessary for the antiviral function.
Paulmurugan, R.; Gambhir, S. S.
2014-01-01
In this study we developed an inducible synthetic renilla luciferase protein-fragment-assisted complementation-based bioluminescence assay to quantitatively measure real time protein–protein interactions in mammalian cells. We identified suitable sites to generate fragments of N and C portions of the protein that yield significant recovered activity through complementation. We validate complementation-based activation of split synthetic renilla luciferase protein driven by the interaction of two strongly interacting proteins, MyoD and Id, in five different cell lines utilizing transient transfection studies. The expression level of the system was also modulated by tumor necrosis factor α through NFκB-promoter/enhancer elements used to drive expression of the N portion of synthetic renilla luciferase reporter gene. This new system should help in studying protein–protein interactions and when used with other split reporters (e.g., split firefly luciferase) should help to monitor different components of an intracellular network. PMID:12705589
Jordheim, Lars Petter; Cros-Perrial, Emeline; Matera, Eva-Laure; Bouledrak, Karima; Dumontet, Charles
2014-10-01
Nucleotide excision repair (NER) is involved in the repair of DNA damage caused by platinum derivatives and has been shown to decrease the cytotoxic activity of these drugs. Because protein-protein interactions are essential for NER activity, we transfected human cancer cell lines (A549 and HCT116) with plasmids coding the amino acid sequences corresponding to the interacting domains between excision repair cross-complementation group 1 (ERCC1) and xeroderma pigmentosum, complementation group A (XPA), as well as ERCC1 and xeroderma pigmentosum, complementation group F (XPF), all NER proteins. Using the 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and annexin V staining, we showed that transfected A549 cells were sensitized 1.2-2.2-fold to carboplatin and that transfected HCT116 cells were sensitized 1.4-5.4-fold to oxaliplatin in vitro. In addition, transfected cells exhibited modified in vivo sensitivity to the same drugs. Finally, in particular cell models of the interaction between ERCC1 and XPF, DNA repair was decreased, as evidenced by increased phosphorylation of the histone 2AX after exposure to mitomycin C, and genomic instability was increased, as determined by comparative genomic hybridization studies. The results indicate that the interacting peptides act as dominant negatives and decrease NER activity through inhibition of protein-protein interactions. © 2014 Wiley Publishing Asia Pty Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jinghua; Marnell, Lorraine L.; Marjon, Kristopher D.
Pentraxins are a family of ancient innate immune mediators conserved throughout evolution. The classical pentraxins include serum amyloid P component (SAP) and C-reactive protein, which are two of the acute-phase proteins synthesized in response to infection. Both recognize microbial pathogens and activate the classical complement pathway through C1q. More recently, members of the pentraxin family were found to interact with cell-surface Fc{gamma} receptors (Fc{gamma}R) and activate leukocyte-mediated phagocytosis. Here we describe the structural mechanism for pentraxin's binding to Fc{gamma}R and its functional activation of Fc{gamma}R-mediated phagocytosis and cytokine secretion. The complex structure between human SAP and Fc{gamma}RIIa reveals a diagonallymore » bound receptor on each SAP pentamer with both D1 and D2 domains of the receptor contacting the ridge helices from two SAP subunits. The 1:1 stoichiometry between SAP and Fc{gamma}RIIa infers the requirement for multivalent pathogen binding for receptor aggregation. Mutational and binding studies show that pentraxins are diverse in their binding specificity for Fc{gamma}R isoforms but conserved in their recognition structure. The shared binding site for SAP and IgG results in competition for Fc{gamma}R binding and the inhibition of immune-complex-mediated phagocytosis by soluble pentraxins. These results establish antibody-like functions for pentraxins in the Fc{gamma}R pathway, suggest an evolutionary overlap between the innate and adaptive immune systems, and have new therapeutic implications for autoimmune diseases.« less
Shavkunov, Alexander; Panova, Neli; Prasai, Anesh; Veselenak, Ron; Bourne, Nigel; Stoilova-McPhie, Svetla; Laezza, Fernanda
2012-04-01
Protein-protein interactions are critical molecular determinants of ion channel function and emerging targets for pharmacological interventions. Yet, current methodologies for the rapid detection of ion channel macromolecular complexes are still lacking. In this study we have adapted a split-luciferase complementation assay (LCA) for detecting the assembly of the voltage-gated Na+ (Nav) channel C-tail and the intracellular fibroblast growth factor 14 (FGF14), a functionally relevant component of the Nav channelosome that controls gating and targeting of Nav channels through direct interaction with the channel C-tail. In the LCA, two complementary N-terminus and C-terminus fragments of the firefly luciferase were fused, respectively, to a chimera of the CD4 transmembrane segment and the C-tail of Nav1.6 channel (CD4-Nav1.6-NLuc) or FGF14 (CLuc-FGF14). Co-expression of CLuc-FGF14 and CD4-Nav1.6-NLuc in live cells led to a robust assembly of the FGF14:Nav1.6 C-tail complex, which was attenuated by introducing single-point mutations at the predicted FGF14:Nav channel interface. To evaluate the dynamic regulation of the FGF14:Nav1.6 C-tail complex by signaling pathways, we investigated the effect of kinase inhibitors on the complex formation. Through a platform of counter screenings, we show that the p38/MAPK inhibitor, PD169316, and the IκB kinase inhibitor, BAY 11-7082, reduce the FGF14:Nav1.6 C-tail complementation, highlighting a potential role of the p38MAPK and the IκB/NFκB pathways in controlling neuronal excitability through protein-protein interactions. We envision the methodology presented here as a new valuable tool to allow functional evaluations of protein-channel complexes toward probe development and drug discovery targeting ion channels implicated in human disorders.
Dodds, A W; Smith, S L; Levine, R P; Willis, A C
1998-01-01
Complement components C3 and C4 have been isolated from the serum of the nurse shark (Ginglymostoma cirratum) and of the channel catfish (Ictalurus punctatus). As in the higher vertebrates, the fish C4 proteins have three-chain structures while the C3 proteins have two-chain structures. All four proteins have intra-chain thioesters located within their highest molecular mass polypeptides. N-terminal sequence analysis of the polypeptides has confirmed the identity of the proteins. In all cases except the catfish C3 alpha-chain, which appears to have a blocked N-terminus, sequence similarities are apparent in comparisons with the chains of C3 and C4 from higher vertebrates. We have confirmed that the activity/protein previously designated C2n is the nurse shark analogue of mammalian C4. This is the first report of structural evidence for C4 in both the bony and cartilaginous fish.
Tailor, Vijay; Ballal, Anand
2017-05-01
The Peroxiredoxin Q (PrxQ) proteins are thiol-based peroxidases that are important for maintaining redox homeostasis in several organisms. Activity of PrxQs is mediated by two cysteines, peroxidatic (C p ) and resolving (C r ), in association with a reducing partner. A PrxQ, Alr3183, from the cyanobacterium, Anabaena PCC 7120, was characterized in this study. Alr3183, which required thioredoxin A (TrxA) for peroxidase activity, was an intramolecular disulfide bond-containing monomeric protein. However, Alr3183 lacking C p (Alr3183C46S) or C r (Alr3183C51S) formed intermolecular disulfide linkages and was dimeric. Alr3183C46S was completely inactive, while Alr3183C51S required higher concentration of TrxA for peroxidase activity. Surface plasmon resonance analysis showed that unlike Alr3183 or Alr3183C46S, Alr3183C51S bound rather poorly to TrxA. Also, compared to the oxidized protein, the DTT-treated (reduced) Alr3183 displayed decreased interaction with TrxA. In vivo, Alr3183 was found to be induced in response to γ-radiation. On exposure to H 2 O 2 , Anabaena strain over-expressing Alr3183 showed reduced formation of ROS, intact photosynthetic pigments and consequently better survival than the wild-type, whereas overproduction of Alr3183C46S did not provide any protection. Significantly, this study (1) reveals the importance of C r for interaction with thioredoxins and (2) demonstrates that over-expression of PrxQs can protect cyanobacteria from oxidative stresses. Copyright © 2017 Elsevier Inc. All rights reserved.
Aparicio, Frederic; Sánchez-Navarro, Jesús A; Pallás, Vicente
2006-06-01
Interactions between viral proteins are critical for virus viability. Bimolecular fluorescent complementation (BiFC) technique determines protein interactions in real-time under almost normal physiological conditions. The coat protein (CP) of Prunus necrotic ringspot virus is required for multiple functions in its replication cycle. In this study, the region involved in CP dimerization has been mapped by BiFC in both bacteria and plant tissue. Full-length and C-terminal deleted forms of the CP gene were fused in-frame to the N- and C-terminal fragments of the yellow fluorescent protein. The BiFC analysis showed that a domain located between residues 9 and 27 from the C-end plays a critical role in dimerization. The importance of this C-terminal region in dimer formation and the applicability of the BiFC technique to analyse viral protein interactions are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao Zhiqang; Shata, Mohamed Tarek; Tricoche, Nancy
2006-03-15
Chimpanzee is a unique animal model for HCV infection, in which about 50% of infections resolve spontaneously. It has been reported that the magnitude of T cell responses to HCV core in recovered chimpanzees is greater than that in chronically infected ones. However, the mechanism(s) by which the chimpanzees with resolved infection overcome core-mediated immunosuppression remains unknown. In this study, we examined the effect of HCV core on T cell responsiveness in chimpanzees with resolved and chronic HCV infection. We found that core protein strongly inhibited T cell activation and proliferation in chimpanzees with chronic infection, while this inhibition wasmore » limited in chimpanzees with resolved infection. Notably, the level of gC1qR, as well as the binding of core protein, on the surface of T cells was lower in recovered chimpanzees when compared to chimpanzees with chronic HCV infection. Intriguingly, the observed differences in gC1qR expression levels and susceptibility to core-induced suppression amongst HCV-chronically infected and recovered chimpanzees were observed prior to HCV challenge, suggesting a possible genetic determination of the outcome of infection. These findings suggest that gC1qR expression on the surface of T cells is crucial for HCV core-mediated T cell suppression and viral clearance, and that represents a novel mechanism by which a virus usurps host machinery for persistence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Haimou; Qin, Gangjian; Liang, Gang
Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanismmore » of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.« less
Linkage analysis of the Fanconi anemia gene FACC with chromosome 9q markers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auerbach, A.D.; Shin, H.T.; Kaporis, A.G.
1994-09-01
Fanconi anemia (FA) is a genetically heterogeneous syndrome, with at least four different complementation groups as determined by cell fusion studies. The gene for complementation group C, FACC, has been cloned and mapped to chromosome 9q22.3 by in situ hybridization, while linkage analysis has supported the placement of another gene on chromosome 20q. We have analyzed five microsatellite markers and one RFLP on chromosome 9q in a panel of FA families from the International Fanconi Anemia Registry (IFAR) in order to place FACC on the genetic map. Polymorphisms were typed in 308 individuals from 51 families. FACC is tightly linkedmore » to both D9S151 [{Theta}{sub max}=0.025, Z{sub max}=7.75] and to D9S196 [{Theta}{sub max}=0.041, Z{sub max}=7.89]; multipoint analysis is in progress. We are currently screening a YAC clone that contains the entire FACC gene for additional microsatellite markers suitable for haplotype analysis of FA families.« less
Tsujimura, A; Shida, K; Kitamura, M; Nomura, M; Takeda, J; Tanaka, H; Matsumoto, M; Matsumiya, K; Okuyama, A; Nishimune, Y; Okabe, M; Seya, T
1998-01-01
Human membrane cofactor protein (MCP, CD46) has been suggested, although no convincing evidence has been proposed, to be a fertilization-associated protein, in addition to its primary functions as a complement regulator and a measles virus receptor. We have cloned a cDNA encoding the murine homologue of MCP. This cDNA showed 45% identity in deduced protein sequence and 62% identity in nucleotide sequence with human MCP. Its ectodomains were four short consensus repeats and a serine/threonine-rich domain, and it appeared to be a type 1 membrane protein with a 23-amino acid transmembrane domain and a short cytoplasmic tail. The protein expressed on Chinese hamster ovary cell transfectants was 47 kDa on SDS/PAGE immunoblotting, approximately 6 kDa larger than the murine testis MCP. It served as a cofactor for factor I-mediated inactivation of the complement protein C3b in a homologous system and, to a lesser extent, in a human system. Strikingly, the major message of murine MCP was 1.5 kb and was expressed predominantly in the testis. It was not detected in mice defective in spermatogenesis or with immature germ cells (until 23 days old). Thus, murine MCP may be a sperm-dominant protein the message of which is expressed selectively in spermatids during germ-cell differentiation. PMID:9461505
Gan, Lu; Wang, Zhenhua; Si, Jing; Zhou, Rong; Sun, Chao; Liu, Yang; Ye, Yancheng; Zhang, Yanshan; Liu, Zhiyuan; Zhang, Hong
2018-02-15
Exposure to iron ion 56 Fe radiation (IR) during space missions poses a significant risk to the central nervous system and radiation exposure is intimately linked to the production of reactive oxygen species (ROS). MitoQ is a mitochondria-targeted antioxidant that has been shown to decrease oxidative damage and lower mitochondrial ROS in a number of animal models. Therefore, the present study aimed to investigate role of the mitochondrial targeted antioxidant MitoQ against 56 Fe particle irradiation-induced oxidative damage and mitochondria dysfunction in the mouse brains. Increased ROS levels were observed in mouse brains after IR compared with the control group. Enhanced ROS production leads to disruption of cellular antioxidant defense systems, mitochondrial respiration dysfunction, altered mitochondria dynamics and increased release of cytochrome c (cyto c) from mitochondria into cytosol resulting in apoptotic cell death. MitoQ reduced IR-induced oxidative stress (decreased ROS production and increased SOD, CAT activities) with decreased lipid peroxidation as well as reduced protein and DNA oxidation. MitoQ also protected mitochondrial respiration after IR. In addition, MitoQ increased the expression of mitofusin2 (Mfn2) and optic atrophy gene1 (OPA1), and decreased the expression of dynamic-like protein (Drp1). MitoQ also suppressed mitochondrial DNA damage, cyto c release, and caspase-3 activity in IR-treated mice compared to the control group. These results demonstrate that MitoQ may protect against IR-induced brain injury. Copyright © 2018 Elsevier Inc. All rights reserved.
Pal, Kasturi; Mathur, Maneesh; Kumar, Puneet; DeFea, Kathryn
2013-01-01
β-Arrestins are multifunctional adaptor proteins that, upon recruitment to an activated G-protein-coupled receptor, can promote desensitization of G-protein signaling and receptor internalization while simultaneously eliciting an independent signal. The result of β-arrestin signaling depends upon the activating receptor. For example, activation of two Gαq-coupled receptors, protease-activated receptor-2 (PAR2) and neurokinin-1 receptor (NK1R), results in drastically different signaling events. PAR2 promotes β-arrestin-dependent membrane-sequestered extracellular signal-regulated kinase (ERK1/2) activation, cofilin activation, and cell migration, whereas NK1R promotes nuclear ERK1/2 activation and proliferation. Using bioluminescence resonance energy transfer to monitor receptor/β-arrestin interactions in real time, we observe that PAR2 has a higher apparent affinity for both β-arrestins than does NK1R, recruits them at a faster rate, and exhibits more rapid desensitization of the G-protein signal. Furthermore, recruitment of β-arrestins to PAR2 does not require prior Gαq signaling events, whereas inhibition of Gαq signaling intermediates inhibits recruitment of β-arrestins to NK1R. Using chimeric receptors in which the C terminus of PAR2 is fused to the N terminus of NK1R and vice versa and a critical Ser/Thr mutant of PAR2, we demonstrate that interactions between β-arrestins and specific phosphoresidues in the C termini of each receptor are crucial for determining the rate and magnitude of β-arrestin recruitment as well as the ultimate signaling outcome. PMID:23235155
Simple method to distinguish between primary and secondary C3 deficiencies.
Pereira de Carvalho Florido, Marlene; Ferreira de Paula, Patrícia; Isaac, Lourdes
2003-03-01
Due to the increasing numbers of reported clinical cases of complement deficiency in medical centers, clinicians are now more aware of the role of the complement system in the protection against infections caused by microorganisms. Therefore, clinical laboratories are now prepared to perform a number of diagnostic tests of the complement system other than the standard 50% hemolytic component assay. Deficiencies of alternative complement pathway proteins are related to severe and recurrent infections; and the application of easy, reliable, and low-cost methods for their detection and distinction are always welcome, notably in developing countries. When activation of the alternative complement pathway is evaluated in hemolytic agarose plates, some but not all human sera cross-react to form a late linear lysis. Since the formation of this linear lysis is dependent on C3 and factor B, it is possible to use late linear lysis to routinely screen for the presence of deficiencies of alternative human complement pathway proteins such as factor B. Furthermore, since linear lysis is observed between normal human serum and primary C3-deficient serum but not between normal human serum and secondary C3-deficient serum caused by the lack of factor H or factor I, this assay may also be used to discriminate between primary and secondary C3 deficiencies.
Kumar, Jitendra; Yadav, Viveka Nand; Phulera, Swastik; Kamble, Ashish; Gautam, Avneesh Kumar; Panwar, Hemendra Singh
2017-01-01
ABSTRACT Poxviruses display species tropism—variola virus is a human-specific virus, while vaccinia virus causes repeated outbreaks in dairy cattle. Consistent with this, variola virus complement regulator SPICE (smallpox inhibitor of complement enzymes) exhibits selectivity in inhibiting the human alternative complement pathway and vaccinia virus complement regulator VCP (vaccinia virus complement control protein) displays selectivity in inhibiting the bovine alternative complement pathway. In the present study, we examined the species specificity of VCP and SPICE for the classical pathway (CP). We observed that VCP is ∼43-fold superior to SPICE in inhibiting bovine CP. Further, functional assays revealed that increased inhibitory activity of VCP for bovine CP is solely due to its enhanced cofactor activity, with no effect on decay of bovine CP C3-convertase. To probe the structural basis of this specificity, we utilized single- and multi-amino-acid substitution mutants wherein 1 or more of the 11 variant VCP residues were substituted in the SPICE template. Examination of these mutants for their ability to inhibit bovine CP revealed that E108, E120, and E144 are primarily responsible for imparting the specificity and contribute to the enhanced cofactor activity of VCP. Binding and functional assays suggested that these residues interact with bovine factor I but not with bovine C4(H2O) (a moiety conformationally similar to C4b). Mapping of these residues onto the modeled structure of bovine C4b-VCP-bovine factor I supported the mutagenesis data. Taken together, our data help explain why the vaccine strain of vaccinia virus was able to gain a foothold in domesticated animals. IMPORTANCE Vaccinia virus was used for smallpox vaccination. The vaccine-derived virus is now circulating and causing outbreaks in dairy cattle in India and Brazil. However, the reason for this tropism is unknown. It is well recognized that the virus is susceptible to neutralization by the complement classical pathway (CP). Because the virus encodes a soluble complement regulator, VCP, we examined whether this protein displays selectivity in targeting bovine CP. Our data show that it does exhibit selectivity in inhibiting the bovine CP and that this is primarily determined by its amino acids E108, E120, and E144, which interact with bovine serine protease factor I to inactivate bovine C4b—one of the two subunits of CP C3-convertase. Of note, the variola complement regulator SPICE contains positively charged residues at these positions. Thus, these variant residues in VCP help enhance its potency against the bovine CP and thereby the fitness of the virus in cattle. PMID:28724763
Myamoto, Daniela Tiemi; Pidde-Queiroz, Giselle; Gonçalves-de-Andrade, Rute Maria; Pedroso, Aurélio; van den Berg, Carmen W; Tambourgi, Denise V
2016-01-01
The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae.
Myamoto, Daniela Tiemi; Pidde-Queiroz, Giselle; Gonçalves-de-Andrade, Rute Maria; Pedroso, Aurélio; van den Berg, Carmen W.; Tambourgi, Denise V.
2016-01-01
The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae. PMID:26771533
Rozenberg, Perri; Ziporen, Lea; Gancz, Dana; Saar-Ray, Moran; Fishelson, Zvi
2018-02-02
Cancer cells are commonly more resistant to cell death activated by the membranolytic protein complex C5b-9. Several surface-expressed and intracellular proteins that protect cells from complement-dependent cytotoxicity (CDC) have been identified. In this study, we investigated the function of heat shock protein 90 (Hsp90), an essential and ubiquitously expressed chaperone, overexpressed in cancer cells, in C5b-9-induced cell death. As shown, inhibition of Hsp90 with geldanamycin or radicicol is enhancing sensitivity of K562 erythroleukemia cells to CDC. Similarly, Hsp90 inhibition confers in Ramos B cell lymphoma cells elevated sensitivity to treatment with rituximab and complement. C5b-9 deposition is elevated on geldanamycin-treated cells. Purified Hsp90 binds directly to C9 and inhibits zinc-induced C9 polymerization, indicating that Hsp90 may act directly on the C5b-9 complex. Mortalin, also known as stress protein 70 or GRP75, is a mitochondrial chaperone that confers resistance to CDC. The postulated cooperation between Hsp90 and mortalin in protection from CDC was tested. Geldanamycin failed to sensitize toward CDC cells with knocked down mortalin. Direct binding of Hsp90 to mortalin was shown by co-immunoprecipitation in cell extracts after triggering with complement as well as by using purified recombinant proteins. These results provide an insight into the protective mechanisms utilized by cancer cells to evade CDC. They suggest that Hsp90 protects cells from CDC by inhibiting, together with mortalin, C5b-9 assembly and/or stability at the plasma membrane.
Use of Phage Display to Identify Novel Mineralocorticoid Receptor-Interacting Proteins
Yang, Jun; Fuller, Peter J.; Morgan, James; Shibata, Hirotaka; McDonnell, Donald P.; Clyne, Colin D.
2014-01-01
The mineralocorticoid receptor (MR) plays a central role in salt and water homeostasis via the kidney; however, inappropriate activation of the MR in the heart can lead to heart failure. A selective MR modulator that antagonizes MR signaling in the heart but not the kidney would provide the cardiovascular protection of current MR antagonists but allow for normal electrolyte balance. The development of such a pharmaceutical requires an understanding of coregulators and their tissue-selective interactions with the MR, which is currently limited by the small repertoire of MR coregulators described in the literature. To identify potential novel MR coregulators, we used T7 phage display to screen tissue-selective cDNA libraries for MR-interacting proteins. Thirty MR binding peptides were identified, from which three were chosen for further characterization based on their nuclear localization and their interaction with other MR-interacting proteins or, in the case of x-ray repair cross-complementing protein 6, its known status as an androgen receptor coregulator. Eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 modulated MR-mediated transcription in a ligand-, cell- and/or promoter-specific manner and colocalized with the MR upon agonist treatment when imaged using immunofluorescence microscopy. These results highlight the utility of phage display for rapid and sensitive screening of MR binding proteins and suggest that eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 may be potential MR coactivators whose activity is dependent on the ligand, cellular context, and target gene promoter. PMID:25000480
Mao, Yuxin; Zhang, Zimei; Wong, Brian
2003-12-01
Glycophosphatidylinositol (GPI)-anchored proteins account for 26-35% of the Candida albicans cell wall. To understand the signals that regulate these proteins' cell surface localization, green fluorescent protein (GFP) was fused to the N- and C-termini of the C. albicans cell wall proteins (CWPs) Hwp1p, Als3p and Rbt5p. C. albicans expressing all three fusion proteins were fluorescent at the cell surface. GFP was released from membrane fractions by PI-PLC and from cell walls by beta-glucanase, which implied that GFP was GPI-anchored to the plasma membrane and then covalently attached to cell wall glucans. Twenty and 25 amino acids, respectively, from the N- and C-termini of Hwp1p were sufficient to target GFP to the cell surface. C-terminal substitutions that are permitted by the omega rules (G613D, G613N, G613S, G613A, G615S) did not interfere with GFP localization, whereas some non-permitted substitutions (G613E, G613Q, G613R, G613T and G615Q) caused GFP to accumulate in intracellular ER-like structures and others (G615C, G613N/G615C and G613D/G615C) did not. These results imply that (i) GFP fusions can be used to analyse the N- and C-terminal signal peptides of GPI-anchored CWPs, (ii) the omega amino acid in Hwp1p is G613, and (iii) C can function at the omega+2 position in C. albicans GPI-anchored proteins.
Reexamining the role of choline transporter-like (Ctlp) proteins in choline transport.
Zufferey, Rachel; Santiago, Teresa C; Brachet, Valerie; Ben Mamoun, Choukri
2004-02-01
In Saccharomyces cerevisiae, choline enters the cell via a single high-affinity transporter, Hnmlp. hnm1delta cells lacking HNM1 gene are viable. However, they are unable to transport choline suggesting that no additional active choline transporters are present in this organism. A complementation study of a choline auxotrophic mutant, ctrl-ise (hnm1-ise), using a cDNA library from Torpedo marmorata electric lobe identified a membrane protein named Torpedo marmorata choline transporter-like, tCtl1p. tCtllp was proposed to mediate a high-affinity choline transport (O'Regan et al., 1999, Proc. Natl. Acad. Sci.). Homologs of tCtl1p have been identified in other organisms, including yeast (Pns1p, YOR161c) and are postulated to function as choline transporters. Here we provide several lines of evidence indicating that Ctlp proteins are not involved in choline transport. Loss of PNS1 has no effect on choline transport and overexpression of either PNS1 or tCTL1 does not restore choline uptake activity of choline transport-defective mutants. The data presented here call into question the role of proteins of the CTL family in choline transport and suggest that the mechanism by which tCTL1 complements hnm1-ise mutant is independent of its ability to transport choline.
Hadarits, Ferenc; Kisfali, Péter; Mohás, Márton; Maász, Anita; Duga, Balázs; Janicsek, Ingrid; Wittmann, István; Melegh, Béla
2012-02-01
The common functional variants of the apolipoprotein A5 (APOA5) and the glucokinase regulatory protein genes (GCKR) have been shown to associate with increased fasting triglyceride (TG) levels. Albeit the basic association has been extensively investigated in several populations of different origin, less is known about quantitative traits of them. In our study accumulation rates of four APOA5 (T-1131, IVS3 + G476A, T1259C and C56G) and two GCKR (C1337T and rs780094) functional SNPs were analyzed in patients stratified into four TG quartile groups. Randomly selected 325 metabolic syndrome patients were separated into four quartile (q) groups based on the TG levels as follows q1: TG <1.38 mmol/l; q2: 1.38-1.93 mmol/l; q3: 1.94-2.83 mmol/l; and q4: TG >2.83 mmol/l. We observed significant stepwise increase of prevalence rates of minor allele frequencies in the four plasma TG quartiles for three APOA5 SNPs: -1131C (q1: 4.94%; q2: 8.64%; q3: 11.6%; q4: 12.3%), IVS3 + 476A (q1: 4.32%; q2: 7.4%; q3: 10.36%; q4: 11.1%), and 1259C (q1: 4.94%; q2: 7.41%; q3: 10.4%; q4: 11.7%). The haplotype analysis revealed, that the frequency of APOA5*2 haplotype gradually increased in q2, q3 and q4 (q1: 9.87%; q2: 14.8%; q3: 18.3%; q4: 21%). The distribution of the homozygotes of the two analyzed GCKR variants resembled to the APOA5 pattern. Contrary to the hypothetically predictable linear association coming from the current knowledge about the APOA5 and GCKR functions, the findings presented here revealed a unique, TG raise dependent gradual accumulation of the functional variants of in MS patients. Thus, the findings of the current study serve indirect evidence for the existence of rare APOA5 and GCKR haplotypes in metabolic syndrome patients with higher TG levels, which contribute to the complex lipid metabolism alteration in this disease.
cDNA cloning and characterization of a novel gene encoding the MLF1-interacting protein MLF1IP.
Hanissian, Silva H; Akbar, Umar; Teng, Bin; Janjetovic, Zorica; Hoffmann, Anne; Hitzler, Johann K; Iscove, Norman; Hamre, Kristin; Du, Xiaoping; Tong, Yiai; Mukatira, Suraj; Robertson, Jon H; Morris, Stephan W
2004-04-29
Myelodysplasia/acute myeloid leukemia (MDS/AML) is characterized by a t(3;5)(q25.1;q34) chromosomal translocation that forms a fusion gene between nucleophosmin (NPM) and MDS/myeloid leukemia factor 1 (MLF1). We identified a novel protein, MLF1-interacting protein (MLF1IP), that specifically associates with MLF1 by yeast two-hybrid analysis and in pulldown assays, and colocalizes with it in both the nuclei and cytoplasm of cells. The MLF1IP gene locus is at chromosome 4q35.1 and is composed of 14 exons spanning 75.8 kb of genomic DNA. The MLF1IP cDNA encodes a 46-kDa protein that contains two bipartite and two classical nuclear localization signals, two nuclear receptor-binding motifs (LXXLL), two leucine zippers, two PEST residues and several potential phosphorylation sites. MLF1IP transcripts are expressed in a variety of tissues (e.g. fetal liver, bone marrow, thymus and testis). MLF1IP appears to be a lineage-specific gene whose expression is confined exclusively to the CFU-E erythroid precursor cells, but not in mature erythrocytes. These observations, together with previous data demonstrating a role for MLF1 in suppressing red cell maturation, suggest a possible role for MLF1IP and MLF1 deregulation in the genesis of erythroleukemias.
Role of Complement Activation in a Model of Adult Respiratory Distress Syndrome
Hosea, Stephen; Brown, Eric; Hammer, Carl; Frank, Michael
1980-01-01
The adult respiratory distress syndrome is characterized by arterial hypoxemia as a result of increased alveolar capillary permeability to serum proteins in the setting of normal capillary hydrostatic pressures. Because bacterial sepsis is prominent among the various diverse conditions associated with altered alveolar capillary permeability, we studied the effect of bacteremia with attendant complement activation on the sequestration of microorganisms and the leakage of albumin in the lungs of guinea pigs. Pneumococci were injected intravenously into guinea pigs and their localization was studied. Unlike normal guinea pigs, complement-depleted guinea pigs did not localize injected bacteria to the lungs. Preopsonization of organisms did not correct this defect in pulmonary localization of bacteria in complement-depleted animals, suggesting that a fluid-phase component of complement activation was required. Genetically C5-deficient mice showed no pulmonary localization of bacteria. C5-sufficient mice demonstrated the usual pulmonary localization, thus further suggesting that the activation of C5 might be important in this localization. The infusion of activated C5 increased alveolar capillary permeability to serum proteins as assayed by the amount of radioactive albumin sequestered in the lung. Neutropenic animals did not develop altered capillary permeability after challenge with activated C5. Thus, complement activation through C5, in the presence of neutrophils, induces alterations in pulmonary alveolar capillary permeability and causes localization of bacteria to the pulmonary parenchyma. Complement activation in other disease states could potentially result in similar clinical manifestations. PMID:7400321
bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo.
Yaguchi, Shunsuke; Yaguchi, Junko; Inaba, Kazuo
2014-10-31
bicaudal-C (bicC) mRNA encodes a protein containing RNA-binding domains that is reported to be maternally present with deflection in the oocytes/eggs of some species. The translated protein plays a critical role in the regulation of cell fate specification along the body axis during early embryogenesis in flies and frogs. However, it is unclear how it functions in eggs in which bicC mRNA is uniformly distributed, for instance, sea urchin eggs. Here, we show the function of BicC in the formation of neurogenic ectoderm of the sea urchin embryo. Loss-of-function experiments reveal that BicC is required for serotonergic neurogenesis and for expression of ankAT-1 gene, which is essential for the formation of apical tuft cilia in the neurogenic ectoderm of the sea urchin embryo. In contrast, the expression of FoxQ2, the neurogenic ectoderm specification transcription factor, is invariant in BicC morphants. Because FoxQ2 is an upstream factor of serotonergic neurogenesis and ankAT-1 expression, these data indicate that BicC functions in regulating the events that are coordinated by FoxQ2 during sea urchin embryogenesis.
Hoh Kam, Jaimie; Lenassi, Eva; Malik, Talat H; Pickering, Matthew C; Jeffery, Glen
2013-08-01
Complement component C3 is the central complement component and a key inflammatory protein activated in age-related macular degeneration (AMD). AMD is associated with genetic variation in complement proteins that results in enhanced activation of C3 through the complement alternative pathway. These include complement factor H (CFH), a negative regulator of C3 activation. Both C3 inhibition and/or CFH augmentation are potential therapeutic strategies in AMD. Herein, we examined retinal integrity in aged (12 months) mice deficient in both factors H and C3 (CFH(-/-).C3(-/-)), CFH alone (CFH(-/-)), or C3 alone (C3(-/-)), and wild-type mice (C57BL/6). Retinal function was assessed by electroretinography, and retinal morphological features were analyzed at light and electron microscope levels. Retinas were also stained for amyloid β (Aβ) deposition, inflammation, and macrophage accumulation. Contrary to expectation, electroretinograms of CFH(-/-).C3(-/-) mice displayed more severely reduced responses than those of other mice. All mutant strains showed significant photoreceptor loss and thickening of Bruch's membrane compared with wild-type C57BL/6, but these changes were greater in CFH(-/-).C3(-/-) mice. CFH(-/-).C3(-/-) mice had significantly more Aβ on Bruch's membrane, fewer macrophages, and high levels of retinal inflammation than the other groups. Our data show that both uncontrolled C3 activation (CFH(-/-)) and complete absence of C3 (CFH(-/-).C3(-/-) and C3(-/-)) negatively affect aged retinas. These findings suggest that strategies that inhibit C3 in AMD may be deleterious. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Functional Characterization of CaVα2δ Mutations Associated with Sudden Cardiac Death*
Bourdin, Benoîte; Shakeri, Behzad; Tétreault, Marie-Philippe; Sauvé, Rémy; Lesage, Sylvie; Parent, Lucie
2015-01-01
L-type Ca2+ channels play a critical role in cardiac rhythmicity. These ion channels are oligomeric complexes formed by the pore-forming CaVα1 with the auxiliary CaVβ and CaVα2δ subunits. CaVα2δ increases the peak current density and improves the voltage-dependent activation gating of CaV1.2 channels without increasing the surface expression of the CaVα1 subunit. The functional impact of genetic variants of CACNA2D1 (the gene encoding for CaVα2δ), associated with shorter repolarization QT intervals (the time interval between the Q and the T waves on the cardiac electrocardiogram), was investigated after recombinant expression of the full complement of L-type CaV1.2 subunits in human embryonic kidney 293 cells. By performing side-by-side high resolution flow cytometry assays and whole-cell patch clamp recordings, we revealed that the surface density of the CaVα2δ wild-type protein correlates with the peak current density. Furthermore, the cell surface density of CaVα2δ mutants S755T, Q917H, and S956T was not significantly different from the cell surface density of the CaVα2δ wild-type protein expressed under the same conditions. In contrast, the cell surface expression of CaVα2δ D550Y, CaVα2δ S709N, and the double mutant D550Y/Q917H was reduced, respectively, by ≈30–33% for the single mutants and by 60% for the latter. The cell surface density of D550Y/Q917H was more significantly impaired than protein stability, suggesting that surface trafficking of CaVα2δ was disrupted by the double mutation. Co-expression with D550Y/Q917H significantly decreased CaV1.2 currents as compared with results obtained with CaVα2δ wild type. It is concluded that D550Y/Q917H reduced inward Ca2+ currents through a defect in the cell surface trafficking of CaVα2δ. Altogether, our results provide novel insight in the molecular mechanism underlying the modulation of CaV1.2 currents by CaVα2δ. PMID:25527503
Andersson, Helena M.; Arantes, Márcia J.; Crawley, James T. B.; Luken, Brenda M.; Tran, Sinh; Dahlbäck, Björn; Rezende, Suely M.
2010-01-01
Protein S has an established role in the protein C anticoagulant pathway, where it enhances the factor Va (FVa) and factor VIIIa (FVIIIa) inactivating property of activated protein C (APC). Despite its physiological role and clinical importance, the molecular basis of its action is not fully understood. To clarify the mechanism of the protein S interaction with APC, we have constructed and expressed a library of composite or point variants of human protein S, with residue substitutions introduced into the Gla, thrombin-sensitive region (TSR), epidermal growth factor 1 (EGF1), and EGF2 domains. Cofactor activity for APC was evaluated by calibrated automated thrombography (CAT) using protein S–deficient plasma. Of 27 variants tested initially, only one, protein S D95A (within the EGF1 domain), was largely devoid of functional APC cofactor activity. Protein S D95A was, however, γ-carboxylated and bound phospholipids with an apparent dissociation constant (Kdapp) similar to that of wild-type (WT) protein S. In a purified assay using FVa R506Q/R679Q, purified protein S D95A was shown to have greatly reduced ability to enhance APC-induced cleavage of FVa Arg306. It is concluded that residue Asp95 within EGF1 is critical for APC cofactor function of protein S and could define a principal functional interaction site for APC. PMID:20308596
Pasquali, R; Casimirri, F; Melchionda, N
1987-12-01
To assess long-term nitrogen sparing capacity of very low-calorie mixed diets, we administered two isoenergetic (2092KJ) liquid formula regimens of different composition for 8 weeks to two matched groups of massively obese patients (group 1: proteins 60 g, carbohydrate 54 g; group 2: proteins 41 g, carbohydrates 81 g). Weight loss was similar in both groups. Daily nitrogen balance (g) during the second month resulted more a negative in group 2 with respect to group 1. However, within the groups individual nitrogen sparing capacity varied markedly; only a few in group 1 and one in group 2 were able to attain nitrogen equilibrium throughout the study. Daily urine excretion of 3-methylhistidine fell significantly in group 1 but did not change in group 2. Unlike total proteins, albumins, and transferrin, serum levels of retinol-binding protein, thyroxin-binding globulin, and complement-C3 fell significantly in both groups but per cent variations of complement-C3 were more pronounced in the first group. Prealbumin levels fell persistently in group 1 and transiently in group 2. The results indicate that even with this type of diet an adequate amount of dietary protein represents the most important factor in minimizing whole body protein catabolism during long-term semistarvation in massively obese patients. Moreover, they confirm the possible role of dietary carbohydrates in the regulation of some visceral protein metabolism.
Ahern, Chris A; Vallejo, Paola; Mortenson, Lindsay; Coronado, Roberto
2001-01-01
Background The L-type Ca2+ channel formed by the dihydropyridine receptor (DHPR) of skeletal muscle senses the membrane voltage and opens the ryanodine receptor (RyR1). This channel-to-channel coupling is essential for Ca2+ signaling but poorly understood. We characterized a single-base frame-shift mutant of α1S, the pore subunit of the DHPR, that has the unusual ability to function voltage sensor for excitation-contraction (EC) coupling by virtue of expressing two complementary hemi-Ca2+ channel fragments. Results Functional analysis of cDNA transfected dysgenic myotubes lacking α1S were carried out using voltage-clamp, confocal Ca2+ indicator fluoresence, epitope immunofluorescence and immunoblots of expressed proteins. The frame-shift mutant (fs-α1S) expressed the N-terminal half of α1S (M1 to L670) and the C-terminal half starting at M701 separately. The C-terminal fragment was generated by an unexpected restart of translation of the fs-α1S message at M701 and was eliminated by a M701I mutation. Protein-protein complementation between the two fragments produced recovery of skeletal-type EC coupling but not L-type Ca2+ current. Discussion A premature stop codon in the II-III loop may not necessarily cause a loss of DHPR function due to a restart of translation within the II-III loop, presumably by a mechanism involving leaky ribosomal scanning. In these cases, function is recovered by expression of complementary protein fragments from the same cDNA. DHPR-RyR1 interactions can be achieved via protein-protein complementation between hemi-Ca2+ channel proteins, hence an intact II-III loop is not essential for coupling the DHPR voltage sensor to the opening of RyR1 channel. PMID:11806762
Payne, G; Ahl, P; Moyer, M; Harper, A; Beck, J; Meins, F; Ryals, J
1990-01-01
Complementary DNA clones encoding two isoforms of the acidic endochitinase (chitinase, EC 3.2.1.14) from tobacco were isolated. Comparison of amino acid sequences deduced from the cDNA clones and the sequence of peptides derived from purified proteins show that these clones encode the pathogenesis-related proteins PR-P and PR-Q. The cDNA inserts were not homologous to either the bacterial form of chitinase or the form from cucumber but shared significant homology to the basic form of chitinase from tobacco and bean. The acidic isoforms of tobacco chitinase did not contain the amino-terminal, cysteine-rich "hevein" domain found in the basic isoforms, indicating that this domain, which binds chitin, is not essential for chitinolytic activity. The accumulation of mRNA for the pathogenesis-related proteins PR-1, PR-R, PR-P, and PR-Q in Xanthi.nc tobacco leaves following infection with tobacco mosaic virus was measured by primer extension. The results indicate that the induction of these proteins during the local necrotic lesion response to the virus is coordinated at the mRNA level. Images PMID:2296608
Barata, Lidia; Miwa, Takashi; Sato, Sayaka; Kim, David; Mohammed, Imran; Song, Wen-Chao
2013-03-15
Complement receptor 1-related gene/protein y (Crry) and decay-accelerating factor (DAF) are two murine membrane C3 complement regulators with overlapping functions. Crry deletion is embryonically lethal whereas DAF-deficient mice are generally healthy. Crry(-/-)DAF(-/-) mice were viable on a C3(-/-) background, but platelets from such mice were rapidly destroyed when transfused into C3-sufficient mice. In this study, we used the cre-lox system to delete platelet Crry in DAF(-/-) mice and studied Crry/DAF-deficient platelet development in vivo. Rather than displaying thrombocytopenia, Pf4-Cre(+)-Crry(flox/flox) mice had normal platelet counts and their peripheral platelets were resistant to complement attack. However, chimera mice generated with Pf4-Cre(+)-Crry(flox/flox) bone marrows showed platelets from C3(-/-) but not C3(+/+) recipients to be sensitive to complement activation, suggesting that circulating platelets in Pf4-Cre(+)-Crry(flox/flox) mice were naturally selected in a complement-sufficient environment. Notably, Pf4-Cre(+)-Crry(flox/flox) mouse platelets became complement susceptible when factor H function was blocked. Examination of Pf4-Cre(+)-Crry(flox/flox) mouse bone marrows revealed exceedingly active thrombopoiesis. Thus, under in vivo conditions, Crry/DAF deficiency on platelets led to abnormal platelet turnover, but peripheral platelet count was compensated for by increased thrombopoiesis. Selective survival of Crry/DAF-deficient platelets aided by factor H protection and compensatory thrombopoiesis demonstrates the cooperation between membrane and fluid phase complement inhibitors and the body's ability to adaptively respond to complement regulator deficiencies.
Zhang, Yingjie; Wu, Minhao; Hang, Tianrong; Wang, Chengliang; Yang, Ye; Pan, Weimin; Zang, Jianye
2017-01-01
Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine–aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE–CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH1206–1226), which binds SdrE N2 and N3 domains (SdrEN2N3) with high affinity, and determined the crystal structures of apo-SdrEN2N3 and the SdrEN2N3–CFH1206–1226 complex. Comparison of the structure of the CFH–SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrEN2N3 adopts a ‘close’ state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel ‘close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a ‘clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion. PMID:28258151
Zhang, Yingjie; Wu, Minhao; Hang, Tianrong; Wang, Chengliang; Yang, Ye; Pan, Weimin; Zang, Jianye; Zhang, Min; Zhang, Xuan
2017-05-04
Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine-aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE-CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH 1206-1226 ), which binds SdrE N2 and N3 domains (SdrE N2N3 ) with high affinity, and determined the crystal structures of apo-SdrE N2N3 and the SdrE N2N3 -CFH 1206-1226 complex. Comparison of the structure of the CFH-SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrE N2N3 adopts a 'close' state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel 'close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a 'clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion. © 2017 The Author(s).
Chen, Chiung-Mei; Chen, Wan-Ling; Hung, Chen-Ting; Lin, Te-Hsien; Chao, Chih-Ying; Lin, Chih-Hsin; Wu, Yih-Ru; Chang, Kuo-Hsuan; Yao, Ching-Fa; Lee-Chen, Guey-Jen; Su, Ming-Tsan; Hsieh-Li, Hsiu Mei
2018-06-21
Spinocerebellar ataxia type 17 (SCA17) is caused by the expansion of translated CAG repeat in the TATA box binding protein (TBP) gene encoding a long polyglutamine (polyQ) tract in the TBP protein, which leads to intracellular accumulation of aggregated TBP and cell death. The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events. In this study, we used Tet-On cells with inducible SCA17 TBP/Q 79 -GFP expression to test five in-house NC009 indole compounds for neuroprotection. We found that both aggregation and polyQ-induced reactive oxygen species can be significantly prohibited by the tested NC009 compounds in Tet-On TBP/Q 79 293 cells. Among the five indole compounds, NC009-1 up-regulated expression of heat shock protein family B (small) member 1 (HSPB1) chaperone to reduce polyQ aggregation and promote neurite outgrowth in neuronal differentiated TBP/Q 79 SH-SY5Y cells. The increased HSPB1 thus ameliorated the increased BH3 interacting domain death agonist (BID), cytochrome c (CYCS) release, and caspase 3 (CASP3) activation which result in apoptosis. Knock down of HSPB1 attenuated the effects of NC009-1 on TBP/Q 79 SH-SY5Y cells, suggesting that HSPB1 might be one of the major pathways involved for NC009-1 effects. NC009-1 further reduced polyQ aggregation in Purkinje cells and ameliorated behavioral deficits in SCA17 TBP/Q 109 transgenic mice. Our results suggest that NC009-1 has a neuroprotective effect on SCA17 cell and mouse models to support its therapeutic potential in SCA17 treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
Schmidt, C Q; Herbert, A P; Hocking, H G; Uhrín, D; Barlow, P N
2008-01-01
The 155-kDa glycoprotein, complement factor H (CFH), is a regulator of complement activation that is abundant in human plasma. Three-dimensional structures of over half the 20 complement control protein (CCP) modules in CFH have been solved in the context of single-, double- and triple-module segments. Proven binding sites for C3b occupy the N and C termini of this elongated molecule and may be brought together by a bend in CFH mediated by its central CCP modules. The C-terminal CCP 20 is key to the ability of the molecule to adhere to polyanionic markers on self-surfaces where CFH acts to regulate amplification of the alternative pathway of complement. The surface patch on CCP 20 that binds to model glycosaminoglycans has been mapped using nuclear magnetic resonance (NMR), as has a second glycosaminoglycan-binding patch on CCP 7. These patches include many of the residue positions at which sequence variations have been linked to three complement-mediated disorders: dense deposit disease, age-related macular degeneration and atypical haemolytic uraemic syndrome. In one plausible model, CCP 20 anchors CFH to self-surfaces via a C3b/polyanion composite binding site, CCP 7 acts as a ‘proof-reader’ to help discriminate self- from non-self patterns of sulphation, and CCPs 1–4 disrupt C3/C5 convertase formation and stability. PMID:18081691
NASA Astrophysics Data System (ADS)
Banishev, A. A.; Vrzheshch, E. P.; Shirshin, E. A.
2009-03-01
Individual photophysical parameters of the chromophore of a fluorescent protein mRFP1 and its two mutants (amino-acid substitution at position 66 - mRFP1/ Q66C and mRFP1/Q66S proteins) are determined. For this purpose, apart from conventional methods of fluorimetry and spectrophotometry, nonlinear laser fluorimetry is used. It is shown that the individual extinction coefficients of the chromophore of proteins correlate (correlation coefficient above 0.9) with the volume of the substituted amino-acid residue at position 66 (similar to the positions of the absorption, fluorescence excitation and emission maxima).
Zhang, Xianming; Tan, Fulong; Brovkovych, Viktor; Zhang, Yongkang; Skidgel, Randal A.
2011-01-01
G protein-coupled receptor (GPCR) signaling is affected by formation of GPCR homo- or heterodimers, but GPCR regulation by other cell surface proteins is not well understood. We reported that the kinin B1 receptor (B1R) heterodimerizes with membrane carboxypeptidase M (CPM), facilitating receptor signaling via CPM-mediated conversion of bradykinin or kallidin to des-Arg kinin B1R agonists. Here, we found that a catalytically inactive CPM mutant that still binds substrate (CPM-E264Q) also facilitates efficient B1R signaling by B2 receptor agonists bradykinin or kallidin. This response required co-expression of B1R and CPM-E264Q in the same cell, was disrupted by antibody that dissociates CPM from B1R, and was not found with a CPM-E264Q-B1R fusion protein. An additional mutation that reduced the affinity of CPM for C-terminal Arg and increased the affinity for C-terminal Lys inhibited the B1R response to bradykinin (with C-terminal Arg) but generated a response to Lys9-bradykinin. CPM-E264Q-mediated activation of B1Rs by bradykinin resulted in increased intramolecular fluorescence resonance energy transfer (FRET) in a B1R FRET construct, similar to that generated directly by a B1R agonist. In cytokine-treated human lung microvascular endothelial cells, disruption of B1R-CPM heterodimers inhibited B1R-dependent NO production stimulated by bradykinin and blocked the increased endothelial permeability caused by treatment with bradykinin and pyrogallol (a superoxide generator). Thus, CPM and B1Rs on cell membranes form a critical complex that potentiates B1R signaling. Kinin peptide binding to CPM causes a conformational change in the B1R leading to intracellular signaling and reveals a new mode of GPCR activation by a cell surface peptidase. PMID:21454694
Arc1p is required for cytoplasmic confinement of synthetases and tRNA.
Golinelli-Cohen, Marie-Pierre; Mirande, Marc
2007-06-01
In yeast, Arc1p interacts with ScMetRS and ScGluRS and operates as a tRNA-Interacting Factor (tIF) in trans of these two synthetases. Its N-terminal domain (N-Arc1p) binds the two synthetases and its C-terminal domain is an EMAPII-like domain organized around an OB-fold-based tIF. ARC1 is not an essential gene but its deletion (arc1- cells) is accompanied by a growth retardation phenotype. Here, we show that expression of N-Arc1p or of C-Arc1p alone palliates the growth defect of arc1- cells, and that bacterial Trbp111 or human p43, two proteins containing EMAPII-like domains, also improve the growth of an arc1- strain. The synthetic lethality of an arc1-los1- strain can be complemented with either ARC1 or LOS1. Expression of N-Arc1p or C-Arc1p alone does not complement an arc1-los1- phenotype, but coexpression of the two domains does. Our data demonstrate that Trbp111 or p43 may replace C-Arc1p to complement an arc1-los1- strain. The two functional domains of Arc1p (N-Arc1p and C-Arc1p) are required to get rid of the synthetic lethal phenotype but do not need to be physically linked. To get some clues to the discrete functions of N-Arc1p and C-Arc1p, we targeted ScMetRS or tIF domains to the nuclear compartment and analyzed their cellular localization by using GFP fusions, and their ability to sustain growth. Our results are consistent with a model according to which Arc1p is a bifunctional protein involved in the subcellular localization of ScMetRS and ScGluRS via its N-terminal domain and of tRNA via its C-terminal domain.
The Fanconi anemia pathway requires FAA phosphorylation and FAA/FAC nuclear accumulation
Yamashita, Takayuki; Kupfer, Gary M.; Naf, Dieter; Suliman, Ahmed; Joenje, Hans; Asano, Shigetaka; D’Andrea, Alan D.
1998-01-01
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A–H). Two FA genes, corresponding to complementation groups A and C, have been cloned, but the function of the FAA and FAC proteins remains unknown. We have recently shown that the FAA and FAC proteins bind and form a nuclear complex. In the current study, we analyzed the FAA and FAC proteins in normal lymphoblasts and lymphoblasts from multiple FA complementation groups. In contrast to normal controls, FA cells derived from groups A, B, C, E, F, G, and H were defective in the formation of the FAA/FAC protein complex, the phosphorylation of the FAA protein, and the accumulation of the FAA/FAC protein complex in the nucleus. These biochemical events seem to define a signaling pathway required for the maintenance of genomic stability and normal hematopoiesis. Our results support the idea that multiple gene products cooperate in the FA Pathway. PMID:9789045
Villoutreix, B O; Härdig, Y; Wallqvist, A; Covell, D G; García de Frutos, P; Dahlbäck, B
1998-06-01
C4b-binding protein (C4BP) contributes to the regulation of the classical pathway of the complement system and plays an important role in blood coagulation. The main human C4BP isoform is composed of one beta-chain and seven alpha-chains essentially built from three and eight complement control protein (CCP) modules, respectively, followed by a nonrepeat carboxy-terminal region involved in polymerization of the chains. C4BP is known to interact with heparin, C4b, complement factor I, serum amyloid P component, streptococcal Arp and Sir proteins, and factor VIII/VIIIa via its alpha-chains and with protein S through its beta-chain. The principal aim of the present study was to localize regions of C4BP involved in the interaction with C4b, Arp, and heparin. For this purpose, a computer model of the 8 CCP modules of C4BP alpha-chain was constructed, taking into account data from previous electron microscopy (EM) studies. This structure was investigated in the context of known and/or new experimental data. Analysis of the alpha-chain model, together with monoclonal antibody studies and heparin binding experiments, suggests that a patch of positively charged residues, at the interface between the first and second CCP modules, plays an important role in the interaction between C4BP and C4b/Arp/Sir/heparin. Putative binding sites, secondary-structure prediction for the central core, and an overall reevaluation of the size of the C4BP molecule are also presented. An understanding of these intermolecular interactions should contribute to the rational design of potential therapeutic agents aiming at interfering specifically some of these protein-protein interactions.
Granja, Luiz Fernando Zmetek; Pinto, Lysianne; Almeida, Cátia Amancio; Alviano, Daniela Sales; Da Silva, Maria Helena; Ejzemberg, Regina; Alviano, Celuta Sales
2010-03-01
Complement activation by spores of Mucor ramosissimus, Mucor plumbeus and Mucor circinelloides was studied using absorbed human serum in the presence or absence of chelators (EGTA or EDTA). We found that the spore caused full complement activation when incubated with EGTA-Mg2+ or without chelators, indicating that the alternative pathway is mainly responsible for this response. In order to compare activation profiles from each species, ELISAs for C3 and C4 fragments, mannan binding lectin (MBL), C-reactive protein (CRP) and IgG studies were carried out. All proteins were present on the species tested. Immunofluorescence tests demonstrated the presence of C3 fragments on the surface of all samples, which were confluent throughout fungal surfaces. The same profile of C3, C4, MBL, CRP and IgG deposition, observed in all species, suggests a similar activation behavior for these species.
Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z
2017-01-01
As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975
Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z
2017-02-01
As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.
Ghosh-Choudhury, N; Butcher, M; Ghosh, H P
1990-03-01
A DNA fragment of the herpes simplex virus type 1 genome encoding glycoprotein C (gC-1) has been cloned into different eukaryotic expression vectors for transient and stable expression of the glycoprotein in a number of cell lines. All of these expression vectors use a non-HSV promoter, such as the adenovirus major late promoter or murine leukemia virus long terminal repeat promoter to express gC-1 in COS and CHO cells or 3T3 cells. The gC-1 protein synthesized was fully glycosylated with both N- and O-linked oligosaccharides. Synthesis of the mature 120K gC-1 glycoprotein involved partially glycosylated 100K and 105K proteins and the non-glycosylated 70K protein as intermediate molecules. Immunofluorescence studies showed that the expressed gC-1 was localized intracellularly in the nuclear envelope as well as on the cell surface. The expressed gC-1 was biologically active and could act as a receptor for the complement component C3b in the absence of other HSV proteins.
Oliveira, Ana M; Cardoso, Susana M; Ribeiro, Márcio; Seixas, Raquel S G R; Silva, Artur M S; Rego, A Cristina
2015-12-01
Huntington's disease (HD) is a polyglutamine-expansion neurodegenerative disorder caused by increased number of CAG repeats in the HTT gene, encoding for the huntingtin protein. The mutation is linked to several intracellular mechanisms, including oxidative stress. Flavones are compounds with a protective role in neurodegenerative pathologies. In the present study we analyzed the protective effect of luteolin (Lut, 3',4',5,7-tetrahydroxyflavone) and four luteolin derivatives bearing 3-alkyl chains of 1, 4, 6 and 10 carbons (Lut-C1, Lut-C4, Lut-C6, Lut-C10) in striatal cells derived from HD knock-in mice expressing mutant Htt (STHdh(Q111/Q111)) versus wild-type striatal cells (STHdh(Q7/Q7)). HD cells showed increased caspase-3-like activity and intracellular reactive oxygen species (ROS), which were significantly decreased following treatment with Lut-C4 and Lut-C6 under concentrations that enhanced cell viability. Interestingly, Lut-C4 and Lut-C6 rose the nuclear levels of phospho(Ser40)-nuclear factor (erythroid-derived-2)-like 2 (Nrf2) and Nrf2/ARE transcriptional activity. Concordantly with increased Nrf2/ARE transcription, Lut-C6 enhanced superoxide dismutase 1 (SOD1) mRNA and SOD activity and glutamate-cysteine ligase catalytic subunit (GCLc) mRNA and protein levels, while Lut-C4 induced mRNA levels of GCLc only in mutant striatal cells. Data suggest that Lut-C6 luteolin derivative (in particular) might be relevant for the development of antioxidant strategies in HD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jiang, Ya-Jun; Che, Mei-Xia; Yuan, Jin-Qiao; Xie, Yuan-Yuan; Yan, Xian-Zhong; Hu, Hong-Yu
2011-01-01
Huntington disease (HD) is an autosomal inherited disorder that causes the deterioration of brain cells. The polyglutamine (polyQ) expansion of huntingtin (Htt) is implicated in the pathogenesis of HD via interaction with an RNA splicing factor, Htt yeast two-hybrid protein A/forming-binding protein 11 (HYPA/FBP11). Besides the pathogenic polyQ expansion, Htt also contains a proline-rich region (PRR) located exactly in the C terminus to the polyQ tract. However, how the polyQ expansion influences the PRR-mediated protein interaction and how this abnormal interaction leads to the biological consequence remain elusive. Our NMR structural analysis indicates that the PRR motif of Htt cooperatively interacts with the tandem WW domains of HYPA through domain chaperoning effect of WW1 on WW2. The polyQ-expanded Htt sequesters HYPA to the cytosolic location and then significantly reduces the efficiency of pre-mRNA splicing. We propose that the toxic gain-of-function of the polyQ-expanded Htt that causes dysfunction of cellular RNA processing contributes to the pathogenesis of HD. PMID:21566141
Jiang, Ya-Jun; Che, Mei-Xia; Yuan, Jin-Qiao; Xie, Yuan-Yuan; Yan, Xian-Zhong; Hu, Hong-Yu
2011-07-15
Huntington disease (HD) is an autosomal inherited disorder that causes the deterioration of brain cells. The polyglutamine (polyQ) expansion of huntingtin (Htt) is implicated in the pathogenesis of HD via interaction with an RNA splicing factor, Htt yeast two-hybrid protein A/forming-binding protein 11 (HYPA/FBP11). Besides the pathogenic polyQ expansion, Htt also contains a proline-rich region (PRR) located exactly in the C terminus to the polyQ tract. However, how the polyQ expansion influences the PRR-mediated protein interaction and how this abnormal interaction leads to the biological consequence remain elusive. Our NMR structural analysis indicates that the PRR motif of Htt cooperatively interacts with the tandem WW domains of HYPA through domain chaperoning effect of WW1 on WW2. The polyQ-expanded Htt sequesters HYPA to the cytosolic location and then significantly reduces the efficiency of pre-mRNA splicing. We propose that the toxic gain-of-function of the polyQ-expanded Htt that causes dysfunction of cellular RNA processing contributes to the pathogenesis of HD.
Targeting C-reactive protein for the treatment of cardiovascular disease
NASA Astrophysics Data System (ADS)
Pepys, Mark B.; Hirschfield, Gideon M.; Tennent, Glenys A.; Ruth Gallimore, J.; Kahan, Melvyn C.; Bellotti, Vittorio; Hawkins, Philip N.; Myers, Rebecca M.; Smith, Martin D.; Polara, Alessandra; Cobb, Alexander J. A.; Ley, Steven V.; Andrew Aquilina, J.; Robinson, Carol V.; Sharif, Isam; Gray, Gillian A.; Sabin, Caroline A.; Jenvey, Michelle C.; Kolstoe, Simon E.; Thompson, Darren; Wood, Stephen P.
2006-04-01
Complement-mediated inflammation exacerbates the tissue injury of ischaemic necrosis in heart attacks and strokes, the most common causes of death in developed countries. Large infarct size increases immediate morbidity and mortality and, in survivors of the acute event, larger non-functional scars adversely affect long-term prognosis. There is thus an important unmet medical need for new cardioprotective and neuroprotective treatments. We have previously shown that human C-reactive protein (CRP), the classical acute-phase protein that binds to ligands exposed in damaged tissue and then activates complement, increases myocardial and cerebral infarct size in rats subjected to coronary or cerebral artery ligation, respectively. Rat CRP does not activate rat complement, whereas human CRP activates both rat and human complement. Administration of human CRP to rats is thus an excellent model for the actions of endogenous human CRP. Here we report the design, synthesis and efficacy of 1,6-bis(phosphocholine)-hexane as a specific small-molecule inhibitor of CRP. Five molecules of this palindromic compound are bound by two pentameric CRP molecules, crosslinking and occluding the ligand-binding B-face of CRP and blocking its functions. Administration of 1,6-bis(phosphocholine)-hexane to rats undergoing acute myocardial infarction abrogated the increase in infarct size and cardiac dysfunction produced by injection of human CRP. Therapeutic inhibition of CRP is thus a promising new approach to cardioprotection in acute myocardial infarction, and may also provide neuroprotection in stroke. Potential wider applications include other inflammatory, infective and tissue-damaging conditions characterized by increased CRP production, in which binding of CRP to exposed ligands in damaged cells may lead to complement-mediated exacerbation of tissue injury.
Bryan, Anthony C; Zhang, Jin; Guo, Jianjun; Ranjan, Priya; Singan, Vasanth; Barry, Kerrie; Schmutz, Jeremy; Weighill, Deborah; Jacobson, Daniel; Jawdy, Sara; Tuskan, Gerald A; Chen, Jin-Gui; Muchero, Wellington
2018-06-08
Polyglutamine (polyQ) stretches have been reported to occur in proteins across many organisms including animals, fungi and plants. Expansion of these repeats has attracted much attention due their associations with numerous human diseases including Huntington's and other neurological maladies. This suggests that the relative length of polyQ stretches is an important modulator of their function. Here, we report the identification of a Populus C-terminus binding protein (CtBP) ANGUSTIFOLIA ( PtAN1 ) which contains a polyQ stretch whose functional relevance had not been established. Analysis of 917 resequenced Populus trichocarpa genotypes revealed three allelic variants at this locus encoding 11-, 13- and 15-glutamine residues. Transient expression assays using Populus leaf mesophyll protoplasts revealed that the 11Q variant exhibited strong nuclear localization whereas the 15Q variant was only found in the cytosol, with the 13Q variant exhibiting localization in both subcellular compartments. We assessed functional implications by evaluating expression changes of putative PtAN1 targets in response to overexpression of the three allelic variants and observed allele-specific differences in expression levels of putative targets. Our results provide evidence that variation in polyQ length modulates PtAN1 function by altering subcellular localization. Copyright © 2018, G3: Genes, Genomes, Genetics.
Sjöwall, C; Hjorth, M; Eriksson, P
2017-10-01
Although the putative therapeutic options for patients with systemic lupus erythematosus (SLE) are steadily increasing, refractory disease is indeed a major challenge to many clinicians and patients. The proteasome inhibitor bortezomib - approved for the treatment of multiple myeloma since the beginning of this century - was recently reported successful in twelve cases of refractory SLE by German colleagues. Herein, we describe two Swedish SLE cases with refractory renal and pulmonary manifestations that were rescued by bortezomib as induction of remission followed by monthly doses of belimumab. The patients were carefully monitored with regard to disease activity and renal function. Anti-dsDNA and anti-C1q antibodies, complement proteins and lymphocyte subsets were analysed in consecutive samples. In December 2016, the patients had been in clinical remission post bortezomib administration for a period of 28 and 22 months, respectively. Potential benefits of using belimumab as maintenance therapy to prevent regeneration of autoreactive B cell clones are discussed.
Lee, Jiyeong; Joo, Eun-Jeong; Lim, Hee-Joung; Park, Jong-Moon; Lee, Kyu Young; Park, Arum; Seok, AeEun
2015-01-01
Objective Currently, there are a few biological markers to aid in the diagnosis and treatment of depression. However, it is not sufficient for diagnosis. We attempted to identify differentially expressed proteins during depressive moods as putative diagnostic biomarkers by using quantitative proteomic analysis of serum. Methods Blood samples were collected twice from five patients with major depressive disorder (MDD) at depressive status before treatment and at remission status during treatment. Samples were individually analyzed by liquid chromatography-tandem mass spectrometry for protein profiling. Differentially expressed proteins were analyzed by label-free quantification. Enzyme-linked immunosorbent assay (ELISA) results and receiver-operating characteristic (ROC) curves were used to validate the differentially expressed proteins. For validation, 8 patients with MDD including 3 additional patients and 8 matched normal controls were analyzed. Results The quantitative proteomic studies identified 10 proteins that were consistently upregulated or downregulated in 5 MDD patients. ELISA yielded results consistent with the proteomic analysis for 3 proteins. Expression levels were significantly different between normal controls and MDD patients. The 3 proteins were ceruloplasmin, inter-alpha-trypsin inhibitor heavy chain H4 and complement component 1qC, which were upregulated during the depressive status. The depressive status could be distinguished from the euthymic status from the ROC curves for these proteins, and this discrimination was enhanced when all 3 proteins were analyzed together. Conclusion This is the first proteomic study in MDD patients to compare intra-individual differences dependent on mood. This technique could be a useful approach to identify MDD biomarkers, but requires additional proteomic studies for validation. PMID:25866527
The protective effect of SCR(15-18) on cerebral ischemia-reperfusion injury.
Li, Shu; Xian, Jinhong; He, Li; Luo, Xue; Tan, Bing; Yang, Yongtao; Liu, Gaoke; Wang, Zhengqing
2011-10-01
Soluble complement receptor type 1 (sCR1), a potent inhibitor of complement activation, has been shown to protect brain cells against cerebral ischemic/reperfusion (CI/R) injury due to its decay-accelerating activity for C3/C5 convertase and co-factor activity for C3b/C4b degradation. However, the effect of short consensus repeats (SCRs) 15-18, one of active domains of sCR1 with high C3b/C4b degradability, has not been demonstrated. Here, we investigated the protective effect of recombinant SCR(15-18) protein in middle cerebral artery occlusion (MCAO)-induced focal CI/R injury. Recombinant SCR(15-18) protein was successfully expressed in Escherichia coli and refolded to its optimal bioactivity. Seventy-five Sprague-Dawley rats were randomly assigned into three groups: sham-operated group, CI/R group, and SCR(15-18)+CI/R group pretreated with 20 mg/kg SCR(15-18) protein. After 2 hours of MCAO and subsequent 24 hours of reperfusion, rats were evaluated for neurological deficits and cerebral infarction. Polymorphonuclear leukocyte accumulation, C3b deposition, and morphological changes in cerebral tissue were also estimated. SCR(15-18) pretreatment induced a 20% reduction of infarct size and an improvement of neurological function with 22·2% decrease of neurological deficit scores. Inhibition of cerebral neutrophils infiltration by SCR(15-18) was indicated from the reduction of myeloperoxidase activity in SCR(15-18)+CI/R rats. Decreased C3b deposition and improved morphological changes were also found in cerebral tissue of SCR(15-18)-treated rats. Our studies suggest a definitive moderately protective effect of SCR(15-18) against CI/R damage and provide preclinical experimental evidence supporting the possibility of using it as a small anti-complement therapeutic agent for CI/R injury therapy.
Ajayi, Oyeyemi O; Peters, Sunday O; De Donato, Marcos; Mujibi, F Denis; Khan, Waqas A; Hussain, Tanveer; Babar, Masroor E; Imumorin, Ikhide G; Thomas, Bolaji N
2018-01-01
DNAJA1 or heat shock protein 40 (Hsp40) is associated with heat adaptation in various organisms. We amplified and sequenced a total of 1,142 bp of bovine Hsp40 gene representing the critical N-terminal (NTR) and C-terminal (CTR) regions in representative samples of African, Asian and American cattle breeds. Eleven and 9 different haplotypes were observed in the NTR in Asian and African breeds respectively while in American Brangus, only two mutations were observed resulting in two haplotypes. The CTR appears to be highly conserved between cattle and yak. In-silico functional analysis with PANTHER predicted putative deleterious functional impact of c.161 T>A; p. V54Q while alignment of bovine and human NTR-J domains revealed that p.Q19H, p.E20Q and p. E21X mutations occurred in helix 2 and p.V54Q missense mutation occurred in helix 3 respectively. The 124 bp insertion found in the yak DNAJA1 ortholog may have significant functional relevance warranting further investigation. Our results suggest that these genetic differences may be concomitant with population genetic history and possible functional consequences for climate adaptation in bovidae.
Role of Complement C5 in Experimental Blunt Chest Trauma-Induced Septic Acute Lung Injury (ALI)
Karbach, Michael; Braumueller, Sonja; Kellermann, Philipp; Gebhard, Florian; Huber-Lang, Markus; Perl, Mario
2016-01-01
Background Severe blunt chest trauma is associated with high mortality. Sepsis represents a serious risk factor for mortality in acute respiratory distress syndrome (ARDS). In septic patients with ARDS complement activation products were found to be elevated in the plasma. In single models like LPS or trauma complement has been studied to some degree, however in clinically highly relevant double hit models such as the one used here little data is available. Here, we hypothesized that absence of C5 is correlated with a decreased inflammatory response in trauma induced septic acute lung injury. Methods 12 hrs after DH in mice the local and systemic cytokines and chemokines were quantified by multiplex bead array or ELISA, activated caspase-3 by western blot. Data were analyzed using one-way ANOVA followed by post-hoc Sidak’s multiple comparison test (significance, p≤ 0.05). Results In lung tissue interleukin (IL)-6, monocyte chemo attractant protein-1 (MCP-1) and granulocyte-colony stimulating factor (G-CSF) was elevated in both C5-/- mice and wildtype littermates (wt), whereas caspase-3 was reduced in lungs after DH in C5-/- mice. Systemically, reduced keratinocyte-derived chemokine (KC) levels were observed after DH in C5-/- compared to wt mice. Locally, lung myeloperoxidase (MPO), protein, IL-6, MCP-1 and G-CSF in brochoalveolar lavage fluid (BALF) were elevated after DH in C5-/- compared to wt. Conclusions In the complex but clinically relevant DH model the local and systemic inflammatory immune response features both, C5-dependent and C5-independent characteristics. Activation of caspase-3 in lung tissue after DH was C5-dependent whereas local inflammation in lung tissue was C5-independent. PMID:27437704
Role of Complement C5 in Experimental Blunt Chest Trauma-Induced Septic Acute Lung Injury (ALI).
Kalbitz, Miriam; Karbach, Michael; Braumueller, Sonja; Kellermann, Philipp; Gebhard, Florian; Huber-Lang, Markus; Perl, Mario
2016-01-01
Severe blunt chest trauma is associated with high mortality. Sepsis represents a serious risk factor for mortality in acute respiratory distress syndrome (ARDS). In septic patients with ARDS complement activation products were found to be elevated in the plasma. In single models like LPS or trauma complement has been studied to some degree, however in clinically highly relevant double hit models such as the one used here little data is available. Here, we hypothesized that absence of C5 is correlated with a decreased inflammatory response in trauma induced septic acute lung injury. 12 hrs after DH in mice the local and systemic cytokines and chemokines were quantified by multiplex bead array or ELISA, activated caspase-3 by western blot. Data were analyzed using one-way ANOVA followed by post-hoc Sidak's multiple comparison test (significance, p≤ 0.05). In lung tissue interleukin (IL)-6, monocyte chemo attractant protein-1 (MCP-1) and granulocyte-colony stimulating factor (G-CSF) was elevated in both C5-/- mice and wildtype littermates (wt), whereas caspase-3 was reduced in lungs after DH in C5-/- mice. Systemically, reduced keratinocyte-derived chemokine (KC) levels were observed after DH in C5-/- compared to wt mice. Locally, lung myeloperoxidase (MPO), protein, IL-6, MCP-1 and G-CSF in brochoalveolar lavage fluid (BALF) were elevated after DH in C5-/- compared to wt. In the complex but clinically relevant DH model the local and systemic inflammatory immune response features both, C5-dependent and C5-independent characteristics. Activation of caspase-3 in lung tissue after DH was C5-dependent whereas local inflammation in lung tissue was C5-independent.
A Minimal Anaphase Promoting Complex/Cyclosome (APC/C) in Trypanosoma brucei
Bessat, Mohamed; Knudsen, Giselle; Burlingame, Alma L.; Wang, Ching C.
2013-01-01
The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that initiates chromosome segregation and mitotic exit by targeting critical cell-cycle regulators for proteolytic destruction. Previously, seven APC/C subunit homologues were identified in the genome of Trypanosoma brucei. In the present study, we tested five of them in yeast complementation studies and found none of them capable of complementing the yeast mutants lacking the corresponding subunits, suggesting significant discrepancies between the two APC/C’s. Subunit homologues of mitotic checkpoint complex (MCC) have not yet been identified in T. brucei, raising the possibility that a MCC-APC/C complex equivalent may not exist in T. brucei. We performed tandem affinity purification of the protein complex containing a APC1 fusion protein expressed in the cells enriched in different phases of the cell cycle of procyclic form T. brucei, and compared their protein profiles using LC-MS/MS analyses. The seven putative APC/C subunits were identified in the protein complex throughout the cell cycle together with three additional proteins designated the associated proteins (AP) AP1, AP2 and AP3. Abundance of the 10 proteins remained relatively unchanged throughout the cell cycle, suggesting that they are the core subunits of APC/C. AP1 turned out to be a homologue of APC4. An RNAi knockdown of APC4 and AP3 showed no detectable cellular phenotype, whereas an AP2 knockdown enriched the cells in G2/M phase. The AP2-depleted cells showed stabilized mitotic cyclin B. An accumulation of poly-ubiquitinated cyclin B was indicated in the cells treated with the proteasome inhibitor MG132, demonstrating the involvement of proteasome in degrading poly-ubiquitinated cyclin B. In all, a 10-subunit APC/C machinery with a conserved function is identified in T. brucei without linking to a MCC-like complex, thus indicating a unique T. brucei APC/C. PMID:23533609
Padilla-Benavides, Teresita; Long, Jarukit E.; Raimunda, Daniel; Sassetti, Christopher M.; Argüello, José M.
2013-01-01
Transition metals are central for bacterial virulence and host defense. P1B-ATPases are responsible for cytoplasmic metal efflux and play roles either in limiting cytosolic metal concentrations or in the maturation of secreted metalloproteins. The P1B-ATPase, CtpC, is required for Mycobacterium tuberculosis survival in a mouse model (Sassetti, C. M., and Rubin, E. J. (2003) Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. U.S.A. 100, 12989–12994). CtpC prevents Zn2+ toxicity, suggesting a role in Zn2+ export from the cytosol (Botella, H., Peyron, P., Levillain, F., Poincloux, R., Poquet, Y., Brandli, I., Wang, C., Tailleux, L., Tilleul, S., Charriere, G. M., Waddell, S. J., Foti, M., Lugo-Villarino, G., Gao, Q., Maridonneau-Parini, I., Butcher, P. D., Castagnoli, P. R., Gicquel, B., de Chastellièr, C., and Neyrolles, O. (2011) Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10, 248–259). However, key metal-coordinating residues and the overall structure of CtpC are distinct from Zn2+-ATPases. We found that isolated CtpC has metal-dependent ATPase activity with a strong preference for Mn2+ over Zn2+. In vivo, CtpC is unable to complement Escherichia coli lacking a functional Zn2+-ATPase. Deletion of M. tuberculosis or Mycobacterium smegmatis ctpC leads to cytosolic Mn2+ accumulation but no alterations in other metals levels. Whereas ctpC-deficient M. tuberculosis is sensitive to extracellular Zn2+, the M. smegmatis mutant is not. Both ctpC mutants are sensitive to oxidative stress, which might explain the Zn2+-sensitive phenotype of the M. tuberculosis ctpC mutant. CtpC is a high affinity/slow turnover ATPase, suggesting a role in protein metallation. Consistent with this hypothesis, mutation of CtpC leads to a decrease of Mn2+ bound to secreted proteins and of the activity of secreted Fe/Mn-superoxide dismutase, particularly in M. smegmatis. Alterations in the assembly of metalloenzymes involved in redox stress response might explain the sensitivity of M. tuberculosis ctpC mutants to oxidative stress and growth and persistence defects in mice infection models. PMID:23482562
Lintner, Katherine E.; Patwardhan, Anjali; Rider, Lisa G.; Abdul-Aziz, Rabheh; Wu, Yee Ling; Lundström, Emeli; Padyukov, Leonid; Zhou, Bi; Alhomosh, Alaaedin; Newsom, David; White, Peter; Jones, Karla B.; O’Hanlon, Terrance P.; Miller, Frederick W.; Spencer, Charles H.; Yu, C. Yung
2017-01-01
Objective Complement-mediated vasculopathy of muscle and skin are clinical features of juvenile dermatomyositis (JDM). We assess gene copy-number variations (CNVs) for complement C4 and its isotypes, C4A and C4B, in genetic risks and pathogenesis of JDM. Methods The study population included 105 JDM patients and 500 healthy European Americans. Gene copy-numbers (GCNs) for total C4, C4A, C4B and HLA-DRB1 genotypes were determined by Southern blots and PCRs. Processed activation product C4d bound to erythrocytes (E-C4d) was measured by flow cytometry. Global gene-expression microarrays were performed in 19 JDM and 7 controls using PAXgene-blood RNA. Differential expression levels for selected genes were validated by qPCR. Results Significantly lower GCNs and differences in distribution of GCN groups for total C4 and C4A were observed between JDM and controls. Lower GCN of C4A in JDM remained among HLA DR3-positive subjects (p=0.015). Homozygous or heterozygous C4A-deficiency was present in 40.0% of JDM compared to 18.2% of controls [odds ratio (OR)=3.00 (1.87–4.79), p=8.2x10−6]. JDM had higher levels of E-C4d than controls (p=0.004). In JDM, C4A-deficient subjects had higher levels of E-C4d (p=0.0003) and higher frequency of elevated levels of multiple serum muscle enzymes at diagnosis (p=0.004). Microarray profiling of blood RNA revealed upregulation of type I Interferon-stimulated genes and lower abundance of transcripts for T-cell and chemokine function genes in JDM, but this was less prominent among C4A-deficient or DR3-positive patients. Conclusions Complement C4A-deficiency appears to be an important factor for the genetic risk and pathogenesis of JDM, particularly in patients with a DR3-positive background. PMID:26493816
Lewis, Melanie J.; Wagner, Bettina; Woof, Jenny M.
2008-01-01
Recombinant versions of the seven equine IgG subclasses were expressed in CHO cells. All assembled into intact immunoglobulins stabilised by disulphide bridges, although, reminiscent of human IgG4, a small proportion of equine IgG4 and IgG7 were held together by non-covalent bonds alone. All seven IgGs were N-glycosylated. In addition IgG3 appeared to be O-glycosylated and could bind the lectin jacalin. Staphylococcal protein A displayed weak binding for the equine IgGs in the order: IgG1 > IgG3 > IgG4 > IgG7 > IgG2 = IgG5 > IgG6. Streptococcal protein G bound strongly to IgG1, IgG4 and IgG7, moderately to IgG3, weakly to IgG2 and IgG6, and not at all to IgG5. Analysis of antibody effector functions revealed that IgG1, IgG3, IgG4, IgG5 and IgG7, but not IgG2 and IgG6, were able to elicit a strong respiratory burst from equine peripheral blood leukocytes, predicting that the former five IgG subclasses are able to interact with Fc receptors on effector cells. IgG1, IgG3, IgG4 and IgG7, but not IgG2, IgG5 and IgG6, were able to bind complement C1q and activate complement via the classical pathway. The differential effector function capabilities of the subclasses suggest that, for maximum efficacy, equine vaccine strategies should seek to elicit antibody responses of the IgG1, IgG3, IgG4, and IgG7 subclasses. PMID:17669496
1973-01-01
In a study of 55 persons with dengue haemorrhagic fever—36 of whom showed the dengue shock syndrome—clinical, haematological, virological, and serological changes were correlated with serial measurements of complement components and immunopathological studies. Viruses dengue-1 or dengue-2 were isolated from the sera of 9 patients. Serological responses indicative of secondary dengue virus infections were observed in 53 patients; 2 (infants) had primary infections. During the acute phase of the disease, dengue antibody titres rose logarithmically. Marked depression of complement components, especially C3, was observed. Activation of both the classical and alternative complement pathways was demonstrated, with depression of both C4 and C3 proactivator levels in most instances, although in some cases it appeared that one mechanism was involved to a greater extent than the other. The level of depression of C3 was correlated with the severity of the disease. Relatively stable transferrin levels indicated that depletion of complement proteins was not primarily due to extravasation. Fibrinogen levels were depressed and fibrinogen split products were found in the plasma. The accumulated data provide further evidence of the central role that activated complement components play in the pathogenesis of dengue haemorrhagic fever. PMID:4575523
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karim, Mohammad Azharul; Ohta, Kohji; Matsuda, Ichiro
1996-01-15
The LIM domain is present in a wide variety of proteins with diverse functions and exhibits characteristic arrangements of Cys and His residues with a novel zinc-binding motif. LIM domain proteins have been implicated in development, cell regulation, and cell structure. A LIM domain protein was identified by screening a human cDNA library with rat cysteine-rich intestinal protein (CRIP) as a probe, under conditions of low stringency. Comparison of the predicted amino acid sequence with several LIM domain proteins revealed 93% of the residues to be identical to rat LIM domain protein, termed ESP1 or CRP2. Thus, the protein ismore » hereafter referred to as human ESP1/CRP2. The cDNA encompasses a 1171-base region, including 26, 624, and 521 bases in the 5{prime}-noncoding region, coding region, and 3{prime}-noncoding regions, respectively, and encodes the entire ESP1/CRP2 protein has two LIM domains, and each shares 35.1% and 77 or 79% identical residues with human cysteine-rich protein (CRP) and rat CRIP, respectively. Northern blot analysis of ESP1/CRP2 in various human tissues showed distinct tissue distributions compared with CRP and CRIP, suggesting that each might serve related but specific roles in tissue organization or function. Using a panel of human-rodent somatic cell hybrids, the ESP1/CRP2 locus was assigned to chromosome 14. Fluorescence in situ hybridization, using cDNA and a genome DNA fragment of the ESP1/CRP2 as probes, confirms this assignment and relegates regional localization to band 14q32.3 47 refs., 7 figs.« less
Harder, Jeffrey M; Braine, Catherine E; Williams, Pete A; Zhu, Xianjun; MacNicoll, Katharine H; Sousa, Gregory L; Buchanan, Rebecca A; Smith, Richard S; Libby, Richard T; Howell, Gareth R; John, Simon W M
2017-05-09
Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wld s allele, which protects from axon dysfunction. We demonstrate that DBA/2J .Wld s mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J .Wld s mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J. Wld s mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma.
Harder, Jeffrey M.; Braine, Catherine E.; Williams, Pete A.; Zhu, Xianjun; MacNicoll, Katharine H.; Sousa, Gregory L.; Buchanan, Rebecca A.; Smith, Richard S.; Howell, Gareth R.; John, Simon W. M.
2017-01-01
Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wlds allele, which protects from axon dysfunction. We demonstrate that DBA/2J.Wlds mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J.Wlds mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J.Wlds mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma. PMID:28446616
[Renal risks of dietary complements: a forgotten cause].
Dori, Olympia; Humbert, Antoine; Burnier, Michel; Teta, Daniel
2014-02-26
The use of dietary complements like vitamins, minerals, trace elements, proteins, aminoacids and plant-derived agents is prevalent in the general population, in order to promote health and treat diseases. Dietary complements are considered as safe natural products and are easily available without prescription. However, these can lead to severe renal toxicity, especially in cases of unknown pre-existing chronic kidney disease (CKD). In particular, Chinese herbs including aristolochic acid, high doses of vitamine C, creatine and protein complements may lead to acute and chronic renal failure, sometimes irreversible. Dietary complement toxicity should be suspected in any case of unexplained renal impairement. In the case of pre-existing CKD, the use of potentially nephrotoxic dietary complements should be screened for.
Immunological properties of glycolipids from membranes of Acholeplasma laidlawii.
Ryan, M D; Noker, P; Matz, L L
1975-01-01
Glycolipids, the predominant class of lipids in the membranes of Acholeplasma laidlawii, are the haptenic determinants that react with anti-A. Laidlawii serum to fix complement. The predominant complement-fixing activity of the membrane glycolipids was associated with the monoglucoysyl diglyceride, diglucosyl diglyceride, glycerlphosphoryl diglucosyl diglyceride (GPDD), and an unknown lipid B, which did not react with ninhydrin but release glucose and glycerol and traces of phosphorus upon hydrolysis. The glycolipids monoglucosyl diglyceride and diglucosyl diglyceride or GPDD and unknown lipid B were paired as a result of their cross-reactions with selective antisera prepared with the aid of reconstituted membrane complexes containing membrane lipids. Reconstituted membrane complexes assembled from [14C]monoglucosyl diglyceride and delipidated membrane proteins gave optimal complement fixation titers before saturation of the complexes with the ]14C]monoglucosyl diglyceride. The phosphoglycolipid of the membrane, GPDD, was anticomplementary as a pure lipid, a cholesterol liposome, and a reconstituted membrane complex. This anticomplementary activity, which was caused by 3 mug of pure GPDD, affected both human and guinea pig complement. Although human C1, C4, C3, and C5 were not inhibited by GPDD, C2 was inhibited 10-fold by reconstituted membrane complexes containing 150 mug of GPDD. A role for this phosphoglycolipid is discussed in the hypothetical mechanism of inhibition of C2 attachment to SAC1, 4 sites. PMID:1193716
Ren, Weihong; Liu, Yan; Wang, Xuerui; Piao, Chunmei; Ma, Youcai; Qiu, Shulan; Jia, Lixin; Chen, Boya; Wang, Yuan; Jiang, Wenjian; Zheng, Shuai; Liu, Chang; Dai, Nan; Lan, Feng; Zhang, Hongjia; Song, Wen-Chao; Du, Jie
2018-03-01
Thoracic aortic dissection (TAD), once ruptured, is devastating to patients, and no effective pharmaceutical therapy is available. Anaphylatoxins released by complement activation are involved in a variety of diseases. However, the role of the complement system in TAD is unknown. We found that plasma levels of C3a, C4a, and C5a were significantly increased in patients with TAD. Elevated circulating C3a levels were also detected in the developmental process of mouse TAD, which was induced by β-aminopropionitrile monofumarate (BAPN) treatment, with enhanced expression of C1q and properdin in mouse dissected aortas. These findings indicated activation of classical and alternative complement pathways. Further, expression of C3aR was obviously increased in smooth muscle cells of human and mouse dissected aortas, and knockout of C3aR notably inhibited BAPN-induced formation and rupture of TAD in mice. C3aR antagonist administered pre- and post-BAPN treatment attenuated the development of TAD. We found that C3aR knockout decreased matrix metalloproteinase 2 (MMP2) expression in BAPN-treated mice. Additionally, recombinant C3a stimulation enhanced MMP2 expression and activation in smooth muscle cells that were subjected to mechanical stretch. Finally, we generated MMP2-knockdown mice by in vivo MMP2 short hairpin RNA delivery using recombinant adeno-associated virus and found that MMP2 deficiency significantly reduced the formation of TAD. Therefore, our study suggests that the C3a - C3aR axis contributes to the development of TAD via regulation of MMP2 expression. Targeting the C3a-C3aR axis may represent a strategy for inhibiting the formation of TAD. Copyright © 2018 by The American Association of Immunologists, Inc.
Williams, Marni; Summers, Brady J.; Baxter, Richard H. G.; ...
2015-03-16
Natural infection of Anopheles gambiae by malaria-causing Plasmodium parasites is significantly influenced by the APL1 genetic locus. The locus contains three closely related leucine-rich repeat (LRR) genes, APL1A, APL1B and APL1C. Multiple studies have reported the participation of APL1A—C in the immune response of A. gambiae to invasion by both rodent and human Plasmodium isolates. APL1C forms a heterodimer with the related LRR protein LRIM1 via a C-terminal coiled-coil domain that is also present in APL1A and APL1B. The LRIM1/APL1C heterodimer protects A. gambiae from infection by binding the complement-like protein TEP1 to form a stable and active immune complex.more » We report solution x-ray scatting data for the LRIM1/APL1C heterodimer, the oligomeric state of LRIM1/APL1 LRR domains in solution and the crystal structure of the APL1B LRR domain. The LRIM1/APL1C heterodimeric complex has a flexible and extended structure in solution. In contrast to the APL1A, APL1C and LRIM1 LRR domains, the APL1B LRR domain is a homodimer. The crystal structure of APL1B-LRR shows that the homodimer is formed by an N-terminal helix that complements for the absence of an N-terminal capping motif in APL1B, which is a unique distinction within the LRIM1/APL1 protein family. Full-length APL1A 1 and APL1B form a stable complex with LRIM1. Our results support a model in which APL1A 1, APL1B and APL1C can all form an extended, flexible heterodimer with LRIM1, providing a repertoire of functional innate immune complexes to protect A. gambiae from a diverse array of pathogens.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Marni; Summers, Brady J.; Baxter, Richard H. G.
Natural infection of Anopheles gambiae by malaria-causing Plasmodium parasites is significantly influenced by the APL1 genetic locus. The locus contains three closely related leucine-rich repeat (LRR) genes, APL1A, APL1B and APL1C. Multiple studies have reported the participation of APL1A—C in the immune response of A. gambiae to invasion by both rodent and human Plasmodium isolates. APL1C forms a heterodimer with the related LRR protein LRIM1 via a C-terminal coiled-coil domain that is also present in APL1A and APL1B. The LRIM1/APL1C heterodimer protects A. gambiae from infection by binding the complement-like protein TEP1 to form a stable and active immune complex.more » We report solution x-ray scatting data for the LRIM1/APL1C heterodimer, the oligomeric state of LRIM1/APL1 LRR domains in solution and the crystal structure of the APL1B LRR domain. The LRIM1/APL1C heterodimeric complex has a flexible and extended structure in solution. In contrast to the APL1A, APL1C and LRIM1 LRR domains, the APL1B LRR domain is a homodimer. The crystal structure of APL1B-LRR shows that the homodimer is formed by an N-terminal helix that complements for the absence of an N-terminal capping motif in APL1B, which is a unique distinction within the LRIM1/APL1 protein family. Full-length APL1A 1 and APL1B form a stable complex with LRIM1. Our results support a model in which APL1A 1, APL1B and APL1C can all form an extended, flexible heterodimer with LRIM1, providing a repertoire of functional innate immune complexes to protect A. gambiae from a diverse array of pathogens.« less
Isenberg, D A; Petri, M; Kalunian, K; Tanaka, Y; Urowitz, M B; Hoffman, R W; Morgan-Cox, M; Iikuni, N; Silk, M; Wallace, D J
2016-02-01
Evaluate efficacy and safety of tabalumab, a human IgG4 monoclonal antibody that binds and neutralises membrane and soluble B-cell activating factor (BAFF) versus placebo plus standard of care (SoC) in patients with systemic lupus erythematosus (SLE). This phase III, 52-week study randomised 1164 patients with moderate-to-severe SLE (Safety of Estrogens in Lupus Erythematosus National Assessment-SLE Disease Activity Index ≥6 at baseline). Patients received SoC plus subcutaneous injections of tabalumab or placebo, starting with a loading dose (240 mg) at week 0 and followed by 120 mg every two weeks (120 Q2W, n=387), 120 mg every four weeks (120 Q4W, n=389) or placebo Q2W (n=388). proportion of patients achieving SLE Responder Index 5 (SRI-5) response at week 52. Similar proportions of patients in each group achieved SRI-5 response at week 52 (120 Q2W: 31.8%; 120 Q4W: 35.2% and placebo: 29.3%). Key secondary endpoints were not met. In a sensitivity analysis not excluding patients who decreased antimalarials or immunosuppressants, SRI-5 response was achieved with 120 Q4W (37.0% vs 29.8% placebo; p=0.021), but not 120 Q2W (34.1%; p=0.171). Significant reductions in anti-dsDNA antibodies, increases in C3 and C4, and reductions in total B cells and immunoglobulins were observed with tabalumab. No differences were observed between treatment groups in percentage of deaths (120 Q2W: 0.8%; 120 Q4W: 0.5%; placebo: 0.5%), serious adverse events (AEs) (range 11.1-14.4%) or treatment-emergent AEs (range 81.1-82.3%). Tabalumab had biological activity-changes in anti-dsDNA, complement, B cells and immunoglobulins-consistent with BAFF pathway inhibition. Key clinical efficacy endpoints did not achieve statistical significance. Safety profiles were similar with tabalumab and placebo. NCT01196091. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Graham, Matthew; Shin, Dong-Ho; Smith, Sylvia L
2009-07-01
We present the complete cDNA sequence of shark (Ginglymostoma cirratum) pro-C5 and its molecular characterization with a descriptive analysis of the structural elements necessary for its potential functional role as a potent mediator of inflammation (fragment C5a) and initiator molecule (fragment C5b) for the assembly of the membrane attack complex (MAC) upon activation by C5 convertase. In mammals the three complement activation cascades, the classical, alternative and lectin pathways, converge at the activation of C3, a pivotal complement protein. It is, however, the subsequent activation of the next complement component, C5, which is the focal point at which the initiation of the terminal lytic pathway takes place and involves the stepwise assembly of the MAC. The effector cytolytic function of complement occurs with the insertion of MAC into target membranes causing dough-nut like holes and cell leakage. The lytic activity of shark complement results in structurally similar holes in target membranes suggesting the assembly of a shark MAC that likely involves a functional analogue of C5. The composition of shark MAC remains unresolved and to date conclusive evidence has been lacking for shark C5. The gene has not been cloned nor has the serum protein been characterized for any elasmobranch species. This report is the first to confirm the presence of C5 homologue in the shark. GcC5 is remarkably similar to human C5 in overall structure and domain arrangement. The GcC5 cDNA measured 5160-bp with 5' and 3' UTRs of 35 bp and 79 bp, respectively. Structural analysis of the derived protein sequence predicts a molecule that is a two-chain structure which lacks a thiolester bond and contains a C5 convertase cleavage site indicating that activation will generate two peptides, akin to C5b and C5a. The putative GcC5 molecule also contains the C-terminal C345C/Netrin module that characterizes C3, C4 and C5. Multiple alignment of deduced amino acid sequences shows that GcC5 shares more amino acid identities/similarities with mammals than that with bony fish. We conclude that at the time of emergence of sharks the elaborate mosaic structure of C5 had already evolved.
Graham, Matthew; Shin, Dong-Ho; Smith, Sylvia L.
2009-01-01
We present the complete cDNA sequence of shark (Ginglymostoma cirratum) pro-C5 and its molecular characterization with a descriptive analysis of the structural elements necessary for its potential functional role as a potent mediator of inflammation (fragment C5a) and initiator molecule (fragment C5b) for the assembly of the membrane attack complex (MAC) upon activation by C5 convertase. In mammals the three complement activation cascades, the classical, alternative and lectin pathways, converge at the activation of C3, a pivotal complement protein. It is, however, the subsequent activation of the next complement component, C5, which is the focal point at which the initiation of the terminal lytic pathway takes place and involves the stepwise assembly of the MAC. The effector cytolytic function of complement occurs with the insertion of MAC into target membranes causing dough-nut like holes and cell leakage. The lytic activity of shark complement results in structurally similar holes in target membranes suggesting the assembly of a shark MAC that likely involves a functional analogue of C5. The composition of shark MAC remains unresolved and to date conclusive evidence has been lacking for shark C5. The gene has not been cloned nor has the serum protein been characterized for any elasmobranch species. This report is the first to confirm the presence of C5 homologue in the shark. GcC5 is remarkably similar to human C5 in overall structure and domain arrangement. The GcC5 cDNA measured 5160-bp with 5′ and 3′ UTRs of 35bp and 79bp, respectively. Structural analysis of the derived protein sequence predicts a molecule that is a two-chain structure which lacks a thiolester bond and contains a C5 convertase cleavage site indicating that activation will generate two peptides, akin to C5b and C5a. The putative GcC5 molecule also contains the C-terminal C345C/Netrin module that characterizes C3, C4 and C5. Multiple alignment of deduced amino acid sequences show that GcC5 shares more amino acid identities/similarities with mammals than that with bony fish. We conclude that at the time of emergence of sharks the elaborate mosaic structure of C5 had already evolved. PMID:19410004
Mehta, Gaurav; Ferreira, Viviana P.; Pickering, Matthew C.; Skerka, Christine; Zipfel, Peter F.; Banda, Nirmal K.
2014-01-01
Complement factor H (CFH) protein is an inhibitor of the alternative pathway of complement (AP) both in the fluid phase and on the surface of host cells. Mouse and human complement factor H-related (CFHR) proteins also belong to the fH family of plasma glycoproteins. The main goal of the current study was to compare the presence of mRNA for two mCFHR proteins in spontaneously developing autoimmune diseases in mice such as dense deposit disease (DDD), diabetes mellitus (DM), basal laminar deposits (BLD), collagen antibody-induced arthrits (CAIA) and systemic lupus erythematosus (SLE). Here we report for the first time that the CFHR-C mRNA was universally absent in the liver from three strains of lupus-prone mice and in a diabetic-prone mouse strain. The mRNA levels (pg/ng) for CFH and CFHR-B in MRL-lpr/lpr, at 9 wks and 23 wks were 707.2 ± 44.4, 54.5 ± 5.75 and 729 ± 252.9, 74.04 ± 22.76 respectively. The mRNA levels for CFH and CFHR-B in NZB/NZW mice, at 9 wks and 54 wks were 579.9 ± 23.8, 58.8 ± 1.41 and 890.3 ± 135.2, 63.30 ± 9.2 respectively. CFHR-C protein was absent in the circulation of MRL-lpr/lpr and NZB/NZW mice before and after the development of lupus. Similarly, mRNA and protein for CFHR-C was universally absent in liver and other organs and in the circulation of NOD mice before and after the development of DM. In contrast, the mRNAs for CFH, CFHR-B and CFHR-C were universally present in the liver from mice with and without DDD, BLD and CAIA. The levels of mRNA for CFHR-B in mice with and without BLD were ~4 times higher than the mice with lupus. The complete absence of mRNA for CFHR-C in lupus and diabetic-prone strains indicates that polymorphic variation within the mouse CFHR family exists and raises the possibility that such variation contributes to lupus and diabetic phenotypes. PMID:25033230
Mango, S E; Maine, E M; Kimble, J
1991-08-29
The glp-1 and lin-12 genes encode homologous transmembrane proteins that may act as receptors for cell interactions during development. The glp-1 product is required for induction of germ-line proliferation and for embryogenesis. By contrast, lin-12 mediates somatic cell interactions, including those between the precursor cells that form the vulval hypodermis (VPCs). Here we analyse an unusual allele of glp-1, glp-1(q35), which displays a semidominant multivulva phenotype (Muv), as well as the typical recessive, loss-of-function Glp phenotypes (sterility and embryonic lethality). We find that the effects of glp-1(q35) on VPC development mimic those of dominant lin-12 mutations, even in the absence of lin-12 activity. The glp-1(q35) gene bears a nonsense mutation predicted to eliminate the 122 C-terminal amino acids, including a ProGluSerThr (PEST) sequence thought to destabilize proteins. We suggest that the carboxy terminus bears a negative regulatory domain which normally inactivates glp-1 in the VPCs. We propose that inappropriate glp-1(q35) activity can substitute for lin-12 to determine vulval fate, perhaps by driving the VPCs to proliferate.
Holzapfel, Hans-Peter; Bergner, Beate; Wonerow, Peter; Paschke, Ralf
2002-07-01
Constitutively activating mutations of the thyrotrophin receptor (TSHR) are the main molecular cause of hyperfunctioning thyroid nodules (HTNs). The G protein coupling is an important and critical step in the TSHR signalling which mainly includes G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins. We investigated the in vitro consequences of overexpressing G(alpha) proteins on signalling of the wild-type (WT) or mutated TSHR. Moreover, we investigated whether changes in G(alpha) protein expression are pathophysiologically relevant in HTNs or cold thyroid nodules (CTNs). Wild-type TSH receptor and mutated TSH receptors were coexpressed with G(alpha)(s), G(alpha)(i) or G(alpha)(q)/11, and cAMP and inositol phosphate (IP) production was measured after stimulation with TSH. The expression of G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins was examined by Western blotting in 28 HTNs and 14 CTNs. Coexpression of G(alpha)(s) with the WT TSH receptor in COS 7 cells significantly increased the basal and TSH-stimulated cAMP accumulation while coexpression of the G(alpha)(q) or G(alpha)11 protein significantly increased the production of cAMP and inositol triphosphate (IP(3)). The coexpression of the TSH receptor mutants (I486F, DEL613-621), known to couple constitutively to G(alpha)(s) and G(alpha)(q) with G(alpha)(s) and G(alpha)(q)/11, significantly increased the basal and stimulated cAMP and IP(3) accumulation. Coexpression of the TSH receptor mutant V556F with G(alpha)(s) only increased the basal and stimulated cAMP production while its coexpression with G(alpha)(q)/11 increased the basal and stimulated IP(3) signalling. The expression of G(alpha)(s) protein subunits determined by Western blotting was significantly decreased in 14 HTNs with a constitutively activating TSH receptor mutation in comparison with the corresponding surrounding tissue, while in 14 HTNs without TSH receptor or G(alpha)(s) protein mutation and in 14 CTNs the expression of G(alpha)(s) protein was not different compared with the surrounding tissue. The expression of G(alpha)(i) and G(alpha)(q)/11 proteins in HTNs or CTNs was not significantly different compared with the surrounding tissue. The reduced expression of G(alpha)(s) protein subunits in HTNs with TSHR mutations could act as a feedback mechanism to desensitise the chronically stimulated cAMP cascade. As G(alpha) protein expression was not significantly increased in the majority of CTNs and HTNs an influence of G(alpha) overexpression on TSH signalling could be excluded in these nodules.
The novel protein C3orf43 accelerates hepatocyte proliferation.
Zhang, Chunyan; Chang, Cuifang; Li, Deming; Zhang, Fuchun; Xu, Cunshuan
2017-01-01
Our previous study found that single-pass membrane protein with coiled-coil domains 1 (C3orf43; XM_006248472.3) was significantly upregulated in the proliferative phase during liver regeneration. This indicates that C3orf43 plays a vital role in liver cell proliferation. However, its physiological functions remains unclear. The expressions of C3orf43 in BRL-3A cells transfected with C3orf43-siRNA (C3-siRNA) or overexpressing the vector plasmid pCDH-C3orf43 (pCDH-C3) were measured via RT-qPCR and western blot. Cell growth and proliferation were determined using MTT and flow cytometry. Cell proliferation-related gene expression was measured using RT-qPCR and western blot. It was found that upregulation of C3orf43 by pCDH-C3 promoted hepatocyte proliferation, and inhibition of C3orf43 by C3-siRNA led to the reduction of cell proliferation. The results of qRT-PCR and western blot assay showed that the C3-siRNA group downregulated the expression of cell proliferation-related genes like JUN, MYC, CCND1 and CCNA2, and the pCDH-C3 group upregulated the expression of those genes. These findings reveal that C3orf43 may contribute to hepatocyte proliferation and may have the potential to promote liver repair and regeneration.
Dual Function of a Tip Fimbrillin of Actinomyces in Fimbrial Assembly and Receptor Binding▿
Wu, Chenggang; Mishra, Arunima; Yang, Jinghua; Cisar, John O.; Das, Asis; Ton-That, Hung
2011-01-01
Interaction of Actinomyces oris with salivary proline-rich proteins (PRPs), which serve as fimbrial receptors, involves type 1 fimbriae. Encoded by the gene locus fimQ-fimP-srtC1, the type 1 fimbria is comprised of the fimbrial shaft FimP and the tip fimbrillin FimQ. Fimbrial polymerization requires the fimbria-specific sortase SrtC1, which catalyzes covalent linkage of fimbrial subunits. Using genetics, biochemical methods, and electron microscopy, we provide evidence that the tip fimbrillin, FimQ, is involved in fimbrial assembly and interaction with PRPs. Specifically, while deletion of fimP completely abolished the type 1 fimbrial structures, surface display of monomeric FimQ was not affected by this mutation. Surprisingly, deletion of fimQ significantly reduced surface assembly of the type 1 fimbriae. This defect was rescued by recombinant FimQ ectopically expressed from a plasmid. In agreement with the role of type 1 fimbriae in binding to PRPs, aggregation of A. oris with PRP-coated beads was abrogated in cells lacking srtC1 or fimP. This aggregation defect of the ΔfimP mutant was mainly due to significant reduction of FimQ on the bacterial surface, as the aggregation was not observed in a strain lacking fimQ. Increasing expression of FimQ in the ΔfimP mutant enhanced aggregation, while overexpression of FimP in the ΔfimQ mutant did not. Furthermore, recombinant FimQ, not FimP, bound surface-associated PRPs in a dose-dependent manner. Thus, not only does FimQ function as the major adhesin of the type 1 fimbriae, it also plays an important role in fimbrial assembly. PMID:21531799
Woods, D E; Edge, M D; Colten, H R
1984-01-01
Complementary DNA (cDNA) clones corresponding to the major histocompatibility (MHC) class III antigen, complement protein C2, have been isolated from human liver cDNA libraries with the use of a complex mixture of synthetic oligonucleotides (17 mer) that contains 576 different oligonucleotide sequences. The C2 cDNA were used to identify a DNA restriction enzyme fragment length polymorphism that provides a genetic marker within the MHC that was not detectable at the protein level. An extensive search for genomic polymorphisms using a cDNA clone for another MHC class III gene, factor B, failed to reveal any DNA variants. The genomic variants detected with the C2 cDNA probe provide an additional genetic marker for analysis of MHC-linked diseases. Images PMID:6086718
Notturno, Francesca; Del Boccio, Piero; Luciani, Mirella; Caporale, Christina Michaela; Pieragostino, Damiana; Prencipe, Vincenza; Sacchetta, Paolo; Uncini, Antonino
2010-06-15
It has been difficult to replicate consistently the experimental model of axonal Guillain-Barré syndrome (GBS). We immunized rabbits with two lipo-oligosaccharides (LOS1 and LOS2) derived from the same C. jejuni strain and purified in a slightly different way. LOS1 did not contain proteins whereas several proteins were present in LOS2. In spite of a robust anti-GM1 antibody response in all animals the neuropathy developed only in rabbits immunized with LOS1. To explain this discrepancy we investigated fine specificity, affinity and ability to activate the complement of anti-GM1 antibodies. Only rabbits immunized with LOS1 showed monospecific high-affinity antibodies which activated more effectively the complement. Although it is not well understood how monospecific high-affinity antibodies are induced these are crucial for the induction of experimental axonal neuropathy. Only a strict adherence to the protocols demonstrated to be successful may guarantee the reproducibility and increase the confidence in the animal model as a reliable tool for the study of the human axonal GBS. Copyright 2010 Elsevier B.V. All rights reserved.
Rosandić, Marija; Vlahović, Ines; Glunčić, Matko; Paar, Vladimir
2016-07-01
For almost 50 years the conclusive explanation of Chargaff's second parity rule (CSPR), the equality of frequencies of nucleotides A=T and C=G or the equality of direct and reverse complement trinucleotides in the same DNA strand, has not been determined yet. Here, we relate CSPR to the interstrand mirror symmetry in 20 symbolic quadruplets of trinucleotides (direct, reverse complement, complement, and reverse) mapped to double-stranded genome. The symmetries of Q-box corresponding to quadruplets can be obtained as a consequence of Watson-Crick base pairing and CSPR together. Alternatively, assuming Natural symmetry law for DNA creation that each trinucleotide in one strand of DNA must simultaneously appear also in the opposite strand automatically leads to Q-box direct-reverse mirror symmetry which in conjunction with Watson-Crick base pairing generates CSPR. We demonstrate quadruplet's symmetries in chromosomes of wide range of organisms, from Escherichia coli to Neanderthal and human genomes, introducing novel quadruplet-frequency histograms and 3D-diagrams with combined interstrand frequencies. These "landscapes" are mutually similar in all mammals, including extinct Neanderthals, and somewhat different in most of older species. In human chromosomes 1-12, and X, Y the "landscapes" are almost identical and slightly different in the remaining smaller and telocentric chromosomes. Quadruplet frequencies could provide a new robust tool for characterization and classification of genomes and their evolutionary trajectories.
Dufresne, Jaimie; Florentinus-Mefailoski, Angelique; Ajambo, Juliet; Ferwa, Ammara; Bowden, Peter; Marshall, John
2017-01-01
The tryptic peptides from ice cold versus room temperature plasma were identified by C18 liquid chromatography and micro electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Samples collected on ice showed low levels of endogenous tryptic peptides compared to the same samples incubated at room temperature. Plasma on ice contained peptides from albumin, complement, and apolipoproteins and others that were observed by the X!TANDEM and SEQUEST algorithms. In contrast to ice cold samples, after incubation at room temperature, greater numbers of tryptic peptides from well characterized plasma proteins, and from cellular proteins were observed. A total of 583,927 precursor ions and MS/MS spectra were correlated to 94,669 best fit peptides that reduced to 22,287 correlations to the best accession within a gene symbol and to 7174 correlations to at least 510 gene symbols with ≥ 5 independent MS/MS correlations (peptide counts) that showed FDR q-values ranging from E-9 (i.e. FDR = 0.000000001) to E-227. A set of 528 gene symbols identified by X!TANDEM and SEQUEST including C4B showed ≥ fivefold variation between ice cold versus room temperature incubation. STRING analysis of the protein gene symbols observed from endogenous peptides in normal plasma revealed an extensive protein-interaction network of cellular factors associated with cell signalling and regulation, the formation of membrane bound organelles, cellular exosomes and exocytosis network proteins. Taken together the results indicated that a pool of cellular proteins, or protein complexes, in plasma are apparently not stable and degrade soon after incubation at room temperature.
Inactivation of complement by Loxosceles reclusa spider venom.
Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T
1979-07-01
Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.
Mastellos, D C; Ricklin, D; Hajishengallis, E; Hajishengallis, G; Lambris, J D
2016-02-01
There is increasing appreciation that complement dysregulation lies at the heart of numerous immune-mediated and inflammatory disorders. Complement inhibitors are therefore being evaluated as new therapeutic options in various clinical translation programs and the first clinically approved complement-targeted drugs have profoundly impacted the management of certain complement-mediated diseases. Among the many members of the intricate protein network of complement, the central component C3 represents a 'hot-spot' for complement-targeted therapeutic intervention. C3 modulates both innate and adaptive immune responses and is linked to diverse immunomodulatory systems and biological processes that affect human pathophysiology. Compelling evidence from preclinical disease models has shown that C3 interception may offer multiple benefits over existing therapies or even reveal novel therapeutic avenues in disorders that are not commonly regarded as complement-driven, such as periodontal disease. Using the clinically developed compstatin family of C3 inhibitors and periodontitis as illustrative examples, this review highlights emerging therapeutic concepts and developments in the design of C3-targeted drug candidates as novel immunotherapeutics for oral and systemic inflammatory diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Franco, A A; Kothary, M H; Gopinath, G; Jarvis, K G; Grim, C J; Hu, L; Datta, A R; McCardell, B A; Tall, B D
2011-04-01
Cronobacter spp. are emerging neonatal pathogens in humans, associated with outbreaks of meningitis and sepsis. To cause disease, they must survive in blood and invade the central nervous system by penetrating the blood-brain barrier. C. sakazakii BAA-894 possesses an ~131-kb plasmid (pESA3) that encodes an outer membrane protease (Cpa) that has significant identity to proteins that belong to the Pla subfamily of omptins. Members of this subfamily of proteins degrade a number of serum proteins, including circulating complement, providing protection from the complement-dependent serum killing. Moreover, proteins of the Pla subfamily can cause uncontrolled plasmin activity by converting plasminogen to plasmin and inactivating the plasmin inhibitor α2-antiplasmin (α2-AP). These reactions enhance the spread and invasion of bacteria in the host. In this study, we found that an isogenic cpa mutant showed reduced resistance to serum in comparison to its parent C. sakazakii BAA-894 strain. Overexpression of Cpa in C. sakazakii or Escherichia coli DH5α showed that Cpa proteolytically cleaved complement components C3, C3a, and C4b. Furthermore, a strain of C. sakazakii overexpressing Cpa caused a rapid activation of plasminogen and inactivation of α2-AP. These results strongly suggest that Cpa may be an important virulence factor involved in serum resistance, as well as in the spread and invasion of C. sakazakii.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S Kim; S Reddy; B Nelson
The Rv0948c gene from Mycobacterium tuberculosis H{sub 37}R{sub v} encodes a 90 amino acid protein as the natural gene product with chorismate mutase (CM) activity. The protein, 90-MtCM, exhibits Michaelis-Menten kinetics with a k{sub cat} of 5.5 {+-} 0.2 s{sup -1} and a K{sub m} of 1500 {+-} 100 {micro}m at 37 C and pH 7.5. The 2.0 {angstrom} X-ray structure shows that 90-MtCM is an all {alpha}-helical homodimer (Protein Data Bank ID: 2QBV) with the topology of Escherichia coli CM (EcCM), and that both protomers contribute to each catalytic site. Superimposition onto the structure of EcCM and the sequencemore » alignment shows that the C-terminus helix 3 is shortened. The absence of two residues in the active site of 90-MtCM corresponding to Ser84 and Gln88 of EcCM appears to be one reason for the low k{sub cat}. Hence, 90-MtCM belongs to a subfamily of {alpha}-helical AroQ CMs termed AroQ{delta}. The CM gene (y2828) from Yersinia pestis encodes a 186 amino acid protein with an N-terminal signal peptide that directs the protein to the periplasm. The mature protein, *YpCM, exhibits Michaelis-Menten kinetics with a k{sub cat} of 70 {+-} 5 s{sup -1} and Km of 500 {+-} 50 {micro}m at 37 C and pH 7.5. The 2.1 {angstrom} X-ray structure shows that *YpCM is an all {alpha}-helical protein, and functions as a homodimer, and that each protomer has an independent catalytic unit (Protein Data Bank ID: 2GBB). *YpCM belongs to the AroQ{gamma} class of CMs, and is similar to the secreted CM (Rv1885c, *MtCM) from M. tuberculosis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.K.; Robinson, H.; Reddy, S. K.
2008-10-01
The Rv0948c gene from Mycobacterium tuberculosis H{sub 37}R{sub v} encodes a 90 amino acid protein as the natural gene product with chorismate mutase (CM) activity. The protein, 90-MtCM, exhibits Michaelis-Menten kinetics with a k{sub cat} of 5.5 {+-} 0.2 s{sup -1} and a K{sub m} of 1500 {+-} 100 {mu}m at 37 C and pH 7.5. The 2.0 {angstrom} X-ray structure shows that 90-MtCM is an all {alpha}-helical homodimer (Protein Data Bank ID: 2QBV) with the topology of Escherichia coli CM (EcCM), and that both protomers contribute to each catalytic site. Superimposition onto the structure of EcCM and the sequencemore » alignment shows that the C-terminus helix 3 is shortened. The absence of two residues in the active site of 90-MtCM corresponding to Ser84 and Gln88 of EcCM appears to be one reason for the low k{sub cat}. Hence, 90-MtCM belongs to a subfamily of {alpha}-helical AroQ CMs termed AroQ{sub {delta}}. The CM gene (y2828) from Yersinia pestis encodes a 186 amino acid protein with an N-terminal signal peptide that directs the protein to the periplasm. The mature protein, *YpCM, exhibits Michaelis-Menten kinetics with a k{sub cat} of 70 {+-} 5 s{sup -1} and K{sub m} of 500 {+-} 50 {mu}m at 37 C and pH 7.5. The 2.1 {angstrom} X-ray structure shows that *YpCM is an all {alpha}-helical protein, and functions as a homodimer, and that each protomer has an independent catalytic unit (Protein Data Bank ID: 2GBB). *YpCM belongs to the AroQ{sub {gamma}} class of CMs, and is similar to the secreted CM (Rv1885c, *MtCM) from M. tuberculosis.« less
Yuan, Xiang-Yang; Liu, Wen-Bin; Liang, Chao; Sun, Cun-Xin; Xue, Yun-Fei; Wan, Zu-De; Jiang, Guang-Zhen
2017-08-01
A 10-week feeding trial was carried out to investigate the effects of dietary fish meal replacement by yeast hydrolysate (YH) on growth performance, complement system and stress resistance of juvenile Jian carp (Cyprinus carpio var. Jian) (initial average weight 19.44 ± 0.06 g). In the study, there were five groups: one control group was fed with a basal diet (YH0), and four treatment groups were fed with dietary fish meal replaced by 1% YH (YH1), 3% (YH3), 5% (YH5) and 7% (YH7), respectively. Each group had four replicates. At the end of feeding trial, twelve fish from each group (three fish per replicate) were randomly selected for assessing the growth and immunity. Meanwhile, 20 fish per replicate were injected by Aeromonas hydrophila. The results showed that (1) Replacement levels of YH significantly affected the growth of the fish with the highest values of weight gain (WG) occurred in fish fed YH3 diet. However, no significant difference in feed conversion ratios (FCR) was observed among all groups. (2) Pre-stressed plasma lysozyme activity, total protein and albumin contents and complement component 3 (C3) and complement component 4 (C4) levels of fish fed YH3 diet were significantly higher than those of fish fed YH0 diet. However, post-stressed immune parameters of fish in all groups were significantly lower. (3) There was a trend that the expression levels of the complement-related genes (c1r/s-A, c4-1, c3-H1, c5-1, fb/c2-A, mbl-2 and masp) initially increased and then decreased except mbl-2 and masp, with the maximum values observed in fish fed YH3 diet. Before stress, the expression levels of the inflammation-related genes (alp, il-1β and tnf-α) in the hepatopancreas and spleen of fish fed YH1 diet and YH7 diet were significant higher than that of fish fed YH0 diet. After stress, no significant difference in the expression levels of those genes was observed among all groups. These results indicated that FM replacement by YH could improve growth performance, enhance innate immunity, and activate complement via the alternative complement pathway (ACP) and the classical complement pathway (CCP). Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lower, Steven; Lamlertthon, Supaporn; Casillas-Ituarte, Nadia
Medical implants, like cardiovascular devices, improve the quality of life for countless individuals but may become infected with bacteria like Staphylococcus aureus. Such infections take the form of a bio-film, a structured community of bacterial cells adherent to the surface of a solid substrate. Every bio-film begins with an attractive force or bond between bacterium and substratum. We used atomic force microscopy to probe experimentally forces between a fibronectin-coated surface (i.e., proxy for an implanted cardiac device) and fibronectin-binding receptors on the surface of individual living bacteria from each of 80 clinical isolates of S. aureus. These isolates originated frommore » humans with infected cardiac devices (CDI; n = 26), uninfected cardiac devices (n = 20), and the anterior nares of asymptomatic subjects (n = 34). CDI isolates exhibited a distinct bindingforce signature and had speci!c single amino acid polymorphisms in fibronectin-binding protein A corresponding to E652D, H782Q, and K786N. In silico molecular dynamics simulations demonstrate that residues D652, Q782, and N786 in fibronectin-binding protein A form extra hydrogen bonds with fibronectin, complementing the higher binding force and energy measured by atomic force microscopy for the CDI isolates. This study is significant, because it links pathogenic bacteria biofilms from the length scale of bonds acting across a nanometer-scale space to the clinical presentation of disease at the human dimension.« less
Zamani, Zahra; Razavi, Mohammad Reza; Sadeghi, Sedigheh; Naddaf, Saeed; Pourfallah, Fatemeh; Mirkhani, Fatemeh; Arjmand, Mohammad; Feizhaddad, Hossein; Rad, Mina Ebrahimi; Ebrahimi Rad, Mina; Tameemi, Marzieh; Assmar, Mehdi
2009-01-01
The C-terminal region of the merozoite surface protein 1 (MSP-1) of Plasmodium falciparum is a strong vaccine candidate as it is associated with immunity to the parasite. This corresponds approximately to the conserved 17th block of the gene and is composed of two EGF- like domains. These domains exhibit only four single amino acid substitutions which show several potential variants in this region of the gene. As the variations might be important for a regional vaccine design, a study was carried out to determine the variations present in P. falciparum isolates from southern Iran. Besides the usual E-T-S-R-L and the Q-K-N-G-F types, we found Q-T-S-R-L, E-K-N-G-F, E-T-S-G-L, Z-T-S-G-L and Z-T-S-R-L types, where Z was E or Q signifying the presence of mixed clones in single isolates.
Banda, Nirmal K.; Takahashi, Minoru; Takahashi, Kazue; Stahl, Gregory L.; Hyatt, Stephanie; Glogowska, Magdalena; Wiles, Timothy A.; Endo, Yuichi; Fujita, Teizo; Holers, V. Michael; Arend, William P.
2011-01-01
Mannose-binding lectin-associated serine proteases-1/3 (MASP-1/3) are essential in activating the alternative pathway (AP) of complement through cleaving pro-factor D (pro-Df) into mature Df. MASP are believed to require binding to mannose binding lectins (MBL) or ficolins (FCN) to carry out their biological activities. Murine sera have been reported to contain MBL-A, MBL-C, and FCN-A, but not FCN-B that exists endogenously in monocytes and is thought not to bind MASP-1. We examined some possible mechanisms whereby MASP-1/3 might activate the AP. Collagen antibody-induced arthritis, a murine model of inflammatory arthritis dependent on the AP, was unchanged in mice lacking MBL-A, MBL-C, and FCN-A (MBL−/−/FCN A−/− mice) in comparison to wild-type mice. The in vitro induction of the AP by adherent mAb to collagen II was intact using sera from MBL−/−/FCN A−/− mice. Furthermore, sera from MBL−/−/FCN A−/− mice lacked pro-Df and possessed only mature Df. Gel filtration of sera from MBL−/−/FCN A−/− mice showed the presence of MASP-1 protein in fractions containing proteins smaller than the migration of MBL-A and MBL-C in sera from C4−/− mice, suggesting possible binding of MASP-1 to an unknown protein. Lastly, we show that FCN-B was present in the sera of MBL−/−/FCN A−/−mice and that it was bound to MASP-1. We conclude that MASP-1 does not require binding to MBL-A, MBL-C, or FCN-A to activate the AP. MASP-1 may cleave pro-Df into mature Df through binding to FCN-B or to an unknown protein, or may function as an unbound soluble protein. PMID:21943708
Update on hemolytic uremic syndrome: Diagnostic and therapeutic recommendations
Salvadori, Maurizio; Bertoni, Elisabetta
2013-01-01
Hemolytic uremic syndrome (HUS) is a rare disease. In this work the authors review the recent findings on HUS, considering the different etiologic and pathogenetic classifications. New findings in genetics and, in particular, mutations of genes that encode the complement-regulatory proteins have improved our understanding of atypical HUS. Similarly, the complement proteins are clearly involved in all types of thrombotic microangiopathy: typical HUS, atypical HUS and thrombotic thrombocytopenic purpura (TTP). Furthermore, several secondary HUS appear to be related to abnormalities in complement genes in predisposed patients. The authors highlight the therapeutic aspects of this rare disease, examining both “traditional therapy” (including plasma therapy, kidney and kidney-liver transplantation) and “new therapies”. The latter include anti-Shiga-toxin antibodies and anti-C5 monoclonal antibody “eculizumab”. Eculizumab has been recently launched for the treatment of the atypical HUS, but it appears to be effective in the treatment of typical HUS and in TTP. Future therapies are in phases I and II. They include anti-C5 antibodies, which are more purified, less immunogenic and absorbed orally and, anti-C3 antibodies, which are more powerful, but potentially less safe. Additionally, infusions of recombinant complement-regulatory proteins are a potential future therapy. PMID:24255888
Newsum, Astrid M; Ho, Cynthia K Y; Lieveld, Faydra I; van de Laar, Thijs J W; Koekkoek, Sylvie M; Rebers, Sjoerd P; van der Meer, Jan T M; Wensing, Anne M J; Boland, Greet J; Arends, Joop E; van Erpecum, Karel J; Prins, Maria; Molenkamp, Richard; Schinkel, Janke
2017-01-02
The Q80K polymorphism is a naturally occurring resistance-associated variant in the hepatitis C virus (HCV) nonstructural protein 3 (NS3) region and is likely transmissible between hosts. This study describes the Q80K origin and prevalence among HCV risk groups in the Netherlands and examines whether Q80K is linked to specific transmission networks. Stored blood samples from HCV genotype 1a-infected patients were used for PCR and sequencing to reconstruct the NS3 maximum likelihood phylogeny. The most recent common ancestor was estimated with a coalescent-based model within a Bayesian statistical framework. Study participants (n = 150) were either MSM (39%), people who inject drugs (17%), or patients with other (15%) or unknown/unreported (29%) risk behavior. Overall 45% was coinfected with HIV. Q80K was present in 36% (95% confidence interval 28-44%) of patients throughout the sample collection period (2000-2015) and was most prevalent in MSM (52%, 95% confidence interval 38-65%). Five MSM-specific transmission clusters were identified, of which three exclusively contained sequences with Q80K. The HCV-1a most recent common ancestor in the Netherlands was estimated in 1914 (95% higher posterior density 1879-1944) and Q80K originated in 1957 (95% higher posterior density 1942-1970) within HCV-1a clade I. All Q80K lineages could be traced back to this single origin. Q80K is a highly stable and transmissible resistance-associated variant and was present in a large part of Dutch HIV-coinfected MSM. The introduction and expansion of Q80K variants in this key population suggest a founder effect, potentially jeopardizing future treatment with simeprevir.
NASA Astrophysics Data System (ADS)
Burke, Kathleen Anne
Huntington's Disease (HD) is a neurodegenerative disorder that is defined by the accumulation of nanoscale aggregates comprised of the huntingtin (htt) protein. Aggregation is directly caused by an expanded polyglutamine (polyQ) domain in htt, leading to a diverse population of aggregate species, such as oligomers, fibrils, and annular aggregates. Furthermore, the length of this polyQ domain is directly related to onset and severity of disease. The first 17 amino acids on the N-terminus (N17) and the polyproline domain on the C-terminal side of the polyQ domain have been shown to further modulate the aggregation process. Additionally, N17 appears to have lipid binding properties as htt interacts with a variety of membrane-containing structures present in cells, such as organelles, and interactions with these membrane surfaces may further modulate htt aggregation. To investigate the interaction between htt exon1 and lipid bilayers, in situ atomic force microscopy (AFM) was used to directly monitor the aggregation of htt exon1 constructs with varying Q-length (35Q, 46Q, 51Q, and myc- 53Q) or synthetic peptides with different polyQ domain flanking sequences (KK-Q35-KK, KK-Q 35-P10-KK, N17-Q35-KK, and N 17-Q35-P10-KK) on supported lipid membranes comprised of total brain lipid extract. The exon1 fragments accumulated on the lipid membranes, causing disruption of the membrane, in a polyQ dependent manner. By adding N-terminal tags to the htt exon1 fragments, the interaction with the lipid bilayer was impeded. The KK-Q35-KK and KK-Q 35-P10-KK peptides had no appreciable interaction with lipid bilayers. Interestingly, polyQ peptides with the N17 flanking sequence interacted with the bilayer. N17-Q35-KK formed discrete aggregates on the bilayer, but there was minimal membrane disruption. The N17-Q35-P10-KK peptide interacted more aggressively with the lipid bilayer in a manner reminiscent of the htt exon1 proteins.
Cordes, Frank S; Kraiczy, Peter; Roversi, Pietro; Simon, Markus M; Brade, Volker; Jahraus, Oliver; Wallis, Russell; Goodstadt, Leo; Ponting, Chris P; Skerka, Christine; Zipfel, Peter F; Wallich, Reinhard; Lea, Susan M
2006-05-01
Borrelia burgdorferi, a spirochaete transmitted to human hosts during feeding of infected Ixodes ticks, is the causative agent of Lyme disease, the most frequent vector-borne disease in Eurasia and North America. Sporadically Lyme disease develops into a chronic, multisystemic disorder. Serum-resistant B. burgdorferi strains bind complement factor H (FH) and FH-like protein 1 (FHL-1) on the spirochaete surface. This binding is dependent on the expression of proteins termed complement-regulator acquiring surface proteins (CRASPs). The atomic structure of BbCRASP-1, the key FHL-1/FH-binding protein of B. burgdorferi, has recently been determined. Our analysis indicates that its protein topology apparently evolved to provide a high affinity interaction site for FH/FHL-1 and leads to an atomic-level hypothesis for the functioning of BbCRASP-1. This work demonstrates that pathogens interact with complement regulators in ways that are distinct from the mechanisms used by the host and are thus obvious targets for drug design.
Kremlitzka, Mariann; Geerlings, Maartje J; de Jong, Sarah; Bakker, Bjorn; Nilsson, Sara C; Fauser, Sascha; Hoyng, Carel B; de Jong, Eiko K; den Hollander, Anneke I; Blom, Anna M
2018-05-14
Age-related macular degeneration (AMD) is a progressive disease of the central retina and the leading cause of irreversible vision loss in the western world. The involvement of abnormal complement activation in AMD has been suggested by association of variants in genes encoding complement proteins with disease development. A low-frequency variant (p.P167S) in the complement component C9 (C9) gene was recently shown to be highly associated with AMD, however its functional outcome remains largely unexplored. In this study, we reveal five novel rare genetic variants (p.M45L, p.F62S, p.G126R, p.T170I and p.A529T) in C9 in AMD patients, and evaluate their functional effects in vitro together with the previously identified (p.R118W and p.P167S) C9 variants.Our results demonstrate that the concentration of C9 is significantly elevated in patients' sera carrying the p.M45L, p.F62S, p.P167S and p.A529T variants compared to non-carrier controls. However, no difference can be observed in soluble terminal complement complex levels between the carrier and non-carrier groups. Comparing the polymerization of the C9 variants we reveal that the p.P167S mutant spontaneously aggregates, while the other mutant proteins (except for C9 p.A529T) fail to polymerize in the presence of zinc. Altered polymerization of the p.F62S and p.P167S proteins associated with decreased lysis of sheep erythrocytes and ARPE-19 cells by carriers' sera. Our data suggest that the analysed C9 variants affect only the secretion and polymerization of C9, without influencing its classical lytic activity. Future studies need to be performed to understand the implications of the altered polymerization of C9 in AMD pathology.
Combined total deficiency of C7 and C4B with systemic lupus erythematosus (SLE).
Segurado, O G; Arnaiz-Villena, A A; Iglesias-Casarrubios, P; Martinez-Laso, J; Vicario, J L; Fontan, G; Lopez-Trascasa, M
1992-01-01
The first inherited combined total deficiency of C7 and C4B complement components associated with SLE is described in a young female. Functional C7 assays showed a homozygous C7 deficiency in the propositus and her sister, and an heterozygous one in their parents. C4 molecular analyses showed that both the propositus and her mother had two HLA haplotypes carrying only C4A-specific DNA sequences and a normal C4 gene number. Thus, only C4A proteins could be expressed, with resultant normal C4 serum levels. The coexistence of a combined complete C7 and C4B deficiency may therefore abrogate essential functions of the complement cascade presumably related to immune complex handling and solubilization despite an excess of circulating C4A. These findings challenge the putative pathophysiological roles of C4A and C4B and stress the need to perform both functional assays and C4 allotyping in patients with autoimmune pathology and low haemolytic activity without low serum levels of a classical pathway complement component. Images Fig. 1 Fig. 2 PMID:1347491
2013-01-01
Background Robenacoxib is a novel and highly selective inhibitor of COX-2 in dogs and cats and because of its acidic nature is regarded as being tissue-selective. Thirty four dogs with stifle osteoarthritis secondary to failure of the cranial cruciate ligament were recruited into this study. Lameness, radiographic features, synovial cytology and C-reactive protein concentrations in serum and synovial fluid were assessed before and 28 days after commencing a course of Robenacoxib at a dose of 1 mg/kg SID. Results There was a significant reduction in the lameness score (P < 0.01) and an increase in the radiographic score (P < 0.05) between pre- and post-treatment assessments. There was no difference between pre- (median 1.49 mg/l; Q1-Q3 0.56-4.24 mg/L) and post – (1.10 mg/L; 0.31-1.78 mg/L) treatment serum C-reactive protein levels although synovial fluid levels were significantly reduced (pre- : 0.44 mg/L; 0.23-1.62 mg/L; post- : 0.17 mg/L; 0.05-0.49 mg/L) (P < 0.05). There was no correlation between C-reactive protein concentrations in serum and matched synovial fluid samples. Conclusions Robenacoxib proved effective in reducing lameness in dogs with failure of the cranial cruciate ligament and osteoarthritis of the stifle joint. The drug also reduced levels of C-reactive protein in the synovial fluid taken from the affected stifle joint. Robenacoxib appears to reduce articular inflammation as assessed by C-reactive protein which supports the concept that Robenacoxib is a tissue-selective non-steroidal anti-inflammatory drug. PMID:23452411
Bennett, David; Eckersall, Peter David; Waterston, Mary; Marchetti, Veronica; Rota, Alessandra; McCulloch, Eilidh; Sbrana, Silvia
2013-03-01
Robenacoxib is a novel and highly selective inhibitor of COX-2 in dogs and cats and because of its acidic nature is regarded as being tissue-selective. Thirty four dogs with stifle osteoarthritis secondary to failure of the cranial cruciate ligament were recruited into this study. Lameness, radiographic features, synovial cytology and C-reactive protein concentrations in serum and synovial fluid were assessed before and 28 days after commencing a course of Robenacoxib at a dose of 1 mg/kg SID. There was a significant reduction in the lameness score (P < 0.01) and an increase in the radiographic score (P < 0.05) between pre- and post-treatment assessments. There was no difference between pre- (median 1.49 mg/l; Q1-Q3 0.56-4.24 mg/L) and post - (1.10 mg/L; 0.31-1.78 mg/L) treatment serum C-reactive protein levels although synovial fluid levels were significantly reduced (pre- : 0.44 mg/L; 0.23-1.62 mg/L; post- : 0.17 mg/L; 0.05-0.49 mg/L) (P < 0.05). There was no correlation between C-reactive protein concentrations in serum and matched synovial fluid samples. Robenacoxib proved effective in reducing lameness in dogs with failure of the cranial cruciate ligament and osteoarthritis of the stifle joint. The drug also reduced levels of C-reactive protein in the synovial fluid taken from the affected stifle joint. Robenacoxib appears to reduce articular inflammation as assessed by C-reactive protein which supports the concept that Robenacoxib is a tissue-selective non-steroidal anti-inflammatory drug.
Manning, Michael L; Williams, Simon A; Jelinek, Christine A; Kostova, Maya B; Denmeade, Samuel R
2013-03-15
Prostate-specific Ag (PSA) is a serine protease that is expressed exclusively by normal and malignant prostate epithelial cells. The continued high-level expression of PSA by the majority of men with both high- and low-grade prostate cancer throughout the course of disease progression, even in the androgen-ablated state, suggests that PSA has a role in the pathogenesis of disease. Current experimental and clinical evidence suggests that chronic inflammation, regardless of the cause, may predispose men to prostate cancer. The responsibility of the immune system in immune surveillance and eventually tumor progression is well appreciated but not completely understood. In this study, we used a mass spectrometry-based evaluation of prostatic fluid obtained from diseased prostates after removal by radical prostatectomy to identify potential immunoregulatory proteins. This analysis revealed the presence of Igs and the complement system proteins C3, factor B, and clusterin. Verification of these findings by Western blot confirmed the high-level expression of C3 in the prostatic fluid and the presence of a previously uncharacterized C-terminal C3 cleavage product. Biochemical analysis of this C3 cleavage fragment revealed a putative PSA cleavage site after tyrosine-1348. Purified PSA was able to cleave iC3b and the related complement protein C5. These results suggest a previously uncharacterized function of PSA as an immunoregulatory protease that could help to create an environment hospitable to malignancy through proteolysis of the complement system.
Potent and Selective Peptide-based Inhibition of the G Protein Gαq*
Charpentier, Thomas H.; Waldo, Gary L.; Lowery-Gionta, Emily G.; Krajewski, Krzysztof; Strahl, Brian D.; Kash, Thomas L.; Harden, T. Kendall; Sondek, John
2016-01-01
In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gαq binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gαq within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gαq in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gαq. A representative peptide was specific for active Gαq because it did not bind inactive Gαq or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ1γ2. In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gαq; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gαq in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gαq-dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gαq in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gαq in cells. PMID:27742837
Potent and Selective Peptide-based Inhibition of the G Protein Gαq.
Charpentier, Thomas H; Waldo, Gary L; Lowery-Gionta, Emily G; Krajewski, Krzysztof; Strahl, Brian D; Kash, Thomas L; Harden, T Kendall; Sondek, John
2016-12-02
In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gα q binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gα q within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gα q in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gα q A representative peptide was specific for active Gα q because it did not bind inactive Gα q or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ 1 γ 2 In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gα q ; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gα q in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gα q -dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gα q in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gα q in cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L.
Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin
2016-02-01
Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Damage-dependent regulation of MUS81-EME1 by Fanconi anemia complementation group A protein
Benitez, Anaid; Yuan, Fenghua; Nakajima, Satoshi; Wei, Leizhen; Qian, Liangyue; Myers, Richard; Hu, Jennifer J.; Lan, Li; Zhang, Yanbin
2014-01-01
MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand cross-links (ICLs). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3′ side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5′ side of a psoralen ICL residing in fork structures. Intriguingly, ICL repair protein, Fanconi anemia complementation group A protein (FANCA), greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner. PMID:24170812
Moore, Gregory L; Chen, Hsing; Karki, Sher
2010-01-01
Engineering the antibody Fc region to enhance the cytotoxic activity of therapeutic antibodies is currently an active area of investigation. The contribution of complement to the mechanism of action of some antibodies that target cancers and pathogens makes a compelling case for its optimization. Here we describe the generation of a series of Fc variants with enhanced ability to recruit complement. Variants enhanced the cytotoxic potency of an anti-CD20 antibody up to 23-fold against tumor cells in CDC assays, and demonstrated a correlated increase in C1q binding affinity. Complementenhancing substitutions combined additively, and in one case synergistically, with substitutions previously engineered for improved binding to Fc gamma receptors. The engineered combinations provided a range of effector function activities, including simultaneously enhanced CDC, ADCC, and phagocytosis. Variants were also effective at boosting the effector function of antibodies targeting the antigens CD40 and CD19, in the former case enhancing CDC over 600-fold, and in the latter case imparting complement-mediated activity onto an IgG1 antibody that was otherwise incapable of it. This work expands the toolkit of modifications for generating monoclonal antibodies with improved therapeutic potential and enables the exploration of optimized synergy between Fc gamma receptors and complement pathways for the destruction of tumors and infectious pathogens. PMID:20150767
Dietrich, Mariola A; Hliwa, Piotr; Adamek, Mikołaj; Steinhagen, Dieter; Karol, Halina; Ciereszko, Andrzej
2018-05-01
The environmental temperature affects plasma biochemical indicators, antioxidant status and hematological and immunological parameters in fish. So far, only single blood proteins have been identified in response to temperature changes. The aim of this study was to compare the proteome of carp blood plasma from males acclimated to warm (30 °C) and cold (10 °C) temperatures by two-dimensional differential gel electrophoresis followed by MALDI-TOF/TOF mass spectrometry. A total of 47 spots were found to be differentially regulated by temperature (>1.2-fold change, p < 0.05): 25 protein spots were more abundant in warm-acclimated males and 22 were enriched in cold-acclimated males. The majority of differentially regulated proteins were associated with acute phase response signalling involved in: i) activation of the complement system (complement C3-H1), ii) neutralization of proteolytic enzymes (inter-alpha inhibitor H3, fetuin, serpinA1, antithrombin, alpha2-macroglobulin), iii) scavenging of free hemoglobin and radicals (haptoglobin, Wap65 kDa), iv) clot-formation (fibrinogen beta and alpha chain, T-kininogen) and v) the host's immune response modulation (ApoA1 and ApoA2). However, quite different sets of these proteins or proteoforms were involved in response to cold and warm temperatures. In addition, cold acclimation seems to be related to the proteins involved in lipid metabolism (apolipoproteins A and 14 kDa) and stress response (corticosteroid binding globulin). We discovered a strongly regulated protein Cap31 upon cold acclimation, which can serve as a potential blood biomarker of cold response in carp. These studies significantly extend our knowledge concerning mechanisms underlying thermal adaptation in poikilotherms. Copyright © 2018. Published by Elsevier Ltd.
A germline missense mutation in COQ6 is associated with susceptibility to familial schwannomatosis
Zhang, Keqiang; Lin, Jia-Wei; Wang, Jinhui; Wu, Xiwei; Gao, Hanlin; Hsieh, Yi-Chen; Hwu, Peter; Liu, Yun-Ru; Su, Leila; Chiou, Hung-Yi; Wang, Daidong; Yuan, Yate-Ching; Whang-Peng, Jacqueline; Chiu, Wen-Ta; Yen, Yun
2014-01-01
Purpose: Schwannomatosis, a subtype of neurofibromatosis, is characterized by multiple benign, nonvestibular, nonintradermal schwannomas. Although the tumor suppressor SMARCB1 gene has been frequently identified as the underlying genetic cause of half of familial and ~10% of sporadic schwannomatosis, for most other cases, further causative genes remain to be discovered. Herein, we characterize the genome of a schwannomatosis family without constitutional inactivation of the SMARCB1 gene to explore novel genomic alterations predisposing individuals to the familial disease. Methods: We performed whole-genome/exome sequencing on genomic DNA of both schwannomatosis-affected and normal members of the family. Results: We identified a novel missense mutation (p.Asp208His; c.622G>C) in the coenzyme Q10 (CoQ10) biosynthesis monooxygenase 6 gene (COQ6) in schwannomatosis-affected members. The deleterious effects of the COQ6 mutations were validated by their lack of complementation in a coq6-deficient yeast mutant. Our study further indicated that the resultant haploinsufficiency of COQ6 might lead to CoQ10 deficiency and chronic overproduction of reactive oxygen species in Schwann cells. Conclusion: Although the exact oncogenetic mechanisms in this schwannomatosis family remain to be elucidated, our data strongly indicate a probable role of COQ6 mutation and CoQ10 deficiency in the development of familial schwannomatosis. PMID:24763291
A germline missense mutation in COQ6 is associated with susceptibility to familial schwannomatosis.
Zhang, Keqiang; Lin, Jia-Wei; Wang, Jinhui; Wu, Xiwei; Gao, Hanlin; Hsieh, Yi-Chen; Hwu, Peter; Liu, Yun-Ru; Su, Leila; Chiou, Hung-Yi; Wang, Daidong; Yuan, Yate-Ching; Whang-Peng, Jacqueline; Chiu, Wen-Ta; Yen, Yun
2014-10-01
Schwannomatosis, a subtype of neurofibromatosis, is characterized by multiple benign, nonvestibular, nonintradermal schwannomas. Although the tumor suppressor SMARCB1 gene has been frequently identified as the underlying genetic cause of half of familial and ~10% of sporadic schwannomatosis, for most other cases, further causative genes remain to be discovered. Herein, we characterize the genome of a schwannomatosis family without constitutional inactivation of the SMARCB1 gene to explore novel genomic alterations predisposing individuals to the familial disease. We performed whole-genome/exome sequencing on genomic DNA of both schwannomatosis-affected and normal members of the family. We identified a novel missense mutation (p.Asp208His; c.622G>C) in the coenzyme Q10 (CoQ10) biosynthesis monooxygenase 6 gene (COQ6) in schwannomatosis-affected members. The deleterious effects of the COQ6 mutations were validated by their lack of complementation in a coq6-deficient yeast mutant. Our study further indicated that the resultant haploinsufficiency of COQ6 might lead to CoQ10 deficiency and chronic overproduction of reactive oxygen species in Schwann cells. Although the exact oncogenetic mechanisms in this schwannomatosis family remain to be elucidated, our data strongly indicate a probable role of COQ6 mutation and CoQ10 deficiency in the development of familial schwannomatosis.Genet Med 16 10, 787-792.
Tum1 is involved in the metabolism of sterol esters in Saccharomyces cerevisiae.
Uršič, Katja; Ogrizović, Mojca; Kordiš, Dušan; Natter, Klaus; Petrovič, Uroš
2017-08-22
The only hitherto known biological role of yeast Saccharomyces cerevisiae Tum1 protein is in the tRNA thiolation pathway. The mammalian homologue of the yeast TUM1 gene, the thiosulfate sulfurtransferase (a.k.a. rhodanese) Tst, has been proposed as an obesity-resistance and antidiabetic gene. To assess the role of Tum1 in cell metabolism and the putative functional connection between lipid metabolism and tRNA modification, we analysed evolutionary conservation of the rhodanese protein superfamily, investigated the role of Tum1 in lipid metabolism, and examined the phenotype of yeast strains expressing the mouse homologue of Tum1, TST. We analysed evolutionary relationships in the rhodanese superfamily and established that its members are widespread in bacteria, archaea and in all major eukaryotic groups. We found that the amount of sterol esters was significantly higher in the deletion strain tum1Δ than in the wild-type strain. Expression of the mouse TST protein in the deletion strain did not rescue this phenotype. Moreover, although Tum1 deficiency in the thiolation pathway was complemented by re-introducing TUM1, it was not complemented by the introduction of the mouse homologue Tst. We further showed that the tRNA thiolation pathway is not involved in the regulation of sterol ester content in S. cerevisiae, as overexpression of the tE UUC , tK UUU and tQ UUG tRNAs did not rescue the lipid phenotype in the tum1Δ deletion strain, and, additionally, deletion of the key gene for the tRNA thiolation pathway, UBA4, did not affect sterol ester content. The rhodanese superfamily of proteins is widespread in all organisms, and yeast TUM1 is a bona fide orthologue of mammalian Tst thiosulfate sulfurtransferase gene. However, the mouse TST protein cannot functionally replace yeast Tum1 protein, neither in its lipid metabolism-related function, nor in the tRNA thiolation pathway. We show here that Tum1 protein is involved in lipid metabolism by decreasing the sterol ester content in yeast cells, and that this function of Tum1 is not exerted through the tRNA thiolation pathway, but through another, currently unknown pathway.
Susceptibility of pathogenic and nonpathogenic Naegleria ssp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteman, L.Y.
1988-01-01
The susceptibility of four species of Naegleria amoebae to complement-mediated lysis was determined. The amoebicidal activity of normal human serum (NHS) and normal guinea pig serum (NGPS) for Naegleria amoebae was measured by an in vitro cytotoxicity assay. Release of radioactivity from amoebae labeled with {sup 3}H-uridine and visual observation with a compound microscope were used as indices of lysis. Susceptibility or resistance to complement-mediated lysis in vitro correlated with the in vivo pathogenic potential. Nonpathogenic Naegleria amoebae were lysed at a faster rate and at higher cell concentrations than were pathogenic amoebae. Electrophoretic analysis of NHS incubated with pathogenicmore » or nonpathogenic Naegleria spp. demonstrated that amoebae activate the complement cascade resulting in the production of C3 and C5 complement cleavage products. Treatment with papain or trypsin for 1 h, but not with sialidase, increase the susceptibility of highly pathogenic, mouse-passaged N. fowleri to lysis. Treatment with actinomycin D, cycloheximide or various protease inhibitors for 4 h did not increase susceptibility to lysis. Neither a repair process involving de novo protein synthesis nor a complement-inactivating protease appear to account for the increase resistance of N. fowleri amoebae to complement-mediated lysis. A binding study with {sup 125}I radiolabeled C9 indicated that the terminal complement component does not remain stably bound to the membrane of pathogenic amoebae.« less
Ren, Gang; Cairl, Nicholas; Kim, Ji Young; Smas, Cynthia M
2016-12-01
This article describes qPCR analysis for the Adig/Smaf1 gene in multiple in vitro adipocyte differentiation models including white and brown adipogenesis, cell lines and primary cultures. The article also contains qPCR data for transcript levels of Adig/Smaf1 in a wide panel of murine tissues. Expression of Adig/Smaf1 transcript in white and brown adipose tissue in fasted and refed mice is reported and also data for Adig/Smaf1 transcript expression in genetically obese ob/ob mice. Data on the effects of siRNA-mediated knockdown of Srebp1c on Adig/Smaf1 transcript levels in 3T3-L1 adipocytes are shown. Luciferase reporter assays provide data for regulation of an ~ 2 kb fragment of the 5' flanking region of Adig/Smaf1 gene by PPARγ/RXRα. This data is related to a research article describing Adig/Smaf1 protein expression, "Expression, regulation and functional assessment of the 80 amino acid Small Adipocyte Factor 1 (Smaf1) protein in adipocytes" (G. Ren, P. Eskandari, S. Wang, C.M. Smas, 2016) [1].
Iñón de Iannino, Nora; Briones, Gabriel; Tolmasky, Marcelo; Ugalde, Rodolfo A.
1998-01-01
The animal pathogen Brucella abortus contains a gene, cgs, that complemented a Rhizobium meliloti nodule development (ndvB) mutant and an Agrobacterium tumefaciens chromosomal virulence (chvB) mutant. The complemented strains recovered the synthesis of cyclic β(1-2) glucan, motility, virulence in A. tumefaciens, and nitrogen fixation in R. meliloti; all traits were strictly associated with the presence of an active cyclic β(1-2) glucan synthetase protein in the membranes. Nucleotide sequencing revealed the presence in B. abortus of an 8.49-kb open reading frame coding for a predicted membrane protein of 2,831 amino acids (316.2 kDa) and with 51% identity to R. meliloti NdvB. Four regions of the B. abortus protein spanning amino acids 520 to 800, 1025 to 1124, 1284 to 1526, and 2400 to 2660 displayed similarities of higher than 80% with R. meliloti NdvB. Tn3-HoHo1 mutagenesis showed that the C-terminal 825 amino acids of the Brucella protein, although highly conserved in Rhizobium, are not necessary for cyclic β(1-2) glucan synthesis. Confirmation of the identity of this protein as B. abortus cyclic β(1-2) glucan synthetase was done by the construction of a B. abortus Tn3-HoHo1 insertion mutant that does not form cyclic β(1-2) glucan and lacks the 316.2-kDa membrane protein. The recovery of this mutant from the spleens of inoculated mice was decreased by 3 orders of magnitude compared with that of the parental strain; this result suggests that cyclic β(1-2) glucan may be a virulence factor in Brucella infection. PMID:9721274
Haspel, Nurit; Ricklin, Daniel; Geisbrecht, Brian V; Kavraki, Lydia E; Lambris, John D
2008-11-01
The C3-inhibitory domain of Staphylococcus aureus extracellular fibrinogen-binding protein (Efb-C) defines a novel three-helix bundle motif that regulates complement activation. Previous crystallographic studies of Efb-C bound to its cognate subdomain of human C3 (C3d) identified Arg-131 and Asn-138 of Efb-C as key residues for its activity. In order to characterize more completely the physical and chemical driving forces behind this important interaction, we employed in this study a combination of structural, biophysical, and computational methods to analyze the interaction of C3d with Efb-C and the single-point mutants R131A and N138A. Our results show that while these mutations do not drastically affect the structure of the Efb-C/C3d recognition complex, they have significant adverse effects on both the thermodynamic and kinetic profiles of the resulting complexes. We also characterized other key interactions along the Efb-C/C3d binding interface and found an intricate network of salt bridges and hydrogen bonds that anchor Efb-C to C3d, resulting in its potent complement inhibitory properties.
Luo, Shuhong; Scott, David A; Docampo, Roberto
2002-11-15
Previous studies in Trypanosoma cruzi have shown that intracellular pH homeostasis requires ATP and is affected by H(+)-ATPase inhibitors, indicating a major role for ATP-driven proton pumps in intracellular pH control. In the present study, we report the cloning and sequencing of a pair of genes linked in tandem (TcHA1 and TcHA2) in T. cruzi which encode proteins with homology to fungal and plant P-type proton-pumping ATPases. The genes are expressed at the mRNA level in different developmental stages of T. cruzi: TcHA1 is expressed maximally in epimastigotes, whereas TcHA2 is expressed predominantly in trypomastigotes. The proteins predicted from the nucleotide sequence of the genes have 875 and 917 amino acids and molecular masses of 96.3 and 101.2 kDa, respectively. Full-length TcHA1 and an N-terminal truncated version of TcHA2 complemented a Saccharomyces cerevisiae strain deficient in P-type H(+)-ATPase activity, the proteins localized to the yeast plasma membrane, and ATP-driven proton pumping could be detected in proteoliposomes reconstituted from plasma membrane purified from transfected yeast. The reconstituted proton transport activity was reduced by inhibitors of P-type H(+)-ATPases. C-terminal truncation did not affect complementation of mutant yeast, suggesting the lack of C-terminal autoinhibitory domains in these proteins. ATPase activity in plasma membrane from TcHA1- and (N-terminal truncated) TcHA2-transfected yeast was inhibited to different extents by vanadate, whereas the latter yeast strain was more resistant to extremes of pH, suggesting that the native proteins may serve different functions at different stages in the T. cruzi life cycle.
C1QTNF1 attenuates angiotensin II-induced cardiac hypertrophy via activation of the AMPKa pathway.
Wu, Leiming; Gao, Lu; Zhang, Dianhong; Yao, Rui; Huang, Zhen; Du, Binbin; Wang, Zheng; Xiao, Lili; Li, Pengcheng; Li, Yapeng; Liang, Cui; Zhang, Yanzhou
2018-06-01
Complement C1q tumor necrosis factor related proteins (C1QTNFs) have been reported to have diverse biological influence on the cardiovascular system. C1QTNF1 is a member of the CTRP superfamily. C1QTNF1 is expressed in the myocardium; however, its function in myocytes has not yet been investigated. To systematically investigate the roles of C1QTNF1 in angiotensin II (Ang II)-induced cardiac hypertrophy. C1QTNF1 knock-out mice were used with the aim of determining the role of C1QTNF1 in cardiac hypertrophy in the adult heart. Data from experiments showed that C1QTNF1 was up-regulated during cardiac hypertrophic processes, which were triggered by increased reactive oxygen species. C1QTNF1 deficiency accelerated cardiac hypertrophy, fibrosis, inflammation responses, and oxidative stress with deteriorating cardiac dysfunction in the Ang II-induced cardiac hypertrophy mouse model. We identified C1QTNF1 as a negative regulator of cardiomyocyte hypertrophy in Ang II-stimulated neonatal rat cardiomyocytes using the recombinant human globular domain of C1QTNF1 and C1QTNF1 siRNA. Injection of the recombinant human globular domain of C1QTNF1 also suppressed the Ang II-induced cardiac hypertrophic response in vivo. The anti-hypertrophic effects of C1QTNF1 rely on AMPKa activation, which inhibits mTOR P70S6K phosphorylation. An AMPKa inhibitor abrogated the anti-hypertrophic effects of the recombinant human globular domain of C1QTNF1 both in vivo and vitro. Moreover, C1QTNF1-mediated AMPKa activation was triggered by the inhibition of PDE1-4, which subsequently activated the cAMP/PKA/LKB1 pathway. Our results demonstrated that C1QTNF1 improves cardiac function and inhibits cardiac hypertrophy and fibrosis by increasing and activating AMPKa, suggesting that C1QTNF1 could be a therapeutic target for cardiac hypertrophy and heart failure. Copyright © 2018 Elsevier Inc. All rights reserved.
Peerschke, Ellinor I.B.; Andemariam, Biree; Yin, Wei; Bussel, James B.
2010-01-01
The role of the complement system in immune thrombocytopenic purpura (ITP) is not well defined. We examined plasma from 79 patients with ITP, 50 healthy volunteers, and 25 patients with non-immune mediated thrombocytopenia, to investigate their complement activation/fixation capacity (CAC) on immobilized heterologous platelets. Enhanced CAC was found in 46 plasma samples (59%) from patients with ITP, but no samples from patients with non-immune mediated thrombocytopenia. Plasma from healthy volunteers was used for comparison. In patients with ITP, an enhanced plasma CAC was associated with a decreased circulating absolute immature platelet fraction (A-IPF) (<15 × 109/L) (p = 0.027) and thrombocytopenia (platelet count less than 100K/μl) (p= 0.024). The positive predictive value of an enhanced CAC for a low A-IPF was 93%, with a specificity of 77%. The specificity and positive predictive values increased to 100% when plasma CAC was defined strictly by enhanced C1q and/or C4d deposition on test platelets. Although no statistically significant correlation emerged between CAC and response to different pharmacologic therapies, an enhanced response to splenectomy was noted (p <0.063). Thus, complement fixation may contribute to the thrombocytopenia of ITP by enhancing clearance of opsonized platelets from the circulation, and/or directly damaging platelets and megakaryocytes. PMID:19925495
Prechl, József; Papp, Krisztián; Hérincs, Zoltán; Péterfy, Hajna; Lóránd, Veronika; Szittner, Zoltán; Estonba, Andone; Rovero, Paolo; Paolini, Ilaria; Del Amo, Jokin; Uribarri, Maria; Alcaro, Maria Claudia; Ruiz-Larrañaga, Otsanda; Migliorini, Paola; Czirják, László
2016-01-01
Systemic lupus erythematosus is a chronic autoimmune disease with multifactorial ethiopathogenesis. The complement system is involved in both the early and late stages of disease development and organ damage. To better understand autoantibody mediated complement consumption we examined ex vivo immune complex formation on autoantigen arrays. We recruited patients with SLE (n = 211), with other systemic autoimmune diseases (n = 65) and non-autoimmune control subjects (n = 149). Standard clinical and laboratory data were collected and serum complement levels were determined. The genotype of SNP rs1143679 in the ITGAM gene was also determined. Ex vivo formation of immune complexes, with respect to IgM, IgG, complement C4 and C3 binding, was examined using a functional immunoassay on autoantigen microarray comprising nucleic acids, proteins and lipids. Complement consumption of nucleic acids increased upon binding of IgM and IgG even when serum complement levels were decreased due to consumption in SLE patients. A negative correlation between serum complement levels and ex vivo complement deposition on nucleic acid autoantigens is demonstrated. On the contrary, complement deposition on tested protein and lipid autoantigens showed positive correlation with C4 levels. Genetic analysis revealed that the non-synonymous variant rs1143679 in complement receptor type 3 is associated with an increased production of anti-dsDNA IgG antibodies. Notwithstanding, homozygous carriers of the previously reported susceptible allele (AA) had lower levels of dsDNA specific IgM among SLE patients. Both the non-synonymous variant rs1143679 and the high ratio of nucleic acid specific IgG/IgM were associated with multiple organ involvement. In summary, secondary complement deficiency in SLE does not impair opsonization of nucleic-acid-containing autoantigens but does affect other antigens and potentially other complement dependent processes. Dysfunction of the receptor recognizing complement opsonized immune complexes promotes the development of class-switched autoantibodies targeting nucleic acids.
Han, Wei; Zhou, Jingshi; Li, Xiao; Wang, Jianfeng; Li, Junjie; Zhang, Zhuochao; Yang, Zhaoxu; Wang, Desheng; Tao, Kaishan; Dou, Kefeng
2013-11-01
Pig organs are commonly used in xenotransplantation, and α-1,3-galactose has been shown to be the main cause of hyperacute rejection. The development of transgenic pigs that lack α-1,3-galactosyltransferase (GGTA1) has overcome this problem to a certain extent, but transgenic pigs are difficult to maintain, making their usefulness in basic research limited. For this reason, we propose to establish a cell model to study hyperacute rejection. Immortalized primary porcine aortic endothelial cells were transfected with a short hairpin RNA targeted to GGTA1. Cell proliferation, apoptosis, complement C3 activation, and the binding of human immunoglobulins and components of the complement system, including IgM, IgG, C3, and C5b-9, were examined. After RNA interference, GGTA1 was found to be reduced at both the transcript and protein level as assessed by quantitative polymerase chain reaction and flow cytometry, respectively. When cultured in the presence of human serum, the proliferation rate of the transfected cells was higher than that of untransfected cells, and the apoptosis rate was lower. Additionally, activation of C3 and the binding of human immunoglobulins IgM and IgG and complement component C3 and C5b-9 to the transfected cells were lower than in the immortalized group but higher than in untransfected cells. RNA interference of GGTA1 in cultured porcine endothelial cells reduces the reaction of immunoglobulin and complement system with the cells. Therefore, this in vitro cell model could be useful for further study of xenotransplantation. Copyright © 2013 Elsevier Inc. All rights reserved.
Jacobsen, Jessie C; Whitford, Whitney; Swan, Brendan; Taylor, Juliet; Love, Donald R; Hill, Rosamund; Molyneux, Sarah; George, Peter M; Mackay, Richard; Robertson, Stephen P; Snell, Russell G; Lehnert, Klaus
2017-11-21
Autosomal recessive ataxias are characterised by a fundamental loss in coordination of gait with associated atrophy of the cerebellum. There is significant clinical and genetic heterogeneity amongst inherited ataxias; however, an early molecular diagnosis is essential with low-risk treatments available for some of these conditions. We describe two female siblings who presented early in life with unsteady gait and cerebellar atrophy. Whole exome sequencing revealed compound heterozygous inheritance of two pathogenic mutations (p.Leu277Pro, c.1506+1G>A) in the coenzyme Q8A gene (COQ8A), a gene central to biosynthesis of coenzyme Q (CoQ). The paternally derived p.Leu277Pro mutation is predicted to disrupt a conserved motif in the substrate-binding pocket of the protein, resulting in inhibition of CoQ 10 production. The maternal c.1506+1G>A mutation destroys a canonical splice donor site in exon 12 affecting transcript processing and subsequent protein translation. Mutations in this gene can result in primary coenzyme Q 10 deficiency type 4, which is characterized by childhood onset of cerebellar ataxia and exercise intolerance, both of which were observed in this sib-pair. Muscle biopsies revealed unequivocally low levels of CoQ 10, and the siblings were subsequently established on a therapeutic dose of CoQ 10 with distinct clinical evidence of improvement after 1 year of treatment. This case emphasises the importance of an early and accurate molecular diagnosis for suspected inherited ataxias, particularly given the availability of approved treatments for some subtypes.
Vodicka, Petr; Mo, Shunyan; Tousley, Adelaide; Green, Karin M; Sapp, Ellen; Iuliano, Maria; Sadri-Vakili, Ghazaleh; Shaffer, Scott A; Aronin, Neil; DiFiglia, Marian; Kegel-Gleason, Kimberly B
2015-01-01
Huntington's disease (HD) is a neurodegenerative disease caused by a CAG expansion in the HD gene, which encodes the protein Huntingtin. Huntingtin associates with membranes and can interact directly with glycerophospholipids in membranes. We analyzed glycerophospholipid profiles from brains of 11 month old wild-type (WT) and Q140/Q140 HD knock-in mice to assess potential changes in glycerophospholipid metabolism. Polar lipids from cerebellum, cortex, and striatum were extracted and analyzed by liquid chromatography and negative ion electrospray tandem mass spectrometry analysis (LC-MS/MS). Gene products involved in polar lipid metabolism were studied using western blotting, immuno-electron microscopy and qPCR. Significant changes in numerous species of glycerophosphate (phosphatidic acid, PA) were found in striatum, cerebellum and cortex from Q140/Q140 HD mice compared to WT mice at 11 months. Changes in specific species could also be detected for other glycerophospholipids. Increases in species of lyso-PA (LPA) were measured in striatum of Q140/Q140 HD mice compared to WT. Protein levels for c-terminal binding protein 1 (CtBP1), a regulator of PA biosynthesis, were reduced in striatal synaptosomes from HD mice compared to wild-type at 6 and 12 months. Immunoreactivity for CtBP1 was detected on membranes of synaptic vesicles in striatal axon terminals in the globus pallidus. These novel results identify a potential site of molecular pathology caused by mutant Huntingtin that may impart early changes in HD.
Xue, Ping; Gao, Lin; Xiao, Sha; Zhang, Guopei; Xiao, Mingyang; Zhang, Qianye; Zheng, Xiao; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Lu, Xiaobo
2015-01-01
Individual variations in the capacity of DNA repair machinery to relieve benzene-induced DNA damage may be the key to developing chronic benzene poisoning (CBP), an increasingly prevalent occupational disease in China. ERCC1 (Excision repair cross complementation group 1) is located on chromosome 19q13.2-3 and participates in the crucial steps of Nucleotide Excision Repair (NER); moreover, we determined that one of its polymorphisms, ERCC1 rs11615, is a biomarker for CBP susceptibility in our previous report. Our aim is to further explore the deeper association between some genetic variations related to ERCC1 polymorphisms and CBP risk. Nine single nucleotide polymorphisms (SNPs) of XRCC1 (X-ray repair cross-complementing 1), CD3EAP (CD3e molecule, epsilon associated protein), PPP1R13L (protein phosphatase 1, regulatory subunit 13 like), XPB (Xeroderma pigmentosum group B), XPC (Xeroderma pigmentosum group C) and XPF (Xeroderma pigmentosum group F) were genotyped by the Snapshot and TaqMan-MGB® probe techniques, in a study involving 102 CBP patients and 204 controls. The potential interactions between these SNPs and lifestyle factors, such as smoking and drinking, were assessed using a stratified analysis. An XRCC1 allele, rs25487, was related to a higher risk of CBP (P<0.001) even after stratifying for potential confounders. Carriers of the TT genotype of XRCC1 rs1799782 who were alcohol drinkers (OR = 8.000; 95% CI: 1.316-48.645; P = 0.022), male (OR = 9.333; 95% CI: 1.593-54.672; P = 0.019), and had an exposure of ≤12 years (OR = 2.612; 95% CI: 1.048-6.510; P = 0.035) had an increased risk of CBP. However, the T allele in PPP1R13L rs1005165 (P<0.05) and the GA allele in CD3EAP rs967591 (OR = 0.162; 95% CI: 0039~0.666; P = 0.037) decreased the risk of CBP in men. The haplotype analysis of XRCC1 indicated that XRCC1 rs25487A, rs25489G and rs1799782T (OR = 15.469; 95% CI: 5.536-43.225; P<0.001) were associated with a high risk of CBP. The findings showed that the rs25487 and rs1799782 polymorphisms of XRCC1 may contribute to an individual's susceptibility to CBP and may be used as valid biomarkers. Overall, the genes on chromosome 19q13.2-3 may have a special significance in the development of CBP in occupationally exposed Chinese populations.
Xiao, Sha; Zhang, Guopei; Xiao, Mingyang; Zhang, Qianye; Zheng, Xiao; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Lu, Xiaobo
2015-01-01
Objectives Individual variations in the capacity of DNA repair machinery to relieve benzene-induced DNA damage may be the key to developing chronic benzene poisoning (CBP), an increasingly prevalent occupational disease in China. ERCC1 (Excision repair cross complementation group 1) is located on chromosome 19q13.2–3 and participates in the crucial steps of Nucleotide Excision Repair (NER); moreover, we determined that one of its polymorphisms, ERCC1 rs11615, is a biomarker for CBP susceptibility in our previous report. Our aim is to further explore the deeper association between some genetic variations related to ERCC1 polymorphisms and CBP risk. Methods Nine single nucleotide polymorphisms (SNPs) of XRCC1 (X-ray repair cross-complementing 1), CD3EAP (CD3e molecule, epsilon associated protein), PPP1R13L (protein phosphatase 1, regulatory subunit 13 like), XPB (Xeroderma pigmentosum group B), XPC (Xeroderma pigmentosum group C) and XPF (Xeroderma pigmentosum group F) were genotyped by the Snapshot and TaqMan-MGB® probe techniques, in a study involving 102 CBP patients and 204 controls. The potential interactions between these SNPs and lifestyle factors, such as smoking and drinking, were assessed using a stratified analysis. Results An XRCC1 allele, rs25487, was related to a higher risk of CBP (P<0.001) even after stratifying for potential confounders. Carriers of the TT genotype of XRCC1 rs1799782 who were alcohol drinkers (OR = 8.000; 95% CI: 1.316–48.645; P = 0.022), male (OR = 9.333; 95% CI: 1.593–54.672; P = 0.019), and had an exposure of ≤12 years (OR = 2.612; 95% CI: 1.048–6.510; P = 0.035) had an increased risk of CBP. However, the T allele in PPP1R13L rs1005165 (P<0.05) and the GA allele in CD3EAP rs967591 (OR = 0.162; 95% CI: 0039~0.666; P = 0.037) decreased the risk of CBP in men. The haplotype analysis of XRCC1 indicated that XRCC1 rs25487A, rs25489G and rs1799782T (OR = 15.469; 95% CI: 5.536–43.225; P<0.001) were associated with a high risk of CBP. Conclusions The findings showed that the rs25487 and rs1799782 polymorphisms of XRCC1 may contribute to an individual’s susceptibility to CBP and may be used as valid biomarkers. Overall, the genes on chromosome 19q13.2–3 may have a special significance in the development of CBP in occupationally exposed Chinese populations. PMID:26681190
Ojeda, Jenifer F.; Martinson, David A.; Menscher, Evan A.
2012-01-01
The Brucella BhuQ protein is a homolog of the Bradyrhizobium japonicum heme oxygenases HmuD and HmuQ. To determine if this protein plays a role in the ability of Brucella abortus 2308 to use heme as an iron source, an isogenic bhuQ mutant was constructed and its phenotype evaluated. Although the Brucella abortus bhuQ mutant DCO1 did not exhibit a defect in its capacity to use heme as an iron source or evidence of increased heme toxicity in vitro, this mutant produced increased levels of siderophore in response to iron deprivation compared to 2308. Introduction of a bhuQ mutation into the B. abortus dhbC mutant BHB2 (which cannot produce siderophores) resulted in a severe growth defect in the dhbC bhuQ double mutant JFO1 during cultivation under iron-restricted conditions, which could be rescued by the addition of FeCl3, but not heme, to the growth medium. The bhuQ gene is cotranscribed with the gene encoding the iron-responsive regulator RirA, and both of these genes are repressed by the other major iron-responsive regulator in the alphaproteobacteria, Irr. The results of these studies suggest that B. abortus 2308 has at least one other heme oxygenase that works in concert with BhuQ to allow this strain to efficiently use heme as an iron source. The genetic organization of the rirA-bhuQ operon also provides the basis for the proposition that BhuQ may perform a previously unrecognized function by allowing the transcriptional regulator RirA to recognize heme as an iron source. PMID:22636783
Structural basis for activation of the complement system by component C4 cleavage
Kidmose, Rune T.; Laursen, Nick S.; Dobó, József; Kjaer, Troels R.; Sirotkina, Sofia; Yatime, Laure; Sottrup-Jensen, Lars; Thiel, Steffen; Gál, Péter; Andersen, Gregers R.
2012-01-01
An essential aspect of innate immunity is recognition of molecular patterns on the surface of pathogens or altered self through the lectin and classical pathways, two of the three well-established activation pathways of the complement system. This recognition causes activation of the MASP-2 or the C1s serine proteases followed by cleavage of the protein C4. Here we present the crystal structures of the 203-kDa human C4 and the 245-kDa C4⋅MASP-2 substrate⋅enzyme complex. When C4 binds to MASP-2, substantial conformational changes in C4 are induced, and its scissile bond region becomes ordered and inserted into the protease catalytic site in a manner canonical to serine proteases. In MASP-2, an exosite located within the CCP domains recognizes the C4 C345C domain 60 Å from the scissile bond. Mutations in C4 and MASP-2 residues at the C345C–CCP interface inhibit the intermolecular interaction and C4 cleavage. The possible assembly of the huge in vivo enzyme–substrate complex consisting of glycan-bound mannan-binding lectin, MASP-2, and C4 is discussed. Our own and prior functional data suggest that C1s in the classical pathway of complement activated by, e.g., antigen–antibody complexes, also recognizes the C4 C345C domain through a CCP exosite. Our results provide a unified structural framework for understanding the early and essential step of C4 cleavage in the elimination of pathogens and altered self through two major pathways of complement activation. PMID:22949645
HPV and systemic lupus erythematosus: a mosaic of potential crossreactions.
Segal, Yahel; Dahan, Shani; Calabrò, Michele; Kanduc, Darja; Shoenfeld, Yehuda
2017-04-01
Etiology, pathogenesis, and immunology of systemic lupus erythematosus (SLE) form a complex, still undeciphered picture that recently has been further made complicated by a new factor of morbidity: human papillomaviruses (HPVs). Indeed, a prevalence of HPV infections has been reported among SLE patients. Searching for molecular mechanisms that might underlie and explain the relationship between HPV infection and SLE, we explored the hypothesis that immune responses following HPV infection may crossreact with proteins that, when altered, associate with SLE. Analyzing HPV L1 proteins and using Epstein-Barr virus (EBV) and human retrovirus (HERV) as controls, we found a vast peptide overlap with human proteins comprehending lupus Ku autoantigen proteins p86 and p70, lupus brain antigen 1 homolog, lupus antigen expressed in neurons and muscles, natural killer cell IgG-like receptors, complement proteins C4-A and C4-B, complement receptor CD19, and others. The multitude and heterogeneity of peptide overlaps not only further support the hypothesis that crossreactivity can represent a primum movens in SLE onset, but also provide a molecular framework to the concept of SLE as "an autoimmune mosaic syndrome." Finally, once more, it emerges the need of using the principle of peptide uniqueness as a new paradigm for safe and efficacious vaccinology.
Maye, Susan; Stanton, Catherine; Fitzgerald, Gerald F; Kelly, Philip M
2015-08-01
While the Complement protein system in human milk is well characterised, there is little information on its presence and activity in bovine milk. Complement forms part of the innate immune system, hence the importance of its contribution during milk ingestion to the overall defences of the neonate. A bactericidal sequestration assay, featuring a Complement sensitive strain, Escherichia coli 0111, originally used to characterise Complement activity in human milk was successfully applied to freshly drawn bovine milk samples, thus, providing an opportunity to compare Complement activities in both human and bovine milks. Although not identical in response, the levels of Complement activity in bovine milk were found to be closely comparable with that of human milk. Differential counts of Esch. coli 0111 after 2 h incubation were 6.20 and 6.06 log CFU/ml, for raw bovine and human milks, respectively - the lower value representing a stronger Complement response. Exposing bovine milk to a range of thermal treatments e.g. 42, 45, 65, 72, 85 or 95 °C for 10 min, progressively inhibited Complement activity by increasing temperature, thus confirming the heat labile nature of this immune protein system. Low level Complement activity was found, however, in 65 and 72 °C heat treated samples and in retailed pasteurised milk which highlights the outer limit to which high temperature, short time (HTST) industrial thermal processes should be applied if retention of activity is a priority. Concentration of Complement in the fat phase was evident following cream separation, and this was also reflected in the further loss of activity recorded in low fat variants of retailed pasteurised milk. Laboratory-based churning of the cream during simulated buttermaking generated an aqueous (buttermilk) phase with higher levels of Complement activity than the fat phase, thus pointing to a likely association with the milk fat globule membrane (MFGM) layer.
Seldin, M F; Morse, H C; LeBoeuf, R C; Steinberg, A D
1988-01-01
A linkage map of distal mouse chromosome 1 was constructed by restriction fragment length polymorphism analysis of DNAs from seven sets of recombinant inbred (RI) strains. The data obtained with seven probes on Southern hybridization combined with data from previous studies suggest the gene order Cfh, Pep-3/Ren-1,2, Ly-5, Lamb-2, At-3, Apoa-2/Ly-17,Spna-1. These results confirm and extend analyses of a large linkage group which includes genes present on a 20-30 cM span of mouse chromosome 1 and those localized to human chromosome 1q21-32. Moreover, the data indicate similar relative positions of human and mouse complement receptor-related genes REN, CD45, LAMB2, AT3, APOA2, and SPTA. These results suggest that mouse gene analyses may help in detailed mapping of human genes within such a syntenic group.
TRAF2-binding BIR1 domain of c-IAP2/MALT1 fusion protein is essential for activation of NF-kappaB.
Garrison, J B; Samuel, T; Reed, J C
2009-04-02
Marginal zone mucosa-associated lymphoid tissue (MALT) B-cell lymphoma is the most common extranodal non-Hodgkin lymphoma. The t(11;18)(q21;q21) translocation occurs frequently in MALT lymphomas and creates a chimeric NF-kappaB-activating protein containing the baculoviral IAP repeat (BIR) domains of c-IAP2 (inhibitor of apoptosis protein 2) fused with portions of the MALT1 protein. The BIR1 domain of c-IAP2 interacts directly with TRAF2 (TNFalpha-receptor-associated factor-2), but its role in NF-kappaB activation is still unclear. Here, we investigated the role of TRAF2 in c-IAP2/MALT1-induced NF-kappaB activation. We show the BIR1 domain of c-IAP2 is essential for NF-kappaB activation, whereas BIR2 and BIR3 domains are not. Studies of c-IAP2/MALT1 BIR1 mutant (E47A/R48A) that fails to activate NF-kappaB showed loss of TRAF2 binding, but retention of TRAF6 binding, suggesting that interaction of c-IAP2/MALT1 with TRAF6 is insufficient for NF-kappaB induction. In addition, a dominant-negative TRAF2 mutant or downregulation of TRAF2 achieved by small interfering RNA inhibited NF-kappaB activation by c-IAP2/MALT1 showing that TRAF2 is indispensable. Comparisons of the bioactivity of intact c-IAP2/MALT1 oncoprotein and BIR1 E47A/R48A c-IAP2/MALT1 mutant that cannot bind TRAF2 in a lymphoid cell line provided evidence that TRAF2 interaction is critical for c-IAP2/MALT1-mediated increases in the NF-kappaB activity, increased expression of endogenous NF-kappaB target genes (c-FLIP, TRAF1), and resistance to apoptosis.
Chimeras of human complement C9 reveal the site recognized by complement regulatory protein CD59.
Hüsler, T; Lockert, D H; Kaufman, K M; Sodetz, J M; Sims, P J
1995-02-24
CD59 antigen is a membrane glycoprotein that inhibits the activity of the C9 component of the C5b-9 membrane attack complex, thereby protecting human cells from lysis by human complement. The complement-inhibitory activity of CD59 is species-selective and is most effective toward C9 derived from human or other primate plasma. By contrast, rabbit C9, which can substitute for human C9 in the membrane attack complex, mediates unrestricted lysis of human cells. To identify the peptide segment of human C9 that is recognized by CD59, rabbit C9 cDNA clones were isolated, characterized, and used to construct hybrid cDNAs for expression of full-length human/rabbit C9 chimeras in COS-7 cells. All resulting chimeras were hemolytically active, when tested against chicken erythrocytes bearing C5b-8 complexes. Assays performed in the presence or absence of CD59 revealed that this inhibitor reduced the hemolytic activity of those chimeras containing human C9 sequence between residues 334-415, irrespective of whether the remainder of the protein contained human or rabbit sequence. By contrast, when this segment of C9 contained rabbit sequence, lytic activity was unaffected by CD59. These data establish that human C9 residues 334-415 contain the site recognized by CD59, and they suggest that sequence variability within this segment of C9 is responsible for the observed species-selective inhibitory activity of CD59.
Wang, Jialin; Shine, M.B.; Gao, Qing-Ming; Navarre, Duroy; Jiang, Wei; Liu, Chunyan; Chen, Qingshan; Hu, Guohua; Kachroo, Aardra
2014-01-01
Enhanced disease susceptibility1 (EDS1) and phytoalexin deficient4 (PAD4) are well-known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1-like (GmEDS1a/GmEDS1b) proteins and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean (Glycine max). Consistent with their significant structural conservation to Arabidopsis (Arabidopsis thaliana) counterparts, constitutive expression of GmEDS1 or GmPAD4 complemented the pathogen resistance defects of Arabidopsis eds1 and pad4 mutants, respectively. Interestingly, however, the GmEDS1 and GmPAD4 did not complement pathogen-inducible salicylic acid accumulation in the eds1/pad4 mutants. Furthermore, the GmEDS1a/GmEDS1b proteins were unable to complement the turnip crinkle virus coat protein-mediated activation of the Arabidopsis R protein Hypersensitive reaction to Turnip crinkle virus (HRT), even though both interacted with HRT. Silencing GmEDS1a/GmEDS1b or GmPAD4 reduced basal and pathogen-inducible salicylic acid accumulation and enhanced soybean susceptibility to virulent pathogens. The GmEDS1a/GmEDS1b and GmPAD4 genes were also required for Resistance to Pseudomonas syringae pv glycinea2 (Rpg2)-mediated resistance to Pseudomonas syringae. Notably, the GmEDS1a/GmEDS1b proteins interacted with the cognate bacterial effector AvrA1 and were required for its virulence function in rpg2 plants. Together, these results show that despite significant structural similarities, conserved defense signaling components from diverse plants can differ in their functionalities. In addition, we demonstrate a role for GmEDS1 in regulating the virulence function of a bacterial effector. PMID:24872380
Zhou, Yong; Zhu, Jinyan; Li, Zhengyi; Yi, Chuandeng; Liu, Jun; Zhang, Honggen; Tang, Shuzhu; Gu, Minghong; Liang, Guohua
2009-09-01
Rice plant architecture is an important agronomic trait and a major determinant in high productivity. Panicle erectness is the preferred plant architecture in japonica rice, but the molecular mechanism underlying domestication of the erect panicle remains elusive. Here we report the map-based cloning of a major quantitative trait locus, qPE9-1, which plays an integral role in regulation of rice plant architecture including panicle erectness. The R6547 qPE9-1 gene encodes a 426-amino-acid protein, homologous to the keratin-associated protein 5-4 family. The gene is composed of three Von Willebrand factor type C domains, one transmembrane domain, and one 4-disulfide-core domain. Phenotypic comparisons of a set of near-isogenic lines and transgenic lines reveal that the functional allele (qPE9-1) results in drooping panicles, and the loss-of-function mutation (qpe9-1) leads to more erect panicles. In addition, the qPE9-1 locus regulates panicle and grain length, grain weight, and consequently grain yield. We propose that the panicle erectness trait resulted from a natural random loss-of-function mutation for the qPE9-1 gene and has subsequently been the target of artificial selection during japonica rice breeding.
Franco, A. A.; Kothary, M. H.; Gopinath, G.; Jarvis, K. G.; Grim, C. J.; Hu, L.; Datta, A. R.; McCardell, B. A.; Tall, B. D.
2011-01-01
Cronobacter spp. are emerging neonatal pathogens in humans, associated with outbreaks of meningitis and sepsis. To cause disease, they must survive in blood and invade the central nervous system by penetrating the blood-brain barrier. C. sakazakii BAA-894 possesses an ∼131-kb plasmid (pESA3) that encodes an outer membrane protease (Cpa) that has significant identity to proteins that belong to the Pla subfamily of omptins. Members of this subfamily of proteins degrade a number of serum proteins, including circulating complement, providing protection from the complement-dependent serum killing. Moreover, proteins of the Pla subfamily can cause uncontrolled plasmin activity by converting plasminogen to plasmin and inactivating the plasmin inhibitor α2-antiplasmin (α2-AP). These reactions enhance the spread and invasion of bacteria in the host. In this study, we found that an isogenic cpa mutant showed reduced resistance to serum in comparison to its parent C. sakazakii BAA-894 strain. Overexpression of Cpa in C. sakazakii or Escherichia coli DH5α showed that Cpa proteolytically cleaved complement components C3, C3a, and C4b. Furthermore, a strain of C. sakazakii overexpressing Cpa caused a rapid activation of plasminogen and inactivation of α2-AP. These results strongly suggest that Cpa may be an important virulence factor involved in serum resistance, as well as in the spread and invasion of C. sakazakii. PMID:21245266
Kamada, Chiemi; Yoshimura, Hidenori; Okumura, Ryota; Takahashi, Keiko; Iimuro, Satoshi; Ohashi, Yasuo; Araki, Atsushi; Umegaki, Hiroyuki; Sakurai, Takashi; Yoshimura, Yukio; Ito, Hideki
2012-04-01
In diet therapy for diabetes, optimal energy intake and the energy distribution of macronutrients (protein : fat : carbohydrate [PFC] energy ratio) are important. We aimed to clarify the correlation between the PFC energy ratio and metabolic parameters including glycated hemoglobin A1c (HbA1c) and triglycerides in Japanese elderly patients with type 2 diabetes mellitus aged 65 years or older. Participants were 1173 diabetic patients aged 65 years or older with serum HbA1c level of >/=7.4% enrolled in the Japanese Elderly Diabetes Intervention Trial (J-EDIT). The participants were divided into four groups by the percentage of total energy intake (%E) of carbohydrate (C1: less than 55%E, C2: 55%E or more and less than 60%E, C3: 60%E or more and less than 65%E, and C4: 65%E or more). Relations of %E of carbohydrate to HbA1c and other metabolic parameters, energy intake and nutritional intake were examined. Furthermore, the subjects were divided into four categories by HbA1c levels by quartile method (Q1: less than 7.90%, Q2: 7.90% or more and less than 8.30%, Q3: 8.30% or more and less than 8.80%, Q4: 8.80% or more). Relations of HbA1c to other metabolic parameters, energy intake and nutritional intake were examined. The mean HbA1c levels in the four groups were C1: 8.40%, C2: 8.50%, C3: 8.41% and C4: 8.36% in men, and C1: 8.51%, C2: 8.47%, C3: 8.35% and C4: 8.52% in women, respectively. There were no significant differences and linear trend in HbA1c levels across groups. The mean triglyceride levels were in the range of 122-128 mg/dL in men from C1 to C3, although it was significantly higher in C4 (177 mg/dL). The mean triglyceride levels were in the range of 128-136 mg/dL in women from C1 to C3, although it was significantly higher in Q4 (150 mg/dL). Amounts of protein and fat intakes decreased with an increase of %E of carbohydrate, although amount of carbohydrate intake did not change significantly. As a result, %E of protein and fat, and energy intake decreased in both men and women with an increase in %E of carbohydrate. Among the four quartiles divided by HbA1c levels, there were no significant differences in energy intake and PFC energy ratio. The present study suggests that, within the range studied, the carbohydrate energy ratio has no correlation with HbA1c levels. However, serum triglyceride levels increased and high-density lipoprotein cholesterol levels decreased significantly, with an increase of %E of carbohydrate in men, and the same tendencies were observed in women. Furthermore, in patients with 65%E or more of carbohydrate, serum triglyceride levels exceeded 150 mg/dL, which is the recommended treatment target for diabetic patients. These results suggest that the ideal %E of carbohydrate for Japanese elderly type 2 diabetes is less than 65. The lower limit of %E of carbohydrate could not be determined from the present study. © 2012 Japan Geriatrics Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, D.J.; Reis, A.
1994-09-01
Nevoid basal cell carcinoma syndrome (NBCCS, Gorlin syndrome) is an autosomal dominant disorder, characterized primarily by multiple basal cell carcinomas, epithelium-lined jaw cysts, and palmar and plantar pits, as well as various other features. Loss of heterozygosity studies and linkage analysis have mapped the NBCCS gene to chromosome 9q and suggested that it is a tumor suppressor. The apparent sensitivity of NBCCS patients to UV and X-irradiation raises the possibility of hypersensitivity to DNA-damaging reagents or defective DNA repair being etiological in the disorder. The recent mapping of the Fanconi anaemia group C (FACC) and xeroderma pigmentosum complementing group Amore » (XPAC) genes to the same region on 9q has led us to begin the molecular dissection of the 9q22-q31 region. PCR analysis of the presence or absence of 10 microsatellite markers and exons 3 and 4 of the XPAC and FACC genes, respectively, allowed us to order 12 YACs into an overlapping contig and to order the markers as follows: D9S151/D9S12P1-D9S12P2-D9S197-D9S196-D9S280-FACC-D9S287/XPAC-D9S180-D9S6-D9S176. Sizing of the YACs has provided an initial estimate of the size of the NBCCS candidate region between D9S12 and D9S180 to be less than 1.65 Mb. 45 refs., 1 fig., 1 tab.« less
Sumegi, Janos; Streblow, Renae; Frayer, Robert W.; Cin, Paola Dal; Rosenberg, Andrew; Meloni-Ehrig, Aurelia; Bridge, Julia A.
2009-01-01
The fusion oncoproteins PAX3-FOXO1 [t(2;13)(q35;q14)] and PAX7-FOXO1 [t(1;13)(p36;q14)] typify alveolar rhabdomyosarcoma (ARMS); however, 20-30% of cases lack these specific translocations. In this study, cytogenetic and/or molecular characterization to include FISH, RT-PCR and sequencing analyses of five rhabdomyosarcomas [four ARMS and one embryonal rhabdomyosarcoma (ERMS)] with novel, recurrent t(2;2)(p23;q35) or t(2;8)(q35;q13) revealed that these non-canonical translocations fuse PAX3 to NCOA1 or NCOA2 respectively. The PAX3-NCOA1 and PAX3-NCOA2 transcripts encode chimeric proteins composed of the paired-box and homeodomain DNA-binding domains of PAX3, and the CID domain, the Q-rich region and the AD2 domain of NCOA1 or NCOA2. To investigate the biological function of these recurrent variant translocations, the coding regions of PAX3-NCOA1 and PAX3-NCOA2 cDNA constructs were introduced into expression vectors with tetracycline-regulated expression. Both fusion proteins showed transforming activity in the soft agar assay. Deletion of the AD2 portion of the PAX3-NCOA fusion proteins reduced the transforming activity of each chimeric protein. Similarly, but with greater impact, CID domain deletion fully abrogated the transforming activity of the chimeric protein. These studies: (1) expand our knowledge of PAX3 variant translocations in RMS with identification of a novel PAX3-NCOA2 fusion; (2) show that both PAX3-NCOA1 and PAX3-NCOA2 represent recurrent RMS rearrangements; (3) confirm the transforming activity of both translocation events and demonstrate the essentiality of intact AD2 and CID domains for optimal transforming activity; and, (5) provide alternative approaches (FISH and RT-PCR) for detecting PAX-NCOA fusions in nondividing cells of RMS. The latter could potentially be utilized as aids in diagnostically challenging cases. PMID:19953635
Systemic Cold Stress Adaptation of Chlamydomonas reinhardtii*
Valledor, Luis; Furuhashi, Takeshi; Hanak, Anne-Mette; Weckwerth, Wolfram
2013-01-01
Chlamydomonas reinhardtii is one of the most important model organisms nowadays phylogenetically situated between higher plants and animals (Merchant et al. 2007). Stress adaptation of this unicellular model algae is in the focus because of its relevance to biomass and biofuel production. Here, we have studied cold stress adaptation of C. reinhardtii hitherto not described for this algae whereas intensively studied in higher plants. Toward this goal, high throughput mass spectrometry was employed to integrate proteome, metabolome, physiological and cell-morphological changes during a time-course from 0 to 120 h. These data were complemented with RT-qPCR for target genes involved in central metabolism, signaling, and lipid biosynthesis. Using this approach dynamics in central metabolism were linked to cold-stress dependent sugar and autophagy pathways as well as novel genes in C. reinhardtii such as CKIN1, CKIN2 and a hitherto functionally not annotated protein named CKIN3. Cold stress affected extensively the physiology and the organization of the cell. Gluconeogenesis and starch biosynthesis pathways are activated leading to a pronounced starch and sugar accumulation. Quantitative lipid profiles indicate a sharp decrease in the lipophilic fraction and an increase in polyunsaturated fatty acids suggesting this as a mechanism of maintaining membrane fluidity. The proteome is completely remodeled during cold stress: specific candidates of the ribosome and the spliceosome indicate altered biosynthesis and degradation of proteins important for adaptation to low temperatures. Specific proteasome degradation may be mediated by the observed cold-specific changes in the ubiquitinylation system. Sparse partial least squares regression analysis was applied for protein correlation network analysis using proteins as predictors and Fv/Fm, FW, total lipids, and starch as responses. We applied also Granger causality analysis and revealed correlations between proteins and metabolites otherwise not detectable. Twenty percent of the proteins responsive to cold are uncharacterized proteins. This presents a considerable resource for new discoveries in cold stress biology in alga and plants. PMID:23564937
Cathepsins L and Z Are Critical in Degrading Polyglutamine-containing Proteins within Lysosomes*
Bhutani, Nidhi; Piccirillo, Rosanna; Hourez, Raphael; Venkatraman, Prasanna; Goldberg, Alfred L.
2012-01-01
In neurodegenerative diseases caused by extended polyglutamine (polyQ) sequences in proteins, aggregation-prone polyQ proteins accumulate in intraneuronal inclusions. PolyQ proteins can be degraded by lysosomes or proteasomes. Proteasomes are unable to hydrolyze polyQ repeat sequences, and during breakdown of polyQ proteins, they release polyQ repeat fragments for degradation by other cellular enzymes. This study was undertaken to identify the responsible proteases. Lysosomal extracts (unlike cytosolic enzymes) were found to rapidly hydrolyze polyQ sequences in peptides, proteins, or insoluble aggregates. Using specific inhibitors against lysosomal proteases, enzyme-deficient extracts, and pure cathepsins, we identified cathepsins L and Z as the lysosomal cysteine proteases that digest polyQ proteins and peptides. RNAi for cathepsins L and Z in different cell lines and adult mouse muscles confirmed that they are critical in degrading polyQ proteins (expanded huntingtin exon 1) but not other types of aggregation-prone proteins (e.g. mutant SOD1). Therefore, the activities of these two lysosomal cysteine proteases are important in host defense against toxic accumulation of polyQ proteins. PMID:22451661
Li, Hongbo; Gao, Xuefei; Zhou, Yi; Li, Na; Ge, Caozuo; Hui, Xiaoyan; Wang, Yu; Xu, Aimin; Jin, Shouguang; Wu, Donghai
2011-09-01
C1q and tumor necrosis factor related proteins (CTRPs) are a family of adiponectin paralogues. Among them, CTRP2 is the only CTRP protein that has been shown to possess similar biological activities as adiponectin. To further explore the physiological roles of human CTRP2 and its mechanisms of action, hCTRP2 gene was expressed in Escherichia coli and Pichia pastoris, respectively. In the P. pastoris expression system, recombinant hCTRP2 could be secreted into the culture medium under induction condition, however, the resultant recombinant protein was highly unstable, resulting two main degradation products with molecular masses of approximately 20 and 26 kDa, respectively. In the E. coli expression system, a large amount of soluble thioredoxin (Trx)-hCTRP2 fusion protein could be produced, which accounts about 42% of the total soluble bacterial proteins. The recombinant Trx-hCTRP2 fusion protein was purified to an approximately 95% purity using Ni-NTA affinity chromatography and Superdex G-75 column with a yield of about 15 mg/l protein from 1l bacterial culture. The purified recombinant Trx-hCTRP2 was shown to be active under in vitro assay conditions. Copyright © 2011 Elsevier Inc. All rights reserved.
Nardo, Giovanni; Iennaco, Raffaele; Fusi, Nicolò; Heath, Paul R; Marino, Marianna; Trolese, Maria C; Ferraiuolo, Laura; Lawrence, Neil; Shaw, Pamela J; Bendotti, Caterina
2013-11-01
Amyotrophic lateral sclerosis is heterogeneous with high variability in the speed of progression even in cases with a defined genetic cause such as superoxide dismutase 1 (SOD1) mutations. We reported that SOD1(G93A) mice on distinct genetic backgrounds (C57 and 129Sv) show consistent phenotypic differences in speed of disease progression and life-span that are not explained by differences in human SOD1 transgene copy number or the burden of mutant SOD1 protein within the nervous system. We aimed to compare the gene expression profiles of motor neurons from these two SOD1(G93A) mouse strains to discover the molecular mechanisms contributing to the distinct phenotypes and to identify factors underlying fast and slow disease progression. Lumbar spinal motor neurons from the two SOD1(G93A) mouse strains were isolated by laser capture microdissection and transcriptome analysis was conducted at four stages of disease. We identified marked differences in the motor neuron transcriptome between the two mice strains at disease onset, with a dramatic reduction of gene expression in the rapidly progressive (129Sv-SOD1(G93A)) compared with the slowly progressing mutant SOD1 mice (C57-SOD1(G93A)) (1276 versus 346; Q-value ≤ 0.01). Gene ontology pathway analysis of the transcriptional profile from 129Sv-SOD1(G93A) mice showed marked downregulation of specific pathways involved in mitochondrial function, as well as predicted deficiencies in protein degradation and axonal transport mechanisms. In contrast, the transcriptional profile from C57-SOD1(G93A) mice with the more benign disease course, revealed strong gene enrichment relating to immune system processes compared with 129Sv-SOD1(G93A) mice. Motor neurons from the more benign mutant strain demonstrated striking complement activation, over-expressing genes normally involved in immune cell function. We validated through immunohistochemistry increased expression of the C3 complement subunit and major histocompatibility complex I within motor neurons. In addition, we demonstrated that motor neurons from the slowly progressing mice activate a series of genes with neuroprotective properties such as angiogenin and the nuclear factor (erythroid-derived 2)-like 2 transcriptional regulator. In contrast, the faster progressing mice show dramatically reduced expression at disease onset of cell pathways involved in neuroprotection. This study highlights a set of key gene and molecular pathway indices of fast or slow disease progression which may prove useful in identifying potential disease modifiers responsible for the heterogeneity of human amyotrophic lateral sclerosis and which may represent valid therapeutic targets for ameliorating the disease course in humans.
Neighborhood Walkable Urban Form and C-Reactive Protein
Background: Walkable urban form predicts physical activity and lower body mass index, which lower C-reactive protein (CRP). However, urban form is also related to pollution, noise, social and health behavior, crowding, and other stressors, which may complement or contravene walka...
Kabbage, Maria; Chahed, Karim; Hamrita, Bechr; Guillier, Christelle Lemaitre; Trimeche, Mounir; Remadi, Sami; Hoebeke, Johan; Chouchane, Lotfi
2008-01-01
Improvement of breast-cancer detection through the identification of potential cancer biomarkers is considered as a promising strategy for effective assessment of the disease. The current study has used nonequilibrium pH gradient electrophoresis with subsequent analysis by mass spectrometry to identify protein alterations in invasive ductal carcinomas of the breast from Tunisian women. We have identified multiple protein alterations in tumor tissues that were picked, processed, and unambiguously assigned identities by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). The proteins identified span a wide range of functions and are believed to have potential clinical applications as cancer biomarkers. They include glycolytic enzymes, molecular chaperones, cytoskeletal-related proteins, antioxydant enzymes, and immunologic related proteins. Among these proteins, enolase 1, phosphoglycerate kinase 1, deoxyhemoglobin, Mn-superoxyde dismutase, α-B-crystallin, HSP27, Raf kinase inhibitor protein, heterogeneous nuclear ribonucleoprotein A2/B1, cofilin 1, and peptidylprolyl isomerase A were overexpressed in tumors compared with normal tissues. In contrast, the IGHG1 protein, the complement C3 component C3c, which are two newly identified protein markers, were downregulated in IDCA tissues. PMID:18401453
USDA-ARS?s Scientific Manuscript database
The Arabidopsis thaliana F-BOX protein COLD TEMPERATURE GERMINATING10 (CTG10) was identified from an activation tagged mutant screen as causing seeds to complete germination faster than wild type at 10°C when its expression is increased (Salaita et al. 2005. J. Exp. Bot. 56: 2059). Our unpublished d...
Hovingh, Elise S.; de Maat, Steven; Cloherty, Alexandra P. M.; Johnson, Steven; Pinelli, Elena; Maas, Coen; Jongerius, Ilse
2018-01-01
Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Whooping cough is currently re-emerging worldwide and, therefore, still poses a continuous global health threat. B. pertussis expresses several virulence factors that play a role in evading the human immune response. One of these virulence factors is virulence associated gene 8 (Vag8). Vag8 is a complement evasion molecule that mediates its effects by binding to the complement regulator C1 inhibitor (C1-INH). This regulatory protein is a fluid phase serine protease that controls proenzyme activation and enzyme activity of not only the complement system but also the contact system. Activation of the contact system results in the generation of bradykinin, a pro-inflammatory peptide. Here, the activation of the contact system by B. pertussis was explored. We demonstrate that recombinant as well as endogenous Vag8 enhanced contact system activity by binding C1-INH and attenuating its inhibitory function. Moreover, we show that B. pertussis itself is able to activate the contact system. This activation was dependent on Vag8 production as a Vag8 knockout B. pertussis strain was unable to activate the contact system. These findings show a previously overlooked interaction between the contact system and the respiratory pathogen B. pertussis. Activation of the contact system by B. pertussis may contribute to its pathogenicity and virulence. PMID:29915576
Hovingh, Elise S; de Maat, Steven; Cloherty, Alexandra P M; Johnson, Steven; Pinelli, Elena; Maas, Coen; Jongerius, Ilse
2018-01-01
Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Whooping cough is currently re-emerging worldwide and, therefore, still poses a continuous global health threat. B. pertussis expresses several virulence factors that play a role in evading the human immune response. One of these virulence factors is virulence associated gene 8 (Vag8). Vag8 is a complement evasion molecule that mediates its effects by binding to the complement regulator C1 inhibitor (C1-INH). This regulatory protein is a fluid phase serine protease that controls proenzyme activation and enzyme activity of not only the complement system but also the contact system. Activation of the contact system results in the generation of bradykinin, a pro-inflammatory peptide. Here, the activation of the contact system by B. pertussis was explored. We demonstrate that recombinant as well as endogenous Vag8 enhanced contact system activity by binding C1-INH and attenuating its inhibitory function. Moreover, we show that B. pertussis itself is able to activate the contact system. This activation was dependent on Vag8 production as a Vag8 knockout B. pertussis strain was unable to activate the contact system. These findings show a previously overlooked interaction between the contact system and the respiratory pathogen B. pertussis . Activation of the contact system by B. pertussis may contribute to its pathogenicity and virulence.