What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated.
Kumaran, Dharshan; Hassabis, Demis; McClelland, James L
2016-07-01
We update complementary learning systems (CLS) theory, which holds that intelligent agents must possess two learning systems, instantiated in mammalians in neocortex and hippocampus. The first gradually acquires structured knowledge representations while the second quickly learns the specifics of individual experiences. We broaden the role of replay of hippocampal memories in the theory, noting that replay allows goal-dependent weighting of experience statistics. We also address recent challenges to the theory and extend it by showing that recurrent activation of hippocampal traces can support some forms of generalization and that neocortical learning can be rapid for information that is consistent with known structure. Finally, we note the relevance of the theory to the design of artificial intelligent agents, highlighting connections between neuroscience and machine learning. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Larbi-Apau, Josephine; Oti-Boadi, Mabel; Tetteh, Albert
2018-01-01
Both computer attitude and eLearning self-efficacy are critical complementary factors in determining confidence levels and behavioral belief systems, and can directly affect students' actions, performances and achievements. This study applied a multidimensional construct in validating computer attitude and eLearning self-efficacy of Psychology…
Designing Better Scaffolding in Teaching Complex Systems with Graphical Simulations
ERIC Educational Resources Information Center
Li, Na
2013-01-01
Complex systems are an important topic in science education today, but they are usually difficult for secondary-level students to learn. Although graphic simulations have many advantages in teaching complex systems, scaffolding is a critical factor for effective learning. This dissertation study was conducted around two complementary research…
Liao, Hung-Chang; Wang, Ya-Huei
2016-04-01
This study examined whether students studying literature in complementary learning clusters would show more improvement in medical humanities literacy, critical thinking skills, and English proficiency compared to those in conventional learning clusters. Ninety-three students participated in the study (M age = 18.2 years, SD = 0.4; 36 men, 57 women). A quasi-experimental design was used over 16 weeks, with the control group (n = 47) working in conventional learning clusters and the experimental group (n = 46) working in complementary learning clusters. Complementary learning clusters were those in which individuals had complementary strengths enabling them to learn from and offer assistance to other cluster members, hypothetically facilitating the learning process. Measures included the Medical Humanities Literacy Scale, Critical Thinking Disposition Assessment, English proficiency tests, and Analytic Critical Thinking Scoring Rubric. The results showed that complementary learning clusters have the potential to improve students' medical humanities literacy, critical thinking skills, and English proficiency. © The Author(s) 2016.
ERIC Educational Resources Information Center
Rau, Martina A.
2013-01-01
Most learning environments in the STEM disciplines use multiple graphical representations along with textual descriptions and symbolic representations. Multiple graphical representations are powerful learning tools because they can emphasize complementary aspects of complex learning contents. However, to benefit from multiple graphical…
ERIC Educational Resources Information Center
Suddaby, Gordon; Milne, John
2008-01-01
Purpose: The paper aims to discusses two complementary initiatives focussed on developing and implementing e-learning guidelines to support good pedagogy in e-learning practice. Design/methodology/approach: The first initiative is the development of a coherent set of open access e-learning guidelines for the New Zealand tertiary sector. The second…
Forecasting: Exercises to Enhance Learning from Business Simulations
ERIC Educational Resources Information Center
Clark, Timothy S.; Kent, Brian M.
2013-01-01
Forecasting the outputs of dynamic systems develops a richer understanding of relevant inputs and their interrelationships than merely observing them ex post. Academic business simulations foster students' development of this critical competency, but learning outcomes can be significantly augmented with relatively simple, complementary exercises…
The Role of Memory Consolidation in Generalisation of New Linguistic Information
ERIC Educational Resources Information Center
Tamminen, Jakke; Davis, Matthew H.; Merkx, Marjolein; Rastle, Kathleen
2012-01-01
Accounts of memory that postulate complementary learning systems (CLS) have become increasingly influential in the field of language learning. These accounts predict that generalisation of newly learnt linguistic information to untrained contexts requires offline memory consolidation. Such generalisation should not be observed immediately after…
Turk-Browne, Nicholas B.; Botvinick, Matthew M.; Norman, Kenneth A.
2017-01-01
A growing literature suggests that the hippocampus is critical for the rapid extraction of regularities from the environment. Although this fits with the known role of the hippocampus in rapid learning, it seems at odds with the idea that the hippocampus specializes in memorizing individual episodes. In particular, the Complementary Learning Systems theory argues that there is a computational trade-off between learning the specifics of individual experiences and regularities that hold across those experiences. We asked whether it is possible for the hippocampus to handle both statistical learning and memorization of individual episodes. We exposed a neural network model that instantiates known properties of hippocampal projections and subfields to sequences of items with temporal regularities. We found that the monosynaptic pathway—the pathway connecting entorhinal cortex directly to region CA1—was able to support statistical learning, while the trisynaptic pathway—connecting entorhinal cortex to CA1 through dentate gyrus and CA3—learned individual episodes, with apparent representations of regularities resulting from associative reactivation through recurrence. Thus, in paradigms involving rapid learning, the computational trade-off between learning episodes and regularities may be handled by separate anatomical pathways within the hippocampus itself. This article is part of the themed issue ‘New frontiers for statistical learning in the cognitive sciences’. PMID:27872368
Schapiro, Anna C; Turk-Browne, Nicholas B; Botvinick, Matthew M; Norman, Kenneth A
2017-01-05
A growing literature suggests that the hippocampus is critical for the rapid extraction of regularities from the environment. Although this fits with the known role of the hippocampus in rapid learning, it seems at odds with the idea that the hippocampus specializes in memorizing individual episodes. In particular, the Complementary Learning Systems theory argues that there is a computational trade-off between learning the specifics of individual experiences and regularities that hold across those experiences. We asked whether it is possible for the hippocampus to handle both statistical learning and memorization of individual episodes. We exposed a neural network model that instantiates known properties of hippocampal projections and subfields to sequences of items with temporal regularities. We found that the monosynaptic pathway-the pathway connecting entorhinal cortex directly to region CA1-was able to support statistical learning, while the trisynaptic pathway-connecting entorhinal cortex to CA1 through dentate gyrus and CA3-learned individual episodes, with apparent representations of regularities resulting from associative reactivation through recurrence. Thus, in paradigms involving rapid learning, the computational trade-off between learning episodes and regularities may be handled by separate anatomical pathways within the hippocampus itself.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).
ERIC Educational Resources Information Center
Ianneo, Brittany
2014-01-01
Accommodation~assimilation relations were theorized by Kelso and Engstrom (2006) as independent and dependent complementary pairs. This study defined relationships between organisms that experienced complementary interactions of accommodation~assimilation in diverse ecologies designed with universal design for learning environments (UDLE) compared…
Using Low-Tech Interactions in the Chemistry Classroom to Engage Students in Active Learning
ERIC Educational Resources Information Center
Shaver, Michael P.
2010-01-01
Two complementary techniques to gauge student understanding and inspire interactive learning in the chemistry classroom are presented. Specifically, this article explores the use of student responses with their thumbs as an alternative to electronic-response systems and complementing these experiences with longer, task-based questions in an…
Norman, Kenneth A; Newman, Ehren L; Perotte, Adler J
2005-11-01
The stability-plasticity problem (i.e. how the brain incorporates new information into its model of the world, while at the same time preserving existing knowledge) has been at the forefront of computational memory research for several decades. In this paper, we critically evaluate how well the Complementary Learning Systems theory of hippocampo-cortical interactions addresses the stability-plasticity problem. We identify two major challenges for the model: Finding a learning algorithm for cortex and hippocampus that enacts selective strengthening of weak memories, and selective punishment of competing memories; and preventing catastrophic forgetting in the case of non-stationary environments (i.e. when items are temporarily removed from the training set). We then discuss potential solutions to these problems: First, we describe a recently developed learning algorithm that leverages neural oscillations to find weak parts of memories (so they can be strengthened) and strong competitors (so they can be punished), and we show how this algorithm outperforms other learning algorithms (CPCA Hebbian learning and Leabra at memorizing overlapping patterns. Second, we describe how autonomous re-activation of memories (separately in cortex and hippocampus) during REM sleep, coupled with the oscillating learning algorithm, can reduce the rate of forgetting of input patterns that are no longer present in the environment. We then present a simple demonstration of how this process can prevent catastrophic interference in an AB-AC learning paradigm.
ERIC Educational Resources Information Center
Lee, Ching-Yieh; Der Pan, Peter Jen; Liao, Ching-Jung
2011-01-01
We present in this study the significance and impacts of an innovative e-HO as a holistic and horizontal platform complementary to e-Learning to help realize transdisciplinary learning and foster integration of knowledge in higher education. A comprehensive investigation of a survey conducted among 647 university students for e-HO is presented…
Brown, Thackery I.; Stern, Chantal E.
2014-01-01
Many life experiences share information with other memories. In order to make decisions based on overlapping memories, we need to distinguish between experiences to determine the appropriate behavior for the current situation. Previous work suggests that the medial temporal lobe (MTL) and medial caudate interact to support the retrieval of overlapping navigational memories in different contexts. The present study used functional magnetic resonance imaging (fMRI) in humans to test the prediction that the MTL and medial caudate play complementary roles in learning novel mazes that cross paths with, and must be distinguished from, previously learned routes. During fMRI scanning, participants navigated virtual routes that were well learned from prior training while also learning new mazes. Critically, some routes learned during scanning shared hallways with those learned during pre-scan training. Overlap between mazes required participants to use contextual cues to select between alternative behaviors. Results demonstrated parahippocampal cortex activity specific for novel spatial cues that distinguish between overlapping routes. The hippocampus and medial caudate were active for learning overlapping spatial memories, and increased their activity for previously learned routes when they became context dependent. Our findings provide novel evidence that the MTL and medial caudate play complementary roles in the learning, updating, and execution of context-dependent navigational behaviors. PMID:23448868
Reaching the Underserved: Complementary Models of Effective Schooling
ERIC Educational Resources Information Center
DeStefano, Joseph; Moore, Audrey-Marie Schuh; Balwanz, David; Hartwell, Ash
2007-01-01
Many countries that have undergone expansion of access to public education still face significant disparities in school enrollment and attendance rates at sub-national levels, and fail to reach a high proportion of children who are outside of the government system. Completion and student learning have also continued to be system-wide challenges…
Technology as an Instrument to Improve Quality, Accountability, and Reflection in Academic Medicine
ERIC Educational Resources Information Center
Wilkes, Michael S.; Howell, Lydia
2006-01-01
Objective: This article describes two complementary technology systems used in academic medicine to 1) improve the quality of learning and teaching, and 2) describe the barriers and obstacles encountered in implementing these systems. Method: The literature was integrated with in-depth, case-based experience with technology related to student…
ERIC Educational Resources Information Center
DeVane, Benjamin
2017-01-01
In this review article, I argue that games are complementary, not self-supporting, learning tools for democratic education because they can: (a) offer "simplified, but often not simple, outlines" (later called "models") of complex social systems that generate further inquiry; (b) provide "practice spaces" for…
Learning words and learning sounds: Advances in language development.
Vihman, Marilyn M
2017-02-01
Phonological development is sometimes seen as a process of learning sounds, or forming phonological categories, and then combining sounds to build words, with the evidence taken largely from studies demonstrating 'perceptual narrowing' in infant speech perception over the first year of life. In contrast, studies of early word production have long provided evidence that holistic word learning may precede the formation of phonological categories. In that account, children begin by matching their existing vocal patterns to adult words, with knowledge of the phonological system emerging from the network of related word forms. Here I review evidence from production and then consider how the implicit and explicit learning mechanisms assumed by the complementary memory systems model might be understood as reconciling the two approaches. © 2016 The British Psychological Society.
STEM Education for Girls of Color
NASA Astrophysics Data System (ADS)
Yee, Kam H.
Science, technology, engineering, and math (STEM) fields struggle to increase recruitment and retention of girls of color. The dominant framework in STEM education is the pipeline which assumes girls in general lack motivation and interest to persist in STEM fields. Recent public discourse shifts to address institutionalized discrimination and systemic barriers in STEM culture that filter out underrepresented populations. Informal education or complementary learning STEM programs offer alternative opportunities for students to explore outside of rigid school academic and social systems. Few articles look specifically at STEM complementary learning programs, and even fewer focus on the effects on girls of color. This research is a quantitative study to categorize existing mission statements and training behind organizations that provide STEM programs. The results will provide a better understanding of the relationship between practices of STEM education organizations and the programs they create. Diversity training and inclusive language in mission statements had weak correlations with increased cultural responsiveness in the program offerings. The results suggest organizations must be more intentional and explicit when implementing diversity goals.
Teaching Processes and Practices for an Australian Multicultural Classroom: Two Complementary Models
ERIC Educational Resources Information Center
Winch-Dummett, Carlene
2004-01-01
Which pedagogical processes and practices that target the recognition, value and sharing of world views in teaching and learning can be identified as strategies for learning to live together in an Australian multicultural classroom? The question is addressed by this paper, which presents two discrete but complementary pedagogical models that…
Testing a Neurocomputational Model of Recollection, Familiarity, and Source Recognition
ERIC Educational Resources Information Center
Elfman, Kane W.; Parks, Colleen M.; Yonelinas, Andrew P.
2008-01-01
The authors assess whether the complementary learning systems model of the medial temporal lobes (Norman & O'Reilly, 2003) is able to account for source recognition receiver operating characteristics (ROCs). The model assumes that recognition reflects the contribution of a hippocampally mediated recollection process and a cortically mediated…
ERIC Educational Resources Information Center
Bull, Leona
2009-01-01
Background: Dyslexia is a common learning difficulty affecting up to 10% of British children that is associated with a wide range of cognitive, emotional and physical symptoms. In the absence of effective conventional treatment, it is likely that parents will seek complementary and alternative medicine (CAM) to try and help their children.…
Piwoz, Ellen G; Huffman, Sandra L; Quinn, Victoria J
2003-03-01
Although many successes have been achieved in promoting breastfeeding, this has not been the case for complementary feeding. Some successes in promoting complementary feeding at the community level have been documented, but few of these efforts have expanded to a larger scale and become sustained. To discover the reasons for this difference, the key factors for the successful promotion of breastfeeding on a large scale were examined and compared with the efforts made in complementary feeding. These factors include definition and rationale, policy support, funding, advocacy, private-sector involvement, availability and use of monitoring data, integration of research into action, and the existence of a well-articulated series of steps for successful implementation. The lessons learned from the promotion of breastfeeding should be applied to complementary feeding, and the new Global Strategy for Infant and Young Child Feeding provides an excellent first step in this process.
ERIC Educational Resources Information Center
Mayberry, Emily J.; Sage, Karen; Ehsan, Sheeba; Ralph, Matthew A. Lambon
2011-01-01
When relearning words, patients with semantic dementia (SD) exhibit a characteristic rigidity, including a failure to generalise names to untrained exemplars of trained concepts. This has been attributed to an over-reliance on the medial temporal region which captures information in sparse, non-overlapping and therefore rigid representations. The…
Boz, İlkay; Özer, Zeynep; Teskereci, Gamze; Kavradim, Selma Turan
The objectives of this study were to investigate learning experiences of the nurses who participated in transnational and multinational occupational training. A qualitative descriptive methodology was used. Data are clustered into 3 categories "occupational training," "complementary care," and "intercultural interaction." This research has revealed many insights into the transnational training of nurses.
Working Together: Intercultural Leadership Capabilities for Both-Ways Education
ERIC Educational Resources Information Center
Frawley, Jack; Fasoli, Lyn
2012-01-01
This article explores the concept of interculturalism and its complementary relationship with the Aboriginal Australian idea of "both ways". The need for Aboriginal and non-Aboriginal staff to learn to be intercultural teachers and leaders, as well as the needs of the system to work interculturally to achieve educational outcomes, is…
ERIC Educational Resources Information Center
Ciaramelli, Elisa; Rosenbaum, R. Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris
2010-01-01
The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the…
Acupuncture (PDQ®)—Patient Version
Acupuncture is a complementary therapy used by cancer patients to manage cancer and treatment-related symptoms. Learn more about acupuncture and its use as a complementary therapy in this expert-reviewed summary.
Takashima, Atsuko; Bakker, Iske; van Hell, Janet G; Janzen, Gabriele; McQueen, James M
2017-04-01
When a novel word is learned, its memory representation is thought to undergo a process of consolidation and integration. In this study, we tested whether the neural representations of novel words change as a function of consolidation by observing brain activation patterns just after learning and again after a delay of one week. Words learned with meanings were remembered better than those learned without meanings. Both episodic (hippocampus-dependent) and semantic (dependent on distributed neocortical areas) memory systems were utilised during recognition of the novel words. The extent to which the two systems were involved changed as a function of time and the amount of associated information, with more involvement of both systems for the meaningful words than for the form-only words after the one-week delay. These results suggest that the reason the meaningful words were remembered better is that their retrieval can benefit more from these two complementary memory systems. Copyright © 2016 Elsevier Inc. All rights reserved.
Hayes, Spencer J; Dutoy, Chris A; Elliott, Digby; Gowen, Emma; Bennett, Simon J
2016-01-01
Learning a novel movement requires a new set of kinematics to be represented by the sensorimotor system. This is often accomplished through imitation learning where lower-level sensorimotor processes are suggested to represent the biological motion kinematics associated with an observed movement. Top-down factors have the potential to influence this process based on the social context, attention and salience, and the goal of the movement. In order to further examine the potential interaction between lower-level and top-down processes in imitation learning, the aim of this study was to systematically control the mediating effects during an imitation of biological motion protocol. In this protocol, we used non-human agent models that displayed different novel atypical biological motion kinematics, as well as a control model that displayed constant velocity. Importantly the three models had the same movement amplitude and movement time. Also, the motion kinematics were displayed in the presence, or absence, of end-state-targets. Kinematic analyses showed atypical biological motion kinematics were imitated, and that this performance was different from the constant velocity control condition. Although the imitation of atypical biological motion kinematics was not modulated by the end-state-targets, movement time was more accurate in the absence, compared to the presence, of an end-state-target. The fact that end-state targets modulated movement time accuracy, but not biological motion kinematics, indicates imitation learning involves top-down attentional, and lower-level sensorimotor systems, which operate as complementary processes mediated by the environmental context. Copyright © 2015 Elsevier B.V. All rights reserved.
Neurocontrol and fuzzy logic: Connections and designs
NASA Technical Reports Server (NTRS)
Werbos, Paul J.
1991-01-01
Artificial neural networks (ANNs) and fuzzy logic are complementary technologies. ANNs extract information from systems to be learned or controlled, while fuzzy techniques mainly use verbal information from experts. Ideally, both sources of information should be combined. For example, one can learn rules in a hybrid fashion, and then calibrate them for better whole-system performance. ANNs offer universal approximation theorems, pedagogical advantages, very high-throughput hardware, and links to neurophysiology. Neurocontrol - the use of ANNs to directly control motors or actuators, etc. - uses five generalized designs, related to control theory, which can work on fuzzy logic systems as well as ANNs. These designs can copy what experts do instead of what they say, learn to track trajectories, generalize adaptive control, and maximize performance or minimize cost over time, even in noisy environments. Design tradeoffs and future directions are discussed throughout.
ERIC Educational Resources Information Center
Tereshchenko, Antonina; Archer, Louise
2015-01-01
This paper contributes to the literature on complementary schools as sites of learning and social and cultural identification. We draw on a small-scale multi-method qualitative study conducted in Albanian and Bulgarian community schools in London to explore the agendas of "new" Eastern European complementary schools with respect to…
ERIC Educational Resources Information Center
Stratling, Rebecca
2017-01-01
Although learning theories suggest that repeat testing can be highly beneficial for students' retention and understanding of material, there is, so far, little guidance on how to implement repeat testing in higher education. This paper introduces one method for implementing a three-stage model of repeat testing via computer-aided formative…
Integrative, Alternative, and Complementary Therapies (PDQ®)—Patient Version
Topics in Integrative, Alternative, and Complementary Therapies gives a brief description of some of these therapies used by people with cancer. Learn more about these therapies and get links to additional information in this expert-reviewed summary.
Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate
2014-01-01
Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms. PMID:25389391
Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate
2014-01-01
Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms.
NASA Astrophysics Data System (ADS)
Vijverberg, Koen; Ghafoorian, Mohsen; van Uden, Inge W. M.; de Leeuw, Frank-Erik; Platel, Bram; Heskes, Tom
2016-03-01
Cerebral small vessel disease (SVD) is a disorder frequently found among the old people and is associated with deterioration in cognitive performance, parkinsonism, motor and mood impairments. White matter hyperintensities (WMH) as well as lacunes, microbleeds and subcortical brain atrophy are part of the spectrum of image findings, related to SVD. Accurate segmentation of WMHs is important for prognosis and diagnosis of multiple neurological disorders such as MS and SVD. Almost all of the published (semi-)automated WMH detection models employ multiple complex hand-crafted features, which require in-depth domain knowledge. In this paper we propose to apply a single-layer network unsupervised feature learning (USFL) method to avoid hand-crafted features, but rather to automatically learn a more efficient set of features. Experimental results show that a computer aided detection system with a USFL system outperforms a hand-crafted approach. Moreover, since the two feature sets have complementary properties, a hybrid system that makes use of both hand-crafted and unsupervised learned features, shows a significant performance boost compared to each system separately, getting close to the performance of an independent human expert.
Two Undergraduate Process Modeling Courses Taught Using Inductive Learning Methods
ERIC Educational Resources Information Center
Soroush, Masoud; Weinberger, Charles B.
2010-01-01
This manuscript presents a successful application of inductive learning in process modeling. It describes two process modeling courses that use inductive learning methods such as inquiry learning and problem-based learning, among others. The courses include a novel collection of multi-disciplinary complementary process modeling examples. They were…
Monitoring Bilingualism: Pedagogical Implications of the Bilingual Tandem Analyser
ERIC Educational Resources Information Center
Schwienhorst, Klaus; Borgia, Alexandre
2006-01-01
Tandem learning is the collaborative learning partnership of two language learners with complementary language combinations, for example an Irish student learning German and a German student learning English. One of the major principles in tandem learning, apart from reciprocity and learner autonomy, is balanced bilingualism. While learners may…
ERIC Educational Resources Information Center
Cseh, Maria; Manikoth, Nisha N.
2011-01-01
As the authors of the preceding article (Choi and Jacobs, 2011) have noted, the workplace learning literature shows evidence of the complementary and integrated nature of formal and informal learning in the development of employee competencies. The importance of supportive learning environments in the workplace and of employees' personal learning…
Department Of Defense Science And Technology Invigoration
2002-02-01
38 Army Science Board, Summer Study, 1982. 39 Hamel, G. and Prahalad , C.K., “ Strategic Intent ,” Harvard Business Review, May-June 1989, 63-76... strategic intent (aggressively stretching resources rather than fitting resources) and core competence (collective learning in an organization...system and defense-related industry. 3. Develop a strategic plan for the DOD S&T infrastructure of the future, defining the complementary roles of
Complementary roles for amygdala and periaqueductal gray in temporal-difference fear learning.
Cole, Sindy; McNally, Gavan P
2009-01-01
Pavlovian fear conditioning is not a unitary process. At the neurobiological level multiple brain regions and neurotransmitters contribute to fear learning. At the behavioral level many variables contribute to fear learning including the physical salience of the events being learned about, the direction and magnitude of predictive error, and the rate at which these are learned about. These experiments used a serial compound conditioning design to determine the roles of basolateral amygdala (BLA) NMDA receptors and ventrolateral midbrain periaqueductal gray (vlPAG) mu-opioid receptors (MOR) in predictive fear learning. Rats received a three-stage design, which arranged for both positive and negative prediction errors producing bidirectional changes in fear learning within the same subjects during the test stage. Intra-BLA infusion of the NR2B receptor antagonist Ifenprodil prevented all learning. In contrast, intra-vlPAG infusion of the MOR antagonist CTAP enhanced learning in response to positive predictive error but impaired learning in response to negative predictive error--a pattern similar to Hebbian learning and an indication that fear learning had been divorced from predictive error. These findings identify complementary but dissociable roles for amygdala NMDA receptors and vlPAG MOR in temporal-difference predictive fear learning.
Moral learning: Psychological and philosophical perspectives.
Cushman, Fiery; Kumar, Victor; Railton, Peter
2017-10-01
The past 15years occasioned an extraordinary blossoming of research into the cognitive and affective mechanisms that support moral judgment and behavior. This growth in our understanding of moral mechanisms overshadowed a crucial and complementary question, however: How are they learned? As this special issue of the journal Cognition attests, a new crop of research into moral learning has now firmly taken root. This new literature draws on recent advances in formal methods developed in other domains, such as Bayesian inference, reinforcement learning and other machine learning techniques. Meanwhile, it also demonstrates how learning and deciding in a social domain-and especially in the moral domain-sometimes involves specialized cognitive systems. We review the contributions to this special issue and situate them within the broader contemporary literature. Our review focuses on how we learn moral values and moral rules, how we learn about personal moral character and relationships, and the philosophical implications of these emerging models. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Changju; Kim, Hyongsuk; Adhikari, Shyam Prasad; Chua, Leon O.
2016-01-01
A hybrid learning method of a software-based backpropagation learning and a hardware-based RWC learning is proposed for the development of circuit-based neural networks. The backpropagation is known as one of the most efficient learning algorithms. A weak point is that its hardware implementation is extremely difficult. The RWC algorithm, which is very easy to implement with respect to its hardware circuits, takes too many iterations for learning. The proposed learning algorithm is a hybrid one of these two. The main learning is performed with a software version of the BP algorithm, firstly, and then, learned weights are transplanted on a hardware version of a neural circuit. At the time of the weight transplantation, a significant amount of output error would occur due to the characteristic difference between the software and the hardware. In the proposed method, such error is reduced via a complementary learning of the RWC algorithm, which is implemented in a simple hardware. The usefulness of the proposed hybrid learning system is verified via simulations upon several classical learning problems. PMID:28025566
Grossberg, Stephen
2015-09-24
This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory. Copyright © 2014 Elsevier B.V. All rights reserved.
Evolving Best Practice in Learning About Air Quality and Climate Change Science in ACCENT
NASA Astrophysics Data System (ADS)
Schuepbach, E.
2008-12-01
Learning about air quality and climate change science has developed into a transdisciplinary impact generator, moulded by academic-stakeholder partnerships, where complementary skills and competences lead to a culture of dialogue, mutual learning and decision-making. These sweeping changes are mirrored in the evolving best practice within the European Network of Excellence on Atmospheric Composition Change (ACCENT). The Training and Education Programme in ACCENT pursues an integrated approach and innovative avenues to sharing knowledge and communicating air quality and climate change science to various end-user groups, including teachers, policy makers, stakeholders, and the general public. Early career scientists are involved in the process, and are trained to acquire new knowledge in a variety of learning communities and environments. Here, examples of both the open system of teaching within ACCENT training workshops for early career scientists, and the engagement of non-academic audiences in the joint learning process are presented.
Spoerer, Courtney J; Eguchi, Akihiro; Stringer, Simon M
2016-02-01
In order to develop transformation invariant representations of objects, the visual system must make use of constraints placed upon object transformation by the environment. For example, objects transform continuously from one point to another in both space and time. These two constraints have been exploited separately in order to develop translation and view invariance in a hierarchical multilayer model of the primate ventral visual pathway in the form of continuous transformation learning and temporal trace learning. We show for the first time that these two learning rules can work cooperatively in the model. Using these two learning rules together can support the development of invariance in cells and help maintain object selectivity when stimuli are presented over a large number of locations or when trained separately over a large number of viewing angles. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses
NASA Astrophysics Data System (ADS)
Lin, Yu-Pu; Bennett, Christopher H.; Cabaret, Théo; Vodenicarevic, Damir; Chabi, Djaafar; Querlioz, Damien; Jousselme, Bruno; Derycke, Vincent; Klein, Jacques-Olivier
2016-09-01
Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge, however, is the implementation of synapses (analog memories) composed of such materials. In this work, we introduce robust, fastly programmable, nonvolatile organic memristive nanodevices based on electrografted redox complexes that implement synapses thanks to a wide range of accessible intermediate conductivity states. We demonstrate experimentally an elementary neural network, capable of learning functions, which combines four pairs of organic memristors as synapses and conventional electronics as neurons. Our architecture is highly resilient to issues caused by imperfect devices. It tolerates inter-device variability and an adaptable learning rule offers immunity against asymmetries in device switching. Highly compliant with conventional fabrication processes, the system can be extended to larger computing systems capable of complex cognitive tasks, as demonstrated in complementary simulations.
Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses.
Lin, Yu-Pu; Bennett, Christopher H; Cabaret, Théo; Vodenicarevic, Damir; Chabi, Djaafar; Querlioz, Damien; Jousselme, Bruno; Derycke, Vincent; Klein, Jacques-Olivier
2016-09-07
Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge, however, is the implementation of synapses (analog memories) composed of such materials. In this work, we introduce robust, fastly programmable, nonvolatile organic memristive nanodevices based on electrografted redox complexes that implement synapses thanks to a wide range of accessible intermediate conductivity states. We demonstrate experimentally an elementary neural network, capable of learning functions, which combines four pairs of organic memristors as synapses and conventional electronics as neurons. Our architecture is highly resilient to issues caused by imperfect devices. It tolerates inter-device variability and an adaptable learning rule offers immunity against asymmetries in device switching. Highly compliant with conventional fabrication processes, the system can be extended to larger computing systems capable of complex cognitive tasks, as demonstrated in complementary simulations.
Popper-Giveon, Ariela; Schiff, Elad; Ben-Arye, Eran
2013-11-01
Complementary and traditional medicine (CTM) plays an important role in culture-centered care for cancer patients in the Middle East. In this article, we have studied the attitudes of Arab CTM therapists concerning integration of complementary medicine within the conventional supportive cancer care of Arab patients in northern Israel. Semistructured interviews were held with 27 Arab therapists who use medicinal herbs, the Quran, and various CTM modalities, with the aim of characterizing their treatment practices and learning about their perspectives regarding conventional cancer care. We first summarized the different characteristics of the various CTM therapists, including training, typical practice, and so on. Thematic analysis revealed that folk healers and complementary medicine therapists describe their role as supportive and secondary to that of physicians. Their goal was not to cure patients with cancer but rather to enhance their quality of life by reducing the severity of both the disease symptoms and the side effects of cancer treatment. Religious healers, by contrast, purport to cure the disease. While folk healers opt for parallel alternative care and complementary therapists support integrative care, religious healers claimed that they offer an alternative to conventional medicine in terms of both etiology and practice. The majority of Arab CTM therapists support integration of their treatments with the conventional system, but in practice, they are not sure how to bring about this change or create a parallel model in which 2 different systems are active, but not integrated. Our findings emphasized the need to promote doctor-CTM practitioner communication based on structured referral and bidirectional consultation. Moreover, we recommend intensifying research on the efficacy and safety of CTM in the Middle East and the potential role in promoting culture-based supportive care.
Critical roles for anterior insula and dorsal striatum in punishment-based avoidance learning.
Palminteri, Stefano; Justo, Damian; Jauffret, Céline; Pavlicek, Beth; Dauta, Aurélie; Delmaire, Christine; Czernecki, Virginie; Karachi, Carine; Capelle, Laurent; Durr, Alexandra; Pessiglione, Mathias
2012-12-06
The division of human learning systems into reward and punishment opponent modules is still a debated issue. While the implication of ventral prefrontostriatal circuits in reward-based learning is well established, the neural underpinnings of punishment-based learning remain unclear. To elucidate the causal implication of brain regions that were related to punishment learning in a previous functional neuroimaging study, we tested the effects of brain damage on behavioral performance, using the same task contrasting monetary gains and losses. Cortical and subcortical candidate regions, the anterior insula and dorsal striatum, were assessed in patients presenting brain tumor and Huntington disease, respectively. Both groups exhibited selective impairment of punishment-based learning. Computational modeling suggested complementary roles for these structures: the anterior insula might be involved in learning the negative value of loss-predicting cues, whereas the dorsal striatum might be involved in choosing between those cues so as to avoid the worst. Copyright © 2012 Elsevier Inc. All rights reserved.
Complementary Roles for Amygdala and Periaqueductal Gray in Temporal-Difference Fear Learning
ERIC Educational Resources Information Center
Cole, Sindy; McNally, Gavan P.
2009-01-01
Pavlovian fear conditioning is not a unitary process. At the neurobiological level multiple brain regions and neurotransmitters contribute to fear learning. At the behavioral level many variables contribute to fear learning including the physical salience of the events being learned about, the direction and magnitude of predictive error, and the…
The Seductive Waltz with the Self in Self-Regulated Learning: Toward Communal Regulation of Learning
ERIC Educational Resources Information Center
Schechter, Chen
2017-01-01
This article proposes a complementary framework for scholarship on metacognition as well as on self-regulated learning. It is argued that educators' and researchers' seductive waltz with the "self" in self-regulated learning (e.g., self-monitoring, self-control) need not be abandoned when conceptualizing and empirically investigating…
ERIC Educational Resources Information Center
Campos-Sanchez, Antonio; Martin-Piedra, Miguel-Angel; Carriel, Victor; Gonzalez-Andrades, Miguel; Garzon, Ingrid; Sanchez-Quevedo, Maria-Carmen; Alaminos, Miguel
2012-01-01
Two questionnaires were used to investigate students' perceptions of their motivation to opt for reception learning (RL) or self-discovery learning (SDL) in histology and their choices of complementary learning strategies (CLS). The results demonstrated that the motivation to attend RL sessions was higher than the motivation to attend SDL to gain…
ERIC Educational Resources Information Center
Megele, Claudia
2015-01-01
This paper outlines the redesign of an MSc module to enhance students' engagement and learning through embedding social media technologies into the academic curriculum as a learning and assessment strategy, and in a complementary manner that facilitated and enhanced the achievement of the module's learning outcomes. This paper describes the…
An Alternative Proposal for the Graphical Representation of Anticolor Charge
NASA Astrophysics Data System (ADS)
Wiener, Gerfried J.; Schmeling, Sascha M.; Hopf, Martin
2017-11-01
We have developed a learning unit based on the Standard Model of particle physics, featuring novel typographic illustrations of elementary particles and particle systems. Since the unit includes antiparticles and systems of antiparticles, a visualization of anticolor charge was required. We propose an alternative to the commonly used complementary-color method, whereby antiparticles and antiparticle systems are identified through the use of stripes instead of a change in color. We presented our proposal to high school students and physics teachers, who evaluated it to be a more helpful way of distinguishing between color charge and anticolor charge.
Problem-Based Learning and Civic Engagement in Undergraduate Education
ERIC Educational Resources Information Center
Keegan, Louise C.; Losardo, Angela; McCullough, Kim C.
2017-01-01
Problem-based learning and civic engagement are complementary constructivist andragogical approaches that emphasize active learning by guiding students to develop their own understanding and knowledge of a topic through experience and reflection. By providing examples of clinical cases and community-based experiences, these approaches can enhance…
What should students learn about complementary and alternative medicine?
Gaster, Barak; Unterborn, John N; Scott, Richard B; Schneeweiss, Ronald
2007-10-01
With thousands of complementary and alternative medicine (CAM) treatments currently being used in the United States today, it is challenging to design a concise body of CAM content which will fit into already overly full curricula for health care students. The purpose of this article is to outline key principles which 15 National Center for Complementary and Alternative Medicine-funded education programs found useful when developing CAM course-work and selecting CAM content. Three key guiding principles are discussed: teach foundational CAM competencies to give students a framework for learning about CAM; choose specific content on the basis of evidence, demographics and condition (what conditions are most appropriate for CAM therapies?); and finally, provide students with skills for future learning, including where to find reliable information about CAM and how to search the scientific literature and assess the results of CAM research. Most of the programs developed evidence-based guides to help students find reliable CAM resources. The cumulative experiences of the 15 programs have been compiled, and an annotated table outlining the most highly recommended resources about CAM is presented.
A Complementary Measure of MIS Program Outcomes: Useful Insights from a Student Perspective
ERIC Educational Resources Information Center
Karsten, Rex; Roth, Roberta M.
2015-01-01
Assessing student learning is a critical element in today's higher education environment. Learning assurance programs seek to assess and improve the quality of student learning, and may employ both direct and indirect measures. In this paper, we describe a practical learning assurance assessment measure developed and used as a part of a broader…
ERIC Educational Resources Information Center
Rossi, Tony; Rynne, Steven B.; Rabjohns, Martin
2016-01-01
Background and purpose: This paper focuses on the learning culture within the high-performance levels of rowing. In doing so, we explore the case of an individual's learning as he moves across athletic, coaching and administrative functions. This exploration draws on a cultural learning framework and complementary theorisings related to…
ERIC Educational Resources Information Center
Bruen, Jennifer; Sudhershan, Aleksandra
2015-01-01
Tandem learning involves learners with complementary target and native languages communicating for the purpose of learning each other's languages and cultures. Studies indicate that it can function as a powerful complement to formal language learning classes with regard to the development of both language proficiency and cultural intelligence.…
The Perceptual Basis of the Modality Effect in Multimedia Learning
ERIC Educational Resources Information Center
Rummer, Ralf; Schweppe, Judith; Furstenberg, Anne; Scheiter, Katharina; Zindler, Antje
2011-01-01
Various studies have demonstrated an advantage of auditory over visual text modality when learning with texts and pictures. To explain this modality effect, two complementary assumptions are proposed by cognitive theories of multimedia learning: first, the visuospatial load hypothesis, which explains the modality effect in terms of visuospatial…
Promoting Liberal Learning in a Capstone Accounting Course
ERIC Educational Resources Information Center
Ahlawat, Sunita; Miller, Gerald; Shahid, Abdus
2012-01-01
This paper describes our efforts to integrate liberal learning principles in a capstone course within the overwhelmingly career-focused discipline of accountancy. Our approach was based on the belief that business and liberal learning courses are complementary, rather than competitive, elements of a well-rounded education. The ability to deal with…
Interconnecting Networks of Practice for Professional Learning
ERIC Educational Resources Information Center
Mackey, Julie; Evans, Terry
2011-01-01
The article explores the complementary connections between communities of practice and the ways in which individuals orchestrate their engagement with others to further their professional learning. It does so by reporting on part of a research project conducted in New Zealand on teachers' online professional learning in a university graduate…
Toward a Theory of Childhood Learning Disorders, Hyperactivity, and Aggression
Mawson, Anthony R.
2012-01-01
Learning disorders are often associated with persistent hyperactivity and aggression and are part of a spectrum of neurodevelopmental disorders. A potential clue to understanding these linked phenomena is that physical exercise and passive forms of stimulation are calming, enhance cognitive functions and learning, and are recommended as complementary treatments for these problems. The theory is proposed that hyperactivity and aggression are intense stimulation-seeking behaviors (SSBs) driven by increased brain retinergic activity, and the stimulation thus obtained activates opposing nitrergic systems which inhibit retinergic activity, induce a state of calm, and enhance cognition and learning. In persons with cognitive deficits and associated behavioral disorders, the retinergic system may be chronically overactivated and the nitrergic system chronically underactivated due to environmental exposures occurring pre- and/or postnatally that affect retinoid metabolism or expression. For such individuals, the intensity of stimulation generated by SSB may be insufficient to activate the inhibitory nitrergic system. A multidisciplinary research program is needed to test the model and, in particular, to determine the extent to which applied physical treatments can activate the nitrergic system directly, providing the necessary level of intensity of sensory stimulation to substitute for that obtained in maladaptive and harmful ways by SSB, thereby reducing SSB and enhancing cognitive skills and performance. PMID:23762766
Toward a theory of childhood learning disorders, hyperactivity, and aggression.
Mawson, Anthony R
2012-01-01
Learning disorders are often associated with persistent hyperactivity and aggression and are part of a spectrum of neurodevelopmental disorders. A potential clue to understanding these linked phenomena is that physical exercise and passive forms of stimulation are calming, enhance cognitive functions and learning, and are recommended as complementary treatments for these problems. The theory is proposed that hyperactivity and aggression are intense stimulation-seeking behaviors (SSBs) driven by increased brain retinergic activity, and the stimulation thus obtained activates opposing nitrergic systems which inhibit retinergic activity, induce a state of calm, and enhance cognition and learning. In persons with cognitive deficits and associated behavioral disorders, the retinergic system may be chronically overactivated and the nitrergic system chronically underactivated due to environmental exposures occurring pre- and/or postnatally that affect retinoid metabolism or expression. For such individuals, the intensity of stimulation generated by SSB may be insufficient to activate the inhibitory nitrergic system. A multidisciplinary research program is needed to test the model and, in particular, to determine the extent to which applied physical treatments can activate the nitrergic system directly, providing the necessary level of intensity of sensory stimulation to substitute for that obtained in maladaptive and harmful ways by SSB, thereby reducing SSB and enhancing cognitive skills and performance.
American Academy of Pediatrics. The use of complementary and alternative medicine in pediatrics.
Kemper, Kathi J; Vohra, Sunita; Walls, Richard
2008-12-01
The American Academy of Pediatrics is dedicated to optimizing the well-being of children and advancing family-centered health care. Related to these goals, the American Academy of Pediatrics recognizes the increasing use of complementary and alternative medicine in children and, as a result, the need to provide information and support for pediatricians. From 2000 to 2002, the American Academy of Pediatrics convened and charged the Task Force on Complementary and Alternative Medicine to address issues related to the use of complementary and alternative medicine in children and to develop resources to educate physicians, patients, and families. One of these resources is this report describing complementary and alternative medicine services, current levels of utilization and financial expenditures, and associated legal and ethical considerations. The subject of complementary and alternative medicine is large and diverse, and consequently, an in-depth discussion of each method of complementary and alternative medicine is beyond the scope of this report. Instead, this report will define terms; describe epidemiology; outline common types of complementary and alternative medicine therapies; review medicolegal, ethical, and research implications; review education and training for complementary and alternative medicine providers; provide resources for learning more about complementary and alternative medicine; and suggest communication strategies to use when discussing complementary and alternative medicine with patients and families.
ERIC Educational Resources Information Center
Kenner, Charmian; Ruby, Mahera
2012-01-01
Teachers in complementary schools are often assumed to be using outmoded teaching strategies and an authoritarian approach to discipline. However, it is rare for mainstream teachers to have visited these community-run after-school or weekend classes, which remain on the margins of educational provision. This paper argues that complementary…
ERIC Educational Resources Information Center
Capece, Guendalina; Campisi, Domenico
2013-01-01
This study aims to explore how satisfaction--from employees' view--using e-learning technology influences organisational learning effectiveness. To this aim, the level of satisfaction using an e-learning platform as a complementary instrument of training and education is measured in a multinational company operating in the energy sector. Our…
Research Results of Two Personal Learning Environments Experiments in a Higher Education Institution
ERIC Educational Resources Information Center
Marín Juarros, Victoria; Salinas Ibáñez, Jesús; de Benito Crosetti, Bárbara
2014-01-01
This paper focuses on institutionally powered personal learning environments (iPLEs). The concept of the iPLE can be seen as a way universities can incorporate learner-centred approach into the architecture of their technology-enhanced learning environments. The aim of this paper is to pose that there are other ways to learn complementary to…
ERIC Educational Resources Information Center
Kapon, Suulamit
2017-01-01
Learning science involves an ongoing process in which learners construct and reconstruct self-explanations and evaluate their relative soundness. This work coordinates and aligns complementary methodological and theoretical approaches to learning to both unpack sensemaking and better understand the conditions that facilitate it. I conceptualize…
Work-Based Learning, Identity and Organisational Culture
ERIC Educational Resources Information Center
Ahlgren, Linda; Tett, Lyn
2010-01-01
This paper discusses the ways in which employers view the contribution of work-based learning, how participating learners' experience the provision offered to them and how far work-based programmes can contribute to changing the discourse about learning from one of deficit to one of strengths. It draws on two complementary studies of work based…
Complementary Role of Organizational Learning Capability in New Service Development (NSD) Process
ERIC Educational Resources Information Center
Limpibunterng, Tharinee; Johri, Lalit M.
2009-01-01
Purpose: The purpose of this paper is to investigate the role of organizational learning capability in relation to leadership tasks performed by executives and organizational performance by bridging the concepts of organizational learning and NSD. Design/methodology/approach: The NSD processes of seven telecom service providers in Thailand are…
ERIC Educational Resources Information Center
Lambert, Jean-Francois
1997-01-01
Discusses the importance of genetic and epigenetic factors in the development of the nervous system and the performances it conditions. From the perspective of rules, play, and relaxation of rules, learning and education are not considered as a kind of conditioning but as providing a content in which the cumulative expression of potential can take…
Reinforcement active learning in the vibrissae system: optimal object localization.
Gordon, Goren; Dorfman, Nimrod; Ahissar, Ehud
2013-01-01
Rats move their whiskers to acquire information about their environment. It has been observed that they palpate novel objects and objects they are required to localize in space. We analyze whisker-based object localization using two complementary paradigms, namely, active learning and intrinsic-reward reinforcement learning. Active learning algorithms select the next training samples according to the hypothesized solution in order to better discriminate between correct and incorrect labels. Intrinsic-reward reinforcement learning uses prediction errors as the reward to an actor-critic design, such that behavior converges to the one that optimizes the learning process. We show that in the context of object localization, the two paradigms result in palpation whisking as their respective optimal solution. These results suggest that rats may employ principles of active learning and/or intrinsic reward in tactile exploration and can guide future research to seek the underlying neuronal mechanisms that implement them. Furthermore, these paradigms are easily transferable to biomimetic whisker-based artificial sensors and can improve the active exploration of their environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Learning in Tomorrow's Classrooms
ERIC Educational Resources Information Center
Bowman, Richard F.
2015-01-01
Teaching today remains the most individualistic of all the professions, with educators characteristically operating in a highly fragmented world of "their" courses, "their" skills, and "their" students. Learning will occur in the classrooms of the future through a sustainable set of complementary capabilities:…
Semantic and phonological schema influence spoken word learning and overnight consolidation.
Havas, Viktória; Taylor, Jsh; Vaquero, Lucía; de Diego-Balaguer, Ruth; Rodríguez-Fornells, Antoni; Davis, Matthew H
2018-06-01
We studied the initial acquisition and overnight consolidation of new spoken words that resemble words in the native language (L1) or in an unfamiliar, non-native language (L2). Spanish-speaking participants learned the spoken forms of novel words in their native language (Spanish) or in a different language (Hungarian), which were paired with pictures of familiar or unfamiliar objects, or no picture. We thereby assessed, in a factorial way, the impact of existing knowledge (schema) on word learning by manipulating both semantic (familiar vs unfamiliar objects) and phonological (L1- vs L2-like novel words) familiarity. Participants were trained and tested with a 12-hr intervening period that included overnight sleep or daytime awake. Our results showed (1) benefits of sleep to recognition memory that were greater for words with L2-like phonology and (2) that learned associations with familiar but not unfamiliar pictures enhanced recognition memory for novel words. Implications for complementary systems accounts of word learning are discussed.
ERIC Educational Resources Information Center
Laakkonen, Ilona; Taalas, Peppi
2015-01-01
This article provides readers with an understanding of the concept of the personal learning environment (PLE). It suggests that PLEs can be used in two complementary ways: as a developmental lens for integrating ICT and creating new pedagogical practices and digital literacies for academic language learning, and as a context in which learners can…
A Janus-Faced Approach to Learning. A Critical Discussion of Habermas' Pragmatic Approach
ERIC Educational Resources Information Center
Italia, Salvatore
2017-01-01
A realist approach to learning is what I propose here. This is based on a non-epistemic dimension whose presence is a necessary assumption for a concept of learning of a life-world as complementary to learning within a life-world. I develop my approach in opposition to Jürgen Habermas' pragmatic approach, which seems to lack of something from a…
ERIC Educational Resources Information Center
Gebre, Engida
2018-01-01
This paper presents a descriptive case study where infographics--visual representation of data and ideas--have been used as cognitive tools to facilitate learning with multiple representations in the context of secondary school students' science news reporting. Despite the complementary nature of the two research foci, studies on cognitive tools…
ERIC Educational Resources Information Center
Oros, Nicolas; Chiba, Andrea A.; Nitz, Douglas A.; Krichmar, Jeffrey L.
2014-01-01
Learning to ignore irrelevant stimuli is essential to achieving efficient and fluid attention, and serves as the complement to increasing attention to relevant stimuli. The different cholinergic (ACh) subsystems within the basal forebrain regulate attention in distinct but complementary ways. ACh projections from the substantia innominata/nucleus…
A "Knowledge Trading Game" for Collaborative Design Learning in an Architectural Design Studio
ERIC Educational Resources Information Center
Wang, Wan-Ling; Shih, Shen-Guan; Chien, Sheng-Fen
2010-01-01
Knowledge-sharing and resource exchange are the key to the success of collaborative design learning. In an architectural design studio, design knowledge entails learning efforts that need to accumulate and recombine dispersed and complementary pieces of knowledge. In this research, firstly, "Knowledge Trading Game" is proposed to be a way for…
Study on a High Compression Processing for Video-on-Demand e-learning System
NASA Astrophysics Data System (ADS)
Nomura, Yoshihiko; Matsuda, Ryutaro; Sakamoto, Ryota; Sugiura, Tokuhiro; Matsui, Hirokazu; Kato, Norihiko
The authors proposed a high-quality and small-capacity lecture-video-file creating system for distance e-learning system. Examining the feature of the lecturing scene, the authors ingeniously employ two kinds of image-capturing equipment having complementary characteristics : one is a digital video camera with a low resolution and a high frame rate, and the other is a digital still camera with a high resolution and a very low frame rate. By managing the two kinds of image-capturing equipment, and by integrating them with image processing, we can produce course materials with the greatly reduced file capacity : the course materials satisfy the requirements both for the temporal resolution to see the lecturer's point-indicating actions and for the high spatial resolution to read the small written letters. As a result of a comparative experiment, the e-lecture using the proposed system was confirmed to be more effective than an ordinary lecture from the viewpoint of educational effect.
NASA Astrophysics Data System (ADS)
Stojadinović, Bojana; Nestorović, Zorica; Djurić, Biljana; Tenne, Tamar; Zikich, Dragoslav; Žikić, Dejan
2017-03-01
The velocity by which a disturbance moves through the medium is the wave velocity. Pulse wave velocity is among the key parameters in hemodynamics. Investigation of wave propagation through the fluid-filled elastic tube has a great importance for the proper biophysical understanding of the nature of blood flow through the cardiovascular system. Here, we present a laboratory model of the cardiovascular system. We have designed an experimental setup which can help medical and nursing students to properly learn and understand basic fluid hemodynamic principles, pulse wave and the phenomenon of wave propagation in blood vessels. Demonstration of wave propagation allowed a real time observation of the formation of compression and expansion waves by students, thus enabling them to better understand the difference between the two waves, and also to measure the pulse wave velocity for different fluid viscosities. The laboratory model of the cardiovascular system could be useful as an active learning methodology and a complementary tool for understanding basic principles of hemodynamics.
Interprofessional education: merging nursing, midwifery and CAM.
Netherwood, Maggie; Derham, Ruth
To ascertain the value of bringing together undergraduate students from nursing, midwifery, and complementary and alternative medicine (CAM) to determine what they could learn from each other. Interprofessional education (IPE) is a growing field promoting interaction between professional groups, collaborative working and quality of health. In conventional health, IPE has a role to play in undergraduate education. No studies have been undertaken to investigate the integration of CAM students and conventional undergraduate healthcare students. In a mixed-method study, in 2010, a sample of third-year students enrolled on adult nursing, midwifery, homeopathy and complementary therapies degree courses took part in two workshops and a focus-group discussion. Six themes were identified from qualitative data analysis: interaction; breaking down prejudices; knowledge of self; knowledge of others; common aims; and organisational limitations. The common aim of patient-centred care allowed students to recognise the benefits of a more integrated health system.
Intercultural Sensibility in Online Teaching and Learning Processes
ERIC Educational Resources Information Center
Torras, Eulalia; Bellot, Andreu
2017-01-01
Attention to cultural diversity is a necessity for online higher education in management. Beamer (2004) postulated the Model of Intercultural Sensitivity to conceptualize the intercultural competence dimensions that can develop. The Complementary, Intercultural Learning Model (Beamer, 2016) emphasizes the importance that students are able to…
Form-Focused Interaction in Online Tandem Learning
ERIC Educational Resources Information Center
O'Rourke, Breffni
2005-01-01
Tandem language learning--a configuration involving pairs of learners with complementary target/native languages--is an underexploited but potentially very powerful use of computer-mediated communication (CMC) in second-language pedagogy. Tandem offers the benefits of authentic, culturally grounded interaction, while also promoting a pedagogical…
An active learning complementary and alternative medicine session in a self-care therapeutics class.
Mattison, Melissa J; Nemec, Eric C
2014-09-15
To provide an interactive, non-supplement based complementary and alternative medicine (CAM) session in a self-care therapeutics class and to evaluate the effect of the session on pharmacy students' perceptions and knowledge of CAM. Second professional year pharmacy students enrolled in a required 3-credit course titled Self-Care Therapeutics participated in an active learning session on CAM. Students physically engaged in 5 separate active learning CAM sessions including massage therapy, Tai Chi, yoga, progressive muscle relaxation, and Reiki. Students were assessed on both knowledge and perception of CAM. Concept mastery was assessed using a written examination and individual readiness assurance tests (iRAT) and team readiness assurance tests (tRAT). Perception of CAM was measured using both a presession and a postsession survey. Participating in an intensive, active learning CAM session provided an opportunity to increase students' knowledge of CAM and an effective strategy for providing the learner with the experience to better envision incorporation into patient therapies.
Mirković, Jelena; Gaskell, M. Gareth
2016-01-01
We examined the role of sleep-related memory consolidation processes in learning new form-meaning mappings. Specifically, we examined a Complementary Learning Systems account, which implies that sleep-related consolidation should be more beneficial for new hippocampally dependent arbitrary mappings (e.g. new vocabulary items) relative to new systematic mappings (e.g. grammatical regularities), which can be better encoded neocortically. The hypothesis was tested using a novel language with an artificial grammatical gender system. Stem-referent mappings implemented arbitrary aspects of the new language, and determiner/suffix+natural gender mappings implemented systematic aspects (e.g. tib scoiffesh + ballerina, tib mofeem + bride; ked jorool + cowboy, ked heefaff + priest). Importantly, the determiner-gender and the suffix-gender mappings varied in complexity and salience, thus providing a range of opportunities to detect beneficial effects of sleep for this type of mapping. Participants were trained on the new language using a word-picture matching task, and were tested after a 2-hour delay which included sleep or wakefulness. Participants in the sleep group outperformed participants in the wake group on tests assessing memory for the arbitrary aspects of the new mappings (individual vocabulary items), whereas we saw no evidence of a sleep benefit in any of the tests assessing memory for the systematic aspects of the new mappings: Participants in both groups extracted the salient determiner-natural gender mapping, but not the more complex suffix-natural gender mapping. The data support the predictions of the complementary systems account and highlight the importance of the arbitrariness/systematicity dimension in the consolidation process for declarative memories. PMID:27046022
Socioeconomic Strata, Mobile Technology, and Education: A Comparative Analysis
ERIC Educational Resources Information Center
Kim, Paul; Hagashi, Teresita; Carillo, Laura; Gonzales, Irina; Makany, Tamas; Lee, Bommi; Garate, Alberto
2011-01-01
Mobile devices are highly portable, easily distributable, substantially affordable, and have the potential to be pedagogically complementary resources in education. This study, incorporating mixed method analyses, discusses the implications of a mobile learning technology-based learning model in two public primary schools near the Mexico-USA…
Blended Learning Innovations: Leadership and Change in One Australian Institution
ERIC Educational Resources Information Center
Mirriahi, Negin; Alonzo, Dennis; McIntyre, Simon; Kligyte, Giedre; Fox, Bob
2015-01-01
This paper reports on the current experience of one higher education institution in Australia embarking on the path towards mainstreaming online learning opportunities by providing three complementary academic development initiatives that can inform strategies undertaken by other institutions internationally. First, an academic development program…
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.
2004-01-01
Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, Le., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.
The Impact of a Cultural Immersion Study Abroad Experience in Traditional Chinese Medicine.
Conroy, Shelley F; Taggart, Helen M
2016-09-01
Study abroad programs have increased dramatically. Most programs are short-term and include a cultural immersion as well as classroom and/or service learning. In this article, the authors discuss a study abroad program to China that included cultural immersion and classroom learning specific to traditional Chinese medicine. Participants kept journals with specific writing assignments and reflections about their experiences during the trip. At the conclusion of the trip, a qualitative survey was administered to the participants. Outcomes included the benefits of cultural immersion and a greater appreciation of cultural diversity, complementary and alternative medicine and holistic health care. Participants were able to describe transformational experiences of living in and learning from the Chinese culture and peoples. They intended to incorporate their experiences and enhanced understanding of traditional Chinese medicine and complementary and alternative therapies to provide culturally competent holistic health care in their nursing practice. © The Author(s) 2015.
Nicklaus, Sophie
2016-11-19
Complementary feeding (CF), which should begin after exclusive breastfeeding for six months, according to the World Health Organization (WHO), or after four months and before six months according to the European Society for Pediatric Gastroenterology Hepatology and Nutrition (ESPGHAN), is a period when the infant implicitly learns what, when, how, and how much to eat. At the onset of CF, the brain and the gut are still developing and maturing, and food experiences contribute to shaping brain connections involved in food hedonics and in the control of food intake. These learning processes are likely to have a long-term impact. Children's consumption of fruit and vegetables (FV) is below recommendations in many countries. Thus, it is crucial to establish preferences for FV early, when infants are learning to eat. The development of food preferences mainly starts when infants discover their first solid foods. This narrative review summarizes the factors that influence FV acceptance at the start of the CF period: previous milk feeding experience; timing of onset of CF; repeated exposures to the food; variety of foods offered as of the start of the CF period; quality and sensory properties of the complementary foods; quality of the meal time context; and parental responsive feeding.
Nicklaus, Sophie
2016-01-01
Complementary feeding (CF), which should begin after exclusive breastfeeding for six months, according to the World Health Organization (WHO), or after four months and before six months according to the European Society for Pediatric Gastroenterology Hepatology and Nutrition (ESPGHAN), is a period when the infant implicitly learns what, when, how, and how much to eat. At the onset of CF, the brain and the gut are still developing and maturing, and food experiences contribute to shaping brain connections involved in food hedonics and in the control of food intake. These learning processes are likely to have a long-term impact. Children’s consumption of fruit and vegetables (FV) is below recommendations in many countries. Thus, it is crucial to establish preferences for FV early, when infants are learning to eat. The development of food preferences mainly starts when infants discover their first solid foods. This narrative review summarizes the factors that influence FV acceptance at the start of the CF period: previous milk feeding experience; timing of onset of CF; repeated exposures to the food; variety of foods offered as of the start of the CF period; quality and sensory properties of the complementary foods; quality of the meal time context; and parental responsive feeding. PMID:27869776
Berthet, Pierre; Hellgren-Kotaleski, Jeanette; Lansner, Anders
2012-01-01
Several studies have shown a strong involvement of the basal ganglia (BG) in action selection and dopamine dependent learning. The dopaminergic signal to striatum, the input stage of the BG, has been commonly described as coding a reward prediction error (RPE), i.e., the difference between the predicted and actual reward. The RPE has been hypothesized to be critical in the modulation of the synaptic plasticity in cortico-striatal synapses in the direct and indirect pathway. We developed an abstract computational model of the BG, with a dual pathway structure functionally corresponding to the direct and indirect pathways, and compared its behavior to biological data as well as other reinforcement learning models. The computations in our model are inspired by Bayesian inference, and the synaptic plasticity changes depend on a three factor Hebbian–Bayesian learning rule based on co-activation of pre- and post-synaptic units and on the value of the RPE. The model builds on a modified Actor-Critic architecture and implements the direct (Go) and the indirect (NoGo) pathway, as well as the reward prediction (RP) system, acting in a complementary fashion. We investigated the performance of the model system when different configurations of the Go, NoGo, and RP system were utilized, e.g., using only the Go, NoGo, or RP system, or combinations of those. Learning performance was investigated in several types of learning paradigms, such as learning-relearning, successive learning, stochastic learning, reversal learning and a two-choice task. The RPE and the activity of the model during learning were similar to monkey electrophysiological and behavioral data. Our results, however, show that there is not a unique best way to configure this BG model to handle well all the learning paradigms tested. We thus suggest that an agent might dynamically configure its action selection mode, possibly depending on task characteristics and also on how much time is available. PMID:23060764
Mnemonics Are an Effective Tool for Adult Beginners Learning Plant Identification
ERIC Educational Resources Information Center
Stagg, Bethan C.; Donkin, Maria E.
2016-01-01
Most beginners are introduced to plant diversity through identification keys, which develop differentiation skills but not species memorisation. We propose that mnemonics, memorable "name clues" linking a species name with morphological characters, are a complementary learning tool for promoting species memorisation. In the first of two…
Learning and Therapy--Oppositional or Complementary Processes?
ERIC Educational Resources Information Center
Hyland, Terry
2005-01-01
The idea that post-school education has been influenced by a "therapeutic turn" in recent years has been subjected to critical scrutiny by a number of commentators. Learning initiatives which are dominated by objectives linked to personal and social skills, emotional intelligence and boosting self-esteem and confidence have been labelled as…
Viejo, Guillaume; Khamassi, Mehdi; Brovelli, Andrea; Girard, Benoît
2015-01-01
Current learning theory provides a comprehensive description of how humans and other animals learn, and places behavioral flexibility and automaticity at heart of adaptive behaviors. However, the computations supporting the interactions between goal-directed and habitual decision-making systems are still poorly understood. Previous functional magnetic resonance imaging (fMRI) results suggest that the brain hosts complementary computations that may differentially support goal-directed and habitual processes in the form of a dynamical interplay rather than a serial recruitment of strategies. To better elucidate the computations underlying flexible behavior, we develop a dual-system computational model that can predict both performance (i.e., participants' choices) and modulations in reaction times during learning of a stimulus–response association task. The habitual system is modeled with a simple Q-Learning algorithm (QL). For the goal-directed system, we propose a new Bayesian Working Memory (BWM) model that searches for information in the history of previous trials in order to minimize Shannon entropy. We propose a model for QL and BWM coordination such that the expensive memory manipulation is under control of, among others, the level of convergence of the habitual learning. We test the ability of QL or BWM alone to explain human behavior, and compare them with the performance of model combinations, to highlight the need for such combinations to explain behavior. Two of the tested combination models are derived from the literature, and the latter being our new proposal. In conclusion, all subjects were better explained by model combinations, and the majority of them are explained by our new coordination proposal. PMID:26379518
Stroop effects from newly learned color words: effects of memory consolidation and episodic context
Geukes, Sebastian; Gaskell, M. Gareth; Zwitserlood, Pienie
2015-01-01
The Stroop task is an excellent tool to test whether reading a word automatically activates its associated meaning, and it has been widely used in mono- and bilingual contexts. Despite of its ubiquity, the task has not yet been employed to test the automaticity of recently established word-concept links in novel-word-learning studies, under strict experimental control of learning and testing conditions. In three experiments, we thus paired novel words with native language (German) color words via lexical association and subsequently tested these words in a manual version of the Stroop task. Two crucial findings emerged: When novel word Stroop trials appeared intermixed among native-word trials, the novel-word Stroop effect was observed immediately after the learning phase. If no native color words were present in a Stroop block, the novel-word Stroop effect only emerged 24 h later. These results suggest that the automatic availability of a novel word's meaning depends either on supportive context from the learning episode and/or on sufficient time for memory consolidation. We discuss how these results can be reconciled with the complementary learning systems account of word learning. PMID:25814973
Social learning, culture and the 'socio-cultural brain' of human and non-human primates.
Whiten, Andrew; van de Waal, Erica
2017-11-01
Noting important recent discoveries, we review primate social learning, traditions and culture, together with associated findings about primate brains. We survey our current knowledge of primate cultures in the wild, and complementary experimental diffusion studies testing species' capacity to sustain traditions. We relate this work to theories that seek to explain the enlarged brain size of primates as specializations for social intelligence, that have most recently extended to learning from others and the cultural transmission this permits. We discuss alternative theories and review a variety of recent findings that support cultural intelligence hypotheses for primate encephalization. At a more fine-grained neuroscientific level we focus on the underlying processes of social learning, especially emulation and imitation. Here, our own and others' recent research has established capacities for bodily imitation in both monkeys and apes, results that are consistent with a role for the mirror neuron system in social learning. We review important convergences between behavioural findings and recent non-invasive neuroscientific studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
One size does not fit all: older adults benefit from redundant text in multimedia instruction
Fenesi, Barbara; Vandermorris, Susan; Kim, Joseph A.; Shore, David I.; Heisz, Jennifer J.
2015-01-01
The multimedia design of presentations typically ignores that younger and older adults have varying cognitive strengths and weaknesses. We examined whether differential instructional design may enhance learning in these populations. Younger and older participants viewed one of three computer-based presentations: Audio only (narration), Redundant (audio narration with redundant text), or Complementary (audio narration with non-redundant text and images). Younger participants learned better when audio narration was paired with relevant images compared to when audio narration was paired with redundant text. However, older participants learned best when audio narration was paired with redundant text. Younger adults, who presumably have a higher working memory capacity (WMC), appear to benefit more from complementary information that may drive deeper conceptual processing. In contrast, older adults learn better from presentations that support redundant coding across modalities, which may help mitigate the effects of age-related decline in WMC. Additionally, several misconceptions of design quality appeared across age groups: both younger and older participants positively rated less effective designs. Findings suggest that one-size does not fit all, with older adults requiring unique multimedia design tailored to their cognitive abilities for effective learning. PMID:26284000
One size does not fit all: older adults benefit from redundant text in multimedia instruction.
Fenesi, Barbara; Vandermorris, Susan; Kim, Joseph A; Shore, David I; Heisz, Jennifer J
2015-01-01
The multimedia design of presentations typically ignores that younger and older adults have varying cognitive strengths and weaknesses. We examined whether differential instructional design may enhance learning in these populations. Younger and older participants viewed one of three computer-based presentations: Audio only (narration), Redundant (audio narration with redundant text), or Complementary (audio narration with non-redundant text and images). Younger participants learned better when audio narration was paired with relevant images compared to when audio narration was paired with redundant text. However, older participants learned best when audio narration was paired with redundant text. Younger adults, who presumably have a higher working memory capacity (WMC), appear to benefit more from complementary information that may drive deeper conceptual processing. In contrast, older adults learn better from presentations that support redundant coding across modalities, which may help mitigate the effects of age-related decline in WMC. Additionally, several misconceptions of design quality appeared across age groups: both younger and older participants positively rated less effective designs. Findings suggest that one-size does not fit all, with older adults requiring unique multimedia design tailored to their cognitive abilities for effective learning.
Jambai, A; MacCormack, C
1996-06-01
In Sierra Leone constraints to ideal maternal health require a primary health care approach that includes collaboration with traditional midwives. They are authoritative figures embedded within local political structures and a powerful women's religion. The local causes of maternal risk are described, including civil war and refugee camp life. Traditional midwives provide vital services in the camp, are respected for their social status, and learn additional skills. Biomedical and traditional systems of authoritative knowledge, based on different kinds of legitimacy to heal, are in a complementary relationship.
The Effectiveness of Lecture-Integrated, Web-Supported Case Studies in Large Group Teaching
ERIC Educational Resources Information Center
Azzawi, May; Dawson, Maureen M.
2007-01-01
The effectiveness of lecture-integrated and web-supported case studies in supporting a large and academically diverse group of undergraduate students was evaluated in the present study. Case studies and resource (web)-based learning were incorporated as two complementary interactive learning strategies into the traditional curriculum. A truncated…
ERIC Educational Resources Information Center
Friedman, Robert S.; Deek, Fadi P.
2002-01-01
Discusses how the design and implementation of problem-solving tools used in programming instruction are complementary with both the theories of problem-based learning (PBL), including constructivism, and the practices of distributed education environments. Examines how combining PBL, Web-based distributed education, and a problem-solving…
Cost Issues in Online Learning: Using "Co-opetition" to Advantage.
ERIC Educational Resources Information Center
Sjogren, Jane; Fay, James
2002-01-01
Suggests strategies for campuses to use in building partnerships with online education providers that are complementary rather than competitive. Suggests that institutions begin by being clear about which model they are adopting for their online ventures. Discusses the direct and indirect costs of e-learning, and identifies "co-opetitional"…
ERIC Educational Resources Information Center
Leek, Danielle R.
2016-01-01
National offices and organizations, such as the U.S. Department of Education and the Association of American Colleges & Universities, have called for higher education curriculum that better prepares students for lifelong civic engagement. Many institutions respond to this appeal by creating more service-learning opportunities for students.…
Meaning-Making as Dialogic Process: Official and Carnival Lives in the Language Classroom
ERIC Educational Resources Information Center
Blackledge, Adrian; Creese, Angela
2009-01-01
This article adopts a Bakhtinian analysis to understand the complexities of discourse in language-learning classrooms. Drawing on empirical data from two of four linked case studies in a larger, ESRC-funded project, we argue that students learning in complementary (also known as community language, supplementary, or heritage language) schools…
Using the Personal Competence Manager as a Complementary Approach to IMS Learning Design Authoring
ERIC Educational Resources Information Center
Vogten, Hubert; Koper, Rob; Martens, Harrie; van Bruggen, Jan
2008-01-01
In this article TENCompetence will be presented as a framework for lifelong competence development. More specifically, the relationship between the TENCompetence framework and the IMS Learning Design (LD) specification is explored. LD authoring has proven to be challenging and the toolset currently available is targeting expert users mostly…
ERIC Educational Resources Information Center
Buchs, Celine; Butera, Fabrizio
2009-01-01
Previous studies with university students have shown that resource interdependence during cooperative dyadic work on texts produces two different dynamics in student interaction and learning. Working on complementary information produces positive interactions, but a good quality of information transmission is needed to foster student learning.…
Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting
Huang, Xiwei; Jiang, Yu; Liu, Xu; Xu, Hang; Han, Zhi; Rong, Hailong; Yang, Haiping; Yan, Mei; Yu, Hao
2016-01-01
A lensless blood cell counting system integrating microfluidic channel and a complementary metal oxide semiconductor (CMOS) image sensor is a promising technique to miniaturize the conventional optical lens based imaging system for point-of-care testing (POCT). However, such a system has limited resolution, making it imperative to improve resolution from the system-level using super-resolution (SR) processing. Yet, how to improve resolution towards better cell detection and recognition with low cost of processing resources and without degrading system throughput is still a challenge. In this article, two machine learning based single-frame SR processing types are proposed and compared for lensless blood cell counting, namely the Extreme Learning Machine based SR (ELMSR) and Convolutional Neural Network based SR (CNNSR). Moreover, lensless blood cell counting prototypes using commercial CMOS image sensors and custom designed backside-illuminated CMOS image sensors are demonstrated with ELMSR and CNNSR. When one captured low-resolution lensless cell image is input, an improved high-resolution cell image will be output. The experimental results show that the cell resolution is improved by 4×, and CNNSR has 9.5% improvement over the ELMSR on resolution enhancing performance. The cell counting results also match well with a commercial flow cytometer. Such ELMSR and CNNSR therefore have the potential for efficient resolution improvement in lensless blood cell counting systems towards POCT applications. PMID:27827837
Evaluation of a complementary cyber education program for a pathophysiology class.
Yoo, Ji-Soo; Ryue, Sook-Hee; Lee, Jung Eun; Ahn, Jeong-Ah
2009-12-01
The goal of this study was to develop and evaluate a complementary cyber education program for a required pathophysiology class for nursing students. The cyber education program comprised electronic bulletin boards, correspondence material storage, an announcement section, a report submission section, reference sites, and statistics on learning rates. Twelve online lectures complemented five lectures in the classroom. To evaluate the course's educational effectiveness, we performed an online objective questionnaire and an open questionnaire survey anonymously, and compared the complementary cyber education program with traditional classroom education. The complementary cyber education program effected significant improvements in scores for importance with regard to major, clarity of goals and education plans for courses, professor readiness, preciseness and description of lectures, amount and efficiency of assignments, and fairness in appraisal standards compared with the traditional classroom education group. This study indicates that a complementary cyber education program provides nursing students with the flexibility of time and space, the newest information through updated lectures, efficient motivational aids through intimacy between the lecturer and students, and concrete and meaningful tasks. The complementary cyber education course also increased student effort toward studying and student satisfaction with the class.
Integrating complementary therapies into health care education: a cautious approach.
Richardson, J
2001-11-01
The movement of complementary therapy training and education into higher education in the United Kingdom (UK) and the interest in alternative therapeutic approaches within the health professions presents an ideal opportunity for multidisciplinary teaching and shared learning. The diversity and similarities of complementary therapies and areas of convergence with conventional healthcare practice can be explored. The recent publication of the House of Lords Select Committee on Science and Technology report on complementary and alternative medicine (HL Paper 123) provides a broader context for discussion and makes specific recommendations about regulation, education and research in the UK. This paper considers the appropriateness of integrating complementary therapies into education for conventional healthcare practitioners, what we should integrate, and when might be the most appropriate time in the education of healthcare practitioners to introduce different therapeutic modalities and their respective philosophical languages. Rather than present a range of solutions, the paper raises some fundamental issues that are central to the integration of complementary therapeutic approaches. If these issues are neglected as we hurry to incorporate different 'techniques' into our conventional practice, we may simply be left with additional tools that we are ill equipped to use.
A second inheritance system: the extension of biology through culture.
Whiten, Andrew
2017-10-06
By the mid-twentieth century (thus following the 'Modern Synthesis' in evolutionary biology), the behavioural sciences offered only the sketchy beginnings of a scientific literature documenting evidence for cultural inheritance in animals-the transmission of traditional behaviours via learning from others (social learning). By contrast, recent decades have seen a massive growth in the documentation of such cultural phenomena, driven by long-term field studies and complementary laboratory experiments. Here, I review the burgeoning scope of discoveries in this field, which increasingly suggest that this 'second inheritance system', built on the shoulders of the primary genetic inheritance system, occurs widely among vertebrates and possibly in invertebrates too. Its novel characteristics suggest significant implications for our understanding of evolutionary biology. I assess the extent to which this second system extends the scope of evolution, both by echoing principal properties of the primary, organic evolutionary system, and going beyond it in significant ways. This is well established in human cultural evolution; here, I address animal cultures more generally. The further major, and related, question concerns the extent to which the consequences of widespread animal cultural transmission interact with the primary, genetically based inheritance systems, shaping organic evolution.
ERIC Educational Resources Information Center
Reaves, Rosalind
2013-01-01
With Critical Race Theory (CRT) and social justice serving as complementary conceptual frames, this ethnographic study investigates the learning and living experiences of ten African American students of a predominantly White university in the Midwest. While several studies have investigated Black students' experiences at PWIs, most notably…
ERIC Educational Resources Information Center
Stern, Rebecca
2016-01-01
This qualitative study explored educators' sense making of and responses to No Child Left Behind and the Common Core State Standards at one urban Expeditionary Learning middle school. Sense-making theory (Spillane, Reiser, & Reimer, 2002) and inquiry as stance (Cochran-Smith & Lytle, 2009) were used as complementary conceptual frameworks…
ERIC Educational Resources Information Center
Skinner, Vicki J.; Braunack-Mayer, Annette; Winning, Tracey A.
2016-01-01
A problem-based learning (PBL) assumption is that silence is incompatible with collaborative learning. Although sociocultural studies have reinterpreted silence as collaborative, we must understand how silence occurs in PBL groups. This essay presents students' explanations of dominance, leadership, and silence as PBL group roles. An ethnographic…
The mirror neuron system is more active during complementary compared with imitative action.
Newman-Norlund, Roger D; van Schie, Hein T; van Zuijlen, Alexander M J; Bekkering, Harold
2007-07-01
We assessed the role of the human mirror neuron system (MNS) in complementary actions using functional magnetic resonance imaging while participants prepared to execute imitative or complementary actions. The BOLD signal in the right inferior frontal gyrus and bilateral inferior parietal lobes was greater during preparation of complementary than during imitative actions, suggesting that the MNS may be essential in dynamically coupling action observation to action execution.
Evolvable social agents for bacterial systems modeling.
Paton, Ray; Gregory, Richard; Vlachos, Costas; Saunders, Jon; Wu, Henry
2004-09-01
We present two approaches to the individual-based modeling (IbM) of bacterial ecologies and evolution using computational tools. The IbM approach is introduced, and its important complementary role to biosystems modeling is discussed. A fine-grained model of bacterial evolution is then presented that is based on networks of interactivity between computational objects representing genes and proteins. This is followed by a coarser grained agent-based model, which is designed to explore the evolvability of adaptive behavioral strategies in artificial bacteria represented by learning classifier systems. The structure and implementation of the two proposed individual-based bacterial models are discussed, and some results from simulation experiments are presented, illustrating their adaptive properties.
Determining Complementary Properties with Quantum Clones.
Thekkadath, G S; Saaltink, R Y; Giner, L; Lundeen, J S
2017-08-04
In a classical world, simultaneous measurements of complementary properties (e.g., position and momentum) give a system's state. In quantum mechanics, measurement-induced disturbance is largest for complementary properties and, hence, limits the precision with which such properties can be determined simultaneously. It is tempting to try to sidestep this disturbance by copying the system and measuring each complementary property on a separate copy. However, perfect copying is physically impossible in quantum mechanics. Here, we investigate using the closest quantum analog to this copying strategy, optimal cloning. The coherent portion of the generated clones' state corresponds to "twins" of the input system. Like perfect copies, both twins faithfully reproduce the properties of the input system. Unlike perfect copies, the twins are entangled. As such, a measurement on both twins is equivalent to a simultaneous measurement on the input system. For complementary observables, this joint measurement gives the system's state, just as in the classical case. We demonstrate this experimentally using polarized single photons.
Determining Complementary Properties with Quantum Clones
NASA Astrophysics Data System (ADS)
Thekkadath, G. S.; Saaltink, R. Y.; Giner, L.; Lundeen, J. S.
2017-08-01
In a classical world, simultaneous measurements of complementary properties (e.g., position and momentum) give a system's state. In quantum mechanics, measurement-induced disturbance is largest for complementary properties and, hence, limits the precision with which such properties can be determined simultaneously. It is tempting to try to sidestep this disturbance by copying the system and measuring each complementary property on a separate copy. However, perfect copying is physically impossible in quantum mechanics. Here, we investigate using the closest quantum analog to this copying strategy, optimal cloning. The coherent portion of the generated clones' state corresponds to "twins" of the input system. Like perfect copies, both twins faithfully reproduce the properties of the input system. Unlike perfect copies, the twins are entangled. As such, a measurement on both twins is equivalent to a simultaneous measurement on the input system. For complementary observables, this joint measurement gives the system's state, just as in the classical case. We demonstrate this experimentally using polarized single photons.
Tonelli, Paul; Mouret, Jean-Baptiste
2013-01-01
A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099
Van de Steeg, Lotte; Langelaan, Maaike; Ijkema, Roelie; Wagner, Cordula
2012-03-02
Delirium occurs frequently in elderly hospitalised patients and is associated with higher mortality, increased length of hospital stay, functional decline, and admission to long-term care. Healthcare professionals frequently do not recognise delirium, indicating that education can play an important role in improving delirium care for hospitalised elderly. Previous studies have indicated that e-learning can provide an effective way of educating healthcare professionals and improving quality of care, though results are inconsistent. This stepped wedge cluster randomised trial will assess the effects of a complementary delirium e-learning course on the implementation of quality improvement initiative, which aims to enhance the recognition and management of delirium in elderly patients. The trial will be conducted in 18 Dutch hospitals and last 11 months. Measurements will be taken in all participating wards using monthly record reviews, in order to monitor delivered care. These measurements will include the percentage of elderly patients who were screened for the risk of developing delirium, use of the Delirium Observation Screening scale, use of nursing or medical interventions, and the percentage of elderly patients who were diagnosed with delirium. Data regarding the e-learning course will be gathered as well. These data will include user characteristics, information regarding use of the course, delirium knowledge before and after using the course, and the attitude and intentions of nurses concerning delirium care. The study will be conducted in internal medicine and surgical wards of eighteen hospitals that are at the beginning stages of implementing the Frail Elderly Project in the Netherlands. Better recognition of elderly patients at risk for delirium and subsequent care is expected from the introduction of an e-learning course for nurses that is complementary to an existing quality improvement project. This trial has the potential to demonstrate that e-learning can be a vital part of the implementation process, especially for quality improvement projects aimed at complex health issues such as delirium. The study will contribute to a growing body of knowledge concerning e-learning and the effects it can have on knowledge as well as delivered care. Netherlands Trial Register (NTR): NTR2885.
Gureje, Oye; Nortje, Gareth; Makanjuola, Victor; Oladeji, Bibilola D; Seedat, Soraya; Jenkins, Rachel
2015-02-01
Traditional and complementary systems of medicine include a broad range of practices, which are commonly embedded in cultural milieus and reflect community beliefs, experiences, religion, and spirituality. Two major components of this system are discernible: complementary alternative medicine and traditional medicine, with different clientele and correlates of patronage. Evidence from around the world suggests that a traditional or complementary system of medicine is commonly used by a large number of people with mental illness. Practitioners of traditional medicine in low-income and middle-income countries fill a major gap in mental health service delivery. Although some overlap exists in the diagnostic approaches of traditional and complementary systems of medicine and conventional biomedicine, some major differences exist, largely in the understanding of the nature and cause of mental disorders. Treatments used by providers of traditional and complementary systems of medicine, especially traditional and faith healers in low-income and middle-income countries, might sometimes fail to meet widespread understandings of human rights and humane care. Nevertheless, collaborative engagement between traditional and complementary systems of medicine and conventional biomedicine might be possible in the care of people with mental illness. The best model to bring about that collaboration will need to be established by the needs of the extant mental health system in a country. Research is needed to provide an empirical basis for the feasibility of such collaboration, to clearly delineate its boundaries, and to test its effectiveness in bringing about improved patient outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
... Audio) NCCIH Clinical Digest A monthly newsletter with evidence-based information on complementary and integrative practices and a ... What Have We Learned? There’s no definitive scientific evidence based on studies in people to support the use ...
A tale of two slinkies: learning about scientific models in a student-driven classroom
NASA Astrophysics Data System (ADS)
Gandhi, Punit; Berggren, Calvin; Livezey, Jesse; Olf, Ryan
2014-11-01
We describe a set of conceptual activities and hands-on experiments based around understanding the dynamics of a slinky that is hung vertically and released from rest. The motion, or lack thereof, of the bottom of the slinky after the top is dropped sparks students' curiosity by challenging their expectations and provides context for learning about scientific model building. This curriculum helps students learn about the model building process by giving them an opportunity to enlist their collective intellectual and creative resources to develop and explore two different physical models of the falling slinky system. By engaging with two complementary models, students not only have the opportunity to understand an intriguing phenomenon from multiple perspectives, but also learn deeper lessons about the nature of scientific understanding, the role of physical models, and the experience of doing science. The activities we present were part of a curriculum developed for a week-long summer program for incoming freshmen as a part of the Compass Project at UC Berkeley, but could easily be implemented in a wide range of classrooms at the high school or introductory college level.
The Space Infrared Interferometric Telescope (SPIRIT) and its Complementarity to ALMA
NASA Technical Reports Server (NTRS)
Leisawitz, Dave
2007-01-01
We report results of a pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. In each of these science domains, SPIRIT will yield information complementary to that obtainable with the James Webb Space Telescope (JWST)and the Atacama Large Millimeter Array (ALMA), and all three observatories could operate contemporaneously. Here we shall emphasize the SPIRIT science goals (1) and (2) and the mission's complementarity with ALMA.
An alternative approach based on artificial neural networks to study controlled drug release.
Reis, Marcus A A; Sinisterra, Rubén D; Belchior, Jadson C
2004-02-01
An alternative methodology based on artificial neural networks is proposed to be a complementary tool to other conventional methods to study controlled drug release. Two systems are used to test the approach; namely, hydrocortisone in a biodegradable matrix and rhodium (II) butyrate complexes in a bioceramic matrix. Two well-established mathematical models are used to simulate different release profiles as a function of fundamental properties; namely, diffusion coefficient (D), saturation solubility (C(s)), drug loading (A), and the height of the device (h). The models were tested, and the results show that these fundamental properties can be predicted after learning the experimental or model data for controlled drug release systems. The neural network results obtained after the learning stage can be considered to quantitatively predict ideal experimental conditions. Overall, the proposed methodology was shown to be efficient for ideal experiments, with a relative average error of <1% in both tests. This approach can be useful for the experimental analysis to simulate and design efficient controlled drug-release systems. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
Yan, Fei; Tian, Fuli; Shi, Zhongke
2016-10-01
Urban traffic flows are inherently repeated on a daily or weekly basis. This repeatability can help improve the traffic conditions if it is used properly by the control system. In this paper, we propose a novel iterative learning control (ILC) strategy for traffic signals of urban road networks using the repeatability feature of traffic flow. To improve the control robustness, the ILC strategy is further integrated with an error feedback control law in a complementary manner. Theoretical analysis indicates that the ILC-based traffic signal control methods can guarantee the asymptotic learning convergence, despite the presence of modeling uncertainties and exogenous disturbances. Finally, the impacts of the ILC-based signal control strategies on the network macroscopic fundamental diagram (MFD) are examined. The results show that the proposed ILC-based control strategies can homogenously distribute the network accumulation by controlling the vehicle numbers in each link to the desired levels under different traffic demands, which can result in the network with high capacity and mobility.
ERIC Educational Resources Information Center
Sgroi, Angela; Saltiel, Iris M.
1998-01-01
The power of collaborative learning partnerships is the synergy created through productive, meaningful activity. Key elements include trust, respect, self-selection, mutual goals, a belief that the sum is greater than the parts, and complementary qualities. (SK)
ERIC Educational Resources Information Center
McCabe, Bernadette
2011-01-01
The ability to appreciate the inter-connectedness of complex biological relationships can be difficult for many students. Graphical knowledge in the form of concept maps and flow charts are learning tools which can assist students to recognise the inter-connectivity. This report focuses on a trial which incorporates these two related visual…
ERIC Educational Resources Information Center
Parks, Rebecca A.; Oliver, Wendy; Carson, Elaine
2016-01-01
Using quantitative methods, the current study addresses the phenomenon of blended learning and the impact of professional development (PD) in blended learning on teacher practice. Two separate but complementary investigations, Oliver's (2013) focus group data for examining Oliver's Framework for Blended Instruction and Parks' (2015) national…
El Metodo Llamado Proyecto (The Project Approach). ERIC Digest.
ERIC Educational Resources Information Center
Katz, Lilian G.
A project is an in-depth investigation of a topic worth learning more about, usually undertaken by a group of children within a class. The goal of a project is to learn more about a topic rather than to find answers to questions posed by a teacher. Project work is complementary to the systematic parts of a curriculum. Whereas systematic…
ERIC Educational Resources Information Center
Stockdill, Darin B.; Moje, Elizabeth B.
2013-01-01
In this paper, we examine the relationship between student engagement and social studies literacy, exploring the possible connections between students' reading interests and practices and social studies learning. With a sample of 802 secondary students from five schools in one urban community, we use complementary methods to explore survey and…
Building Personal Learning Environments by Using and Mixing ICT Tools in a Professional Way
ERIC Educational Resources Information Center
Castaneda, Linda; Soto, Javier
2010-01-01
This paper reports on a teaching experience of the introduction of ICT to higher education students in a complementary professional approach and a Personal Learning Environment (PLE) development approach, as well as a naturalistic study based on this experience. The central focus of this methodology was the use of hands-on sessions to introduce…
Reframing the narrative of the battered women's movement.
Arnold, Gretchen; Ake, Jami
2013-05-01
Many claim that the battered women's movement has been co-opted and depoliticized. We argue that this narrative of decline should be reframed as one of continual growth that has incorporated evolving feminist frameworks. We show how the movement's first generation of activists has learned from its mistakes and continues to challenge systems that fail survivors of abuse. In addition, a second generation of activists, many of whom are minority women, has created new organizations and new ways to practice intersectionality. We conclude that each strand within the movement brings complementary strengths that can prepare it to meet future challenges.
Bradshaw, Michelle L
2016-10-01
An exploratory, cross-sectional survey design was used to explore the extent to which CAM was included, what factors impacted its inclusion, topics and student learning outcomes covered, who taught the material, and what sources were used to prepare for delivering course content. While the vast majority of responding occupational therapy educators reported curricular inclusion of CAM, educational experiences for occupational therapy students varied widely. This overview of the curricular inclusion of CAM by faculty in occupational therapy programs in the United States indicated that many occupational therapy educators are responding to the demands of a more integrative healthcare system. Resolving ethical and pragmatic issues, providing faculty development opportunities, and standardizing student learning outcomes would align all stakeholders and mitigate ambiguities that currently exist surrounding the inclusion of CAM in occupational therapy education.
... Audio) NCCIH Clinical Digest A monthly newsletter with evidence-based information on complementary and integrative practices and a ... What Have We Learned? There’s no conclusive scientific evidence based on studies in people that supports using cat’s ...
Sub-millisecond closed-loop feedback stimulation between arbitrary sets of individual neurons
Müller, Jan; Bakkum, Douglas J.; Hierlemann, Andreas
2012-01-01
We present a system to artificially correlate the spike timing between sets of arbitrary neurons that were interfaced to a complementary metal–oxide–semiconductor (CMOS) high-density microelectrode array (MEA). The system features a novel reprogrammable and flexible event engine unit to detect arbitrary spatio-temporal patterns of recorded action potentials and is capable of delivering sub-millisecond closed-loop feedback of electrical stimulation upon trigger events in real-time. The relative timing between action potentials of individual neurons as well as the temporal pattern among multiple neurons, or neuronal assemblies, is considered an important factor governing memory and learning in the brain. Artificially changing timings between arbitrary sets of spiking neurons with our system could provide a “knob” to tune information processing in the network. PMID:23335887
Pressure to cooperate: is positive reward interdependence really needed in cooperative learning?
Buchs, Céline; Gilles, Ingrid; Dutrévis, Marion; Butera, Fabrizio
2011-03-01
BACKGROUND. Despite extensive research on cooperative learning, the debate regarding whether or not its effectiveness depends on positive reward interdependence has not yet found clear evidence. AIMS. We tested the hypothesis that positive reward interdependence, as compared to reward independence, enhances cooperative learning only if learners work on a 'routine task'; if the learners work on a 'true group task', positive reward interdependence induces the same level of learning as reward independence. SAMPLE. The study involved 62 psychology students during regular workshops. METHOD. Students worked on two psychology texts in cooperative dyads for three sessions. The type of task was manipulated through resource interdependence: students worked on either identical (routine task) or complementary (true group task) information. Students expected to be assessed with a Multiple Choice Test (MCT) on the two texts. The MCT assessment type was introduced according to two reward interdependence conditions, either individual (reward independence) or common (positive reward interdependence). A follow-up individual test took place 4 weeks after the third session of dyadic work to examine individual learning. RESULTS. The predicted interaction between the two types of interdependence was significant, indicating that students learned more with positive reward interdependence than with reward independence when they worked on identical information (routine task), whereas students who worked on complementary information (group task) learned the same with or without reward interdependence. CONCLUSIONS. This experiment sheds light on the conditions under which positive reward interdependence enhances cooperative learning, and suggests that creating a real group task allows to avoid the need for positive reward interdependence. © 2010 The British Psychological Society.
Grossberg, Stephen
2009-01-01
An intimate link exists between the predictive and learning processes in the brain. Perceptual/cognitive and spatial/motor processes use complementary predictive mechanisms to learn, recognize, attend and plan about objects in the world, determine their current value, and act upon them. Recent neural models clarify these mechanisms and how they interact in cortical and subcortical brain regions. The present paper reviews and synthesizes data and models of these processes, and outlines a unified theory of predictive brain processing. PMID:19528003
Sadeghi, Mahshid; Rabiepoor, Soheila; Forough, Aida Sefidani; Jabbari, Shiva; Shahabi, Shahram
2016-10-01
Personal beliefs of medical students may interfere with their tendency for learning Complementary and Alternative Medicine concepts. This study aimed to investigate the knowledge and attitudes of medical students toward complementary and alternative medicine in Urmia, Iran. A structured questionnaire was used as data collection instrument. One hundred questionnaires were returned. Thirty-one percent of students reported use of alternative medicine for at least once. Iranian Traditional Medicine was the main type of alternative medicine used by medical students (93.5%). Neuromuscular disorders were the main indication of alternative medicine use among students (34.4%). Ninety percent of participants demonstrated competent knowledge about acupuncture while the lowest scores belonged to homeopathy (12%). Study results showed that 49% of medical students had positive attitudes and demonstrated a willingness to receive training on the subject. Thus, there appears a necessity to integrate complementary and alternative medicine into the medical curriculum, by taking expectations and feedbacks of medical students into consideration. © The Author(s) 2015.
National Center for Complementary and Integrative Health
... app today from the Apple App Store and Google Play Store Learn more about HerbList Parkinson's Disease ... links YouTube Read our disclaimer about external links Google+ Read our disclaimer about external links Pinterest Read ...
Aromatherapy and Essential Oils (PDQ®)—Patient Version
Aromatherapy research with cancer patients has studied the effect of essential oils on anxiety, nausea, vomiting, and other health conditions. Learn more about aromatherapy use as a complementary therapy in this expert-reviewed summary.
Functional networks inference from rule-based machine learning models.
Lazzarini, Nicola; Widera, Paweł; Williamson, Stuart; Heer, Rakesh; Krasnogor, Natalio; Bacardit, Jaume
2016-01-01
Functional networks play an important role in the analysis of biological processes and systems. The inference of these networks from high-throughput (-omics) data is an area of intense research. So far, the similarity-based inference paradigm (e.g. gene co-expression) has been the most popular approach. It assumes a functional relationship between genes which are expressed at similar levels across different samples. An alternative to this paradigm is the inference of relationships from the structure of machine learning models. These models are able to capture complex relationships between variables, that often are different/complementary to the similarity-based methods. We propose a protocol to infer functional networks from machine learning models, called FuNeL. It assumes, that genes used together within a rule-based machine learning model to classify the samples, might also be functionally related at a biological level. The protocol is first tested on synthetic datasets and then evaluated on a test suite of 8 real-world datasets related to human cancer. The networks inferred from the real-world data are compared against gene co-expression networks of equal size, generated with 3 different methods. The comparison is performed from two different points of view. We analyse the enriched biological terms in the set of network nodes and the relationships between known disease-associated genes in a context of the network topology. The comparison confirms both the biological relevance and the complementary character of the knowledge captured by the FuNeL networks in relation to similarity-based methods and demonstrates its potential to identify known disease associations as core elements of the network. Finally, using a prostate cancer dataset as a case study, we confirm that the biological knowledge captured by our method is relevant to the disease and consistent with the specialised literature and with an independent dataset not used in the inference process. The implementation of our network inference protocol is available at: http://ico2s.org/software/funel.html.
ERIC Educational Resources Information Center
Taylor, Liz
2011-01-01
This article demonstrates how a set of complementary qualitative methods can be used to construct a detailed picture not only of the nature of young people's representations of a distant place but the processes of learning by which such representations develop over the medium term. The analysis is based on an interpretive case study of a class of…
Jost, John T; Kay, Aaron C
2005-03-01
Many have suggested that complementary gender stereotypes of men as agentic (but not communal) and women as communal (but not agentic) serve to increase system justification, but direct experimental support has been lacking. The authors exposed people to specific types of gender-related beliefs and subsequently asked them to complete measures of gender-specific or diffuse system justification. In Studies 1 and 2, activating (a) communal or complementary (communal + agentic) gender stereotypes or (b) benevolent or complementary (benevolent + hostile) sexist items increased support for the status quo among women. In Study 3, activating stereotypes of men as agentic also increased system justification among men and women, but only when women's characteristics were associated with higher status. Results suggest that complementary stereotypes psychologically offset the one-sided advantage of any single group and contribute to an image of society in which everyone benefits through a balanced dispersion of benefits. ((c) 2005 APA, all rights reserved).
Bruyeron, Olivier; Denizeau, Mirrdyn; Berger, Jacques; Trèche, Serge
2010-06-01
Sustainable approaches to improving infant and young child feeding are needed. The Nutridev program worked in Vietnam, Madagascar, and Burkina Faso to test different strategies to improve complementary feeding using fortified products sold to families. To review the experiences of programs producing and marketing fortified complementary foods and to report on the feasibility of local production and marketing of fortified complementary foods to increase usage of high-quality foods among children of low-income families in a self-sustaining manner. Project documents, surveys of mothers, and production and sales reports were reviewed. Nutridev experience in Vietnam, Madagascar, and Burkina Faso demonstrates that it is possible to produce affordable, high-quality complementary foods and supplements locally in developing countries. Strategies to make products readily available to the targeted population and to convince this population to consume them yielded mixed results, varying greatly based on the strategy utilized and the context in which it was implemented. In several contexts, the optimal approach appears to be strengthening the existing food distribution network to sell complementary foods and supplements, with the implementation of a temporary promotion and nutrition education network in partnership with local authorities (e.g., health services) to increase awareness among families about the fortified complementary food product and optimal feeding practices. In urban areas, where the density of the population is high, design and implementation of specific networks very close to consumers seems to be a good way to combine economic sustainability and good consumption levels.
Behavioral Change Strategies for Improving Complementary Feeding and Breastfeeding.
Osendarp, Saskia J M; Roche, Marion L
2016-01-01
Improving infant and young child feeding (IYCF) practices, including breastfeeding and complementary feeding, has been identified as one of the most effective interventions to improve child survival, stunting and wasting. Evidence from randomized controlled trials suggests that effective promotion of breastfeeding and complementary feeding, with or without food provision, has the potential to improve IYCF practices and child nutrition. However, in many countries, breastfeeding practices and complementary feeding practices are still far from optimal. The lack of implementation of available, effective, affordable interventions in scale-up programs is in part attributed to a lack of innovative, creative and effective behavioral change strategies that enable and encourage caregivers. Successful behavioral change strategies should be based on a rigorous situational analysis and formative research, and the findings and insights of formative research should be used to further design interventions that address the identified barriers and enablers, to select delivery channels, and to formulate appropriate and effective messages. In addition, successful behavioral change interventions should a priori define and investigate the program impact pathway to target behavioral change and should assess intermediary behavioral changes and indicators to learn why the expected outcome was achieved or not achieved by testing the program theory. The design of behavioral change communication must be flexible and responsive to shifts in societies and contexts. Performance of adequate IYCF also requires investments to generate community demand through social mobilization, relevant media and existing support systems. Applying these principles has been shown to be effective in improving IYCF practices in Vietnam, Bangladesh and Ethiopia and is recommended to be adopted by other programs and countries in order to accelerate progress in improving child nutrition. © 2016 S. Karger AG, Basel.
Teaching Business Chinese Online.
ERIC Educational Resources Information Center
Zhang, Hang
2002-01-01
Discusses a comprehensive approach to teaching business Chinese online that is beng developed in the language learning laboratory at the University of Illinois. The courseware consists of two complementary parts: a business Chinese workbook and a business Chinese simulation. (Author/VWL)
Aparicio, Fernando; Morales-Botello, María Luz; Rubio, Margarita; Hernando, Asunción; Muñoz, Rafael; López-Fernández, Hugo; Glez-Peña, Daniel; Fdez-Riverola, Florentino; de la Villa, Manuel; Maña, Manuel; Gachet, Diego; Buenaga, Manuel de
2018-04-01
Student participation and the use of active methodologies in classroom learning are being increasingly emphasized. The use of intelligent systems can be of great help when designing and developing these types of activities. Recently, emerging disciplines such as 'educational data mining' and 'learning analytics and knowledge' have provided clear examples of the importance of the use of artificial intelligence techniques in education. The main objective of this study was to gather expert opinions regarding the benefits of using complementary methods that are supported by intelligent systems, specifically, by intelligent information access systems, when processing texts written in natural language and the benefits of using these methods as companion tools to the learning activities that are employed by biomedical and health sciences teachers. Eleven teachers of degree courses who belonged to the Faculties of Biomedical Sciences (BS) and Health Sciences (HS) of a Spanish university in Madrid were individually interviewed. These interviews were conducted using a mixed methods questionnaire that included 66 predefined close-ended and open-ended questions. In our study, three intelligent information access systems (i.e., BioAnnote, CLEiM and MedCMap) were successfully used to evaluate the teacher's perceptions regarding the utility of these systems and their different methods in learning activities. All teachers reported using active learning methods in the classroom, most of which were computer programs that were used for initially designing and later executing learning activities. All teachers used case-based learning methods in the classroom, with a specific emphasis on case reports written in Spanish and/or English. In general, few or none of the teachers were familiar with the technical terms related to the technologies used for these activities such as "intelligent systems" or "concept/mental maps". However, they clearly realized the potential applicability of such approaches in both the preparation and the effective use of these activities in the classroom. Specifically, the themes highlighted by a greater number of teachers after analyzing the responses to the open-ended questions were the usefulness of BioAnnote system to provide reliable sources of medical information and the usefulness of the bilingual nature of CLEiM system for learning medical terminology in English. Three intelligent information access systems were successfully used to evaluate the teacher's perceptions regarding the utility of these systems in learning activities. The results of this study showed that integration of reliable sources of information, bilingualism and selective annotation of concepts were the most valued features by the teachers, who also considered the incorporation of these systems into learning activities to be potentially very useful. In addition, in the context of our experimental conditions, our work provides useful insights into the way to appropriately integrate this type of intelligent information access systems into learning activities, revealing key themes to consider when developing such approaches. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Tear fluid proteomics multimarkers for diabetic retinopathy screening
2013-01-01
Background The aim of the project was to develop a novel method for diabetic retinopathy screening based on the examination of tear fluid biomarker changes. In order to evaluate the usability of protein biomarkers for pre-screening purposes several different approaches were used, including machine learning algorithms. Methods All persons involved in the study had diabetes. Diabetic retinopathy (DR) was diagnosed by capturing 7-field fundus images, evaluated by two independent ophthalmologists. 165 eyes were examined (from 119 patients), 55 were diagnosed healthy and 110 images showed signs of DR. Tear samples were taken from all eyes and state-of-the-art nano-HPLC coupled ESI-MS/MS mass spectrometry protein identification was performed on all samples. Applicability of protein biomarkers was evaluated by six different optimally parameterized machine learning algorithms: Support Vector Machine, Recursive Partitioning, Random Forest, Naive Bayes, Logistic Regression, K-Nearest Neighbor. Results Out of the six investigated machine learning algorithms the result of Recursive Partitioning proved to be the most accurate. The performance of the system realizing the above algorithm reached 74% sensitivity and 48% specificity. Conclusions Protein biomarkers selected and classified with machine learning algorithms alone are at present not recommended for screening purposes because of low specificity and sensitivity values. This tool can be potentially used to improve the results of image processing methods as a complementary tool in automatic or semiautomatic systems. PMID:23919537
The effect of therapeutic touch on postoperative patients.
Coakley, Amanda Bulette; Duffy, Mary E
2010-09-01
Therapeutic Touch (TT) is a complementary modality that has been demonstrated to reduce psychological distress and help patients to relax. It is unclear if there is an impact of TT on biobehavioral markers such as cortisol and natural killer cells (NKCs). There is some preliminary evidence that suggests relaxation may have positive effects on the immune system. To test the efficacy of TT on pain and biobehavioral markers in patients recovering from vascular surgery. The study was grounded in a psychoneuroimmunology framework to address how complementary therapies affect pain and biobehavioral markers associated with recovery in surgical patients. This was a between-subjects intervention study. Twenty-one postoperative surgical patients. Measures of level of pain and levels of cortisol and NKCs were obtained before and after a TT treatment. Compared with those who received usual care, participants who received TT had significantly lower level of pain, lower cortisol level, and higher NKC level. Evidence supports TT as a beneficial intervention with patients. Future research on TT is still needed to learn more about how it functions. However, there is evidence to support incorporating TT into nursing practice.
ERIC Educational Resources Information Center
Bailey, Richard
2013-01-01
This article reports on research which aimed to examine academic staff attitudes to, and beliefs regarding the role and efficacy of, support for students' broader learning needs once engaged in degree study. It is contended here that the perspective of teachers represents a gap in current pedagogical research. The study has two complementary aims:…
What could infant and young child nutrition learn from sweatshops?
2011-01-01
Background Adequate infant and young child nutrition demands high rates of breastfeeding and good access to nutrient rich complementary foods, requiring public sector action to promote breastfeeding and home based complementary feeding, and private sector action to refrain from undermining breastfeeding and to provide affordable, nutrient rich complementary foods. Unfortunately, due to a lack of trust, the public and private sectors, from both the North and the South, do not work well together in achieving optimal infant and young child nutrition. Discussion As the current debate in infant and young child nutrition is reminiscent of the "sweatshop" debate fifteen years ago, we argue that lessons from the sweatshops debate regarding cooperation between public and private sectors - and specific organizational experiences such as the Ethical Trading Initiative in which companies, trade unions, and civil society organizations work together to enhance implementation of labour standards and address alleged allegations - could serve as a model for improving cooperation and trust between public, civil society and private groups, and ultimately health, in infant and young child nutrition. Summary Lessons from the sweatshops debate could serve as a model to promote cooperation and trust between public and private groups, such that they learn to work together towards their common goal of improving infant and young child nutrition. PMID:21545745
What could infant and young child nutrition learn from sweatshops?
Singer, Peter A; Ansett, Sean; Sagoe-Moses, Isabella
2011-05-05
Adequate infant and young child nutrition demands high rates of breastfeeding and good access to nutrient rich complementary foods, requiring public sector action to promote breastfeeding and home based complementary feeding, and private sector action to refrain from undermining breastfeeding and to provide affordable, nutrient rich complementary foods. Unfortunately, due to a lack of trust, the public and private sectors, from both the North and the South, do not work well together in achieving optimal infant and young child nutrition. As the current debate in infant and young child nutrition is reminiscent of the "sweatshop" debate fifteen years ago, we argue that lessons from the sweatshops debate regarding cooperation between public and private sectors - and specific organizational experiences such as the Ethical Trading Initiative in which companies, trade unions, and civil society organizations work together to enhance implementation of labour standards and address alleged allegations - could serve as a model for improving cooperation and trust between public, civil society and private groups, and ultimately health, in infant and young child nutrition. Lessons from the sweatshops debate could serve as a model to promote cooperation and trust between public and private groups, such that they learn to work together towards their common goal of improving infant and young child nutrition.
AMI: Augmented Michelson Interferometer
NASA Astrophysics Data System (ADS)
Furió, David; Hachet, Martin; Guillet, Jean-Paul; Bousquet, Bruno; Fleck, Stéphanie; Reuter, Patrick; Canioni, Lionel
2015-10-01
Experiments in optics are essential for learning and understanding physical phenomena. The problem with these experiments is that they are generally time consuming for both their construction and their maintenance, potentially dangerous through the use of laser sources, and often expensive due to high technology optical components. We propose to simulate such experiments by way of hybrid systems that exploit both spatial augmented reality and tangible interaction. In particular, we focus on one of the most popular optical experiments: the Michelson interferometer. In our approach, we target a highly interactive system where students are able to interact in real time with the Augmented Michelson Interferometer (AMI) to observe, test hypotheses and then to enhance their comprehension. Compared to a fully digital simulation, we are investigating an approach that benefits from both physical and virtual elements, and where the students experiment by manipulating 3D-printed physical replicas of optical components (e.g. lenses and mirrors). Our objective is twofold. First, we want to ensure that the students will learn with our simulator the same concepts and skills that they learn with traditional methods. Second, we hypothesis that such a system opens new opportunities to teach optics in a way that was not possible before, by manipulating concepts beyond the limits of observable physical phenomena. To reach this goal, we have built a complementary team composed of experts in the field of optics, human-computer interaction, computer graphics, sensors and actuators, and education science.
Prostate Cancer, Nutrition, and Dietary Supplements (PDQ®)—Patient Version
Prostate Cancer, Nutrition, and Dietary Supplements summary discusses the use of nutrition and dietary supplements for preventing or treating prostate cancer. Learn more about the use of complementary therapies for prostate cancer in this expert-reviewed summary.
Effectiveness of using blended learning strategies for teaching and learning human anatomy.
Pereira, José A; Pleguezuelos, Eulogio; Merí, Alex; Molina-Ros, Antoni; Molina-Tomás, M Carmen; Masdeu, Carlos
2007-02-01
This study aimed to implement innovative teaching methods--blended learning strategies--that include the use of new information technologies in the teaching of human anatomy and to analyse both the impact of these strategies on academic performance, and the degree of user satisfaction. The study was carried out among students in Year 1 of the biology degree curriculum (human biology profile) at Pompeu Fabra University, Barcelona. Two groups of students were tested on knowledge of the anatomy of the locomotor system and results compared between groups. Blended learning strategies were employed in 1 group (BL group, n = 69); the other (TT group; n = 65) received traditional teaching aided by complementary material that could be accessed on the Internet. Both groups were evaluated using the same types of examination. The average marks presented statistically significant differences (BL 6.3 versus TT 5.0; P < 0.0001). The percentage pass rate for the subject in the first call was higher in the BL group (87.9% versus 71.4%; P = 0.02), reflecting a lower incidence of students who failed to sit the examination (BL 4.3% versus TT 13.8%; P = 0.05). There were no differences regarding overall satisfaction with the teaching received. Blended learning was more effective than traditional teaching for teaching human anatomy.
The Educative Leadership Project.
ERIC Educational Resources Information Center
Duignan, P. A.; Macpherson, R. J. S.
This paper reports on the objectives and specifications of an "educative leadership" project that aims to synthesize experience, research, and theory and to develop complementary inservice and postgraduate learning materials. Researchers and theorists are now addressing the lack of philosophical machinery in educational administration.…
Gubbiyappa, Kumar Shiva; Barua, Ankur; Das, Biswadeep; Vasudeva Murthy, C. R.; Baloch, Hasnain Zafar
2016-01-01
Objectives: Flipped classroom (FC) is a pedagogical model to engage students in learning process by replacing the didactic lectures. Using technology, lectures are moved out of the classroom and delivered online as means to provide interaction and collaboration. Poll Everywhere is an audience response system (ARS) which can be used in an FC to make the activities more interesting, engaging, and interactive. This study aims to study the perception of undergraduate pharmacy students on FC activity using Poll Everywhere ARS and to study the effectiveness of FC activity as a teaching-learning tool for delivering complementary medicine module in the undergraduate pharmacy program. Materials and Methods: In this nonrandomized trial on interrupted time series study, flipped class was conducted on group of 112 students of bachelor of pharmacy semester V. The topic selected was popular herbal remedies of the complementary medicine module. Flipped class was conducted with audio and video presentation in the form of a quiz using ten one-best-answer type of multiple-choice questions covering the learning objectives. Audience response was captured using web-based interaction with Poll Everywhere. Feedback was obtained from participants at the end of FC activity and debriefing was done. Results: Randomly selected 112 complete responses were included in the final analysis. There were 47 (42%) male and 65 (58%) female respondents. The overall Cronbach’s alpha of feedback questionnaire was 0.912. The central tendencies and dispersions of items in the questionnaire indicated the effectiveness of FC. The low or middle achievers of quiz session (pretest) during the FC activity were three times (95% confidence interval [CI] = 1.1–8.9) at the risk of providing neutral or negative feedback than high achievers (P = 0.040). Those who gave neutral or negative feedback on FC activity were 3.9 times (95% CI = 1.3–11.8) at the risk of becoming low or middle achievers during the end of semester examination (P = 0.013). The multivariate analysis of “Agree” or “Disagree” and “Agree” or “Strongly Agree” was statistically significant. Conclusion: This study provides insight on how the pharmacy students learn and develop their cognitive functions. The results revealed that the FC activity with Poll Everywhere is an effective teaching-learning method. PMID:28031607
Gubbiyappa, Kumar Shiva; Barua, Ankur; Das, Biswadeep; Vasudeva Murthy, C R; Baloch, Hasnain Zafar
2016-10-01
Flipped classroom (FC) is a pedagogical model to engage students in learning process by replacing the didactic lectures. Using technology, lectures are moved out of the classroom and delivered online as means to provide interaction and collaboration. Poll Everywhere is an audience response system (ARS) which can be used in an FC to make the activities more interesting, engaging, and interactive. This study aims to study the perception of undergraduate pharmacy students on FC activity using Poll Everywhere ARS and to study the effectiveness of FC activity as a teaching-learning tool for delivering complementary medicine module in the undergraduate pharmacy program. In this nonrandomized trial on interrupted time series study, flipped class was conducted on group of 112 students of bachelor of pharmacy semester V. The topic selected was popular herbal remedies of the complementary medicine module. Flipped class was conducted with audio and video presentation in the form of a quiz using ten one-best-answer type of multiple-choice questions covering the learning objectives. Audience response was captured using web-based interaction with Poll Everywhere. Feedback was obtained from participants at the end of FC activity and debriefing was done. Randomly selected 112 complete responses were included in the final analysis. There were 47 (42%) male and 65 (58%) female respondents. The overall Cronbach's alpha of feedback questionnaire was 0.912. The central tendencies and dispersions of items in the questionnaire indicated the effectiveness of FC. The low or middle achievers of quiz session (pretest) during the FC activity were three times (95% confidence interval [CI] = 1.1-8.9) at the risk of providing neutral or negative feedback than high achievers ( P = 0.040). Those who gave neutral or negative feedback on FC activity were 3.9 times (95% CI = 1.3-11.8) at the risk of becoming low or middle achievers during the end of semester examination ( P = 0.013). The multivariate analysis of "Agree" or "Disagree" and "Agree" or "Strongly Agree" was statistically significant. This study provides insight on how the pharmacy students learn and develop their cognitive functions. The results revealed that the FC activity with Poll Everywhere is an effective teaching-learning method.
Children and adolescents' performance on a medium-length/nonsemantic word-list test.
Flores-Lázaro, Julio César; Salgado Soruco, María Alejandra; Stepanov, Igor I
2017-01-01
Word-list learning tasks are among the most important and frequently used tests for declarative memory evaluation. For example, the California Verbal Learning Test-Children's Version (CVLT-C) and Rey Auditory Verbal Learning Test provide important information about different cognitive-neuropsychological processes. However, the impact of test length (i.e., number of words) and semantic organization (i.e., type of words) on children's and adolescents' memory performance remains to be clarified, especially during this developmental stage. To explore whether a medium-length non-semantically organized test can produce the typical curvilinear performance that semantically organized tests produce, reflecting executive control, we studied and compared the cognitive performance of normal children and adolescents by utilizing mathematical modeling. The model is based on the first-order system transfer function and has been successfully applied to learning curves for the CVLT-C (15 words, semantically organized paradigm). Results indicate that learning nine semantically unrelated words produces typical curvilinear (executive function) performance in children and younger adolescents and that performance could be effectively analyzed with the mathematical model. This indicates that the exponential increase (curvilinear performance) of correctly learned words does not solely depend on semantic and/or length features. This type of test controls semantic and length effects and may represent complementary tools for executive function evaluation in clinical populations in which semantic and/or length processing are affected.
Reliability Prediction Analysis: Airborne System Results and Best Practices
NASA Astrophysics Data System (ADS)
Silva, Nuno; Lopes, Rui
2013-09-01
This article presents the results of several reliability prediction analysis for aerospace components, made by both methodologies, the 217F and the 217Plus. Supporting and complementary activities are described, as well as the differences concerning the results and the applications of both methodologies that are summarized in a set of lessons learned that are very useful for RAMS and Safety Prediction practitioners.The effort that is required for these activities is also an important point that is discussed, as is the end result and their interpretation/impact on the system design.The article concludes while positioning these activities and methodologies in an overall process for space and aeronautics equipment/components certification, and highlighting their advantages. Some good practices have also been summarized and some reuse rules have been laid down.
NASA Astrophysics Data System (ADS)
Semken, S. C.; Ruberto, T.; Mead, C.; Bruce, G.; Buxner, S.; Anbar, A. D.
2016-12-01
Education through exploration—typically in the field—is fundamental in geoscience. But not all students enjoy equal access to field-based learning, while technological advances afford ever more immersive, rich, and student-centered virtual field experiences. No virtual modalities yet conceived can supplant field-based learning, but logistical and financial contraints can render them the only practical option for enabling most students to explore pedagogically powerful but inaccessible places located across and even beyond Earth. We are producers of a growing portfolio of immersive virtual field trips (iVFTs) situated around the globe, and engaged in research on iVFT effectiveness. Our methods are more complementary than comparative, given that virtual and in-situ modalities have distinct advantages and disadvantages. In the case of iVFTs, these factors have not yet been well-studied. We conducted a mixed-methods complementary study in an introductory historical-geology class (n = 120) populated mostly by non-majors and representing the diversity of our large urban Southwestern research university. For the same course credit, students chose either an in-person field trip (ipFT) to Grand Canyon National Park (control group) or an online Grand Canyon iVFT (experimental group) to be done in the same time interval. We collected quantitative and qualitative data from both groups before, during, and after both interventions. Learning outcomes based on content elements of the Trail of Time Exhibition at Grand Canyon were assessed using pre/post concept sketching and formative inquiry exercises. Student attitudes and novelty-space factors were assessed pre- and post-intervention using the PANAS instrument of Watson and Clark and with questionnaires tailored to each modality. Coding and comparison of pre/post concept sketches showed improved conceptual knowledge in both groups, but more so in the experimental (iVFT) group. Emergent themes from the pre/post questionnaires and PANAS yielded testable ideas to enhance iVFT usability and ipFT accessibility and did not indicate a clear preference for either modality, but they do support the value of iVFTs as pedagogically sound geoscience learning experiences.
East, Leah; Hutchinson, Marie
2015-12-01
Simulation is frequently being used as a learning and teaching resource for both undergraduate and postgraduate students, however reporting of the effectiveness of simulation particularly within the pharmacology context is scant. The aim of this pilot study was to evaluate a filmed simulated pharmacological clinical scenario as a teaching resource in an undergraduate pharmacological unit. Pilot cross-sectional quantitative survey. An Australian university. 32 undergraduate students completing a healthcare degree including nursing, midwifery, clinical science, health science, naturopathy, and osteopathy. As a part of an undergraduate online pharmacology unit, students were required to watch a filmed simulated pharmacological clinical scenario. To evaluate student learning, a measurement instrument developed from Bloom's cognitive domains (knowledge, comprehension, application, analysis, synthesis and evaluation) was employed to assess pharmacological knowledge conceptualisation and knowledge application within the following fields: medication errors; medication adverse effects; medication interactions; and, general pharmacology. The majority of participants were enrolled in an undergraduate nursing or midwifery programme (72%). Results demonstrated that the majority of nursing and midwifery students (56.52%) found the teaching resource complementary or more useful compared to a lecture although less so compared to a tutorial. Students' self-assessment of learning according to Bloom's cognitive domains indicated that the filmed scenario was a valuable learning tool. Analysis of variance indicated that health science students reported higher levels of learning compared to midwifery and nursing. Students' self-report of the learning benefits of a filmed simulated clinical scenario as a teaching resource suggest enhanced critical thinking skills and knowledge conceptualisation regarding pharmacology, in addition to being useful and complementary to other teaching and learning methods. Copyright © 2015 Elsevier Ltd. All rights reserved.
The race to learn: spike timing and STDP can coordinate learning and recall in CA3.
Nolan, Christopher R; Wyeth, Gordon; Milford, Michael; Wiles, Janet
2011-06-01
The CA3 region of the hippocampus has long been proposed as an autoassociative network performing pattern completion on known inputs. The dentate gyrus (DG) region is often proposed as a network performing the complementary function of pattern separation. Neural models of pattern completion and separation generally designate explicit learning phases to encode new information and assume an ideal fixed threshold at which to stop learning new patterns and begin recalling known patterns. Memory systems are significantly more complex in practice, with the degree of memory recall depending on context-specific goals. Here, we present our spike-timing separation and completion (STSC) model of the entorhinal cortex (EC), DG, and CA3 network, ascribing to each region a role similar to that in existing models but adding a temporal dimension by using a spiking neural network. Simulation results demonstrate that (a) spike-timing dependent plasticity in the EC-CA3 synapses provides a pattern completion ability without recurrent CA3 connections, (b) the race between activation of CA3 cells via EC-CA3 synapses and activation of the same cells via DG-CA3 synapses distinguishes novel from known inputs, and (c) modulation of the EC-CA3 synapses adjusts the learned versus test input similarity required to evoke a direct CA3 response prior to any DG activity, thereby adjusting the pattern completion threshold. These mechanisms suggest that spike timing can arbitrate between learning and recall based on the novelty of each individual input, ensuring control of the learn-recall decision resides in the same subsystem as the learned memories themselves. The proposed modulatory signal does not override this decision but biases the system toward either learning or recall. The model provides an explanation for empirical observations that a reduction in novelty produces a corresponding reduction in the latency of responses in CA3 and CA1. Copyright © 2010 Wiley-Liss, Inc.
Reinventing the Community College.
ERIC Educational Resources Information Center
Johnson, Dennis L.
1990-01-01
Profiles the community college of the year 2000. Considers marketing complementary to community colleges' success. Addresses the following marketing issues: student as product; time, location, and circumstances of learning; costs; and promotion. In light of changes in the educational marketplace and needs, suggests ways of reinventing community…
Resource Interdependence, Student Interactions and Performance in Cooperative Learning
ERIC Educational Resources Information Center
Buchs, Celine; Butera, Fabrizio; Mugny, Gabriel
2004-01-01
Two studies were carried out during university workshops, and analyzed the effects of resource interdependence on student-student interactions, and the impact of these interactions on performance. Students worked cooperatively, either on complementary information (positive resource interdependence) or on identical information (resource…
Niemtzow, Richard; Baxter, John; Gallagher, Rollin M; Pock, Arnyce; Calabria, Kathryn; Drake, David; Galloway, Kevin; Walter, Joan; Petri, Richard; Piazza, Thomas; Burns, Stephen; Hofmann, Lew; Biery, John; Buckenmaier, Chester
2018-03-26
Complementary and integrative medicine (CIM) use in the USA continues to expand, including within the Military Health System (MHS) and Veterans Health Administration (VHA). To mitigate the opioid crisis and provide additional non-pharmacological pain management options, a large cross-agency collaborative project sought to develop and implement a systems-wide curriculum, entitled Acupuncture Training Across Clinical Settings (ATACS). ATACS curriculum content and structure were created and refined over the course of the project in response to consultations with Subject Matter Experts and provider feedback. Course content was developed to be applicable to the MHS and VHA environments and training was open to many types of providers. Training included a 4-hr didactic and "hands on" clinical training program focused on a single auricular acupuncture protocol, Battlefield Acupuncture. Trainee learning and skills proficiency were evaluated by trainer-observation and written examination. Immediately following training, providers completed an evaluation survey on their ATACS experience. One month later, they were asked to complete another survey regarding their auricular acupuncture use and barriers to use. The present evaluation describes the ATACS curriculum, faculty and trainee characteristics, as well as trainee and program developer perspectives. Over the course of a 19-mo period, 2,712 providers completed the in-person, 4-hr didactic and hands-on clinical training session. Due to the increasing requests for training, additional ATACS faculty were trained. Overall, 113 providers were approved to be training faculty. Responses from the trainee surveys indicated high satisfaction with the ATACS training program and illuminated several challenges to using auricular acupuncture with patients. The most common reported barrier to using auricular acupuncture was the lack of obtaining privileges to administer auricular acupuncture within clinical practice. The ATACS program provided a foundational template to increase CIM across the MHS and VHA. The lessons learned in the program's implementation will aid future CIM training programs and improve program evaluations. Future work is needed to determine the most efficient means of improving CIM credentialing and privileging procedures, standardizing and adopting uniform CIM EHR codes and documentation, and examining the effectiveness of CIM techniques in real-world settings.
Learning from nature: binary cooperative complementary nanomaterials.
Su, Bin; Guo, Wei; Jiang, Lei
2015-03-01
In this Review, nature-inspired binary cooperative complementary nanomaterials (BCCNMs), consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel concept for the building of promising materials. Once the distance between the two nanoscopic components is comparable to the characteristic length of some physical interactions, the cooperation between these complementary building blocks becomes dominant and endows the macroscopic materials with novel and superior properties. The first implementation of the BCCNMs is the design of bio-inspired smart materials with superwettability and their reversible switching between different wetting states in response to various kinds of external stimuli. Coincidentally, recent studies on other types of functional nanomaterials contribute more examples to support the idea of BCCNMs, which suggests a potential yet comprehensive range of future applications in both materials science and engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tiralongo, Evelin; Wallis, Marianne
2008-01-01
Background With the increased usage of CAM worldwide comes the demand for its integration into health professional education. However, the incorporation of CAM into health professional curricula is handled quite differently by different institutions and countries. Furthermore, the evaluation of CAM curricula is complicated because students' ability to learn about CAM may be influenced by factors such as student's prior knowledge and motivation, together with the perceptions and attitudes of clinical preceptors. The study aimed to describe the attitudes, perceptions and beliefs of second, third and fourth year pharmacy students towards complementary and alternative medicine (CAM) and to explore factors that might affect attitudes such as learning, preceptors and placements. Methods Pharmacy students from a University in South East Queensland, Australia participated in the study. The study consisted of a cross-sectional survey (n = 110) and semi-structured interviews (n = 9). Results The overall response rate for the survey was 75%, namely 50% (36/72) for second year, 77.3% (34/44) for third year and 97.6% (40/41) for fourth year students. Overall, 95.5% of pharmacy students believe that pharmacists should be able to advise patients about CAM and most (93.7%) have used CAM prior to course enrolment. Students' attitudes to CAM are influenced by the use of CAM by family, friends and self, CAM training, lecturers and to a lesser degree by preceptors. The majority of pharmacy students (89.2%) perceive education about CAM as a core and integral part of their professional degree and favour it over an additional postgraduate degree. However, they see a greater need for education in complementary medicines (such as herbal medicines, vitamins and minerals) than for education in complementary therapies (such as acupuncture, meditation and bio-magnetism). Knowledge and educational input rationalised rather than marginalised students' attitudes towards CAM. Conclusion Pharmacy students perceive education about CAM as a core and integral part of their professional degree. Students' attitudes towards CAM can be influenced by learning, lecturers, preceptors and practice experience. The content and focus of CAM education has to be further investigated and tailored to meet the professional needs of our future health professionals. PMID:18221569
Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru
2005-02-08
An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.
Davis, Matthew A.; Martin, Brook I.; Coulter, Ian D.; Weeks, William B.
2013-01-01
Complementary and alternative medicine services in the United States are an approximately $9 billion market each year, equal to 3 percent of national ambulatory health care expenditures. Unlike conventional allopathic health care, complementary and alternative medicine is primarily paid for out of pocket, although some services are covered by most health insurance. Examining trends in demand for complementary and alternative medicine services in the United States reported in the Medical Expenditure Panel Survey during 2002–08, we found that use of and spending on these services, previously on the rise, have largely plateaued. The higher proportion of out-of-pocket responsibility for payment for services may explain the lack of growth. Our findings suggest that any attempt to reduce national health care spending by eliminating coverage for complementary and alternative medicine would have little impact at best. Should some forms of complementary and alternative medicine—for example, chiropractic care for back pain—be proven more efficient than allopathic and specialty medicine, the inclusion of complementary and alternative medicine providers in new delivery systems such as accountable care organizations could help slow growth in national health care spending. PMID:23297270
Sousa, Islandia Maria Carvalho de; Tesser, Charles Dalcanale
2017-01-23
This study aimed to analyze the inclusion of Traditional and Complementary Medicine in Brazilian Unified National Health System (SUS) and its integration with primary healthcare (PHC). A qualitative study drew on institutional data, indexed articles, and case studies in selected Brazilian cities: Campinas (São Paulo State), Florianópolis (Santa Catarina State), Recife (Pernambuco State), Rio de Janeiro, and São Paulo. The analysis adopted the perspective of inclusion of Traditional and Complementary Medicine in the healthcare network and its integration with primary healthcare, based on the following dimensions: presence of Traditional and Complementary Medicine on the municipal agenda; position in the services; mode of access to Traditional and Complementary Medicine; Traditional and Complementary Medicine practitioners; types of practices; demand profile; and potential for expansion in the SUS. The authors identified and characterized four types of inclusion and integration of Traditional and Complementary Medicine, whether in association or not: Type 1 - in primary healthcare via professionals from the family health teams - Integrated; Type 2 - in primary healthcare via professionals with full-time employment - Juxtaposed; Type 3 - in primary healthcare via matrix-organized teams - Matrix Organization; Type 4 - in specialized services - Without Integration. The combination of types 1 and 3 was considered a potential guideline for the expansion of Traditional and Complementary Medicine in the SUS and can orient the growth and integration of Traditional and Complementary Medicine with primary healthcare. The growing presence of Traditional and Complementary Medicine in the SUS requires conceiving its strategic expansion, while existing experiences should not be wasted.
The role of women's leadership and gender equity in leadership and health system strengthening.
Dhatt, R; Theobald, S; Buzuzi, S; Ros, B; Vong, S; Muraya, K; Molyneux, S; Hawkins, K; González-Beiras, C; Ronsin, K; Lichtenstein, D; Wilkins, K; Thompson, K; Davis, K; Jackson, C
2017-01-01
Gender equity is imperative to the attainment of healthy lives and wellbeing of all, and promoting gender equity in leadership in the health sector is an important part of this endeavour. This empirical research examines gender and leadership in the health sector, pooling learning from three complementary data sources: literature review, quantitative analysis of gender and leadership positions in global health organisations and qualitative life histories with health workers in Cambodia, Kenya and Zimbabwe. The findings highlight gender biases in leadership in global health, with women underrepresented. Gender roles, relations, norms and expectations shape progression and leadership at multiple levels. Increasing women's leadership within global health is an opportunity to further health system resilience and system responsiveness. We conclude with an agenda and tangible next steps of action for promoting women's leadership in health as a means to promote the global goals of achieving gender equity.
Salathé, Marcel
2016-01-01
The digital revolution has contributed to very large data sets (ie, big data) relevant for public health. The two major data sources are electronic health records from traditional health systems and patient-generated data. As the two data sources have complementary strengths—high veracity in the data from traditional sources and high velocity and variety in patient-generated data—they can be combined to build more-robust public health systems. However, they also have unique challenges. Patient-generated data in particular are often completely unstructured and highly context dependent, posing essentially a machine-learning challenge. Some recent examples from infectious disease surveillance and adverse drug event monitoring demonstrate that the technical challenges can be solved. Despite these advances, the problem of verification remains, and unless traditional and digital epidemiologic approaches are combined, these data sources will be constrained by their intrinsic limits. PMID:28830106
Polio Endgame: Lessons Learned From the Immunization Systems Management Group.
Zipursky, Simona; Vandelaer, Jos; Brooks, Alan; Dietz, Vance; Kachra, Tasleem; Farrell, Margaret; Ottosen, Ann; Sever, John L; Zaffran, Michel J
2017-07-01
The Immunization Systems Management Group (IMG) was established to coordinate and oversee objective 2 of the Polio Eradication and Endgame Strategic Plan 2013-2018, namely, (1) introduction of ≥1 dose of inactivated poliovirus vaccine in all 126 countries using oral poliovirus vaccine (OPV) only as of 2012, (2) full withdrawal of OPV, starting with the withdrawal of its type 2 component, and (3) using polio assets to strengthen immunization systems in 10 priority countries. The IMG's inclusive, transparent, and partnership-focused approach proved an effective means of leveraging the comparative and complementary strengths of each IMG member agency. This article outlines 10 key factors behind the IMG's success, providing a potential set of guiding principles for the establishment and implementation of other interagency collaborations and initiatives beyond the polio sphere. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Ortega, Pedro A; Braun, Daniel A
2015-01-01
Free energy models of learning and acting do not only care about utility or extrinsic value, but also about intrinsic value, that is, the information value stemming from probability distributions that represent beliefs or strategies. While these intrinsic values can be interpreted as epistemic values or exploration bonuses under certain conditions, the framework of bounded rationality offers a complementary interpretation in terms of information-processing costs that we discuss here.
Learning Technology Specification: Principles for Army Training Designers and Developers
2013-09-01
immediate feedback is used, it’s best to present it in a complementary modality to decrease cognitive load: if a visual simulation, give feedback aurally ...audience listed above, read through each of the questions in the matrix, and circle the answer that best describes the training goals and learners . Then...answer that best describes the training goals and learners . Then, in the Summary Table below list all of the items in the Critical Learning
Complementary and alternative medicine in women's health. Developing a research agenda.
Murphy, P A; Kronenberg, F; Wade, C
1999-01-01
Complementary and alternative medicine is becoming an established intervention modality within the contemporary health care system. Various forms of complementary and alternative medicine are used by patients and practitioners alike, including chiropractic, massage, botanical medicine, homeopathy, and energy therapies. The National Center for Complementary and Alternative Medicine was established within the National Institutes of Health to facilitate evaluation of these alternative therapies, establish an information clearinghouse, and promote research in the field. This article discusses several aspects of complementary and alternative medicine, relates them to women's health, and describes the need for a research agenda to evaluate the impact of the complementary and alternative medicine modalities used for important conditions affecting women.
van Liere, Marti J; Tarlton, Dessie; Menon, Ravi; Yellamanda, M; Reerink, Ietje
2017-10-01
Global recognition that the complex and multicausal problems of malnutrition require all players to collaborate and to invest towards the same objective has led to increased private sector engagement as exemplified through the Scaling Up Nutrition Business Network and mechanisms for blended financing and matched funding, such as the Global Nutrition for Growth Compact. The careful steps made over the past 5 to 10 years have however not taken away or reduced the hesitation and scepticism of the public sector actors towards commercial or even social businesses. Evidence of impact or even a positive contribution of a private sector approach to intermediate nutrition outcomes is still lacking. This commentary aims to discuss the multiple ways in which private sector can leverage its expertise to improve nutrition in general, and complementary feeding in particular. It draws on specific lessons learned in Bangladesh, Côte d'Ivoire, India, Indonesia, and Madagascar on how private sector expertise has contributed, within the boundaries of a regulatory framework, to improve availability, accessibility, affordability, and adequate use of nutritious foods. It concludes that a solid evidence base regarding the contribution of private sector to complementary feeding is still lacking and that the development of a systematic learning agenda is essential to make progress in the area of private sector engagement in nutrition. © 2017 John Wiley & Sons Ltd.
Learning Difficulties and Nutrition: Pills or Pedagogy?
ERIC Educational Resources Information Center
Evans, Roy
1999-01-01
Examines the efforts to find effective ameliorative measures for literacy difficulties such as dyslexia and dyspraxia, focusing on noneducational techniques found in holistic medicine, complementary therapies, and nutritional supplements. Maintains that dyslexia has become big business for drug companies and that the appropriate research regarding…
On Automatic Assessment and Conceptual Understanding
ERIC Educational Resources Information Center
Rasila, Antti; Malinen, Jarmo; Tiitu, Hannu
2015-01-01
We consider two complementary aspects of mathematical skills, i.e. "procedural fluency" and "conceptual understanding," from a point of view that is related to modern e-learning environments and computer-based assessment. Pedagogical background of teaching mathematics is discussed, and it is proposed that the traditional book…
Complementary alternative medicine use in children with type 1 diabetes mellitus in Erzurum, Turkey.
Arýkan, Duygu; Sívríkaya, Sibel Karaca; Olgun, Nermin
2009-08-01
The aims of this study were: (i) to determine the types of complementary and alternative medicine use among children with type I diabetes mellitus as reported by parents and (ii) to describe sociodemographic and medical factors associated with the use of such treatments in families residing in Eastern Turkey. Type 1 diabetes mellitus is a tremendously challenging and complex disease for children and families to manage. Therefore, the use of complementary and alternative medicines among children with type 1 diabetes is becoming increasingly popular. Survey. Parents of 100 paediatric patients (who were diagnosed with type 1 diabetes at least 6 months prior to the study) who visited the participating paediatric endocrinology multidisciplinary centres and clinics for diabetes management were included in the study. Data were collected by using a semi-structured questionnaire. Results. Fifty-two per cent of the parents reported the use of one or more complementary alternative medicine therapies. Most such users (59.6%) were using oral herbal preparations; including morus alba (leaves) aloe vera and stinging nettle. Since we found that 78.6% of those using herbals were satisfied with their results and 69.2% were planning to continue use, it is important for healthcare providers to have relevant knowledge about complementary alternative medicine use and learn about its efficacy and effects (positive and adverse) of these treatments. Relevance to clinical practice. Botanical substitute for insulin seems unlikely, but complementary alternative treatments may provide valuable clues for the development of new oral hypoglycaemic agents and simple dietary agents. It is important for healthcare providers to have up-to-date knowledge about the use and effects of complementary alternative medicines in the outpatient clinical care setting.
The European Project Semester at ISEP: the challenge of educating global engineers
NASA Astrophysics Data System (ADS)
Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo
2015-05-01
Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European Credit Transfer Units (ECTU)) for engineering students from diverse scientific backgrounds and nationalities that intends to address these goals. The students, organised in multidisciplinary and multicultural teams, are challenged to solve real multidisciplinary problems during one semester. The EPS package, although on project development (20 ECTU), includes a series of complementary seminars aimed at fostering soft, project-related and engineering transversal skills (10 ECTU). Hence, the students enrolled in this programme improve their transversal skills and learn, together and with the team of supervisors, subjects distinct from their core training. This paper presents the structure, implementation and results of the EPS@ISEP that was created in 2011 to apply the best engineering practices and promote internationalisation and engineering education innovation at ISEP.
Temporal BYY encoding, Markovian state spaces, and space dimension determination.
Xu, Lei
2004-09-01
As a complementary to those temporal coding approaches of the current major stream, this paper aims at the Markovian state space temporal models from the perspective of the temporal Bayesian Ying-Yang (BYY) learning with both new insights and new results on not only the discrete state featured Hidden Markov model and extensions but also the continuous state featured linear state spaces and extensions, especially with a new learning mechanism that makes selection of the state number or the dimension of state space either automatically during adaptive learning or subsequently after learning via model selection criteria obtained from this mechanism. Experiments are demonstrated to show how the proposed approach works.
Manganas, A; Tsiknakis, M; Leisch, E; Ponder, M; Molet, T; Herbelin, B; Magnetat-Thalmann, N; Thalmann, D; Fato, M; Schenone, A
2004-01-01
This paper reports the results of the second of the two systems developed by JUST, a collaborative project supported by the European Union under the Information Society Technologies (IST) Programme. The most innovative content of the project has been the design and development of a complementary training course for non-professional health emergency operators, which supports the traditional learning phase, and which purports to improve the retention capability of the trainees. This was achieved with the use of advanced information technology techniques, which provide adequate support and can help to overcome the present weaknesses of the existing training mechanisms.
NASA Astrophysics Data System (ADS)
Ginovart, Marta
2014-08-01
The general aim is to promote the use of individual-based models (biological agent-based models) in teaching and learning contexts in life sciences and to make their progressive incorporation into academic curricula easier, complementing other existing modelling strategies more frequently used in the classroom. Modelling activities for the study of a predator-prey system for a mathematics classroom in the first year of an undergraduate program in biosystems engineering have been designed and implemented. These activities were designed to put two modelling approaches side by side, an individual-based model and a set of ordinary differential equations. In order to organize and display this, a system with wolves and sheep in a confined domain was considered and studied. With the teaching material elaborated and a computer to perform the numerical resolutions involved and the corresponding individual-based simulations, the students answered questions and completed exercises to achieve the learning goals set. Students' responses regarding the modelling of biological systems and these two distinct methodologies applied to the study of a predator-prey system were collected via questionnaires, open-ended queries and face-to-face dialogues. Taking into account the positive responses of the students when they were doing these activities, it was clear that using a discrete individual-based model to deal with a predator-prey system jointly with a set of ordinary differential equations enriches the understanding of the modelling process, adds new insights and opens novel perspectives of what can be done with computational models versus other models. The complementary views given by the two modelling approaches were very well assessed by students.
What can we learn on public accountability from non-health disciplines: a meta-narrative review
Van Belle, Sara; Mayhew, Susannah H
2016-01-01
Objective In health, accountability has since long been acknowledged as a central issue, but it remains an elusive concept. The literature on accountability spans various disciplines and research traditions, with differing interpretations. There has been little transfer of ideas and concepts from other disciplines to public health and global health. In the frame of a study of accountability of (international) non-governmental organisations in local health systems, we carried out a meta-narrative review to address this gap. Our research questions were: (1) What are the main approaches to accountability in the selected research traditions? (2) How is accountability defined? (3) Which current accountability approaches are relevant for the organisation and regulation of local health systems and its multiple actors? Setting The search covered peer-reviewed journals, monographs and readers published between 1992 and 2012 from political science, public administration, organisational sociology, ethics and development studies. 34 papers were selected and analysed. Results Our review confirms the wide range of approaches to the conceptualisation of accountability. The definition of accountability used by the authors allows the categorisation of these approaches into four groups: the institutionalist, rights-based, individual choice and collective action group. These four approaches can be considered to be complementary. Conclusions We argue that in order to effectively achieve public accountability, accountability strategies are to be complementary and synergistic. PMID:27388347
INDIAM--an e-learning system for the interpretation of mammograms.
Guliato, Denise; Bôaventura, Ricardo S; Maia, Marcelo A; Rangayyan, Rangaraj M; Simedo, Mariângela S; Macedo, Túlio A A
2009-08-01
We propose the design of a teaching system named Interpretation and Diagnosis of Mammograms (INDIAM) for training students in the interpretation of mammograms and diagnosis of breast cancer. The proposed system integrates an illustrated tutorial on radiology of the breast, that is, mammography, which uses education techniques to guide the user (doctors, students, or researchers) through various concepts related to the diagnosis of breast cancer. The user can obtain informative text about specific subjects, access a library of bibliographic references, and retrieve cases from a mammographic database that are similar to a query case on hand. The information of each case stored in the mammographic database includes the radiological findings, the clinical history, the lifestyle of the patient, and complementary exams. The breast cancer tutorial is linked to a module that simulates the analysis and diagnosis of a mammogram. The tutorial incorporates tools for helping the user to evaluate his or her knowledge about a specific subject by using the education system or by simulating a diagnosis with appropriate feedback in case of error. The system also makes available digital image processing tools that allow the user to draw the contour of a lesion, the contour of the breast, or identify a cluster of calcifications in a given mammogram. The contours provided by the user are submitted to the system for evaluation. The teaching system is integrated with AMDI-An Indexed Atlas of Digital Mammograms-that includes case studies, e-learning, and research systems. All the resources are accessible via the Web.
The New Darwinism of Basic Learning.
ERIC Educational Resources Information Center
Wharton, Clifton R., Jr.
1979-01-01
Conflicting definitions reveal the diversity of motives and goals in the back-to-basics movement. Dealing with the problem must include consideration of the impact of television, the realization that basic and nonbasic education are complementary, and the need for coordination of K-12 and postsecondary education. (JMF)
Collaborative Work and the Future of Humanities Teaching
ERIC Educational Resources Information Center
Ullyot, Michael; O'Neill, Kate E.
2016-01-01
This article explores the degree to which student collaborations on research and writing assignments can effectively realize learning outcomes. The assignment, in this case, encouraged students to contribute discrete parts of a research project in order to develop their complementary abilities: researching, consulting, drafting, and revising. The…
PBL and CDIO: Complementary Models for Engineering Education Development
ERIC Educational Resources Information Center
Edström, Kristina; Kolmos, Anette
2014-01-01
This paper compares two models for reforming engineering education, problem/project-based learning (PBL), and conceive-design-implement-operate (CDIO), identifying and explaining similarities and differences. PBL and CDIO are defined and contrasted in terms of their history, community, definitions, curriculum design, relation to disciplines,…
Multi-modal gesture recognition using integrated model of motion, audio and video
NASA Astrophysics Data System (ADS)
Goutsu, Yusuke; Kobayashi, Takaki; Obara, Junya; Kusajima, Ikuo; Takeichi, Kazunari; Takano, Wataru; Nakamura, Yoshihiko
2015-07-01
Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.
Distance-Learning, ADHD Quality Improvement in Primary Care: A Cluster-Randomized Trial.
Fiks, Alexander G; Mayne, Stephanie L; Michel, Jeremy J; Miller, Jeffrey; Abraham, Manju; Suh, Andrew; Jawad, Abbas F; Guevara, James P; Grundmeier, Robert W; Blum, Nathan J; Power, Thomas J
2017-10-01
To evaluate a distance-learning, quality improvement intervention to improve pediatric primary care provider use of attention-deficit/hyperactivity disorder (ADHD) rating scales. Primary care practices were cluster randomized to a 3-part distance-learning, quality improvement intervention (web-based education, collaborative consultation with ADHD experts, and performance feedback reports/calls), qualifying for Maintenance of Certification (MOC) Part IV credit, or wait-list control. We compared changes relative to a baseline period in rating scale use by study arm using logistic regression clustered by practice (primary analysis) and examined effect modification by level of clinician participation. An electronic health record-linked system for gathering ADHD rating scales from parents and teachers was implemented before the intervention period at all sites. Rating scale use was ascertained by manual chart review. One hundred five clinicians at 19 sites participated. Differences between arms were not significant. From the baseline to intervention period and after implementation of the electronic system, clinicians in both study arms were significantly more likely to administer and receive parent and teacher rating scales. Among intervention clinicians, those who participated in at least 1 feedback call or qualified for MOC credit were more likely to give parents rating scales with differences of 14.2 (95% confidence interval [CI], 0.6-27.7) and 18.8 (95% CI, 1.9-35.7) percentage points, respectively. A 3-part clinician-focused distance-learning, quality improvement intervention did not improve rating scale use. Complementary strategies that support workflows and more fully engage clinicians may be needed to bolster care. Electronic systems that gather rating scales may help achieve this goal. Index terms: ADHD, primary care, quality improvement, clinical decision support.
Assembling old tricks for new tasks: a neural model of instructional learning and control.
Huang, Tsung-Ren; Hazy, Thomas E; Herd, Seth A; O'Reilly, Randall C
2013-06-01
We can learn from the wisdom of others to maximize success. However, it is unclear how humans take advice to flexibly adapt behavior. On the basis of data from neuroanatomy, neurophysiology, and neuroimaging, a biologically plausible model is developed to illustrate the neural mechanisms of learning from instructions. The model consists of two complementary learning pathways. The slow-learning parietal pathway carries out simple or habitual stimulus-response (S-R) mappings, whereas the fast-learning hippocampal pathway implements novel S-R rules. Specifically, the hippocampus can rapidly encode arbitrary S-R associations, and stimulus-cued responses are later recalled into the basal ganglia-gated pFC to bias response selection in the premotor and motor cortices. The interactions between the two model learning pathways explain how instructions can override habits and how automaticity can be achieved through motor consolidation.
An Innovative Teaching Method To Promote Active Learning: Team-Based Learning
NASA Astrophysics Data System (ADS)
Balasubramanian, R.
2007-12-01
Traditional teaching practice based on the textbook-whiteboard- lecture-homework-test paradigm is not very effective in helping students with diverse academic backgrounds achieve higher-order critical thinking skills such as analysis, synthesis, and evaluation. Consequently, there is a critical need for developing a new pedagogical approach to create a collaborative and interactive learning environment in which students with complementary academic backgrounds and learning skills can work together to enhance their learning outcomes. In this presentation, I will discuss an innovative teaching method ('Team-Based Learning (TBL)") which I recently developed at National University of Singapore to promote active learning among students in the environmental engineering program with learning abilities. I implemented this new educational activity in a graduate course. Student feedback indicates that this pedagogical approach is appealing to most students, and promotes active & interactive learning in class. Data will be presented to show that the innovative teaching method has contributed to improved student learning and achievement.
Complementary-encoding holographic associative memory using a photorefractive crystal
NASA Astrophysics Data System (ADS)
Yuan, ShiFu; Wu, Minxian; Yan, Yingbai; Jin, Guofan
1996-06-01
We present a holographic implementation of accurate associative memory with only one holographic memory system. In the implementation, the stored and test images are coded by using complementary-encoding method. The recalled complete image is also a coded image that can be decoded with a decoding mask to get an original image or its complement image. The experiment shows that the complementary encoding can efficiently increase the addressing accuracy in a simple way. Instead of the above complementary-encoding method, a scheme that uses complementary area-encoding method is also proposed for the holographic implementation of gray-level image associative memory with accurate addressing.
Gosavi, Arundhati; Vijayakumar, Pradip D; Ng, Bryan SW; Loh, May-Han; Tan, Lay Geok; Johana, Nuryanti; Tan, Yi Wan; Sandikin, Dedy; Su, Lin Lin; Wataganara, Tuangsit; Biswas, Arijit; Choolani, Mahesh A; Mattar, Citra NZ
2017-01-01
INTRODUCTION Management of complicated monochorionic twins and certain intrauterine structural anomalies is a pressing challenge in communities that still lack advanced fetal therapy. We describe our efforts to rapidly initiate selective feticide using radiofrequency ablation (RFA) and selective fetoscopic laser photocoagulation (SFLP) for twin-to-twin transfusion syndrome (TTTS), and present the latter as a potential model for aspiring fetal therapy units. METHODS Five pregnancies with fetal complications were identified for RFA. Three pregnancies with Stage II TTTS were selected for SFLP. While RFA techniques utilising ultrasonography skills were quickly mastered, SFLP required stepwise technical learning with an overseas-based proctor, who provided real-time hands-off supervision. RESULTS All co-twins were live-born following selective feticide; one singleton pregnancy was lost. Fetoscopy techniques were learned in a stepwise manner and procedures were performed by a novice team of surgeons under proctorship. Dichorionisation was completed in only one patient. Five of six twins were live-born near term. One pregnancy developed twin anaemia-polycythaemia sequence, while another was complicated by co-twin demise. DISCUSSION Proctor-supervised directed learning facilitated the rapid provision of basic fetal therapy services by our unit. While traditional apprenticeship is important for building individual expertise, this system is complementary and may benefit other small units committed to providing these services. PMID:27439783
Abadi, Shiran; Yan, Winston X; Amar, David; Mayrose, Itay
2017-10-01
The adaptation of the CRISPR-Cas9 system as a genome editing technique has generated much excitement in recent years owing to its ability to manipulate targeted genes and genomic regions that are complementary to a programmed single guide RNA (sgRNA). However, the efficacy of a specific sgRNA is not uniquely defined by exact sequence homology to the target site, thus unintended off-targets might additionally be cleaved. Current methods for sgRNA design are mainly concerned with predicting off-targets for a given sgRNA using basic sequence features and employ elementary rules for ranking possible sgRNAs. Here, we introduce CRISTA (CRISPR Target Assessment), a novel algorithm within the machine learning framework that determines the propensity of a genomic site to be cleaved by a given sgRNA. We show that the predictions made with CRISTA are more accurate than other available methodologies. We further demonstrate that the occurrence of bulges is not a rare phenomenon and should be accounted for in the prediction process. Beyond predicting cleavage efficiencies, the learning process provides inferences regarding patterns that underlie the mechanism of action of the CRISPR-Cas9 system. We discover that attributes that describe the spatial structure and rigidity of the entire genomic site as well as those surrounding the PAM region are a major component of the prediction capabilities.
Linking Research and Teaching: Context, Conflict and Complementarity
ERIC Educational Resources Information Center
Pan, Wei; Cotton, Debby; Murray, Paul
2014-01-01
Although research and teaching have often been regarded as complementary in enhancing the quality of student learning, little previous research has explored the conflicts associated with linking the two activities. This paper aims to examine specific issues arising within the environmental building disciplines at a UK university, and to explore…
Developing Modular and Adaptable Courseware Using TeachML.
ERIC Educational Resources Information Center
Wehner, Frank; Lorz, Alexander
This paper presents the use of an XML grammar for two complementary projects--CHAMELEON (Cooperative Hypermedia Adaptive MultimEdia Learning Objects) and EIT (Enabling Informal Teamwork). Areas of applications are modular courseware documents and the collaborative authoring process of didactical units. A number of requirements for a suitable…
Jackson, Courtney B.; Taubenberger, Simone P.; Botelho, Elizabeth; Journel, Joseph; Tennstedt, Sharon L.
2013-01-01
Study participants reported a range of remedies used to treat urinary symptoms, from popular products like saw palmetto to less commonly known remedies such as moabi. Many learned about remedies through social networks rather than from their primary care provider. PMID:22860393
The European Project Semester at ISEP: The Challenge of Educating Global Engineers
ERIC Educational Resources Information Center
Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo
2015-01-01
Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European…
Customized Assessment Group Initiative: A Complementary Approach to Students' Learning
ERIC Educational Resources Information Center
Akindayomi, Akinloye
2015-01-01
This study, conducted in a US setting, examines the importance of group dynamics that emphasize cooperative team building through the proposed grouping strategy called Customized Assessment Group Initiative (CAGI). CAGI is a student grouping strategy designed to operationalize the mutual accountability concept central to the definition of teams by…
Project Success: An Examination of a Collaborative Effort in English Course Work.
ERIC Educational Resources Information Center
Grossmont-Cuyamaca Community Coll. District, El Cajon, CA. Office of Institutional Research and Planning.
Project Success (PS) at California's Grossmont College provides students with concurrent enrollment in linked courses, such as College Reading and English Fundamentals, to provide an environment of complementary learning. To determine the effectiveness of the program, a study was undertaken to compare the demographics, performance, and persistence…
Access Patterns of Online Materials in a Blended Course
ERIC Educational Resources Information Center
Asarta, Carlos J.; Schmidt, James R.
2013-01-01
Patterns in student accesses of online materials and their effects upon student performance in a blended course are examined. Our blended course is an introductory business and economic statistics course where lectures are only available online while the traditional class period is used for complementary learning activities. Timing, volumes,…
The Evaluation Exchange. Volume 14, Numbers 1-2 Spring 2008
ERIC Educational Resources Information Center
Bouffard, Suzanne, Ed; Weiss, Abby; DeDeo, Carrie-Anne, Ed.
2008-01-01
This issue of "The Evaluation Exchange" spotlights one of the central components of complementary learning: family involvement. There are 28 articles herein: (1) "Thinking Big: A New Framework for Family Involvement Policy, Practice, and Research" (Suzanne Bouffard and Heather Weiss) reframes family involvement as part of a broader complementary…
Herrera-Hernandez, Maria C; Lai-Yuen, Susana K; Piegl, Les A; Zhang, Xiao
2016-10-26
This article presents the design of a web-based knowledge management system as a training and research tool for the exploration of key relationships between Western and Traditional Chinese Medicine, in order to facilitate relational medical diagnosis integrating these mainstream healing modalities. The main goal of this system is to facilitate decision-making processes, while developing skills and creating new medical knowledge. Traditional Chinese Medicine can be considered as an ancient relational knowledge-based approach, focusing on balancing interrelated human functions to reach a healthy state. Western Medicine focuses on specialties and body systems and has achieved advanced methods to evaluate the impact of a health disorder on the body functions. Identifying key relationships between Traditional Chinese and Western Medicine opens new approaches for health care practices and can increase the understanding of human medical conditions. Our knowledge management system was designed from initial datasets of symptoms, known diagnosis and treatments, collected from both medicines. The datasets were subjected to process-oriented analysis, hierarchical knowledge representation and relational database interconnection. Web technology was implemented to develop a user-friendly interface, for easy navigation, training and research. Our system was prototyped with a case study on chronic prostatitis. This trial presented the system's capability for users to learn the correlation approach, connecting knowledge in Western and Traditional Chinese Medicine by querying the database, mapping validated medical information, accessing complementary information from official sites, and creating new knowledge as part of the learning process. By addressing the challenging tasks of data acquisition and modeling, organization, storage and transfer, the proposed web-based knowledge management system is presented as a tool for users in medical training and research to explore, learn and update relational information for the practice of integrated medical diagnosis. This proposal in education has the potential to enable further creation of medical knowledge from both Traditional Chinese and Western Medicine for improved care providing. The presented system positively improves the information visualization, learning process and knowledge sharing, for training and development of new skills for diagnosis and treatment, and a better understanding of medical diseases. © IMechE 2016.
Effectiveness and value of massage skills training during pre-registration nurse education.
Cook, Neal F; Robinson, Jacqueline
2006-10-01
The integration of Complementary and alternative medicine (CAM) interventions into healthcare practices is becoming more popular and frequently accessed by patients. Various disciplines have integrated CAM techniques education into the preparation of their practitioners in response to this, but this varies widely, as does its success. Students'experiences of such education in pre-registration is largely unknown in the UK, and methods by which to successful achieve effective learning within this arena are largely unreported within the literature. This study highlighted three specifics aims; to examine the perspectives of pre-registration nursing students on being taught massage skills during pre-registration nurse education; to identify the learning and development that occurs during massage skills training; and to identify methods of enhancing the provision of such skills training and its experience. This paper demonstrates the value of integrating complementary therapies into nurse education, developing the holistic approach of student nurses and their concept of caring. In addition it contributes significantly to the knowledge base of the effectiveness of the value of CAM education in nurse preparation, highlighting the high value students place on CAM education and demonstrating notable development in the preparation of holistic practitioners. The method utilised also yielded ways to improve the delivery of such education, and demonstrates how creative teaching methods can motivate and enhance effective learning.
Complementary health insurance in France. Who pays? Why? Who will suffer from public disengagement?
Saliba, Bérengère; Ventelou, Bruno
2007-05-01
The study is based on a rare database with information about health status, socioeconomic characteristics and the complementary health insurance choices of the French population. We intend to characterise a two-stage decision process: first, the decision to purchase complementary health insurance, and then the factors related to choice of policy quality. Our econometric study indicates that (i) income level has a strong and significant effect on the decision to purchase complementary insurance, whilst there is no evidence that health risk considerations affect this decision at all; (ii) the individual decision about quality is associated barely if at all with any rational explanatory variables. The population's concrete behaviour, revealed by the study, is consistent with an allocation of low-risk people to private insurance and high-risk people to public insurance. Complementary insurance is not especially relevant to patients with serious diseases, who depend much more on the public system. If the public insurance system were to disengage significantly from coverage of serious illness, a vacuum would be created that would leave people at high risk without full coverage. These results have broad implications for numerous national systems of social protection seeking a new mix between private and public insurance.
Synchronization of heteroclinic circuits through learning in coupled neural networks
NASA Astrophysics Data System (ADS)
Selskii, Anton; Makarov, Valeri A.
2016-01-01
The synchronization of oscillatory activity in neural networks is usually implemented by coupling the state variables describing neuronal dynamics. Here we study another, but complementary mechanism based on a learning process with memory. A driver network, acting as a teacher, exhibits winner-less competition (WLC) dynamics, while a driven network, a learner, tunes its internal couplings according to the oscillations observed in the teacher. We show that under appropriate training the learner can "copy" the coupling structure and thus synchronize oscillations with the teacher. The replication of the WLC dynamics occurs for intermediate memory lengths only, consequently, the learner network exhibits a phenomenon of learning resonance.
Wofford, Marcia M; Spickard, Anderson W; Wofford, James L
2001-01-01
Advancing computer technology, cost-containment pressures, and desire to make innovative improvements in medical education argue for moving learning resources to the computer. A reasonable target for such a strategy is the traditional clinical lecture. The purpose of the lecture, the advantages and disadvantages of “live” versus computer-based lectures, and the technical options in computerizing the lecture deserve attention in developing a cost-effective, complementary learning strategy that preserves the teacher-learner relationship. Based on a literature review of the traditional clinical lecture, we build on the strengths of the lecture format and discuss strategies for converting the lecture to a computer-based learning presentation. PMID:11520384
Designing Better Scaffolding in Teaching Complex Systems with Graphical Simulations
NASA Astrophysics Data System (ADS)
Li, Na
Complex systems are an important topic in science education today, but they are usually difficult for secondary-level students to learn. Although graphic simulations have many advantages in teaching complex systems, scaffolding is a critical factor for effective learning. This dissertation study was conducted around two complementary research questions on scaffolding: (1) How can we chunk and sequence learning activities in teaching complex systems? (2) How can we help students make connections among system levels across learning activities (level bridging)? With a sample of 123 seventh-graders, this study employed a 3x2 experimental design that factored sequencing methods (independent variable 1; three levels) with level-bridging scaffolding (independent variable 2; two levels) and compared the effectiveness of each combination. The study measured two dependent variables: (1) knowledge integration (i.e., integrating and connecting content-specific normative concepts and providing coherent scientific explanations); (2) understanding of the deep causal structure (i.e., being able to grasp and transfer the causal knowledge of a complex system). The study used a computer-based simulation environment as the research platform to teach the ideal gas law as a system. The ideal gas law is an emergent chemical system that has three levels: (1) experiential macro level (EM) (e.g., an aerosol can explodes when it is thrown into the fire); (2) abstract macro level (AM) (i.e., the relationships among temperature, pressure and volume); (3) micro level (Mi) (i.e., molecular activity). The sequencing methods of these levels were manipulated by changing the order in which they were delivered with three possibilities: (1) EM-AM-Mi; (2) Mi-AM-EM; (3) AM-Mi-EM. The level-bridging scaffolding variable was manipulated on two aspects: (1) inserting inter-level questions among learning activities; (2) two simulations dynamically linked in the final learning activity. Addressing the first research question, the Experiential macro-Abstract macro-Micro (EM-AM-Mi) sequencing method, following the "concrete to abstract" principle, produced better knowledge integration while the Micro-Abstract macro-Experiential macro (Mi-AM-EM) sequencing method, congruent with the causal direction of the emergent system, produced better understanding of the deep causal structure only when level-bridging scaffolding was provided. The Abstract macro-Micro-Experiential macro (AM-Mi-EM) sequencing method produced worse performance in general, because it did not follow the "concrete to abstract" principle, nor did it align with the causal structure of the emergent system. As to the second research question, the results showed that level-bridging scaffolding was important for both knowledge integration and understanding of the causal structure in learning the ideal gas law system.
Application of E-learning tools for the teaching of Natural Science. A case related to Astronomy
NASA Astrophysics Data System (ADS)
Goldes, G.; Gallino, M.; Britos, D.; Lago, D.; Tavella, G.; Vidal, E.; Morales, S.; Nicotra, M.
The requirements, recent experiences and projections of the application of virtual learning techniques and environments for the teaching of basic sciences at the National University of Córdoba, Argentina, are described. The reasons to still consider basic science E-learning as an institutional vacancy area are discussed. Present activities designed to revert this situation are also discussed. A particular experience about the application of tics as a complementary resource for teaching astronomy at the University is described and discussed on the basis of both strengths and limitations. The organization of E-learning activities at the Faculty of Engineering, Biology and Geology ("Facultad de Ciencias Exactas, Físicas y Naturales") is discussed in some detail.
Specialized hybrid learners resolve Rogers' paradox about the adaptive value of social learning.
Kharratzadeh, Milad; Montrey, Marcel; Metz, Alex; Shultz, Thomas R
2017-02-07
Culture is considered an evolutionary adaptation that enhances reproductive fitness. A common explanation is that social learning, the learning mechanism underlying cultural transmission, enhances mean fitness by avoiding the costs of individual learning. This explanation was famously contradicted by Rogers (1988), who used a simple mathematical model to show that cheap social learning can invade a population without raising its mean fitness. He concluded that some crucial factor remained unaccounted for, which would reverse this surprising result. Here we extend this model to include a more complex environment and limited resources, where individuals cannot reliably learn everything about the environment on their own. Under such conditions, cheap social learning evolves and enhances mean fitness, via hybrid learners capable of specializing their individual learning. We then show that while spatial or social constraints hinder the evolution of hybrid learners, a novel social learning strategy, complementary copying, can mitigate these effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Learners misperceive the benefits of redundant text in multimedia learning.
Fenesi, Barbara; Kim, Joseph A
2014-01-01
Research on metacognition has consistently demonstrated that learners fail to endorse instructional designs that produce benefits to memory, and often prefer designs that actually impair comprehension. Unlike previous studies in which learners were only exposed to a single multimedia design, the current study used a within-subjects approach to examine whether exposure to both redundant text and non-redundant text multimedia presentations improved learners' metacognitive judgments about presentation styles that promote better understanding. A redundant text multimedia presentation containing narration paired with verbatim on-screen text (Redundant) was contrasted with two non-redundant text multimedia presentations: (1) narration paired with images and minimal text (Complementary) or (2) narration paired with minimal text (Sparse). Learners watched presentation pairs of either Redundant + Complementary, or Redundant + Sparse. Results demonstrate that Complementary and Sparse presentations produced highest overall performance on the final comprehension assessment, but the Redundant presentation produced highest perceived understanding and engagement ratings. These findings suggest that learners misperceive the benefits of redundant text, even after direct exposure to a non-redundant, effective presentation.
Volcanic Cloud and Aerosol Monitor (VOLCAM) for Deep Space Gateway
NASA Astrophysics Data System (ADS)
Krotkov, N.; Bhartia, P. K.; Torres, O.; Li, C.; Sander, S.; Realmuto, V.; Carn, S.; Herman, J.
2018-02-01
We propose complementary ultraviolet (UV) and thermal Infrared (TIR) filter cameras for a dual-purpose whole Earth imaging with complementary natural hazards applications and Earth system science goals.
Gain-Scheduled Complementary Filter Design for a MEMS Based Attitude and Heading Reference System
Yoo, Tae Suk; Hong, Sung Kyung; Yoon, Hyok Min; Park, Sungsu
2011-01-01
This paper describes a robust and simple algorithm for an attitude and heading reference system (AHRS) based on low-cost MEMS inertial and magnetic sensors. The proposed approach relies on a gain-scheduled complementary filter, augmented by an acceleration-based switching architecture to yield robust performance, even when the vehicle is subject to strong accelerations. Experimental results are provided for a road captive test during which the vehicle dynamics are in high-acceleration mode and the performance of the proposed filter is evaluated against the output from a conventional linear complementary filter. PMID:22163824
NASA Astrophysics Data System (ADS)
Zamorano, M.; Rodríguez, M. L.; Ramos-Ridao, A. F.; Pasadas, M.; Priego, I.
The Area of Environmental Technology in Department of Civil Engineering has developed an innovation education project, entitled Application of new Information and Communication Technologies in Area of Environmental Technology teaching, to create a Web site that benefits both parties concerned in teaching-learning process, teachers and students. Here teachers conduct a supervised teaching and students have necessary resources to guide their learning process according to their capacities and possibilities. The project has also included a pilot experience to introduce European Space of Higher Education (ESHE) new teaching concept based on student's work, in one subject of Environmental Science degree, considering interactive learning complementary to presence teaching. The experience has showed strength and weakness of the method and it is the beginning in a gradual process to guide e-learning education in future.
Boehm, Stephan G; Smith, Ciaran; Muench, Niklas; Noble, Kirsty; Atherton, Catherine
2017-08-31
Repetition priming increases the accuracy and speed of responses to repeatedly processed stimuli. Repetition priming can result from two complementary sources: rapid response learning and facilitation within perceptual and conceptual networks. In conceptual classification tasks, rapid response learning dominates priming of object recognition, but it does not dominate priming of person recognition. This suggests that the relative engagement of network facilitation and rapid response learning depends on the stimulus domain. Here, we addressed the importance of the stimulus domain for rapid response learning by investigating priming in another domain, brands. In three experiments, participants performed conceptual decisions for brand logos. Strong priming was present, but it was not dominated by rapid response learning. These findings add further support to the importance of the stimulus domain for the relative importance of network facilitation and rapid response learning, and they indicate that brand priming is more similar to person recognition priming than object recognition priming, perhaps because priming of both brands and persons requires individuation.
Bringing in the Tech: Using Outside Expertise to Enhance Technology Learning in Youth Programs
ERIC Educational Resources Information Center
Akiva, Thomas; Povis, Kaleen Tison; Martinez, Ani
2015-01-01
Afterschool continues to be promoted as a complementary setting to school for strengthening science, technology, engineering, and math (STEM) education (for example, Krishnamurthi, Bevan, Rinehart, & Coulon, 2013). This is a reasonable idea: 10.2 million children and youth in the U.S. participate in structured afterschool programs (Afterschool…
Using Industry Professionals in Undergraduate Teaching: Effects on Student Learning
ERIC Educational Resources Information Center
Gentelli, Liesel
2015-01-01
Tutorials are a common complementary method of achieving student engagement with material covered in lectures, as students achieve deeper understanding by being involved in small group discussions. However, in an attempt to provide students with a taste of everything the industry has to offer, the Centre for Forensic Science at the University of…
Dynamic Assessment of EFL Reading: Revealing Hidden Aspects at Different Proficiency Levels
ERIC Educational Resources Information Center
Ajideh, Parviz; Farrokhi, Farahman; Nourdad, Nava
2012-01-01
Dynamic assessment as a complementary approach to traditional static assessment emphasizes the learning process and accounts for the amount and nature of examiner investment. The present qualitative study analyzed interactions for 270 reading test items which were recorded and tape scripted. The reading ability of 9 EFL participants at three…
Playing Modeling Games in the Science Classroom: The Case for Disciplinary Integration
ERIC Educational Resources Information Center
Sengupta, Pratim; Clark, Doug
2016-01-01
The authors extend the theory of "disciplinary integration" of games for science education beyond the virtual world of games, and identify two key themes of a practice-based theoretical commitment to science learning: (1) materiality in the classroom, and (2) iterative design of multiple, complementary, symbolic inscriptions (e.g.,…
ERIC Educational Resources Information Center
DeDeo, Carrie-Anne, Ed.
2007-01-01
This double issue of "The Evaluation Exchange" focuses on one of the central components of complementary learning: family involvement. As outlined in the Theory & Practice article, investments in family involvement are important across ages and settings and through the co-constructed efforts and shared responsibilities of many…
Faith, Phonics and Identity: Reading in Faith Complementary Schools
ERIC Educational Resources Information Center
Rosowsky, Andrey
2013-01-01
Thousands of UK school children spend considerable time during a lengthy period of their youth learning to read, or decode, a 'religious classical', the liturgical language connected to their faith. Drawing on recent theories of reading, identity and literacy practices, this paper briefly describes and seeks to share tentative thoughts about some…
Operation Valuation: Teaching Pricing Concepts in an Experiential Environment
ERIC Educational Resources Information Center
Mills, Adam J.; Treen, Emily
2016-01-01
Although marketing education has seen a dramatic shift toward hands-on, experiential learning in recent years, the teaching of pricing has fallen behind complementary elements of the marketing mix in pedagogical execution. Although the teaching of pricing has shifted focus from economic-based models to value-based pricing in theory, available…
ERIC Educational Resources Information Center
Liu, Yu; Taber, Keith S.
2016-01-01
Symbolic expressions are essential resources for producing knowledge, yet they are a source of learning difficulties in chemistry education. This study aims to employ social semiotics to analyse the symbolic representation of chemistry from two complementary perspectives, referred to here as contextual (i.e., historical) and functional. First, the…
Agendas for Writing in Philosophy: Conflicting or Complementary?
ERIC Educational Resources Information Center
Soven, Margot
Recent research on how students perceive the function of writing assignments and the effects of different kinds of writing assignments on learning is inconclusive. Noting that this issue clouds writing across the curriculum programs, a study sought to determine how students perceive their involvement in assignments that require them to present an…
Pedagogy as a Field Guide to the Ecology of the Classroom
ERIC Educational Resources Information Center
Clingerman, Forrest
2014-01-01
Reflecting on the complementary pedagogical models on teaching courses related to religion and the environment presented in this issue of the journal by Kevin O'Brien ("Balancing Critique and Commitment") and Jennifer Ayres ("Learning on the Ground"), I suggest ways in which these essays form a conversation about teaching.…
"School for Life" in Ghana: Promoting Literate Opportunities for Rural Youth
ERIC Educational Resources Information Center
Sherris, Arieh; Sulemana, Osama Saaka; Alhassan, Andani; Abudu, Grace; Karim, Abdul-Rahaman
2014-01-01
Sociocultural and socio-economic conditions (e.g. subsistence family farming needs) as well as the absence of nearby public schools result in Ghanaian youth, primarily from rural areas, not receiving formal schooling. Because of this, children may never learn to read and write. One solution is a complementary education programme (CEP) that…
Building New Bridges: Linking Organization Theory with Other Educational Literatures
ERIC Educational Resources Information Center
Johnson, Bob L., Jr.; Owens, Michael
2005-01-01
Purpose: This paper provides an example of how organization theory can be linked with other literatures in a complementary and productive manner. Establishing a bridge between the organization theory and learning environment literatures, the authors seek to provide an example of how such literature-bridging can enrich our understanding of the…
Gaming Geography: Educational Games and Literacy Development in the Grade 4 Classroom
ERIC Educational Resources Information Center
Lotherington, Heather; Ronda, Natalia Sinitskaya
2009-01-01
This paper outlines a case study conducted in two public schools in the greater Toronto area as a complementary component of a multisite experimental study exploring educational game development as a learning activity for motivating and engaging students in curriculum-related literacy activities (Owston et al., 2007). Researchers studied children…
Jung's Psychology and Deleuze's Philosophy: The Unconscious in Learning
ERIC Educational Resources Information Center
Semetsky, Inna; Delpech-Ramey, Joshua A.
2012-01-01
This paper addresses the unconscious dimension as articulated in Carl Jung's depth psychology and in Gilles Deleuze's philosophy. Jung's theory of the archetypes and Deleuze's pedagogy of the concept are two complementary resources that posit individuation as the goal of human development and self-education in practice. The paper asserts that…
Welfare and Work: Complementary Strategies for Low-Income Women?
ERIC Educational Resources Information Center
Smith, Judith R.; Brooks-Gunn, Jeane; Klebanov, Pamela K.; Lee, Kyunghee
2000-01-01
Examines the effects of mothers' strategies of combining employment and welfare receipt during the first three years of their child's life on the child's cognitive development, behavior problems, and home learning environment at ages five and six. No negative association was found on most child outcomes with a mother's employment whether or not it…
What Do We Learn from Recall Consumption Data?
ERIC Educational Resources Information Center
Battistin, Erich; Miniaci, Raffaele; Weber, Guglielmo
2003-01-01
In this paper, we use two complementary Italian data sources (the 1995 ISTAT and Bank of Italy household surveys) to generate household-specific nondurable expenditure in the Bank of Italy sample that contains relatively high-quality income data. We show that food expenditure data are of comparable quality and informational content across the two…
Four Psychologies Applied to Education: Freudian, Behavioral, Humanistic, Transpersonal.
ERIC Educational Resources Information Center
Roberts, Thomas B., Ed.
This document presents 62 selected articles of psychology and education which demonstrate how educational theory and practice have changed and broadened to meet the need for new modes of teaching and learning. The writings, which show how psychologies can be complementary ways of understanding human behavior, are accompanied by both theoretical…
Using Interactive Broadband Multicasting in a Museum Lifelong Learning Program.
ERIC Educational Resources Information Center
Steinbach, Leonard
The Cleveland Museum of Art has embarked on an innovative approach for delivering high quality video-on-demand and live interactive cultural programming, along with Web-based complementary material, to seniors in assisted living residence facilities, community-based centers, and disabled persons in their homes. The project is made possible in part…
ERIC Educational Resources Information Center
Markley Rountree, Melissa; Koernig, Stephen K.
2015-01-01
Sustainable development has been a hot button issue for decades, and yet business schools continue to struggle with accessible, meaningful and effective strategies to incorporate the topic into their curricula. To extend the teaching toolbox of educators, we describe two complementary marketing courses that use values-based learning to incorporate…
The effects of an enrichment training program for youth football attackers
Santos, Sara; Gonçalves, Bruno; Travassos, Bruno; Wong, Del P.; Schöllhorn, Wolfgang; Sampaio, Jaime
2018-01-01
The aim of this study was to identify the effects of a complementary training program based on differential learning approach in the physical, technical, creative and positioning performance of youth football attackers. Fifteen players were allocated into the control (U15C = 9, age: 13.9±0.5 years; U17C = 6, age: 16.1±0.7 years) and the experimental (U15E = 9, age: 14.2±0.8 years; U17E = 6, age: 15.8±0.5 years) groups. The experimental groups participated in 10-weeks of a complementary training program based on differential learning approach to improve physical literacy and players’ tactical behavior. Variables studied encompassed: motor (vertical jump, speed and repeated change-of direction), technical (pass, dribble and shot), creative (fluency, attempts, versatility) and positioning-related variables (stretch index, spatial exploration index and regularity of the lateral and longitudinal movements). Results revealed that U15E improved both the jump and repeated change-of-direction performance, while the U17E have only improved the jump performance. The U15E showed improvements in all technical variables (small to large effects), and in the fluency and versatility (moderate effects), while the U17 have only improved the successful shots (large effects). From a positional perspective, there was a moderate increase in the stretch index, and decreased longitudinal and lateral regularity (small to moderate effects) in the U15E compared to the U15C. In turn, the U17E revealed a moderate increase of the spatial exploration index and a small decrease in the stretch index. Overall, the results suggest that the complementary training program was effective for the development of the overall performance of the U15E attackers, while more time and/or variability may be needed for older age groups. Nevertheless, the overall higher values found in experimental groups, may suggest that this type of complementary training program improves performance. PMID:29897985
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lazareva, Maria V.
2010-05-01
In the paper we show that the biologically motivated conception of time-pulse encoding usage gives a set of advantages (single methodological basis, universality, tuning simplicity, learning and programming et al) at creation and design of sensor systems with parallel input-output and processing for 2D structures hybrid and next generations neuro-fuzzy neurocomputers. We show design principles of programmable relational optoelectronic time-pulse encoded processors on the base of continuous logic, order logic and temporal waves processes. We consider a structure that execute analog signal extraction, analog and time-pulse coded variables sorting. We offer optoelectronic realization of such base relational order logic element, that consists of time-pulse coded photoconverters (pulse-width and pulse-phase modulators) with direct and complementary outputs, sorting network on logical elements and programmable commutation blocks. We make technical parameters estimations of devices and processors on such base elements by simulation and experimental research: optical input signals power 0.2 - 20 uW, processing time 1 - 10 us, supply voltage 1 - 3 V, consumption power 10 - 100 uW, extended functional possibilities, learning possibilities. We discuss some aspects of possible rules and principles of learning and programmable tuning on required function, relational operation and realization of hardware blocks for modifications of such processors. We show that it is possible to create sorting machines, neural networks and hybrid data-processing systems with untraditional numerical systems and pictures operands on the basis of such quasiuniversal hardware simple blocks with flexible programmable tuning.
49 CFR 37.131 - Service criteria for complementary paratransit.
Code of Federal Regulations, 2014 CFR
2014-10-01
...'s desired departure time. (3) The entity may use real-time scheduling in providing complementary... trip of similar length, at a similar time of day, on the fixed route system. (2) The fares for... systems, the service area shall consist of a circle with a radius of 3/4 of a mile around each station...
49 CFR 37.131 - Service criteria for complementary paratransit.
Code of Federal Regulations, 2013 CFR
2013-10-01
...'s desired departure time. (3) The entity may use real-time scheduling in providing complementary... trip of similar length, at a similar time of day, on the fixed route system. (2) The fares for... systems, the service area shall consist of a circle with a radius of 3/4 of a mile around each station...
49 CFR 37.131 - Service criteria for complementary paratransit.
Code of Federal Regulations, 2012 CFR
2012-10-01
...'s desired departure time. (3) The entity may use real-time scheduling in providing complementary... trip of similar length, at a similar time of day, on the fixed route system. (2) The fares for... systems, the service area shall consist of a circle with a radius of 3/4 of a mile around each station...
49 CFR 37.131 - Service criteria for complementary paratransit.
Code of Federal Regulations, 2011 CFR
2011-10-01
...'s desired departure time. (3) The entity may use real-time scheduling in providing complementary... trip of similar length, at a similar time of day, on the fixed route system. (2) The fares for... systems, the service area shall consist of a circle with a radius of 3/4 of a mile around each station...
49 CFR 37.131 - Service criteria for complementary paratransit.
Code of Federal Regulations, 2010 CFR
2010-10-01
...'s desired departure time. (3) The entity may use real-time scheduling in providing complementary... trip of similar length, at a similar time of day, on the fixed route system. (2) The fares for... systems, the service area shall consist of a circle with a radius of 3/4 of a mile around each station...
Near-affine-invariant texture learning for lung tissue analysis using isotropic wavelet frames.
Depeursinge, Adrien; Van de Ville, Dimitri; Platon, Alexandra; Geissbuhler, Antoine; Poletti, Pierre-Alexandre; Müller, Henning
2012-07-01
We propose near-affine-invariant texture descriptors derived from isotropic wavelet frames for the characterization of lung tissue patterns in high-resolution computed tomography (HRCT) imaging. Affine invariance is desirable to enable learning of nondeterministic textures without a priori localizations, orientations, or sizes. When combined with complementary gray-level histograms, the proposed method allows a global classification accuracy of 76.9% with balanced precision among five classes of lung tissue using a leave-one-patient-out cross validation, in accordance with clinical practice.
Automated Depression Analysis Using Convolutional Neural Networks from Speech.
He, Lang; Cao, Cui
2018-05-28
To help clinicians to efficiently diagnose the severity of a person's depression, the affective computing community and the artificial intelligence field have shown a growing interest in designing automated systems. The speech features have useful information for the diagnosis of depression. However, manually designing and domain knowledge are still important for the selection of the feature, which makes the process labor consuming and subjective. In recent years, deep-learned features based on neural networks have shown superior performance to hand-crafted features in various areas. In this paper, to overcome the difficulties mentioned above, we propose a combination of hand-crafted and deep-learned features which can effectively measure the severity of depression from speech. In the proposed method, Deep Convolutional Neural Networks (DCNN) are firstly built to learn deep-learned features from spectrograms and raw speech waveforms. Then we manually extract the state-of-the-art texture descriptors named median robust extended local binary patterns (MRELBP) from spectrograms. To capture the complementary information within the hand-crafted features and deep-learned features, we propose joint fine-tuning layers to combine the raw and spectrogram DCNN to boost the depression recognition performance. Moreover, to address the problems with small samples, a data augmentation method was proposed. Experiments conducted on AVEC2013 and AVEC2014 depression databases show that our approach is robust and effective for the diagnosis of depression when compared to state-of-the-art audio-based methods. Copyright © 2018. Published by Elsevier Inc.
How may the basal ganglia contribute to auditory categorization and speech perception?
Lim, Sung-Joo; Fiez, Julie A.; Holt, Lori L.
2014-01-01
Listeners must accomplish two complementary perceptual feats in extracting a message from speech. They must discriminate linguistically-relevant acoustic variability and generalize across irrelevant variability. Said another way, they must categorize speech. Since the mapping of acoustic variability is language-specific, these categories must be learned from experience. Thus, understanding how, in general, the auditory system acquires and represents categories can inform us about the toolbox of mechanisms available to speech perception. This perspective invites consideration of findings from cognitive neuroscience literatures outside of the speech domain as a means of constraining models of speech perception. Although neurobiological models of speech perception have mainly focused on cerebral cortex, research outside the speech domain is consistent with the possibility of significant subcortical contributions in category learning. Here, we review the functional role of one such structure, the basal ganglia. We examine research from animal electrophysiology, human neuroimaging, and behavior to consider characteristics of basal ganglia processing that may be advantageous for speech category learning. We also present emerging evidence for a direct role for basal ganglia in learning auditory categories in a complex, naturalistic task intended to model the incidental manner in which speech categories are acquired. To conclude, we highlight new research questions that arise in incorporating the broader neuroscience research literature in modeling speech perception, and suggest how understanding contributions of the basal ganglia can inform attempts to optimize training protocols for learning non-native speech categories in adulthood. PMID:25136291
What can we learn on public accountability from non-health disciplines: a meta-narrative review.
Van Belle, Sara; Mayhew, Susannah H
2016-07-07
In health, accountability has since long been acknowledged as a central issue, but it remains an elusive concept. The literature on accountability spans various disciplines and research traditions, with differing interpretations. There has been little transfer of ideas and concepts from other disciplines to public health and global health. In the frame of a study of accountability of (international) non-governmental organisations in local health systems, we carried out a meta-narrative review to address this gap. Our research questions were: (1) What are the main approaches to accountability in the selected research traditions? (2) How is accountability defined? (3) Which current accountability approaches are relevant for the organisation and regulation of local health systems and its multiple actors? The search covered peer-reviewed journals, monographs and readers published between 1992 and 2012 from political science, public administration, organisational sociology, ethics and development studies. 34 papers were selected and analysed. Our review confirms the wide range of approaches to the conceptualisation of accountability. The definition of accountability used by the authors allows the categorisation of these approaches into four groups: the institutionalist, rights-based, individual choice and collective action group. These four approaches can be considered to be complementary. We argue that in order to effectively achieve public accountability, accountability strategies are to be complementary and synergistic. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Schiff, Elad; Ben-Arye, Eran; Attias, Samuel; Sroka, Gideon; Matter, Ibrahim; Keshet, Yael
2012-12-01
This study aims to examine the meaning and practical implications of integration of a complementary medicine-based surgery service in a hospital setting (CISS--Complementary/Integrative Surgery Service) through analysis of consultation reports associated with this service. Thematic analysis was used to evaluate CISS consultation reports in a hospital electronic consultant charting system during the first half year of the service's activity. 304 consultation reports were analyzed. Nurses initiated significantly more consultations than physicians (55% vs 7%). Consultation requests were gradually more focused on specific symptoms, possibly manifesting a better understanding of the scope of complementary medicine in the surgery setting. CISS practitioners responded in more biomedical language over time, albeit offering a more holistic perspective regarding patients' needs as well as clarifications regarding the nature of the treatment they provided. Diverse communication patterns in consultations evolved over time representing dynamics in multiple levels of integration of the CISS. Documented communication through consultations can provide a window to the process of integration of complementary medicine-based services in health systems. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
2016-12-01
based complementary filter developed at the Naval Postgraduate School, is developed. The performance of a consumer-grade nine-degrees-of-freedom IMU...measurement unit, complementary filter , gait phase detection, zero velocity update, MEMS, IMU, AHRS, GPS denied, distributed sensor, virtual sensor...algorithm and quaternion-based complementary filter developed at the Naval Postgraduate School, is developed. The performance of a consumer-grade nine
Why do parallel cortical systems exist for the perception of static form and moving form?
Grossberg, S
1991-02-01
This article analyzes computational properties that clarify why the parallel cortical systems V1----V2, V1----MT, and V1----V2----MT exist for the perceptual processing of static visual forms and moving visual forms. The article describes a symmetry principle, called FM symmetry, that is predicted to govern the development of these parallel cortical systems by computing all possible ways of symmetrically gating sustained cells with transient cells and organizing these sustained-transient cells into opponent pairs of on-cells and off-cells whose output signals are insensitive to direction of contrast. This symmetric organization explains how the static form system (static BCS) generates emergent boundary segmentations whose outputs are insensitive to direction of contrast and insensitive to direction of motion, whereas the motion form system (motion BCS) generates emergent boundary segmentations whose outputs are insensitive to direction of contrast but sensitive to direction of motion. FM symmetry clarifies why the geometries of static and motion form perception differ--for example, why the opposite orientation of vertical is horizontal (90 degrees), but the opposite direction of up is down (180 degrees). Opposite orientations and directions are embedded in gated dipole opponent processes that are capable of antagonistic rebound. Negative afterimages, such as the MacKay and waterfall illusions, are hereby explained as are aftereffects of long-range apparent motion. These antagonistic rebounds help to control a dynamic balance between complementary perceptual states of resonance and reset. Resonance cooperatively links features into emergent boundary segmentations via positive feedback in a CC loop, and reset terminates a resonance when the image changes, thereby preventing massive smearing of percepts. These complementary preattentive states of resonance and reset are related to analogous states that govern attentive feature integration, learning, and memory search in adaptive resonance theory. The mechanism used in the V1----MT system to generate a wave of apparent motion between discrete flashes may also be used in other cortical systems to generate spatial shifts of attention. The theory suggests how the V1----V2----MT cortical stream helps to compute moving form in depth and how long-range apparent motion of illusory contours occurs. These results collectively argue against vision theories that espouse independent processing modules. Instead, specialized subsystems interact to overcome computational uncertainties and complementary deficiencies, to cooperatively bind features into context-sensitive resonances, and to realize symmetry principles that are predicted to govern the development of the visual cortex.
Theory of Self- vs. Externally-Regulated LearningTM: Fundamentals, Evidence, and Applicability.
de la Fuente-Arias, Jesús
2017-01-01
The Theory of Self- vs. Externally-Regulated Learning TM has integrated the variables of SRL theory, the DEDEPRO model, and the 3P model. This new Theory has proposed: (a) in general, the importance of the cyclical model of individual self-regulation (SR) and of external regulation stemming from the context (ER), as two different and complementary variables, both in combination and in interaction; (b) specifically, in the teaching-learning context, the relevance of different types of combinations between levels of self-regulation (SR) and of external regulation (ER) in the prediction of self-regulated learning (SRL), and of cognitive-emotional achievement. This review analyzes the assumptions, conceptual elements, empirical evidence, benefits and limitations of SRL vs. ERL Theory . Finally, professional fields of application and future lines of research are suggested.
A study of storytelling, humour and learning in medicine.
Calman, K
2001-01-01
Story telling is a fundamental part of clinical practice. It provides the mechanism by which doctors and patients communicate and understand the meaning of illness and possible ways of dealing with it. Humour is a particular aspect of story telling and, while there are some negative aspects, generally does have a therapeutic benefit. The physiological effects of laughter are considerable. Both story telling and humour are important for learning and are complementary to the more formal learning from text books and lectures. Stories assist in the development of emotional knowledge. The hypothesis of the contagious theory of behaviour change is presented as a way in which ideas are transmitted from one person to another.
Salathé, Marcel
2016-12-01
The digital revolution has contributed to very large data sets (ie, big data) relevant for public health. The two major data sources are electronic health records from traditional health systems and patient-generated data. As the two data sources have complementary strengths-high veracity in the data from traditional sources and high velocity and variety in patient-generated data-they can be combined to build more-robust public health systems. However, they also have unique challenges. Patient-generated data in particular are often completely unstructured and highly context dependent, posing essentially a machine-learning challenge. Some recent examples from infectious disease surveillance and adverse drug event monitoring demonstrate that the technical challenges can be solved. Despite these advances, the problem of verification remains, and unless traditional and digital epidemiologic approaches are combined, these data sources will be constrained by their intrinsic limits. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.
NASA Astrophysics Data System (ADS)
Abeynayake, Canicious; Chant, Ian; Kempinger, Siegfried; Rye, Alan
2005-06-01
The Rapid Route Area and Mine Neutralisation System (RRAMNS) Capability Technology Demonstrator (CTD) is a countermine detection project undertaken by DSTO and supported by the Australian Defence Force (ADF). The limited time and budget for this CTD resulted in some difficult strategic decisions with regard to hardware selection and system architecture. Although the delivered system has certain limitations arising from its experimental status, many lessons have been learned which illustrate a pragmatic path for future development. RRAMNS a similar sensor suite to other systems, in that three complementary sensors are included. These are Ground Probing Radar, Metal Detector Array, and multi-band electro-optic sensors. However, RRAMNS uses a unique imaging system and a network based real-time control and sensor fusion architecture. The relatively simple integration of each of these components could be the basis for a robust and cost-effective operational system. The RRAMNS imaging system consists of three cameras which cover the visible spectrum, the mid-wave and long-wave infrared region. This subsystem can be used separately as a scouting sensor. This paper describes the system at its mid-2004 status, when full integration of all detection components was achieved.
Wang, Shuang; Yue, Bo; Liang, Xuefeng; Jiao, Licheng
2018-03-01
Wisely utilizing the internal and external learning methods is a new challenge in super-resolution problem. To address this issue, we analyze the attributes of two methodologies and find two observations of their recovered details: 1) they are complementary in both feature space and image plane and 2) they distribute sparsely in the spatial space. These inspire us to propose a low-rank solution which effectively integrates two learning methods and then achieves a superior result. To fit this solution, the internal learning method and the external learning method are tailored to produce multiple preliminary results. Our theoretical analysis and experiment prove that the proposed low-rank solution does not require massive inputs to guarantee the performance, and thereby simplifying the design of two learning methods for the solution. Intensive experiments show the proposed solution improves the single learning method in both qualitative and quantitative assessments. Surprisingly, it shows more superior capability on noisy images and outperforms state-of-the-art methods.
Photovoltaic balance-of-system designs and costs at PVUSA
NASA Astrophysics Data System (ADS)
Reyes, A. B.; Jennings, C.
1995-05-01
This report is one in a series of 1994-1995 PVUSA reports that document PVUSA lessons learned at demonstration sites in California and Texas. During the last 7 years (1988 to 1994), 16 PV systems ranging from 20 kW to 500 kW have been installed. Six 20-kW emerging module technology (EMT) arrays and three turnkey (i.e., vendor designed and integrated) utility-scale systems were procured and installed at PVUSA's main test site in Davis, California. PVUSA host utilities have installed a total of seven EMT arrays and utility-scale systems in their service areas. Additional systems at Davis and host utility sites are planned. One of PVUSA's key objectives is to evaluate the performance, reliability, and cost of PV balance-of-system (BOS). In the procurement stage PVUSA encouraged innovative design to improve upon present practice by reducing maintenance, improving reliability, or lowering manufacturing or construction costs. The project team worked closely with suppliers during the design stage not only to ensure designs met functional and safety specifications, but to provide suggestions for improvement. This report, intended for the photovoltaic (PV) industry and for utility project managers and engineers considering PV plant construction and ownership, documents PVUSA utility-scale system design and cost lessons learned. Complementary PVUSA topical reports document: construction and safety experience; five-year assessment of EMTs; validation of the Kerman 500-kW grid-support PV plant benefits; PVUSA instrumentation and data analysis techniques; procurement, acceptance, and rating practices for PV power plants; experience with power conditioning units and power quality.
Beyond Ethical Frameworks: Using Moral Experimentation in the Engineering Ethics Classroom.
Walling, Olivia
2015-12-01
Although undergraduate engineering ethics courses often include the development of moral sensitivity as a learning objective and the use of active learning techniques, teaching centers on the transmission of cognitive knowledge. This article describes a complementary assignment asking students to perform an ethics "experiment" on themselves that has a potential to enhance affective learning and moral imagination. The article argues that the focus on cognitive learning may not promote, and may even impair, our efforts to foster moral sensitivity. In contrast, the active learning assignments and exercises, like the ethics "experiment" discussed, offer great potential to expand the scope of instruction in engineering ethics to include ethical behavior as well as knowledge. Engineering ethics education needs to extend beyond the narrow range of human action associated with the technical work of the engineer and explore ways to draw on broader lifeworld experiences to enrich professional practice and identity.
Holistic processing from learned attention to parts.
Chua, Kao-Wei; Richler, Jennifer J; Gauthier, Isabel
2015-08-01
Attention helps us focus on what is most relevant to our goals, and prior work has shown that aspects of attention can be learned. Learned inattention to parts can abolish holistic processing of faces, but it is unknown whether learned attention to parts is sufficient to cause a change from part-based to holistic processing with objects. We trained subjects to individuate nonface objects (Greebles) from 2 categories: Ploks and Glips. Diagnostic information was in complementary halves for the 2 categories. Holistic processing was then tested with Plok-Glip composites that combined the kind of part that was diagnostic or nondiagnostic during training. Exposure to Greeble parts resulted in general failures of selective attention for nondiagnostic composites, but face-like holistic processing was only observed for diagnostic composites. These results demonstrated a novel link between learned attentional control and the acquisition of holistic processing. (c) 2015 APA, all rights reserved).
Reorganization of corticospinal output during motor learning
Peters, Andrew J.; Lee, Jun; Hedrick, Nathan G.; O’Neil, Keelin; Komiyama, Takaki
2017-01-01
Motor learning is accompanied by widespread changes within the motor cortex, but it is unknown whether these changes are ultimately funneled through a stable corticospinal output channel or if the corticospinal output itself is plastic. We investigated the consistency of the relationship between corticospinal neuron activity and movement through in vivo two-photon calcium imaging in mice learning a lever-press task. Corticospinal neurons exhibited heterogeneous correlations with movement, with the majority of movement-modulated neurons decreasing activity during movement. Individual cells changed their activity across days which led to novel associations between corticospinal activity and movement. Unlike previous observations in layer 2/3, activity accompanying learned movements did not become more consistent with learning, and instead the activity of dissimilar movements became more decorrelated. These results indicate that the relationship between corticospinal activity and movement is dynamic, and the types of activity and plasticity are different from and possibly complementary to layer 2/3. PMID:28671694
ERIC Educational Resources Information Center
Cook, Anthony L.; Snow, Elizabeth T.; Binns, Henrica; Cook, Peta S.
2015-01-01
Inquiry-based learning (IBL) activities are complementary to the processes of laboratory discovery, as both are focused on producing new findings through research and inquiry. Here, we describe the results of student surveys taken pre- and postpractical to an IBL undergraduate practical on PCR. Our analysis focuses primarily student perceptions of…
Students' Perception on the Usefulness of ICT-Based Language Program
ERIC Educational Resources Information Center
Wiyaka; Mujiyanto, Januarius; Rukmini, Dwi
2018-01-01
This paper presents the result of a survey on the usefulness of an ICT-based software program called DEC (a pseudonym for a particular commercial English learning resource). This program was utilized by English Departement University of PGRI Semarang as a complementary software in Integrated Course offered to the first semester students. The…
ERIC Educational Resources Information Center
Lea, Mary R.; Stierer, Barry
2011-01-01
In this article we examine issues of academic identity through the lens of academics' everyday workplace writing, offering a complementary perspective to those already evident in the higher education research literature. Motivated by an interest in the relationship between routine writing and aspects of professional practice, we draw on data from…
ERIC Educational Resources Information Center
Yamazaki, Y.; Aust, U.; Huber, L.; Hausmann, M.; Gunturkun, O.
2007-01-01
This study was aimed at revealing which cognitive processes are lateralized in visual categorizations of "humans" by pigeons. To this end, pigeons were trained to categorize pictures of humans and then tested binocularly or monocularly (left or right eye) on the learned categorization and for transfer to novel exemplars (Experiment 1). Subsequent…
ERIC Educational Resources Information Center
Nelson, K.; Clarke, J.; Stoodley, I.; Creagh, T.
2015-01-01
The generational approach to conceptualising first-year student learning behaviour has made a useful contribution to understanding student engagement. It has an explicit focus on student behaviour and we suggest that a Capability Maturity Model interpretation may provide a complementary extension of that understanding as it builds on the…
ERIC Educational Resources Information Center
Gleeson, Margaret; Davison, Chris
2016-01-01
Secondary schools in Australia have long benefited from state policies aiming to increase the academic success of English language learners (ELLs). Complementary pre-service and in-service teacher education programmes have been implemented to raise the expertise of subject teachers who teach ELL students. However, subject teachers may not be…
Promoting Student Autonomy through the Use of the European Language Portfolio
ERIC Educational Resources Information Center
Gonzalez, Jesus Angel
2009-01-01
The European Language Portfolio (ELP) is a document launched by the Council of Europe in 2001 which consists of three sections: the Passport, the Language Biography, and the Dossier. It has two complementary functions: a pedagogic function (helping students to reflect on their learning and objectives) and a reporting function (providing a record…
iPad versus Traditional Tools in Art and Design: A Complementary Association
ERIC Educational Resources Information Center
Souleles, Nicos
2017-01-01
There is continuous debate on the role of digital media tools in art and design Higher Education, and in particular their potential contribution towards teaching and learning. The related literature indicates that there is a dichotomy between digital and traditional tools. This study investigates the views of a cohort of art and design students…
Habermas and the Meaning of the Post-Secular Society: Complementary Learning Processes
ERIC Educational Resources Information Center
Welton, Michael R.
2014-01-01
This essay argues that if social justice is to prevail in our world, we must understand the post-secular nature of our globalized society as a prerequisite for moving beyond "might is right" to national and international relations that heed all voices towards evidence-based interaction. Our post-secular world and postmetaphysical…
Tracing organizing principles: learning from the history of systems biology.
Green, Sara; Wolkenhauer, Olaf
2013-01-01
With the emergence of systems biology, the identification of organizing principles is being highlighted as a key research aim. Researchers attempt to "reverse engineer" the functional organization of biological systems using methodologies from mathematics, engineering and computer science while taking advantage of data produced by new experimental techniques. While systems biology is a relatively new approach, the quest for general principles of biological organization dates back to systems theoretic approaches in early and mid-twentieth century. The aim of this paper is to draw on this historical background in order to increase the understanding of the motivation behind the search for general principles and to clarify different epistemic aims within systems biology. We pinpoint key aspects of earlier approaches that also underlie the current practice. These are i) the focus on relational and system-level properties, ii) the inherent critique of reductionism and fragmentation of knowledge resulting from overspecialization, and iii) the insight that the ideal of formulating abstract organizing principles is complementary to, rather than conflicting with, the aim of formulating detailed explanations of biological mechanisms. We argue that looking back not only helps us understand the current practice but also points to possible future directions for systems biology.
Learning Compositional Shape Models of Multiple Distance Metrics by Information Projection.
Luo, Ping; Lin, Liang; Liu, Xiaobai
2016-07-01
This paper presents a novel compositional contour-based shape model by incorporating multiple distance metrics to account for varying shape distortions or deformations. Our approach contains two key steps: 1) contour feature generation and 2) generative model pursuit. For each category, we first densely sample an ensemble of local prototype contour segments from a few positive shape examples and describe each segment using three different types of distance metrics. These metrics are diverse and complementary with each other to capture various shape deformations. We regard the parameterized contour segment plus an additive residual ϵ as a basic subspace, namely, ϵ -ball, in the sense that it represents local shape variance under the certain distance metric. Using these ϵ -balls as features, we then propose a generative learning algorithm to pursue the compositional shape model, which greedily selects the most representative features under the information projection principle. In experiments, we evaluate our model on several public challenging data sets, and demonstrate that the integration of multiple shape distance metrics is capable of dealing various shape deformations, articulations, and background clutter, hence boosting system performance.
Contextual fear conditioning in zebrafish.
Kenney, Justin W; Scott, Ian C; Josselyn, Sheena A; Frankland, Paul W
2017-10-01
Zebrafish are a genetically tractable vertebrate that hold considerable promise for elucidating the molecular basis of behavior. Although numerous recent advances have been made in the ability to precisely manipulate the zebrafish genome, much less is known about many aspects of learning and memory in adult fish. Here, we describe the development of a contextual fear conditioning paradigm using an electric shock as the aversive stimulus. We find that contextual fear conditioning is modulated by shock intensity, prevented by an established amnestic agent (MK-801), lasts at least 14 d, and exhibits extinction. Furthermore, fish of various background strains (AB, Tu, and TL) are able to acquire fear conditioning, but differ in fear extinction rates. Taken together, we find that contextual fear conditioning in zebrafish shares many similarities with the widely used contextual fear conditioning paradigm in rodents. Combined with the amenability of genetic manipulation in zebrafish, we anticipate that our paradigm will prove to be a useful complementary system in which to examine the molecular basis of vertebrate learning and memory. © 2017 Kenney et al.; Published by Cold Spring Harbor Laboratory Press.
NASA Astrophysics Data System (ADS)
Seah, Lay Hoon; Clarke, David John; Hart, Christina Eugene
2014-04-01
This case study of a science lesson, on the topic thermal expansion, examines the language demands on students from an integrated science and language perspective. The data were generated during a sequence of 9 lessons on the topic of 'States of Matter' in a Grade 7 classroom (12-13 years old students). We identify the language demands by comparing students' writings with the scientific account of expansion that the teacher intended the students to learn. The comparison involved both content analysis and lexicogrammatical (LG) analysis. The framework of Systemic Functional Linguistics was adopted for the LG analysis. Our analysis reveals differences in the meaning and the way LG resources were employed between the students' writings and the scientific account. From these differences, we found the notion of condition-of-use for LG resources to be a significant aspect of the language that students need to appropriate in order to employ the language of school science appropriately. This notion potentially provides a means by which teachers could concurrently address the conceptual and representational demands of science learning. Finally, we reflect on how the complementary use of content analysis and LG analysis provides a way for integrating the science and language perspectives in order to understand the demands of learning science through language.
NASA Astrophysics Data System (ADS)
Hofmann, Markus J.; Kuchinke, Lars
2015-06-01
While the emotional trias of brainstem, diencephalon, and orbitofrontal cortex is generally accepted to hold an affective function at its core, fewer researchers would agree that the least common denominator function of the hippocampus is affective [1]. There is a greater consensus on complementary learning systems theory proposing that in contrast to the outer cerebral cortex hosting more stable memories, synaptic associations in the hippocampus create novel knowledge in the context of episodic memories [2]. We chose Oscar Wilde's quote [3, p. 108] as title because we think that the novel hippocampal conjunction of for the most part familiar (long-term) knowledge patterns elicits the positive affect of appreciation [4,5].
A methodology toward manufacturing grid-based virtual enterprise operation platform
NASA Astrophysics Data System (ADS)
Tan, Wenan; Xu, Yicheng; Xu, Wei; Xu, Lida; Zhao, Xianhua; Wang, Li; Fu, Liuliu
2010-08-01
Virtual enterprises (VEs) have become one of main types of organisations in the manufacturing sector through which the consortium companies organise their manufacturing activities. To be competitive, a VE relies on the complementary core competences among members through resource sharing and agile manufacturing capacity. Manufacturing grid (M-Grid) is a platform in which the production resources can be shared. In this article, an M-Grid-based VE operation platform (MGVEOP) is presented as it enables the sharing of production resources among geographically distributed enterprises. The performance management system of the MGVEOP is based on the balanced scorecard and has the capacity of self-learning. The study shows that a MGVEOP can make a semi-automated process possible for a VE, and the proposed MGVEOP is efficient and agile.
NASA Technical Reports Server (NTRS)
Leisawitz, D,; Baker, G.; Barger, A.; Benford, D.; Blain, A; Boyle, R.; Broderick, R.; Budinoff, J.; Carpenter, J.; Caverly, R.;
2007-01-01
We report results of a recently-completed study of SPIRIT, a candidate NASA Origins Probe. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets form, and why some planets are ice giants and others are rocky; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. Observations with SPIRIT will be complementary to those of the James Webb Space Telescope and the ground-based Atacama Large Millimeter Array. All three observatories could be operational contemporaneously. SPIRIT will pave the way to the 1 km maximum baseline interferometer known as the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). In addition to the SPIRIT mission concept, this talk will emphasize the importance of dense u-v plane coverage and describe some of the practical considerations associated with alternative interferometric baseline sampling schemes.
Theory of Self- vs. Externally-Regulated LearningTM: Fundamentals, Evidence, and Applicability
de la Fuente-Arias, Jesús
2017-01-01
The Theory of Self- vs. Externally-Regulated LearningTM has integrated the variables of SRL theory, the DEDEPRO model, and the 3P model. This new Theory has proposed: (a) in general, the importance of the cyclical model of individual self-regulation (SR) and of external regulation stemming from the context (ER), as two different and complementary variables, both in combination and in interaction; (b) specifically, in the teaching-learning context, the relevance of different types of combinations between levels of self-regulation (SR) and of external regulation (ER) in the prediction of self-regulated learning (SRL), and of cognitive-emotional achievement. This review analyzes the assumptions, conceptual elements, empirical evidence, benefits and limitations of SRL vs. ERL Theory. Finally, professional fields of application and future lines of research are suggested. PMID:29033872
Information-theoretic decomposition of embodied and situated systems.
Da Rold, Federico
2018-07-01
The embodied and situated view of cognition stresses the importance of real-time and nonlinear bodily interaction with the environment for developing concepts and structuring knowledge. In this article, populations of robots controlled by an artificial neural network learn a wall-following task through artificial evolution. At the end of the evolutionary process, time series are recorded from perceptual and motor neurons of selected robots. Information-theoretic measures are estimated on pairings of variables to unveil nonlinear interactions that structure the agent-environment system. Specifically, the mutual information is utilized to quantify the degree of dependence and the transfer entropy to detect the direction of the information flow. Furthermore, the system is analyzed with the local form of such measures, thus capturing the underlying dynamics of information. Results show that different measures are interdependent and complementary in uncovering aspects of the robots' interaction with the environment, as well as characteristics of the functional neural structure. Therefore, the set of information-theoretic measures provides a decomposition of the system, capturing the intricacy of nonlinear relationships that characterize robots' behavior and neural dynamics. Copyright © 2018 Elsevier Ltd. All rights reserved.
BANFISA and (IN) DICA-SUS in health undergraduate education: playing and learning construction.
Silva, Laianna Victoria Santiago; Tanaka, Patrícia Sayuri de Lima; Pires, Maria Raquel Gomes Maia
2015-01-01
To analyze the learning built during the matches of the games by students of the subject Gestão de Políticas Públicas em Saúde at the Universidade de Brasília. Exploratory, descriptive research, in a qualitative approach, with 26 students from various graduation courses in health, using a questionnaire and participant observation. Participants reinvented rules, related issues addressed in the games to the reality, interacted with colleagues and had fun throughout the match. Comparing the games in relation to ludicity, the BANFISA was more attractive than the (IN) DICA-SUS, although they are complementary. Learning constructed by the students goes beyond the content of the subject; involve the active participation in group and creativity.
Neurally and ocularly informed graph-based models for searching 3D environments.
Jangraw, David C; Wang, Jun; Lance, Brent J; Chang, Shih-Fu; Sajda, Paul
2014-08-01
As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions-our implicit 'labeling' of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the 'similar' objects it identifies. We show that by exploiting the subjects' implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers' inference of subjects' implicit labeling. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user's interests.
NASA Astrophysics Data System (ADS)
Sajda, Paul
2017-05-01
As we move through an environment, we are constantly making assessments, judgments, and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions - our implicit "labeling" of the world. In this talk I will describe our work using physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3-D environment. Specifically, we record electroencephalographic (EEG), saccadic, and pupillary data from subjects as they move through a small part of a 3-D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to those that are labelled. Finally, the system plots an efficient route so that subjects visit similar objects of interest. We show that by exploiting the subjects' implicit labeling, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers' inference of subjects' implicit labeling. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3-D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user's interests.
Neurally and ocularly informed graph-based models for searching 3D environments
NASA Astrophysics Data System (ADS)
Jangraw, David C.; Wang, Jun; Lance, Brent J.; Chang, Shih-Fu; Sajda, Paul
2014-08-01
Objective. As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions—our implicit ‘labeling’ of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. Approach. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the ‘similar’ objects it identifies. Main results. We show that by exploiting the subjects’ implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers’ inference of subjects’ implicit labeling. Significance. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user’s interests.
NASA Technical Reports Server (NTRS)
Garren, J. F., Jr.; Niessen, F. R.; Abbott, T. S.; Yenni, K. R.
1977-01-01
A modified complementary filtering technique for estimating aircraft roll rate was developed and flown in a research helicopter to determine whether higher gains could be achieved. Use of this technique did, in fact, permit a substantial increase in system frequency bandwidth because, in comparison with first-order filtering, it reduced both noise amplification and control limit-cycle tendencies.
Intelligent complementary sliding-mode control for LUSMS-based X-Y-theta motion control stage.
Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai; Liu, Yen-Hung
2010-07-01
An intelligent complementary sliding-mode control (ICSMC) system using a recurrent wavelet-based Elman neural network (RWENN) estimator is proposed in this study to control the mover position of a linear ultrasonic motors (LUSMs)-based X-Y-theta motion control stage for the tracking of various contours. By the addition of a complementary generalized error transformation, the complementary sliding-mode control (CSMC) can efficiently reduce the guaranteed ultimate bound of the tracking error by half compared with the slidingmode control (SMC) while using the saturation function. To estimate a lumped uncertainty on-line and replace the hitting control of the CSMC directly, the RWENN estimator is adopted in the proposed ICSMC system. In the RWENN, each hidden neuron employs a different wavelet function as an activation function to improve both the convergent precision and the convergent time compared with the conventional Elman neural network (ENN). The estimation laws of the RWENN are derived using the Lyapunov stability theorem to train the network parameters on-line. A robust compensator is also proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher-order terms in Taylor series. Finally, some experimental results of various contours tracking show that the tracking performance of the ICSMC system is significantly improved compared with the SMC and CSMC systems.
ERIC Educational Resources Information Center
Powell, Frankie Denise; Fields, Larry D.; Bell, Edwin D.; Johnson, Gwendolyn S.
2007-01-01
Dr. Larry D. Fields, the former principal of Rowland H. Latham Elementary, led the development of a complementary learning model that became known as the Latham Way. The Latham Way produced remarkable academic success among poor minority students. The chi-square of the expected and the actual scores in reading and mathematics were significant at p…
The Role of the Family in Heritage Language Use and Learning: Impact on Heritage Language Policies
ERIC Educational Resources Information Center
Melo-Pfeifer, Sílvia
2015-01-01
We analyze the way children and youngsters perceive the role of family in the use and acquisition of the heritage language (HL), through two complementary means: drawings produced by children and students participating in a discussion forum. Our study reveals: (1) the convergence of perceptions that children and adolescents have about family…
ERIC Educational Resources Information Center
Veletsianos, George
2017-01-01
Researchers have proposed that social media provide complementary learning environments for Massive Open Online Courses (MOOCs) that might engender participation, engagement, and peer-support. Although suggestive, nearly all of the research in this area consists of case studies, making it challenging to determine whether or to what extent findings…
WiFiSiM: An Educational Tool for the Study and Design of Wireless Networks
ERIC Educational Resources Information Center
Mateo Sanguino, T. J.; Serrano Lopez, C.; Marquez Hernandez, F. A.
2013-01-01
A new educational simulation tool designed for the generic study of wireless networks, the Wireless Fidelity Simulator (WiFiSim), is presented in this paper. The goal of this work was to create and implement a didactic tool to improve the teaching and learning of computer networks by means of two complementary strategies: simulating the behavior…
A Pilot Study of Flipped Cardiopulmonary Resuscitation Training: Which Items Can Be Self-Trained?
ERIC Educational Resources Information Center
Van Raemdonck, Veerle; Aerenhouts, Dirk; Monsieurs, Koen; De Martelaer, Kristine
2017-01-01
Objective: This study evaluated self-trained basic life support (BLS) skills acquired from an e-learning platform to design a complementary in-class training approach. Design: In total, 41 students (15-17 years, 29 men) participated in a pilot study on self-training in BLS. After 6 weeks, a compression-only cardiopulmonary resuscitation (CPR) test…
Wardle, Jonathan Lee; Sarris, Jerome
2014-06-01
Complementary medicine is forming an increasingly large part of health care in developed countries and is increasingly being formally taught in tertiary academic settings. An exploratory study of naturopathic student perceptions of, use of and attitudes towards teaching resources in naturopathic clinical training and education. Focus groups were conducted with current and recent students of 4-year naturopathic degree programmes in Brisbane and Sydney to ascertain how they interact with clinical teaching materials, and their perceptions and attitudes towards teaching materials in naturopathic education. Naturopathic students have a complex and critical relationship with their learning materials. Although naturopathic practice is often defined by traditional evidence, students want information that both supports and is critical of traditional naturopathic practices, and focuses heavily on evidence-based medicine. Students remain largely ambivalent about new teaching technologies and would prefer that these develop organically as an evolution from printed materials, rather than depart from dramatically and radically from these previously established materials. Findings from this study will assist publishers, librarians and academics develop clinical information sources that appropriately meet student expectations and support their learning requirements. © 2014 The authors. Health Information and Libraries Journal © 2014 Health Libraries Group.
Penkala-Gawecka, D
2001-01-01
The article discusses society's attitudes towards bio-medicine and complementary medicine in Kazakhstan around the end of the 20th century. It presents the transformation of the health-care system in independent Kazakhstan and its influence on the health situation of the population as well as public opinion on bio-medicine. Presented is a broad spectrum of various fields of complementary medicine which achieved great popularity especially during the 1990s. Among the reasons for that growing popularity appears to be public disenchantment with the collapsing state health-care system which is costly and ineffective. At the same time, an important factor is the durability of traditional beliefs of a magical type which is behind the wide use of nonconventional magic-religious practices -- spells and prayers. Overall public socio-economic malaise and a fear of the future are conducive to a general increase of interest in mystical beliefs and occult practices as well as a paranormal phenomena, and the flourishing of complementary medicine naturally fits into that scheme.
Gwee, Matthew Choon-Eng
2009-05-01
Problem-based learning (PBL) was first implemented by McMaster University medical school in 1969 as a radical, innovative, and alternative pathway to learning in medical education, thus setting a new educational trend. PBL has now spread widely across the globe and beyond the healthcare disciplines, and has prevailed for almost four decades. PBL is essentially a strategic learning system design, which combines several complementary educational principles for the delivery of instruction. PBL is specifically aimed at enhancing and optimizing the educational outcomes of learner-centered, collaborative, contextual, integrated, self-directed, and reflective learning. The design and delivery of instruction in PBL involve peer teaching and learning in small groups through the social construction of knowledge using a real-life problem case to trigger the learning process. Therefore, PBL represents a major shift in the educational paradigm from the traditional teacher-directed (teacher-centered) instruction to student-centered (learner-centered) learning. PBL is firmly underpinned by several educational theories, but problems are often encountered in practice that can affect learning outcomes. Educators contemplating implementing PBL in their institutions should have a clear understanding of its basic tenets, its practice and its philosophy, as well as the issues, challenges, and opportunities associated with its implementation. Special attention should be paid to the training and selection of PBL tutors who have a critical role in the PBL process. Furthermore, a significant change in the mindsets of both students and teachers are required for the successful implementation of PBL. Thus, effective training programs for students and teachers must precede its implementation. PBL is a highly resource-intensive learning strategy and the returns on investment (i.e. the actual versus expected learning outcomes) should be carefully and critically appraised in the decision-making process. Implementation of PBL can be a daunting task and will require detailed and careful planning, together with a significant commitment on the part of educators given the responsibility to implement PBL in an institution. PBL can offer a more holistic, value-added, and quality education to energize student learning in the healthcare professions in the 21st century. Successful implementation of PBL can therefore help to nurture in students the development of desired "habits of mind, behavior, and action" to become the competent, caring, and ethical healthcare professionals of the 21st century. Thus, PBL can contribute to the improvement of the healthcare of a nation by healthcare professionals, but we need to do it right.
Lessons Learned from Deploying an Analytical Task Management Database
NASA Technical Reports Server (NTRS)
O'Neil, Daniel A.; Welch, Clara; Arceneaux, Joshua; Bulgatz, Dennis; Hunt, Mitch; Young, Stephen
2007-01-01
Defining requirements, missions, technologies, and concepts for space exploration involves multiple levels of organizations, teams of people with complementary skills, and analytical models and simulations. Analytical activities range from filling a To-Be-Determined (TBD) in a requirement to creating animations and simulations of exploration missions. In a program as large as returning to the Moon, there are hundreds of simultaneous analysis activities. A way to manage and integrate efforts of this magnitude is to deploy a centralized database that provides the capability to define tasks, identify resources, describe products, schedule deliveries, and generate a variety of reports. This paper describes a web-accessible task management system and explains the lessons learned during the development and deployment of the database. Through the database, managers and team leaders can define tasks, establish review schedules, assign teams, link tasks to specific requirements, identify products, and link the task data records to external repositories that contain the products. Data filters and spreadsheet export utilities provide a powerful capability to create custom reports. Import utilities provide a means to populate the database from previously filled form files. Within a four month period, a small team analyzed requirements, developed a prototype, conducted multiple system demonstrations, and deployed a working system supporting hundreds of users across the aeros pace community. Open-source technologies and agile software development techniques, applied by a skilled team enabled this impressive achievement. Topics in the paper cover the web application technologies, agile software development, an overview of the system's functions and features, dealing with increasing scope, and deploying new versions of the system.
Holdstock, J S; Mayes, A R; Roberts, N; Cezayirli, E; Isaac, C L; O'Reilly, R C; Norman, K A
2002-01-01
The claim that recognition memory is spared relative to recall after focal hippocampal damage has been disputed in the literature. We examined this claim by investigating object and object-location recall and recognition memory in a patient, YR, who has adult-onset selective hippocampal damage. Our aim was to identify the conditions under which recognition was spared relative to recall in this patient. She showed unimpaired forced-choice object recognition but clearly impaired recall, even when her control subjects found the object recognition task to be numerically harder than the object recall task. However, on two other recognition tests, YR's performance was not relatively spared. First, she was clearly impaired at an equivalently difficult yes/no object recognition task, but only when targets and foils were very similar. Second, YR was clearly impaired at forced-choice recognition of object-location associations. This impairment was also unrelated to difficulty because this task was no more difficult than the forced-choice object recognition task for control subjects. The clear impairment of yes/no, but not of forced-choice, object recognition after focal hippocampal damage, when targets and foils are very similar, is predicted by the neural network-based Complementary Learning Systems model of recognition. This model postulates that recognition is mediated by hippocampally dependent recollection and cortically dependent familiarity; thus hippocampal damage should not impair item familiarity. The model postulates that familiarity is ineffective when very similar targets and foils are shown one at a time and subjects have to identify which items are old (yes/no recognition). In contrast, familiarity is effective in discriminating which of similar targets and foils, seen together, is old (forced-choice recognition). Independent evidence from the remember/know procedure also indicates that YR's familiarity is normal. The Complementary Learning Systems model can also accommodate the clear impairment of forced-choice object-location recognition memory if it incorporates the view that the most complete convergence of spatial and object information, represented in different cortical regions, occurs in the hippocampus.
NASA Astrophysics Data System (ADS)
Wolf, Nils; Hof, Angela
2012-10-01
Urban sprawl driven by shifts in tourism development produces new suburban landscapes of water consumption on Mediterranean coasts. Golf courses, ornamental, 'Atlantic' gardens and swimming pools are the most striking artefacts of this transformation, threatening the local water supply systems and exacerbating water scarcity. In the face of climate change, urban landscape irrigation is becoming increasingly important from a resource management point of view. This paper adopts urban remote sensing towards a targeted mapping approach using machine learning techniques and highresolution satellite imagery (WorldView-2) to generate GIS-ready information for urban water consumption studies. Swimming pools, vegetation and - as a subgroup of vegetation - turf grass are extracted as important determinants of water consumption. For image analysis, the complex nature of urban environments suggests spatial-spectral classification, i.e. the complementary use of the spectral signature and spatial descriptors. Multiscale image segmentation provides means to extract the spatial descriptors - namely object feature layers - which can be concatenated at pixel level to the spectral signature. This study assesses the value of object features using different machine learning techniques and amounts of labeled information for learning. The results indicate the benefit of the spatial-spectral approach if combined with appropriate classifiers like tree-based ensembles or support vector machines, which can handle high dimensionality. Finally, a Random Forest classifier was chosen to deliver the classified input data for the estimation of evaporative water loss and net landscape irrigation requirements.
Busanello, F H; da Silveira, P F; Liedke, G S; Arús, N A; Vizzotto, M B; Silveira, H E D; Silveira, H L D
2015-11-01
Studies have shown that inappropriate therapeutic strategies may be adopted if crown and root changes are misdiagnosed, potentially leading to undesirable consequences. Therefore, the aim of this study was to evaluate a digital learning object, developed to improve skills in diagnosing radiographic dental changes. The object was developed using the Visual Basic Application (VBA) software and evaluated by 62 undergraduate students (male: 24 and female: 38) taking an imaging diagnosis course. Participants were divided in two groups: test group, which used the object and control group, which attended conventional classes. After 3 weeks, students answered a 10-question test and took a practice test to diagnose 20 changes in periapical radiographs. The results show that test group performed better that control group in both tests, with statistically significant difference (P = 0.004 and 0.003, respectively). In overall, female students were better than male students. Specific aspects of object usability were assessed using a structured questionnaire based on the System Usability Scale (SUS), with a score of 90.5 and 81.6 by male and female students, respectively. The results obtained in this study suggest that students who used the DLO performed better than those who used conventional methods. This suggests that the DLO may be a useful teaching tool for dentistry undergraduates, on distance learning courses and as a complementary tool in face-to-face teaching. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Focusing light in a bianisotropic slab with negatively refracting materials.
Liu, Yan; Guenneau, Sebastien; Gralak, Boris; Ramakrishna, S Anantha
2013-04-03
We investigate the electromagnetic response of a pair of complementary bianisotropic media, which consist of a medium with positive refractive index (+ε, +μ, +ξ) and a medium with negative refractive index(-ε, -μ, -ξ). We show that this idealized system has peculiar imaging properties in that it reproduces images of a source, in principle, with unlimited resolution. We then consider an infinite array of line sources regularly spaced in a 1D photonic crystal (PC) consisting of 2n layers of bianisotropic complementary media. Using coordinate transformations, we map this system into 2D corner chiral lenses of 2n heterogeneous anisotropic complementary media sharing a vertex, within which light circles around closed trajectories. Alternatively, one can consider corner lenses with homogeneous isotropic media and map them into 1D PCs with heterogeneous bianisotropic layers. Interestingly, such complementary media are described by scalar, or matrix valued, sign-shifting parameters, which satisfy a new version of the generalized lens theorem of Pendry and Ramakrishna. This theorem can be derived using Fourier series solutions of the Maxwell-Tellegen equations, or from space-time symmetry arguments. Also of interest are 2D periodic checkerboards consisting of alternating rectangular cells of complementary media which are such that one point source in one cell gives rise to an infinite set of images with an image in every other cell. Such checkerboards can themselves be mapped into a class of 3D corner lenses of complementary bianisotropic media. These theoretical results are illustrated by finite element computations.
Al-Shorbaji, Najeeb; Borycki, Elizabeth M; Kimura, Michio; Lehmann, Christoph U; Lorenzi, Nancy M; Moura, Lincoln A; Winter, Alfred
2017-02-01
This article is part of a For-Discussion-Section of Methods of Information in Medicine about the paper "Representation of People's Decisions in Health Information Systems: A Complementary Approach for Understanding Health Care Systems and Population Health" written by Fernan Gonzalez Bernaldo de Quiros, Adriana Ruth Dawidowski, and Silvana Figar. It is introduced by an editorial. This article contains the combined commentaries invited to independently comment on the paper of de Quiros, Dawidowski, and Figar. In subsequent issues the discussion can continue through letters to the editor.
Trelease, Robert B; Nieder, Gary L
2013-01-01
Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android tablets. This article describes complementary methods for creating comparable, multiplatform VR learning objects in the new HTML5 standard format, circumventing platform-specific limitations imposed by the QuickTime VR multimedia file format. Multiple types or "dimensions" of anatomical information can be embedded in such learning objects, supporting different kinds of online learning applications, including interactive atlases, examination questions, and complex, multi-structure presentations. Such HTML5 VR learning objects are usable on new mobile devices that do not support QuickTime VR, as well as on personal computers. Furthermore, HTML5 VR learning objects can be embedded in "ebook" document files, supporting the development of new types of electronic textbooks on mobile devices that are increasingly popular and self-adopted for mobile learning. © 2012 American Association of Anatomists.
Studio-based learning in interprofessional education.
Shraiky, James Rodolfo; Lamb, Gerri
2013-11-01
The recent growth of interprofessional education (IPE) in healthcare has been accompanied by exploration of teaching strategies to improve its effectiveness. Experts in IPE advise faculty to explore teaching models from other disciplines outside of healthcare. Studio-based learning (SBL) in design education embodies many of the features that are integral to effective IPE. Students work in teams to design new processes and products to solve complex and real-life problems. The purpose of this paper is to describe features of SBL that enhance IPE and examine student experiences of interprofessional learning from three healthcare design studios. Findings from an exploratory case study of these design studios involving students from a range of professions suggest that the students transition through learning stages in SBL that may enhance IPE. The paper goes on to discuss the unique features of SBL and how they offer new and complementary strategies for building interprofessional curricula.
Image Reconstruction is a New Frontier of Machine Learning.
Wang, Ge; Ye, Jong Chu; Mueller, Klaus; Fessler, Jeffrey A
2018-06-01
Over past several years, machine learning, or more generally artificial intelligence, has generated overwhelming research interest and attracted unprecedented public attention. As tomographic imaging researchers, we share the excitement from our imaging perspective [item 1) in the Appendix], and organized this special issue dedicated to the theme of "Machine learning for image reconstruction." This special issue is a sister issue of the special issue published in May 2016 of this journal with the theme "Deep learning in medical imaging" [item 2) in the Appendix]. While the previous special issue targeted medical image processing/analysis, this special issue focuses on data-driven tomographic reconstruction. These two special issues are highly complementary, since image reconstruction and image analysis are two of the main pillars for medical imaging. Together we cover the whole workflow of medical imaging: from tomographic raw data/features to reconstructed images and then extracted diagnostic features/readings.
PBL and CDIO: complementary models for engineering education development
NASA Astrophysics Data System (ADS)
Edström, Kristina; Kolmos, Anette
2014-09-01
This paper compares two models for reforming engineering education, problem/project-based learning (PBL), and conceive-design-implement-operate (CDIO), identifying and explaining similarities and differences. PBL and CDIO are defined and contrasted in terms of their history, community, definitions, curriculum design, relation to disciplines, engineering projects, and change strategy. The structured comparison is intended as an introduction for learning about any of these models. It also invites reflection to support the understanding and evolution of PBL and CDIO, and indicates specifically what the communities can learn from each other. It is noted that while the two approaches share many underlying values, they only partially overlap as strategies for educational reform. The conclusions are that practitioners have much to learn from each other's experiences through a dialogue between the communities, and that PBL and CDIO can play compatible and mutually reinforcing roles, and thus can be fruitfully combined to reform engineering education.
Aydin Avci, Ilknur; Koç, Zeliha; Sağlam, Zeynep
2012-03-01
The aims of this study were to determine (1) the prevalence of complementary and alternative medicine use among patients with cancer, (2) the method of use of the particular therapy, (3) the reasons for using complementary and alternative medicine therapies, (4) the benefits experienced by the use of complementary and alternative medicine, (5) the source of information about complementary and alternative medicine therapies and, (6) the satisfaction and cost of complementary and alternative medicine. Complementary and alternative medicine consists of diverse medical and healthcare systems, practices and products that are not considered at present to be a part of conventional medicine. The majority of patients who use complementary and alternative medicine use more than one method. Complementary and alternative medicine use is more common in cases of advanced disease or poor prognosis. This is a descriptive study of complementary and alternative medicine. This study was conducted in the Chemotherapy Unit at Ondokuz Mayıs University, Faculty of Medicine, Samsun, Turkey, between 18 March 2008-30 June 2008. Two hundred fifty-three patients with cancer, among 281 patients who applied to the chemotherapy clinic between these dates, agreed to take part in the study with whom contact could be made were included. A questionnaire including descriptive characteristics in collecting data, characteristics about diseases and their treatments, complementary and alternative medicine information and implementation situations and a control list about complementary and alternative medicine implementations were given. The collected data were evaluated by computer using descriptive statistics, the chi-square test and Student's t-test. In this study, 94·1% of the patients were content with medical treatment, 58·9% of them used complementary and alternative medicine treatments, 41·1% did not use any complementary and alternative medicine treatments. The satisfaction level of the patients with complementary and alternative medicine methods was slightly above mediocre (2·33 SD 0·64, on a scale of 1-3). The average cost per capita spent by the patients using complementary and alternative medicine for all the different methods was US$288·26. It was determined that although patients did not have enough knowledge about complementary and alternative medicine methods, the prevalence of complementary and alternative medicine and satisfaction levels are high that complementary and alternative medicine users spend substantial sums of money for these methods. To sustain medical treatment and prognosis of cancer, it is important for nurses to consult with their patients regarding the use and potential risks of some complementary and alternative medicine. © 2011 Blackwell Publishing Ltd.
Complementary and Alternative Therapies: An Evidence-Based Framework
ERIC Educational Resources Information Center
Shaw, Steven R.
2008-01-01
Complementary and alternative medicine (CAM) has experienced a dramatic growth in use and acceptability over the last 20 years. CAM is a diverse collection of medical and healthcare systems, practices, and products that are not presently considered a component of conventional medicine. CAM traditionally has been practiced by informally educated…
Complementary Colours for a Physicist
ERIC Educational Resources Information Center
Babic, Vitomir; Cepic, Mojca
2009-01-01
This paper reports on a simple experiment which enables splitting incident light into two different modes, each having a colour exactly complementary to the other. A brief historical development of colour theories and differences in a physicist's point of view with respect to an artist's one is discussed. An experimental system for producing…
Kunimatsu, Akira; Kunimatsu, Natsuko; Yasaka, Koichiro; Akai, Hiroyuki; Kamiya, Kouhei; Watadani, Takeyuki; Mori, Harushi; Abe, Osamu
2018-05-16
Although advanced MRI techniques are increasingly available, imaging differentiation between glioblastoma and primary central nervous system lymphoma (PCNSL) is sometimes confusing. We aimed to evaluate the performance of image classification by support vector machine, a method of traditional machine learning, using texture features computed from contrast-enhanced T 1 -weighted images. This retrospective study on preoperative brain tumor MRI included 76 consecutives, initially treated patients with glioblastoma (n = 55) or PCNSL (n = 21) from one institution, consisting of independent training group (n = 60: 44 glioblastomas and 16 PCNSLs) and test group (n = 16: 11 glioblastomas and 5 PCNSLs) sequentially separated by time periods. A total set of 67 texture features was computed on routine contrast-enhanced T 1 -weighted images of the training group, and the top four most discriminating features were selected as input variables to train support vector machine classifiers. These features were then evaluated on the test group with subsequent image classification. The area under the receiver operating characteristic curves on the training data was calculated at 0.99 (95% confidence interval [CI]: 0.96-1.00) for the classifier with a Gaussian kernel and 0.87 (95% CI: 0.77-0.95) for the classifier with a linear kernel. On the test data, both of the classifiers showed prediction accuracy of 75% (12/16) of the test images. Although further improvement is needed, our preliminary results suggest that machine learning-based image classification may provide complementary diagnostic information on routine brain MRI.
ERIC Educational Resources Information Center
Segev, Arik
2017-01-01
Phillip Cam recently published a study on the separation between the teaching and learning of classic school curriculum (CSC) on the one hand and morality on the other. He suggests an approach to integrate them. The goal of this article was to suggest a complementary alternative approach, to Cam's. Based on a MacIntyrean paradigm, I argue that…
Speech Segregation based on Binary Classification
2016-07-15
including the IBM, the target binary mask (TBM), the IRM, the short -time Fourier transform spectral magnitude (FFT-MAG) and its corresponding mask (FFT...complementary features and a fixed DNN as the discriminative learning machine. For evaluation metrics, besides SNR, we use the Short -Time Objective...target analysis is a recent successful intelligibility test conducted on both normal-hearing (NH) and hearing-impaired (HI) listeners. The speech
ERIC Educational Resources Information Center
Svedholm, Annika M.; Lindeman, Marjaana
2013-01-01
Lay conceptions of energy often conflict with scientific knowledge, hinder science learning and scientific literacy, and provide a basis for ungrounded beliefs. In a sample of Finnish upper secondary school students, energy was attributed with features of living and animate beings and thought of as a mental property. These ontologically confused…
ERIC Educational Resources Information Center
Rowe, Jan; Herrera, Maria; Hughes, Bernie; Cawley, Michael
2012-01-01
There has been much debate about the development of a suitably qualified workforce to deliver the objectives of the Key Stage 2 language learning entitlement in England. The model of a skilled primary languages subject leader, working in collaboration with enthusiastic generalist class teachers is emerging as a consistent preference. Relatively…
Popper-Giveon, Ariela; Schiff, Elad; Ben-Arye, Eran
2012-12-01
In 2008, an Integrative Oncology Program was implemented at the Clalit Oncology Service in Haifa, Israel, to promote patients' well-being during chemotherapy and advanced stages of disease. We hypothesized that studying the perceptions of Arab complementary and alternative medicine (CAM) therapists would facilitate development of a cross-culturally integrative oncology approach. Semi-structured interviews were held with 27 Arab therapists who use medicinal herbs, the Quran and various CAM modalities, with the aim of characterizing their treatment practices and learning about their perspectives regarding conventional cancer care. Thematic analysis revealed that therapists act as go-betweens, mediating between patients and conventional physicians. Therapists translate diagnoses into Arabic and elucidate key concepts. They tend to perceive their role as gatekeepers accompanying patients through the conventional health system, referring them for further examinations, and providing CAM-based supportive care consultation. CAM therapists have an essential role in supportive care of Arab patients with cancer. Triangular patient-therapist-oncologist communication may have an impact on patients' experience and treatment quality. Recognition of CAM therapists as mediators between patients' health beliefs and conventional perceptions of care may improve doctor-patient dialogue and facilitate supportive care provision in a cross-cultural context. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Vassilakos, Gregory J.
2015-01-01
This report summarizes initial modeling of the local response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris (MMOD) impacts using a structural, non-linear, transient dynamic finite element code. Complementary test results for a local BEAM structure are presented for both hammer and projectile impacts. Review of these data provided guidance for the transient dynamic model development. The local model is intended to support predictions using the global BEAM model, described in a companion report. Two types of local models were developed. One mimics the simplified Soft-Goods (fabric envelop) part of the BEAM NASTRAN model delivered by the project. The second investigates through-the-thickness modeling challenges for MMOD-type impacts. Both the testing and the analysis summaries contain lessons learned and areas for future efforts.
Method for deploying and recovering a wave energy converter
Mundon, Timothy R
2017-05-23
A system for transporting a buoy and a heave plate. The system includes a buoy and a heave plate. An outer surface of the buoy has a first geometrical shape. A surface of the heave plate has a geometrical shape complementary to the first geometrical shape of the buoy. The complementary shapes of the buoy and the heave plate facilitate coupling of the heave plate to the outer surface of the buoy in a transport mode.
Salamonsen, Anita; Ahlzén, Rolf
2018-07-01
Modern Western public healthcare systems offer predominantly publicly subsidized healthcare traditionally based on biomedicine as the most important basis to cure persons who suffer from disorders of somatic or psychiatric nature. To which extent this epistemological position is suitable for this purpose is under scientific debate and challenged by some people's personal understandings of health and illness, their individual illness experiences and their decision-making. Current studies show decreasing levels of patient trust in Western public healthcare and a widespread patient-initiated use of complementary and alternative medicine which is often linked to unmet patient-defined healthcare needs. Patients'/complementary and alternative medicine users' understandings of their afflictions are often based on elements of biomedical knowledge as well as embodied and experience-based knowledge. We believe this points to the need for a phenomenologically and socially based understanding of health and illness. In this article, we analyze challenges in contemporary healthcare systems, exemplified by people's widespread use of complementary and alternative medicine and based on three ways of understanding and relating to unhealth: disease (the biomedical perspective), illness (the phenomenological perspective), and sickness (the social perspective). In public healthcare systems aiming at involving patients in treatment processes, acknowledging the coexistence of differing epistemologies may be of great importance to define and reach goals of treatment and compliance.
Grillon, Christian
2009-01-01
Exposure-based therapy (EBT), a leading technique in the treatment of a range of anxiety disorders, is facilitated by D-cycloserine (DCS), a partial N-methyl-D-aspartate (NMDA) receptor agonist. This review discusses the potential mechanisms involved in this facilitation, and its implications for developing theories of fear conditioning in humans. Basic research in rodents suggests that DCS acts by speeding up extinction. However, several lab-based investigations found that DCS had no effect on extinction in humans. This paper proposes that these observations can be accounted for by a dual-model theory of fear conditioning in humans that engages two complementary defensive systems: a reflexive lower-order system independent of conscious awareness and a higher-order cognitive system associated with conscious awareness of danger and expectation. DCS studies in animals appear to have explored lower-order conditioning mechanisms, whereas human studies have explored higher-order cognitive processes. These observations suggest that DCS may act preferentially on lower- rather than higher-order learning. This paper presents evidence suggesting that, in humans, DCS may similarly affect lower-order learning during EBT and, consequently, may be less effective during cognitive therapy (e.g., cognitive restructuring). Finally, it is recommended that extinction studies using DCS in humans be conducted using fear-relevant stimuli (e.g., snakes), short conditional stimulus-unconditioned stimulus (CS-US) intervals, and intense US in order to promote lower-order conditioning processes. PMID:19520359
Umble, K; Bain, B; Ruddock-Small, M; Mahanna, E; Baker, E L
2012-07-01
Leadership development is a strategy for improving national responses to HIV/AIDS. The University of the West Indies offers the Caribbean Health Leadership Institute (CHLI) to enhance leaders' effectiveness and responses to HIV/AIDS through a cooperative agreement with the Centers for Disease Control and Prevention. CHLI enrolls leaders in annual cohorts numbering 20-40. To examine how CHLI influenced graduates' self-understanding, skills, approaches, vision, commitments, courage, confidence, networks, and contributions to program, organizational, policy, and systems improvements. Web-based surveys and interviews of graduates. CHLI increased graduates' self-understanding and skills and strengthened many graduates' vision, confidence, and commitments to improving systems. It helped graduates improve programs, policies, and systems by: motivating them and giving them ideas for changes to pursue, encouraging them to share their vision, deepening skills in areas such as systems thinking, policy advocacy, and communication, strengthening their inclusion of partners and team members, and influencing how they interacted with others. Training both HIV-focused and general health leaders can help both kinds of leaders foster improvements in HIV services and policies. Learners greatly valued self-assessments, highly interactive sessions, and the opportunity to build a network of professional colleagues. Projects provided opportunities to address substantive issues and immediately apply learning to work. Leadership development evaluations in the United States have also emphasized the complementary benefits of assessment and feedback, skills development, and network development. Global leadership programs should find ways to combine these components in both traditional face-to-face and distance-learning contexts.
Towards a systems approach for chronic diseases, based on health state modeling
Rebhan, Michael
2017-01-01
Rising pressure from chronic diseases means that we need to learn how to deal with challenges at a different level, including the use of systems approaches that better connect across fragments, such as disciplines, stakeholders, institutions, and technologies. By learning from progress in leading areas of health innovation (including oncology and AIDS), as well as complementary indications (Alzheimer’s disease), I try to extract the most enabling innovation paradigms, and discuss their extension to additional areas of application within a systems approach. To facilitate such work, a Precision, P4 or Systems Medicine platform is proposed, which is centered on the representation of health states that enable the definition of time in the vision to provide the right intervention for the right patient at the right time and dose. Modeling of such health states should allow iterative optimization, as longitudinal human data accumulate. This platform is designed to facilitate the discovery of links between opportunities related to a) the modernization of diagnosis, including the increased use of omics profiling, b) patient-centric approaches enabled by technology convergence, including digital health and connected devices, c) increasing understanding of the pathobiological, clinical and health economic aspects of disease progression stages, d) design of new interventions, including therapies as well as preventive measures, including sequential intervention approaches. Probabilistic Markov models of health states, e.g. those used for health economic analysis, are discussed as a simple starting point for the platform. A path towards extension into other indications, data types and uses is discussed, with a focus on regenerative medicine and relevant pathobiology. PMID:28529704
Polish Complementary Schools in Iceland and England
ERIC Educational Resources Information Center
Zielinska, Malgorzata; Kowzan, Piotr; Ragnarsdóttir, Hanna
2014-01-01
Since 2004, the opening of labour markets has spurred a considerable number of Poles to emigrate e.g. to Iceland and England. Families with school age children have had the challenge of adapting to foreign environments and school systems. Polish complementary schools have played an important, albeit ambivalent, role in this process. Through focus…
Multi-modal imaging predicts memory performance in normal aging and cognitive decline.
Walhovd, K B; Fjell, A M; Dale, A M; McEvoy, L K; Brewer, J; Karow, D S; Salmon, D P; Fennema-Notestine, C
2010-07-01
This study (n=161) related morphometric MR imaging, FDG-PET and APOE genotype to memory scores in normal controls (NC), mild cognitive impairment (MCI) and Alzheimer's disease (AD). Stepwise regression analyses focused on morphometric and metabolic characteristics of the episodic memory network: hippocampus, entorhinal, parahippocampal, retrosplenial, posterior cingulate, precuneus, inferior parietal, and lateral orbitofrontal cortices. In NC, hippocampal metabolism predicted learning; entorhinal metabolism predicted recognition; and hippocampal metabolism predicted recall. In MCI, thickness of the entorhinal and precuneus cortices predicted learning, while parahippocampal metabolism predicted recognition. In AD, posterior cingulate cortical thickness predicted learning, while APOE genotype predicted recognition. In the total sample, hippocampal volume and metabolism, cortical thickness of the precuneus, and inferior parietal metabolism predicted learning; hippocampal volume and metabolism, parahippocampal thickness and APOE genotype predicted recognition. Imaging methods appear complementary and differentially sensitive to memory in health and disease. Medial temporal and parietal metabolism and morphometry best explained memory variance. Medial temporal characteristics were related to learning, recall and recognition, while parietal structures only predicted learning. Copyright 2008. Published by Elsevier Inc.
Learning in First-Year Biology: Approaches of Distance and On-Campus Students
NASA Astrophysics Data System (ADS)
Quinn, Frances Catherine
2011-01-01
This paper aims to extend previous research into learning of tertiary biology, by exploring the learning approaches adopted by two groups of students studying the same first-year biology topic in either on-campus or off-campus "distance" modes. The research involved 302 participants, who responded to a topic-specific version of the Study Process Questionnaire, and in-depth interviews with 16 of these students. Several quantitative analytic techniques, including cluster analysis and Rasch differential item functioning analysis, showed that the younger, on-campus cohort made less use of deep approaches, and more use of surface approaches than the older, off-campus group. At a finer scale, clusters of students within these categories demonstrated different patterns of learning approach. Students' descriptions of their learning approaches at interview provided richer complementary descriptions of the approach they took to their study in the topic, showing how deep and surface approaches were manifested in the study context. These findings are critically analysed in terms of recent literature questioning the applicability of learning approaches theory in mass education, and their implications for teaching and research in undergraduate biology.
Congdon, Eliza L; Novack, Miriam A; Brooks, Neon; Hemani-Lopez, Naureen; O'Keefe, Lucy; Goldin-Meadow, Susan
2017-08-01
When teachers gesture during instruction, children retain and generalize what they are taught (Goldin-Meadow, 2014). But why does gesture have such a powerful effect on learning? Previous research shows that children learn most from a math lesson when teachers present one problem-solving strategy in speech while simultaneously presenting a different, but complementary, strategy in gesture (Singer & Goldin-Meadow, 2005). One possibility is that gesture is powerful in this context because it presents information simultaneously with speech. Alternatively, gesture may be effective simply because it involves the body, in which case the timing of information presented in speech and gesture may be less important for learning. Here we find evidence for the importance of simultaneity: 3 rd grade children retain and generalize what they learn from a math lesson better when given instruction containing simultaneous speech and gesture than when given instruction containing sequential speech and gesture. Interpreting these results in the context of theories of multimodal learning, we find that gesture capitalizes on its synchrony with speech to promote learning that lasts and can be generalized.
Order priors for Bayesian network discovery with an application to malware phylogeny
Oyen, Diane; Anderson, Blake; Sentz, Kari; ...
2017-09-15
Here, Bayesian networks have been used extensively to model and discover dependency relationships among sets of random variables. We learn Bayesian network structure with a combination of human knowledge about the partial ordering of variables and statistical inference of conditional dependencies from observed data. Our approach leverages complementary information from human knowledge and inference from observed data to produce networks that reflect human beliefs about the system as well as to fit the observed data. Applying prior beliefs about partial orderings of variables is an approach distinctly different from existing methods that incorporate prior beliefs about direct dependencies (or edges)more » in a Bayesian network. We provide an efficient implementation of the partial-order prior in a Bayesian structure discovery learning algorithm, as well as an edge prior, showing that both priors meet the local modularity requirement necessary for an efficient Bayesian discovery algorithm. In benchmark studies, the partial-order prior improves the accuracy of Bayesian network structure learning as well as the edge prior, even though order priors are more general. Our primary motivation is in characterizing the evolution of families of malware to aid cyber security analysts. For the problem of malware phylogeny discovery, we find that our algorithm, compared to existing malware phylogeny algorithms, more accurately discovers true dependencies that are missed by other algorithms.« less
Order priors for Bayesian network discovery with an application to malware phylogeny
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyen, Diane; Anderson, Blake; Sentz, Kari
Here, Bayesian networks have been used extensively to model and discover dependency relationships among sets of random variables. We learn Bayesian network structure with a combination of human knowledge about the partial ordering of variables and statistical inference of conditional dependencies from observed data. Our approach leverages complementary information from human knowledge and inference from observed data to produce networks that reflect human beliefs about the system as well as to fit the observed data. Applying prior beliefs about partial orderings of variables is an approach distinctly different from existing methods that incorporate prior beliefs about direct dependencies (or edges)more » in a Bayesian network. We provide an efficient implementation of the partial-order prior in a Bayesian structure discovery learning algorithm, as well as an edge prior, showing that both priors meet the local modularity requirement necessary for an efficient Bayesian discovery algorithm. In benchmark studies, the partial-order prior improves the accuracy of Bayesian network structure learning as well as the edge prior, even though order priors are more general. Our primary motivation is in characterizing the evolution of families of malware to aid cyber security analysts. For the problem of malware phylogeny discovery, we find that our algorithm, compared to existing malware phylogeny algorithms, more accurately discovers true dependencies that are missed by other algorithms.« less
2017-01-01
Summary This article is part of a For-Discussion-Section of Methods of Information in Medicine about the paper “Representation of People’s Decisions in Health Information Systems: A Complementary Approach for Understanding Health Care Systems and Population Health” written by Fernan Gonzalez Bernaldo de Quiros, Adriana Ruth Dawidowski, and Silvana Figar. It is introduced by an editorial. This article contains the combined commentaries invited to independently comment on the paper of de Quiros, Dawidowski, and Figar. In subsequent issues the discussion can continue through letters to the editor. PMID:28144678
Verhoef, Marja J; Lewith, George; Ritenbaugh, Cheryl; Boon, Heather; Fleishman, Susan; Leis, Anne
2005-09-01
Complementary and alternative medicine (CAM) often consists of whole systems of care (such as naturopathic medicine or traditional Chinese medicine (TCM)) that combine a wide range of modalities to provide individualised treatment. The complexity of these interventions and their potential synergistic effect requires innovative evaluative approaches. Model validity, which encompasses the need for research to adequately address the unique healing theory and therapeutic context of the intervention, is central to whole systems research (WSR). Classical randomised controlled trials (RCTs) are limited in their ability to address this need. Therefore, we propose a mixed methods approach that includes a range of relevant and holistic outcome measures. As the individual components of most whole systems are inseparable, complementary and synergistic, WSR must not focus only on the "active" ingredients of a system. An emerging WSR framework must be non-hierarchical, cyclical, flexible and adaptive, as knowledge creation is continuous, evolutionary and necessitates a continuous interplay between research methods and "phases" of knowledge. Finally, WSR must hold qualitative and quantitative research methods in equal esteem to realize their unique research contribution. Whole systems are complex and therefore no one method can adequately capture the meaning, process and outcomes of these interventions.
Synergy optimization and operation management on syndicate complementary knowledge cooperation
NASA Astrophysics Data System (ADS)
Tu, Kai-Jan
2014-10-01
The number of multi enterprises knowledge cooperation has grown steadily, as a result of global innovation competitions. I have conducted research based on optimization and operation studies in this article, and gained the conclusion that synergy management is effective means to break through various management barriers and solve cooperation's chaotic systems. Enterprises must communicate system vision and access complementary knowledge. These are crucial considerations for enterprises to exert their optimization and operation knowledge cooperation synergy to meet global marketing challenges.
A Hybrid CMOS-Memristor Neuromorphic Synapse.
Azghadi, Mostafa Rahimi; Linares-Barranco, Bernabe; Abbott, Derek; Leong, Philip H W
2017-04-01
Although data processing technology continues to advance at an astonishing rate, computers with brain-like processing capabilities still elude us. It is envisioned that such computers may be achieved by the fusion of neuroscience and nano-electronics to realize a brain-inspired platform. This paper proposes a high-performance nano-scale Complementary Metal Oxide Semiconductor (CMOS)-memristive circuit, which mimics a number of essential learning properties of biological synapses. The proposed synaptic circuit that is composed of memristors and CMOS transistors, alters its memristance in response to timing differences among its pre- and post-synaptic action potentials, giving rise to a family of Spike Timing Dependent Plasticity (STDP). The presented design advances preceding memristive synapse designs with regards to the ability to replicate essential behaviours characterised in a number of electrophysiological experiments performed in the animal brain, which involve higher order spike interactions. Furthermore, the proposed hybrid device CMOS area is estimated as [Formula: see text] in a [Formula: see text] process-this represents a factor of ten reduction in area with respect to prior CMOS art. The new design is integrated with silicon neurons in a crossbar array structure amenable to large-scale neuromorphic architectures and may pave the way for future neuromorphic systems with spike timing-dependent learning features. These systems are emerging for deployment in various applications ranging from basic neuroscience research, to pattern recognition, to Brain-Machine-Interfaces.
Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics
Breckels, Lisa M.; Holden, Sean B.; Wojnar, David; Mulvey, Claire M.; Christoforou, Andy; Groen, Arnoud; Trotter, Matthew W. B.; Kohlbacher, Oliver; Lilley, Kathryn S.; Gatto, Laurent
2016-01-01
Sub-cellular localisation of proteins is an essential post-translational regulatory mechanism that can be assayed using high-throughput mass spectrometry (MS). These MS-based spatial proteomics experiments enable us to pinpoint the sub-cellular distribution of thousands of proteins in a specific system under controlled conditions. Recent advances in high-throughput MS methods have yielded a plethora of experimental spatial proteomics data for the cell biology community. Yet, there are many third-party data sources, such as immunofluorescence microscopy or protein annotations and sequences, which represent a rich and vast source of complementary information. We present a unique transfer learning classification framework that utilises a nearest-neighbour or support vector machine system, to integrate heterogeneous data sources to considerably improve on the quantity and quality of sub-cellular protein assignment. We demonstrate the utility of our algorithms through evaluation of five experimental datasets, from four different species in conjunction with four different auxiliary data sources to classify proteins to tens of sub-cellular compartments with high generalisation accuracy. We further apply the method to an experiment on pluripotent mouse embryonic stem cells to classify a set of previously unknown proteins, and validate our findings against a recent high resolution map of the mouse stem cell proteome. The methodology is distributed as part of the open-source Bioconductor pRoloc suite for spatial proteomics data analysis. PMID:27175778
NASA Astrophysics Data System (ADS)
Boon, J. A.
Education innovation is here to stay. This chapter gives the results of a study of the application of information and communication technology to advanced teaching and learning activities. It is strategically important that the technology opens up new ways of teaching and learning. The purpose of this chapter is firstly to identify the typical advanced teaching and learning activities/functions that can be applied in e-Learning and face-to-face teaching and learning. Case studies were selected from a group of teachers who have already been involved in both teaching modes for some years and thus have experience in blended teaching and learning. A number of teaching activities/functions were seen as positive in their application in the e-Learning situation. Those that stand out are peer review and collaboration, promotion of reflection and stimulation of critical and creative thinking, team teaching, promotion of discovery/extension of knowledge, and problematization of the curriculum. In face-to-face teaching and learning, inviting engagement, how to come to know, involving metaphors and analogies, teaching that connects to learning, inspire change, promote understanding, and others stand out. As seen by the teachers in the case studies, both e-Learning and face-to-face teaching and learning are seen as complementary to each other. We define this view as blended teaching and learning.
ERIC Educational Resources Information Center
Nampota, Dorothy Cynthia
2009-01-01
Due to the increasing number of children and youth dropping out of school, the Malawi government came up with a strategy to address their learning needs through non-formal means in its Education for All (EFA) plan. This resulted in the introduction of a three-year cycle pilot programme known as Complementary Basic Education (CBE). Funded by GTZ, a…
Key principles to improve programmes and interventions in complementary feeding.
Lutter, Chessa K; Iannotti, Lora; Creed-Kanashiro, Hilary; Guyon, Agnes; Daelmans, Bernadette; Robert, Rebecca; Haider, Rukhsana
2013-09-01
Although there are some examples of successful complementary feeding programmes to promote healthy growth and prevent stunting at the community level, to date there are few, if any, examples of successful programmes at scale. A lack of systematic process and impact evaluations on pilot projects to generate lessons learned has precluded scaling up of effective programmes. Programmes to effect positive change in nutrition rarely follow systematic planning, implementation, and evaluation (PIE) processes to enhance effectiveness over the long term. As a result a set of programme-oriented key principles to promote healthy growth remains elusive. The purpose of this paper is to fill this gap by proposing a set of principles to improve programmes and interventions to promote healthy growth and development. Identifying such principles for programme success has three requirements: rethinking traditional paradigms used to promote improved infant and young child feeding; ensuring better linkages to delivery platforms; and, improving programming. Following the PIE model for programmes and learning from experiences from four relatively large-scale programmes described in this paper, 10 key principles are identified in the areas of programme planning, programme implementation, programme evaluation, and dissemination, replication, and scaling up. Nonetheless, numerous operational research questions remain, some of which are highlighted in this paper. © 2013 John Wiley & Sons Ltd.
Age Estimation Based on Children's Voice: A Fuzzy-Based Decision Fusion Strategy
Ting, Hua-Nong
2014-01-01
Automatic estimation of a speaker's age is a challenging research topic in the area of speech analysis. In this paper, a novel approach to estimate a speaker's age is presented. The method features a “divide and conquer” strategy wherein the speech data are divided into six groups based on the vowel classes. There are two reasons behind this strategy. First, reduction in the complicated distribution of the processing data improves the classifier's learning performance. Second, different vowel classes contain complementary information for age estimation. Mel-frequency cepstral coefficients are computed for each group and single layer feed-forward neural networks based on self-adaptive extreme learning machine are applied to the features to make a primary decision. Subsequently, fuzzy data fusion is employed to provide an overall decision by aggregating the classifier's outputs. The results are then compared with a number of state-of-the-art age estimation methods. Experiments conducted based on six age groups including children aged between 7 and 12 years revealed that fuzzy fusion of the classifier's outputs resulted in considerable improvement of up to 53.33% in age estimation accuracy. Moreover, the fuzzy fusion of decisions aggregated the complementary information of a speaker's age from various speech sources. PMID:25006595
Hippocampal maturity promotes memory distinctiveness in childhood and adolescence
Keresztes, Attila; Bender, Andrew R.; Bodammer, Nils C.; Shing, Yee Lee
2017-01-01
Adaptive learning systems need to meet two complementary and partially conflicting goals: detecting regularities in the world versus remembering specific events. The hippocampus (HC) keeps a fine balance between computations that extract commonalities of incoming information (i.e., pattern completion) and computations that enable encoding of highly similar events into unique representations (i.e., pattern separation). Histological evidence from young rhesus monkeys suggests that HC development is characterized by the differential development of intrahippocampal subfields and associated networks. However, due to challenges in the in vivo investigation of such developmental organization, the ontogenetic timing of HC subfield maturation remains controversial. Delineating its course is important, as it directly influences the fine balance between pattern separation and pattern completion operations and, thus, developmental changes in learning and memory. Here, we relate in vivo, high-resolution structural magnetic resonance imaging data of HC subfields to behavioral memory performance in children aged 6–14 y and in young adults. We identify a multivariate profile of age-related differences in intrahippocampal structures and show that HC maturity as captured by this pattern is associated with age differences in the differential encoding of unique memory representations. PMID:28784801
CRISPR Genome Engineering for Human Pluripotent Stem Cell Research
Chaterji, Somali; Ahn, Eun Hyun; Kim, Deok-Ho
2017-01-01
The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic. PMID:29158838
Gnadt, William; Grossberg, Stephen
2008-06-01
How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and size-invariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.
Neuro-fuzzy controller to navigate an unmanned vehicle.
Selma, Boumediene; Chouraqui, Samira
2013-12-01
A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).
Music and language: relations and disconnections.
Kraus, Nina; Slater, Jessica
2015-01-01
Music and language provide an important context in which to understand the human auditory system. While they perform distinct and complementary communicative functions, music and language are both rooted in the human desire to connect with others. Since sensory function is ultimately shaped by what is biologically important to the organism, the human urge to communicate has been a powerful driving force in both the evolution of auditory function and the ways in which it can be changed by experience within an individual lifetime. This chapter emphasizes the highly interactive nature of the auditory system as well as the depth of its integration with other sensory and cognitive systems. From the origins of music and language to the effects of auditory expertise on the neural encoding of sound, we consider key themes in auditory processing, learning, and plasticity. We emphasize the unique role of the auditory system as the temporal processing "expert" in the brain, and explore relationships between communication and cognition. We demonstrate how experience with music and language can have a significant impact on underlying neural function, and that auditory expertise strengthens some of the very same aspects of sound encoding that are deficient in impaired populations. © 2015 Elsevier B.V. All rights reserved.
Marshall, Deborah A; Burgos-Liz, Lina; Pasupathy, Kalyan S; Padula, William V; IJzerman, Maarten J; Wong, Peter K; Higashi, Mitchell K; Engbers, Jordan; Wiebe, Samuel; Crown, William; Osgood, Nathaniel D
2016-02-01
In the era of the Information Age and personalized medicine, healthcare delivery systems need to be efficient and patient-centred. The health system must be responsive to individual patient choices and preferences about their care, while considering the system consequences. While dynamic simulation modelling (DSM) and big data share characteristics, they present distinct and complementary value in healthcare. Big data and DSM are synergistic-big data offer support to enhance the application of dynamic models, but DSM also can greatly enhance the value conferred by big data. Big data can inform patient-centred care with its high velocity, volume, and variety (the three Vs) over traditional data analytics; however, big data are not sufficient to extract meaningful insights to inform approaches to improve healthcare delivery. DSM can serve as a natural bridge between the wealth of evidence offered by big data and informed decision making as a means of faster, deeper, more consistent learning from that evidence. We discuss the synergies between big data and DSM, practical considerations and challenges, and how integrating big data and DSM can be useful to decision makers to address complex, systemic health economics and outcomes questions and to transform healthcare delivery.
Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru
2004-10-12
An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.
Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru
2005-05-24
An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.
NASA Astrophysics Data System (ADS)
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin
2015-09-01
In this paper, a Golay complementary training sequence (TS)-based symbol synchronization scheme is proposed and experimentally demonstrated in multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system with a variable rate low-density parity-check (LDPC) code. Meanwhile, the coding gain and spectral efficiency in the variable rate LDPC-coded MB-OFDM UWBoF system are investigated. By utilizing the non-periodic auto-correlation property of the Golay complementary pair, the start point of LDPC-coded MB-OFDM UWB signal can be estimated accurately. After 100 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1×10-3, the experimental results show that the short block length 64QAM-LDPC coding provides a coding gain of 4.5 dB, 3.8 dB and 2.9 dB for a code rate of 62.5%, 75% and 87.5%, respectively.
Staying Well in a Sea of Harm.
Deutsch, Ellen S
2018-03-01
Physician psychological wellness is an emergent outcome resulting from dynamic interactions among complex conditions. We may enhance opportunities for physician wellness by applying principles developed to improve another emergent outcome: patient safety. The Safety I approach to patient safety focuses on "what went wrong" and considers humans a liability. Safety II is a powerful complementary approach that focuses on "what went right" and values human creativity. These contrasting perspectives are described in the context of patient safety, but the underlying principles have relevance for physician psychological wellness. We can create conditions that interfere with wellness and conditions that support wellness. We can learn from exploring and reinforcing successes and improving routine processes; together, these approaches may have a greater cumulative positive impact than just addressing problems. In addition to learning from failures, there is much we can learn from success.
Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation.
Lu, Jiwen; Liong, Venice Erin; Zhou, Jie
2015-12-01
In this paper, we propose a cost-sensitive local binary feature learning (CS-LBFL) method for facial age estimation. Unlike the conventional facial age estimation methods that employ hand-crafted descriptors or holistically learned descriptors for feature representation, our CS-LBFL method learns discriminative local features directly from raw pixels for face representation. Motivated by the fact that facial age estimation is a cost-sensitive computer vision problem and local binary features are more robust to illumination and expression variations than holistic features, we learn a series of hashing functions to project raw pixel values extracted from face patches into low-dimensional binary codes, where binary codes with similar chronological ages are projected as close as possible, and those with dissimilar chronological ages are projected as far as possible. Then, we pool and encode these local binary codes within each face image as a real-valued histogram feature for face representation. Moreover, we propose a cost-sensitive local binary multi-feature learning method to jointly learn multiple sets of hashing functions using face patches extracted from different scales to exploit complementary information. Our methods achieve competitive performance on four widely used face aging data sets.
Valt, Christian; Klein, Christoph; Boehm, Stephan G
2015-08-01
Repetition priming is a prominent example of non-declarative memory, and it increases the accuracy and speed of responses to repeatedly processed stimuli. Major long-hold memory theories posit that repetition priming results from facilitation within perceptual and conceptual networks for stimulus recognition and categorization. Stimuli can also be bound to particular responses, and it has recently been suggested that this rapid response learning, not network facilitation, provides a sound theory of priming of object recognition. Here, we addressed the relevance of network facilitation and rapid response learning for priming of person recognition with a view to advance general theories of priming. In four experiments, participants performed conceptual decisions like occupation or nationality judgments for famous faces. The magnitude of rapid response learning varied across experiments, and rapid response learning co-occurred and interacted with facilitation in perceptual and conceptual networks. These findings indicate that rapid response learning and facilitation in perceptual and conceptual networks are complementary rather than competing theories of priming. Thus, future memory theories need to incorporate both rapid response learning and network facilitation as individual facets of priming. © 2014 The British Psychological Society.
Design of a Physiology-Sensitive VR-Based Social Communication Platform for Children With Autism.
Kuriakose, Selvia; Lahiri, Uttama
2017-08-01
Individuals with autism are often characterized by impairments in communication, reciprocal social interaction and explicit expression of their affective states. In conventional techniques, a therapist adjusts the intervention paradigm by monitoring the affective state e.g., anxiety of these individuals for effective floor-time-therapy. Conventional techniques, though powerful, are observation-based and face resource limitations. Technology-assisted systems can provide a quantitative, individualized rehabilitation platform. Presently-available systems are designed primarily to chain learning via aspects of one's performance alone restricting individualization. Specifically, these systems are not sensitive to one's anxiety. Our presented work seeks to bridge this gap by developing a novel VR-based interactive system with Anxiety-Sensitive adaptive technology. Specifically, such a system is capable of objectively identifying and quantifying one's anxiety level from real-time biomarkers, along with performance metrics. In turn it can adaptively respond in an individualized manner to foster improved social communication skills. In our present research, we have used Virtual Reality (VR) to design a proof-of-concept application that exposes participants to social tasks of varying challenges. Results of a preliminary usability study indicate the potential of our VR-based Anxiety-Sensitive system to foster improved task performance, thereby serving as a potent complementary tool in the hands of therapist.
NASA Astrophysics Data System (ADS)
Islam, Tariqul; Islam, Md. Saiful; Shajid-Ul-Mahmud, Md.; Hossam-E-Haider, Md
2017-12-01
An Attitude Heading Reference System (AHRS) provides 3D orientation of an aircraft (roll, pitch, and yaw) with instantaneous position and also heading information. For implementation of a low cost AHRS system Micro-electrical-Mechanical system (MEMS) based sensors are used such as accelerometer, gyroscope, and magnetometer. Accelerometers suffer from errors caused by external accelerations that sums to gravity and make accelerometers based rotation inaccurate. Gyroscopes can remove such errors but create drifting problems. So for getting the precise data additionally two very common and well known filters Complementary and Kalman are introduced to the system. In this paper a comparison of system performance using these two filters is shown separately so that one would be able to select filter with better performance for his/her system.
Fixsen, Alison; Ridge, Damien
2012-09-01
Few researchers have explored the clinical experiences of complementary and alternative medical practitioners and students, including the emotion work they perform. In this article, using a constant comparison approach and a heuristic framework (a dramaturgical perspective), we analyze semistructured interviews with 9 undergraduate practitioners in training to examine challenges experienced when students first attend to patients. A feature of students' learning about clinical work concerned performance in a public arena and associated demands placed on the inchoate practitioner. Preliminary patient consultations represented a dramatic rite of passage and initiation into a transitional phase in professional identity. Juggling the roles of student and practitioner within an observed consultation led to anticipatory anxiety, impression management strategies, and conflict with other individuals. Of the coping strategies, participants regarded sharing and feedback from peer groups as most effective in examining and resolving the challenges of becoming a practitioner.
NASA Astrophysics Data System (ADS)
Svedholm, Annika M.; Lindeman, Marjaana
2013-03-01
Lay conceptions of energy often conflict with scientific knowledge, hinder science learning and scientific literacy, and provide a basis for ungrounded beliefs. In a sample of Finnish upper secondary school students, energy was attributed with features of living and animate beings and thought of as a mental property. These ontologically confused conceptions (OCC) were associated with trust in complementary and alternative medicine (CAM), and independent of scientifically valid conceptions. Substance-based energy conceptions followed the correlational pattern of OCC, rather than scientific conceptions. OCC and CAM decreased both during the regular school physics curriculum and after a lesson targeted at the ontological confusions. OCC and CAM were slightly less common among students with high actively open-minded thinking, low trust in intuition and high need for cognition. The findings are discussed in relation to the goals of scientific education.
Integrating Complementary and Alternative Medicine Education Into the Pharmacy Curriculum
Wallis, Marianne
2008-01-01
Objectives To evaluate the effectiveness of an integrated approach to the teaching of evidence-based complementary and alternative medicine (CAM) in a pharmacy curriculum. Design Evidence-based CAM education was integrated throughout the third, fourth, and fifth years of the pharmacy curriculum. Specifically, an introductory module focusing on CAM familiarization was added in the third year and integrated, evidence-based teaching related to CAM was incorporated into clinical topics through lectures and clinical case studies in the fourth and fifth years. Assessment Students' self-assessed and actual CAM knowledge increased, as did their use of evidence-based CAM resources. However, only 30% of the fourth-year students felt they had learned enough about CAM. Students preferred having CAM teaching integrated into the curriculum beginning in the first year rather than waiting until later in their education. Conclusion CAM education integrated over several years of study increases students' knowledge and application. PMID:19002274
Complementary and alternative medicine - representations in popular magazines.
Dunne, Alexandra; Phillips, Christine
2010-09-01
More than half the patients who use complementary and alternative medicine (CAM) in Australia do not discuss it with their doctors. Many consumers use popular media, especially women's magazines, to learn about CAM. To explore representations of CAM in popular Australian women's magazines. Content analysis of three Australian magazines: Australian Women's Weekly, Dolly and New Idea published from January to June 2008. Of 220 references to CAM (4-17 references per issue), most were to biologically based practices, particularly 'functional foods', which enhance health. Most representations of CAM were positive (81.3% positive, 16.4% neutral, 2.3% negative). Explanations of modes of action of CAM tended to be biological but relatively superficial. Australian magazines cast CAM as safe therapy which enhances patient engagement in healthcare, and works in ways analogous to orthodox medical treatments. General practitioners can use discussions with their patients about CAM to encourage health promoting practices.
Scheen, A J
2000-09-01
Clinical pharmacology and therapeutics are two complementary disciplines which should lead the medical student, through an optimized training, to a rational prescription of drugs, ultimate and important step of the medical approach. Such a learning should occur progressively throughout the medical education, focusing, first, on the therapeutic reasoning ("why?") and, second, on the practical application leading to the prescription ("how?"). The medical student should learn the difficult task of integrating disease, drug and patient, in order to optimize the benefit/risk ratio, while being informed about new concepts such as "Evidence-Based Medicine" and pharmacoeconomics.
NASA Astrophysics Data System (ADS)
Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jorntell, Henrik; Kappers, Astrid M. L.; Kyriakopoulos, Kostas; Schaeffer, Alin Abu; Castellini, Claudio; Bicchi, Antonio
2016-07-01
We would like to thank all commentators for their insightful commentaries. Thanks to their diverse and complementary expertise in neuroscience and robotics, the commentators have provided us with the opportunity to further discuss state-of-the-art and gaps in the integration of neuroscience and robotics reviewed in our article. We organized our reply in two sections that capture the main points of all commentaries [1-9]: (1) Advantages and limitations of the synergy approach in neuroscience and robotics, and (2) Learning and role of sensory feedback in biological and robotics synergies.
Rodriguez-Oliveros, Maria Guadalupe; Bisogni, Carole A; Frongillo, Edward A
2014-12-01
Knowledge about mothers' perceptions of food classification and values about complementary feeding is necessary for designing educational and food supply interventions targeted to young children. To determine classification, attributes, and consumption/preparation routines of key complementary foods, 44 mothers of children < 2 y of age in 14 manufacturing businesses were studied. Using 31 key foods, we conducted free-listings, pile-sort, and food attributes exercises. Hierarchical clustering showed that mothers identified nine classes of key foods, including milk derivatives, complements, junk food, infant products, chicken parts, and other meats. From multidimensional scaling, mothers used three primary classification systems: food groups, food introduction stages, and food processing. Secondary classification systems were healthy-junk, heavy-light, hot-cold, good-bad fat, and main dish-complement. Child health and nutrition, particularly vitamin content, were salient attributes. Fruits and vegetables were preferred for initiating complementary feeding on the second month of age. Consumption of guava, mango, and legumes, however, was associated with digestive problems (empacho). Red meats were viewed as cold-type, heavy, and hard, not suitable for young children, but right for toddlers. Chicken liver was considered nutritious but dirty and bitter. Egg and fish were viewed as a vitamin source but potentially allergenic. Mothers valued vitamin content, flavor, and convenience of processed foods, but some were suspicious about expiration date, chemical and excessive sugar content and overall safety of these foods. Mothers' perceptions and values may differ from those of nutritionists and program designers, and should be addressed when promoting opportune introduction of complementary foods in social programs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhu, Yong; Romitti, Paul A; Conway, Kristin M; Andrews, Jennifer; Liu, Ke; Meaney, F John; Street, Natalie; Puzhankara, Soman; Druschel, Charlotte M; Matthews, Dennis J
2014-07-01
Complementary and alternative medicine is frequently used in the management of chronic pediatric diseases, but little is known about its use by those with Duchenne or Becker muscular dystrophy. Complementary and alternative medicine use by male patients with Duchenne or Becker muscular dystrophy and associations with characteristics of male patients and their caregivers were examined through interviews with 362 primary caregivers identified from the Muscular Dystrophy Surveillance, Tracking, and Research Network. Overall, 272 of the 362 (75.1%) primary caregivers reported that they had used any complementary and alternative medicine for the oldest Muscular Dystrophy Surveillance, Tracking, and Research Network male in their family. The most commonly reported therapies were from the mind-body medicine domain (61.0%) followed by those from the biologically based practice (39.2%), manipulative and body-based practice (29.3%), and whole medical system (6.9%) domains. Aquatherapy, prayer and/or blessing, special diet, and massage were the most frequently used therapies. Compared with nonusers, male patients who used any therapy were more likely to have an early onset of symptoms and use a wheel chair; their caregivers were more likely to be non-Hispanic white. Among domains, associations were observed with caregiver education and family income (mind-body medicines [excluding prayer and/or blessing only] and whole medical systems) and Muscular Dystrophy Surveillance, Tracking, and Research Network site (biologically based practices and mind-body medicines [excluding prayer and/or blessing only]). Complementary and alternative medicine use was common in the management of Duchenne and Becker muscular dystrophies among Muscular Dystrophy Surveillance, Tracking, and Research Network males. This widespread use suggests further study to evaluate the efficacy of integrating complementary and alternative medicine into treatment regimens for Duchenne and Becker muscular dystrophies. Copyright © 2014 Elsevier Inc. All rights reserved.
Translational study of microRNAs and its application in kidney disease and hypertension research
KRIEGEL, Alison J.; MLADINOV, Domagoj; LIANG, Mingyu
2015-01-01
MicroRNA research in humans and mammalian model organisms is in a crucial stage of development. Diagnostic and therapeutic values of microRNAs appear promising, but remain to be established. The physiological and pathophysiological significance of microRNAs is generally recognized, but much better understood in some organ systems and disease areas than others. In the present paper, we review several translational studies of microRNAs, including those showing the potential value of therapeutic agents targeting microRNAs and diagnostic or prognostic microRNA markers detectable in body fluids. We discuss the lessons learned and the experience gained from these studies. Several recent studies have begun to explore translational microRNA research in kidney disease and hypertension. Translational research of microRNAs in the kidney faces unique challenges, but provides many opportunities to develop and apply new methods, and to merge complementary basic and clinical approaches. PMID:22283365
Learning, remembering, and predicting how to use tools: Distributed neurocognitive mechanisms
Buxbaum, Laurel J.
2016-01-01
The reasoning-based approach championed by Francois Osiurak and Arnaud Badets (Osiurak & Badets, 2016) denies the existence of sensory-motor memories of tool use except in limited circumstances, and suggests instead that most tool use is subserved solely by online technical reasoning about tool properties. In this commentary, I highlight the strengths and limitations of the reasoning-based approach and review a number of lines of evidence that manipulation knowledge is in fact used in tool action tasks. In addition, I present a “two route” neurocognitive model of tool use called the “Two Action Systems Plus (2AS+)” framework that posits a complementary role for online and stored information and specifies the neurocognitive substrates of task-relevant action selection. This framework, unlike the reasoning based approach, has the potential to integrate the existing psychological and functional neuroanatomic data in the tool use domain. PMID:28358565
NASA Astrophysics Data System (ADS)
Durner, Maximilian; Márton, Zoltán.; Hillenbrand, Ulrich; Ali, Haider; Kleinsteuber, Martin
2017-03-01
In this work, a new ensemble method for the task of category recognition in different environments is presented. The focus is on service robotic perception in an open environment, where the robot's task is to recognize previously unseen objects of predefined categories, based on training on a public dataset. We propose an ensemble learning approach to be able to flexibly combine complementary sources of information (different state-of-the-art descriptors computed on color and depth images), based on a Markov Random Field (MRF). By exploiting its specific characteristics, the MRF ensemble method can also be executed as a Dynamic Classifier Selection (DCS) system. In the experiments, the committee- and topology-dependent performance boost of our ensemble is shown. Despite reduced computational costs and using less information, our strategy performs on the same level as common ensemble approaches. Finally, the impact of large differences between datasets is analyzed.
Stolyarova, Alexandra; Izquierdo, Alicia
2017-01-01
We make choices based on the values of expected outcomes, informed by previous experience in similar settings. When the outcomes of our decisions consistently violate expectations, new learning is needed to maximize rewards. Yet not every surprising event indicates a meaningful change in the environment. Even when conditions are stable overall, outcomes of a single experience can still be unpredictable due to small fluctuations (i.e., expected uncertainty) in reward or costs. In the present work, we investigate causal contributions of the basolateral amygdala (BLA) and orbitofrontal cortex (OFC) in rats to learning under expected outcome uncertainty in a novel delay-based task that incorporates both predictable fluctuations and directional shifts in outcome values. We demonstrate that OFC is required to accurately represent the distribution of wait times to stabilize choice preferences despite trial-by-trial fluctuations in outcomes, whereas BLA is necessary for the facilitation of learning in response to surprising events. DOI: http://dx.doi.org/10.7554/eLife.27483.001 PMID:28682238
Simulation in laparoscopic surgery.
León Ferrufino, Felipe; Varas Cohen, Julián; Buckel Schaffner, Erwin; Crovari Eulufi, Fernando; Pimentel Müller, Fernando; Martínez Castillo, Jorge; Jarufe Cassis, Nicolás; Boza Wilson, Camilo
2015-01-01
Nowadays surgical trainees are faced with a more reduced surgical practice, due to legal limitations and work hourly constraints. Also, currently surgeons are expected to dominate more complex techniques such as laparoscopy. Simulation emerges as a complementary learning tool in laparoscopic surgery, by training in a safe, controlled and standardized environment, without jeopardizing patient' safety. Simulation' objective is that the skills acquired should be transferred to the operating room, allowing reduction of learning curves. The use of simulation has increased worldwide, becoming an important tool in different surgical residency programs and laparoscopic training courses. For several countries, the approval of these training courses are a prerequisite for the acquisition of surgeon title certifications. This article reviews the most important aspects of simulation in laparoscopic surgery, including the most used simulators and training programs, as well as the learning methodologies and the different key ways to assess learning in simulation. Copyright © 2013 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Ratnam, Challa; Lakshmana Rao, Vadlamudi; Lachaa Goud, Sivagouni
2006-10-01
In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper.
Group level effects of social versus individual learning.
Jost, Jürgen; Li, Wei
2013-06-01
We study the effects of learning by imitating others within the framework of an iterated game in which the members of two complementary populations interact via random pairing at each round. This allows us to compare both the fitness of different strategies within a population and the performance of populations in which members have access to different types of strategies. Previous studies reveal some emergent dynamics at the population level, when players learn individually. We here investigate a different mechanism in which players can choose between two different learning strategies, individual or social. Imitating behavior can spread within a mixed population, with the frequency of imitators varying over generation time. When compared to a pure population with solely individual learners, a mixed population with both individual and social learners can do better, independently of the precise learning scheme employed. We can then search for the best imitating strategy. Imitating the neighbor with the highest payoff turns out to be consistently superior. This is in agreement with findings in experimental and model studies that have been carried out in different settings.
Ribesse, Nathalie; Bossyns, Paul; Marchal, Bruno; Karemere, Hermes; Burman, Christopher J; Macq, Jean
2017-03-01
In the field of development cooperation, interest in systems thinking and complex systems theories as a methodological approach is increasingly recognised. And so it is in health systems research, which informs health development aid interventions. However, practical applications remain scarce to date. The objective of this article is to contribute to the body of knowledge by presenting the tools inspired by systems thinking and complexity theories and methodological lessons learned from their application. These tools were used in a case study. Detailed results of this study are in process for publication in additional articles. Applying a complexity 'lens', the subject of the case study is the role of long-term international technical assistance in supporting health administration reform at the provincial level in the Democratic Republic of Congo. The Methods section presents the guiding principles of systems thinking and complex systems, their relevance and implication for the subject under study, and the existing tools associated with those theories which inspired us in the design of the data collection and analysis process. The tools and their application processes are presented in the results section, and followed in the discussion section by the critical analysis of their innovative potential and emergent challenges. The overall methodology provides a coherent whole, each tool bringing a different and complementary perspective on the system.
From feedback- to response-based performance monitoring in active and observational learning.
Bellebaum, Christian; Colosio, Marco
2014-09-01
Humans can adapt their behavior by learning from the consequences of their own actions or by observing others. Gradual active learning of action-outcome contingencies is accompanied by a shift from feedback- to response-based performance monitoring. This shift is reflected by complementary learning-related changes of two ACC-driven ERP components, the feedback-related negativity (FRN) and the error-related negativity (ERN), which have both been suggested to signal events "worse than expected," that is, a negative prediction error. Although recent research has identified comparable components for observed behavior and outcomes (observational ERN and FRN), it is as yet unknown, whether these components are similarly modulated by prediction errors and thus also reflect behavioral adaptation. In this study, two groups of 15 participants learned action-outcome contingencies either actively or by observation. In active learners, FRN amplitude for negative feedback decreased and ERN amplitude in response to erroneous actions increased with learning, whereas observational ERN and FRN in observational learners did not exhibit learning-related changes. Learning performance, assessed in test trials without feedback, was comparable between groups, as was the ERN following actively performed errors during test trials. In summary, the results show that action-outcome associations can be learned similarly well actively and by observation. The mechanisms involved appear to differ, with the FRN in active learning reflecting the integration of information about own actions and the accompanying outcomes.
Tran, Van Khanh; Spohrer, Rebecca; LE, Tuyen Danh; Poonawala, Alia; Monech-Pfanner, Regina
2015-01-01
Micronutrient deficiencies are still a public health problem in Vietnam. The Government of Vietnam has taken several steps to improve the situation through issuing supportive policy documents over the last several decades. Food fortification is an important complementary strategy to help bridge the nutrient gap in the population. Currently technical regulations are in place and food fortification is taking place on a voluntary basis, along with other complementary targeted programs including home fortification of complementary foods with micronutrient powders and a communications campaign to reach adolescent girls. These have been built on innotative partnerships with industries on a voluntary, market basis. Other innovative targeted nutrition programs are also being piloted, including a micronutrient supplement project in four provinces and a campain to reach adolescent girls through sports. High level political commitment and resources is a crucial element to scale up in Vietnam. A micronutrient survey planned in 2015 will help provide the evidence to support a possible mandatory decree on food fortification. Vietnam has built a solid foundation in order to scale up its national food fortification program in the future to reach the majority of the population with improved intakes of iron, vitamin A, zinc, and iodine.
Bavin, Lynda M; Owens, R Glynn
2018-05-01
Research suggests that health-promoting storylines in developed nations' fictional television programs can have a beneficial impact on viewers' beliefs, attitudes, intentions, or behaviors. The sizes of the effects are generally modest; however, the audience reach is substantial. Given that many fictional programs may hold the prolonged attention of millions of viewers, it is of value to examine potential strategies for enhancing the persuasive impact of their health-promoting storylines. Complementary public service announcements may be a promising strategy. This randomized experimental study (N = 310) examined the effects of viewing a complementary public service announcement after an organ donation story in an episode of Grey's Anatomy. Results indicated that the public service announcement enhanced the beneficial impact of the story on viewers' discussion behavior (about one's organ donor wishes), discussion intention, and perceived learning. This experimental study is the first to examine the effects of viewing a non-character public service announcement after a health-related storyline in a developed nation's fictional program compared to viewing the same episode of the program on its own. It is important for future research to examine whether these findings replicate for different health issues and with a nationally representative sample.
Pan, Xin; Zhang, Alice; Henderson, Gail E; Rennie, Stuart; Liu, Chuncheng; Cai, Weiping; Wu, Feng; Tucker, Joseph D
2017-12-13
Traditional, complementary, and alternative medicine (TCAM) has been used by some people living with HIV (PLHIV) in an attempt to cure HIV. This article reviews the main factors influencing their decision to choose TCAM to cure HIV and discusses implications for HIV cure research. Those who decide to pursue traditional, complementary, and alternative medical cures may be influenced by the health system, cultural, and social dynamics, and their own individual beliefs and preferences. These same factors may impact participation in HIV cure research. People who search for traditional, complementary, and alternative medical cures may face special challenges as they are recruited, consented, and retained within HIV cure research studies. To address these potential challenges, we have suggested solutions focusing on culturally tailored communication and education, formative social science research, and community partnerships with key stakeholders. The social conditions that have promoted traditional, complementary and alternative medical cures will likely impact how PLHIV participate and experience HIV remission trials. Despite the potential challenges, it will be crucial to involve those who have previously sought out traditional cures for HIV in HIV cure research.
MutSα's Multi-Domain Allosteric Response to Three DNA Damage Types Revealed by Machine Learning
NASA Astrophysics Data System (ADS)
Melvin, Ryan L.; Thompson, William G.; Godwin, Ryan C.; Gmeiner, William H.; Salsbury, Freddie R.
2017-03-01
MutSalpha is a key component in the mismatch repair (MMR) pathway. This protein is responsible for initiating the signaling pathways for DNA repair or cell death. Herein we investigate this heterodimer’s post-recognition, post-binding response to three types of DNA damage involving cytotoxic, anti-cancer agents - carboplatin, cisplatin, and FdU. Through a combination of supervised and unsupervised machine learning techniques along with more traditional structural and kinetic analysis applied to all-atom molecular dynamics (MD) calculations, we predict that MutSalpha has a distinct response to each of the three damage types. Via a binary classification tree (a supervised machine learning technique), we identify key hydrogen bond motifs unique to each type of damage and suggest residues for experimental mutation studies. Through a combination of a recently developed clustering (unsupervised learning) algorithm, RMSF calculations, PCA, and correlated motions we predict that each type of damage causes MutS↵to explore a specific region of conformation space. Detailed analysis suggests a short range effect for carboplatin - primarily altering the structures and kinetics of residues within 10 angstroms of the damaged DNA - and distinct longer-range effects for cisplatin and FdU. In our simulations, we also observe that a key phenylalanine residue - known to stack with a mismatched or unmatched bases in MMR - stacks with the base complementary to the damaged base in 88.61% of MD frames containing carboplatinated DNA. Similarly, this Phe71 stacks with the base complementary to damage in 91.73% of frames with cisplatinated DNA. This residue, however, stacks with the damaged base itself in 62.18% of trajectory frames with FdU-substituted DNA and has no stacking interaction at all in 30.72% of these frames. Each drug investigated here induces a unique perturbation in the MutS↵complex, indicating the possibility of a distinct signaling event and specific repair or death pathway (or set of pathways) for a given type of damage.
Takashima, Atsuko; Bakker, Iske; van Hell, Janet G; Janzen, Gabriele; McQueen, James M
2014-01-01
The complementary learning systems account of declarative memory suggests two distinct memory networks, a fast-mapping, episodic system involving the hippocampus, and a slower semantic memory system distributed across the neocortex in which new information is gradually integrated with existing representations. In this study, we investigated the extent to which these two networks are involved in the integration of novel words into the lexicon after extensive learning, and how the involvement of these networks changes after 24h. In particular, we explored whether having richer information at encoding influences the lexicalization trajectory. We trained participants with two sets of novel words, one where exposure was only to the words' phonological forms (the form-only condition), and one where pictures of unfamiliar objects were associated with the words' phonological forms (the picture-associated condition). A behavioral measure of lexical competition (indexing lexicalization) indicated stronger competition effects for the form-only words. Imaging (fMRI) results revealed greater involvement of phonological lexical processing areas immediately after training in the form-only condition, suggesting that tight connections were formed between novel words and existing lexical entries already at encoding. Retrieval of picture-associated novel words involved the episodic/hippocampal memory system more extensively. Although lexicalization was weaker in the picture-associated condition, overall memory strength was greater when tested after a 24hour delay, probably due to the availability of both episodic and lexical memory networks to aid retrieval. It appears that, during lexicalization of a novel word, the relative involvement of different memory networks differs according to the richness of the information about that word available at encoding. © 2013.
Using a virtual patient system for the teaching of pharmaceutical care.
Menendez, Elisa; Balisa-Rocha, Blície; Jabbur-Lopes, Monique; Costa, Wanderson; Nascimento, José Rafael; Dósea, Marcos; Silva, Leila; Lyra Junior, Divaldo
2015-09-01
The communication skills of pharmacists are essential for the identification and reduction of patient́s drug related problems. Therefore, Pharmacy courses started the process of teaching Pharmaceutical Care to students in order to improve their communication skills. The use of virtual patients (VP) has been a widely used technique in health care courses, but many of the VP tools in Pharmacy field are in English and do not have clinical cases that are common in tropical countries, such as Brazil. The aim of this work is to describe the PharmaVP system, developed with the purpose of training Latin America students in Pharmaceutical Care. The main differential of PharmaVP is the availability in three languages (Portuguese, English and Spanish) and the possibility of clinical case evolution, simulating several visits made by the patient. The system was developed according to an incremental and interactive methodology, well suited for conducting multidisciplinary projects. Real clinical cases were collected from a Pharmaceutical Care program and added in PharmaVP to simulate the virtual patients. Then, 31 students of a Pharmacy course were trained and invited to participate of the evaluation study. They used the software and answered adapted instruments that assess the students' acceptance of, use of, learning of, and satisfaction with the system. The results showed that the students found the cases realistic and learned significantly using the software. Another positive point is that the application process of PharmaVP did not consume much time. We can conclude that the virtual patient tool contributed to the development of the skills required for the practice of Pharmaceutical Care, but should be used as complementary technique. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Roberts, Kirsty; Hemmings, Andrew J; McBride, Sebastian D; Parker, Matthew O
2017-12-01
Large animal models of human neurological disorders are advantageous compared to rodent models due to their neuroanatomical complexity, longevity and their ability to be maintained in naturalised environments. Some large animal models spontaneously develop behaviours that closely resemble the symptoms of neural and psychiatric disorders. The horse is an example of this; the domestic form of this species consistently develops spontaneous stereotypic behaviours akin to the compulsive and impulsive behaviours observed in human neurological disorders such as Tourette's syndrome. The ability to non-invasively probe normal and abnormal equine brain function through cognitive testing may provide an extremely useful methodological tool to assess brain changes associated with certain human neurological and psychiatric conditions. An automated operant system with the ability to present visual and auditory stimuli as well as dispense salient food reward was developed. To validate the system, ten horses were trained and tested using a standard cognitive task (three choice serial reaction time task (3-CSRTT)). All animals achieved total learning criterion and performed six probe sessions. Learning criterion was met within 16.30±0.79 sessions over a three day period. During six probe sessions, level of performance was maintained at 80.67±0.57% (mean±SEM) accuracy. This is the first mobile fully automated system developed to examine cognitive function in the horse. A fully-automated operant system for mobile cognitive function of a large animal model has been designed and validated. Horses pose an interesting complementary model to rodents for the examination of human neurological dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.
Understanding the relationship between student attitudes and student learning
NASA Astrophysics Data System (ADS)
Cahill, Michael J.; McDaniel, Mark A.; Frey, Regina F.; Hynes, K. Mairin; Repice, Michelle; Zhao, Jiuqing; Trousil, Rebecca
2018-02-01
Student attitudes, defined as the extent to which one holds expertlike beliefs about and approaches to physics, are a major research topic in physics education research. An implicit but rarely tested assumption underlying much of this research is that student attitudes play a significant part in student learning and performance. The current study directly tested this attitude-learning link by measuring the association between incoming attitudes (Colorado Learning Attitudes about Science Survey) and student learning during the semester after statistically controlling for the effects of prior knowledge [early-semester Force Concept Inventory (FCI) or Brief Electricity and Magnetism Assessment (BEMA)]. This study spanned four different courses and included two complementary measures of student knowledge: late-semester concept inventory scores (FCI or BEMA) and exam averages. In three of the four courses, after controlling for prior knowledge, attitudes significantly predicted both late-semester concept inventory scores and exam averages, but in all cases these attitudes explained only a small amount of variance in concept-inventory and exam scores. Results indicate that after accounting for students' incoming knowledge, attitudes may uniquely but modestly relate to how much students learn and how well they perform in the course.
Experimental studies illuminate the cultural transmission of percussive technologies in Homo and Pan
Whiten, Andrew
2015-01-01
The complexity of Stone Age tool-making is assumed to have relied upon cultural transmission, but direct evidence is lacking. This paper reviews evidence bearing on this question provided through five related empirical perspectives. Controlled experimental studies offer special power in identifying and dissecting social learning into its diverse component forms, such as imitation and emulation. The first approach focuses on experimental studies that have discriminated social learning processes in nut-cracking by chimpanzees. Second come experiments that have identified and dissected the processes of cultural transmission involved in a variety of other force-based forms of chimpanzee tool use. A third perspective is provided by field studies that have revealed a range of forms of forceful, targeted tool use by chimpanzees, that set percussion in its broader cognitive context. Fourth are experimental studies of the development of flint knapping to make functional sharp flakes by bonobos, implicating and defining the social learning and innovation involved. Finally, new and substantial experiments compare what different social learning processes, from observational learning to teaching, afford good quality human flake and biface manufacture. Together these complementary approaches begin to delineate the social learning processes necessary to percussive technologies within the Pan–Homo clade. PMID:26483537
Fay, Nicolas; Walker, Bradley; Swoboda, Nik; Garrod, Simon
2018-05-01
Human cognition and behavior are dominated by symbol use. This paper examines the social learning strategies that give rise to symbolic communication. Experiment 1 contrasts an individual-level account, based on observational learning and cognitive bias, with an inter-individual account, based on social coordinative learning. Participants played a referential communication game in which they tried to communicate a range of recurring meanings to a partner by drawing, but without using their conventional language. Individual-level learning, via observation and cognitive bias, was sufficient to produce signs that became increasingly effective, efficient, and shared over games. However, breaking a referential precedent eliminated these benefits. The most effective, most efficient, and most shared signs arose when participants could directly interact with their partner, indicating that social coordinative learning is important to the creation of shared symbols. Experiment 2 investigated the contribution of two distinct aspects of social interaction: behavior alignment and concurrent partner feedback. Each played a complementary role in the creation of shared symbols: Behavior alignment primarily drove communication effectiveness, and partner feedback primarily drove the efficiency of the evolved signs. In conclusion, inter-individual social coordinative learning is important to the evolution of effective, efficient, and shared symbols. Copyright © 2018 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun
2018-02-01
For a drug, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.
Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun
2018-01-01
During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future. PMID:29515993
de la Fuente, Jesús; Fernández-Cabezas, María; Cambil, Matilde; Vera, Manuel M.; González-Torres, Maria Carmen; Artuch-Garde, Raquel
2017-01-01
The aim of the present research was to analyze the linear relationship between resilience (meta-motivational variable), learning approaches (meta-cognitive variables), strategies for coping with academic stress (meta-emotional variable) and academic achievement, necessary in the context of university academic stress. A total of 656 students from a southern university in Spain completed different questionnaires: a resiliency scale, a coping strategies scale, and a study process questionnaire. Correlations and structural modeling were used for data analyses. There was a positive and significant linear association showing a relationship of association and prediction of resilience to the deep learning approach, and problem-centered coping strategies. In a complementary way, these variables positively and significantly predicted the academic achievement of university students. These results enabled a linear relationship of association and consistent and differential prediction to be established among the variables studied. Implications for future research are set out. PMID:28713298
Bowman, Rebekah L; Davis, Deborah L; Ferguson, Sally; Taylor, Jan
2018-04-01
complementary and Alternative Medicine use during pregnancy is popular in many countries, including Australia. There is currently little evidence to support this practice, which raises the question of women's motivation for use of these therapies and the experiences they encounter. this study aims to explore the perceptions, motivations and experiences of pregnant women with regard to their use of Complementary and Alternative Medicine during pregnancy. a systemic review and meta-synthesis of the available research was conducted. Five databases were explored - CINAHL Plus, Medline, PubMed, AMED and Web of Science using the search terms complementary and alternative medicine; pregnancy; and pregnant. Articles included in this meta-synthesis were screened using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses tool. ten initial themes were drawn from the six studies. These ten themes were summarised by three cluster themes. The results suggest that women are using Complementary and Alternative Medicine in their pregnancy as a means of supporting their sense of self-determination, to pursue a natural and safe childbirth, and because they experience a close affiliation with the philosophical underpinnings of Complementary and Alternative Medicine as an alternative to the biomedical model. these findings are important to practitioners, policy makers, governing bodies and researchers, providing insight into the motivations for Complementary and Alternative Medicine use by women in pregnancy. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Dissociating hippocampal and striatal contributions to sequential prediction learning
Bornstein, Aaron M.; Daw, Nathaniel D.
2011-01-01
Behavior may be generated on the basis of many different kinds of learned contingencies. For instance, responses could be guided by the direct association between a stimulus and response, or by sequential stimulus-stimulus relationships (as in model-based reinforcement learning or goal-directed actions). However, the neural architecture underlying sequential predictive learning is not well-understood, in part because it is difficult to isolate its effect on choice behavior. To track such learning more directly, we examined reaction times (RTs) in a probabilistic sequential picture identification task. We used computational learning models to isolate trial-by-trial effects of two distinct learning processes in behavior, and used these as signatures to analyze the separate neural substrates of each process. RTs were best explained via the combination of two delta rule learning processes with different learning rates. To examine neural manifestations of these learning processes, we used functional magnetic resonance imaging to seek correlates of timeseries related to expectancy or surprise. We observed such correlates in two regions, hippocampus and striatum. By estimating the learning rates best explaining each signal, we verified that they were uniquely associated with one of the two distinct processes identified behaviorally. These differential correlates suggest that complementary anticipatory functions drive each region's effect on behavior. Our results provide novel insights as to the quantitative computational distinctions between medial temporal and basal ganglia learning networks and enable experiments that exploit trial-by-trial measurement of the unique contributions of both hippocampus and striatum to response behavior. PMID:22487032
ERIC Educational Resources Information Center
Yuan, Robert; Lin, Yuan
2008-01-01
A course has been created to examine the ways in which China and the West have approached human health and medicine. Though fundamentally different, these two systems are complementary in a number of ways. This course is a model for a global science course in an educational initiative that incorporates Asian themes into science and engineering…
Seamless Tracing of Human Behavior Using Complementary Wearable and House-Embedded Sensors
Augustyniak, Piotr; Smoleń, Magdalena; Mikrut, Zbigniew; Kańtoch, Eliasz
2014-01-01
This paper presents a multimodal system for seamless surveillance of elderly people in their living environment. The system uses simultaneously a wearable sensor network for each individual and premise-embedded sensors specific for each environment. The paper demonstrates the benefits of using complementary information from two types of mobility sensors: visual flow-based image analysis and an accelerometer-based wearable network. The paper provides results for indoor recognition of several elementary poses and outdoor recognition of complex movements. Instead of complete system description, particular attention was drawn to a polar histogram-based method of visual pose recognition, complementary use and synchronization of the data from wearable and premise-embedded networks and an automatic danger detection algorithm driven by two premise- and subject-related databases. The novelty of our approach also consists in feeding the databases with real-life recordings from the subject, and in using the dynamic time-warping algorithm for measurements of distance between actions represented as elementary poses in behavioral records. The main results of testing our method include: 95.5% accuracy of elementary pose recognition by the video system, 96.7% accuracy of elementary pose recognition by the accelerometer-based system, 98.9% accuracy of elementary pose recognition by the combined accelerometer and video-based system, and 80% accuracy of complex outdoor activity recognition by the accelerometer-based wearable system. PMID:24787640
Liu, Yang; Njuguna, Raphael; Matthews, Thomas; Akers, Walter J.; Sudlow, Gail P.; Mondal, Suman; Tang, Rui
2013-01-01
Abstract. We have developed a near-infrared (NIR) fluorescence goggle system based on the complementary metal–oxide–semiconductor active pixel sensor imaging and see-through display technologies. The fluorescence goggle system is a compact wearable intraoperative fluorescence imaging and display system that can guide surgery in real time. The goggle is capable of detecting fluorescence of indocyanine green solution in the picomolar range. Aided by NIR quantum dots, we successfully used the fluorescence goggle to guide sentinel lymph node mapping in a rat model. We further demonstrated the feasibility of using the fluorescence goggle in guiding surgical resection of breast cancer metastases in the liver in conjunction with NIR fluorescent probes. These results illustrate the diverse potential use of the goggle system in surgical procedures. PMID:23728180
Teng, Dongdong; Xiong, Yi; Liu, Lilin; Wang, Biao
2015-03-09
Existing multiview three-dimensional (3D) display technologies encounter discontinuous motion parallax problem, due to a limited number of stereo-images which are presented to corresponding sub-viewing zones (SVZs). This paper proposes a novel multiview 3D display system to obtain continuous motion parallax by using a group of planar aligned OLED microdisplays. Through blocking partial light-rays by baffles inserted between adjacent OLED microdisplays, transitional stereo-image assembled by two spatially complementary segments from adjacent stereo-images is presented to a complementary fusing zone (CFZ) which locates between two adjacent SVZs. For a moving observation point, the spatial ratio of the two complementary segments evolves gradually, resulting in continuously changing transitional stereo-images and thus overcoming the problem of discontinuous motion parallax. The proposed display system employs projection-type architecture, taking the merit of full display resolution, but at the same time having a thin optical structure, offering great potentials for portable or mobile 3D display applications. Experimentally, a prototype display system is demonstrated by 9 OLED microdisplays.
Tesser, Charles Dalcanale; Barros, Nelson Filice de
2008-10-01
Social medicalization transforms people's habits, discourages them from finding their own solutions to certain health problems and places an excess demand on the Unified Health System. With regard to healthcare provision, an alternative to social medicalization is the pluralization of treatment provided by health institutions namely through the recognition and provision of alternative and complementary practices and medicines. The objective of the article was to analyze the potentials and difficulties of alternative and complementary practices and medicines based on clinical and institutional experiences and on the specialist literature. The research concludes that the potential of such a strategy to "demedicalize" is limited and should be included in the remit of the Unified Health System. The article highlights that the Biosciences retain a political and epistemiological hegemony over medicine and that the area of healthcare is dominated by market principles, whereby there is a trend towards the transformation of any kind of knowledge or structured practice related to health-illness processes into goods or procedures to be consumed, and this only reinforces heteronomy and medicalization.
The Antidepressant and Cognitive Improvement Activities of the Traditional Chinese Herb Cistanche
Wang, Haizhen
2017-01-01
More than ten percent of people suffer from at least one episode of depression and related mental disorders in a lifetime, and depression and related mental disorders are one of the world's greatest public health problems. A multiple system theory holds that dysregulation of the multiple systems underlies the pathogenesis of depression and related mental disorders, and new therapies based on the multiple system dysregulation theory are urgently needed. In this study, the antidepressant effect of decoction from herb Cistanche deserticola Y.C.Ma and Cistanche tubulosa was examined. Herb Cistanche decoction reduced the immobility period significantly in the mouse tail suspension test. Mice treated with herb decoction showed an improved ability of spatial learning and memory in the Morris water maze test. Groups treated herb decoction displayed a downregulated monoamine oxidase (MAO) activity; the dopamine (DA) concentration in the brain was upregulated, indicating herb Cistanche decoction improved the nerve excitability; the serum concentration of corticosterone (CORT) was downregulated, showing that mice benefited from a reduced stress level. Hence, the antidepressant efficacy and mechanism of traditional Chinese herb Cistanche were explored in this study. Herb Cistanche showed a potential to be developed as a complementary and alternative therapy for depression. PMID:28744316
Yin, X-X; Zhang, Y; Cao, J; Wu, J-L; Hadjiloucas, S
2016-12-01
We provide a comprehensive account of recent advances in biomedical image analysis and classification from two complementary imaging modalities: terahertz (THz) pulse imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The work aims to highlight underlining commonalities in both data structures so that a common multi-channel data fusion framework can be developed. Signal pre-processing in both datasets is discussed briefly taking into consideration advances in multi-resolution analysis and model based fractional order calculus system identification. Developments in statistical signal processing using principal component and independent component analysis are also considered. These algorithms have been developed independently by the THz-pulse imaging and DCE-MRI communities, and there is scope to place them in a common multi-channel framework to provide better software standardization at the pre-processing de-noising stage. A comprehensive discussion of feature selection strategies is also provided and the importance of preserving textural information is highlighted. Feature extraction and classification methods taking into consideration recent advances in support vector machine (SVM) and extreme learning machine (ELM) classifiers and their complex extensions are presented. An outlook on Clifford algebra classifiers and deep learning techniques suitable to both types of datasets is also provided. The work points toward the direction of developing a new unified multi-channel signal processing framework for biomedical image analysis that will explore synergies from both sensing modalities for inferring disease proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Design and application of complementary educational resources for self-learning methodology
NASA Astrophysics Data System (ADS)
Andrés Gilarranz Casado, Carlos; Rodriguez-Sinobas, Leonor
2016-04-01
The main goal of this work is enhanced the student`s self-learning in subjects regarding irrigation and its technology. Thus, the use of visual media (video recording) during the lectures (master classes and practicum) will help the students in understanding the scope of the course since they can watch the recorded material at any time and as many times they wish. The study comprised two parts. In the first, lectures were video filmed inside the classroom during one semester (16 weeks and four hours per week) in the course "Irrigation Systems and Technology" which is taught at the Technical University of Madrid. In total, 200 videos, approximated 12 min long, were recorded. Since the You tube platform is a worldwide platform and since it is commonly used by students and professors, the videos were uploaded in it. Then, the URL was inserted in the Moodle platform which contains the materials for the course. In the second part, the videos were edited and formatted. Special care was taking to maintain image and audio quality. Finally, thirty videos were developed which focused on the different main areas of the course and containing a clear and brief explanation of their basis. Each video lasted between 30 and 45 min Finally, a survey was handled at the end of the semester in order to assess the students' opinion about the methodology. In the questionnaire, the students highlighted the key aspects during the learning process and in general, they were very satisfied with the methodology.
Kim, Jongin; Lee, Boreom
2018-05-07
Different modalities such as structural MRI, FDG-PET, and CSF have complementary information, which is likely to be very useful for diagnosis of AD and MCI. Therefore, it is possible to develop a more effective and accurate AD/MCI automatic diagnosis method by integrating complementary information of different modalities. In this paper, we propose multi-modal sparse hierarchical extreme leaning machine (MSH-ELM). We used volume and mean intensity extracted from 93 regions of interest (ROIs) as features of MRI and FDG-PET, respectively, and used p-tau, t-tau, and Aβ42 as CSF features. In detail, high-level representation was individually extracted from each of MRI, FDG-PET, and CSF using a stacked sparse extreme learning machine auto-encoder (sELM-AE). Then, another stacked sELM-AE was devised to acquire a joint hierarchical feature representation by fusing the high-level representations obtained from each modality. Finally, we classified joint hierarchical feature representation using a kernel-based extreme learning machine (KELM). The results of MSH-ELM were compared with those of conventional ELM, single kernel support vector machine (SK-SVM), multiple kernel support vector machine (MK-SVM) and stacked auto-encoder (SAE). Performance was evaluated through 10-fold cross-validation. In the classification of AD vs. HC and MCI vs. HC problem, the proposed MSH-ELM method showed mean balanced accuracies of 96.10% and 86.46%, respectively, which is much better than those of competing methods. In summary, the proposed algorithm exhibits consistently better performance than SK-SVM, ELM, MK-SVM and SAE in the two binary classification problems (AD vs. HC and MCI vs. HC). © 2018 Wiley Periodicals, Inc.
Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks.
Bi, Lei; Kim, Jinman; Ahn, Euijoon; Kumar, Ashnil; Fulham, Michael; Feng, Dagan
2017-09-01
Segmentation of skin lesions is an important step in the automated computer aided diagnosis of melanoma. However, existing segmentation methods have a tendency to over- or under-segment the lesions and perform poorly when the lesions have fuzzy boundaries, low contrast with the background, inhomogeneous textures, or contain artifacts. Furthermore, the performance of these methods are heavily reliant on the appropriate tuning of a large number of parameters as well as the use of effective preprocessing techniques, such as illumination correction and hair removal. We propose to leverage fully convolutional networks (FCNs) to automatically segment the skin lesions. FCNs are a neural network architecture that achieves object detection by hierarchically combining low-level appearance information with high-level semantic information. We address the issue of FCN producing coarse segmentation boundaries for challenging skin lesions (e.g., those with fuzzy boundaries and/or low difference in the textures between the foreground and the background) through a multistage segmentation approach in which multiple FCNs learn complementary visual characteristics of different skin lesions; early stage FCNs learn coarse appearance and localization information while late-stage FCNs learn the subtle characteristics of the lesion boundaries. We also introduce a new parallel integration method to combine the complementary information derived from individual segmentation stages to achieve a final segmentation result that has accurate localization and well-defined lesion boundaries, even for the most challenging skin lesions. We achieved an average Dice coefficient of 91.18% on the ISBI 2016 Skin Lesion Challenge dataset and 90.66% on the PH2 dataset. Our extensive experimental results on two well-established public benchmark datasets demonstrate that our method is more effective than other state-of-the-art methods for skin lesion segmentation.
Critical Assessment of Small Molecule Identification 2016: automated methods.
Schymanski, Emma L; Ruttkies, Christoph; Krauss, Martin; Brouard, Céline; Kind, Tobias; Dührkop, Kai; Allen, Felicity; Vaniya, Arpana; Verdegem, Dries; Böcker, Sebastian; Rousu, Juho; Shen, Huibin; Tsugawa, Hiroshi; Sajed, Tanvir; Fiehn, Oliver; Ghesquière, Bart; Neumann, Steffen
2017-03-27
The fourth round of the Critical Assessment of Small Molecule Identification (CASMI) Contest ( www.casmi-contest.org ) was held in 2016, with two new categories for automated methods. This article covers the 208 challenges in Categories 2 and 3, without and with metadata, from organization, participation, results and post-contest evaluation of CASMI 2016 through to perspectives for future contests and small molecule annotation/identification. The Input Output Kernel Regression (CSI:IOKR) machine learning approach performed best in "Category 2: Best Automatic Structural Identification-In Silico Fragmentation Only", won by Team Brouard with 41% challenge wins. The winner of "Category 3: Best Automatic Structural Identification-Full Information" was Team Kind (MS-FINDER), with 76% challenge wins. The best methods were able to achieve over 30% Top 1 ranks in Category 2, with all methods ranking the correct candidate in the Top 10 in around 50% of challenges. This success rate rose to 70% Top 1 ranks in Category 3, with candidates in the Top 10 in over 80% of the challenges. The machine learning and chemistry-based approaches are shown to perform in complementary ways. The improvement in (semi-)automated fragmentation methods for small molecule identification has been substantial. The achieved high rates of correct candidates in the Top 1 and Top 10, despite large candidate numbers, open up great possibilities for high-throughput annotation of untargeted analysis for "known unknowns". As more high quality training data becomes available, the improvements in machine learning methods will likely continue, but the alternative approaches still provide valuable complementary information. Improved integration of experimental context will also improve identification success further for "real life" annotations. The true "unknown unknowns" remain to be evaluated in future CASMI contests. Graphical abstract .
NASA Astrophysics Data System (ADS)
Jiang, Guo-Qian; Xie, Ping; Wang, Xiao; Chen, Meng; He, Qun
2017-11-01
The performance of traditional vibration based fault diagnosis methods greatly depends on those handcrafted features extracted using signal processing algorithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised representation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal structures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at different scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multiscale representations. Finally, the multiscale representations are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches.
2017-09-01
analysis. Along the way we learned that the Chinese Medicine information will be difficult to integrate into the main data set. At this point only a poster... psychological health, social context, physical function. We completed and submitted for review a simpler analysis of this relationship in The Importance and...the unfolding integration of complementary medical practices into regular medicine. It will assist acupuncturists and VA officials in determining if
Sugary beverage tax policy: lessons learned from tobacco.
Pomeranz, Jennifer L
2014-03-01
Excise taxes on sugary beverages have been proposed as a method to replicate the public health success of tobacco control and to generate revenue. As policymakers increase efforts to pass sugary beverage taxes, they can anticipate that manufacturers will emulate the strategies employed by tobacco companies in their attempts to counteract the impact of such taxes. Policymakers should therefore consider 2 complementary laws-minimum price laws and prohibitions on coupons and discounting-to accomplish the intended price increase.
A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
NASA Astrophysics Data System (ADS)
Zhang, Ce; Pan, Xin; Li, Huapeng; Gardiner, Andy; Sargent, Isabel; Hare, Jonathon; Atkinson, Peter M.
2018-06-01
The contextual-based convolutional neural network (CNN) with deep architecture and pixel-based multilayer perceptron (MLP) with shallow structure are well-recognized neural network algorithms, representing the state-of-the-art deep learning method and the classical non-parametric machine learning approach, respectively. The two algorithms, which have very different behaviours, were integrated in a concise and effective way using a rule-based decision fusion approach for the classification of very fine spatial resolution (VFSR) remotely sensed imagery. The decision fusion rules, designed primarily based on the classification confidence of the CNN, reflect the generally complementary patterns of the individual classifiers. In consequence, the proposed ensemble classifier MLP-CNN harvests the complementary results acquired from the CNN based on deep spatial feature representation and from the MLP based on spectral discrimination. Meanwhile, limitations of the CNN due to the adoption of convolutional filters such as the uncertainty in object boundary partition and loss of useful fine spatial resolution detail were compensated. The effectiveness of the ensemble MLP-CNN classifier was tested in both urban and rural areas using aerial photography together with an additional satellite sensor dataset. The MLP-CNN classifier achieved promising performance, consistently outperforming the pixel-based MLP, spectral and textural-based MLP, and the contextual-based CNN in terms of classification accuracy. This research paves the way to effectively address the complicated problem of VFSR image classification.
Reilly, Jamie
2015-01-01
The progressive degradation of semantic memory is a common feature of many forms of dementia, including Alzheimer’s Disease and the semantic variant of Primary Progressive Aphasia (svPPA). One of the most functionally debilitating effects of this semantic impairment is the inability to name common people and objects (i.e., anomia). Clinical management of a progressive, semantically-based anomia presents extraordinary challenge for neurorehabilitation. Techniques such as errorless learning and spaced-retrieval training show promise for retraining forgotten words. However, we lack complementary detail about what to train (i.e., item selection) and how to flexibly adapt the training to a declining cognitive system. In this position paper, I weigh the relative merits of several treatment rationales (e.g., restore vs. compensate) and advocate for maintenance of known words over reacquisition of forgotten knowledge in the context of semantic treatment paradigms. I propose a system for generating an item pool and outline a set of core principles for training and sustaining a micro-lexicon consisting of approximately 100 words. These principles are informed by lessons learned over the course of a Phase I treatment study targeting language maintenance over a 5-year span in Alzheimer’s Disease and Frontotemporal Degeneration. Finally, I propose a semantic training approach that capitalizes on lexical frequency and repeated training on conceptual structure to offset the loss of key vocabulary as disease severity worsens. PMID:25609229
Cunningham, S; Foote, L; Sowder, M; Cunningham, C
2018-05-01
The purpose of this mixed-methods study was to explore from the participant's perspective the influence of an interprofessional simulation-based learning experience on understanding the roles and responsibilities of healthcare professionals in the acute care setting, interprofessional collaboration, and communication. Participating students from two professional programs completed the Readiness for Interprofessional Learning Scale (RIPLS) prior to and following the simulation experience to explore the influence of the simulation experience on students' perceptions of readiness to learn together. A Wilcoxon signed rank analysis was performed for each of the four subscales of the RIPLS: shared learning (<.001), teamwork and collaboration (<.001), professional identity (.042), and roles and responsibilities (.001). In addition, participating students were invited to participate in focus group interviews to discuss the effectiveness of the simulation experience. Three key themes were discovered: interprofessional teamwork, discovering roles and responsibilities, and increased confidence in treatment skills. The integration of interprofessional education through a simulation-based learning experience within the nursing and physical therapy professional programs provided a positive experience for the students. Simulation-based learning experiences may provide an opportunity for institutions to collaborate and provide additional engagement with healthcare professions that may not be represented within a single institution.
Molina, Michael; Plaza, Victoria; Fuentes, Luis J.; Estévez, Angeles F.
2015-01-01
Memory for medical recommendations is a prerequisite for good adherence to treatment, and therefore to ameliorate the negative effects of the disease, a problem that mainly affects people with memory deficits. We conducted a simulated study to test the utility of a procedure (the differential outcomes procedure, DOP) that may improve adherence to treatment by increasing the patient’s learning and retention of medical recommendations regarding medication. The DOP requires the structure of a conditional discriminative learning task in which correct choice responses to specific stimulus–stimulus associations are reinforced with a particular reinforcer or outcome. In two experiments, participants had to learn and retain in their memory the pills that were associated with particular disorders. To assess whether the DOP improved long-term retention of the learned disorder/pill associations, participants were asked to perform two recognition memory tests, 1 h and 1 week after completing the learning phase. The results showed that compared with the standard non-differential outcomes procedure, the DOP produced better learning and long-term retention of the previously learned associations. These findings suggest that the DOP can be used as a useful complementary technique in intervention programs targeted at increasing adherence to clinical recommendations. PMID:26913010
NASA Technical Reports Server (NTRS)
Gubarev, M.; Ramsey, B.; ODell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.
2012-01-01
The Spectrum-Rontgen-Gamma (SRG) mission is a Russian-German X-ray astrophysical observatory that carries two co-aligned and complementary X-ray telescope systems. The primary instrument is the German-led extended ROentgen Survey with an Imaging Telescope Array (eROSITA), a 7-module X-ray telescope system that covers the energy range from 0.2-12 keV. The complementary instrument is the Russian-led Astronomical Roentgen Telescope -- X-ray Concentrator (ART-XC or ART), a 7-module X-ray telescope system that provides higher energy coverage, up to 30 keV (with limited sensitivity above 12 keV).
Tavares, Aida Isabel
2015-10-26
Complementary and Alternative Medicine (CAM) is frequently used in Portugal and it contributes to the improvement of people's health. CAM and Western Medicine (WM) are taken as complements both in the diagnosis and the treatment stage. The Portuguese health system is able to generate certified CAM professionals but the provision of CAM care and services is not included in the national health system. In times of austerity, this is not expected to change and access to CAM care continues to be out-of-pocket health expenditure. But the future for health in Portugal may well involve including CAM therapies in an integrated health system. © 2016 by Kerman University of Medical Sciences.
Tavares, Aida Isabel
2016-01-01
Complementary and Alternative Medicine (CAM) is frequently used in Portugal and it contributes to the improvement of people’s health. CAM and Western Medicine (WM) are taken as complements both in the diagnosis and the treatment stage. The Portuguese health system is able to generate certified CAM professionals but the provision of CAM care and services is not included in the national health system. In times of austerity, this is not expected to change and access to CAM care continues to be out-of-pocket health expenditure. But the future for health in Portugal may well involve including CAM therapies in an integrated health system. PMID:26673657
[E-learning : an effective and necessary complement to the postgraduate training].
Galland-Decker, Coralie; Gachoud, David; Monti, Matteo
2016-11-23
The evolution of modern medicine largely influenced the development of new postgraduate training programs, which requirements are more engaging and constraining. Time dedicated to education more and more often comes into competition with the resident's clinical and administrative activities. In this context, E-learning could be an interesting solution, if used complementary to the classical training which does not further overload the clinical activity. By focusing on the recognition of clinical images, and interpretation of functional tests, we target some well known knowledge gaps of our trainees. Our program allows every participant to be exposed to some important, prototypical or rare situations, independent of the clinical exposure. The quality of our program is ensured by the collaboration with several specialty departments of our hospital.
The Rural Girls in Science Project: from Pipelines to Affirming Science Education
NASA Astrophysics Data System (ADS)
Ginorio, Angela B.; Huston, Michelle; Frevert, Katie; Seibel, Jane Bierman
The Rural Girls in Science (RGS) program was developed to foster the interest in science, engineering, and mathematics among rural high school girls in the state of Washington. Girls served include American Indians, Latinas, and Whites. This article provides an overview of the program and its outcomes not only for the participants (girls, teachers, counselors, and schools) but the researchers. Lessons learned from and about the participants are presented, and lessons learned from the process are discussed to illustrate how RGS moved from a focus on individuals to a focus on the school. The initial guiding concepts (self-esteem and scientific pipeline) were replaced by “possible selves” and our proposed complementary concepts: science-affirming and affirming science education.
Informal physics learning from video games: a case study using gameplay videos
NASA Astrophysics Data System (ADS)
Croxton, DeVaughn; Kortemeyer, Gerd
2018-01-01
Researching informal gameplay can be challenging, since as soon as a formal study design is imposed, it becomes neither casual nor self-motivated. As a case study of a non-invasive design, we analyze publicly posted gameplay videos to assess the effectiveness of a physics educational video game on special relativity. These videos offer unique insights into informal learning through gaming, as players do not only describe the gameplay mechanics, but also explore physics concepts in a think-aloud fashion while they ponder the experience and effects. We find that while this methodology has substantial limitations, it is complementary when it comes to assessing motivations and attitudes, as well as to gathering data on conceptual hurdles.
The role and effect of complementary and alternative medicine in systemic lupus erythematosus.
Haija, Anan J; Schulz, Steffan W
2011-02-01
The use of complementary and alternative medicine (CAM) is common among patients with systemic lupus erythematosus (SLE), especially those with active disease who often have poorer quality of life and significant unmet needs. It is important for the rheumatologist to be aware of these therapies and to ask the patient with SLE about their active use or future interest in CAM. Future studies on the effectiveness of the aforementioned therapies will be crucial to find better ways for the rheumatologist to integrate their use into the care of the patient with SLE. Published by Elsevier Inc.
Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors
NASA Astrophysics Data System (ADS)
Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth
2017-02-01
Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.
Optical panel system including stackable waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSanto, Leonard; Veligdan, James T.
An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, whereinmore » each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.« less
Optical panel system including stackable waveguides
DeSanto, Leonard; Veligdan, James T.
2007-03-06
An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.
Silva, E J N L; Ferreira, V M; Silva, C C; Herrera, D R; De-Deus, G; Gomes, B P
2017-07-01
To compare the effectiveness of large apical preparations and complementary canal preparation with the Self-Adjusting File (SAF) in removing endotoxins from the root canal of teeth with apical periodontitis. Ten single-rooted and single-canaled teeth with post-treatment apical periodontitis were selected. Endotoxin samples were taken after removal of the root filling (S1), after chemomechanical preparation (CMP) using 2.5% NaOCl and an R25 file (S2), after CMP using 2.5% NaOCl and an R40 file (S3) and after complementary CMP using the SAF system (S4). Limulus amebocyte lysate (LAL) was used to measure endotoxin levels. The Friedman and Wilcoxon tests were used to compare endotoxin levels at each clinical intervention (P < 0.05). After root filling removal, endotoxin was detected in 100% of the root canals (S1, 4.84 EU mL -1 ). CMP with the R25 file was able to significantly reduce endotoxin levels (P < 0.05). Increased levels of endotoxin removal were achieved by apical preparation with the R40 file (P < 0.05). Complementary CMP with SAF did not significantly reduce endotoxin levels (P > 0.05) following the use of the R40 instrument. Apical enlargement protocols were effective in significantly reducing endotoxin levels. Complementary preparation with the SAF system failed to eliminate residual endotoxin contents beyond those obtained with the R40 instrument. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Barikani, Ameneh; Beheshti, Akram; Javadi, Maryam; Yasi, Marzieh
2015-08-01
Orientation of public and physicians to the complementary and alternative medicine (CAM) is one of the most prominent symbols of structural changes in the health service system. The aim of his study was a determination of knowledge, attitude, and practice of general practitioners in complementary and alternative medicine. This cross- sectional study was conducted in Qazvin, Iran in 2013. A self-administered questionnaire was used for collecting data including four information parts: population information, physicians' attitude and knowledge, methods of getting information and their function. A total of 228 physicians in Qazvin comprised the population of study according to the deputy of treatment's report of Qazvin University of Medical Sciences. A total of 150 physicians were selected randomly, and SPSS Statistical program was used to enter questionnaires' data. Results were analyzed as descriptive statistics and statistical analysis. Sixty percent of all responders were male. About sixty (59.4) percent of participating practitioners had worked less than 10 years.96.4 percent had a positive attitude towards complementary and alternative medicine. Knowledge of practitioners about traditional medicine in 11 percent was good, 36.3% and 52.7% had average and little information, respectively. 17.9% of practitioners offered their patients complementary and alternative medicine for treatment. Although there was little knowledge among practitioners about traditional medicine and complementary approaches, a significant percentage of them had attitude higher than the lower limit.
Soekarjo, Damayanti; Zehner, Elizabeth
2011-10-01
It is important to support women to exclusively breastfeed for 6 months and continue breastfeeding for 24 months and beyond. It is also necessary to provide the poor with access to affordable ways to improve the quality of complementary foods. Currently, many countries do not have the legal and policy environment necessary to support exclusive and continued breastfeeding. Legislative and policy changes are also necessary for introducing complementary food supplements, allowing them to be marketed to those who need them, and ensuring that marketing remains appropriate and in full compliance with the International Code of Marketing of Breastmilk Substitutes. This paper aims to illustrate the above with examples from Indonesia and to identify legislative requirements for supporting breastfeeding and enabling appropriate access to high-quality complementary food supplements for children 6-24 months of age. Requirements include improved information, training, monitoring and enforcement systems for the International Code of Marketing of Breastmilk Substitutes; implementation and monitoring of the Baby-Friendly Hospital Initiative; establishment of a registration category for complementary food supplements to enhance availability of high-quality, low-cost fortified products to help improve young child feeding; clear identification and marketing of these products as complementary food supplements for 6-24-month-olds so as to promote proper use and not interfere with breastfeeding. © 2011 Blackwell Publishing Ltd.
Lateral, not medial, prefrontal cortex contributes to punishment and aversive instrumental learning
Jean-Richard-dit-Bressel, Philip
2016-01-01
Aversive outcomes punish behaviors that cause their occurrence. The prefrontal cortex (PFC) has been implicated in punishment learning and behavior, although the exact roles for different PFC regions in instrumental aversive learning and decision-making remain poorly understood. Here, we assessed the role of the orbitofrontal (OFC), rostral agranular insular (RAIC), prelimbic (PL), and infralimbic (IL) cortex in instrumental aversive learning and decision-making. Rats that pressed two individually presented levers for pellet rewards rapidly suppressed responding to one lever if it also caused mild punishment (punished lever) but continued pressing the other lever that did not cause punishment (unpunished lever). Inactivations of OFC, RAIC, IL, or PL via the GABA agonists baclofen and muscimol (BM) had no effect on the acquisition of instrumental learning. OFC inactivations increased responding on the punished lever during expression of well-learned instrumental aversive learning, whereas RAIC inactivations increased responding on the punished lever when both levers were presented simultaneously in an unpunished choice test. There were few effects of medial PFC (PL and IL) inactivation. These results suggest that lateral PFC, notably OFC and RAIC, have complementary functions in aversive instrumental learning and decision-making; OFC is important for using established aversive instrumental memories to guide behavior away from actions that cause punishment, whereas RAIC is important for aversive decision-making under conditions of choice. PMID:27918280
Iyioha, Ireh
2011-01-01
This paper examines the (in)compatibility between the diagnostic and therapeutic theories of complementary and alternative medicine (CAM) and a science-based regulatory framework. Specifically, the paper investigates the nexus between statutory legitimacy and scientific validation of health systems, with an examination of its impact on the development of complementary and alternative therapies. The paper evaluates competing theories for validating CAM ranging from the RCT methodology to anthropological perspectives and contends that while the RCT method might be beneficial in the regulation of many CAM therapies, yet dogmatic adherence to this paradigm as the exclusive method for legitimizing CAM will be adverse to the independent development of many CAM therapies whose philosophies and mechanisms of action are not scientifically interpretable. Drawing on history and research evidence to support this argument, the paper sues for a regulatory model that is accommodative of different evidential paradigms in support of a pluralistic healthcare system that balances the imperative of quality assurance with the need to ensure access. PMID:20953428
[Virtual reality simulation training in gynecology: review and perspectives].
Ricard-Gauthier, Dominique; Popescu, Silvia; Benmohamed, Naida; Petignat, Patrick; Dubuisson, Jean
2016-10-26
Laparoscopic simulation has rapidly become an important tool for learning and acquiring technical skills in surgery. It is based on two different complementary pedagogic tools : the box model trainer and the virtual reality simulator. The virtual reality simulator has shown its efficiency by improving surgical skills, decreasing operating time, improving economy of movements and improving self-confidence. The main objective of this tool is the opportunity to easily organize a regular, structured and uniformed training program enabling an automated individualized feedback.
Sugary Beverage Tax Policy: Lessons Learned From Tobacco
2014-01-01
Excise taxes on sugary beverages have been proposed as a method to replicate the public health success of tobacco control and to generate revenue. As policymakers increase efforts to pass sugary beverage taxes, they can anticipate that manufacturers will emulate the strategies employed by tobacco companies in their attempts to counteract the impact of such taxes. Policymakers should therefore consider 2 complementary laws—minimum price laws and prohibitions on coupons and discounting—to accomplish the intended price increase. PMID:24432928
Low-fidelity bench models for basic surgical skills training during undergraduate medical education.
Denadai, Rafael; Saad-Hossne, Rogério; Todelo, Andréia Padilha; Kirylko, Larissa; Souto, Luís Ricardo Martinhão
2014-01-01
It is remarkable the reduction in the number of medical students choosing general surgery as a career. In this context, new possibilities in the field of surgical education should be developed to combat this lack of interest. In this study, a program of surgical training based on learning with models of low-fidelity bench is designed as a complementary alternative to the various methodologies in the teaching of basic surgical skills during medical education, and to develop personal interests in career choice.
Paterson, Charlotte
2004-08-01
This investigation set out to learn about consumer involvement in complementary medicine research from those who have experience of practice in this area. A literature search was combined with written and oral responses from key people and organisations in the UK. Letter or e-mail contact was made with 59 key people and organisations and 43 people responded. Eighteen respondents were interviewed. The overall level of consumer involvement was low but participants provided examples of experiences of consumer involvement in commissioning, designing, carrying out, and disseminating research. Clear roles and tasks and a consumer-friendly research environment, enabled consumers to contribute, gain confidence, and gradually widen their areas of involvement. There appears to be no single 'right way' for researchers and consumers to work together, but with experience and mutual respect researchers became increasingly enthusiastic about the value of the consumer perspective. As one consumer said: 'You have to take small steps to go a long way'.
Effectiveness of a Case-Based Computer Program on Students' Ethical Decision Making.
Park, Eun-Jun; Park, Mihyun
2015-11-01
The aim of this study was to test the effectiveness of a case-based computer program, using an integrative ethical decision-making model, on the ethical decision-making competency of nursing students in South Korea. This study used a pre- and posttest comparison design. Students in the intervention group used a computer program for case analysis assignments, whereas students in the standard group used a traditional paper assignment for case analysis. The findings showed that using the case-based computer program as a complementary tool for the ethics courses offered at the university enhanced students' ethical preparedness and satisfaction with the course. On the basis of the findings, it is recommended that nurse educators use a case-based computer program as a complementary self-study tool in ethics courses to supplement student learning without an increase in course hours, particularly in terms of analyzing ethics cases with dilemma scenarios and exercising ethical decision making. Copyright 2015, SLACK Incorporated.
Remorini, Carolina
2015-01-01
This chapter examines the ideas of reciprocity, respect, autonomy, and interdependence of lives and the impact of these on children's learning. Using an ecological perspective that recognizes humans' relationship with other living beings that inhabit the forest, this chapter is based on ethnographic research conducted in two Mbya-Guarani communities (Argentina). Respect and reciprocity are key for children to develop as part of the community and the forest and they are related to children's well-being and health. I describe Mbya perspectives on children's growth and development, emphasizing the balance between interdependence and autonomy as complementary goals and values, providing examples of environmentally relevant skills to grow up in the forest. These skills are associated with particular ways of inhabiting the forest, including learning how to walk in it and developing entendimiento (understanding). These make possible children's integration in community life through their participation and collaboration in daily activities. I attempt to articulate these ideas with the theoretical framework of Learning by Observing and Pitching In, especially concerning ways of organizing and supporting children's learning processes in the context of their engagement with multiaged and more experienced group of people. © 2015 Elsevier Inc. All rights reserved.
Oros, Nicolas; Chiba, Andrea A.; Nitz, Douglas A.; Krichmar, Jeffrey L.
2014-01-01
Learning to ignore irrelevant stimuli is essential to achieving efficient and fluid attention, and serves as the complement to increasing attention to relevant stimuli. The different cholinergic (ACh) subsystems within the basal forebrain regulate attention in distinct but complementary ways. ACh projections from the substantia innominata/nucleus basalis region (SI/nBM) to the neocortex are necessary to increase attention to relevant stimuli and have been well studied. Lesser known are ACh projections from the medial septum/vertical limb of the diagonal band (MS/VDB) to the hippocampus and the cingulate that are necessary to reduce attention to irrelevant stimuli. We developed a neural simulation to provide insight into how ACh can decrement attention using this distinct pathway from the MS/VDB. We tested the model in behavioral paradigms that require decremental attention. The model exhibits behavioral effects such as associative learning, latent inhibition, and persisting behavior. Lesioning the MS/VDB disrupts latent inhibition, and drastically increases perseverative behavior. Taken together, the model demonstrates that the ACh decremental pathway is necessary for appropriate learning and attention under dynamic circumstances and suggests a canonical neural architecture for decrementing attention. PMID:24443744
Bee SAFE, a Skill-Building Intervention to Enhance CAM Health Literacy: Lessons Learned.
Shreffler-Grant, Jean; Nichols, Elizabeth G; Weinert, Clarann
2018-05-01
The purpose is to describe a feasibility study of a skill-building intervention to enhance health literacy about complementary and alternative (CAM) therapies among older rural adults and share lessons learned. A study was designed to examine the feasibility of an intervention to enhance CAM health literacy. The theme was "Bee SAFE" for Be a wise user of CAM, Safety, Amount, From where, and Effect. Modules were presented face to face and by webinar with older adults at a senior center in one small rural community. The team achieved its purpose of designing, implementing, and evaluating the intervention and assessing if it could be implemented in a rural community. The implementation challenges encountered and lessons learn are discussed. By improving CAM health literacy, older rural adults with chronic health conditions can make well-reasoned decisions about using CAM for health promotion and illness management. The goal is to implement the Bee SAFE intervention in other rural communities; thus team members were attentive to lessons to be learned before investing time, effort, and expense in the larger intervention. It is hoped that the lessons learned can be instructive to others planning projects in rural communities.
Model-based learning protects against forming habits.
Gillan, Claire M; Otto, A Ross; Phelps, Elizabeth A; Daw, Nathaniel D
2015-09-01
Studies in humans and rodents have suggested that behavior can at times be "goal-directed"-that is, planned, and purposeful-and at times "habitual"-that is, inflexible and automatically evoked by stimuli. This distinction is central to conceptions of pathological compulsion, as in drug abuse and obsessive-compulsive disorder. Evidence for the distinction has primarily come from outcome devaluation studies, in which the sensitivity of a previously learned behavior to motivational change is used to assay the dominance of habits versus goal-directed actions. However, little is known about how habits and goal-directed control arise. Specifically, in the present study we sought to reveal the trial-by-trial dynamics of instrumental learning that would promote, and protect against, developing habits. In two complementary experiments with independent samples, participants completed a sequential decision task that dissociated two computational-learning mechanisms, model-based and model-free. We then tested for habits by devaluing one of the rewards that had reinforced behavior. In each case, we found that individual differences in model-based learning predicted the participants' subsequent sensitivity to outcome devaluation, suggesting that an associative mechanism underlies a bias toward habit formation in healthy individuals.
A course director's perspectives on problem-based learning curricula in biochemistry.
Smith, Harold C
2002-12-01
Knowledge of the applications of biochemistry, molecular biology, and genetics in the practice of medicine has been and continues to be a vital part of medical students' and continuing education. The technical background and the rapid expansion of information and new applications have made it an arduous task to learn and teach this material within the already crowded medical school curriculum. Problem-based learning (PBL) formats are rapidly being adopted at all levels of education as not only a major paradigm shift in education but also a solution for the instruction of biochemistry in medical school. Designing an effective biochemistry curriculum with PBL-based or lecture-based formats requires an appreciation for their strengths and weakness. The author's experiences in the Double Helix Curriculum at the University of Rochester School of Medicine and Dentistry (which employs PBL cases and complementing lectures) has shown that students are excited about learning in the PBL environment and explore in depth ways of integrating biochemistry, cell biology, genetics, and molecular biology into the practice of medicine. At the same time, complementary lectures greatly enhance uniformity in the quality and, importantly, the accuracy of the students' learning.
EHR Learning - It's about Nursing, Leadership and Long-Term Commitments.
Furlong, Karen E
2016-01-01
Despite a global commitment to the adoption of technologies, such as electronic health records (EHRs), to support the delivery of health services, there is little empirical guidance to support effective planning for the integration of these tools into practice settings (Suter et al. 2009). In particular, although EHR learning is known to positively influence integration (Byrne 2012), individual perspectives are often overlooked because of investigative designs that devalue such viewpoints by exploring the utility of technologies rather than the lived experiences of individual users of the technology. Therefore, this qualitative study offered nurse participants opportunities to make sense of EHR learning through talking about their experiences. This narrative inquiry was a collaborative interpretive method of discovery: stories and thematic analysis were the two separate yet complementary frames used to support data analysis. Finally, several practice implications and recommendations about EHR learning are presented with an emphasis placed upon patient safety as a way to impart accountability on behalf of learners, educators and those charged with governing responsibilities during times of EHR integration. Copyright © 2016 Longwoods Publishing.
Learning Biological Networks via Bootstrapping with Optimized GO-based Gene Similarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Ronald C.; Sanfilippo, Antonio P.; McDermott, Jason E.
2010-08-02
Microarray gene expression data provide a unique information resource for learning biological networks using "reverse engineering" methods. However, there are a variety of cases in which we know which genes are involved in a given pathology of interest, but we do not have enough experimental evidence to support the use of fully-supervised/reverse-engineering learning methods. In this paper, we explore a novel semi-supervised approach in which biological networks are learned from a reference list of genes and a partial set of links for these genes extracted automatically from PubMed abstracts, using a knowledge-driven bootstrapping algorithm. We show how new relevant linksmore » across genes can be iteratively derived using a gene similarity measure based on the Gene Ontology that is optimized on the input network at each iteration. We describe an application of this approach to the TGFB pathway as a case study and show how the ensuing results prove the feasibility of the approach as an alternate or complementary technique to fully supervised methods.« less
Deep greedy learning under thermal variability in full diurnal cycles
NASA Astrophysics Data System (ADS)
Rauss, Patrick; Rosario, Dalton
2017-08-01
We study the generalization and scalability behavior of a deep belief network (DBN) applied to a challenging long-wave infrared hyperspectral dataset, consisting of radiance from several manmade and natural materials within a fixed site located 500 m from an observation tower. The collections cover multiple full diurnal cycles and include different atmospheric conditions. Using complementary priors, a DBN uses a greedy algorithm that can learn deep, directed belief networks one layer at a time and has two layers form to provide undirected associative memory. The greedy algorithm initializes a slower learning procedure, which fine-tunes the weights, using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of spectral data and their labels, despite significant data variability between and within classes due to environmental and temperature variation occurring within and between full diurnal cycles. We argue, however, that more questions than answers are raised regarding the generalization capacity of these deep nets through experiments aimed at investigating their training and augmented learning behavior.
Schiffke, Heather; Fleishman, Susan; Haas, Mitch; Cruser, des Anges; LeFebvre, Ron; Sullivan, Barbara; Taylor, Barry; Gaster, Barak
2014-01-01
Abstract Background: As evidence-based medicine (EBM) becomes a standard in health care, it is essential that practitioners of complementary and alternative medicine (CAM) become experts in searching and evaluating the research literature. In support of this goal, the National Institutes of Health (NIH) National Center for Complementary and Alternative Medicine (NCCAM) provided R25 funding to nine CAM colleges to develop individual programs focused on teaching EBM. An overarching goal of these research education grants has been to provide CAM faculty and students with the skills they need to apply a rigorous evidence-based perspective to their training and practice. Methods/Results: This paper reviews the competencies and teaching strategies developed and implemented to enhance research literacy at all nine R25-funded institutions. While each institution designed approaches suitable for its research culture, the guiding principles were similar: to develop evidence-informed skills and knowledge, thereby helping students and faculty to critically appraise evidence and then use that evidence to guide their clinical practice. Curriculum development and assessment included faculty-driven learning activities and longitudinal curricular initiatives to encourage skill reinforcement and evaluate progress. Conclusion: As the field of integrative medicine matures, the NIH-NCCAM research education grants provide essential training for future clinicians and clinician-researchers. Building this workforce will facilitate multidisciplinary collaborations that address the unique needs for research that informs integrative clinical practice. PMID:25380144
Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors
Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth
2017-01-01
Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design. PMID:28145438
Lech, Robert K; Güntürkün, Onur; Suchan, Boris
2016-09-15
The aim of the present study was to examine the contributions of different brain structures to prototype- and exemplar-based category learning using functional magnetic resonance imaging (fMRI). Twenty-eight subjects performed a categorization task in which they had to assign prototypes and exceptions to two different families. This test procedure usually produces different learning curves for prototype and exception stimuli. Our behavioral data replicated these previous findings by showing an initially superior performance for prototypes and typical stimuli and a switch from a prototype-based to an exemplar-based categorization for exceptions in the later learning phases. Since performance varied, we divided participants into learners and non-learners. Analysis of the functional imaging data revealed that the interaction of group (learners vs. non-learners) and block (Block 5 vs. Block 1) yielded an activation of the left fusiform gyrus for the processing of prototypes, and an activation of the right hippocampus for exceptions after learning the categories. Thus, successful prototype- and exemplar-based category learning is associated with activations of complementary neural substrates that constitute object-based processes of the ventral visual stream and their interaction with unique-cue representations, possibly based on sparse coding within the hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.
A nanophosphor-based method for selective DNA recovery in Synthosomes.
Nallani, Madhavan; Onaca, Ozana; Gera, Nimish; Hildenbrand, Karlheinz; Hoheisel, Werner; Schwaneberg, Ulrich
2006-01-01
A nanocompartment system composed of an ABA triblock copolymer, where A is poly(dimethylsiloxane) and B is poly(2-methyloxazoline), has been developed for selective recovery and detection of DNA. Translocation of TAMRA-labeled complementary primers into the nanocompartment system has been achieved through two deletion mutants (FhuA Delta1-129; FhuA Delta1-160) of the channel protein FhuA. Translocation was monitored by fluorescence resonance energy transfer through hybridization of the TAMRA-labeled primer to the complementary sequence of a nanophosphor-DNA-conjugate, which reduces its half-life (FhuA Delta1-129, 16.0% reduced; FhuA Delta1-160, 39.0% reduced).
NASA Astrophysics Data System (ADS)
Shi, Wenhui; Feng, Changyou; Qu, Jixian; Zha, Hao; Ke, Dan
2018-02-01
Most of the existing studies on wind power output focus on the fluctuation of wind farms and the spatial self-complementary of wind power output time series was ignored. Therefore the existing probability models can’t reflect the features of power system incorporating wind farms. This paper analyzed the spatial self-complementary of wind power and proposed a probability model which can reflect temporal characteristics of wind power on seasonal and diurnal timescales based on sufficient measured data and improved clustering method. This model could provide important reference for power system simulation incorporating wind farms.
Stergiopoulos, Vicky; Saab, Dima; Francombe Pridham, Kate; Aery, Anjana; Nakhost, Arash
2018-01-24
Across many jurisdictions, adults with complex mental health and social needs face challenges accessing appropriate supports due to system fragmentation and strict eligibility criteria of existing services. To support this underserviced population, Toronto's local health authority launched two novel community mental health models in 2014, inspired by Flexible Assertive Community Team principles. This study explores service user and provider perspectives on the acceptability of these services, and lessons learned during early implementation. We purposively sampled 49 stakeholders (staff, physicians, service users, health systems stakeholders) and conducted 17 semi-structured qualitative interviews and 5 focus groups between October 23, 2014 and March 2, 2015, exploring stakeholder perspectives on the newly launched team based models, as well as activities and strategies employed to support early implementation. Interviews and focus groups were audio recorded, transcribed verbatim and analyzed using thematic analysis. Findings revealed wide-ranging endorsement for the two team-based models' success in engaging the target population of adults with complex service needs. Implementation strengths included the broad recognition of existing service gaps, the use of interdisciplinary teams and experienced service providers, broad partnerships and collaboration among various service sectors, training and team building activities. Emerging challenges included lack of complementary support services such as suitable housing, organizational contexts reluctant to embrace change and risk associated with complexity, as well as limited service provider and organizational capacity to deliver evidence-based interventions. Findings identified implementation drivers at the practitioner, program, and system levels, specific to the implementation of community mental health interventions for adults with complex health and social needs. These can inform future efforts to address the health and support needs of this vulnerable population.
NASA Technical Reports Server (NTRS)
2005-01-01
A number of titanium matrix composite (TMC) systems are currently being investigated for high-temperature air frame and propulsion system applications. As a result, numerous computational methodologies for predicting both deformation and life for this class of materials are under development. An integral part of these methodologies is an accurate and computationally efficient constitutive model for the metallic matrix constituent. Furthermore, because these systems are designed to operate at elevated temperatures, the required constitutive models must account for both time-dependent and time-independent deformations. To accomplish this, the NASA Lewis Research Center is employing a recently developed, complete, potential-based framework. This framework, which utilizes internal state variables, was put forth for the derivation of reversible and irreversible constitutive equations. The framework, and consequently the resulting constitutive model, is termed complete because the existence of the total (integrated) form of the Gibbs complementary free energy and complementary dissipation potentials are assumed a priori. The specific forms selected here for both the Gibbs and complementary dissipation potentials result in a fully associative, multiaxial, nonisothermal, unified viscoplastic model with nonlinear kinematic hardening. This model constitutes one of many models in the Generalized Viscoplasticity with Potential Structure (GVIPS) class of inelastic constitutive equations.
D.E.E.P. Learning: Promoting Informal STEM Learning through a Popular Gaming Platform
NASA Astrophysics Data System (ADS)
Simms, E.; Rohrlick, D.; Layman, C.; Peach, C. L.; Orcutt, J. A.
2011-12-01
The research and development of educational games, and the study of the educational value of interactive games in general, have lagged far behind efforts for games created for the purpose of entertainment. But evidence suggests that digital simulations and games have the "potential to advance multiple science learning goals, including motivation to learn science, conceptual understanding, science process skills, understanding of the nature of science, scientific discourse and argumentation, and identification with science and science learning." (NRC, 2011). It is also generally recognized that interactive digital games have the potential to promote the development of valuable learning and life skills, including data processing, decision-making, critical thinking, planning, communication and collaboration (Kirriemuir and MacFarlane, 2006). Video games are now played in 67% of American households (ESA, 2010), and across a broad range of ages, making them a potentially valuable tool for Science, Technology, Engineering and Mathematics (STEM) learning among the diverse audiences associated with informal science education institutions (ISEIs; e.g., aquariums, museums, science centers). We are attempting to capitalize on this potential by developing games based on the popular Microsoft Xbox360 gaming platform and the free Microsoft XNA game development kit. The games, collectively known as Deep-sea Extreme Environment Pilot (D.E.E.P.), engage ISEI visitors in the exploration and understanding of the otherwise remote deep-sea environment. Players assume the role of piloting a remotely-operated vehicle (ROV) to explore ocean observing systems and hydrothermal vent environments, and are challenged to complete science-based objectives in order to earn points under timed conditions. The current games are intended to be relatively brief visitor experiences (on the order of several minutes) that support complementary exhibits and programming, and promote interactive visitor experiences. In addition to creating a unique educational product, our efforts are intended to inform the broader understanding of the key elements of a successful STEM-based game experience at an ISEI. Which characteristics of the ISEI environment (e.g., age and cultural diversity, limited time of engagement) are conducive or inhibitive to learning via digital gaming? Which aspects of game design (e.g., challenge, curiosity, fantasy, personal recognition) are most effective at maximizing both learning and enjoyment? We will share our progress and assessment results to date, and discuss the potential benefits and challenges to interactive gaming as a tool to support STEM literacy at ISEIs.
Al-Yagon, Michal
2014-02-01
The study examined the unique role of children's attachment with the father and with the mother, in explaining differences in internalizing features (i.e., loneliness, sense of coherence, hope and effort, and internalizing behavior syndrome) among 107 children with learning disabilities (LD) versus 98 children with typical development ages 8-12. Preliminary analyses yielded significant group differences on most measures. SEM analysis indicated high fit between the theoretical model and empirical findings, and different patterns of relations among the model's components for the two populations. As hypothesized, child-father and child-mother attachment contributed differently to children's internalizing features for the two subgroups. Discussion focused on understanding unique and complementary roles of attachment relations with fathers versus mothers among children with and without LD.
Mizutani, Eiji; Demmel, James W
2003-01-01
This paper briefly introduces our numerical linear algebra approaches for solving structured nonlinear least squares problems arising from 'multiple-output' neural-network (NN) models. Our algorithms feature trust-region regularization, and exploit sparsity of either the 'block-angular' residual Jacobian matrix or the 'block-arrow' Gauss-Newton Hessian (or Fisher information matrix in statistical sense) depending on problem scale so as to render a large class of NN-learning algorithms 'efficient' in both memory and operation costs. Using a relatively large real-world nonlinear regression application, we shall explain algorithmic strengths and weaknesses, analyzing simulation results obtained by both direct and iterative trust-region algorithms with two distinct NN models: 'multilayer perceptrons' (MLP) and 'complementary mixtures of MLP-experts' (or neuro-fuzzy modular networks).
Lunar-Mars Life Support Test Project. Phase 2; Human Factors and Crew Interactions
NASA Technical Reports Server (NTRS)
Ming, D. W.; Hurlbert, K. M.; Kirby, G.; Lewis, J. F.; ORear, P.
1997-01-01
Phase 2 of the Lunar-Mars Life Support Test Project was conducted in June and July of 1996 at the NASA Johnson Space Center. The primary objective of Phase 2 was to demonstrate and evaluate an integrated physicochemical air revitalization and regenerative water recovery system capable of sustaining a human crew of four for 30 days inside a closed chamber. The crew (3 males and 1 female) was continuously present inside a chamber throughout the 30-day test. The objective of this paper was to describe crew interactions and human factors for the test. Crew preparations for the test included training and familiarization of chamber systems and accommodations, and medical and psychological evaluations. During the test, crew members provided metabolic loads for the life support systems, performed maintenance on chamber systems, and evaluated human factors inside the chamber. Overall, the four crew members found the chamber to be comfortable for the 30-day test. The crew performed well together and this was attributed in part to team dynamics, skill mix (one commander, two system experts, and one logistics lead), and a complementary mix of personalities. Communication with and support by family, friends, and colleagues were identified as important contributors to the high morale of the crew during the test. Lessons learned and recommendations for future testing are presented by the crew in this paper.
Explorations on High Dimensional Landscapes: Spin Glasses and Deep Learning
NASA Astrophysics Data System (ADS)
Sagun, Levent
This thesis deals with understanding the structure of high-dimensional and non-convex energy landscapes. In particular, its focus is on the optimization of two classes of functions: homogeneous polynomials and loss functions that arise in machine learning. In the first part, the notion of complexity of a smooth, real-valued function is studied through its critical points. Existing theoretical results predict that certain random functions that are defined on high dimensional domains have a narrow band of values whose pre-image contains the bulk of its critical points. This section provides empirical evidence for convergence of gradient descent to local minima whose energies are near the predicted threshold justifying the existing asymptotic theory. Moreover, it is empirically shown that a similar phenomenon may hold for deep learning loss functions. Furthermore, there is a comparative analysis of gradient descent and its stochastic version showing that in high dimensional regimes the latter is a mere speedup. The next study focuses on the halting time of an algorithm at a given stopping condition. Given an algorithm, the normalized fluctuations of the halting time follow a distribution that remains unchanged even when the input data is sampled from a new distribution. Two qualitative classes are observed: a Gumbel-like distribution that appears in Google searches, human decision times, and spin glasses and a Gaussian-like distribution that appears in conjugate gradient method, deep learning with MNIST and random input data. Following the universality phenomenon, the Hessian of the loss functions of deep learning is studied. The spectrum is seen to be composed of two parts, the bulk which is concentrated around zero, and the edges which are scattered away from zero. Empirical evidence is presented for the bulk indicating how over-parametrized the system is, and for the edges that depend on the input data. Furthermore, an algorithm is proposed such that it would explore such large dimensional, degenerate landscapes to locate a solution with decent generalization properties. Finally, a demonstration of how the new method can explain the empirical success of some of the recent methods that have been proposed for distributed deep learning. In the second part, two applied machine learning problems are studied that are complementary to the machine learning problems of part I. First, US asylum applications cases are studied using random forests on the data of past twenty years. Using only features up to when the case opens, the algorithm can predict the outcome of the case with 80% accuracy. Next, a particular question and answer system has been studied. The questions are collected from Jeopardy! show and they fed to Google, then the results are parsed into a recurrent neural network to come up with a system that would outcome the answer to the original question. Close to 50% accuracy is achieved where human level benchmark is just a little above 60%.
Leveraging knowledge engineering and machine learning for microbial bio-manufacturing.
Oyetunde, Tolutola; Bao, Forrest Sheng; Chen, Jiung-Wen; Martin, Hector Garcia; Tang, Yinjie J
2018-05-03
Genome scale modeling (GSM) predicts the performance of microbial workhorses and helps identify beneficial gene targets. GSM integrated with intracellular flux dynamics, omics, and thermodynamics have shown remarkable progress in both elucidating complex cellular phenomena and computational strain design (CSD). Nonetheless, these models still show high uncertainty due to a poor understanding of innate pathway regulations, metabolic burdens, and other factors (such as stress tolerance and metabolite channeling). Besides, the engineered hosts may have genetic mutations or non-genetic variations in bioreactor conditions and thus CSD rarely foresees fermentation rate and titer. Metabolic models play important role in design-build-test-learn cycles for strain improvement, and machine learning (ML) may provide a viable complementary approach for driving strain design and deciphering cellular processes. In order to develop quality ML models, knowledge engineering leverages and standardizes the wealth of information in literature (e.g., genomic/phenomic data, synthetic biology strategies, and bioprocess variables). Data driven frameworks can offer new constraints for mechanistic models to describe cellular regulations, to design pathways, to search gene targets, and to estimate fermentation titer/rate/yield under specified growth conditions (e.g., mixing, nutrients, and O 2 ). This review highlights the scope of information collections, database constructions, and machine learning techniques (such as deep learning and transfer learning), which may facilitate "Learn and Design" for strain development. Copyright © 2018. Published by Elsevier Inc.
Claeys, Maureen; Deplaecie, Monique; Vanderplancke, Tine; Delbaere, Ilse; Myny, Dries; Beeckman, Dimitri; Verhaeghe, Sofie
2015-09-01
An experiment was carried out on the bachelor's degree course in nursing with two new clinical placement concepts: workplace learning and the dedicated education centre. The aim was to establish a learning culture that creates a sufficiently high learning performance for students. The objectives of this study are threefold: (1) to look for a difference in the "learning culture" and "learning performance" in traditional clinical placement departments and the new clinical placement concepts, the "dedicated education centre" and "workplace learning"; (2) to assess factors influencing the learning culture and learning performance; and (3) to investigate whether there is a link between the learning culture and the learning performance. A non-randomised control study was carried out. The experimental group consisted of 33 final-year nursing undergraduates who were following clinical placements at dedicated education centres and 70 nursing undergraduates who undertook workplace learning. The control group consisted of 106 students who followed a traditional clinical placement. The "learning culture" outcome was measured using the Clinical Learning Environment, Supervision and Nurse Teacher scale. The "learning performance" outcome consisting of three competencies was measured using the Nursing Competence Questionnaire. The traditional clinical placement concept achieved the highest score for learning culture (p<0.001). The new concepts scored higher for learning performance of which the dedicated education centres achieved the highest scores. The 3 clinical placement concepts showed marked differences in learning performance for the "assessment" competency (p<0.05) and for the "interventions" competency (p<0.05). Traditional clinical placement, a dedicated education centre and workplace learning can be seen as complementary clinical placement concepts. The organisation of clinical placements under the dedicated education centre concept and workplace learning is recommended for final-year undergraduate nursing students. Copyright © 2015 Elsevier Ltd. All rights reserved.
Applications of Fourier transform Raman and infrared spectroscopy in forensic sciences
NASA Astrophysics Data System (ADS)
Kuptsov, Albert N.
2000-02-01
First in the world literature comprehensive digital complementary vibrational spectra collection of polymer materials and search system was developed. Non-destructive combined analysis using complementary FT-Raman and FTIR spectra followed by cross-parallel searching on digital spectral libraries, was applied in different fields of forensic sciences. Some unique possibilities of Raman spectroscopy has been shown in the fields of examination of questioned documents, paper, paints, polymer materials, gemstones and other physical evidences.
Lyons, James; Dehzangi, Abdollah; Heffernan, Rhys; Sharma, Alok; Paliwal, Kuldip; Sattar, Abdul; Zhou, Yaoqi; Yang, Yuedong
2014-10-30
Because a nearly constant distance between two neighbouring Cα atoms, local backbone structure of proteins can be represented accurately by the angle between C(αi-1)-C(αi)-C(αi+1) (θ) and a dihedral angle rotated about the C(αi)-C(αi+1) bond (τ). θ and τ angles, as the representative of structural properties of three to four amino-acid residues, offer a description of backbone conformations that is complementary to φ and ψ angles (single residue) and secondary structures (>3 residues). Here, we report the first machine-learning technique for sequence-based prediction of θ and τ angles. Predicted angles based on an independent test have a mean absolute error of 9° for θ and 34° for τ with a distribution on the θ-τ plane close to that of native values. The average root-mean-square distance of 10-residue fragment structures constructed from predicted θ and τ angles is only 1.9Å from their corresponding native structures. Predicted θ and τ angles are expected to be complementary to predicted ϕ and ψ angles and secondary structures for using in model validation and template-based as well as template-free structure prediction. The deep neural network learning technique is available as an on-line server called Structural Property prediction with Integrated DEep neuRal network (SPIDER) at http://sparks-lab.org. Copyright © 2014 Wiley Periodicals, Inc.
The good student is more than a listener - The 12+1 roles of the medical student.
Karakitsiou, D E; Markou, A; Kyriakou, P; Pieri, M; Abuaita, M; Bourousis, E; Hido, T; Tsatsaragkou, A; Boukali, A; de Burbure, C; Dimoliatis, I D K
2012-01-01
The process of medical education, particularly in the fast evolving new era of medical metaschools, is a broad and complex issue. Harden & Crosby claimed that a good teacher is more than a lecturer, and identified 12 roles that certify a good and capable teacher. However, this is only half the truth: the good student is more than a listener. Teaching-and-learning is not simply a one-way process, and, as medical students are not children, the relationship between teacher and students involves andragogy rather than pedagogy. We therefore propose the 12+1 roles of the student. SUMMARY OF WORK: The Harden & Crosby paper was distributed in a class of 90 third year Ioannina University medical students, who were asked to think about the student's roles. A small discussion group brainstormed ideas, which were then refined further by the authors. 12+1 roles of the good medical student were produced and grouped into six areas: information receiver, in lectures and clinical context; role model in learning, in class, with the added subarea of comparative choice of role models; teaching facilitator and teacher's mentor; teacher's assessor and curriculum evaluator; active participator and keeping-up with curriculum; resource consumer/co-creator and medical literature researcher. The ideal student should fulfil the majority if not all of these complementary roles. These 12+1 student's roles are complementary to the 12 roles of the teacher and help reshaping our understanding of today's medical education process.
Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images.
Zhang, Lefei; Zhang, Qian; Du, Bo; Huang, Xin; Tang, Yuan Yan; Tao, Dacheng
2018-01-01
In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.
Bingham, Clifton O.; Bartlett, Susan J.; Merkel, Peter A.; Mielenz, Thelma J.; Pilkonis, Paul A.; Edmundson, Lauren; Moore, Emily; Sabharwal, Rajeev K.
2016-01-01
Purpose The field of patient-centered outcomes research (PCOR) continues to develop. Patient-reported outcomes, and in particular, the Patient-Reported Outcomes Measurement Information System (PROMIS) contribute complementary data to clinician-derived outcomes traditionally used in health decision-making. However, there has been little work to understand how PROMIS measures may inform or be integrated into PCOR or clinical applications. Methods Lead investigators from four pilot projects funded by the Patient-Centered Outcomes Research Institute (PCORI) collaborated to discuss lessons learned about the use of PROMIS in PCOR studies via virtual and in-person meetings. In addition, a qualitative data collection tool was used to assess the pilot projects’ experiences. Results Lessons learned from the pilot projects centered on practical elements of research design, such as choosing the right outcomes to study, considering the advantages and limitations of the PROMIS short forms and computer adaptive technology versions, planning ahead for a feasible data collection process, maintaining the focus on patients by ensuring that the research is truly patient-centered, and helping patients and providers make the most of PROMIS in care. Conclusions The PCORI Pilot Projects demonstrated that PROMIS can be successfully used to conduct research that will help patients make decisions about their care. Interest in PCOR continues to grow and the lessons learned from these projects about the use of PROMIS will be helpful to investigators. Given the numerous benefits of PROMIS, implementing this tool in research and care will hopefully lead to significant progress in measuring health outcomes that are meaningful and relevant to all stakeholders. PMID:26914103
Bingham, Clifton O; Bartlett, Susan J; Merkel, Peter A; Mielenz, Thelma J; Pilkonis, Paul A; Edmundson, Lauren; Moore, Emily; Sabharwal, Rajeev K
2016-08-01
The field of patient-centered outcomes research (PCOR) continues to develop. Patient-reported outcomes and, in particular the Patient-Reported Outcomes Measurement Information System (PROMIS) contribute complementary data to clinician-derived outcomes traditionally used in health decision-making. However, there has been little work to understand how PROMIS measures may inform or be integrated into PCOR or clinical applications. Lead investigators from four pilot projects funded by the Patient-Centered Outcomes Research Institute (PCORI) collaborated to discuss lessons learned about the use of PROMIS in PCOR studies via virtual and in-person meetings. In addition, a qualitative data collection tool was used to assess the pilot projects' experiences. Lessons learned from the pilot projects centered on practical elements of research design, such as choosing the right outcomes to study, considering the advantages and limitations of the PROMIS short forms and computer adaptive technology versions, planning ahead for a feasible data collection process, maintaining the focus on patients by ensuring that the research is truly patient-centered, and helping patients and providers make the most of PROMIS in care. The PCORI pilot projects demonstrated that PROMIS can be successfully used to conduct research that will help patients make decisions about their care. Interest in PCOR continues to grow and the lessons learned from these projects about the use of PROMIS will be helpful to investigators. Given the numerous benefits of PROMIS, implementing this tool in research and care will hopefully lead to significant progress in measuring health outcomes that are meaningful and relevant to all stakeholders.
DeVoe, Jennifer E; Likumahuwa-Ackman, Sonja; Shannon, Jackilen; Steiner Hayward, Elizabeth
2017-04-01
Academic medical centers (AMCs) in the United States built world-class infrastructure to successfully combat disease in the 20th century, which is inadequate for the complexity of sustaining and improving population health. AMCs must now build first-rate 21st-century infrastructure to connect combating disease and promoting health. This infrastructure must acknowledge the bio-psycho-social-environmental factors impacting health and will need to reach far beyond the AMC walls to foster community "laboratories" that support the "science of health," complementary to those supporting the "science of medicine"; cultivate community "classrooms" to stimulate learning and discovery in the places where people live, work, and play; and strengthen bridges between academic centers and these community laboratories and classrooms to facilitate bidirectional teaching, learning, innovation, and discovery.Private and public entities made deep financial investments that contributed to the AMC disease-centered approach to clinical care, education, and research in the 20th century. Many of these same funders now recognize the need to transform U.S. health care into a system that is accountable for population health and the need for a medical workforce equipped with the skills to measure and improve health. Innovative ideas about communities as centers of learning, the importance of social factors as major determinants of health, and the need for multidisciplinary perspectives to solve complex problems are not new; many are 20th-century ideas still waiting to be fully implemented. The window of opportunity is now. The authors articulate how AMCs must take bigger and bolder steps to become leaders in population health.
Singh, Renu F.; Best, Brookie M.; Freedman, Beverley A.; Morello, Candis M.
2012-01-01
Objective. To design and implement a small-group self-guided active-learning format for a complementary and alternative medicine (CAM) curriculum, and assess changes in first-year doctor of pharmacy (PharmD) students' attitudes and knowledge of CAM. Design. Students received an overview CAM lecture from a faculty member, and brief presentations with defined parameters on natural products from their peers. Assessment. Based on pre- and post-intervention survey responses, the percentage of students who strongly agreed about the importance of CAM in pharmacy practice increased from 28% to 55% and the percentage of students who agreed or strongly agreed about the harmful effects of dietary supplements increased from 60% to 96%. Overall, students' attitude toward and self-assessed knowledge of dietary supplements improved significantly from pre- to post-intervention survey. Conclusion. Small-group self-guided learning of CAM, followed by peer presentations on dietary supplements, was successful in significantly improving pharmacy students' attitude toward and knowledge of CAM. PMID:22919089
Atayee, Rabia S; Singh, Renu F; Best, Brookie M; Freedman, Beverley A; Morello, Candis M
2012-08-10
To design and implement a small-group self-guided active-learning format for a complementary and alternative medicine (CAM) curriculum, and assess changes in first-year doctor of pharmacy (PharmD) students' attitudes and knowledge of CAM. Students received an overview CAM lecture from a faculty member, and brief presentations with defined parameters on natural products from their peers. Based on pre- and post-intervention survey responses, the percentage of students who strongly agreed about the importance of CAM in pharmacy practice increased from 28% to 55% and the percentage of students who agreed or strongly agreed about the harmful effects of dietary supplements increased from 60% to 96%. Overall, students' attitude toward and self-assessed knowledge of dietary supplements improved significantly from pre- to post-intervention survey. Small-group self-guided learning of CAM, followed by peer presentations on dietary supplements, was successful in significantly improving pharmacy students' attitude toward and knowledge of CAM.
Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm.
Savareh, Behrouz Alizadeh; Emami, Hassan; Hajiabadi, Mohamadreza; Azimi, Seyed Majid; Ghafoori, Mahyar
2018-05-29
Manual brain tumor segmentation is a challenging task that requires the use of machine learning techniques. One of the machine learning techniques that has been given much attention is the convolutional neural network (CNN). The performance of the CNN can be enhanced by combining other data analysis tools such as wavelet transform. In this study, one of the famous implementations of CNN, a fully convolutional network (FCN), was used in brain tumor segmentation and its architecture was enhanced by wavelet transform. In this combination, a wavelet transform was used as a complementary and enhancing tool for CNN in brain tumor segmentation. Comparing the performance of basic FCN architecture against the wavelet-enhanced form revealed a remarkable superiority of enhanced architecture in brain tumor segmentation tasks. Using mathematical functions and enhancing tools such as wavelet transform and other mathematical functions can improve the performance of CNN in any image processing task such as segmentation and classification.
Knowledge will Propel Machine Understanding of Content: Extrapolating from Current Examples
Sheth, Amit; Perera, Sujan; Wijeratne, Sanjaya; Thirunarayan, Krishnaprasad
2018-01-01
Machine Learning has been a big success story during the AI resurgence. One particular stand out success relates to learning from a massive amount of data. In spite of early assertions of the unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge whenever it is available or can be created purposefully. In this paper, we discuss the indispensable role of knowledge for deeper understanding of content where (i) large amounts of training data are unavailable, (ii) the objects to be recognized are complex, (e.g., implicit entities and highly subjective content), and (iii) applications need to use complementary or related data in multiple modalities/media. What brings us to the cusp of rapid progress is our ability to (a) create relevant and reliable knowledge and (b) carefully exploit knowledge to enhance ML/NLP techniques. Using diverse examples, we seek to foretell unprecedented progress in our ability for deeper understanding and exploitation of multimodal data and continued incorporation of knowledge in learning techniques.
Huynh, Hai; Elkouri, Stephane; Beaudoin, Nathalie; Bruneau, Luc; Guimond, Cathie; Daniel, Véronique; Blair, Jean-François
2007-01-01
This study evaluated the learning curve for a second-year general surgery resident and compared 2 totally laparoscopic aortic surgery techniques in 10 pigs: the transretroperitoneal apron approach and the transperitoneal retrocolic approach. Five end points were compared: success rate, percentage of conversion, time required, laparoscopic anastomosis quality, and learning curve. The first 3 interventions required an open conversion. The last 7 were done without complications. Mean dissection time was significantly higher with the apron approach compared with the retrocolic approach. The total times for operation, clamping, and arteriotomy time were similar. All laparoscopic anastomoses were patent and without stenosis. The initial learning curve for laparoscopic anastomosis was relatively short for a second-year surgery resident. Both techniques resulted in satisfactory exposure of the aorta and similar mean operative and clamping time. Training on an ex vivo laparoscopic box trainer and on an animal model seems to be complementary to decrease laparoscopic anastomosis completion time.
John Falk and Lynn Dierking: building the field of informal/free-choice science education
NASA Astrophysics Data System (ADS)
Rennie, Léonie J.
2016-03-01
This article establishes the importance of "context", a concept that underpins the academic contributions that John Falk and Lynn Dierking have made in building the field of informal/free-choice learning in science education. I consider, in turn, the individual contributions made by each of them prior to their seminal co-authored work, entitled The Museum Experience. I then document their joint contributions to the field, pointing out that although their interests and skills overlap in complementary ways to produce their jointly authored works, both have continued to make their individual contributions; Falk in his work on identity and impact, and Dierking in her work on community, youth, family and equity. Finally I come to the present, describing how they each continue their research and publication in lifelong, life-wide, and life-deep learning, with a particular focus on free-choice learning and the role it can play in addressing critical issues in the world.
Becoming a Lunari or Taiyo expert: learned attention to parts drives holistic processing of faces.
Chua, Kao-Wei; Richler, Jennifer J; Gauthier, Isabel
2014-06-01
Faces are processed holistically, but the locus of holistic processing remains unclear. We created two novel races of faces (Lunaris and Taiyos) to study how experience with face parts influences holistic processing. In Experiment 1, subjects individuated Lunaris wherein the top, bottom, or both face halves contained diagnostic information. Subjects who learned to attend to face parts exhibited no holistic processing. This suggests that individuation only leads to holistic processing when the whole face is attended. In Experiment 2, subjects individuated both Lunaris and Taiyos, with diagnostic information in complementary face halves of the two races. Holistic processing was measured with composites made of either diagnostic or nondiagnostic face parts. Holistic processing was only observed for composites made from diagnostic face parts, demonstrating that holistic processing can occur for diagnostic face parts that were never seen together. These results suggest that holistic processing is an expression of learned attention to diagnostic face parts. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Mesolimbic Dopamine Signals the Value of Work
Hamid, Arif A.; Pettibone, Jeffrey R.; Mabrouk, Omar S.; Hetrick, Vaughn L.; Schmidt, Robert; Vander Weele, Caitlin M.; Kennedy, Robert T.; Aragona, Brandon J.; Berke, Joshua D.
2015-01-01
Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We first show that minute-by-minute dopamine levels covary with reward rate and motivational vigor. We then show that second-by-second dopamine release encodes an estimate of temporally-discounted future reward (a value function). We demonstrate that changing dopamine immediately alters willingness to work, and reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available reward for investment of effort, that is employed for both learning and motivational functions. PMID:26595651
Network-wide reorganization of procedural memory during NREM sleep revealed by fMRI
Vahdat, Shahabeddin; Fogel, Stuart; Benali, Habib; Doyon, Julien
2017-01-01
Sleep is necessary for the optimal consolidation of newly acquired procedural memories. However, the mechanisms by which motor memory traces develop during sleep remain controversial in humans, as this process has been mainly investigated indirectly by comparing pre- and post-sleep conditions. Here, we used functional magnetic resonance imaging and electroencephalography during sleep following motor sequence learning to investigate how newly-formed memory traces evolve dynamically over time. We provide direct evidence for transient reactivation followed by downscaling of functional connectivity in a cortically-dominant pattern formed during learning, as well as gradual reorganization of this representation toward a subcortically-dominant consolidated trace during non-rapid eye movement (NREM) sleep. Importantly, the putamen functional connectivity within the consolidated network during NREM sleep was related to overnight behavioral gains. Our results demonstrate that NREM sleep is necessary for two complementary processes: the restoration and reorganization of newly-learned information during sleep, which underlie human motor memory consolidation. DOI: http://dx.doi.org/10.7554/eLife.24987.001 PMID:28892464
Analysis of brain activity and response to colour stimuli during learning tasks: an EEG study
NASA Astrophysics Data System (ADS)
Folgieri, Raffaella; Lucchiari, Claudio; Marini, Daniele
2013-02-01
The research project intends to demonstrate how EEG detection through BCI device can improve the analysis and the interpretation of colours-driven cognitive processes through the combined approach of cognitive science and information technology methods. To this end, firstly it was decided to design an experiment based on comparing the results of the traditional (qualitative and quantitative) cognitive analysis approach with the EEG signal analysis of the evoked potentials. In our case, the sensorial stimulus is represented by the colours, while the cognitive task consists in remembering the words appearing on the screen, with different combination of foreground (words) and background colours. In this work we analysed data collected from a sample of students involved in a learning process during which they received visual stimuli based on colour variation. The stimuli concerned both the background of the text to learn and the colour of the characters. The experiment indicated some interesting results concerning the use of primary (RGB) and complementary (CMY) colours.
Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.
Park, Sangsu; Noh, Jinwoo; Choo, Myung-Lae; Sheri, Ahmad Muqeem; Chang, Man; Kim, Young-Bae; Kim, Chang Jung; Jeon, Moongu; Lee, Byung-Geun; Lee, Byoung Hun; Hwang, Hyunsang
2013-09-27
Efforts to develop scalable learning algorithms for implementation of networks of spiking neurons in silicon have been hindered by the considerable footprints of learning circuits, which grow as the number of synapses increases. Recent developments in nanotechnologies provide an extremely compact device with low-power consumption.In particular, nanoscale resistive switching devices (resistive random-access memory (RRAM)) are regarded as a promising solution for implementation of biological synapses due to their nanoscale dimensions, capacity to store multiple bits and the low energy required to operate distinct states. In this paper, we report the fabrication, modeling and implementation of nanoscale RRAM with multi-level storage capability for an electronic synapse device. In addition, we first experimentally demonstrate the learning capabilities and predictable performance by a neuromorphic circuit composed of a nanoscale 1 kbit RRAM cross-point array of synapses and complementary metal-oxide-semiconductor neuron circuits. These developments open up possibilities for the development of ubiquitous ultra-dense, ultra-low-power cognitive computers.
Reducing young driver road trauma: guidance and optimism for the future
Senserrick, T M
2006-01-01
This paper highlights lessons from each of the Expert Panel papers in the present supplement that provide guidance for future research and initiatives. Although some shortfalls still remain in our understanding, it is argued that much has been learned and we are ready for more translation, implementation, and evaluation of multilevel interventions to help reduce young driver road trauma. Non‐use of restraints, speeding, driving at night and with passengers, and fatigue are highlighted as key risk factors to address. “Best practice” intervention is proposed as implementing and strengthening graduated driver licensing systems and complementary candidate programs and research, such as hazard perception training programs. A schematic cognitive‐perceptual model to explain the crash sequence process is explored. There is optimism that meaningful impacts can be made, especially coupled with the advances in vehicle technologies, but caution is necessary in the absence of targeted “real world” evaluations and broader implementation and diffusion strategies. PMID:16788114
Scerif, Gaia
2010-11-01
Attentional processes play a crucial role in prioritizing information for further processing and they therefore sit at the interface between internal goals and the challenges presented by the environment. How does attentional control interact with the changing constraints imposed by the developing cognitive system? Emerging work in this area has employed a range of complementary techniques, from increasingly refined neurocognitive measures in typically developing individuals, to the investigation of risk or protective factors influencing attention trajectories in developmental disorders. A growing corpus of data suggests that, while attentional biases for specific input characteristics (e.g. suddenly appearing stimuli, emotional expressions) are in place from infancy, it is the interplay between these predispositions, genetic and environmental factors that drives attention development over time. With the advent of multidisciplinary approaches to the developmental cognitive neuroscience of attention, unravelling these complex dynamics from infancy and their outcome on learning is increasingly within reach. © 2010 Blackwell Publishing Ltd.
Algorithms for Learning Preferences for Sets of Objects
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; desJardins, Marie; Eaton, Eric
2010-01-01
A method is being developed that provides for an artificial-intelligence system to learn a user's preferences for sets of objects and to thereafter automatically select subsets of objects according to those preferences. The method was originally intended to enable automated selection, from among large sets of images acquired by instruments aboard spacecraft, of image subsets considered to be scientifically valuable enough to justify use of limited communication resources for transmission to Earth. The method is also applicable to other sets of objects: examples of sets of objects considered in the development of the method include food menus, radio-station music playlists, and assortments of colored blocks for creating mosaics. The method does not require the user to perform the often-difficult task of quantitatively specifying preferences; instead, the user provides examples of preferred sets of objects. This method goes beyond related prior artificial-intelligence methods for learning which individual items are preferred by the user: this method supports a concept of setbased preferences, which include not only preferences for individual items but also preferences regarding types and degrees of diversity of items in a set. Consideration of diversity in this method involves recognition that members of a set may interact with each other in the sense that when considered together, they may be regarded as being complementary, redundant, or incompatible to various degrees. The effects of such interactions are loosely summarized in the term portfolio effect. The learning method relies on a preference representation language, denoted DD-PREF, to express set-based preferences. In DD-PREF, a preference is represented by a tuple that includes quality (depth) functions to estimate how desired a specific value is, weights for each feature preference, the desired diversity of feature values, and the relative importance of diversity versus depth. The system applies statistical concepts to estimate quantitative measures of the user s preferences from training examples (preferred subsets) specified by the user. Once preferences have been learned, the system uses those preferences to select preferred subsets from new sets. The method was found to be viable when tested in computational experiments on menus, music playlists, and rover images. Contemplated future development efforts include further tests on more diverse sets and development of a sub-method for (a) estimating the parameter that represents the relative importance of diversity versus depth, and (b) incorporating background knowledge about the nature of quality functions, which are special functions that specify depth preferences for features.
Thomas, Paul; McDonnell, Juliet; McCulloch, Janette; While, Alison; Bosanquet, Nick; Ferlie, Ewan
2005-01-01
PURPOSE We wanted to identify what organizational features support innovation in Primary Care Groups (PCGs). METHODS Our study used a whole system participatory action research model. Four research teams provided complementary insights. Four case study PCGs were analyzed. Two had an intervention to help local facilitators reflect on their work. Data included 70 key informant interviews, observations of clinical governance interventions and committee meetings, analysis of written materials, surveys and telephone interviews of London Primary Care Organizations, interviews with 20 nurses, and interviews with 6 finance directors. A broad range of stakeholders reviewed data at annual conferences and formed conclusions about trustworthy principles. Sequential research phases were refocused in the light of these conclusions and in response to the changing political context. RESULTS Five features were associated with increased organizational capacity for innovation: (1) clear structures and a vision for corporate and clinical governance; (2) multiple opportunities for people to reflect and learn at all levels of the organization, and connections between these “learning spaces”; (3) both clinicians and managers in leadership roles that encourage participation; (4) the right timing for an initiative and its adaptation to the local context; and (5) external facilitation that provides opportunities for people to make sense of their experiences. Low morale was commonly attributed to 3 features: (1) overwhelming pace of reform, (2) inadequate staff experience and supportive infrastructure, and (3) financial deficits. CONCLUSIONS These features together may support innovation in other primary care bureaucracies. The research methodology enabled people from different backgrounds to make sense of diverse research insights. PMID:16046563
Thomas, Paul; McDonnell, Juliet; McCulloch, Janette; While, Alison; Bosanquet, Nick; Ferlie, Ewan
2005-01-01
We wanted to identify what organizational features support innovation in Primary Care Groups (PCGs). Our study used a whole system participatory action research model. Four research teams provided complementary insights. Four case study PCGs were analyzed. Two had an intervention to help local facilitators reflect on their work. Data included 70 key informant interviews, observations of clinical governance interventions and committee meetings, analysis of written materials, surveys and telephone interviews of London Primary Care Organizations, interviews with 20 nurses, and interviews with 6 finance directors. A broad range of stakeholders reviewed data at annual conferences and formed conclusions about trustworthy principles. Sequential research phases were refocused in the light of these conclusions and in response to the changing political context. Five features were associated with increased organizational capacity for innovation: (1) clear structures and a vision for corporate and clinical governance; (2) multiple opportunities for people to reflect and learn at all levels of the organization, and connections between these "learning spaces"; (3) both clinicians and managers in leadership roles that encourage participation; (4) the right timing for an initiative and its adaptation to the local context; and (5) external facilitation that provides opportunities for people to make sense of their experiences. Low morale was commonly attributed to 3 features: (1) overwhelming pace of reform, (2) inadequate staff experience and supportive infrastructure, and (3) financial deficits. These features together may support innovation in other primary care bureaucracies. The research methodology enabled people from different backgrounds to make sense of diverse research insights.
Development of chip passivated monolithic complementary MISFET circuits with beam leads
NASA Technical Reports Server (NTRS)
Ragonese, L. J.; Kim, M. J.; Corrie, B. L.; Brouillette, J. W.; Warr, R. E.
1972-01-01
The results are presented of a program to demonstrate the processes for fabricating complementary MISFET beam-leaded circuits, which, potentially, are comparable in quality to available bipolar beam-lead chips that use silicon nitride passivation in conjunction with a platinum-titanium-gold metal system. Materials and techniques, different from the bipolar case, were used in order to be more compatible with the special requirements of fully passivated complementary MISFET devices. Two types of circuits were designed and fabricated, a D-flip-flop and a three-input NOR/NAND gate. Fifty beam-leaded chips of each type were constructed. A quality and reliability assurance program was performed to identify failure mechanisms. Sample tests and inspections (including destructive) were developed to measure the physical characteristics of the circuits.
Designing and benchmarking the MULTICOM protein structure prediction system
2013-01-01
Background Predicting protein structure from sequence is one of the most significant and challenging problems in bioinformatics. Numerous bioinformatics techniques and tools have been developed to tackle almost every aspect of protein structure prediction ranging from structural feature prediction, template identification and query-template alignment to structure sampling, model quality assessment, and model refinement. How to synergistically select, integrate and improve the strengths of the complementary techniques at each prediction stage and build a high-performance system is becoming a critical issue for constructing a successful, competitive protein structure predictor. Results Over the past several years, we have constructed a standalone protein structure prediction system MULTICOM that combines multiple sources of information and complementary methods at all five stages of the protein structure prediction process including template identification, template combination, model generation, model assessment, and model refinement. The system was blindly tested during the ninth Critical Assessment of Techniques for Protein Structure Prediction (CASP9) in 2010 and yielded very good performance. In addition to studying the overall performance on the CASP9 benchmark, we thoroughly investigated the performance and contributions of each component at each stage of prediction. Conclusions Our comprehensive and comparative study not only provides useful and practical insights about how to select, improve, and integrate complementary methods to build a cutting-edge protein structure prediction system but also identifies a few new sources of information that may help improve the design of a protein structure prediction system. Several components used in the MULTICOM system are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. PMID:23442819
NASA Astrophysics Data System (ADS)
Semken, S. C.; Ruberto, T.; Mead, C.; Bruce, G.; Buxner, S.; Anbar, A. D.
2017-12-01
Students with limited access to field-based geoscience learning can benefit from immersive, student-centered virtual-reality and augmented-reality field experiences. While no digital modalities currently envisioned can truly supplant field-based learning, they afford students access to geologically illustrative but inaccessible places on Earth and beyond. As leading producers of immersive virtual field trips (iVFTs), we investigate complementary advantages and disadvantages of iVFTs and in-person field trips (ipFTs). Settings for our mixed-methods study were an intro historical-geology class (n = 84) populated mostly by non-majors and an advanced Southwest geology class (n = 39) serving mostly majors. Both represent the diversity of our urban Southwestern research university. For the same credit, students chose either an ipFT to the Trail of Time (ToT) Exhibition at Grand Canyon National Park (control group) or an online Grand Canyon iVFT (experimental group), in the same time interval. Learning outcomes for each group were identically drawn from elements of the ToT and assessed using pre/post concept sketching and inquiry exercises. Student attitudes and cognitive-load factors for both groups were assessed pre/post using the PANAS instrument (Watson et al., 1998) and with affective surveys. Analysis of pre/post concept sketches indicated improved knowledge in both groups and classes, but more so in the iVFT group. PANAS scores from the intro class showed the ipFT students having significantly stronger (p = .004) positive affect immediately prior to the experience than the iVFT students, possibly reflecting their excitement about the trip to come. Post-experience, the two groups were no longer significantly different, possibly due to the fatigue associated with a full-day ipFT. Two lines of evidence suggest that the modalities were comparable in expected effectiveness. First, the information relevant for the concept sketch was specifically covered in both modalities. Second, coding using the ICAP Framework (Chi & Wylie, 2014) suggests that the modalities are qualitatively similar, with each being predominantly active or passive and rarely reaching the constructive or interactive levels. This leaves other factors such as cognitive load to explain the differential learning outcomes by modality.
A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices.
Ravi, Daniele; Wong, Charence; Lo, Benny; Yang, Guang-Zhong
2017-01-01
The increasing popularity of wearable devices in recent years means that a diverse range of physiological and functional data can now be captured continuously for applications in sports, wellbeing, and healthcare. This wealth of information requires efficient methods of classification and analysis where deep learning is a promising technique for large-scale data analytics. While deep learning has been successful in implementations that utilize high-performance computing platforms, its use on low-power wearable devices is limited by resource constraints. In this paper, we propose a deep learning methodology, which combines features learned from inertial sensor data together with complementary information from a set of shallow features to enable accurate and real-time activity classification. The design of this combined method aims to overcome some of the limitations present in a typical deep learning framework where on-node computation is required. To optimize the proposed method for real-time on-node computation, spectral domain preprocessing is used before the data are passed onto the deep learning framework. The classification accuracy of our proposed deep learning approach is evaluated against state-of-the-art methods using both laboratory and real world activity datasets. Our results show the validity of the approach on different human activity datasets, outperforming other methods, including the two methods used within our combined pipeline. We also demonstrate that the computation times for the proposed method are consistent with the constraints of real-time on-node processing on smartphones and a wearable sensor platform.
[Virtual teaching (e-learning) in Pediatric Urology. Master and expert course programme].
Miguélez-Lago, Carlos; López-Pereira, Pedro; de la Fuente-Madero, José Luis; Caparrós-Cayuela, Aurora
2015-01-01
Currently there is a need for specific training and special dedication to pediatric urology (PU). Nevertheless, we lack of a continuous education program, which must be specific and multidisciplinary. To create a complementary training program in PU with the following differential characteristics: 1) University postgraduate, 2) internationally accredited, 3) multidisciplinary, 4) theoretical and practical, 5) through virtual teaching, 6) with on-site support, 7) academically directed and mentored, 8) based on individual and group self learning, 9) with international faculty and alumni 10) objectively evaluable. We developed two original projects of virtual training courses with practices in PU, Master and Expert following the International University of Andalucía (UNIA) regulations and with the support of the Medical College of Malaga. The Master has a general content one year duration and will be repeated yearly. The Expert course has monographic character, half-year duration and will be repeated yearly with different topics. They are credited 60 and 30 ECTS credits respectively. The course has 3 parts well differentiated in objectives and development: 1. Virtual training 2. On-site hospital practices and, 3. Final work. The alumni answered a questionnaire to evaluate the master at the midpoint. The UNIA has considered viable and approved all 3 projects presented: I PU MASTER (2014-2015), II PU MASTER (2015-2016) and Expert Course on pediatric incontinence (2015-2016)First PU MASTER data.- Registration applications: 60 alumni. Admitted alumni 40; mean age 37 years; 8 nationalities, 57% Spanish, 43% Foreigners. Specialities: Urology 14(35%), Pediatric Surgery 24 (60%), Pediatrics (Pediatric nephrology 1), General Medicine 1. Mid term Master evaluation by the alumni (0-100). Difficulty 60. Quality of the topics 92; complementary materials 90; faculty 90; UNIA virtual Campus 89. The demand of registrations demonstrates the need and interest of a pediatric Urology training program, through Master and Expert Courses. Virtual Training, e-learning, within the Virtual Campus of the UNIA is viable. This self-learning model is being highly valued by the international alumni. We offer an interesting supplement for continuous education in PU.
Porto, William F; Pires, Állan S; Franco, Octavio L
2017-08-07
The antimicrobial activity prediction tools aim to help the novel antimicrobial peptides (AMP) sequences discovery, utilizing machine learning methods. Such approaches have gained increasing importance in the generation of novel synthetic peptides by means of rational design techniques. This study focused on predictive ability of such approaches to determine the antimicrobial sequence activities, which were previously characterized at the protein level by in vitro studies. Using four web servers and one standalone software, we evaluated 78 sequences generated by the so-called linguistic model, being 40 designed and 38 shuffled sequences, with ∼60 and ∼25% of identity to AMPs, respectively. The ab initio molecular modelling of such sequences indicated that the structure does not affect the predictions, as both sets present similar structures. Overall, the systems failed on predicting shuffled versions of designed peptides, as they are identical in AMPs composition, which implies in accuracies below 30%. The prediction accuracy is negatively affected by the low specificity of all systems here evaluated, as they, on the other hand, reached 100% of sensitivity. Our results suggest that complementary approaches with high specificity, not necessarily high accuracy, should be developed to be used together with the current systems, overcoming their limitations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biosensors based on directed assembly of particles
Lu, Yi [Champaign, IL; Liu, Juewen [Urbana, IL
2009-02-03
A sensor system for detecting an effector or cofactor comprises (a) a nucleic acid enzyme; (b) a substrate for the nucleic acid enzyme, comprising a first polynucleotide; (c) a first set of particles comprising a second polynucleotide at least partially complementary to the substrate, where the polynucleotide is attached to the particles at its 3' terminus; and (d) a second set of particles comprising a third polynucleotide at least partially complementary to the substrate, where the polynucleotide is attached to the particles at its 5' terminus.
Song, Yong-Ha; Ahn, Sang-Joon Kenny; Kim, Min-Wu; Lee, Jeong-Oen; Hwang, Chi-Sun; Pi, Jae-Eun; Ko, Seung-Deok; Choi, Kwang-Wook; Park, Sang-Hee Ko; Yoon, Jun-Bo
2015-03-25
A hybrid complementary logic inverter consisting of a microelectromechanical system switch as a promising alternative for the p-type oxide thin film transistor (TFT) and an n-type oxide TFT is presented for ultralow power integrated circuits. These heterogeneous microdevices are monolithically integrated. The resulting logic device shows a distinctive voltage transfer characteristic curve, very low static leakage, zero-short circuit current, and exceedingly high voltage gain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Smart Camera Technology Increases Quality
NASA Technical Reports Server (NTRS)
2004-01-01
When it comes to real-time image processing, everyone is an expert. People begin processing images at birth and rapidly learn to control their responses through the real-time processing of the human visual system. The human eye captures an enormous amount of information in the form of light images. In order to keep the brain from becoming overloaded with all the data, portions of an image are processed at a higher resolution than others, such as a traffic light changing colors. changing colors. In the same manner, image processing products strive to extract the information stored in light in the most efficient way possible. Digital cameras available today capture millions of pixels worth of information from incident light. However, at frame rates more than a few per second, existing digital interfaces are overwhelmed. All the user can do is store several frames to memory until that memory is full and then subsequent information is lost. New technology pairs existing digital interface technology with an off-the-shelf complementary metal oxide semiconductor (CMOS) imager to provide more than 500 frames per second of specialty image processing. The result is a cost-effective detection system unlike any other.
Molecular basis of the dopaminergic system in the cricket Gryllus bimaculatus.
Watanabe, Takayuki; Sadamoto, Hisayo; Aonuma, Hitoshi
2013-12-01
In insects, dopamine modulates various aspects of behavior such as learning and memory, arousal and locomotion, and is also a precursor of melanin. To elucidate the molecular basis of the dopaminergic system in the field cricket Gryllus bimaculatus DeGeer, we identified genes involved in dopamine biosynthesis, signal transduction, and dopamine re-uptake in the cricket. Complementary DNA of two isoforms of tyrosine hydroxylase (TH), which convert tyrosine into L-3,4-dihydroxyphenylalanine, was isolated from the cricket brain cDNA library. In addition, four dopamine receptor genes (Dop1, Dop2, Dop3, and DopEcR) and a high-affinity dopamine transporter gene were identified. The two TH isoforms contained isoform-specific regions in the regulatory ACT domain and showed differential expression patterns in different tissues. In addition, the dopamine receptor genes had a receptor subtype-specific distribution: the Dop1, Dop2, and DopEcR genes were broadly expressed in various tissues at differential expression levels, and the Dop3 gene was restrictedly expressed in neuronal tissues and the testicles. Our findings provide a fundamental basis for understanding the dopaminergic regulation of diverse physiological processes in the cricket.
Sensor fusion approaches for EMI and GPR-based subsurface threat identification
NASA Astrophysics Data System (ADS)
Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.
2011-06-01
Despite advances in both electromagnetic induction (EMI) and ground penetrating radar (GPR) sensing and related signal processing, neither sensor alone provides a perfect tool for detecting the myriad of possible buried objects that threaten the lives of Soldiers and civilians. However, while neither GPR nor EMI sensing alone can provide optimal detection across all target types, the two approaches are highly complementary. As a result, many landmine systems seek to make use of both sensing modalities simultaneously and fuse the results from both sensors to improve detection performance for targets with widely varying metal content and GPR responses. Despite this, little work has focused on large-scale comparisons of different approaches to sensor fusion and machine learning for combining data from these highly orthogonal phenomenologies. In this work we explore a wide array of pattern recognition techniques for algorithm development and sensor fusion. Results with the ARA Nemesis landmine detection system suggest that nonlinear and non-parametric classification algorithms provide significant performance benefits for single-sensor algorithm development, and that fusion of multiple algorithms can be performed satisfactorily using basic parametric approaches, such as logistic discriminant classification, for the targets under consideration in our data sets.
Generalization Through the Recurrent Interaction of Episodic Memories
Kumaran, Dharshan; McClelland, James L.
2012-01-01
In this article, we present a perspective on the role of the hippocampal system in generalization, instantiated in a computational model called REMERGE (recurrency and episodic memory results in generalization). We expose a fundamental, but neglected, tension between prevailing computational theories that emphasize the function of the hippocampus in pattern separation (Marr, 1971; McClelland, McNaughton, & O'Reilly, 1995), and empirical support for its role in generalization and flexible relational memory (Cohen & Eichenbaum, 1993; Eichenbaum, 1999). Our account provides a means by which to resolve this conflict, by demonstrating that the basic representational scheme envisioned by complementary learning systems theory (McClelland et al., 1995), which relies upon orthogonalized codes in the hippocampus, is compatible with efficient generalization—as long as there is recurrence rather than unidirectional flow within the hippocampal circuit or, more widely, between the hippocampus and neocortex. We propose that recurrent similarity computation, a process that facilitates the discovery of higher-order relationships between a set of related experiences, expands the scope of classical exemplar-based models of memory (e.g., Nosofsky, 1984) and allows the hippocampus to support generalization through interactions that unfold within a dynamically created memory space. PMID:22775499
Codony, Francesc; Pérez, Leonardo Martín; Adrados, Bárbara; Agustí, Gemma; Fittipaldi, Mariana; Morató, Jordi
2012-01-01
Culture-based methods for fecal indicator microorganisms are the standard protocol to assess potential health risk from drinking water systems. However, these traditional fecal indicators are inappropriate surrogates for disinfection-resistant fecal pathogens and the indigenous pathogens that grow in drinking water systems. There is now a range of molecular-based methods, such as quantitative PCR, which allow detection of a variety of pathogens and alternative indicators. Hence, in addition to targeting total Escherichia coli (i.e., dead and alive) for the detection of fecal pollution, various amoebae may be suitable to indicate the potential presence of pathogenic amoeba-resisting microorganisms, such as Legionellae. Therefore, monitoring amoeba levels by quantitative PCR could be a useful tool for directly and indirectly evaluating health risk and could also be a complementary approach to current microbial quality control strategies for drinking water systems.
NASA Astrophysics Data System (ADS)
Turmuzi, M.; Tarigan, Z. N.; Nadapdap, L.; Batubara, F.
2018-02-01
The total nitrogen content in water bodies should be below 50 mg NO3 -/L (11.3 mgN/l) World Health Organization (WHO) 2006. The content of nitrogen exceeding the quality standard threshold will cause damage to the aquatic ecosystem and be carcinogenic to humans. The Purolite A-400 resin will be modified with Cu metal by batch method to see the adsorption allowance of nitrate in synthetic liquid waste with nitrate concentration of 50 mg/l. This study will evaluate the effect of pH and complementary ions on the adsorption process. From the result of the research, the second order pseudo model is the most suitable adsorption kinetics model. For the adsorption isotherms the most suitable model is the Freundlich adsorption isotherm model. The optimum pH conditions were at the range of 8.5. The addition of complementary ions sulfate and phosphate did not show any significant change, but sulfate is the most effective complementary ion with a content of 20 mg/l.
Challenging issues of urban biodiversity related to ecohydrology.
Mendiondo, E M
2008-11-01
This paper aims to outline challenging issues of urban biodiversity in order to address yardsticks related to ecohydrology, and with a complementary approach to eutrophication impacts. The vision of environmental services, urbanization's consequences and management aspects of water governance are also depicted. Factors of river restoration, environmental tradeoffs and socio-cultural constrains are envisaged through concept questions towards emerging aspects that figure out methodological guides, strategic challenges for stakeholders and inter-disciplinary opportunities. Examples from case studies on restoration and management, from experiences and lessons learned, are enclosed, with brief discussions and literature citation.
Jaime-Pérez, José Carlos; Chapa-Rodríguez, Adrián; Rodríguez-Martínez, Marisol; Colunga-Pedraza, Perla Rocío; Marfil-Rivera, Luis Javier; Gómez-Almaguer, David
2012-01-01
Complementary and alternative medicine includes a diverse group of medical and healthcare systems, practices and products not considered part of conventional medicine. Although there is information on unconventional practices in oncological diseases, specific data regarding the use of complementary and alternative medicine by hematology patients is scarce. The aim of this study is to document the prevalence of this modality of unconventional therapy in patients with malignant and benign hematological diseases, particularly children with acute lymphoblastic leukemia. An observational study of adult patients and guardians of children with malignant or benign hematological diseases was carried out by applying a structured questionnaire detailing the use and results of the most prevalent complementary and alternative medicine practices. One hundred and twenty patients were included; 104 had malignant and 16 had benign hematological diseases. The use of complementary and alternative medicine was greater in benign diseases but the difference was not statistically significant (64.7% versus 41.7%; p-value = 0.08). Patients and guardians with high school or college educations used these alternative practices more than patients with less schooling (60.7% versus 54.7%; p-value = 0.032). The use of folk remedies was most prevalent followed by herbal preparations and spiritual healing. Sixty-four percent of patients that used these unconventional practices reported improvement in their symptoms and increased capacity to perform daily activities. No significant difference was documented between patients with malignant or benign hematological diseases using these alternative practices. The majority of complementary and alternative medicine users reported improvement of the disease or chemotherapy-related symptoms.
Lu, Yan; Jiang, Yun; Ling, Lijun; Zhang, Yunyi; Li, Hong; Chen, Daofeng
2018-03-01
Houttuynia cordata Thunb. is a traditional herb used for clearing heat and eliminating toxins, and has also been used for the treatment of severe acute respiratory syndrome (SARS). In vitro, the crude H. cordata polysaccharides (CHCP) exhibited potent anti-complementary activity through both the classical and alternative pathways by acting on components C3 and C4 of the complement system without interfering with the coagulation system. This study was to investigate the preventive effects of CHCP on acute lung injury (ALI) induced by hemorrhagic shock plus lipopolysaccharide (LPS) instillation (two-hit) and LPS-induced fever in rats. CHCP significantly attenuated pulmonary injury in the "two-hit" ALI model by reducing pulmonary edema and protein exudation in bronchoalveolar lavage fluid (BALF). In addition, it reduced the deposit of complement activation products in the lung and improved oxidant-antioxidant imbalance. Moreover, CHCP administration inhibited fever in rats, reduced the number of leukocytes and restored serum complement levels. The inhibition on the inappropriate activation of complement system by CHCP may play an important role in its beneficial effects on inflammatory diseases. The anti-complementary polysaccharides are likely to be among the key substances for the heat-clearing function of H. cordata .
Han, Peng; Niu, Chang-Ying; Lei, Chao-Liang; Cui, Jin-Jie; Desneux, Nicolas
2010-11-01
Transgenic Cry1Ac+CpTI cotton (CCRI41) is a promising cotton cultivar throughout China but side effects and especially sublethal effects of this transgenic cultivar on beneficial insects remain poorly studied. More specifically potential sublethal effects on behavioural traits of the honey bee Apis mellifera L. have not been formally assessed despite the importance of honey bees for pollination. The goal of our study was to assess potential effects of CCRI41 cotton pollen on visual and olfactory learning by honey bees. After a 7-day oral chronic exposure to honey mixed with either CCRI41 pollen, imidacloprid-treated conventional pollen (used as positive sublethal control) or conventional pollen (control), learning performance was evaluated by the classical proboscis extension reflex (PER) procedure as well as a T-tube maze test. The latter assay was designed as a new device to assess potential side effects of pesticides on visual associative learning of honey bees. These two procedures were complementary because the former focused on olfactory learning while the latter was involved in visual learning based on visual orientation ability. Oral exposure to CCRI41 pollen did not affect learning capacities of honey bees in both the T-tube maze and PER tests. However, exposure to imidacloprid resulted in reduced visual learning capacities in T-tube maze evaluation and decreased olfactory learning performances measured with PER. The implications of these results are discussed in terms of risks of transgenic CCRI41 cotton crops for honey bees.
User-Driven Sampling Strategies in Image Exploitation
Harvey, Neal R.; Porter, Reid B.
2013-12-23
Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-drivenmore » sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. We discovered that in user-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. Furthermore, in preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.« less
User-driven sampling strategies in image exploitation
NASA Astrophysics Data System (ADS)
Harvey, Neal; Porter, Reid
2013-12-01
Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-driven sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. User-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. In preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.
NASA Astrophysics Data System (ADS)
Kurtz, N.; Marks, N.; Cooper, S. K.
2014-12-01
Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.
Ciaramelli, Elisa; Rosenbaum, R Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris
2010-05-01
The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the posterior parietal cortex (PPC) might support egocentric representations. To date, however, few studies have examined long-standing egocentric representations of environments learned long ago. Here we tested 7 patients with focal lesions in PPC and 12 normal controls in remote spatial memory tasks, including 2 tasks reportedly reliant on allocentric representations (distance and proximity judgments) and 2 tasks reportedly reliant on egocentric representations (landmark sequencing and route navigation; see Rosenbaum, Ziegler, Winocur, Grady, & Moscovitch, 2004). Patients were unimpaired in distance and proximity judgments. In contrast, they all failed in route navigation, and left-lesioned patients also showed marginally impaired performance in landmark sequencing. Patients' subjective experience associated with navigation was impoverished and disembodied compared with that of the controls. These results suggest that PPC is crucial for accessing remote spatial memories within an egocentric reference frame that enables both navigation and reexperiencing. Additionally, PPC was found to be necessary to implement specific aspects of allocentric navigation with high demands on spontaneous retrieval. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Arpin, Jacques
2008-09-01
What can a healer learn from theatre and performance studies? What can theatre and performance studies bring to healing practices? Both disciplines are distinct in Western societies, at times merged into miscellaneous forms of 'art therapy'. What lessons can we learn from traditions that do not separate these competencies and have always integrated them as being naturally complementary? In a consultation of cultural psychiatry, both patients and healers are actively aware of various degrees of merging of art and medicine. Narration, then, cannot be limited to verbal case-history making and verbal therapeutic approaches. Bringing patients and healers on a stage and using all forms of text and performance allow for another way of (re)constructing case histories. Expanding the narrative process opens doors to exploring traditions: their origin, their apprenticeship, their performance and their transmission.
Sigma-1 (σ1) Receptor in Memory and Neurodegenerative Diseases.
Maurice, Tangui; Goguadze, Nino
2017-01-01
The sigma-1 (σ 1 ) receptor has been associated with regulation of intracellular Ca 2+ homeostasis, several cellular signaling pathways, and inter-organelle communication, in part through its chaperone activity. In vivo, agonists of the σ 1 receptor enhance brain plasticity, with particularly well-described impact on learning and memory. Under pathological conditions, σ 1 receptor agonists can induce cytoprotective responses. These protective responses comprise various complementary pathways that appear to be differentially engaged according to pathological mechanism. Recent studies have highlighted the efficacy of drugs that act through the σ 1 receptor to mitigate symptoms associated with neurodegenerative disorders with distinct mechanisms of pathogenesis. Here, we will review genetic and pharmacological evidence of σ 1 receptor engagement in learning and memory disorders, cognitive impairment, and neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Huntington's disease.
Situated mathematics teaching within electrical engineering courses
NASA Astrophysics Data System (ADS)
Hennig, Markus; Mertsching, Bärbel; Hilkenmeier, Frederic
2015-11-01
The initial phase of undergraduate engineering degree programmes often comprises courses requiring mathematical expertise which in some cases clearly exceeds school mathematics, but will be imparted only later in mathematics courses. In this article, an approach addressing this challenge by way of example within a fundamentals of electrical engineering course is presented. The concept focuses on gaining specific mathematical knowledge and competencies in the technical context of this course. For this purpose, a complementary blended learning scenario centring around a web-based learning platform and involving an adaptation of the course was developed. The concept particularly considers the heterogeneity of today's student groups and is discussed with regard to related approaches, didactical considerations, and technical implementation. For the interventions, the results of a questionnaire-based evaluation proving students' acceptance and positive influence on examination performance are presented.
Untoro, Juliawati; Childs, Rachel; Bose, Indira; Winichagoon, Pattanee; Rudert, Christiane; Hall, Andrew; de Pee, Saskia
2017-10-01
Adequate nutrient intake is a prerequisite for achieving good nutrition status. Suboptimal complementary feeding practices are a main risk factor for stunting. The need for systematic and user-friendly tools to guide the planning, implementation, monitoring, and evaluation of dietary interventions for children aged 6-23 months has been recognized. This paper describes five tools, namely, ProPAN, Optifood, Cost of the Diet, Fill the Nutrient Gap, and Monitoring Results for Equity System that can be used in different combinations to improve situation analysis, planning, implementation, monitoring, or evaluation approaches for complementary feeding in a particular context. ProPAN helps with development of strategies and activities designed to change the behaviours of the target population. Optifood provides guidance for developing food-based recommendations. The Cost of the Diet can provide insight on economic barriers to accessing a nutritious and balanced diet. The Fill the Nutrient Gap facilitates formulation of context-specific policies and programmatic approaches to improve nutrient intake, through a multistakeholder process that uses insights from linear programming and secondary data. The Monitoring Results for Equity System helps with analysis of gaps, constraints, and determinants of complementary feeding interventions and adoption of recommended practices especially in the most vulnerable and deprived populations. These tools, and support for their use, are readily available and can be used either alone and/or complementarily throughout the programme cycle to improve infant and young child-feeding programmes at subnational and national levels. © 2017 John Wiley & Sons Ltd.
What Patients and Providers Want to Know About Complementary and Integrative Health Therapies.
Taylor, Stephanie L; Giannitrapani, Karleen F; Yuan, Anita; Marshall, Nell
2018-01-01
We conducted a quality improvement project to determine (1) what information providers and patients most wanted to learn about complementary and integrative health (CIH) therapies and (2) in what format they wanted to receive this information. The overall aim was to develop educational materials to facilitate the CIH therapy decision-making processes. We used mixed methods to iteratively pilot test and revise provider and patient educational materials on yoga and meditation. We conducted semistructured interviews with 11 medical providers and held seven focus groups and used feedback forms with 52 outpatients. We iteratively developed and tested three versions of both provider and patient materials. Activities were conducted at four Veterans Administration medical facilities (two large medical centers and two outpatient clinics). Patients want educational materials with clearly stated basic information about: (1) what mindfulness and yoga are, (2) what a yoga/meditation class entails and how classes can be modified to suit different abilities, (3) key benefits to health and wellness, and (4) how to find classes at the hospital/clinic. Diverse media (videos, handouts, pocket guides) appealed to different Veterans. Videos should depict patients speaking to patients and demonstrating the CIH therapy. Written materials should be one to three pages with colors, and images and messages targeting a variety of patients. Providers wanted a concise (one-page) sheet in black and white font with no images listing the scientific evidence for CIH therapies from high-impact journals, organized by either type of CIH or health condition to use during patient encounters, and including practical information about how to refer patients. Providers and patients want to learn more about CIH therapies, but want the information in succinct, targeted formats. The information learned and materials developed in this study can be used by others to educate patients and providers on CIH therapies.
Zeier, H
1989-07-01
The concept of different functions for the left and right cerebral hemispheres coincides in an astonishing way with earlier philosophical and psychological work which divided the human mind into two complementary functions without having a neurophysiological explanation. Representative are the ideas of Fichte, Hegel and Jung. The latter postulated the two subsystems Ego and Self and associated the conscious functions of the Ego with the intellect, the capacity for rational thought, and the Self with the mind, which also includes the emotional feelings. For the harmonic development and self-realization of man the functions of both systems in complementary interaction are required. Therefore, the current overaccentuation of the intellect and of progress directed technical-scientific thinking should be corrected by making better use of the much neglected functions of the right hemisphere.
New perspectives in tracing vector-borne interaction networks.
Gómez-Díaz, Elena; Figuerola, Jordi
2010-10-01
Disentangling trophic interaction networks in vector-borne systems has important implications in epidemiological and evolutionary studies. Molecular methods based on bloodmeal typing in vectors have been increasingly used to identify hosts. Although most molecular approaches benefit from good specificity and sensitivity, their temporal resolution is limited by the often rapid digestion of blood, and mixed bloodmeals still remain a challenge for bloodmeal identification in multi-host vector systems. Stable isotope analyses represent a novel complementary tool that can overcome some of these problems. The utility of these methods using examples from different vector-borne systems are discussed and the extents to which they are complementary and versatile are highlighted. There are excellent opportunities for progress in the study of vector-borne transmission networks resulting from the integration of both molecular and stable isotope approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.
H+-type and OH--type biological protonic semiconductors and complementary devices
NASA Astrophysics Data System (ADS)
Deng, Yingxin; Josberger, Erik; Jin, Jungho; Rousdari, Anita Fadavi; Helms, Brett A.; Zhong, Chao; Anantram, M. P.; Rolandi, Marco
2013-10-01
Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H+ hop along chains of hydrogen bonds between water molecules and hydrophilic residues - proton wires. These wires also support the transport of OH- as proton holes. Discriminating between H+ and OH- transport has been elusive. Here, H+ and OH- transport is achieved in polysaccharide- based proton wires and devices. A H+- OH- junction with rectifying behaviour and H+-type and OH--type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H+ and OH- to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems.
H+-type and OH−-type biological protonic semiconductors and complementary devices
Deng, Yingxin; Josberger, Erik; Jin, Jungho; Rousdari, Anita Fadavi; Helms, Brett A.; Zhong, Chao; Anantram, M. P.; Rolandi, Marco
2013-01-01
Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H+ hop along chains of hydrogen bonds between water molecules and hydrophilic residues – proton wires. These wires also support the transport of OH− as proton holes. Discriminating between H+ and OH− transport has been elusive. Here, H+ and OH− transport is achieved in polysaccharide- based proton wires and devices. A H+- OH− junction with rectifying behaviour and H+-type and OH−-type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H+ and OH− to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems. PMID:24089083
[Biological characteristics of an enteroinvasive Escherichia coli strain with tatABC deletion].
Gong, Zhaolong; Ye, Changyun; Liu, Xiaobing; Zhang, Min; Zhuo, Qin
2013-05-04
To study the relationship between twin-arginine translocation system (Tat) system with the biological characteristics of enteroinvasive Escherichia coli (EIEC). Through homologous recombination, we constructed EIEC's tatABC gene deletion strain and complementary strain, and explored their impact on bacterial form, substrate transport function as well as on HeLa cells and guinea pig's corneal invasion force. The tatABC gene deletion strain had apparent changes in bacterial form, loss of substrate transporter function, and significant weakened bacterial invasion force (the number of the deletion strain invading into HeLa cells was decreased significantly, and the ability of its corneal lesion capacity of the guinea pig was significantly weakened), while the complementary strain was similar to the wild strain in the above respects. EIEC's Tat protein transport system is closely related with the biological characteristics of EIEC.
Karamanos, Yannis; Couturier, Catherine; Boutin, Viviane; Mysiorek, Caroline; Matéos, Aurélie; Berger, Sylvie
2018-04-01
This study describes feedback on the effects of changes introduced in our teaching practices for an introductory biochemistry course in the Life Sciences curriculum. Students on this course have diverse educational qualifications and are taught in large learning groups, creating challenges for the management of individual learning. We used the constructive alignment principle, refining the learning contract and re-drafting the teaching program to introduce active learning and an organization of activities that promotes the participation of all the students and helps their understanding. We also created teaching resources available through the university virtual work environment. Our research aimed to measure the effects of those changes on the students' success. Monitoring of the student performance showed a continuous increase in the percentage of students who passed the course, from 2.13% to 33.5% in 4 years. Analysis of student perceptions highlighted that the teaching methodology was greatly appreciated by the students, whose attendance also improved. The recent introduction of clickers-questions constituted a complementary leverage. The active involvement of the students and better results for summative assessments are altogether a strong motivation for teaching staff to continue to make improvements.