Sample records for complementary resistance gene

  1. Genetic analysis of the response to eleven Colletotrichum lindemuthianum races in a RIL population of common bean (Phaseolus vulgaris L.)

    PubMed Central

    2014-01-01

    Background Bean anthracnose is caused by the fungus Colletotrichum lindemuthianum (Sacc. & Magnus) Lams.- Scrib. Resistance to C. lindemuthianum in common bean (Phaseolus vulgaris L.) generally follows a qualitative mode of inheritance. The pathogen shows extensive pathogenic variation and up to 20 anthracnose resistance loci (named Co-), conferring resistance to specific races, have been described. Anthracnose resistance has generally been investigated by analyzing a limited number of isolates or races in segregating populations. In this work, we analyzed the response against eleven C. lindemuthianum races in a recombinant inbred line (RIL) common bean population derived from the cross Xana × Cornell 49242 in which a saturated linkage map was previously developed. Results A systematic genetic analysis was carried out to dissect the complex resistance segregations observed, which included contingency analyses, subpopulations and genetic mapping. Twenty two resistance genes were identified, some with a complementary mode of action. The Cornell 49242 genotype carries a complex cluster of resistance genes at the end of linkage group (LG) Pv11 corresponding to the previously described anthracnose resistance cluster Co-2. In this position, specific resistance genes to races 3, 6, 7, 19, 38, 39, 65, 357, 449 and 453 were identified, with one of them showing a complementary mode of action. In addition, Cornell 49242 had an independent gene on LG Pv09 showing a complementary mode of action for resistance to race 453. Resistance genes in genotype Xana were located on three regions involving LGs Pv01, Pv02 and Pv04. All resistance genes identified in Xana showed a complementary mode of action, except for two controlling resistance to races 65 and 73 located on LG Pv01, in the position of the previously described anthracnose resistance cluster Co-1. Conclusions Results shown herein reveal a complex and specific interaction between bean and fungus genotypes leading to anthracnose resistance. Organization of specific resistance genes in clusters including resistance genes with different modes of action (dominant and complementary genes) was also confirmed. Finally, new locations for anthracnose resistance genes were identified in LG Pv09. PMID:24779442

  2. Genetic analysis of the resistance to eight anthracnose races in the common bean differential cultivar Kaboon.

    PubMed

    Campa, Ana; Giraldez, Ramón; Ferreira, Juan José

    2011-06-01

    Resistance to the eight races (3, 7, 19, 31, 81, 449, 453, and 1545) of the pathogenic fungus Colletotrichum lindemuthianum (anthracnose) was evaluated in F(3) families derived from the cross between the anthracnose differential bean cultivars Kaboon and Michelite. Molecular marker analyses were carried out in the F(2) individuals in order to map and characterize the anthracnose resistance genes or gene clusters present in Kaboon. The analysis of the combined segregations indicates that the resistance present in Kaboon against these eight anthracnose races is determined by 13 different race-specific genes grouped in three clusters. One of these clusters, corresponding to locus Co-1 in linkage group (LG) 1, carries two dominant genes conferring specific resistance to races 81 and 1545, respectively, and a gene necessary (dominant complementary gene) for the specific resistance to race 31. A second cluster, corresponding to locus Co-3/9 in LG 4, carries six dominant genes conferring specific resistance to races 3, 7, 19, 449, 453, and 1545, respectively, and the second dominant complementary gene for the specific resistance to race 31. A third cluster of unknown location carries three dominant genes conferring specific resistance to races 449, 453, and 1545, respectively. This is the first time that two anthracnose resistance genes with a complementary mode of action have been mapped in common bean and their relationship with previously known Co- resistance genes established.

  3. Evolution of Linked Avirulence Effectors in Leptosphaeria maculans Is Affected by Genomic Environment and Exposure to Resistance Genes in Host Plants

    PubMed Central

    Van de Wouw, Angela P.; Cozijnsen, Anton J.; Hane, James K.; Brunner, Patrick C.; McDonald, Bruce A.; Oliver, Richard P.; Howlett, Barbara J.

    2010-01-01

    Brassica napus (canola) cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a ‘gene for gene’ manner whereby plant resistance (R) genes are complementary to pathogen avirulence (Avr) genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6) also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP) mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans. PMID:21079787

  4. [Antisense polynucleotides and prospects for their use in fighting viruses].

    PubMed

    Tikhonenko, T I

    1989-01-01

    Natural or synthetic anti-sense (as) polynucleotides complementary to distinct functional regions of mRNA (asRNA or asDNA) are able to inhibit the expression of any target gene. If certain viral mRNAs important for virus replication are targeted the inhibition of viral infection by asRNA or asDNA takes place. Inhibitory effects of complementary polynucleotides on gene activity in eukaryotic cells is due to the disturbance of translation of corresponding mRNAs as well as to the impairment of their splicing or transportation from the nuclei to cytoplasm. In prokaryotic cells, obviously, only the first factor is operating. The recombinant genes programming anti-viral asRNA can confer the resistance to the infection by other virus to the transformed cells. The resistance to viral infection observed in transgenic animals, expressing asRNA genes, may be considered as a new unnatural form of informational immunity.

  5. Complementary epistasis involving Sr12 explains adult plant resistance to stem rust in Thatcher wheat (Triticum aestivum L.).

    PubMed

    Rouse, Matthew N; Talbert, Luther E; Singh, Davinder; Sherman, Jamie D

    2014-07-01

    Quantitative trait loci conferring adult plant resistance to Ug99 stem rust in Thatcher wheat display complementary gene action suggesting multiple quantitative trait loci are needed for effective resistance. Adult plant resistance (APR) in wheat (Triticum aestivum L.) to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is desirable because this resistance can be Pgt race non-specific. Resistance derived from cultivar Thatcher can confer high levels of APR to the virulent Pgt race TTKSK (Ug99) when combined with stem rust resistance gene Sr57 (Lr34). To identify the loci conferring APR in Thatcher, we evaluated 160 RILs derived from Thatcher crossed to susceptible cultivar McNeal for field stem rust reaction in Kenya for two seasons and in St. Paul for one season. All RILs and parents were susceptible as seedlings to race TTKSK. However, adult plant stem rust severities in Kenya varied from 5 to 80 %. Composite interval mapping identified four quantitative trait loci (QTL). Three QTL were inherited from Thatcher and one, Sr57, was inherited from McNeal. The markers closest to the QTL peaks were used in an ANOVA to determine the additive and epistatic effects. A QTL on 3BS was detected in all three environments and explained 27-35 % of the variation. The peak of this QTL was at the same location as the Sr12 seedling resistance gene effective to race SCCSC. Epistatic interactions were significant between Sr12 and QTL on chromosome arms 1AL and 2BS. Though Sr12 cosegregated with the largest effect QTL, lines with Sr12 were not always resistant. The data suggest that Sr12 or a linked gene, though not effective to race TTKSK alone, confers APR when combined with other resistance loci.

  6. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection.

    PubMed

    Pilet-Nayel, Marie-Laure; Moury, Benoît; Caffier, Valérie; Montarry, Josselin; Kerlan, Marie-Claire; Fournet, Sylvain; Durel, Charles-Eric; Delourme, Régine

    2017-01-01

    Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R) genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.

  7. Alterations in the GyrA subunit of DNA gyrase and the ParC subunit of topoisomerase IV in quinolone-resistant clinical isolates of Klebsiella pneumoniae.

    PubMed

    Deguchi, T; Fukuoka, A; Yasuda, M; Nakano, M; Ozeki, S; Kanematsu, E; Nishino, Y; Ishihara, S; Ban, Y; Kawada, Y

    1997-03-01

    We determined a partial sequence of the Klebsiella pneumoniae parC gene, including the region analogous to the quinolone resistance-determining region of the Escherichia coli gyrA gene, and examined 26 clinical strains of K. pneumoniae for an association of alterations in GyrA and ParC with susceptibilities to quinolones. The study suggests that in K. pneumoniae DNA gyrase is a primary target of quinolones and that ParC alterations play a complementary role in the development of higher-level fluoroquinolone resistance.

  8. Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms

    PubMed Central

    Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue

    2015-01-01

    Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance. PMID:26209670

  9. A mutated hygromycin resistance gene is functional in the n-alkane-assimilating yeast Candida tropicalis.

    PubMed

    Hara, A; Ueda, M; Misawa, S; Matsui, T; Furuhashi, K; Tanaka, A

    2000-03-01

    Development of a transformation system in the n-alkane-assimilating diploid yeast Candida tropicalis requires an antibiotic resistance gene in order to establish a selectable marker. The resistance gene for hygromycin B has often been used as a selectable marker in yeast transformation. However, C. tropicalis harboring the hygromycin resistance gene (HYG) was as sensitive to hygromycin B as the wild-type strain. Nine CTG codons were found in the ORF of the HYG gene. This codon has been reported to be translated as serine rather than leucine in Candida species. Analysis of the tRNA gene in C. tropicalis with the anticodon CAG [tRNA(CAG) gene], which is complementary to the codon CTG, showed that the sequence was highly similar to that of the C. maltosa tRNA(CAG) gene. In C. maltosa, the codon CTG is read as serine and not leucine. These results suggested that the HYG gene was not functional due to the nonuniversal usage of the CTG codon. Each of the nine CTG codons in the ORF of the HYG gene was changed to a CTC codon, which is read as leucine, by site-directed mutagenesis. When a plasmid containing the mutated HYG gene (HYG#) was constructed and introduced into C. tropicalis, hygromycin-resistant transformants were successfully obtained. This mutated hygromycin resistance gene may be useful for direct selection of C. tropicalis transformants.

  10. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.).

    PubMed

    Rubio, Manuel; Ballester, Ana Rosa; Olivares, Pedro Manuel; Castro de Moura, Manuel; Dicenta, Federico; Martínez-Gómez, Pedro

    2015-01-01

    RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease)/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, "Rojo Pasión" and "Z506-7", resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925), which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene) or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein) PPVres region could also be involved in the resistance.

  11. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.)

    PubMed Central

    Rubio, Manuel; Ballester, Ana Rosa; Olivares, Pedro Manuel; Castro de Moura, Manuel; Dicenta, Federico; Martínez-Gómez, Pedro

    2015-01-01

    RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease)/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, “Rojo Pasión” and “Z506-7”, resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925), which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene) or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein) PPVres region could also be involved in the resistance. PMID:26658051

  12. Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms.

    PubMed

    Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue; Zhang, Shi-Hong

    2015-10-01

    Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. A Gene-for-Gene Relationship Between Wheat and Mycosphaerella graminicola, the Septoria Tritici Blotch Pathogen.

    PubMed

    Brading, Penny A; Verstappen, Els C P; Kema, Gert H J; Brown, James K M

    2002-04-01

    ABSTRACT Specific resistances to isolates of the ascomycete fungus Mycosphaerella graminicola, which causes Septoria tritici blotch of wheat, have been detected in many cultivars. Cvs. Flame and Hereward, which have specific resistance to the isolate IPO323, were crossed with the susceptible cv. Longbow. The results of tests on F1 and F2 progeny indicated that a single semidominant gene controls resistance to IPO323 in each of the resistant cultivars. This was confirmed in F3 families of Flame x Longbow, which were either homozygous resistant, homozygous susceptible, or segregating in tests with IPO323 but were uniformly susceptible to another isolate, IPO94269. None of 100 F2 progeny of Flame x Hereward were susceptible to IPO323, indicating that the resistance genes in these two cultivars are the same, closely linked, or allelic. The resistance gene in cv. Flame was mapped to the short arm of chromosome 3A using microsatellite markers and was named Stb6. Fifty-nine progeny of a cross between IPO323 and IPO94269 were used in complementary genetic analysis of the pathogen to test a gene-for-gene relationship between Stb6 and the avirulence gene in IPO323. Avirulence to cvs. Flame, Hereward, Shafir, Bezostaya 1, and Vivant and the breeding line NSL92-5719 cosegregated, and the ratio of virulent to avirulent was close to 1:1, suggesting that these wheat lines may all recognize the same avirulence gene and may all have Stb6. Together, these data provide the first demonstration that isolate-specific resistance of wheat to Septoria tritici blotch follows a gene-for-gene relationship.

  14. Visual detection of multidrug resistance gene in living cell using the molecular beacon imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Qiumei; Ma, Yi; Gu, Yueqing

    2014-09-01

    A major problem in cancer treatment is the development of resistance to chemotherapeutic agents in tumor cells. Detection of effective prognostic biomarkers and targets are of crucial importance to the management of individualized therapies. However, quantitative analysis of the drug resistance gene had been difficult because of technical limitations. In this study, we designed and used a special hairpin deoxyribonucleic acid (DNA), which served as a beacon for detecting human drug resistance indicater. Upon hybridizing with the target mRNA, the hairpin DNA modified gold nanoparticle beacons (hDAuNP beacons) release the fluorophores attached at 5'end of the oligonucleotide sequence. The fluorescence properties of the beacon before and after the hybridization with the complementary DNA were confirmed in vitro. The hDAuNP beacons could be taken up by living cells with low inherent cytotoxicity and higher stability. hDAuNP beacon imaged by confocal laser scanning microscopy to detect the resistance gene expression. The detected fluorescence in MCF7and MCF7/ADR cells correlates with the specific drug resistance gene expression, which is consistent with the result from Q-PCR. Thus, this approach overcame many of the challenges of previous techniques by creating highly sensitive and effective intracellular probes for monitoring gene expression.

  15. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.

    PubMed

    Konermann, Silvana; Brigham, Mark D; Trevino, Alexandro E; Joung, Julia; Abudayyeh, Omar O; Barcena, Clea; Hsu, Patrick D; Habib, Naomi; Gootenberg, Jonathan S; Nishimasu, Hiroshi; Nureki, Osamu; Zhang, Feng

    2015-01-29

    Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. Here we describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We used these engineered Cas9 activation complexes to investigate single-guide RNA (sgRNA) targeting rules for effective transcriptional activation, to demonstrate multiplexed activation of ten genes simultaneously, and to upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor. The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual sgRNA and complementary DNA overexpression. A gene expression signature based on the top screening hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-derived samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology.

  16. PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes.

    PubMed

    Osuna-Cruz, Cristina M; Paytuvi-Gallart, Andreu; Di Donato, Antimo; Sundesha, Vicky; Andolfo, Giuseppe; Aiese Cigliano, Riccardo; Sanseverino, Walter; Ercolano, Maria R

    2018-01-04

    The Plant Resistance Genes database (PRGdb; http://prgdb.org) has been redesigned with a new user interface, new sections, new tools and new data for genetic improvement, allowing easy access not only to the plant science research community but also to breeders who want to improve plant disease resistance. The home page offers an overview of easy-to-read search boxes that streamline data queries and directly show plant species for which data from candidate or cloned genes have been collected. Bulk data files and curated resistance gene annotations are made available for each plant species hosted. The new Gene Model view offers detailed information on each cloned resistance gene structure to highlight shared attributes with other genes. PRGdb 3.0 offers 153 reference resistance genes and 177 072 annotated candidate Pathogen Receptor Genes (PRGs). Compared to the previous release, the number of putative genes has been increased from 106 to 177 K from 76 sequenced Viridiplantae and algae genomes. The DRAGO 2 tool, which automatically annotates and predicts (PRGs) from DNA and amino acid with high accuracy and sensitivity, has been added. BLAST search has been implemented to offer users the opportunity to annotate and compare their own sequences. The improved section on plant diseases displays useful information linked to genes and genomes to connect complementary data and better address specific needs. Through, a revised and enlarged collection of data, the development of new tools and a renewed portal, PRGdb 3.0 engages the plant science community in developing a consensus plan to improve knowledge and strategies to fight diseases that afflict main crops and other plants. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Overexpression of MDR-1 and CDR-2 genes in fluconazole resistance of Candida albicans isolated from patients with vulvovaginal candidiasis.

    PubMed

    Khosravi Rad, K; Falahati, M; Roudbary, M; Farahyar, S; Nami, S

    2016-12-01

    Candida albicans ( C. albicans ) is an opportunistic fungus that can colonize women's mucosal epithelial cell surfaces, causing vulvovaginitis in specific circumstances. The major genes contributing to drug resistance in C. albicans are the candida drug resistance ( CDR ) and multi drug resistance ( MDR ) genes. The purpose of this study was to evaluate the CDR-2 and MDR-1 gene expression patterns in C. albicans strains isolated from patients with recurrent vulvovaginal candidiasis. In this study, 40 isolates of fluconazole-resistant C. albicans were cultured on Sabouraud dextrose agar. These isolates were collected from women with vulvovaginitis who were referred to a clinic in Tehran, Iran, and transferred to a mycology laboratory. Then, RNA was extracted from the isolates using phenol-chloroform and glass beads, and the complementary DNA (cDNA) was synthetized. To detect the semi-quantitative expression of CDR-2 and MDR-1 genes, the reverse transcriptase-PCR (RT-PCR) technique was performed using specific primers. Our findings indicated that of the 40 C. albicans isolates, 35 (87.5%) strains were positive for mRNA of the CDR-2 gene, 32 (80%) strains expressed mRNA of the MDR-1 gene, and 30 (75%) strains were confirmed to express mRNA of both the CDR-2 and MDR-1 genes simultaneously using the RT-PCR assay. According to the obtained results, the expression rates of CDR-2 and MDR-1 genes were high in fluconazole-resistant C. albicans isolates, which can cause treatments to fail and result in chronic infections. Inhibiting these important genes using novel or natural agents can help with the treatment of chronic and recurrent vaginitis.

  18. Loss of Activating EGFR Mutant Gene Contributes to Acquired Resistance to EGFR Tyrosine Kinase Inhibitors in Lung Cancer Cells

    PubMed Central

    Kubo, Takuya; Murakami, Yuichi; Kawahara, Akihiko; Azuma, Koichi; Abe, Hideyuki; Kage, Masayoshi; Yoshinaga, Aki; Tahira, Tomoko; Hayashi, Kenshi; Arao, Tokuzo; Nishio, Kazuto; Rosell, Rafael; Kuwano, Michihiko; Ono, Mayumi

    2012-01-01

    Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR) mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs). However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11–18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11–18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11–18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2) or BIBW2992 (pan-TKI of EGFR family proteins). Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance. PMID:22815900

  19. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Müller, Vilhelm; Rajer, Fredrika; Frykholm, Karolin; Nyberg, Lena K.; Quaderi, Saair; Fritzsche, Joachim; Kristiansson, Erik; Ambjörnsson, Tobias; Sandegren, Linus; Westerlund, Fredrik

    2016-12-01

    Bacterial plasmids are extensively involved in the rapid global spread of antibiotic resistance. We here present an assay, based on optical DNA mapping of single plasmids in nanofluidic channels, which provides detailed information about the plasmids present in a bacterial isolate. In a single experiment, we obtain the number of different plasmids in the sample, the size of each plasmid, an optical barcode that can be used to identify and trace the plasmid of interest and information about which plasmid that carries a specific resistance gene. Gene identification is done using CRISPR/Cas9 loaded with a guide-RNA (gRNA) complementary to the gene of interest that linearizes the circular plasmids at a specific location that is identified using the optical DNA maps. We demonstrate the principle on clinically relevant extended spectrum beta-lactamase (ESBL) producing isolates. We discuss how the gRNA sequence can be varied to obtain the desired information. The gRNA can either be very specific to identify a homogeneous group of genes or general to detect several groups of genes at the same time. Finally, we demonstrate an example where we use a combination of two gRNA sequences to identify carbapenemase-encoding genes in two previously not characterized clinical bacterial samples.

  20. Identification of plant genes regulated in resistant potato Solanum sparsipilum during the early stages of infection by Globodera pallida.

    PubMed

    Jolivet, Katell; Grenier, Eric; Bouchet, Jean-Paul; Esquibet, Magali; Kerlan, Marie-Claire; Caromel, Bernard; Mugniéry, Didier; Lefebvre, Véronique

    2007-04-01

    Using a complementary (c)DNA-amplified fragment length polymorphism (AFLP) approach, we investigated differential gene expression linked to resistance mechanisms during the incompatible potato - Globodera pallida interaction. Expression was compared between a resistant and a susceptible potato clone, inoculated or not inoculated with G. pallida. These clones were issued from a cross between the resistant Solanum sparsipilum spl329.18 accession and the susceptible dihaploid S. tuberosum Caspar H3, and carried, respectively, resistant and susceptible alleles at the resistance quantitative trait loci (QTLs). Analysis was done on root fragments picked up at 4 time points, during a period of 6 days after infection, from penetration of the nematode in the root to degradation of the feeding site in resistant plants. A total of 2560 transcript-derived fragments (TDFs) were analyzed, resulting in the detection of 46 TDFs that were up- or downregulated. The number of TDFs that were up- or downregulated increased with time after inoculation. The majority of TDFs were upregulated at only 1 or 2 time points in response to infection. After isolation and sequencing of the TDFs of interest, a subset of 36 sequences were identified, among which 22 matched plant sequences and 2 matched nematode sequences. Some of the TDFs that matched plant genes showed clear homologies to genes involved in cell-cycle regulation, transcription regulation, resistance downstream signalling pathways, and defense mechanisms. Other sequences with homologies to plant genes of unknown function or without any significant similarity to known proteins were also found. Although not exhaustive, these results represent the most extensive list of genes with altered RNA levels after the incompatible G. pallida-potato interaction that has been published to date. The function of these genes could provide insight into resistance or plant defense mechanisms during incompatible potato-cyst nematode interactions.

  1. Tracing back the nascence of a new sex-determination pathway to the ancestor of bees and ants

    PubMed Central

    Schmieder, Sandra; Colinet, Dominique; Poirié, Marylène

    2012-01-01

    In several Hymenoptera, sexual fate is determined by the allelic composition at the complementary sex-determiner locus, a sex-determination mechanism that can strongly affect population dynamics. To date, the molecular identification of complementary sex determiner has only been achieved in the honeybee, where the complementary sex-determiner gene was reported to have arisen from duplication of the feminizer gene. Strikingly, the complementary sex-determiner gene was also proposed to be unique to the honeybee lineage. Here we identify feminizer and complementary sex-determiner orthologues in bumble bees and ants. We further demonstrate that the duplication of feminizer that produced complementary sex determiner occurred before the divergence of Aculeata species (~120 Myr ago). Finally, we provide evidence that the two genes evolved concertedly through gene conversion, complementary sex-determiner evolution being additionally shaped by mosaic patterns of selection. Thus, the complementary sex-determiner gene likely represents the molecular basis for single locus-complementary sex determination in the Aculeata infra-order, and possibly, in the entire Hymenoptera order. PMID:22692538

  2. Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli.

    PubMed

    Phan, Minh-Duy; Nhu, Nguyen Thi Khanh; Achard, Maud E S; Forde, Brian M; Hong, Kar Wai; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; West, Nicholas P; Walker, Mark J; Paterson, David L; Beatson, Scott A; Schembri, Mark A

    2017-10-01

    Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958. Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost. A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B. This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The effect of antimicrobial photodynamic therapy on the expression of novel methicillin resistance markers determined using cDNA-AFLP approach in Staphylococcus aureus.

    PubMed

    Hoorijani, Mohammad Neshvan; Rostami, Hosein; Pourhajibagher, Maryam; Chiniforush, Nasim; Heidari, Mansour; Pourakbari, Babak; Kazemian, Hossein; Davari, Kambiz; Amini, Vahid; Raoofian, Reza; Bahador, Abbas

    2017-09-01

    Widespread methicillin resistant Staphylococcus aureus (MRSA) and absence of effective antimicrobial agents has led to limited therapeutic options for treating MRSA infection. We aimed to evaluate the effect of antimicrobial photodynamic therapy (aPDT) on the expression of novel identified methicillin resistance markers (NIMRMs) in S. aureus using complementary DNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) approaches to address the therapeutic alternatives for MRSA infections. We used cDNA-AFLP to compare MRSA and methicillin susceptible S. aureus (MSSA) for identification of target genes implicated in methicillin resistance. To determine the sub-lethal aPDT (sPDT), MRSA and MSSA clinical isolates photosensitized with toluidine blue O (TBO), and then were irradiated with diode laser. After sPDT, the colony forming units/mL was quantified. Antimicrobial susceptibility against methicillin was assessed for cell-surviving aPDT. Effects of sPDT on the expression of NIMRMs were evaluated by real-time quantitative reverse transcription PCR. According to our results, serine hydrolase family protein (Shfp) encoding gene and a gene encoding a conserved hypothetical protein (Chp) were implicated in methicillin resistance in MRSA. sPDT reduced the minimum inhibitory concentrations of methicillin by 3-fold in MRSA. sPDT could lead to about 10- and 6.2- fold suppression of expression of the Chp and Shfp encoding genes, respectively. sPDT would lead to reduction in resistance to methicillin of MRSA in surviving cells by suppressing the expression of the Shfp and Chp encoding genes associated with methicillin resistance. This may have potential implications of aPDT for the treatment of MRSA infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Host-induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat.

    PubMed

    Panwar, Vinay; Jordan, Mark; McCallum, Brent; Bakkeren, Guus

    2018-05-01

    Leaf rust, caused by the pathogenic fungus Puccinia triticina (Pt), is one of the most serious biotic threats to sustainable wheat production worldwide. This obligate biotrophic pathogen is prevalent worldwide and is known for rapid adaptive evolution to overcome resistant wheat varieties. Novel disease control approaches are therefore required to minimize the yield losses caused by Pt. Having shown previously the potential of host-delivered RNA interference (HD-RNAi) in functional screening of Pt genes involved in pathogenesis, we here evaluated the use of this technology in transgenic wheat plants as a method to achieve protection against wheat leaf rust (WLR) infection. Stable expression of hairpin RNAi constructs with sequence homology to Pt MAP-kinase (PtMAPK1) or a cyclophilin (PtCYC1) encoding gene in susceptible wheat plants showed efficient silencing of the corresponding genes in the interacting fungus resulting in disease resistance throughout the T 2 generation. Inhibition of Pt proliferation in transgenic lines by in planta-induced RNAi was associated with significant reduction in target fungal transcript abundance and reduced fungal biomass accumulation in highly resistant plants. Disease protection was correlated with the presence of siRNA molecules specific to targeted fungal genes in the transgenic lines harbouring the complementary HD-RNAi construct. This work demonstrates that generating transgenic wheat plants expressing RNAi-inducing transgenes to silence essential genes in rust fungi can provide effective disease resistance, thus opening an alternative way for developing rust-resistant crops. © 2017 Her Majesty the Queen in Right of Canada. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Strategies for RUN1 Deployment Using RUN2 and REN2 to Manage Grapevine Powdery Mildew Informed by Studies of Race Specificity.

    PubMed

    Feechan, Angela; Kocsis, Marianna; Riaz, Summaira; Zhang, Wei; Gadoury, David M; Walker, M Andrew; Dry, Ian B; Reisch, Bruce; Cadle-Davidson, Lance

    2015-08-01

    The Toll/interleukin-1 receptor nucleotide-binding site leucine-rich repeat gene, "resistance to Uncinula necator 1" (RUN1), from Vitis rotundifolia was recently identified and confirmed to confer resistance to the grapevine powdery mildew fungus Erysiphe necator (syn. U. necator) in transgenic V. vinifera cultivars. However, sporulating powdery mildew colonies and cleistothecia of the heterothallic pathogen have been found on introgression lines containing the RUN1 locus growing in New York (NY). Two E. necator isolates collected from RUN1 vines were designated NY1-131 and NY1-137 and were used in this study to inform a strategy for durable RUN1 deployment. In order to achieve this, fitness parameters of NY1-131 and NY1-137 were quantified relative to powdery mildew isolates collected from V. rotundifolia and V. vinifera on vines containing alleles of the powdery mildew resistance genes RUN1, RUN2, or REN2. The results clearly demonstrate the race specificity of RUN1, RUN2, and REN2 resistance alleles, all of which exhibit programmed cell death (PCD)-mediated resistance. The NY1 isolates investigated were found to have an intermediate virulence on RUN1 vines, although this may be allele specific, while the Musc4 isolate collected from V. rotundifolia was virulent on all RUN1 vines. Another powdery mildew resistance locus, RUN2, was previously mapped in different V. rotundifolia genotypes, and two alleles (RUN2.1 and RUN2.2) were identified. The RUN2.1 allele was found to provide PCD-mediated resistance to both an NY1 isolate and Musc4. Importantly, REN2 vines were resistant to the NY1 isolates and RUN1REN2 vines combining both genes displayed additional resistance. Based on these results, RUN1-mediated resistance in grapevine may be enhanced by pyramiding with RUN2.1 or REN2; however, naturally occurring isolates in North America display some virulence on vines with these resistance genes. The characterization of additional resistance sources is needed to identify resistance gene combinations that will further enhance durability. For the resistance gene combinations currently available, we recommend using complementary management strategies, including fungicide application, to reduce populations of virulent isolates.

  6. Gene therapy for carcinoma of the breast

    PubMed Central

    Stoff-Khalili, MA; Dall, P; Curiel, DT

    2007-01-01

    In view of the limited success of available treatment modalities for breast cancer, alternative and complementary strategies need to be developed. The delineation of the molecular basis of breast cancer provides the possibility of specific intervention by gene therapy through the introduction of genetic material for therapeutic purposes. In this regard, several gene therapy approaches for carcinoma of the breast have been developed. These approaches can be divided into six broad categories: (1) mutation compensation, (2) molecular chemotherapy, (3) proapoptotic gene therapy, (4) antiangiogenic gene therapy, (5) genetic immunopotentiation, and (6) genetic modulation of resistance/sensitivity. Clinical trials for breast cancer have been initiated to evaluate safety, toxicity, and efficacy. Combined modality therapy with gene therapy and chemotherapy or radiation therapy has shown promising results. It is expected that as new therapeutic targets and approaches are identified and advances in vector design are realized, gene therapy will play an increasing role in clinical breast cancer treatment. PMID:16410823

  7. Tuning resistance states by thickness control in an electroforming-free nanometallic complementary resistance random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiang; Lu, Yang; Lee, Jongho

    2016-01-04

    Tuning low resistance state is crucial for resistance random access memory (RRAM) that aims to achieve optimal read margin and design flexibility. By back-to-back stacking two nanometallic bipolar RRAMs with different thickness into a complementary structure, we have found that its low resistance can be reliably tuned over several orders of magnitude. Such high tunability originates from the exponential thickness dependence of the high resistance state of nanometallic RRAM, in which electron wave localization in a random network gives rise to the unique scaling behavior. The complementary nanometallic RRAM provides electroforming-free, multi-resistance-state, sub-100 ns switching capability with advantageous characteristics formore » memory arrays.« less

  8. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen.

    PubMed

    Hess, Matthias; Sczyrba, Alexander; Egan, Rob; Kim, Tae-Wan; Chokhawala, Harshal; Schroth, Gary; Luo, Shujun; Clark, Douglas S; Chen, Feng; Zhang, Tao; Mackie, Roderick I; Pennacchio, Len A; Tringe, Susannah G; Visel, Axel; Woyke, Tanja; Wang, Zhong; Rubin, Edward M

    2011-01-28

    The paucity of enzymes that efficiently deconstruct plant polysaccharides represents a major bottleneck for industrial-scale conversion of cellulosic biomass into biofuels. Cow rumen microbes specialize in degradation of cellulosic plant material, but most members of this complex community resist cultivation. To characterize biomass-degrading genes and genomes, we sequenced and analyzed 268 gigabases of metagenomic DNA from microbes adherent to plant fiber incubated in cow rumen. From these data, we identified 27,755 putative carbohydrate-active genes and expressed 90 candidate proteins, of which 57% were enzymatically active against cellulosic substrates. We also assembled 15 uncultured microbial genomes, which were validated by complementary methods including single-cell genome sequencing. These data sets provide a substantially expanded catalog of genes and genomes participating in the deconstruction of cellulosic biomass.

  9. Members of a new subgroup of Streptococcus anginosus harbor virulence related genes previously observed in Streptococcus pyogenes.

    PubMed

    Babbar, Anshu; Kumar, Venkatesan Naveen; Bergmann, René; Barrantes, Israel; Pieper, Dietmar H; Itzek, Andreas; Nitsche-Schmitz, D Patric

    2017-04-01

    Conventionally categorized as commensals, the Streptococci of the species S. anginosus are facultative human pathogens that are difficult to diagnose and often overlooked. Furthermore, detailed investigation and diagnosis of S. anginosus infections is hampered by unexplored taxonomy and widely elusive molecular pathogenesis. To explore their pathogenic potential, S. anginosus isolates collected from patients of two geographical locations (Vellore, India and Leipzig, Germany) were subjected to multi-locus sequence analysis (MLSA). This analysis revealed the potential presence of a new distinct clade of the species S. anginosus, tentatively termed here as genomosubspecies vellorensis. A complementary PCR-based screening for S. pyogenes virulence factor as well as antibiotic resistance genes revealed not only the presence of superantigen- and extracellular DNase coding genes identical to corresponding genes of S. pyogenes, but also of erythromycin and tetracycline resistance genes in the genomes of the analyzed S. anginosus isolates, thus posing a matter of significant health concern. Identification of new pathogenic S. anginosus strains capable of causing difficult to treat infections may pose additional challenges to the diagnosis and treatment of Streptococcus based infections. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. A Roadmap for Functional Structural Variants in the Soybean Genome

    PubMed Central

    Anderson, Justin E.; Kantar, Michael B.; Kono, Thomas Y.; Fu, Fengli; Stec, Adrian O.; Song, Qijian; Cregan, Perry B.; Specht, James E.; Diers, Brian W.; Cannon, Steven B.; McHale, Leah K.; Stupar, Robert M.

    2014-01-01

    Gene structural variation (SV) has recently emerged as a key genetic mechanism underlying several important phenotypic traits in crop species. We screened a panel of 41 soybean (Glycine max) accessions serving as parents in a soybean nested association mapping population for deletions and duplications in more than 53,000 gene models. Array hybridization and whole genome resequencing methods were used as complementary technologies to identify SV in 1528 genes, or approximately 2.8%, of the soybean gene models. Although SV occurs throughout the genome, SV enrichment was noted in families of biotic defense response genes. Among accessions, SV was nearly eightfold less frequent for gene models that have retained paralogs since the last whole genome duplication event, compared with genes that have not retained paralogs. Increases in gene copy number, similar to that described at the Rhg1 resistance locus, account for approximately one-fourth of the genic SV events. This assessment of soybean SV occurrence presents a target list of genes potentially responsible for rapidly evolving and/or adaptive traits. PMID:24855315

  11. DNA Repair Mechanism Gene, XRCC1A ( Arg194Trp) but not XRCC3 ( Thr241Met) Polymorphism Increased the Risk of Breast Cancer in Premenopausal Females: A Case-Control Study in Northeastern Region of India.

    PubMed

    Devi, K Rekha; Ahmed, Jishan; Narain, Kanwar; Mukherjee, Kaustab; Majumdar, Gautam; Chenkual, Saia; Zonunmawia, Jason C

    2017-12-01

    X-ray repair cross complementary group gene is one of the most studied candidate gene involved in different types of cancers. Studies have shown that X-ray repair cross complementary genes are significantly associated with increased risk of breast cancer in females. Moreover, studies have revealed that X-ray repair cross complementary gene polymorphism significantly varies between and within different ethnic groups globally. The present case-control study was aimed to investigate the association of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer in females from northeastern region of India. The present case-control study includes histopathologically confirmed and newly diagnosed 464 cases with breast cancer and 534 apparently healthy neighborhood community controls. Information on sociodemographic factors and putative risk factors were collected from each study participant by conducting face-to-face interviews. Genotyping of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) was carried out by polymerase chain reaction-restriction fragment length polymorphism. For statistical analysis, both univariate and multivariate logistic regression analyses were performed. We also performed stratified analysis to find out the association of X-ray repair cross complementary genes with the risk of breast cancer stratified based on menstrual status. This study revealed that tryptophan allele (R/W-W/W genotype) in X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer (adjusted odds ratio = 1.44, 95% confidence interval = 1.06-1.97, P < .05 for R/W-W/W genotype). Moreover, it was found that tryptophan allele (W/W genotype) at codon 194 of X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer in premenopausal females (crude odds ratio = 1.66, 95% confidence interval = 1.11-2.46, P < .05 for R/W-W/W genotype). The present study did not reveal any significant association of X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer. The present study has explored that X-ray repair cross complementary 1A (Arg194Trp) gene polymorphism is significantly associated with the increased risk of breast cancer in premenopausal females from northeastern region of India which may be beneficial for prognostic purposes.

  12. DNA Repair Mechanism Gene, XRCC1A (Arg194Trp) but not XRCC3 (Thr241Met) Polymorphism Increased the Risk of Breast Cancer in Premenopausal Females: A Case–Control Study in Northeastern Region of India

    PubMed Central

    Ahmed, Jishan; Narain, Kanwar; Mukherjee, Kaustab; Majumdar, Gautam; Chenkual, Saia; Zonunmawia, Jason C.

    2017-01-01

    X-ray repair cross complementary group gene is one of the most studied candidate gene involved in different types of cancers. Studies have shown that X-ray repair cross complementary genes are significantly associated with increased risk of breast cancer in females. Moreover, studies have revealed that X-ray repair cross complementary gene polymorphism significantly varies between and within different ethnic groups globally. The present case–control study was aimed to investigate the association of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer in females from northeastern region of India. The present case–control study includes histopathologically confirmed and newly diagnosed 464 cases with breast cancer and 534 apparently healthy neighborhood community controls. Information on sociodemographic factors and putative risk factors were collected from each study participant by conducting face-to-face interviews. Genotyping of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) was carried out by polymerase chain reaction-restriction fragment length polymorphism. For statistical analysis, both univariate and multivariate logistic regression analyses were performed. We also performed stratified analysis to find out the association of X-ray repair cross complementary genes with the risk of breast cancer stratified based on menstrual status. This study revealed that tryptophan allele (R/W-W/W genotype) in X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer (adjusted odds ratio = 1.44, 95% confidence interval = 1.06-1.97, P < .05 for R/W-W/W genotype). Moreover, it was found that tryptophan allele (W/W genotype) at codon 194 of X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer in premenopausal females (crude odds ratio = 1.66, 95% confidence interval = 1.11-2.46, P < .05 for R/W-W/W genotype). The present study did not reveal any significant association of X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer. The present study has explored that X-ray repair cross complementary 1A (Arg194Trp) gene polymorphism is significantly associated with the increased risk of breast cancer in premenopausal females from northeastern region of India which may be beneficial for prognostic purposes. PMID:29332455

  13. Bayesian model of signal rewiring reveals mechanisms of gene dysregulation in acquired drug resistance in breast cancer

    PubMed Central

    Azad, A. K. M.; Keith, Jonathan M.

    2017-01-01

    Small molecule inhibitors, such as lapatinib, are effective against breast cancer in clinical trials, but tumor cells ultimately acquire resistance to the drug. Maintaining sensitization to drug action is essential for durable growth inhibition. Recently, adaptive reprogramming of signaling circuitry has been identified as a major cause of acquired resistance. We developed a computational framework using a Bayesian statistical approach to model signal rewiring in acquired resistance. We used the p1-model to infer potential aberrant gene-pairs with differential posterior probabilities of appearing in resistant-vs-parental networks. Results were obtained using matched gene expression profiles under resistant and parental conditions. Using two lapatinib-treated ErbB2-positive breast cancer cell-lines: SKBR3 and BT474, our method identified similar dysregulated signaling pathways including EGFR-related pathways as well as other receptor-related pathways, many of which were reported previously as compensatory pathways of EGFR-inhibition via signaling cross-talk. A manual literature survey provided strong evidence that aberrant signaling activities in dysregulated pathways are closely related to acquired resistance in EGFR tyrosine kinase inhibitors. Our approach predicted literature-supported dysregulated pathways complementary to both node-centric (SPIA, DAVID, and GATHER) and edge-centric (ESEA and PAGI) methods. Moreover, by proposing a novel pattern of aberrant signaling called V-structures, we observed that genes were dysregulated in resistant-vs-sensitive conditions when they were involved in the switch of dependencies from targeted to bypass signaling events. A literature survey of some important V-structures suggested they play a role in breast cancer metastasis and/or acquired resistance to EGFR-TKIs, where the mRNA changes of TGFBR2, LEF1 and TP53 in resistant-vs-sensitive conditions were related to the dependency switch from targeted to bypass signaling links. Our results suggest many signaling pathway structures are compromised in acquired resistance, and V-structures of aberrant signaling within/among those pathways may provide further insights into the bypass mechanism of targeted inhibition. PMID:28288164

  14. The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes

    PubMed Central

    Hu, Yongfei; Yang, Xi; Li, Jing; Lv, Na; Liu, Fei; Wu, Jun; Lin, Ivan Y. C.; Wu, Na; Gao, George F.

    2016-01-01

    ABSTRACT Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria. The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens. IMPORTANCE The development of antibiotic resistance threatens our modern medical achievements. The dissemination of antibiotic resistance can be largely attributed to the transfer of bacterial mobile antibiotic resistance genes (ARGs). Revealing the transfer network of these genes in bacteria and the forces driving the gene flow is of great importance for controlling and predicting the emergence of antibiotic resistance in the clinic. Here, by analyzing tens of thousands of bacterial genomes and millions of human and animal gut bacterial genes, we reveal that the transfer of mobile ARGs is mainly controlled by bacterial phylogeny but under ecological constraints. We also found that dozens of ARGs are transferred between the human and animal gut and human pathogens. This work demonstrates the whole profile of mobile ARGs and their transfer network in bacteria and provides further insight into the evolution and spread of antibiotic resistance in nature. PMID:27613679

  15. The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes.

    PubMed

    Hu, Yongfei; Yang, Xi; Li, Jing; Lv, Na; Liu, Fei; Wu, Jun; Lin, Ivan Y C; Wu, Na; Weimer, Bart C; Gao, George F; Liu, Yulan; Zhu, Baoli

    2016-11-15

    Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens. The development of antibiotic resistance threatens our modern medical achievements. The dissemination of antibiotic resistance can be largely attributed to the transfer of bacterial mobile antibiotic resistance genes (ARGs). Revealing the transfer network of these genes in bacteria and the forces driving the gene flow is of great importance for controlling and predicting the emergence of antibiotic resistance in the clinic. Here, by analyzing tens of thousands of bacterial genomes and millions of human and animal gut bacterial genes, we reveal that the transfer of mobile ARGs is mainly controlled by bacterial phylogeny but under ecological constraints. We also found that dozens of ARGs are transferred between the human and animal gut and human pathogens. This work demonstrates the whole profile of mobile ARGs and their transfer network in bacteria and provides further insight into the evolution and spread of antibiotic resistance in nature. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. CAPRRESI: Chimera Assembly by Plasmid Recovery and Restriction Enzyme Site Insertion.

    PubMed

    Santillán, Orlando; Ramírez-Romero, Miguel A; Dávila, Guillermo

    2017-06-25

    Here, we present chimera assembly by plasmid recovery and restriction enzyme site insertion (CAPRRESI). CAPRRESI benefits from many strengths of the original plasmid recovery method and introduces restriction enzyme digestion to ease DNA ligation reactions (required for chimera assembly). For this protocol, users clone wildtype genes into the same plasmid (pUC18 or pUC19). After the in silico selection of amino acid sequence regions where chimeras should be assembled, users obtain all the synonym DNA sequences that encode them. Ad hoc Perl scripts enable users to determine all synonym DNA sequences. After this step, another Perl script searches for restriction enzyme sites on all synonym DNA sequences. This in silico analysis is also performed using the ampicillin resistance gene (ampR) found on pUC18/19 plasmids. Users design oligonucleotides inside synonym regions to disrupt wildtype and ampR genes by PCR. After obtaining and purifying complementary DNA fragments, restriction enzyme digestion is accomplished. Chimera assembly is achieved by ligating appropriate complementary DNA fragments. pUC18/19 vectors are selected for CAPRRESI because they offer technical advantages, such as small size (2,686 base pairs), high copy number, advantageous sequencing reaction features, and commercial availability. The usage of restriction enzymes for chimera assembly eliminates the need for DNA polymerases yielding blunt-ended products. CAPRRESI is a fast and low-cost method for fusing protein-coding genes.

  17. Mechanisms and strategies of plant defense against Botrytis cinerea.

    PubMed

    AbuQamar, Synan; Moustafa, Khaled; Tran, Lam Son

    2017-03-01

    Biotic factors affect plant immune responses and plant resistance to pathogen infections. Despite the considerable progress made over the past two decades in manipulating genes, proteins and their levels from diverse sources, no complete genetic tolerance to environmental stresses has been developed so far in any crops. Plant defense response to pathogens, including Botrytis cinerea, is a complex biological process involving various changes at the biochemical, molecular (i.e. transcriptional) and physiological levels. Once a pathogen is detected, effective plant resistance activates signaling networks through the generation of small signaling molecules and the balance of hormonal signaling pathways to initiate defense mechanisms to the particular pathogen. Recently, studies using Arabidopsis thaliana and crop plants have shown that many genes are involved in plant responses to B. cinerea infection. In this article, we will review our current understanding of mechanisms regulating plant responses to B. cinerea with a particular interest on hormonal regulatory networks involving phytohormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA). We will also highlight some potential gene targets that are promising for improving crop resistance to B. cinerea through genetic engineering and breeding programs. Finally, the role of biological control as a complementary and alternative disease management will be overviewed.

  18. Generation and Analysis of Expressed Sequence Tags (ESTs) from Halophyte Atriplex canescens to Explore Salt-Responsive Related Genes

    PubMed Central

    Li, Jingtao; Sun, Xinhua; Yu, Gang; Jia, Chengguo; Liu, Jinliang; Pan, Hongyu

    2014-01-01

    Little information is available on gene expression profiling of halophyte A. canescens. To elucidate the molecular mechanism for stress tolerance in A. canescens, a full-length complementary DNA library was generated from A. canescens exposed to 400 mM NaCl, and provided 343 high-quality ESTs. In an evaluation of 343 valid EST sequences in the cDNA library, 197 unigenes were assembled, among which 190 unigenes (83.1% ESTs) were identified according to their significant similarities with proteins of known functions. All the 343 EST sequences have been deposited in the dbEST GenBank under accession numbers JZ535802 to JZ536144. According to Arabidopsis MIPS functional category and GO classifications, we identified 193 unigenes of the 311 annotations EST, representing 72 non-redundant unigenes sharing similarities with genes related to the defense response. The sets of ESTs obtained provide a rich genetic resource and 17 up-regulated genes related to salt stress resistance were identified by qRT-PCR. Six of these genes may contribute crucially to earlier and later stage salt stress resistance. Additionally, among the 343 unigenes sequences, 22 simple sequence repeats (SSRs) were also identified contributing to the study of A. canescens resources. PMID:24960361

  19. Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines

    PubMed Central

    Bish, Lawrence T.; Sleeper, Meg M.; Brainard, Benjamin; Cole, Stephen; Russell, Nicholas; Withnall, Elanor; Arndt, Jason; Reynolds, Caryn; Davison, Ellen; Sanmiguel, Julio; Wu, Di; Gao, Guangping; Wilson, James M.; Sweeney, H. Lee

    2011-01-01

    Achieving efficient cardiac gene transfer in a large animal model has proven to be technically challenging. Prior strategies have employed cardio-pulmonary bypass or dual catheterization with the aid of vasodilators to deliver vectors, such as adenovirus, adeno-associated virus or plasmid DNA. While single stranded adeno-associated virus vectors have shown the greatest promise, they suffer from delayed expression, which might be circumvented by using self-complementary vectors. We sought to optimize cardiac gene transfer using a percutaneous transendocardial injection catheter to deliver adeno-associated virus vectors to the canine myocardium. Four vectors were evaluated—single stranded adeno-associated virus 9, self-complementary adeno-associated virus 9, self-complementary adeno-associated virus 8, self-complementary adeno-associated virus 6—so that comparison could be made between single stranded and self complementary vectors as well as among serotypes 9, 8, and 6. We demonstrate that self-complementary adeno-associated virus is superior to single stranded adeno-associated virus and that adeno-associated virus 6 is superior to other serotypes evaluated. Biodistribution studies revealed that vector genome copies were 15 to 4000 times more abundant in the heart than in any other organ for self-complementary adeno-associated virus 6. Percutaneous transendocardial injection of self-complementary adeno-associated virus 6 is a safe, effective method for achieving efficient cardiac gene transfer. PMID:18813281

  20. QTL Mapping and CRISPR/Cas9 Editing to Identify a Drug Resistance Gene in Toxoplasma gondii.

    PubMed

    Shen, Bang; Powell, Robin H; Behnke, Michael S

    2017-06-22

    Scientific knowledge is intrinsically linked to available technologies and methods. This article will present two methods that allowed for the identification and verification of a drug resistance gene in the Apicomplexan parasite Toxoplasma gondii, the method of Quantitative Trait Locus (QTL) mapping using a Whole Genome Sequence (WGS) -based genetic map and the method of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 -based gene editing. The approach of QTL mapping allows one to test if there is a correlation between a genomic region(s) and a phenotype. Two datasets are required to run a QTL scan, a genetic map based on the progeny of a recombinant cross and a quantifiable phenotype assessed in each of the progeny of that cross. These datasets are then formatted to be compatible with R/qtl software that generates a QTL scan to identify significant loci correlated with the phenotype. Although this can greatly narrow the search window of possible candidates, QTLs span regions containing a number of genes from which the causal gene needs to be identified. Having WGS of the progeny was critical to identify the causal drug resistance mutation at the gene level. Once identified, the candidate mutation can be verified by genetic manipulation of drug sensitive parasites. The most facile and efficient method to genetically modify T. gondii is the CRISPR/Cas9 system. This system comprised of just 2 components both encoded on a single plasmid, a single guide RNA (gRNA) containing a 20 bp sequence complementary to the genomic target and the Cas9 endonuclease that generates a double-strand DNA break (DSB) at the target, repair of which allows for insertion or deletion of sequences around the break site. This article provides detailed protocols to use CRISPR/Cas9 based genome editing tools to verify the gene responsible for sinefungin resistance and to construct transgenic parasites.

  1. QTL Mapping and CRISPR/Cas9 Editing to Identify a Drug Resistance Gene in Toxoplasma gondii

    PubMed Central

    Shen, Bang; Powell, Robin H.; Behnke, Michael S.

    2017-01-01

    Scientific knowledge is intrinsically linked to available technologies and methods. This article will present two methods that allowed for the identification and verification of a drug resistance gene in the Apicomplexan parasite Toxoplasma gondii, the method of Quantitative Trait Locus (QTL) mapping using a Whole Genome Sequence (WGS) -based genetic map and the method of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 -based gene editing. The approach of QTL mapping allows one to test if there is a correlation between a genomic region(s) and a phenotype. Two datasets are required to run a QTL scan, a genetic map based on the progeny of a recombinant cross and a quantifiable phenotype assessed in each of the progeny of that cross. These datasets are then formatted to be compatible with R/qtl software that generates a QTL scan to identify significant loci correlated with the phenotype. Although this can greatly narrow the search window of possible candidates, QTLs span regions containing a number of genes from which the causal gene needs to be identified. Having WGS of the progeny was critical to identify the causal drug resistance mutation at the gene level. Once identified, the candidate mutation can be verified by genetic manipulation of drug sensitive parasites. The most facile and efficient method to genetically modify T. gondii is the CRISPR/Cas9 system. This system comprised of just 2 components both encoded on a single plasmid, a single guide RNA (gRNA) containing a 20 bp sequence complementary to the genomic target and the Cas9 endonuclease that generates a double-strand DNA break (DSB) at the target, repair of which allows for insertion or deletion of sequences around the break site. This article provides detailed protocols to use CRISPR/Cas9 based genome editing tools to verify the gene responsible for sinefungin resistance and to construct transgenic parasites. PMID:28671645

  2. A complete high-quality MinION nanopore assembly of an extensively drug-resistant Mycobacterium tuberculosis Beijing lineage strain identifies novel variation in repetitive PE/PPE gene regions.

    PubMed

    Bainomugisa, Arnold; Duarte, Tania; Lavu, Evelyn; Pandey, Sushil; Coulter, Chris; Marais, Ben J; Coin, Lachlan M

    2018-06-15

    A better understanding of the genomic changes that facilitate the emergence and spread of drug-resistant Mycobacterium tuberculosis strains is currently required. Here, we report the use of the MinION nanopore sequencer (Oxford Nanopore Technologies) to sequence and assemble an extensively drug-resistant (XDR) isolate, which is part of a modern Beijing sub-lineage strain, prevalent in Western Province, Papua New Guinea. Using 238-fold coverage obtained from a single flow-cell, de novo assembly of nanopore reads resulted into one contiguous assembly with 99.92 % assembly accuracy. Incorporation of complementary short read sequences (Illumina) as part of consensus error correction resulted in a 4 404 064 bp genome with 99.98 % assembly accuracy. This assembly had an average nucleotide identity of 99.7 % relative to the reference genome, H37Rv. We assembled nearly all GC-rich repetitive PE/PPE family genes (166/168) and identified variants within these genes. With an estimated genotypic error rate of 5.3 % from MinION data, we demonstrated identification of variants to include the conventional drug resistance mutations, and those that contribute to the resistance phenotype (efflux pumps/transporter) and virulence. Reference-based alignment of the assembly allowed detection of deletions and insertions. MinION sequencing provided a fully annotated assembly of a transmissible XDR strain from an endemic setting and showed its utility to provide further understanding of genomic processes within Mycobacterium tuberculosis.

  3. The Inhibition and Resistance Mechanisms of Actinonin, Isolated from Marine Streptomyces sp. NHF165, against Vibrio anguillarum

    PubMed Central

    Yang, Na; Sun, Chaomin

    2016-01-01

    Vibrio sp. is the most serious pathogen in marine aquaculture, and the development of anti-Vibrio agents is urgently needed. However, it is extreme lack of high-throughput screening (HTS) model for searching anti-Vibrio compounds. Here, we established a protein-based HTS screening model to identify agents targeting peptide deformylase (PDF) of Vibrio anguillarum. To find potential anti-Vibrio compounds, crude extracts derived from marine actinomycetes were applied for screening with this model. Notably, crude extract of strain Streptomyces sp. NHF165 inhibited dramatically both on V. anguillarum PDF (VaPDF) activity and V. anguillarum cell growth. And actinonin was further identified as the functional component. Anti-VaPDF and anti-V. anguillarum activities of actinonin were dose-dependent, and the IC50 values were 6.94 and 2.85 μM, respectively. To understand the resistance of V. anguillarum against actinonin, spontaneous V. anguillarum mutants with resistance against actinonin were isolated. Surprisingly, for the resistant strains, the region between 774 and 852 base pairs was found to be absent in the gene folD which produces 10-formyl-tetrahydrofolate, a donor of N-formyl to Met-tRNAfmet. When compared to the wild type strain, ΔfolD mutant showed eight times of minimum inhibition concentration on actinonin, however, the folD complementary strain could not grow on the medium supplemented with actinonin, which suggested that folD gene mutation was mainly responsible for the actinonin resistance. To our knowledge, this is the first report showing that marine derived Streptomyces sp. could produce actinonin with anti-VaPDF activity and the resistance against actinonin by V. anguillarum is mediated by mutation in folD gene. PMID:27679625

  4. Voltage controlled Bi-mode resistive switching effects in MnO2 based devices

    NASA Astrophysics Data System (ADS)

    Hu, P.; Wu, S. X.; Wang, G. L.; Li, H. W.; Li, D.; Li, S. W.

    2018-01-01

    In this paper, the voltage induced bi-mode resistive switching behavior of an MnO2 thin film based device was studied. The device showed prominent bipolar resistive switching behavior with good reproducibility and high endurance. In addition, complementary resistive switching characteristics can be observed by extending the voltage bias during voltage sweep operations. The electrical measurement data and fitting results indicate that the oxygen vacancies act as defects to form a conductive path, which is connective or disrupted to realize a low resistive state or a high resistive state. Changing the sweep voltage can tune the oxygen vacancies distribution, which will achieve complementary resistive switching.

  5. Reconfigurable Complementary Monolayer MoTe2 Field-Effect Transistors for Integrated Circuits.

    PubMed

    Larentis, Stefano; Fallahazad, Babak; Movva, Hema C P; Kim, Kyounghwan; Rai, Amritesh; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K; Tutuc, Emanuel

    2017-05-23

    Transition metal dichalcogenides are of interest for next generation switches, but the lack of low resistance electron and hole contacts in the same material has hindered the development of complementary field-effect transistors and circuits. We demonstrate an air-stable, reconfigurable, complementary monolayer MoTe 2 field-effect transistor encapsulated in hexagonal boron nitride, using electrostatically doped contacts. The introduction of a multigate design with prepatterned bottom contacts allows us to independently achieve low contact resistance and threshold voltage tuning, while also decoupling the Schottky contacts and channel gating. We illustrate a complementary inverter and a p-i-n diode as potential applications.

  6. Inhibition of adenovirus 5 replication in COS-1 cells by antisense RNAs against the viral E1a region.

    PubMed

    Miroshnichenko, O I; Ponomareva, T I; Tikchonenko, T I

    1989-12-07

    To study the effect of antisense E1a RNA (asRNA) on adenovirus development, two types of adenovirus 5 E1a antisense constructs have been engineered. One was complementary to the viral DNA region [nucleotide (nt) positions 500-720] regulated by the metallothionein-I promoter, and the other was complementary to the DNA regions (nt positions 630-1570) under control of the long terminal repeat Moloney mouse leukosis virus promoter. Both asRNA constructs were cloned into a plasmid containing the simian virus 40 origin of replication, the gene controlling geneticin (G418) resistance (G418R), and other regulatory elements. The COS-1 cells, which contained up to 100 copies of the engineered plasmids, synthesized antiviral asRNAs, which provided 71 to over 95% inhibition of adenoviral replication, in comparison to the control cells not synthesizing asRNAs.

  7. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species

    PubMed Central

    Koch, Aline; Kumar, Neelendra; Weber, Lennart; Keller, Harald; Imani, Jafargholi; Kogel, Karl-Heinz

    2013-01-01

    Head blight, which is caused by mycotoxin-producing fungi of the genus Fusarium, is an economically important crop disease. We assessed the potential of host-induced gene silencing targeting the fungal cytochrome P450 lanosterol C-14α-demethylase (CYP51) genes, which are essential for ergosterol biosynthesis, to restrict fungal infection. In axenic cultures of Fusarium graminearum, in vitro feeding of CYP3RNA, a 791-nt double-stranded (ds)RNA complementary to CYP51A, CYP51B, and CYP51C, resulted in growth inhibition [half-maximum growth inhibition (IC50) = 1.2 nM] as well as altered fungal morphology, similar to that observed after treatment with the azole fungicide tebuconazole, for which the CYP51 enzyme is a target. Expression of the same dsRNA in Arabidopsis and barley rendered susceptible plants highly resistant to fungal infection. Microscopic analysis revealed that mycelium formation on CYP3RNA-expressing leaves was restricted to the inoculation sites, and that inoculated barley caryopses were virtually free of fungal hyphae. This inhibition of fungal growth correlated with in planta production of siRNAs corresponding to the targeted CYP51 sequences, as well as highly efficient silencing of the fungal CYP51 genes. The high efficiency of fungal inhibition suggests that host-induced gene-silencing targeting of the CYP51 genes is an alternative to chemical treatments for the control of devastating fungal diseases. PMID:24218613

  8. Deciphering Multifactorial Resistance Phenotypes in Acinetobacter baumannii by Genomics and Targeted Label-free Proteomics.

    PubMed

    Cecchini, Tiphaine; Yoon, Eun-Jeong; Charretier, Yannick; Bardet, Chloé; Beaulieu, Corinne; Lacoux, Xavier; Docquier, Jean-Denis; Lemoine, Jerome; Courvalin, Patrice; Grillot-Courvalin, Catherine; Charrier, Jean-Philippe

    2018-03-01

    Resistance to β-lactams in Acinetobacter baumannii involves various mechanisms. To decipher them, whole genome sequencing (WGS) and real-time quantitative polymerase chain reaction (RT-qPCR) were complemented by mass spectrometry (MS) in selected reaction monitoring mode (SRM) in 39 clinical isolates. The targeted label-free proteomic approach enabled, in one hour and using a single method, the quantitative detection of 16 proteins associated with antibiotic resistance: eight acquired β-lactamases ( i.e. GES, NDM-1, OXA-23, OXA-24, OXA-58, PER, TEM-1, and VEB), two resident β-lactamases ( i.e. ADC and OXA-51-like) and six components of the two major efflux systems ( i.e. AdeABC and AdeIJK). Results were normalized using "bacterial quantotypic peptides," i.e. peptide markers of the bacterial quantity, to obtain precise protein quantitation (on average 8.93% coefficient of variation for three biological replicates). This allowed to correlate the levels of resistance to β-lactam with those of the production of acquired as well as resident β-lactamases or of efflux systems. SRM detected enhanced ADC or OXA-51-like production and absence or increased efflux pump production. Precise protein quantitation was particularly valuable to detect resistance mechanisms mediated by regulated genes or by overexpression of chromosomal genes. Combination of WGS and MS, two orthogonal and complementary techniques, allows thereby interpretation of the resistance phenotypes at the molecular level. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Mate choice for major histocompatibility complex complementarity in a strictly monogamous bird, the grey partridge (Perdix perdix).

    PubMed

    Rymešová, Dana; Králová, Tereza; Promerová, Marta; Bryja, Josef; Tomášek, Oldřich; Svobodová, Jana; Šmilauer, Petr; Šálek, Miroslav; Albrecht, Tomáš

    2017-01-01

    Sexual selection has been hypothesised as favouring mate choice resulting in production of viable offspring with genotypes providing high pathogen resistance. Specific pathogen recognition is mediated by genes of the major histocompatibility complex (MHC) encoding proteins fundamental for adaptive immune response in jawed vertebrates. MHC genes may also play a role in odour-based individual recognition and mate choice, aimed at avoiding inbreeding. MHC genes are known to be involved in mate choice in a number of species, with 'good genes' (absolute criteria) and 'complementary genes' (self-referential criteria) being used to explain MHC-based mating. Here, we focus on the effect of morphological traits and variation and genetic similarity between individuals in MHC class IIB (MHCIIB) exon 2 on mating in a free-living population of a monogamous bird, the grey partridge. We found no evidence for absolute mate choice criteria as regards grey partridge MHCIIB genotypes, i.e., number and occurrence of amino acid variants, though red chroma of the spot behind eyes was positively associated with male pairing success. On the other hand, mate choice at MHCIIB was based on relative criteria as females preferentially paired with more dissimilar males having a lower number of shared amino acid variants. This observation supports the 'inbreeding avoidance' and 'complementary genes' hypotheses. Our study provides one of the first pieces of evidence for MHC-based mate choice for genetic complementarity in a strictly monogamous bird. The statistical approach employed can be recommended for testing mating preferences in cases where availability of potential mates (recorded with an appropriate method such as radio-tracking) shows considerable temporal variation. Additional genetic analyses using neutral markers may detect whether MHC-based mate choice for complementarity emerges as a by-product of general inbreeding avoidance in grey partridges.

  10. Silencing Genes in the Heart.

    PubMed

    Fechner, Henry; Vetter, Roland; Kurreck, Jens; Poller, Wolfgang

    2017-01-01

    Silencing of cardiac genes by RNA interference (RNAi) has developed into a powerful new method to treat cardiac diseases. Small interfering (si)RNAs are the inducers of RNAi, but cultured primary cardiomyocytes and heart are highly resistant to siRNA transfection. This can be overcome by delivery of small hairpin (sh)RNAs or artificial microRNA (amiRNAs) by cardiotropic adeno-associated virus (AAV) vectors. Here we describe as example of the silencing of a cardiac gene, the generation and cloning of shRNA, and amiRNAs directed against the cardiac protein phospholamban. We further describe the generation of AAV shuttle plasmids with self complementary vector genomes, the production of AAV vectors in roller bottles, and their purification via iodixanol gradient centrifugation and concentration with filter systems. Finally we describe the preparation of primary neonatal rat cardiomyocytes (PNRC), the transduction of PNRC with AAV vectors, and the maintenance of the transduced cell culture.

  11. A nonlinear HP-type complementary resistive switch

    NASA Astrophysics Data System (ADS)

    Radtke, Paul K.; Schimansky-Geier, Lutz

    2016-05-01

    Resistive Switching (RS) is the change in resistance of a dielectric under the influence of an external current or electric field. This change is non-volatile, and the basis of both the memristor and resistive random access memory. In the latter, high integration densities favor the anti-serial combination of two RS-elements to a single cell, termed the complementary resistive switch (CRS). Motivated by the irregular shape of the filament protruding into the device, we suggest a nonlinearity in the resistance-interpolation function, characterized by a single parameter p. Thereby the original HP-memristor is expanded upon. We numerically simulate and analytically solve this model. Further, the nonlinearity allows for its application to the CRS.

  12. Multiple garlic (Allium sativum L.) microRNAs regulate the immunity against the basal rot fungus Fusarium oxysporum f. sp. Cepae.

    PubMed

    Chand, Subodh Kumar; Nanda, Satyabrata; Mishra, Rukmini; Joshi, Raj Kumar

    2017-04-01

    The basal plate rot fungus, Fusarium oxysporum f. sp. cepae (FOC), is the most devastating pathogen posing a serious threat to garlic (Allium sativum L.) production worldwide. MicroRNAs (miRNAs) are key modulators of gene expression related to development and defense responses in eukaryotes. However, the miRNA species associated with garlic immunity against FOC are yet to be explored. In the present study, a small RNA library developed from FOC infected resistant garlic line was sequenced to identify immune responsive miRNAs. Forty-five miRNAs representing 39 conserved and six novel sequences responsive to FOC were detected. qRT-PCR analyses further classified them into three classes based on their expression patterns in susceptible line CBT-As11 and in the resistant line CBT-As153. North-blot analyses of six selective miRNAs confirmed the qRT-PCR results. Expression studies on a selective set of target genes revealed a negative correlation with the complementary miRNAs. Furthermore, transgenic garlic plant overexpresing miR164a, miR168a and miR393 showed enhanced resistance to FOC, as revealed by decreased fungal growth and up-regulated expression of defense-responsive genes. These results indicate that multiple miRNAs are involved in garlic immunity against FOC and that the overexpression of miR164a, miR168a and miR393 can augment garlic resistance to Fusarium basal rot infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors for functional gene analysis.

    PubMed

    Weber, Kristoffer; Bartsch, Udo; Stocking, Carol; Fehse, Boris

    2008-04-01

    Functional gene analysis requires the possibility of overexpression, as well as downregulation of one, or ideally several, potentially interacting genes. Lentiviral vectors are well suited for this purpose as they ensure stable expression of complementary DNAs (cDNAs), as well as short-hairpin RNAs (shRNAs), and can efficiently transduce a wide spectrum of cell targets when packaged within the coat proteins of other viruses. Here we introduce a multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors designed according to the "building blocks" principle. Using a wide spectrum of different fluorescent markers, including drug-selectable enhanced green fluorescent protein (eGFP)- and dTomato-blasticidin-S resistance fusion proteins, LeGO vectors allow simultaneous analysis of multiple genes and shRNAs of interest within single, easily identifiable cells. Furthermore, each functional module is flanked by unique cloning sites, ensuring flexibility and individual optimization. The efficacy of these vectors for analyzing multiple genes in a single cell was demonstrated in several different cell types, including hematopoietic, endothelial, and neural stem and progenitor cells, as well as hepatocytes. LeGO vectors thus represent a valuable tool for investigating gene networks using conditional ectopic expression and knock-down approaches simultaneously.

  14. Suppression of HLA Expression by Lentivirus-mediated Gene Transfer of siRNA Cassettes and In Vivo Chemoselection to Enhance Hematopoietic Stem Cell Transplantation

    PubMed Central

    Hacke, Katrin; Falahati, Rustom; Flebbe-Rehwaldt, Linda; Kasahara, Noriyuki; Gaensler, Karin M. L.

    2010-01-01

    Current approaches for hematopoietic stem cell (HSC) and organ transplantation are limited by donor and host-mediated immune responses to allo-antigens. Application of these therapies is limited by the toxicity of preparative and post-transplant immunosuppressive regimens and a shortage of appropriate HLA-matched donors. We have been exploring two complementary approaches for genetically modifying donor cells that achieve long-term suppression of cellular proteins that elicit host immune responses to mismatched donor antigens, and provide a selective advantage to genetically engineered donor cells after transplantation. The first approach is based on recent advances that make feasible targeted down-regulation of HLA expression. Suppression of HLA expression could help to overcome limitations imposed by extensive HLA polymorphisms that restrict the availability of suitable donors. Accordingly, we have recently investigated whether knockdown of HLA by RNA interference (RNAi) enables allogeneic cells to evade immune recognition. For efficient and stable delivery of short hairpin-type RNAi constructs (shRNA), we employed lentivirus-based gene transfer vectors that integrate into genomic DNA, thereby permanently modifying transduced donor cells. Lentivirus-mediated delivery of shRNA targeting pan-Class I and allele-specific HLA achieved efficient and dose-dependent reduction in surface expression of HLA in human cells, and enhanced resistance to allo-reactive T lymphocyte-mediated cytotoxicity, while avoiding non-MHC restricted killing. Complementary strategies for genetic engineering of HSC that would provide a selective advantage for transplanted donor cells and enable successful engraftment with less toxic preparative and immunosuppressive regimens would increase the numbers of individuals to whom HLA suppression therapy could be offered. Our second strategy is to provide a mechanism for in vivo selection of genetically modified HSC and other donor cells. We have uniquely combined transplantation during the neonatal period, when tolerance may be more readily achieved, with a positive selection strategy for in vivo amplification of drug-resistant donor HSC. This model system enables the evaluation of mechanisms of tolerance induction to neo-antigens, and allogeneic stem cells during immune ontogeny. HSC are transduced ex vivo by lentivirus-mediated gene transfer of P140K-O6-methylguanine-methyltransferase (MGMTP140K). The MGMTP140K DNA repair enzyme confers resistance to benzylguanine, an inhibitor of endogenous MGMT, and to chloroethylating agents such as BCNU. In vivo chemoselection enables enrichment of donor cells at the stem cell level. Using complementary approaches of in vivo chemoselection and RNAi-induced silencing of HLA expression may enable the generation of histocompatibility-enhanced, and eventually, perhaps “universally” compatible cellular grafts. PMID:19048410

  15. Parasitic resistive switching uncovered from complementary resistive switching in single active-layer oxide memory device

    NASA Astrophysics Data System (ADS)

    Zhu, Lisha; Hu, Wei; Gao, Chao; Guo, Yongcai

    2017-12-01

    This paper reports the reversible transition processes between the bipolar and complementary resistive switching (CRS) characteristics on the binary metal-oxide resistive memory devices of Pt/HfO x /TiN and Pt/TaO x /TiN by applying the appropriate bias voltages. More interestingly, by controlling the amplitude of the negative bias, the parasitic resistive switching effect exhibiting repeatable switching behavior is uncovered from the CRS behavior. The electrical observation of the parasitic resistive switching effect can be explained by the controlled size of the conductive filament. This work confirms the transformation and interrelationship among the bipolar, parasitic, and CRS effects, and thus provides new insight into the understanding of the physical mechanism of the binary metal-oxide resistive switching memory devices.

  16. Identification of RFLP and NBS/PK profiling markers for disease resistance loci in genetic maps of oats.

    PubMed

    Sanz, M J; Loarce, Y; Fominaya, A; Vossen, J H; Ferrer, E

    2013-01-01

    Two of the domains most widely shared among R genes are the nucleotide binding site (NBS) and protein kinase (PK) domains. The present study describes and maps a number of new oat resistance gene analogues (RGAs) with two purposes in mind: (1) to identify genetic regions that contain R genes and (2) to determine whether RGAs can be used as molecular markers for qualitative loci and for QTLs affording resistance to Puccinia coronata. Such genes have been mapped in the diploid A. strigosa × A. wiestii (Asw map) and the hexaploid MN841801-1 × Noble-2 (MN map). Genomic and cDNA NBS-RGA probes from oat, barley and wheat were used to produce RFLPs and to obtain markers by motif-directed profiling based on the NBS (NBS profiling) and PK (PK profiling) domains. The efficiency of primers used in NBS/PK profiling to amplify RGA fragments was assessed by sequencing individual marker bands derived from genomic and cDNA fragments. The positions of 184 markers were identified in the Asw map, while those for 99 were identified in the MN map. Large numbers of NBS and PK profiling markers were found in clusters across different linkage groups, with the PK profiling markers more evenly distributed. The location of markers throughout the genetic maps and the composition of marker clusters indicate that NBS- and PK-based markers cover partly complementary regions of oat genomes. Markers of the different classes obtained were found associated with the two resistance loci, PcA and R-284B-2, mapped on Asw, and with five out of eight QTLs for partial resistance in the MN map. 53 RGA-RFLPs and 187 NBS/PK profiling markers were also mapped on the hexaploid map A. byzantina cv. Kanota × A. sativa cv. Ogle. Significant co-localization was seen between the RGA markers in the KO map and other markers closely linked to resistance loci, such as those for P. coronata and barley yellow dwarf virus (Bydv) that were previously mapped in other segregating populations.

  17. Tools for surveillance of anti-malarial drug resistance: an assessment of the current landscape.

    PubMed

    Nsanzabana, Christian; Djalle, Djibrine; Guérin, Philippe J; Ménard, Didier; González, Iveth J

    2018-02-08

    To limit the spread and impact of anti-malarial drug resistance and react accordingly, surveillance systems able to detect and track in real-time its emergence and spread need to be strengthened or in some places established. Currently, surveillance of anti-malarial drug resistance is done by any of three approaches: (1) in vivo studies to assess the efficacy of drugs in patients; (2) in vitro/ex vivo studies to evaluate parasite susceptibility to the drugs; and/or (3) molecular assays to detect validated gene mutations and/or gene copy number changes that are associated with drug resistance. These methods are complementary, as they evaluate different aspects of resistance; however, standardization of methods, especially for in vitro/ex vivo and molecular techniques, is lacking. The World Health Organization has developed a standard protocol for evaluating the efficacy of anti-malarial drugs, which is used by National Malaria Control Programmes to conduct their therapeutic efficacy studies. Regional networks, such as the East African Network for Monitoring Antimalarial Treatment and the Amazon Network for the Surveillance of Antimalarial Drug Resistance, have been set up to strengthen regional capacities for monitoring anti-malarial drug resistance. The Worldwide Antimalarial Resistance Network has been established to collate and provide global spatial and temporal trends information on the efficacy of anti-malarial drugs and resistance. While exchange of information across endemic countries is essential for monitoring anti-malarial resistance, sustainable funding for the surveillance and networking activities remains challenging. The technology landscape for molecular assays is progressing quite rapidly, and easy-to-use and affordable new techniques are becoming available. They also offer the advantage of high throughput analysis from a simple blood spots obtained from a finger prick. New technologies combined with the strengthening of national reference laboratories in malaria-endemic countries through standardized protocols and training plus the availability of a proficiency testing programme, would contribute to the improvement and sustainability of anti-malarial resistance surveillance networks worldwide.

  18. Comprehensive profiling of DNA repair defects in breast cancer identifies a novel class of endocrine therapy resistance drivers.

    PubMed

    Anurag, Meenakshi; Punturi, Nindo; Hoog, Jeremy; Bainbridge, Matthew N; Ellis, Matthew J; Haricharan, Svasti

    2018-05-23

    This study was undertaken to conduct a comprehensive investigation of the role of DNA damage repair (DDR) defects in poor outcome ER+ disease. Expression and mutational status of DDR genes in ER+ breast tumors were correlated with proliferative response in neoadjuvant aromatase inhibitor therapy trials (discovery data set), with outcomes in METABRIC, TCGA and Loi data sets (validation data sets), and in patient derived xenografts. A causal relationship between candidate DDR genes and endocrine treatment response, and the underlying mechanism, was then tested in ER+ breast cancer cell lines. Correlations between loss of expression of three genes: CETN2 (p<0.001) and ERCC1 (p=0.01) from the nucleotide excision repair (NER) and NEIL2 (p=0.04) from the base excision repair (BER) pathways were associated with endocrine treatment resistance in discovery data sets, and subsequently validated in independent patient cohorts. Complementary mutation analysis supported associations between mutations in NER and BER pathways and reduced endocrine treatment response. A causal role for CETN2, NEIL2 and ERCC1 loss in intrinsic endocrine resistance was experimentally validated in ER+ breast cancer cell lines, and in ER+ patient-derived xenograft models. Loss of CETN2, NEIL2 or ERCC1 induced endocrine treatment response by dysregulating G1/S transition, and therefore, increased sensitivity to CDK4/6 inhibitors. A combined DDR signature score was developed that predicted poor outcome in multiple patient cohorts. This report identifies DDR defects as a new class of endocrine treatment resistance drivers and indicates new avenues for predicting efficacy of CDK4/6 inhibition in the adjuvant treatment setting. Copyright ©2018, American Association for Cancer Research.

  19. Acetylcholinesterases of blood-feeding flies and ticks.

    PubMed

    Temeyer, Kevin B; Tuckow, Alexander P; Brake, Danett K; Li, Andrew Y; Pérez de León, Adalberto A

    2013-03-25

    Acetylcholinesterase (AChE) is the biochemical target of organophosphate (OP) and carbamate pesticides for invertebrates, vertebrate nerve agents, and AChE inhibitors used to reduce effects of Alzheimer's disease. Organophosphate pesticides (OPs) are widely used to control blood-feeding arthropods, including biting flies and ticks. However, resistance to OPs in pests affecting animal and human health has compromised control efficacy. OP resistance often results from mutations producing an OP-insensitive AChE. Our studies have demonstrated production of OP-insensitive AChEs in biting flies and ticks. Complementary DNA (cDNA) sequences encoding AChEs were obtained for the horn fly, stable fly, sand fly, and the southern cattle tick. The availability of cDNA sequences enables the identification of mutations, expression and characterization of recombinant proteins, gene silencing for functional studies, as well as in vitro screening of novel inhibitors. The southern cattle tick expresses at least three different genes encoding AChE in their synganglion, i.e. brain. Gene amplification for each of the three known cattle tick AChE genes and expression of multiple alleles for each gene may reduce fitness cost associated with OP-resistance. AChE hydrolyzes the neurotransmitter, acetylcholine, but may have additional roles in physiology and development. The three cattle tick AChEs possess significantly different biochemical properties, and are expressed in neural and non-neural tissues, which suggest separation of structure and function. The remarkable complexity of AChEs in ticks suggested by combining genomic data from Ixodes scapularis with our genetic and biochemical data from Rhipicephalus microplus is suggestive of previously unknown gene duplication and diversification. Comparative studies between invertebrate and vertebrate AChEs could enhance our understanding of structure-activity relationships. Research with ticks as a model system offers the opportunity to elucidate structure-activity relationships for AChE that are important for advances in targeted pest control, as well as potential applications for medicine and biosecurity. Published by Elsevier Ireland Ltd.

  20. Temperature induced complementary switching in titanium oxide resistive random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, D., E-mail: dpanda@nist.edu; Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan; Simanjuntak, F. M.

    2016-07-15

    On the way towards high memory density and computer performance, a considerable development in energy efficiency represents the foremost aspiration in future information technology. Complementary resistive switch consists of two antiserial resistive switching memory (RRAM) elements and allows for the construction of large passive crossbar arrays by solving the sneak path problem in combination with a drastic reduction of the power consumption. Here we present a titanium oxide based complementary RRAM (CRRAM) device with Pt top and TiN bottom electrode. A subsequent post metal annealing at 400°C induces CRRAM. Forming voltage of 4.3 V is required for this device tomore » initiate switching process. The same device also exhibiting bipolar switching at lower compliance current, Ic <50 μA. The CRRAM device have high reliabilities. Formation of intermediate titanium oxi-nitride layer is confirmed from the cross-sectional HRTEM analysis. The origin of complementary switching mechanism have been discussed with AES, HRTEM analysis and schematic diagram. This paper provides valuable data along with analysis on the origin of CRRAM for the application in nanoscale devices.« less

  1. Illumina whole-genome complementary DNA-mediated annealing, selection, extension and ligation platform: assessing its performance in formalin-fixed, paraffin-embedded samples and identifying invasion pattern-related genes in oral squamous cell carcinoma.

    PubMed

    Loudig, Olivier; Brandwein-Gensler, Margaret; Kim, Ryung S; Lin, Juan; Isayeva, Tatyana; Liu, Christina; Segall, Jeffrey E; Kenny, Paraic A; Prystowsky, Michael B

    2011-12-01

    High-throughput gene expression profiling from formalin-fixed, paraffin-embedded tissues has become a reality, and several methods are now commercially available. The Illumina whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay (Illumina, Inc) is a full-transcriptome version of the original 512-gene complementary DNA-mediated annealing, selection, extension and ligation assay, allowing high-throughput profiling of 24,526 annotated genes from degraded and formalin-fixed, paraffin-embedded RNA. This assay has the potential to allow identification of novel gene signatures associated with clinical outcome using banked archival pathology specimen resources. We tested the reproducibility of the whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay and its sensitivity for detecting differentially expressed genes in RNA extracted from matched fresh and formalin-fixed, paraffin-embedded cells, after 1 and 13 months of storage, using the human breast cell lines MCF7 and MCF10A. Then, using tumor worst pattern of invasion as a classifier, 1 component of the "risk model," we selected 12 formalin-fixed, paraffin-embedded oral squamous cell carcinomas for whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay analysis. We profiled 5 tumors with nonaggressive, nondispersed pattern of invasion, and 7 tumors with aggressive dispersed pattern of invasion and satellites scattered at least 1 mm apart. To minimize variability, the formalin-fixed, paraffin-embedded specimens were prepared from snap-frozen tissues, and RNA was obtained within 24 hours of fixation. One hundred four down-regulated genes and 72 up-regulated genes in tumors with aggressive dispersed pattern of invasion were identified. We performed quantitative reverse transcriptase polymerase chain reaction validation of 4 genes using Taqman assays and in situ protein detection of 1 gene by immunohistochemistry. Functional cluster analysis of genes up-regulated in tumors with aggressive pattern of invasion suggests presence of genes involved in cellular cytoarchitecture, some of which already associated with tumor invasion. Identification of these genes provides biologic rationale for our histologic classification, with regard to tumor invasion, and demonstrates that the whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay is a powerful assay for profiling degraded RNA from archived specimens when combined with quantitative reverse transcriptase polymerase chain reaction validation. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Deletion of HAPS_2096 Increases Sensitivity to Cecropin B in Haemophilus parasuis.

    PubMed

    Chen, Fanjie; Hu, Han; Li, Zhonghua; Huang, Jiacheng; Cai, Xuwang; Wang, Chunmei; He, Qigai; Cao, Jiyue

    2015-01-01

    Cecropin B (CB) is a very effective natural antimicrobial peptide that has shown great potential for future antimicrobial drug development. HAPS_2096 is a Haemophilus parasuis gene that encodes the periplasmic substrate-binding protein of an ATP-binding cassette-type amino acid transporter. In this research, we constructed and verified an HAPS_2096 deletion mutant and a complementary HAPS_2096 mutant of H. parasuis JS0135. A bactericidal assay revealed that the HAPS_2096 deletion mutant was significantly more sensitive than the wild-type strain to 0.25-0.5 µg/ml CB. However, the gene complementation alleviated the CB sensitivity of the mutant. Immunoelectron microscopy observation following a 30-min treatment with a sublethal concentration of CB (0.25 μg/ml) revealed more extensive morphological damage in the mutant strain than in the wild-type strain. Hence, our results suggest that the HAPS_2096 gene contributes to H. parasuis resistance to CB. © 2015 S. Karger AG, Basel.

  3. Relationship between iris constitution analysis and TNF-alpha gene polymorphism in hypertensives.

    PubMed

    Yoo, Chun-Sang; Hwang, Woo-Jun; Hong, Seung-Heon; Lee, Hye-Jung; Jeong, Hyun-Ja; Kim, Su-Jin; Kim, Hyung-Min; Um, Jae-Young

    2007-01-01

    Iridology is a complementary and alternative medicine that involves the diagnosis of medical conditions by noting irregularities of the pigmentation in the iris. Iris constitution has a strong hereditary component. Tumor necrosis factor-alpha (TNFalpha), a pleiotropic cytokine, has been implicated in many pathological processes including hypertension. In this paper, the relationship between iris constitution and TNFalpha gene polymorphism in those with hypertension is investigated. Eighty seven hypertensive individuals and 79 controls were classified according to iris constitution and the TNFalpha genotype of each individual determined. Compared to the controls, the frequency of the TNFalpha GA heterozygote was lower in the hypertensive group, although the statistical significance was marginal (p = 0.08). This result implies an association with resistance to the disease. In addition, the frequency of the cardio-renal connective tissue weakness type was significantly higher in the hypertensive group with the TNFalpha GG genotype, as compared to the controls (p = 0.001). An association is demonstrated among TNFalpha gene polymorphism, Koreans with hypertension, and iris constitution.

  4. Role of MicroRNA-1 in Human Cancer and Its Therapeutic Potentials

    PubMed Central

    Han, Chao; Yu, Zujiang; Duan, Zhenfeng; Kan, Quancheng

    2014-01-01

    While the mechanisms of human cancer development are not fully understood, evidence of microRNA (miRNA, miR) dysregulation has been reported in many human diseases, including cancer. miRs are small noncoding RNA molecules that regulate posttranscriptional gene expression by binding to complementary sequences in the specific region of gene mRNAs, resulting in downregulation of gene expression. Not only are certain miRs consistently dysregulated across many cancers, but they also play critical roles in many aspects of cell growth, proliferation, metastasis, apoptosis, and drug resistance. Recent studies from our group and others revealed that miR-1 is frequently downregulated in various types of cancer. Through targeting multiple oncogenes and oncogenic pathways, miR-1 has been demonstrated to be a tumor suppressor gene that represses cancer cell proliferation and metastasis and promotes apoptosis by ectopic expression. In this review, we highlight recent findings on the aberrant expression and functional significance of miR-1 in human cancers and emphasize its significant values for therapeutic potentials. PMID:24949449

  5. Oxygen-ion-migration-modulated bipolar resistive switching and complementary resistive switching in tungsten/indium tin oxide/gold memory device

    NASA Astrophysics Data System (ADS)

    Wu, Xinghui; Zhang, Qiuhui; Cui, Nana; Xu, Weiwei; Wang, Kefu; Jiang, Wei; Xu, Qixing

    2018-06-01

    In this paper, we report our investigation of room-temperature-fabricated tungsten/indium tin oxide/gold (W/ITO/Au) resistive random access memory (RRAM), which exhibits asymmetric bipolar resistive switching (BRS) behavior. The device displays good write/erase endurance and data retention properties. The device shows complementary resistive switching (CRS) characteristics after controlling the compliance current. A WO x layer electrically formed at the W/ITO in the forming process. Mobile oxygen ions within ITO migrate toward the electrode/ITO interface and produce a semiconductor-like layer that acts as a free-carrier barrier. The CRS characteristic here can be elucidated in light of the evolution of an asymmetric free-carrier blocking layer at the electrode/ITO interface.

  6. Virulence gene typing of methicillin-resistant Staphylococcus aureus as a complement in epidemiological typing.

    PubMed

    Nowrouzian, Forough L; Karami, Nahid; Welinder-Olsson, Christina; Ahrén, Christina

    2013-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has widely spread to all parts of the world. For surveillance and effective infection control molecular typing is required. We have evaluated the utility of virulence gene determination as a complementary tool for epidemiological typing of MRSA in relation to spa-typing and pulsed-field gel electrophoresis (PFGE). We assessed 63 community-acquired MRSA (CA-MRSA) isolates detected in the West part of Sweden for 30 virulence factor genes (VF) and agr allele variations by serial polymerase chain reaction (PCR) assays. These isolates belonged to sequence types (ST) 8, 80, 45 and 30 as classified by multilocus sequence typing. The isolates in each spa-type and PFGE-type were examined over an extended time-period and constituted a varying number of PFGE-subtypes (5-14) and spa-types (3-11) within four major PFGE types. Each ST had a unique VF profile. For isolates within a major PFGE type showing high diversity both in PFGE subtypes and spa the VF profile varied as well in contrast to those with low diversity where no alterations were seen. Thus, the accuracy of each typing method does not only vary by the method per se but is rather dependent on the genetic repertoire of the typed strains and genes evaluated. For strains demonstrating high diversity VF typing may be a useful complement in the epidemiological investigations, and may highlight the accurate discriminatory power of spa or PFGE typing. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet's principle

    NASA Astrophysics Data System (ADS)

    Nakata, Yosuke; Urade, Yoshiro; Nakanishi, Toshihiro; Kitano, Masao

    2013-11-01

    We investigate theoretically electromagnetic plane-wave scattering by self-complementary metasurfaces. By using Babinet's principle extended to metasurfaces with resistive elements, we show that the frequency-independent transmission and reflection are realized for normal incidence of a circularly polarized plane wave onto a self-complementary metasurface, even if there is diffraction. Next, we consider two special classes of self-complementary metasurfaces. We show that self-complementary metasurfaces with rotational symmetry can act as coherent perfect absorbers, and those with translational symmetry compatible with their self-complementarity can split the incident power equally, even for oblique incidences.

  8. A review on current status of antiviral siRNA.

    PubMed

    Qureshi, Abid; Tantray, Vaqar Gani; Kirmani, Altaf Rehman; Ahangar, Abdul Ghani

    2018-04-15

    Viral diseases like influenza, AIDS, hepatitis, and Ebola cause severe epidemics worldwide. Along with their resistant strains, new pathogenic viruses continue to be discovered so creating an ongoing need for new antiviral treatments. RNA interference is a cellular gene-silencing phenomenon in which sequence-specific degradation of target mRNA is achieved by means of complementary short interfering RNA (siRNA) molecules. Short interfering RNA technology affords a potential tractable strategy to combat viral pathogenesis because siRNAs are specific, easy to design, and can be directed against multiple strains of a virus by targeting their conserved gene regions. In this review, we briefly summarize the current status of siRNA therapy for representative examples from different virus families. In addition, other aspects like their design, delivery, medical significance, bioinformatics resources, and limitations are also discussed. Copyright © 2018 John Wiley & Sons, Ltd.

  9. The effect of body bias of the metal-oxide-semiconductor field-effect transistor in the resistive network on spatial current distribution in a bio-inspired complementary metal-oxide-semiconductor vision chip

    NASA Astrophysics Data System (ADS)

    Kong, Jae-Sung; Hyun, Hyo-Young; Seo, Sang-Ho; Shin, Jang-Kyoo

    2008-11-01

    Complementary metal-oxide-semiconductor (CMOS) vision chips for edge detection based on a resistive circuit have recently been developed. These chips help in the creation of neuromorphic systems of a compact size, high speed of operation, and low power dissipation. The output of the vision chip depends predominantly upon the electrical characteristics of the resistive network which consists of a resistive circuit. In this paper, the body effect of the metal-oxide-semiconductor field-effect transistor for current distribution in a resistive circuit is discussed with a simple model. In order to evaluate the model, two 160 × 120 CMOS vision chips have been fabricated using a standard CMOS technology. The experimental results nicely match our prediction.

  10. MicroRNA-100 resensitizes resistant chondrosarcoma cells to cisplatin through direct targeting of mTOR.

    PubMed

    Zhu, Zhe; Wang, Cun-Ping; Zhang, Yin-Feng; Nie, Lin

    2014-01-01

    Chondrosarcomas are malignant cartilage-forming tumors of bone which exhibit resistance to both chemotherapy and radiation treatment. miRNAs have been well demonstrated to regulate gene expression and play essential roles in a variety of biological processes, including proliferation, differentiation, migration, cell cycling and apoptosis. In this study, we obtained evidence that miR-100 acts as a tumor suppressor in human chondrosarcomas. Interestingly, cisplatin resistant chondrosarcoma cells exhibit decreased expression of miR-100 compared with parental cells. In addition, we identified mTOR as a direct target of miR-100. Overexpression of miR-100 complementary pairs to the 3' untranslated region (UTR) of mTOR, resulted in sensitization of cisplatin resistant cells to cisplatin. Moreover, recovery of the mTOR pathway by overexpression of S6K desensitized the chondrosarcoma cells to cisplatin, suggesting the miR-100-mediated sensitization to cisplatin dependent on inhibition of mTOR. In summary, the present studies highlight miR-100 as a tumor suppressor in chondrosarcoma contributing to anti-chemoresistance. Overexpression of miR-100 might be exploited as a therapeutic strategy along with cisplatin-based combined chemotherapy for the treatment of clinical chondrosarcoma patients.

  11. Avian acute leukemia viruses MC29 and MH2 share specific RNA sequences: Evidence for a second class of transforming genes

    PubMed Central

    Duesberg, Peter H.; Vogt, Peter K.

    1979-01-01

    The genome of the defective avian tumor virus MH2 was identified as a RNA of 5.7 kilobases by its presence in different MH2-helper virus complexes and its absence from pure helper virus, by its unique fingerprint pattern of RNase T1-resistant (T1) oligonucleotides that differed from those of two helper virus RNAs, and by its structural analogy to the RNA of MC29, another avian acute leukemia virus. Two sets of sequences were distinguished in MH2 RNA: 66% hybridized with DNA complementary to helper-independent avian tumor viruses, termed group-specific, and 34% were specific. The percentage of specific sequences is considered a minimal estimate because the MH2 RNA used was about 30% contaminated by helper virus RNA. No sequences related to the transforming src gene of avian sarcoma viruses were found in MH2. MH2 shared three large T1 oligonucleotides with MC29, two of which could also be isolated from a RNase A- and T1-resistant hybrid formed between MH2 RNA and MC29 specific cDNA. These oligonucleotides belong to a group of six that define the specific segment of MC29 RNA described previously. The group-specific sequences of MH2 and MC29 RNA shared only the two smallest out of about 20 T1 oligonucleotides associated with MH2 RNA. It is concluded that the specific sequences of MH2 and MC29 are related, and it is proposed that they are necessary for, or identical with, the onc genes of these viruses. These sequences would define a related class of transforming genes in avian tumor viruses that differs from the src genes of avian sarcoma viruses. Images PMID:221900

  12. Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources

    PubMed Central

    Klima, Cassidy L.; Cook, Shaun R.; Zaheer, Rahat; Laing, Chad; Gannon, Vick P.; Xu, Yong; Rasmussen, Jay; Potter, Andrew; Hendrick, Steve; Alexander, Trevor W.; McAllister, Tim A.

    2016-01-01

    Bovine respiratory disease is a common health problem in beef production. The primary bacterial agent involved, Mannheimia haemolytica, is a target for antimicrobial therapy and at risk for associated antimicrobial resistance development. The role of M. haemolytica in pathogenesis is linked to serotype with serotypes 1 (S1) and 6 (S6) isolated from pneumonic lesions and serotype 2 (S2) found in the upper respiratory tract of healthy animals. Here, we sequenced the genomes of 11 strains of M. haemolytica, representing all three serotypes and performed comparative genomics analysis to identify genetic features that may contribute to pathogenesis. Possible virulence associated genes were identified within 14 distinct prophage, including a periplasmic chaperone, a lipoprotein, peptidoglycan glycosyltransferase and a stress response protein. Prophage content ranged from 2–8 per genome, but was higher in S1 and S6 strains. A type I-C CRISPR-Cas system was identified in each strain with spacer diversity and organization conserved among serotypes. The majority of spacers occur in S1 and S6 strains and originate from phage suggesting that serotypes 1 and 6 may be more resistant to phage predation. However, two spacers complementary to the host chromosome targeting a UDP-N-acetylglucosamine 2-epimerase and a glycosyl transferases group 1 gene are present in S1 and S6 strains only indicating these serotypes may employ CRISPR-Cas to regulate gene expression to avoid host immune responses or enhance adhesion during infection. Integrative conjugative elements are present in nine of the eleven genomes. Three of these harbor extensive multi-drug resistance cassettes encoding resistance against the majority of drugs used to combat infection in beef cattle, including macrolides and tetracyclines used in human medicine. The findings here identify key features that are likely contributing to serotype related pathogenesis and specific targets for vaccine design intended to reduce the dependency on antibiotics to treat respiratory infection in cattle. PMID:26926339

  13. Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources.

    PubMed

    Klima, Cassidy L; Cook, Shaun R; Zaheer, Rahat; Laing, Chad; Gannon, Vick P; Xu, Yong; Rasmussen, Jay; Potter, Andrew; Hendrick, Steve; Alexander, Trevor W; McAllister, Tim A

    2016-01-01

    Bovine respiratory disease is a common health problem in beef production. The primary bacterial agent involved, Mannheimia haemolytica, is a target for antimicrobial therapy and at risk for associated antimicrobial resistance development. The role of M. haemolytica in pathogenesis is linked to serotype with serotypes 1 (S1) and 6 (S6) isolated from pneumonic lesions and serotype 2 (S2) found in the upper respiratory tract of healthy animals. Here, we sequenced the genomes of 11 strains of M. haemolytica, representing all three serotypes and performed comparative genomics analysis to identify genetic features that may contribute to pathogenesis. Possible virulence associated genes were identified within 14 distinct prophage, including a periplasmic chaperone, a lipoprotein, peptidoglycan glycosyltransferase and a stress response protein. Prophage content ranged from 2-8 per genome, but was higher in S1 and S6 strains. A type I-C CRISPR-Cas system was identified in each strain with spacer diversity and organization conserved among serotypes. The majority of spacers occur in S1 and S6 strains and originate from phage suggesting that serotypes 1 and 6 may be more resistant to phage predation. However, two spacers complementary to the host chromosome targeting a UDP-N-acetylglucosamine 2-epimerase and a glycosyl transferases group 1 gene are present in S1 and S6 strains only indicating these serotypes may employ CRISPR-Cas to regulate gene expression to avoid host immune responses or enhance adhesion during infection. Integrative conjugative elements are present in nine of the eleven genomes. Three of these harbor extensive multi-drug resistance cassettes encoding resistance against the majority of drugs used to combat infection in beef cattle, including macrolides and tetracyclines used in human medicine. The findings here identify key features that are likely contributing to serotype related pathogenesis and specific targets for vaccine design intended to reduce the dependency on antibiotics to treat respiratory infection in cattle.

  14. Condition factor calibration for load and resistance factor rating of steel girder bridges : final report.

    DOT National Transportation Integrated Search

    2016-06-01

    Load and Resistance Factor Rating (LRFR) is a reliability-based rating procedure complementary to Load and Resistance Factor Design (LRFD). The intent of LRFR is to provide consistent reliability for all bridges regardless of in-situ condition. The p...

  15. The relationship of leaf rust resistance gene Lr13 and hybrid necrosis gene Ne2m on wheat chromosome 2BS.

    PubMed

    Zhang, Peng; Hiebert, Colin W; McIntosh, Robert A; McCallum, Brent D; Thomas, Julian B; Hoxha, Sami; Singh, Davinder; Bansal, Urmil

    2016-03-01

    Genetic and mutational analyses of wheat leaf rust resistance gene Lr13 and hybrid necrosis gene Ne2 m indicated that they are the same gene. Hybrid necrosis in wheat characterized by chlorosis and eventual necrosis of plant tissues in certain wheat hybrids is controlled by the interaction of complementary dominant genes Ne1 and Ne2 located on chromosome arms 5BL and 2BS, respectively. Multiple alleles at each locus can be identified by differences in necrotic phenotypes when varieties are crossed with a fixed accession of the other genotype. Some of at least five Ne2 alleles were described as s (strong), m (medium) and w (weak); alleles of Ne1 were similarly described. Ne2m causes moderate necrosis in hybrids with genotypes having Ne1s. Ne2 is located on chromosome arm 2BS in close proximity to Lr13. Most wheat lines with Ne2m carry Lr13, and all wheat lines with Lr13 appear to carry Ne2m. To further dissect the relationship between Lr13 and Ne2m, more than 350 crosses were made between cv. Spica (Triticum aestivum) or Kubanka (T. durum) carrying Ne1s and recombinant inbred lines or doubled haploid lines from three crosses segregating for Lr13. F1 plants from lines carrying Lr13 crossed with Spica (Ne1s) always showed progressive necrosis; those lacking Lr13 did not. Four wheat cultivars/lines carrying Lr13 were treated with the mutagen EMS. Thirty-five susceptible mutants were identified; eight were distinctly less glaucous and late maturing indicative of chromosome 2B or sub-chromosome loss. Hybrids of phenotypically normal Lr13 mutant plants crossed with Spica did not produce symptoms of hybrid necrosis. Thus, Lr13 and one particular Ne2m allele may be the same gene.

  16. Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic.

    PubMed

    Santiago, Marina; Lee, Wonsik; Fayad, Antoine Abou; Coe, Kathryn A; Rajagopal, Mithila; Do, Truc; Hennessen, Fabienne; Srisuknimit, Veerasak; Müller, Rolf; Meredith, Timothy C; Walker, Suzanne

    2018-06-01

    Identifying targets of antibacterial compounds remains a challenging step in the development of antibiotics. We have developed a two-pronged functional genomics approach to predict mechanism of action that uses mutant fitness data from antibiotic-treated transposon libraries containing both upregulation and inactivation mutants. We treated a Staphylococcus aureus transposon library containing 690,000 unique insertions with 32 antibiotics. Upregulation signatures identified from directional biases in insertions revealed known molecular targets and resistance mechanisms for the majority of these. Because single-gene upregulation does not always confer resistance, we used a complementary machine-learning approach to predict the mechanism from inactivation mutant fitness profiles. This approach suggested the cell wall precursor Lipid II as the molecular target of the lysocins, a mechanism we have confirmed. We conclude that docking to membrane-anchored Lipid II precedes the selective bacteriolysis that distinguishes these lytic natural products, showing the utility of our approach for nominating the antibiotic mechanism of action.

  17. Integrating multiple molecular sources into a clinical risk prediction signature by extracting complementary information.

    PubMed

    Hieke, Stefanie; Benner, Axel; Schlenl, Richard F; Schumacher, Martin; Bullinger, Lars; Binder, Harald

    2016-08-30

    High-throughput technology allows for genome-wide measurements at different molecular levels for the same patient, e.g. single nucleotide polymorphisms (SNPs) and gene expression. Correspondingly, it might be beneficial to also integrate complementary information from different molecular levels when building multivariable risk prediction models for a clinical endpoint, such as treatment response or survival. Unfortunately, such a high-dimensional modeling task will often be complicated by a limited overlap of molecular measurements at different levels between patients, i.e. measurements from all molecular levels are available only for a smaller proportion of patients. We propose a sequential strategy for building clinical risk prediction models that integrate genome-wide measurements from two molecular levels in a complementary way. To deal with partial overlap, we develop an imputation approach that allows us to use all available data. This approach is investigated in two acute myeloid leukemia applications combining gene expression with either SNP or DNA methylation data. After obtaining a sparse risk prediction signature e.g. from SNP data, an automatically selected set of prognostic SNPs, by componentwise likelihood-based boosting, imputation is performed for the corresponding linear predictor by a linking model that incorporates e.g. gene expression measurements. The imputed linear predictor is then used for adjustment when building a prognostic signature from the gene expression data. For evaluation, we consider stability, as quantified by inclusion frequencies across resampling data sets. Despite an extremely small overlap in the application example with gene expression and SNPs, several genes are seen to be more stably identified when taking the (imputed) linear predictor from the SNP data into account. In the application with gene expression and DNA methylation, prediction performance with respect to survival also indicates that the proposed approach might work well. We consider imputation of linear predictor values to be a feasible and sensible approach for dealing with partial overlap in complementary integrative analysis of molecular measurements at different levels. More generally, these results indicate that a complementary strategy for integrating different molecular levels can result in more stable risk prediction signatures, potentially providing a more reliable insight into the underlying biology.

  18. Using complementary DNA from MyoD-transduced fibroblasts to sequence large muscle genes.

    PubMed

    Waddell, Leigh B; Monnier, Nicole; Cooper, Sandra T; North, Kathryn N; Clarke, Nigel F

    2011-08-01

    Large muscle genes are often sequenced using complementary DNA (cDNA) made from muscle messenger RNA (mRNA) to reduce the cost and workload associated with sequencing from genomic DNA. Two potential barriers are the availability of a frozen muscle biopsy, and difficulties in detecting nonsense mutations due to nonsense-mediated mRNA decay (NMD). We present patient examples showing that use of MyoD-transduced fibroblasts as a source of muscle-specific mRNA overcomes these potential difficulties in sequencing large muscle-related genes. Copyright © 2011 Wiley Periodicals, Inc.

  19. Cloning of a Gene Whose Expression is Increased in Scrapie and in Senile Plaques in Human Brain

    NASA Astrophysics Data System (ADS)

    Wietgrefe, S.; Zupancic, M.; Haase, A.; Chesebro, B.; Race, R.; Frey, W.; Rustan, T.; Friedman, R. L.

    1985-12-01

    A complementary DNA library was constructed from messenger RNA's extracted from the brains of mice infected with the scrapie agent. The library was differentially screened with the objectives of finding clones that might be used as markers of infection and finding clones of genes whose increased expression might be correlated with the pathological changes common to scrapie and Alzheimer's disease. A gene was identified whose expression is increased in scrapie. The complementary DNA corresponding to this gene hybridized preferentially and focally to cells in the brains of scrapie-infected animals. The cloned DNA also hybridized to the neuritic plaques found with increased frequency in brains of patients with Alzheimer's disease.

  20. Stress-Survival Gene Identification From an Acid Mine Drainage Algal Mat Community

    NASA Astrophysics Data System (ADS)

    Urbina-Navarrete, J.; Fujishima, K.; Paulino-Lima, I. G.; Rothschild-Mancinelli, B.; Rothschild, L. J.

    2014-12-01

    Microbial communities from acid mine drainage environments are exposed to multiple stressors to include low pH, high dissolved metal loads, seasonal freezing, and desiccation. The microbial and algal communities that inhabit these niche environments have evolved strategies that allow for their ecological success. Metagenomic analyses are useful in identifying species diversity, however they do not elucidate the mechanisms that allow for the resilience of a community under these extreme conditions. Many known or predicted genes encode for protein products that are unknown, or similarly, many proteins cannot be traced to their gene of origin. This investigation seeks to identify genes that are active in an algal consortium during stress from living in an acid mine drainage environment. Our approach involves using the entire community transcriptome for a functional screen in an Escherichia coli host. This approach directly targets the genes involved in survival, without need for characterizing the members of the consortium.The consortium was harvested and stressed with conditions similar to the native environment it was collected from. Exposure to low pH (< 3.2), high metal load, desiccation, and deep freeze resulted in the expression of stress-induced genes that were transcribed into messenger RNA (mRNA). These mRNA transcripts were harvested to build complementary DNA (cDNA) libraries in E. coli. The transformed E. coli were exposed to the same stressors as the original algal consortium to select for surviving cells. Successful cells incorporated the transcripts that encode survival mechanisms, thus allowing for selection and identification of the gene(s) involved. Initial selection screens for freeze and desiccation tolerance have yielded E. coli that are 1 order of magnitude more resistant to freezing (0.01% survival of control with no transcript, 0.2% survival of E. coli with transcript) and 3 orders of magnitude more resistant to desiccation (0.005% survival of control cells with no transcripts, 5% survival of cells with transcript).This work is transformative because genetic functions can be selected without having prior knowledge of the genes or of the organisms involved. Work continues to identify the genes responsible for tolerance to extreme conditions and the bio-mechanisms involved.

  1. Protective Role of Hsp27 Protein Against Gamma Radiation-Induced Apoptosis and Radiosensitization Effects of Hsp27 Gene Silencing in Different Human Tumor Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aloy, Marie-Therese; Hospices Civils de Lyon, Service de Radiotherapie, Centre Hospitalier Lyon-Sud, Pierre-Benite; Hadchity, Elie

    Purpose: The ability of heat shock protein 27 (Hsp27) to protect cells from stressful stimuli and its increased levels in tumors resistant to anticancer therapeutics suggest that it may represent a target for sensitization to radiotherapy. In this study, we investigate the protective role of Hsp27 against radiation-induced apoptosis and the effect of its attenuation in highly expressing radioresistant cancer cell lines. Methods and Materials: We examined clonogenic death and the kinetics of apoptotic events in different tumor cell lines overexpressing or underexpressing Hsp27 protein irradiated with photons. The radiosensitive Jurkat cell line, which does not express Hsp27 constitutively ormore » in response to {gamma}-rays, was stably transfected with Hsp27 complementary DNA. Attenuation of Hsp27 expression was accomplished by antisense or RNAi (interfering RNA) strategies in SQ20B head-and-neck squamous carcinoma, PC3 prostate cancer, and U87 glioblastoma radioresistant cells. Results: We measured concentration-dependent protection against the cytotoxic effects of radiation in Jurkat-Hsp27 cells, which led to a 50% decrease in apoptotic cells at 48 hours in the highest expressing cells. Underlying mechanisms leading to radiation resistance involved a significant increase in glutathione levels associated with detoxification of reactive oxygen species, a delay in mitochondrial collapse, and caspase activation. Conversely, attenuation of Hsp27 in SQ20B cells, characterized by their resistance to apoptosis, sensitizes cells to irradiation. This was emphasized by increased apoptosis, decreased glutathione basal level, and clonogenic cell death. Sensitization to irradiation was confirmed in PC3 and U87 radioresistant cells. Conclusion: Hsp27 gene therapy offers a potential adjuvant to radiation-based therapy of resistant tumors.« less

  2. Detection of target-probe oligonucleotide hybridization using synthetic nanopore resistive pulse sensing.

    PubMed

    Booth, Marsilea Adela; Vogel, Robert; Curran, James M; Harbison, SallyAnn; Travas-Sejdic, Jadranka

    2013-07-15

    Despite the plethora of DNA sensor platforms available, a portable, sensitive, selective and economic sensor able to rival current fluorescence-based techniques would find use in many applications. In this research, probe oligonucleotide-grafted particles are used to detect target DNA in solution through a resistive pulse nanopore detection technique. Using carbodiimide chemistry, functionalized probe DNA strands are attached to carboxylated dextran-based magnetic particles. Subsequent incubation with complementary target DNA yields a change in surface properties as the two DNA strands hybridize. Particle-by-particle analysis with resistive pulse sensing is performed to detect these changes. A variable pressure method allows identification of changes in the surface charge of particles. As proof-of-principle, we demonstrate that target hybridization is selectively detected at micromolar concentrations (nanomoles of target) using resistive pulse sensing, confirmed by fluorescence and phase analysis light scattering as complementary techniques. The advantages, feasibility and limitations of using resistive pulse sensing for sample analysis are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. An analysis of the temperature dependence of the gate current in complementary heterojunction field-effect transistors

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J.; Fossum, Eric R.; Baier, Steven M.

    1992-01-01

    The temperature dependence of the gate current versus the gate voltage in complementary heterojunction field-effect transistors (CHFET's) is examined. An analysis indicates that the gate conduction is due to a combination of thermionic emission, thermionic-field emission, and conduction through a temperature-activated resistance. The thermionic-field emission is consistent with tunneling through the AlGaAs insulator. The activation energy of the resistance is consistent with the ionization energy associated with the DX center in the AlGaAs. Methods reducing the gate current are discussed.

  4. Integrating genetic and toxicogenomic information for determining underlying susceptibility to developmental disorders.

    PubMed

    Robinson, Joshua F; Port, Jesse A; Yu, Xiaozhong; Faustman, Elaine M

    2010-10-01

    To understand the complex etiology of developmental disorders, an understanding of both genetic and environmental risk factors is needed. Human and rodent genetic studies have identified a multitude of gene candidates for specific developmental disorders such as neural tube defects (NTDs). With the emergence of toxicogenomic-based assessments, scientists now also have the ability to compare and understand the expression of thousands of genes simultaneously across strain, time, and exposure in developmental models. Using a systems-based approach in which we are able to evaluate information from various parts and levels of the developing organism, we propose a framework for integrating genetic information with toxicogenomic-based studies to better understand gene-environmental interactions critical for developmental disorders. This approach has allowed us to characterize candidate genes in the context of variables critical for determining susceptibility such as strain, time, and exposure. Using a combination of toxicogenomic studies and complementary bioinformatic tools, we characterize NTD candidate genes during normal development by function (gene ontology), linked phenotype (disease outcome), location, and expression (temporally and strain-dependent). In addition, we show how environmental exposures (cadmium, methylmercury) can influence expression of these genes in a strain-dependent manner. Using NTDs as an example of developmental disorder, we show how simple integration of genetic information from previous studies into the standard microarray design can enhance analysis of gene-environment interactions to better define environmental exposure-disease pathways in sensitive and resistant mouse strains. © Wiley-Liss, Inc.

  5. The hospital microbiome project: meeting report for the UK science and innovation network UK-USA workshop ‘beating the superbugs: hospital microbiome studies for tackling antimicrobial resistance’, October 14th 2013

    PubMed Central

    2014-01-01

    The UK Science and Innovation Network UK-USA workshop ‘Beating the Superbugs: Hospital Microbiome Studies for tackling Antimicrobial Resistance’ was held on October 14th 2013 at the UK Department of Health, London. The workshop was designed to promote US-UK collaboration on hospital microbiome studies to add a new facet to our collective understanding of antimicrobial resistance. The assembled researchers debated the importance of the hospital microbial community in transmission of disease and as a reservoir for antimicrobial resistance genes, and discussed methodologies, hypotheses, and priorities. A number of complementary approaches were explored, although the importance of the built environment microbiome in disease transmission was not universally accepted. Current whole genome epidemiological methods are being pioneered in the UK and the benefits of moving to community analysis are not necessarily obvious to the pioneers; however, rapid progress in other areas of microbiology suggest to some researchers that hospital microbiome studies will be exceptionally fruitful even in the short term. Collaborative studies will recombine different strengths to tackle the international problems of antimicrobial resistance and hospital and healthcare associated infections.

  6. If Trees Would Talk: The Communication of Resistance in Ex-Slave Narratives. Working Paper.

    ERIC Educational Resources Information Center

    Clift, Arlene L.

    Examples drawn from books and interviews of blacks reveal techniques of oral and literate communication both during and after slavery. These techniques fall into two complementary categories: communication as surreptitious resistance and communication about overt resisters. Surreptitious communication occurred through the use of code words which…

  7. Complementary resistive switching in BaTiO3/NiO bilayer with opposite switching polarities

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Wei, Xianhua; Lei, Yao; Yuan, Xincai; Zeng, Huizhong

    2016-12-01

    Resistive switching behaviors have been investigated in the Au/BaTiO3/NiO/Pt structure by stacking the two elements with different switching types. The conducting atomic force microscope measurements on BaTiO3 thin films and NiO thin films suggest that with the same active resistive switching region, the switching polarities in the two semiconductors are opposite to each other. It is in agreement with the bipolar hysteresis I-V curves with opposite switching polarities for single-layer devices. The bilayer devices show complementary resistive switching (CRS) without electroforming and unipolar resistive switching (URS) after electroforming. The coexistence of CRS and URS is mainly ascribed to the co-effect of electric field and Joule heating mechanisms, indicating that changeable of resistance in this device is dominated by the redistribution of oxygen vacancies in BaTiO3 and the formation, disruption, restoration of conducting filaments in NiO. CRS in bilayer with opposite switching polarities is effective to solve the sneak current without the introduction of any selector elements or an additional metal electrode.

  8. Functional analysis of overexpressed PtDRS1 involved in abiotic stresses enhances growth in transgenic poplar.

    PubMed

    Mohammadi, Kourosh; Movahedi, Ali; Maleki, Samaneh Sadat; Sun, Weibo; Zhang, Jiaxin; Almasi Zadeh Yaghuti, Amir; Nourmohammadi, Saeed; Zhuge, Qiang

    2018-05-01

    Drought and salinity are two main abiotic stressors that can disrupt plant growth and survival. Various biotechnological approaches have been used to alleviate the problem of drought stress by improving water stress resistance in forestry and agriculture. The drought sensitive 1 (DRS1) gene acts as a regulator of drought stress, identified in human, yeast and some model plants, such as Arabidopsis thaliana, but there have been no reports of DRS1 transformation in poplar plants to date. In this study, we transformed the DRS1 gene from Populus trichocarpa into Populus deltoides × Populus euramericana 'Nanlin895' using Agrobacterium tumefaciens-mediated transformation. We confirmed that the DRS1 gene was transformed into 'Nanlin895' poplar genomes using reverse transcription polymerase chain reaction (PCR), multiplex PCR, real-time PCR, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All transformed and wild-type (WT) plants were then transferred into a greenhouse for complementary experiments. We analyzed the physiological and biochemical responses of transgenic plants under drought and salt stresses in the greenhouse, and the results were compared with control WT plants. Responses to abiotic stress were greater in transgenic plants compared with WT. Based on our results, introduction of the DRS1 gene into poplar 'Nanlin895' plants significantly enhanced the resistance of those plants to water deficit and high salinity, allowing higher growth rates of roots and shoots in those plants. Additionally, the clawed root rate increased in transformed poplars grown in culture media or in soil, and improved survival under drought and salt stress conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Self-complementary circular codes in coding theory.

    PubMed

    Fimmel, Elena; Michel, Christian J; Starman, Martin; Strüngmann, Lutz

    2018-04-01

    Self-complementary circular codes are involved in pairing genetic processes. A maximal [Formula: see text] self-complementary circular code X of trinucleotides was identified in genes of bacteria, archaea, eukaryotes, plasmids and viruses (Michel in Life 7(20):1-16 2017, J Theor Biol 380:156-177, 2015; Arquès and Michel in J Theor Biol 182:45-58 1996). In this paper, self-complementary circular codes are investigated using the graph theory approach recently formulated in Fimmel et al. (Philos Trans R Soc A 374:20150058, 2016). A directed graph [Formula: see text] associated with any code X mirrors the properties of the code. In the present paper, we demonstrate a necessary condition for the self-complementarity of an arbitrary code X in terms of the graph theory. The same condition has been proven to be sufficient for codes which are circular and of large size [Formula: see text] trinucleotides, in particular for maximal circular codes ([Formula: see text] trinucleotides). For codes of small-size [Formula: see text] trinucleotides, some very rare counterexamples have been constructed. Furthermore, the length and the structure of the longest paths in the graphs associated with the self-complementary circular codes are investigated. It has been proven that the longest paths in such graphs determine the reading frame for the self-complementary circular codes. By applying this result, the reading frame in any arbitrary sequence of trinucleotides is retrieved after at most 15 nucleotides, i.e., 5 consecutive trinucleotides, from the circular code X identified in genes. Thus, an X motif of a length of at least 15 nucleotides in an arbitrary sequence of trinucleotides (not necessarily all of them belonging to X) uniquely defines the reading (correct) frame, an important criterion for analyzing the X motifs in genes in the future.

  10. Paradigms for pharmacological characterization of C. elegans synaptic transmission mutants.

    PubMed

    Locke, Cody; Berry, Kalen; Kautu, Bwarenaba; Lee, Kyle; Caldwell, Kim; Caldwell, Guy

    2008-08-18

    The nematode, Caenorhabditis elegans, has become an expedient model for studying neurotransmission. C. elegans is unique among animal models, as the anatomy and connectivity of its nervous system has been determined from electron micrographs and refined by pharmacological assays. In this video, we describe how two complementary neural stimulants, an acetylcholinesterase inhibitor, called aldicarb, and a gamma-aminobutyric acid (GABA) receptor antagonist, called pentylenetetrazole (PTZ), may be employed to specifically characterize signaling at C. elegans neuromuscular junctions (NMJs) and facilitate our understanding of antagonistic neural circuits. Of 302 C. elegans neurons, nineteen GABAergic D-type motor neurons innervate body wall muscles (BWMs), while four GABAergic neurons, called RMEs, innervate head muscles. Conversely, thirty-nine motor neurons express the excitatory neurotransmitter, acetylcholine (ACh), and antagonize GABA transmission at BWMs to coordinate locomotion. The antagonistic nature of GABAergic and cholinergic motor neurons at body wall NMJs was initially determined by laser ablation and later buttressed by aldicarb exposure. Acute aldicarb exposure results in a time-course or dose-responsive paralysis in wild-type worms. Yet, loss of excitatory ACh transmission confers resistance to aldicarb, as less ACh accumulates at worm NMJs, leading to less stimulation of BWMs. Resistance to aldicarb may be observed with ACh-specific or general synaptic function mutants. Consistent with antagonistic GABA and ACh transmission, loss of GABA transmission, or a failure to negatively regulate ACh release, confers hypersensitivity to aldicarb. Although aldicarb exposure has led to the isolation of numerous worm homologs of neurotransmission genes, aldicarb exposure alone cannot efficiently determine prevailing roles for genes and pathways in specific C. elegans motor neurons. For this purpose, we have introduced a complementary experimental approach, which uses PTZ. Neurotransmission mutants display clear phenotypes, distinct from aldicarb-induced paralysis, in response to PTZ. Wild-type worms, as well as mutants with specific inabilities to release or receive ACh, do not show apparent sensitivity to PTZ. However, GABA mutants, as well as general synaptic function mutants, display anterior convulsions in a time-course or dose-responsive manner. Mutants that cannot negatively regulate general neurotransmitter release and, thus, secrete excessive amounts of ACh onto BWMs, become paralyzed on PTZ. The PTZ-induced phenotypes of discrete mutant classes indicate that a complementary approach with aldicarb and PTZ exposure paradigms in C. elegans may accelerate our understanding of neurotransmission. Moreover, videos demonstrating how we perform pharmacological assays should establish consistent methods for C. elegans research.

  11. Silencage du gene MDR1 et resensibilisation des cellules MCF-7 MDR a la doxorubicine en utilisant les nanoparticules chitosane/MDR1-siARN

    NASA Astrophysics Data System (ADS)

    El-Ariss, Mohamad

    Cancer is the leading cause of death in Canada and is responsible for about 30% of all deaths in the country.[1] It is estimated that by 2015, one in four Canadians (24% women and 29% men) will die from cancer. In the world and only for 2012, 14 million new cancer cases and 8.2 million deaths from the disease were reported.[2] The worst is yet to come because, according to World Health Organization, the number of new cases is expected to increase by about 70% over the next two decades. The high mortality associated with cancer is partly explained by the acquisition of drug resistance that make patients refractory to chemotherapy. In fact, cancer cells exposed to a cytotoxic agent during chemotherapy, may develop a resistance to this agent as well as various agents sharing structural or functional similarities. These cancer cells are known for multidrug resistance ("Multiple Drug resistant cells"). The development of resistance to chimiodrogues is a major public health problem that presents an obstacle for the development of new cancer treatments. MCF-7 MDR are established cell lines of human breast cancer that have developed resistance to chimiodrogues such as doxorubicin. MCF-7 MDR have the particularity to over-express P-gp protein that is responsible for the detoxification of cells by reflux of chimiodrogues. The purpose of this study was therefore to reduce the expression of P-gp, encoded by the MDR1 gene (also called gene ABCB1) in cancer cells MCF-7, and re-sensitize MCF-7 MDR cells to anti-cancer treatments. In order to modify MDR1 gene expression, we used small RNAi called siRNA that are specific to the MDR1 gene. In total, 4 duplexes of siRNA have been used: siRNA_1, siRNA_1M, siRNA_2 and siRNA_2M. Each of the duplexes strands is consists of 21 nucleic acids and has two protruding nucleic acids (overhangs) at the 3' end. siRNA_1 and siRNA_1M are complementary to the nucleic acid sequence (577-595 nucleic acids ) of the MDR1 gene, whereas siARN_2 and siARN_2M are complementary to a sequence shifted slightly downstream in the same gene (583-607 nucleic acids). RNA duplexes siRNA_1 and siARN_2 consist exclusively of DNA while "modifed" siRNA_1M and si RNA_2M consist of RNA overhangs. siRNA duplexes (siRNA_1 and siRNA_2) were chosen from the work published by Hao Wu et al. (2003), Stege et al. (2004) and Miletti-Gonzalez et al. (2005) which showed that these siRNA sequences are effective to silence MDR1 gene in cancer cells (breast cancer cells MCF-7 / AdrR and MCF-7 / BC-19 and stomach cancer cells: EPG85-257RDB).[3-5] Moreover, Strapps et al. (2010) showed that the use of siRNA having overhangs formed of ribonucleotides leads to a similar silencing but lasting longer in vivo and in vitro compared to the use of siRNA containing deoxyribonucleotides overhangs.[6] Thus siARN_1M and siARN_2M sequences correspond to siARN_1 and siARN_2 sequences but whose overhangs are formed of ribonucleotides. These siRNA specific to the MDR1 gene (MDR1-siRNA) were combined to chitosan to form nanoparticles capable of protecting these MDR1-siRNA and delivering it into the MCF-7 MDR cells. Chitosan used here as a delivery system, is a natural and biodegradable polysaccharide whose biological properties are defined by its average molecular weight (MW) and by its degree of deacetylation (DD). When the positively charged chitosan is added with the negatively charged siRNA, there is formation of nanoparticles by electrostatic attraction. In this project, chitosan 92-10 (DDA- MW) was used as a delivery system with a N:P (ratio chitosan amino groups: RNA phosphate) of 5. Analysis by dynamic light scattering (DLS) demonstrated that the nanoparticles have a diameter between 62.56 and 82.72 nm and a zeta potential ranging from 17.4 to 23.5 mV. Analysis by confocal microscopy showed that chitosan (92-10-5)/labeled siRNA are internalized in MCF-7 MDR cells and that siRNAs are released in the cytoplasm. MCF-7 cells resistant MDR were transfected in vitro with different chitosan nanoparticles 92-10/MDR1-siRNA. qPCR quantification showed that transfection of MCF-7 MDR cells leads to inhibition of the expression of the MDR1 gene by 71%. In addition, induced cytotoxicity tests showed that the use of nanoparticles allows resensitizing cells to doxorubicin. In fact, the mortality rate of MDR MCF-7 cells exposed to doxorubicin increased to 60% after transfecting the cells with the nanoparticles chitosane (92-10-5)/ MDR1-siRNA. In conclusion, we have developed Chitosan (92-10-5)/ MDR1-siRNA nanoparticles that reduce the expression of P-gp in cells and allow the latter to re-sensitize to Doxorubicin. This study demonstrated the potential of chitosan nanoparticles (92-10-5)/ MDR1-siRNA for the treatment of cancers resistant to chemotherapy.

  12. RNA interference-based therapeutics: new strategies to fight infectious disease.

    PubMed

    López-Fraga, M; Wright, N; Jiménez, A

    2008-12-01

    For many years, there has been an ongoing search for new compounds that can selectively alter gene expression as a new way to treat human disease by addressing targets that are otherwise "undruggable" with traditional pharmaceutical approaches involving small molecules or proteins. RNA interference (RNAi) strategies have raised a lot of attention and several compounds are currently being tested in clinical trials. Viruses are the obvious target for RNAi-therapy, as most are difficult to treat with conventional drugs, they become rapidly resistant to drug treatment and their genes differ substantially from human genes, minimizing side effects. Antisense strategy offers very high target specificity, i.e., any viral sequence could potentially be targeted using the complementary oligonucleotide sequence. Consequently, new antisense-based therapeutics have the potential to lead a revolution in the anti-infective drug development field. Additionally, the relatively short turnaround for efficacy testing of potential RNAi molecules and that any pathogen is theoretically amenable to rapid targeting, make them invaluable tools for treating a wide range of diseases. This review will focus on some of the current efforts to treat infectious disease with RNAi-based therapies and some of the obstacles that have appeared on the road to successful clinical intervention.

  13. The first Taxus rhizosphere microbiome revealed by shotgun metagenomic sequencing.

    PubMed

    Hao, Da-Cheng; Zhang, Cai-Rong; Xiao, Pei-Gen

    2018-06-01

    In the present study, the shotgun high throughput metagenomic sequencing was implemented to globally capture the features of Taxus rhizosphere microbiome. Total reads could be assigned to 6925 species belonging to 113 bacteria phyla and 301 species of nine fungi phyla. For archaea and virus, 263 and 134 species were for the first time identified, respectively. More than 720,000 Unigenes were identified by clean reads assembly. The top five assigned phyla were Actinobacteria (363,941 Unigenes), Proteobacteria (182,053), Acidobacteria (44,527), Ascomycota (fungi; 18,267), and Chloroflexi (15,539). KEGG analysis predicted numerous functional genes; 7101 Unigenes belong to "Xenobiotics biodegradation and metabolism." A total of 12,040 Unigenes involved in defense mechanisms (e.g., xenobiotic metabolism) were annotated by eggNOG. Talaromyces addition could influence not only the diversity and structure of microbial communities of Taxus rhizosphere, but also the relative abundance of functional genes, including metabolic genes, antibiotic resistant genes, and genes involved in pathogen-host interaction, bacterial virulence, and bacterial secretion system. The structure and function of rhizosphere microbiome could be sensitive to non-native microbe addition, which could impact on the pollutant degradation. This study, complementary to the amplicon sequencing, more objectively reflects the native microbiome of Taxus rhizosphere and its response to environmental pressure, and lays a foundation for potential combination of phytoremediation and bioaugmentation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Halocin C8: an antimicrobial peptide distributed among four halophilic archaeal genera: Natrinema, Haloterrigena, Haloferax, and Halobacterium.

    PubMed

    Besse, Alison; Vandervennet, Manon; Goulard, Christophe; Peduzzi, Jean; Isaac, Stéphanie; Rebuffat, Sylvie; Carré-Mlouka, Alyssa

    2017-05-01

    Halophilic archaea thrive in hypersaline ecosystems and produce antimicrobial peptides (AMPs) named halocins. AMPs are essential effectors of microbial interactions in natural ecosystems. Halocin C8 is a 7.4 kDa peptide produced by Natrinema sp. AS7092. Surrounded by genes involved in regulation and transport, the halC8 gene encodes a precursor, processed into the mature halocin and an immunity protein, protecting the producing strain against its halocin. This feature constitutes a unique property of halocin C8, as known AMPs and their immunity proteins are generally encoded on distinct ORFs in an operon. By complementary in silico and PCR-based approaches, the presence of halC8 in halophilic archaea collected from various parts of the world was evidenced. The full-length halC8 gene is restricted and consistently found in the genomes of strains belonging to the phylogenetically related genera Natrinema and Haloterrigena, along with transport and regulation genes. Functional expression of halC8 was demonstrated by RT-PCR and antimicrobial assays. Active halocin C8 was shown to contain five disulphide bridges, presumably conferring a compact structure resistant to harsh environmental conditions. In other archaeal genera, Haloferax and Halobacterium, genes encoding halocin C8 with diverging immunity protein moiety were evidenced. A phylogenetic analysis of halocin C8 sequences was conducted.

  15. DELINEATION OF SUBSURFACE HYDROCARBON CONTAMINANT DISTRIBUTION USING A DIRECT PUSH RESISTIVITY METHOD

    EPA Science Inventory

    A direct push resistivity method was evaluated as a complementary screening tool to provide rapid in-situ contaminant detection to aid in better defining locations for drilling, sampling, and monitoring well installation at hazardous waste sites. Nine continuous direct push resi...

  16. The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection.

    PubMed

    Jaillon, Sébastien; Moalli, Federica; Ragnarsdottir, Bryndis; Bonavita, Eduardo; Puthia, Manoj; Riva, Federica; Barbati, Elisa; Nebuloni, Manuela; Cvetko Krajinovic, Lidija; Markotic, Alemka; Valentino, Sonia; Doni, Andrea; Tartari, Silvia; Graziani, Giorgio; Montanelli, Alessandro; Delneste, Yves; Svanborg, Catharina; Garlanda, Cecilia; Mantovani, Alberto

    2014-04-17

    Immunity in the urinary tract has distinct and poorly understood pathophysiological characteristics and urinary tract infections (UTIs) are important causes of morbidity and mortality. We investigated the role of the soluble pattern recognition molecule pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity, in UTIs. PTX3-deficient mice showed defective control of UTIs and exacerbated inflammation. Expression of PTX3 was induced in uroepithelial cells by uropathogenic Escherichia coli (UPEC) in a Toll-like receptor 4 (TLR4)- and MyD88-dependent manner. PTX3 enhanced UPEC phagocytosis and phagosome maturation by neutrophils. PTX3 was detected in urine of UTI patients and amounts correlated with disease severity. In cohorts of UTI-prone patients, PTX3 gene polymorphisms correlated with susceptibility to acute pyelonephritis and cystitis. These results suggest that PTX3 is an essential component of innate resistance against UTIs. Thus, the cellular and humoral arms of innate immunity exert complementary functions in mediating resistance against UTIs. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. A regulatory RNA is involved in RNA duplex formation and biofilm regulation in Sulfolobus acidocaldarius.

    PubMed

    Orell, Alvaro; Tripp, Vanessa; Aliaga-Tobar, Victor; Albers, Sonja-Verena; Maracaja-Coutinho, Vinicius; Randau, Lennart

    2018-05-18

    Non-coding RNAs (ncRNA) are involved in essential biological processes in all three domains of life. The regulatory potential of ncRNAs in Archaea is, however, not fully explored. In this study, RNA-seq analyses identified a set of 29 ncRNA transcripts in the hyperthermophilic archaeon Sulfolobus acidocaldarius that were differentially expressed in response to biofilm formation. The most abundant ncRNA of this set was found to be resistant to RNase R treatment (RNase R resistant RNA, RrrR(+)) due to duplex formation with a reverse complementary RNA (RrrR(-)). The deletion of the RrrR(+) gene resulted in significantly impaired biofilm formation, while its overproduction increased biofilm yield. RrrR(+) was found to act as an antisense RNA against the mRNA of a hypothetical membrane protein. The RrrR(+) transcript was shown to be stabilized by the presence of the RrrR(-) strand in S. acidocaldarius cell extracts. The accumulation of these RrrR duplexes correlates with an apparent absence of dsRNA degrading RNase III domains in archaeal proteins.

  18. MicroRNA in Glioblastoma: An Overview

    PubMed Central

    Banelli, Barbara; Forlani, Alessandra; Allemanni, Giorgio; Morabito, Anna; Pistillo, Maria Pia

    2017-01-01

    Glioblastoma is the most aggressive brain tumor and, even with the current multimodal therapy, is an invariably lethal cancer with a life expectancy that depends on the tumor subtype but, even in the most favorable cases, rarely exceeds 2 years. Epigenetic factors play an important role in gliomagenesis, are strong predictors of outcome, and are important determinants for the resistance to radio- and chemotherapy. The latest addition to the epigenetic machinery is the noncoding RNA (ncRNA), that is, RNA molecules that are not translated into a protein and that exert their function by base pairing with other nucleic acids in a reversible and nonmutational mode. MicroRNAs (miRNA) are a class of ncRNA of about 22 bp that regulate gene expression by binding to complementary sequences in the mRNA and silence its translation into proteins. MicroRNAs reversibly regulate transcription through nonmutational mechanisms; accordingly, they can be considered as epigenetic effectors. In this review, we will discuss the role of miRNA in glioma focusing on their role in drug resistance and on their potential applications in the therapy of this tumor. PMID:29234674

  19. Frequency-Independent Response of Self-Complementary Checkerboard Screens

    NASA Astrophysics Data System (ADS)

    Urade, Yoshiro; Nakata, Yosuke; Nakanishi, Toshihiro; Kitano, Masao

    2015-06-01

    This research resolves a long-standing problem on the electromagnetic response of self-complementary metallic screens with checkerboardlike geometry. Although Babinet's principle implies that they show a frequency-independent response, this unusual characteristic has not been observed yet due to the singularities of the metallic point contacts in the checkerboard geometry. We overcome this difficulty by replacing the point contacts with resistive sheets. The proposed structure is prepared and characterized by terahertz time-domain spectroscopy. It is experimentally confirmed that the resistive checkerboard structures exhibit a flat transmission spectrum over 0.1-1.1 THz. It is also demonstrated that self-complementarity can eliminate even the frequency-dependent transmission characteristics of resonant metamaterials.

  20. Global effect of the lack of inorganic polyphosphate in the extremophilic archaeon Sulfolobus solfataricus: A proteomic approach.

    PubMed

    Soto, Daniela F; Recalde, Alejandra; Orell, Alvaro; Albers, Sonja-Verena; Paradela, Alberto; Navarro, Claudio A; Jerez, Carlos A

    2018-03-01

    Inorganic polyphosphates (polyP) are present in all living cells and several important functions have been described for them. They are involved in the response to stress conditions, such as nutrient depletion, oxidative stress and toxic metals amongst others. A recombinant strain of Sulfolobus solfataricus unable to accumulate polyP was designed by the overexpression of its endogenous ppx gene. The overall impact of the lack of polyP on this S. solfataricus polyP (-) strain was analyzed by using quantitative proteomics (isotope-coded protein label, ICPL). Stress-related proteins, such as peroxiredoxins and heat shock proteins, proteins involved in metabolism and several others were produced at higher levels in the ppx expression strain. The polyP deficient strain showed an increased copper sensitivity and an earlier transcriptional up-regulation of copA gene coding for the P-type copper-exporting ATPase. This implies a complementary function of both copper resistance systems. These results strongly suggests that the lack of polyP makes this hyperthermophilic archaeon more sensitive to toxic conditions, such as an exposure to metals or other harmful stimuli, emphasizing the importance of this inorganic phosphate polymers in the adaptations to live in the environmental conditions in which thermoacidophilic archaea thrive. Inorganic polyphosphate (polyP) are ubiquitous molecules with many functions in living organisms. Few studies related to these polymers have been made in archaea. The construction of a polyP deficient recombinant strain of Sulfolobus solfataricus allowed the study of the global changes in the proteome of this thermoacidophilic archaeon in the absence of polyP compared with the wild type strain. The results obtained using quantitative proteomics suggest an important participation of polyP in the oxidative stress response of the cells and as having a possible metabolic role in the cell, as previously described in bacteria. The polyP deficient strain also showed an increased copper sensitivity and an earlier transcriptional up-regulation of copA, implying a complementary role of both copper resistance systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Immunomodulation of glioma cells after gene therapy: induction of major histocompatibility complex class I but not class II antigen in vitro.

    PubMed

    Parsa, A T; Chi, J H; Hurley, P T; Jeyapalan, S A; Bruce, J N

    2001-09-01

    Acquired immunity has been demonstrated in Fischer rats bearing syngeneic 9L tumors after herpes simplex virus (HSV) thymidine kinase (TK) gene transfection and ganciclovir treatment. The nature of this immunity in rats and its relevance to the HSV TK/ganciclovir protocol for human subjects remain to be determined. In this study, levels of major histocompatibility complex (MHC) Class I and II antigen expression were measured before and after HSV TK transfection, in an effort to document immunomodulatory changes caused by gene therapy. Tumor cells from the 9L gliosarcoma cell line, three primary human glioma cultures, and the human glioma cell line U87 MG were transduced with HSV TK vector-containing supernatant from fibroblast-producing cells (titer of 5 x 10(6) colony-forming units/ml) and selected in G418 medium for neomycin resistance. Clones were pooled or individually selected for cell-killing assays with ganciclovir, to confirm TK expression (10(3) cells/well in a 96-well dish). Northern analyses using MHC Class I and Class II complementary deoxyribonucleic acid probes were performed on blots containing total ribonucleic acid from wild-type tumor cells and HSV TK transfectants. A beta-actin complementary deoxyribonucleic acid probe served as an internal control. Cell surface expression was confirmed with flow cytometry. The induction of MHC Class I was tested for cycloheximide and genistein sensitivity. All cell cultures exhibited increases in MHC Class I but not MHC Class II expression, as determined by Northern analysis densitometry and flow cytometry. Cycloheximide treatment did not diminish the up-regulation of MHC Class I after retroviral transfection, implicating a signal transduction pathway that does not require ongoing protein synthesis. Genistein pretreatment of cell cultures did diminish the up-regulation of MHC Class I, implicating a tyrosine kinase in the signaling cascade. Induction of MHC Class I in rat and human glioma cells after HSV TK retroviral gene therapy is a primary effect that is dependent on tyrosine kinase activity. Specific immune responses generated after transfection may represent an important general side effect of gene therapy protocols. Elucidation of the mechanism of immunomodulation after gene therapy will likely yield safer and more effective clinical protocols.

  2. Good genes, complementary genes and human mate preferences.

    PubMed

    Roberts, S Craig; Little, Anthony C

    2008-03-01

    The past decade has witnessed a rapidly growing interest in the biological basis of human mate choice. Here we review recent studies that demonstrate preferences for traits which might reveal genetic quality to prospective mates, with potential but still largely unknown influence on offspring fitness. These include studies assessing visual, olfactory and auditory preferences for potential good-gene indicator traits, such as dominance or bilateral symmetry. Individual differences in these robust preferences mainly arise through within and between individual variation in condition and reproductive status. Another set of studies have revealed preferences for traits indicating complementary genes, focussing on discrimination of dissimilarity at genes in the major histocompatibility complex (MHC). As in animal studies, we are only just beginning to understand how preferences for specific traits vary and inter-relate, how consideration of good and compatible genes can lead to substantial variability in individual mate choice decisions and how preferences expressed in one sensory modality may reflect those in another. Humans may be an ideal model species in which to explore these interesting complexities.

  3. Good genes, complementary genes and human mate preferences.

    PubMed

    Roberts, S Craig; Little, Anthony C

    2008-09-01

    The past decade has witnessed a rapidly growing interest in the biological basis of human mate choice. Here we review recent studies that demonstrate preferences for traits which might reveal genetic quality to prospective mates, with potential but still largely unknown influence on offspring fitness. These include studies assessing visual, olfactory and auditory preferences for potential good-gene indicator traits, such as dominance or bilateral symmetry. Individual differences in these robust preferences mainly arise through within and between individual variation in condition and reproductive status. Another set of studies have revealed preferences for traits indicating complementary genes, focussing on discrimination of dissimilarity at genes in the major histocompatibility complex (MHC). As in animal studies, we are only just beginning to understand how preferences for specific traits vary and inter-relate, how consideration of good and compatible genes can lead to substantial variability in individual mate choice decisions and how preferences expressed in one sensory modality may reflect those in another. Humans may be an ideal model species in which to explore these interesting complexities.

  4. Pyrosequencing for Microbial Identification and Characterization

    PubMed Central

    Cummings, Patrick J.; Ahmed, Ray; Durocher, Jeffrey A.; Jessen, Adam; Vardi, Tamar; Obom, Kristina M.

    2013-01-01

    Pyrosequencing is a versatile technique that facilitates microbial genome sequencing that can be used to identify bacterial species, discriminate bacterial strains and detect genetic mutations that confer resistance to anti-microbial agents. The advantages of pyrosequencing for microbiology applications include rapid and reliable high-throughput screening and accurate identification of microbes and microbial genome mutations. Pyrosequencing involves sequencing of DNA by synthesizing the complementary strand a single base at a time, while determining the specific nucleotide being incorporated during the synthesis reaction. The reaction occurs on immobilized single stranded template DNA where the four deoxyribonucleotides (dNTP) are added sequentially and the unincorporated dNTPs are enzymatically degraded before addition of the next dNTP to the synthesis reaction. Detection of the specific base incorporated into the template is monitored by generation of chemiluminescent signals. The order of dNTPs that produce the chemiluminescent signals determines the DNA sequence of the template. The real-time sequencing capability of pyrosequencing technology enables rapid microbial identification in a single assay. In addition, the pyrosequencing instrument, can analyze the full genetic diversity of anti-microbial drug resistance, including typing of SNPs, point mutations, insertions, and deletions, as well as quantification of multiple gene copies that may occur in some anti-microbial resistance patterns. PMID:23995536

  5. Pyrosequencing for microbial identification and characterization.

    PubMed

    Cummings, Patrick J; Ahmed, Ray; Durocher, Jeffrey A; Jessen, Adam; Vardi, Tamar; Obom, Kristina M

    2013-08-22

    Pyrosequencing is a versatile technique that facilitates microbial genome sequencing that can be used to identify bacterial species, discriminate bacterial strains and detect genetic mutations that confer resistance to anti-microbial agents. The advantages of pyrosequencing for microbiology applications include rapid and reliable high-throughput screening and accurate identification of microbes and microbial genome mutations. Pyrosequencing involves sequencing of DNA by synthesizing the complementary strand a single base at a time, while determining the specific nucleotide being incorporated during the synthesis reaction. The reaction occurs on immobilized single stranded template DNA where the four deoxyribonucleotides (dNTP) are added sequentially and the unincorporated dNTPs are enzymatically degraded before addition of the next dNTP to the synthesis reaction. Detection of the specific base incorporated into the template is monitored by generation of chemiluminescent signals. The order of dNTPs that produce the chemiluminescent signals determines the DNA sequence of the template. The real-time sequencing capability of pyrosequencing technology enables rapid microbial identification in a single assay. In addition, the pyrosequencing instrument, can analyze the full genetic diversity of anti-microbial drug resistance, including typing of SNPs, point mutations, insertions, and deletions, as well as quantification of multiple gene copies that may occur in some anti-microbial resistance patterns.

  6. Two novel sodium channel mutations associated with resistance to indoxacarb and metaflumizone in the diamondback moth, Plutella xylostella.

    PubMed

    Wang, Xing-Liang; Su, Wen; Zhang, Jian-Heng; Yang, Yi-Hua; Dong, Ke; Wu, Yi-Dong

    2016-02-01

    Indoxacarb and metaflumizone belong to a relatively new class of sodium channel blocker insecticides (SCBIs). Due to intensive use of indoxacarb, field-evolved indoxacarb resistance has been reported in several lepidopteran pests, including the diamondback moth Plutella xylostella, a serious pest of cruciferous crops. In particular, the BY12 population of P. xylostella, collected from Baiyun, Guangdong Province of China in 2012, was 750-fold more resistant to indoxacarb and 70-fold more resistant to metaflumizone compared with the susceptible Roth strain. Comparison of complementary DNA sequences encoding the sodium channel genes of Roth and BY12 revealed two point mutations (F1845Y and V1848I) in the sixth segment of domain IV of the PxNav protein in the BY population. Both mutations are located within a highly conserved sequence region that is predicted to be involved in the binding sites of local anesthetics and SCBIs based on mammalian sodium channels. A significant correlation was observed among 10 field-collected populations between the mutant allele (Y1845 or I1848) frequencies (1.7% to 52.5%) and resistance levels to both indoxacarb (34- to 870-fold) and metaflumizone (1- to 70-fold). The two mutations were never found to co-exist in the same allele of PxNav , suggesting that they arose independently. This is the first time that sodium channel mutations have been associated with high levels of resistance to SCBIs. F1845Y and V1848I are molecular markers for resistance monitoring in the diamondback moth and possibly other insect pest species. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  7. Multiple Insecticide Resistances in the Disease Vector Culex p. Quinquefasciatus from Western Indian Ocean

    PubMed Central

    Pocquet, Nicolas; Milesi, Pascal; Makoundou, Patrick; Unal, Sandra; Zumbo, Betty; Atyame, Célestine; Darriet, Frédéric; Dehecq, Jean-Sébastien; Thiria, Julien; Bheecarry, Ambicadutt; Iyaloo, Diana P.; Weill, Mylène; Chandre, Fabrice; Labbé, Pierrick

    2013-01-01

    Several mosquito-borne diseases affect the Western Indian Ocean islands. Culex pipiens quinquefasciatus is one of these vectors and transmits filariasis, Rift Valley and West Nile viruses and the Japanese encephalitis. To limit the impact of these diseases on public health, considerable vector control efforts have been implemented since the 50s, mainly through the use of neurotoxic insecticides belonging to Organochlorines (OC), Organophosphates (OP) and pyrethroids (PYR) families. However, mosquito control failures have been reported on site, and they were probably due to the selection of resistant individuals in response to insecticide exposure. In this study, we used different approaches to establish a first regional assessment of the levels and mechanisms of resistance to various insecticides. Bioassays were used to evaluate resistance to various insecticides, enzyme activity was measured to assess the presence of metabolic resistances through elevated detoxification, and molecular identification of known resistance alleles was investigated to determine the frequency of target-site mutations. These complementary approaches showed that resistance to the most used insecticides families (OC, OP and PYR) is widespread at a regional scale. However, the distribution of the different resistance genes is quite heterogeneous among the islands, some being found at high frequencies everywhere, others being frequent in some islands and absent in others. Moreover, two resistance alleles displayed clinal distributions in Mayotte and La Réunion, probably as a result of a heterogeneous selection due to local treatment practices. These widespread and diverse resistance mechanisms reduce the capacity of resistance management through classical strategies (e.g. insecticide rotation). In case of a disease outbreak, it could undermine the efforts of the vector control services, as only few compounds could be used. It thus becomes urgent to find alternatives to control populations of Cx. p. quinquefasciatus in the Indian Ocean. PMID:24204997

  8. Characterization of Conserved and Non-conserved Imprinted Genes in Swine

    USDA-ARS?s Scientific Manuscript database

    In order to increase our understanding of the role of imprinted genes in swine reproduction we used two complementary approaches, analysis of imprinting by pyrosequencing, and expression profiling of parthenogenetic fetuses, to carry out a comprehensive analysis of this gene family in swine. Using A...

  9. Complementary DNA sequences encoding the multimammate rat MHC class II DQ alpha and beta chains and cross-species sequence comparison in rodents.

    PubMed

    de Bellocq, J Goüy; Leirs, H

    2009-09-01

    Sequences of the complete open reading frame (ORF) for rodents major histocompatibility complex (MHC) class II genes are rare. Multimammate rat (Mastomys natalensis) complementary DNA (cDNA) encoding the alpha and beta chains of MHC class II DQ gene was cloned from a rapid amplifications of cDNA Emds (RACE) cDNA library. The ORFs consist of 801 and 771 bp encoding 266 and 256 amino acid residues for DQB and DQA, respectively. The genomic structure of Mana-DQ genes is globally analogous to that described for other rodents except for the insertion of a serine residue in the signal peptide of Mana-DQB, which is unique among known rodents.

  10. Computational gene network study on antibiotic resistance genes of Acinetobacter baumannii.

    PubMed

    Anitha, P; Anbarasu, Anand; Ramaiah, Sudha

    2014-05-01

    Multi Drug Resistance (MDR) in Acinetobacter baumannii is one of the major threats for emerging nosocomial infections in hospital environment. Multidrug-resistance in A. baumannii may be due to the implementation of multi-combination resistance mechanisms such as β-lactamase synthesis, Penicillin-Binding Proteins (PBPs) changes, alteration in porin proteins and in efflux pumps against various existing classes of antibiotics. Multiple antibiotic resistance genes are involved in MDR. These resistance genes are transferred through plasmids, which are responsible for the dissemination of antibiotic resistance among Acinetobacter spp. In addition, these resistance genes may also have a tendency to interact with each other or with their gene products. Therefore, it becomes necessary to understand the impact of these interactions in antibiotic resistance mechanism. Hence, our study focuses on protein and gene network analysis on various resistance genes, to elucidate the role of the interacting proteins and to study their functional contribution towards antibiotic resistance. From the search tool for the retrieval of interacting gene/protein (STRING), a total of 168 functional partners for 15 resistance genes were extracted based on the confidence scoring system. The network study was then followed up with functional clustering of associated partners using molecular complex detection (MCODE). Later, we selected eight efficient clusters based on score. Interestingly, the associated protein we identified from the network possessed greater functional similarity with known resistance genes. This network-based approach on resistance genes of A. baumannii could help in identifying new genes/proteins and provide clues on their association in antibiotic resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Functional Interactions of Major Rice Blast Resistance Genes Pi-ta with Pi-b and Minor Blast Resistance QTLs

    USDA-ARS?s Scientific Manuscript database

    Major blast resistance (R) genes confer resistance in a gene-for-gene manner. However, little information is available on interactions between R genes. In this study, interactions between two rice blast R genes, Pi-ta and Pi-b, and other minor blast resistance quantitative trait locus (QTLs) were in...

  12. Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes.

    PubMed

    Durso, Lisa M; Miller, Daniel N; Wienhold, Brian J

    2012-01-01

    There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals compare to antibiotic resistance genes in other ecosystems. Here we report the distribution of antibiotic resistant genes in publicly available agricultural and non-agricultural metagenomic samples and identify which bacteria are likely to be carrying those genes. Antibiotic resistance, as coded for in the genes used in this study, is a process that was associated with all natural, agricultural, and human-impacted ecosystems examined, with between 0.7 to 4.4% of all classified genes in each habitat coding for resistance to antibiotic and toxic compounds (RATC). Agricultural, human, and coastal-marine metagenomes have characteristic distributions of antibiotic resistance genes, and different bacteria that carry the genes. There is a larger percentage of the total genome associated with antibiotic resistance in gastrointestinal-associated and agricultural metagenomes compared to marine and Antarctic samples. Since antibiotic resistance genes are a natural part of both human-impacted and pristine habitats, presence of these resistance genes in any specific habitat is therefore not sufficient to indicate or determine impact of anthropogenic antibiotic use. We recommend that baseline studies and control samples be taken in order to determine natural background levels of antibiotic resistant bacteria and/or antibiotic resistance genes when investigating the impacts of veterinary use of antibiotics on human health. We raise questions regarding whether the underlying biology of each type of bacteria contributes to the likelihood of transfer via the food chain.

  13. Systematic Analysis and Comparison of Nucleotide-Binding Site Disease Resistance Genes in a Diploid Cotton Gossypium raimondii

    PubMed Central

    Wei, Hengling; Li, Wei; Sun, Xiwei; Zhu, Shuijin; Zhu, Jun

    2013-01-01

    Plant disease resistance genes are a key component of defending plants from a range of pathogens. The majority of these resistance genes belong to the super-family that harbors a Nucleotide-binding site (NBS). A number of studies have focused on NBS-encoding genes in disease resistant breeding programs for diverse plants. However, little information has been reported with an emphasis on systematic analysis and comparison of NBS-encoding genes in cotton. To fill this gap of knowledge, in this study, we identified and investigated the NBS-encoding resistance genes in cotton using the whole genome sequence information of Gossypium raimondii. Totally, 355 NBS-encoding resistance genes were identified. Analyses of the conserved motifs and structural diversity showed that the most two distinct features for these genes are the high proportion of non-regular NBS genes and the high diversity of N-termini domains. Analyses of the physical locations and duplications of NBS-encoding genes showed that gene duplication of disease resistance genes could play an important role in cotton by leading to an increase in the functional diversity of the cotton NBS-encoding genes. Analyses of phylogenetic comparisons indicated that, in cotton, the NBS-encoding genes with TIR domain not only have their own evolution pattern different from those of genes without TIR domain, but also have their own species-specific pattern that differs from those of TIR genes in other plants. Analyses of the correlation between disease resistance QTL and NBS-encoding resistance genes showed that there could be more than half of the disease resistance QTL associated to the NBS-encoding genes in cotton, which agrees with previous studies establishing that more than half of plant resistance genes are NBS-encoding genes. PMID:23936305

  14. Antibiotic Sensitivity Profiling and Virulence Potential of Campylobacter jejuni Isolates from Estuarine Water in the Eastern Cape Province, South Africa.

    PubMed

    Otigbu, Anthony C; Clarke, Anna M; Fri, Justine; Akanbi, Emmanuel O; Njom, Henry A

    2018-05-06

    Campylobacter jejuni (CJ) is a zoonotic microbe and a major causative organism of diarrheal infection in humans that often has its functional characteristics inactivated in stressed conditions. The current study assessed the correlation between recovered CJ and water quality parameters and the drug sensitivity patterns of the pathogen to frontline antibiotics in human and veterinary medicine. Water samples ( n = 244) from rivers/estuarines were collected from April⁻September 2016, and physicochemical conditions were recorded on-site. CJ was isolated from the samples using standard microbiological methods and subjected to sensitivity testing to 10 antibiotics. Mean CJ counts were between 1 and 5 logs (CFU/mL). Ninety-five isolates confirmed as CJ by PCR showed varying rates of resistance. Sensitivity testing showed resistance to tetracycline (100%), azithromycin (92%), clindamycin (84.2%), clarithromycin and doxycycline (80%), ciprofloxacin (77.8%), vancomycin (70.5%), erythromycin (70%), metronidazole (36.8%) and nalidixic acid (30.5%). Virulence encoding genes were detected in the majority 80/95, 84.2%) of the confirmed isolates from cdtB ; 60/95 (63.2%) from cstII ; 49/95 (51.6%) from cadF ; 45/95 (47.4%) from clpP ; 30/95 (31.6%) from htrB , and 0/95 (0%) from csrA . A multiple resistance cme ABC active efflux pump system was present in 69/95 (72.6) isolates. The presence of CJ was positively correlated with temperature ( r = 0.17), pH ( r = 0.02), dissolved oxygen ( r = 0.31), and turbidity ( r = 0.23) but negatively correlated with salinity ( r = −0.39) and conductivity ( r = −0.28). The detection of multidrug resistant CJ strains from estuarine water and the differential gene expressions they possess indicates a potential hazard to humans. Moreover, the negative correlation between the presence of the pathogen and physicochemical parameters such as salinity indicates possible complementary expression of stress tolerance response mechanisms by wild-type CJ strains.

  15. Associations between anti-microbial resistance phenotypes, anti-microbial resistance genotypes and virulence genes of Escherichia coli isolates from Pakistan and China.

    PubMed

    Yaqoob, M; Wang, L P; Wang, S; Hussain, S; Memon, J; Kashif, J; Lu, C-P

    2013-10-01

    The objective of this study was to determine the association between phenotypic resistance, genotypic resistance and virulence genes of Escherichia coli isolates in Jiangsu province, China and Punjab province Pakistan. A total of 62 E. coli isolates were characterized for phenotypic resistance, genotypic resistance and virulence factor genes. The anti-microbial resistance phenotype and genotypes in relation to virulence factor genes were assessed by statistical analysis. Of 20 tested virulence genes, twelve were found and eight were not found in any isolates. sitA and TspE4C2 were the most prevalent virulence genes. Of the 13 anti-microbial agents tested, resistance to ampicillin, sulphonamide and tetracycline was the most frequent. All isolates were multiresistant, and 74% were resistant to trimethoprim and sulphamethaxazole. Phenotypically, tetracycline-, cefotaxime- and trimethoprim-resistant isolates had increased virulence factors as compared with susceptible isolates. Genotypically, resistant genes Tem, ctx-M, Tet, Sul 1, dhfr1, Cat2 and flo-R showed the association with the virulence genes. Almost all classes of anti-microbial-resistant genes have a high association with virulence. Resistant isolates have more virulent genes than the susceptible isolates. © 2012 Blackwell Verlag GmbH.

  16. Analysis of metal and biocides resistance genes in drug resistance and susceptible Salmonella enterica from food animals

    USDA-ARS?s Scientific Manuscript database

    Background Generally drug resistant bacteria carry antibiotic resistance genes and heavy metal and biocide resistance genes on large conjugative plasmids. The presence of these metal and biocide resistance genes in susceptible bacteria are not assessed comprehensively. Hence, WGS data of susceptib...

  17. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact.

    PubMed

    Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun

    2017-08-01

    Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.

  18. The diversity of antimicrobial resistance genes among staphylococci of animal origin.

    PubMed

    Wendlandt, Sarah; Feßler, Andrea T; Monecke, Stefan; Ehricht, Ralf; Schwarz, Stefan; Kadlec, Kristina

    2013-08-01

    Staphylococci of animal origin harbor a wide variety of resistance genes. So far, more than 40 different resistance genes have been identified in staphylococci from animals. This includes genes that confer resistance to virtually all classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into three major categories: (i) enzymatic inactivation, (ii) active efflux, or (iii) protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate the exchange of resistance genes with staphylococci of human origin but also with other Gram-positive bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Molecular mapping and genetic analysis of a rice brown planthopper (Nilaparvata lugens Stål) resistance gene.

    PubMed

    Yang, Haiyuan; Ren, Xiang; Weng, Qingmei; Zhu, Lili; He, Guangcun

    2002-01-01

    The brown planthopper (BPH), Nilaparvata lugens Stål, is a serious insect pest of rice (Oryza saliva L.). We have determined the chromosomal location of a BPH resistance gene in rice using SSR and RFLP techniques. A rice line 'B14', derived from the wild rice Oryza latifolia, showed high resistance to BPH. For tagging the resistance gene in 'B14X', an F2 population and a recombinant inbred (RI) population from a cross between Taichung Native 1 and 'B14' were developed and evaluated for BPH resistance. The results showed that a single dominant gene controlled the resistance of 'B14' to BPH. Bulked segregant SSR analysis was employed for identification of DNA markers linked to the resistance gene. From the survey of 302 SSR primer pairs, three SSR (RM335, RM261, RM185) markers linked to the resistance gene were identified. The closest SSR marker RM261 was linked to the resistance gene at a distance of 1.8 cM. Regions surrounding the resistance gene and the SSR markers were examined with additional RFLP markers on chromosome 4 to define the location of the resistance gene. Linkage of RFLP markers C820, R288, C946 with the resistance gene further confirmed its location on the short arm of chromosome 4. Closely linked DNA markers will facilitate selection for resistant lines in breeding programs and provide the basis for map-based cloning of this resistance gene.

  20. Transcriptional Analysis of Resistance to Low Temperatures in Bermudagrass Crown Tissues

    PubMed Central

    Melmaiee, Kalpalatha; Anderson, Michael; Elavarthi, Sathya; Guenzi, Arron; Canaan, Patricia

    2015-01-01

    Bermudagrass (Cynodon dactylon L pers.) is one of the most geographically adapted and utilized of the warm-season grasses. However, bermudagrass adaptation to the Northern USA is limited by freeze damage and winterkill. Our study provides the first large-scale analyses of gene expression in bermudagrass regenerative crown tissues during cold acclimation. We compared gene expression patterns in crown tissues from highly cold tolerant “MSU” and susceptible “Zebra” genotypes exposed to near-freezing temperatures. Suppressive subtractive hybridization was used to isolate putative cold responsive genes Approximately, 3845 transcript sequences enriched for cold acclimation were deposited in the GenBank. A total of 4589 ESTs (3184 unigenes) including 744 ESTs associated with the bermudagrass disease spring dead spot were printed on microarrays and hybridized with cold acclimated complementary Deoxyribonucleic acid (cDNA). A total of 587 differentially expressed unigenes were identified in this study. Of these only 97 (17%) showed significant NCBI matches. The overall expression pattern revealed 40% more down- than up-regulated genes, which was particularly enhanced in MSU compared to Zebra. Among the up-regulated genes 68% were uniquely expressed in MSU (36%) or Zebra (32%). Among the down-regulated genes 40% were unique to MSU, while only 15% to Zebra. Overall expression intensity was significantly higher in MSU than in Zebra (p value ≤ 0.001) and the overall number of genes expressed at 28 days was 2.7 fold greater than at 2 days. These changes in expression patterns reflect the strong genotypic and temporal response to cold temperatures. Additionally, differentially expressed genes from this study can be utilized for developing molecular markers in bermudagrass and other warm season grasses for enhancing cold hardiness. PMID:26348040

  1. A Three-protein Charge Zipper Stabilizes a Complex Modulating Bacterial Gene Silencing*

    PubMed Central

    Cordeiro, Tiago N.; García, Jesús; Bernadó, Pau; Millet, Oscar; Pons, Miquel

    2015-01-01

    The Hha/YmoA nucleoid-associated proteins help selectively silence horizontally acquired genetic material, including pathogenicity and antibiotic resistance genes and their maintenance in the absence of selective pressure. Members of the Hha family contribute to gene silencing by binding to the N-terminal dimerization domain of H-NS and modifying its selectivity. Hha-like proteins and the H-NS N-terminal domain are unusually rich in charged residues, and their interaction is mostly electrostatic-driven but, nonetheless, highly selective. The NMR-based structural model of the complex between Hha/YmoA and the H-NS N-terminal dimerization domain reveals that the origin of the selectivity is the formation of a three-protein charge zipper with interdigitated complementary charged residues from Hha and the two units of the H-NS dimer. The free form of YmoA shows collective microsecond-millisecond dynamics that can by measured by NMR relaxation dispersion experiments and shows a linear dependence with the salt concentration. The number of residues sensing the collective dynamics and the population of the minor form increased in the presence of H-NS. Additionally, a single residue mutation in YmoA (D43N) abolished H-NS binding and the dynamics of the apo-form, suggesting the dynamics and binding are functionally related. PMID:26085102

  2. Occurrence of antibiotic resistance and characterization of resistant genes and integrons in Enterobacteriaceae isolated from integrated fish farms south China

    USGS Publications Warehouse

    Su, Hao-Chang; Ying, Guang-Guo; Tao, Ran; Zhang, Rui-Quan; Fogarty, Lisa R.; Kolpin, Dana W.

    2011-01-01

    Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture.

  3. Staphylococcus aureus Promotes Smed-PGRP-2/Smed-setd8-1 Methyltransferase Signalling in Planarian Neoblasts to Sensitize Anti-bacterial Gene Responses During Re-infection.

    PubMed

    Torre, Cedric; Abnave, Prasad; Tsoumtsa, Landry Laure; Mottola, Giovanna; Lepolard, Catherine; Trouplin, Virginie; Gimenez, Gregory; Desrousseaux, Julie; Gempp, Stephanie; Levasseur, Anthony; Padovani, Laetitia; Lemichez, Emmanuel; Ghigo, Eric

    2017-06-01

    Little is known about how organisms exposed to recurrent infections adapt their innate immune responses. Here, we report that planarians display a form of instructed immunity to primo-infection by Staphylococcus aureus that consists of a transient state of heightened resistance to re-infection that persists for approximately 30days after primo-infection. We established the involvement of stem cell-like neoblasts in this instructed immunity using the complementary approaches of RNA-interference-mediated cell depletion and tissue grafting-mediated gain of function. Mechanistically, primo-infection leads to expression of the peptidoglycan receptor Smed-PGRP-2, which in turn promotes Smed-setd8-1 histone methyltransferase expression and increases levels of lysine methylation in neoblasts. Depletion of neoblasts did not affect S. aureus clearance in primo-infection but, in re-infection, abrogated the heightened elimination of bacteria and reduced Smed-PGRP-2 and Smed-setd8-1 expression. Smed-PGRP-2 and Smed-setd8-1 sensitize animals to heightened expression of Smed-p38 MAPK and Smed-morn2, which are downstream components of anti-bacterial responses. Our study reveals a central role of neoblasts in innate immunity against S. aureus to establish a resistance state facilitating Smed-sted8-1-dependent expression of anti-bacterial genes during re-infection. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Molecular study on some antibiotic resistant genes in Salmonella spp. isolates

    NASA Astrophysics Data System (ADS)

    Nabi, Ari Q.

    2017-09-01

    Studying the genes related with antimicrobial resistance in Salmonella spp. is a crucial step toward a correct and faster treatment of infections caused by the pathogen. In this work Integron mediated antibiotic resistant gene IntI1 (Class I Integrase IntI1) and some plasmid mediated antibiotic resistance genes (Qnr) were scanned among the isolated non-Typhoid Salmonellae strains with known resistance to some important antimicrobial drugs using Sybr Green real time PCR. The aim of the study was to correlate the multiple antibiotics and antimicrobial resistance of Salmonella spp. with the presence of integrase (IntI1) gene and plasmid mediated quinolone resistant genes. Results revealed the presence of Class I Integrase gene in 76% of the isolates with confirmed multiple antibiotic resistances. Moreover, about 32% of the multiple antibiotic resistant serotypes showed a positive R-PCR for plasmid mediated qnrA gene encoding for nalidixic acid and ciprofloxacin resistance. No positive results could be revealed form R-PCRs targeting qnrB or qnrS. In light of these results we can conclude that the presence of at least one of the qnr genes and/or the presence of Integrase Class I gene were responsible for the multiple antibiotic resistance to for nalidixic acid and ciprofloxacin from the studied Salmonella spp. and further studies required to identify the genes related with multiple antibiotic resistance of the pathogen.

  5. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes.

    PubMed

    Sahoo, Dipak K; Abeysekara, Nilwala S; Cianzio, Silvia R; Robertson, Alison E; Bhattacharyya, Madan K

    2017-01-01

    Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs) (F7 families) were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR)-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.

  6. Identification and Characterization of a Cis Antisense RNA of the rpoH Gene of Salmonella enterica Serovar Typhi.

    PubMed

    Xiong, Changyan; Li, Xuejiao; Liu, Juanli; Zhao, Xin; Xu, Shungao; Huang, Xinxiang

    2018-01-01

    Antisense RNAs from complementary strands of protein coding genes regulate the expression of genes involved in many cellular processes. Using deep sequencing analysis of the Salmonella enterica serovar Typhi ( S. Typhi) transcriptome, a novel antisense RNA encoded on the strand complementary to the rpoH gene was revealed. In this study, the molecular features of this antisense RNA were assessed using northern blotting and rapid amplification of cDNA ends. The 3,508 nt sequence of RNA was identified as the antisense RNA of the rpoH gene and was named ArpH. ArpH was found to attenuate the invasion of HeLa cells by S. Typhi by regulating the expression of SPI-1 genes. In an rpoH mutant strain, the invasive capacity of S. Typhi was increased, whereas overexpression of ArpH positively regulates rpoH mRNA levels. Results of this study suggest that the cis -encoded antisense RNA ArpH is likely to affect the invasive capacity of S. Typhi by regulating the expression of rpoH .

  7. Complete sequence of a plasmid from a bovine methicillin-resistant Staphylococcus aureus harbouring a novel ica-like gene cluster in addition to antimicrobial and heavy metal resistance genes.

    PubMed

    Feßler, Andrea T; Zhao, Qin; Schoenfelder, Sonja; Kadlec, Kristina; Brenner Michael, Geovana; Wang, Yang; Ziebuhr, Wilma; Shen, Jianzhong; Schwarz, Stefan

    2017-02-01

    The multiresistance plasmid pAFS11, obtained from a bovine methicillin-resistant Staphylococcus aureus (MRSA) isolate, was completely sequenced and analysed for its structure and organisation. Moreover, the susceptibility to the heavy metals cadmium and copper was determined by broth macrodilution. The 49,189-bp plasmid harboured the apramycin resistance gene apmA, two copies of the macrolide/lincosamide/streptogramin B resistance gene erm(B) (both located on remnants of a truncated transposon Tn917), the kanamycin/neomycin resistance gene aadD, the tetracycline resistance gene tet(L) and the trimethoprim resistance gene dfrK. The latter three genes were part of a 7,284-bp segment which was bracketed by two copies of IS431. In addition, the cadmium resistance operon cadDX as well as the copper resistance genes copA and mco were located on the plasmid and mediated a reduced susceptibility to cadmium and copper. Moreover, a complete novel ica-like gene cluster of so far unknown genetic origin was detected on this plasmid. The ica-like gene cluster comprised four different genes whose products showed 64.4-76.9% homology to the Ica proteins known to be involved in biofilm formation of the S. aureus strains Mu50, Mu3 and N315. However, 96.2-99.4% homology was seen to proteins from S. sciuri NS1 indicating an S. sciuri origin. The finding of five different antibiotic resistance genes co-located on a plasmid with heavy metal resistance genes and an ica-like gene cluster is alarming. With the acquisition of this plasmid, antimicrobial multiresistance, heavy metal resistances and potential virulence properties may be co-selected and spread via a single horizontal gene transfer event. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Combining Selective Pressures to Enhance the Durability of Disease Resistance Genes.

    PubMed

    2016-01-01

    The efficacy of disease resistance genes in plants decreases over time because of the selection of virulent pathogen genotypes. A key goal of crop protection programs is to increase the durability of the resistance conferred by these genes. The spatial and temporal deployment of plant disease resistance genes is considered to be a major factor determining their durability. In the literature, four principal strategies combining resistance genes over time and space have been considered to delay the evolution of virulent pathogen genotypes. We reviewed this literature with the aim of determining which deployment strategy results in the greatest durability of resistance genes. Although theoretical and empirical studies comparing deployment strategies of more than one resistance gene are very scarce, they suggest that the overall durability of disease resistance genes can be increased by combining their presence in the same plant (pyramiding). Retrospective analyses of field monitoring data also suggest that the pyramiding of disease resistance genes within a plant is the most durable strategy. By extension, we suggest that the combination of disease resistance genes with other practices for pathogen control (pesticides, farming practices) may be a relevant management strategy to slow down the evolution of virulent pathogen genotypes.

  9. The Maximal C³ Self-Complementary Trinucleotide Circular Code X in Genes of Bacteria, Archaea, Eukaryotes, Plasmids and Viruses.

    PubMed

    Michel, Christian J

    2017-04-18

    In 1996, a set X of 20 trinucleotides was identified in genes of both prokaryotes and eukaryotes which has on average the highest occurrence in reading frame compared to its two shifted frames. Furthermore, this set X has an interesting mathematical property as X is a maximal C 3 self-complementary trinucleotide circular code. In 2015, by quantifying the inspection approach used in 1996, the circular code X was confirmed in the genes of bacteria and eukaryotes and was also identified in the genes of plasmids and viruses. The method was based on the preferential occurrence of trinucleotides among the three frames at the gene population level. We extend here this definition at the gene level. This new statistical approach considers all the genes, i.e., of large and small lengths, with the same weight for searching the circular code X . As a consequence, the concept of circular code, in particular the reading frame retrieval, is directly associated to each gene. At the gene level, the circular code X is strengthened in the genes of bacteria, eukaryotes, plasmids, and viruses, and is now also identified in the genes of archaea. The genes of mitochondria and chloroplasts contain a subset of the circular code X . Finally, by studying viral genes, the circular code X was found in DNA genomes, RNA genomes, double-stranded genomes, and single-stranded genomes.

  10. Role of G-protein-coupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus.

    PubMed

    Li, Ting; Liu, Lena; Zhang, Lee; Liu, Nannan

    2014-09-29

    G-protein-coupled receptors regulate signal transduction pathways and play diverse and pivotal roles in the physiology of insects, however, the precise function of GPCRs in insecticide resistance remains unclear. Using quantitative RT-PCR and functional genomic methods, we, for the first time, explored the function of GPCRs and GPCR-related genes in insecticide resistance of mosquitoes, Culex quinquefasciatus. A comparison of the expression of 115 GPCR-related genes at a whole genome level between resistant and susceptible Culex mosquitoes identified one and three GPCR-related genes that were up-regulated in highly resistant Culex mosquito strains, HAmCq(G8) and MAmCq(G6), respectively. To characterize the function of these up-regulated GPCR-related genes in resistance, the up-regulated GPCR-related genes were knockdown in HAmCq(G8) and MAmCq(G6) using RNAi technique. Knockdown of these four GPCR-related genes not only decreased resistance of the mosquitoes to permethrin but also repressed the expression of four insecticide resistance-related P450 genes, suggesting the role of GPCR-related genes in resistance is involved in the regulation of resistance P450 gene expression. This results help in understanding of molecular regulation of resistance development in Cx. quinquefasciatus.

  11. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance.

    PubMed

    Geffroy, V; Sévignac, M; De Oliveira, J C; Fouilloux, G; Skroch, P; Thoquet, P; Gepts, P; Langin, T; Dron, M

    2000-03-01

    Anthracnose, one of the most important diseases of common bean (Phaseolus vulgaris), is caused by the fungus Colletotrichum lindemuthianum. A "candidate gene" approach was used to map anthracnose resistance quantitative trait loci (QTL). Candidate genes included genes for both pathogen recognition (resistance genes and resistance gene analogs [RGAs]) and general plant defense (defense response genes). Two strains of C. lindemuthianum, identified in a world collection of 177 strains, displayed a reproducible and differential aggressiveness toward BAT93 and JaloEEP558, two parental lines of P. vulgaris representing the two major gene pools of this crop. A reliable test was developed to score partial resistance in aerial organs of the plant (stem, leaf, petiole) under controlled growth chamber conditions. BAT93 was more resistant than JaloEEP558 regardless of the organ or strain tested. With a recombinant inbred line (RIL) population derived from a cross between these two parental lines, 10 QTL were located on a genetic map harboring 143 markers, including known defense response genes, anthracnose-specific resistance genes, and RGAs. Eight of the QTL displayed isolate specificity. Two were co-localized with known defense genes (phenylalanine ammonia-lyase and hydroxyproline-rich glycoprotein) and three with anthracnose-specific resistance genes and/or RGAs. Interestingly, two QTL, with different allelic contribution, mapped on linkage group B4 in a 5.0 cM interval containing Andean and Mesoamerican specific resistance genes against C. lindemuthianum and 11 polymorphic fragments revealed with a RGA probe. The possible relationship between genes underlying specific and partial resistance is discussed.

  12. Alteration of gene expression and DNA methylation in drug-resistant gastric cancer.

    PubMed

    Maeda, Osamu; Ando, Takafumi; Ohmiya, Naoki; Ishiguro, Kazuhiro; Watanabe, Osamu; Miyahara, Ryoji; Hibi, Yoko; Nagai, Taku; Yamada, Kiyofumi; Goto, Hidemi

    2014-04-01

    The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.

  13. Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions.

    PubMed

    Versluis, Dennis; D'Andrea, Marco Maria; Ramiro Garcia, Javier; Leimena, Milkha M; Hugenholtz, Floor; Zhang, Jing; Öztürk, Başak; Nylund, Lotta; Sipkema, Detmer; van Schaik, Willem; de Vos, Willem M; Kleerebezem, Michiel; Smidt, Hauke; van Passel, Mark W J

    2015-07-08

    Antibiotic resistance genes are found in a broad range of ecological niches associated with complex microbiota. Here we investigated if resistance genes are not only present, but also transcribed under natural conditions. Furthermore, we examined the potential for antibiotic production by assessing the expression of associated secondary metabolite biosynthesis gene clusters. Metatranscriptome datasets from intestinal microbiota of four human adults, one human infant, 15 mice and six pigs, of which only the latter have received antibiotics prior to the study, as well as from sea bacterioplankton, a marine sponge, forest soil and sub-seafloor sediment, were investigated. We found that resistance genes are expressed in all studied ecological niches, albeit with niche-specific differences in relative expression levels and diversity of transcripts. For example, in mice and human infant microbiota predominantly tetracycline resistance genes were expressed while in human adult microbiota the spectrum of expressed genes was more diverse, and also included β-lactam, aminoglycoside and macrolide resistance genes. Resistance gene expression could result from the presence of natural antibiotics in the environment, although we could not link it to expression of corresponding secondary metabolites biosynthesis clusters. Alternatively, resistance gene expression could be constitutive, or these genes serve alternative roles besides antibiotic resistance.

  14. Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions

    NASA Astrophysics Data System (ADS)

    Versluis, Dennis; D'Andrea, Marco Maria; Ramiro Garcia, Javier; Leimena, Milkha M.; Hugenholtz, Floor; Zhang, Jing; Öztürk, Başak; Nylund, Lotta; Sipkema, Detmer; Schaik, Willem Van; de Vos, Willem M.; Kleerebezem, Michiel; Smidt, Hauke; Passel, Mark W. J. Van

    2015-07-01

    Antibiotic resistance genes are found in a broad range of ecological niches associated with complex microbiota. Here we investigated if resistance genes are not only present, but also transcribed under natural conditions. Furthermore, we examined the potential for antibiotic production by assessing the expression of associated secondary metabolite biosynthesis gene clusters. Metatranscriptome datasets from intestinal microbiota of four human adults, one human infant, 15 mice and six pigs, of which only the latter have received antibiotics prior to the study, as well as from sea bacterioplankton, a marine sponge, forest soil and sub-seafloor sediment, were investigated. We found that resistance genes are expressed in all studied ecological niches, albeit with niche-specific differences in relative expression levels and diversity of transcripts. For example, in mice and human infant microbiota predominantly tetracycline resistance genes were expressed while in human adult microbiota the spectrum of expressed genes was more diverse, and also included β-lactam, aminoglycoside and macrolide resistance genes. Resistance gene expression could result from the presence of natural antibiotics in the environment, although we could not link it to expression of corresponding secondary metabolites biosynthesis clusters. Alternatively, resistance gene expression could be constitutive, or these genes serve alternative roles besides antibiotic resistance.

  15. Diversity of plasmids and antimicrobial resistance genes in multidrug-resistant Escherichia coli isolated from healthy companion animals

    USDA-ARS?s Scientific Manuscript database

    The presence and transfer of antimicrobial resistance genes from commensal bacteria in companion animals to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. The purpose of this study was to determine antimicrobial resistance gene content and the presence of gene...

  16. Organization of a resistance gene cluster linked to rhizomania resistance in sugar beet

    USDA-ARS?s Scientific Manuscript database

    Genetic resistance to rhizomania has been in use for over 40 years. Characterization of the molecular basis for susceptibility and resistance has proved challenging. Nucleotide-binding leucine-rich-repeat-containing (NB-LRR) genes have been implicated in numerous gene-for-gene resistance interaction...

  17. Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode.

    PubMed

    van der Vossen, E A; van der Voort, J N; Kanyuka, K; Bendahmane, A; Sandbrink, H; Baulcombe, D C; Bakker, J; Stiekema, W J; Klein-Lankhorst, R M

    2000-09-01

    The isolation of the nematode-resistance gene Gpa2 in potato is described, and it is demonstrated that highly homologous resistance genes of a single resistance-gene cluster can confer resistance to distinct pathogen species. Molecular analysis of the Gpa2 locus resulted in the identification of an R-gene cluster of four highly homologous genes in a region of approximately 115 kb. At least two of these genes are active: one corresponds to the previously isolated Rx1 gene that confers resistance to potato virus X, while the other corresponds to the Gpa2 gene that confers resistance to the potato cyst nematode Globodera pallida. The proteins encoded by the Gpa2 and the Rx1 genes share an overall homology of over 88% (amino-acid identity) and belong to the leucine-zipper, nucleotide-binding site, leucine-rich repeat (LZ-NBS-LRR)-containing class of plant resistance genes. From the sequence conservation between Gpa2 and Rx1 it is clear that there is a direct evolutionary relationship between the two proteins. Sequence diversity is concentrated in the LRR region and in the C-terminus. The putative effector domains are more conserved suggesting that, at least in this case, nematode and virus resistance cascades could share common components. These findings underline the potential of protein breeding for engineering new resistance specificities against plant pathogens in vitro.

  18. Suppression of mutants aberrant in light intensity responses of complementary chromatic adaptation.

    PubMed Central

    Casey, E S; Kehoe, D M; Grossman, A R

    1997-01-01

    Complementary chromatic adaptation is a process in which cyanobacteria alter the pigment protein (phycocyanin and phycoerythrin) composition of their light-harvesting complexes, the phycobilisomes, to help optimize the absorbance of prevalent wavelengths of light in the environment. Several classes of mutants that display aberrant complementary chromatic adaptation have been isolated. One of the mutant classes, designated "blue" or FdB, accumulates high levels of the blue chromoprotein phycocyanin in low-intensity green light, a condition that normally suppresses phycocyanin synthesis. We demonstrate here that the synthesis of the phycocyanin protein and mRNA in the FdB mutants can be suppressed by increasing the intensity of green light. Hence, these mutants have a decreased sensitivity to green light with respect to suppression of phycocyanin synthesis. Although we were unable to complement the blue mutants, we did isolate genes that could suppress the mutant phenotype. These genes, which have been identified previously, encode a histidine kinase sensor and response regulator protein that play key roles in controlling complementary chromatic adaptation. These findings are discussed with respect to the mechanism by which light quality and quantity control the biosynthesis of the phycobilisome. PMID:9226271

  19. Cloning of novel rice blast resistance genes from two rapidly evolving NBS-LRR gene families in rice.

    PubMed

    Guo, Changjiang; Sun, Xiaoguang; Chen, Xiao; Yang, Sihai; Li, Jing; Wang, Long; Zhang, Xiaohui

    2016-01-01

    Most rice blast resistance genes (R-genes) encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. Our previous study has shown that more rice blast R-genes can be cloned in rapidly evolving NBS-LRR gene families. In the present study, two rapidly evolving R-gene families in rice were selected for cloning a subset of genes from their paralogs in three resistant rice lines. A total of eight functional blast R-genes were identified among nine NBS-LRR genes, and some of these showed resistance to three or more blast strains. Evolutionary analysis indicated that high nucleotide diversity of coding regions served as important parameters in the determination of gene resistance. We also observed that amino-acid variants (nonsynonymous mutations, insertions, or deletions) in essential motifs of the NBS domain contribute to the blast resistance capacity of NBS-LRR genes. These results suggested that the NBS regions might also play an important role in resistance specificity determination. On the other hand, different splicing patterns of introns were commonly observed in R-genes. The results of the present study contribute to improving the effectiveness of R-gene identification by using evolutionary analysis method and acquisition of novel blast resistance genes.

  20. Transcriptome analysis by strand-specific sequencing of complementary DNA

    PubMed Central

    Parkhomchuk, Dmitri; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Banaru, Maria; Hallen, Linda; Krobitsch, Sylvia; Lehrach, Hans; Soldatov, Alexey

    2009-01-01

    High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcript's expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about a transcript's direction. Using Saccharomyces cerevisiae and mouse brain transcriptomes as models, we demonstrate that knowing the transcript's orientation allows more accurate determination of the structure and expression of genes. It also helps to identify new genes and enables studying promoter-associated and antisense transcription. The transcriptional landscapes we obtained are available online. PMID:19620212

  1. Transcriptome analysis by strand-specific sequencing of complementary DNA.

    PubMed

    Parkhomchuk, Dmitri; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Banaru, Maria; Hallen, Linda; Krobitsch, Sylvia; Lehrach, Hans; Soldatov, Alexey

    2009-10-01

    High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcript's expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about a transcript's direction. Using Saccharomyces cerevisiae and mouse brain transcriptomes as models, we demonstrate that knowing the transcript's orientation allows more accurate determination of the structure and expression of genes. It also helps to identify new genes and enables studying promoter-associated and antisense transcription. The transcriptional landscapes we obtained are available online.

  2. An associative capacitive network based on nanoscale complementary resistive switches for memory-intensive computing

    NASA Astrophysics Data System (ADS)

    Kavehei, Omid; Linn, Eike; Nielen, Lutz; Tappertzhofen, Stefan; Skafidas, Efstratios; Valov, Ilia; Waser, Rainer

    2013-05-01

    We report on the implementation of an Associative Capacitive Network (ACN) based on the nondestructive capacitive readout of two Complementary Resistive Switches (2-CRSs). ACNs are capable of performing a fully parallel search for Hamming distances (i.e. similarity) between input and stored templates. Unlike conventional associative memories where charge retention is a key function and hence, they require frequent refresh cycles, in ACNs, information is retained in a nonvolatile resistive state and normal tasks are carried out through capacitive coupling between input and output nodes. Each device consists of two CRS cells and no selective element is needed, therefore, CMOS circuitry is only required in the periphery, for addressing and read-out. Highly parallel processing, nonvolatility, wide interconnectivity and low-energy consumption are significant advantages of ACNs over conventional and emerging associative memories. These characteristics make ACNs one of the promising candidates for applications in memory-intensive and cognitive computing, switches and routers as binary and ternary Content Addressable Memories (CAMs) and intelligent data processing.

  3. Generation of novel resistance genes using mutation and targeted gene editing.

    PubMed

    Gal-On, Amit; Fuchs, Marc; Gray, Stewart

    2017-10-01

    Classical breeding for virus resistance is a lengthy process and is restricted by the availability of resistance genes. Precise genome editing is a 'dream technology' to improve plants for virus resistance and these tools have opened new and very promising ways to generate virus resistant plants by disrupting host susceptibility genes, or by increasing the expression of viral resistance genes. However, precise targets must be identified and their roles understood to minimize potential negative effects on the plant. Nonetheless, the opportunities for genome editing are expanding, as are the technologies to generate effective and broad-spectrum resistance against plant viruses. Here we provide insights into recent progress related to gene targets and gene editing technologies. Published by Elsevier B.V.

  4. Fate of Antibiotic Resistant Bacteria and Genes during Wastewater Chlorination: Implication for Antibiotic Resistance Control

    PubMed Central

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L). The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L). By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L). However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination. PMID:25738838

  5. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  6. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  7. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  8. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  9. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Potato Leaf Roll Virus Resistance Gene... Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the requirement of a tolerance. An... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  10. Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds.

    PubMed

    Lin, Mao; Wu, Xiaomei; Yan, Qingpi; Ma, Ying; Huang, Lixing; Qin, Yingxue; Xu, Xiaojin

    2016-07-07

    The overuse of antimicrobials in aquaculture has promoted the selection of antimicrobial-resistant bacteria. Here we investigated the abundance of antimicrobial-resistance genes and integrons in 108 strains of antibiotic-resistant bacteria isolated from eels and aquaculture ponds in China. Conventional PCR was implemented to examine common antibiotic-resistance genes, integrons, and their gene cassette arrays. The results showed that the antibiotic-resistance genes blaTEM, tetC, sulI, aadA, floR, and qnrB were detected at high percentages, as were a number of other resistance genes. Class I integrons were present in 79.63% of the strains, and 10 out of 108 isolates carried class II integrons. Class III integrons were not detected. Three strains carried both class I and class II integrons, and 73.26% of the class I integron-positive isolates contained the qacEΔ1/sul1 gene. Fourteen types of integron cassette arrays were found among class I integron-positive isolates. A new array, dfrB4-catB3-blaOXA-10-aadA1, was discovered in this study. The gene cassette array dfrA12-orfF-aadA2 was the most widely distributed. In summary, 23 different gene cassettes encoding resistance to 8 classes of antibiotics were identified in the class I integrons, and the main cassettes contained genes encoding resistance to aminoglycosides (aad) and trimethoprim (dfr). All class II integron-positive strains had only a single gene cassette array, viz. dfrA1-catB2-sat2-aadA1. High levels of antimicrobial-resistance genes and integrons in eels and auqauculture ponds suggest that the overuse of antimicrobials should be strictly controlled and that the levels of bacterial antimicrobial-resistance genes in aquaculture should be monitored.

  11. Effect of swine manure application timing on the persistence and transport of antibiotic-resistant Enterococcus and resistance genes

    USDA-ARS?s Scientific Manuscript database

    Swine manure applied to agricultural fields may lead to the transport of antibiotic resistant bacteria and antibiotic resistance genes to freshwater systems. Enterococci were studied because they are fecal indicator bacteria associated with manure. Resistance genes include genes from live cells, dea...

  12. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.).

    PubMed

    Peng, Fred Y; Yang, Rong-Cai

    2017-06-20

    The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for adult resistance and six SNPs for seedling resistance in the NLR genes. Most of these coding SNPs were predicted to alter encoded amino acids and such information may serve as a starting point towards more thorough molecular and functional characterization of the designated Lr genes. Using the primer sequences of 99 known non-SNP markers from leaf rust resistance QTLs, we found candidate genes closely linked to these markers, including Lr34 with distances to its two gene-specific markers being 1212 bases (to cssfr1) and 2189 bases (to cssfr2). This study represents a comprehensive analysis of ABC, NLR and START genes in the hexaploid wheat genome and their physical relationships with QTLs for leaf rust resistance at seedling and adult stages. Our analysis suggests that the ABC (and START) genes are more likely to be co-located with QTLs for race-nonspecific, adult resistance whereas the NLR genes are more likely to be co-located with QTLs for race-specific resistance that would be often expressed at the seedling stage. Though our analysis was hampered by inaccurate or unknown physical positions of numerous QTLs due to the incomplete assembly of the complex hexaploid wheat genome that is currently available, the observed associations between (i) QTLs for race-specific resistance and NLR genes and (ii) QTLs for nonspecific resistance and ABC genes will help discover SNP variants for leaf rust resistance at seedling and adult stages. The genes containing nonsynonymous SNPs are promising candidates that can be investigated in future studies as potential new sources of leaf rust resistance in wheat breeding.

  13. Antibiotic Resistance in Salmonella from Retail Foods of Animal Origin and Its Association with Disinfectant and Heavy Metal Resistance.

    PubMed

    Deng, Wenwen; Quan, Yuan; Yang, Shengzhi; Guo, Lijuan; Zhang, Xiuli; Liu, Shuliang; Chen, Shujuan; Zhou, Kang; He, Li; Li, Bei; Gu, Yunfu; Zhao, Shaohua; Zou, Likou

    2017-10-17

    This study aims to demonstrate the antibiotic resistance and its association with disinfectant and heavy metal resistance in 152 Salmonella isolates recovered from retail foods of animal origins. Susceptibility testing demonstrated that 92.8% isolates were resistant to at least one antibiotic, and the resistance was highest to oxytetracycline (80.9%), followed by trimethoprim (64.5%), amoxicillin (28.9%), ampicillin (28.3%), levofloxacin (21.7%), ciprofloxacin (16.4%), and gentamicin (10.5%), respectively. The bla TEM and tetA genes (44.7%) were commonly present. The qacF and qacEΔ1 genes were detected in 18.4% and 8.6% of all isolates. The Cu-resistance genes pcoR, pcoC, and pcoA were the most prevalent (20.4-40.8%), followed by Hg-resistance gene merA (17.8%) and As-resistance genes arsB (6.6%). The antibiotic resistance was highly associated with disinfectant or certain heavy metal resistance genes. Most notably, the association among Cu-resistance genes (pcoC, pcoR), disinfectant resistance genes (qacF, qacEΔ1), and tetracycline and sulfonamide resistance genes (tet, sul) was significant (p < 0.05). Pulsed-field gel electrophoresis revealed that Salmonella isolates was associated with supermarkets indicating the possibility of crosscontamination in farms or processing environment. This study indicated that retail meats may be a reservoir for the dissemination of antibiotic-resistant Salmonella and using disinfectants for decontamination or metals in livestock may provide a pressure for coselecting strains with acquired resistance to other antimicrobials.

  14. The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal

    PubMed Central

    Hu, Yongfei; Yang, Xi; Lu, Na; Zhu, Baoli

    2014-01-01

    Increasing evidence has accumulated to support that the human gut is a reservoir for antibiotic resistance genes. We previously identified more than 1000 genes displaying high similarity with known antibiotic resistance genes in the human gut gene set generated from the Chinese, Danish, and Spanish populations. Here, first, we add our new understanding of antibiotic resistance genes in the US and the Japanese populations; next, we describe the structure of a vancomycin-resistant operon in a Danish sample; and finally, we provide discussions on the correlation of the abundance of resistance genes in human gut with the antibiotic consumption in human medicine and in animal husbandry. These results, combined with those we published previously, provide comprehensive insights into the antibiotic resistance genes in the human gut microbiota at a population level. PMID:24637798

  15. The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal.

    PubMed

    Hu, Yongfei; Yang, Xi; Lu, Na; Zhu, Baoli

    2014-01-01

    Increasing evidence has accumulated to support that the human gut is a reservoir for antibiotic resistance genes. We previously identified more than 1000 genes displaying high similarity with known antibiotic resistance genes in the human gut gene set generated from the Chinese, Danish, and Spanish populations. Here, first, we add our new understanding of antibiotic resistance genes in the US and the Japanese populations; next, we describe the structure of a vancomycin-resistant operon in a Danish sample; and finally, we provide discussions on the correlation of the abundance of resistance genes in human gut with the antibiotic consumption in human medicine and in animal husbandry. These results, combined with those we published previously, provide comprehensive insights into the antibiotic resistance genes in the human gut microbiota at a population level.

  16. Transcriptome Analysis of Chlorantraniliprole Resistance Development in the Diamondback Moth Plutella xylostella

    PubMed Central

    Hu, Zhendi; Chen, Huanyu; Yin, Fei; Li, Zhenyu; Dong, Xiaolin; Zhang, Deyong; Ren, Shunxiang; Feng, Xia

    2013-01-01

    Background The diamondback moth Plutella xyllostella has developed a high level of resistance to the latest insecticide chlorantraniliprole. A better understanding of P. xylostella’s resistance mechanism to chlorantraniliprole is needed to develop effective approaches for insecticide resistance management. Principal Findings To provide a comprehensive insight into the resistance mechanisms of P. xylostella to chlorantraniliprole, transcriptome assembly and tag-based digital gene expression (DGE) system were performed using Illumina HiSeq™ 2000. The transcriptome analysis of the susceptible strain (SS) provided 45,231 unigenes (with the size ranging from 200 bp to 13,799 bp), which would be efficient for analyzing the differences in different chlorantraniliprole-resistant P. xylostella stains. DGE analysis indicated that a total of 1215 genes (189 up-regulated and 1026 down-regulated) were gradient differentially expressed among the susceptible strain (SS) and different chlorantraniliprole-resistant P. xylostella strains, including low-level resistance (GXA), moderate resistance (LZA) and high resistance strains (HZA). A detailed analysis of gradient differentially expressed genes elucidated the existence of a phase-dependent divergence of biological investment at the molecular level. The genes related to insecticide resistance, such as P450, GST, the ryanodine receptor, and connectin, had different expression profiles in the different chlorantraniliprole-resistant DGE libraries, suggesting that the genes related to insecticide resistance are involved in P. xylostella resistance development against chlorantraniliprole. To confirm the results from the DGE, the expressional profiles of 4 genes related to insecticide resistance were further validated by qRT-PCR analysis. Conclusions The obtained transcriptome information provides large gene resources available for further studying the resistance development of P. xylostella to pesticides. The DGE data provide comprehensive insights into the gene expression profiles of the different chlorantraniliprole-resistant stains. These genes are specifically related to insecticide resistance, with different expressional profiles facilitating the study of the role of each gene in chlorantraniliprole resistance development. PMID:23977278

  17. Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China

    PubMed Central

    Yan, Lei; Liu, Dan; Wang, Xin-Hua; Wang, Yunkun; Zhang, Bo; Wang, Mingyu; Xu, Hai

    2017-01-01

    Emerging antimicrobial resistance is a major threat to human’s health in the 21st century. Understanding and combating this issue requires a full and unbiased assessment of the current status on the prevalence of antimicrobial resistance genes and their correlation with each other and bacterial groups. In aquatic environments that are known reservoirs for antimicrobial resistance genes, we were able to reach this goal on plasmid-mediated quinolone resistance (PMQR) genes that lead to resistance to quinolones and possibly also to the co-emergence of resistance to β-lactams. Novel findings were made that qepA and aac-(6′)-Ib genes that were previously regarded as similarly abundant with qnr genes are now dominant among PMQR genes in aquatic environments. Further statistical analysis suggested that the correlation between PMQR and β-lactam resistance genes in the environment is still weak, that the correlations between antimicrobial resistance genes could be weakened by sufficient wastewater treatment, and that the prevalence of PMQR has been implicated in environmental, pathogenic, predatory, anaerobic, and more importantly, human symbiotic bacteria. This work provides a comprehensive analysis of PMQR genes in aquatic environments in Jinan, China, and provides information with which combat with the antimicrobial resistance problem may be fought. PMID:28094345

  18. The human gut resistome.

    PubMed

    van Schaik, Willem

    2015-06-05

    In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota ('the gut resistome'). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.

  19. The human gut resistome

    PubMed Central

    van Schaik, Willem

    2015-01-01

    In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota (‘the gut resistome’). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium. PMID:25918444

  20. LOCALIZATION OF THE MOUSE THYMIDINE KINASE GENE TO THE DISTAL PORTION OF CHROMOSOME 11

    EPA Science Inventory

    We report the regional mapping of the thymidine kinase (tk-1) gene in the mouse using two complementary analyses: 1) investigation of chromosome aberrations associated with tx-1 gene inactivation in the L5178Y TX+/-3.7.2c cell line and (2) in situ molecular hybridization of a clo...

  1. Toxic and signalling effects of oxalic acid

    PubMed Central

    Lehner, Arnaud; Meimoun, Patrice; Errakhi, Rafik; Madiona, Karine; Barakate, Mustapha

    2008-01-01

    Oxalic acid is thought to be a key factor of the early pathogenic stage in a wide range of necrotrophic fungi. We have recently published that oxalic acid induces Programmed Cell Death (PCD) in Arabidopsis thaliana cells. This cell death results from an early anionic efflux which is a prerequisite for the synthesis of ethylene and the PCD. Complementary experiments have been carried out by using seedlings of A. thaliana. The effects of millimolar concentrations of oxalic acid were analysed on A. thaliana seedlings. A treatment with a 3 mM oxalic acid solution does not alter the development of the plants but induces the transcription of defence related genes which are anion channel dependant. Moreover, our results suggest that a pre-treatment of the seedlings with oxalic acid is able to confer the resistance of A. thaliana against Sclerotium rolfsii. Regarding our results, we suggest that oxalic acid plays two distinct roles, depending on the concentration: a high concentration of oxalic acid induces a large PCD and then contribute to the progression of the fungi. However, at low concentration it is able to induce the establishment of a resistance of the plant against the fungi. PMID:19704845

  2. Fine mapping of RYMV3: a new resistance gene to Rice yellow mottle virus from Oryza glaberrima.

    PubMed

    Pidon, Hélène; Ghesquière, Alain; Chéron, Sophie; Issaka, Souley; Hébrard, Eugénie; Sabot, François; Kolade, Olufisayo; Silué, Drissa; Albar, Laurence

    2017-04-01

    A new resistance gene against Rice yellow mottle virus was identified and mapped in a 15-kb interval. The best candidate is a CC-NBS-LRR gene. Rice yellow mottle virus (RYMV) disease is a serious constraint to the cultivation of rice in Africa and selection for resistance is considered to be the most effective management strategy. The aim of this study was to characterize the resistance of Tog5307, a highly resistant accession belonging to the African cultivated rice species (Oryza glaberrima), that has none of the previously identified resistance genes to RYMV. The specificity of Tog5307 resistance was analyzed using 18 RYMV isolates. While three of them were able to infect Tog5307 very rapidly, resistance against the others was effective despite infection events attributed to resistance-breakdown or incomplete penetrance of the resistance. Segregation of resistance in an interspecific backcross population derived from a cross between Tog5307 and the susceptible Oryza sativa variety IR64 showed that resistance is dominant and is controlled by a single gene, named RYMV3. RYMV3 was mapped in an approximately 15-kb interval in which two candidate genes, coding for a putative transmembrane protein and a CC-NBS-LRR domain-containing protein, were annotated. Sequencing revealed non-synonymous polymorphisms between Tog5307 and the O. glaberrima susceptible accession CG14 in both candidate genes. An additional resistant O. glaberrima accession, Tog5672, was found to have the Tog5307 genotype for the CC-NBS-LRR gene but not for the putative transmembrane protein gene. Analysis of the cosegregation of Tog5672 resistance with the RYMV3 locus suggests that RYMV3 is also involved in Tog5672 resistance, thereby supporting the CC-NBS-LRR gene as the best candidate for RYMV3.

  3. Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions

    PubMed Central

    Versluis, Dennis; D’Andrea, Marco Maria; Ramiro Garcia, Javier; Leimena, Milkha M.; Hugenholtz, Floor; Zhang, Jing; Öztürk, Başak; Nylund, Lotta; Sipkema, Detmer; Schaik, Willem van; de Vos, Willem M.; Kleerebezem, Michiel; Smidt, Hauke; Passel, Mark W.J. van

    2015-01-01

    Antibiotic resistance genes are found in a broad range of ecological niches associated with complex microbiota. Here we investigated if resistance genes are not only present, but also transcribed under natural conditions. Furthermore, we examined the potential for antibiotic production by assessing the expression of associated secondary metabolite biosynthesis gene clusters. Metatranscriptome datasets from intestinal microbiota of four human adults, one human infant, 15 mice and six pigs, of which only the latter have received antibiotics prior to the study, as well as from sea bacterioplankton, a marine sponge, forest soil and sub-seafloor sediment, were investigated. We found that resistance genes are expressed in all studied ecological niches, albeit with niche-specific differences in relative expression levels and diversity of transcripts. For example, in mice and human infant microbiota predominantly tetracycline resistance genes were expressed while in human adult microbiota the spectrum of expressed genes was more diverse, and also included β-lactam, aminoglycoside and macrolide resistance genes. Resistance gene expression could result from the presence of natural antibiotics in the environment, although we could not link it to expression of corresponding secondary metabolites biosynthesis clusters. Alternatively, resistance gene expression could be constitutive, or these genes serve alternative roles besides antibiotic resistance. PMID:26153129

  4. Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes.

    PubMed

    Schwarz, Stefan; Shen, Jianzhong; Wendlandt, Sarah; Fessler, Andrea T; Wang, Yang; Kadlec, Kristina; Wu, Cong-Ming

    2014-12-01

    In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.

  5. Advanced surface-enhanced Raman gene probe systems and methods thereof

    DOEpatents

    Vo-Dinh, Tuan

    2001-01-01

    The subject invention is a series of methods and systems for using the Surface-Enhanced Raman (SER)-labeled Gene Probe for hybridization, detection and identification of SER-labeled hybridized target oligonucleotide material comprising the steps of immobilizing SER-labeled hybridized target oligonucleotide material on a support means, wherein the SER-labeled hybridized target oligonucleotide material comprise a SER label attached either to a target oligonucleotide of unknown sequence or to a gene probe of known sequence complementary to the target oligonucleotide sequence, the SER label is unique for the target oligonucleotide strands of a particular sequence wherein the SER-labeled oligonucleotide is hybridized to its complementary oligonucleotide strand, then the support means having the SER-labeled hybridized target oligonucleotide material adsorbed thereon is SERS activated with a SERS activating means, then the support means is analyzed.

  6. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture

    DOE PAGES

    Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; ...

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundancemore » of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk.Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if they are genetically linked. No links to bacterial membership were observed for these clusters of resistance genes. These findings urge deeper understanding of colocalization of resistance genes and mobile genetic elements in resistance islands and their distribution throughout antibiotic-exposed microbiomes. In addition, as governments seek to combat the rise in antibiotic resistance, a balance is sought between ensuring proper animal health and welfare and preserving medically important antibiotics for therapeutic use. Metagenomic and genomic monitoring will be critical to determine if resistance genes can be reduced in animal microbiomes, or if these gene clusters will continue to be coselected by antibiotics not deemed medically important for human health but used for growth promotion or by medically important antibiotics used therapeutically.« less

  7. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundancemore » of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk.Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if they are genetically linked. No links to bacterial membership were observed for these clusters of resistance genes. These findings urge deeper understanding of colocalization of resistance genes and mobile genetic elements in resistance islands and their distribution throughout antibiotic-exposed microbiomes. In addition, as governments seek to combat the rise in antibiotic resistance, a balance is sought between ensuring proper animal health and welfare and preserving medically important antibiotics for therapeutic use. Metagenomic and genomic monitoring will be critical to determine if resistance genes can be reduced in animal microbiomes, or if these gene clusters will continue to be coselected by antibiotics not deemed medically important for human health but used for growth promotion or by medically important antibiotics used therapeutically.« less

  8. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture.

    PubMed

    Johnson, Timothy A; Stedtfeld, Robert D; Wang, Qiong; Cole, James R; Hashsham, Syed A; Looft, Torey; Zhu, Yong-Guan; Tiedje, James M

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if they are genetically linked. No links to bacterial membership were observed for these clusters of resistance genes. These findings urge deeper understanding of colocalization of resistance genes and mobile genetic elements in resistance islands and their distribution throughout antibiotic-exposed microbiomes. As governments seek to combat the rise in antibiotic resistance, a balance is sought between ensuring proper animal health and welfare and preserving medically important antibiotics for therapeutic use. Metagenomic and genomic monitoring will be critical to determine if resistance genes can be reduced in animal microbiomes, or if these gene clusters will continue to be coselected by antibiotics not deemed medically important for human health but used for growth promotion or by medically important antibiotics used therapeutically. Copyright © 2016 Johnson et al.

  9. Suppressive subtractive hybridization approach revealed differential expression of hypersensitive response and reactive oxygen species production genes in tea (Camellia sinensis (L.) O. Kuntze) leaves during Pestalotiopsis thea infection.

    PubMed

    Senthilkumar, Palanisamy; Thirugnanasambantham, Krishnaraj; Mandal, Abul Kalam Azad

    2012-12-01

    Tea (Camellia sinensis (L.) O. Kuntze) is an economically important plant cultivated for its leaves. Infection of Pestalotiopsis theae in leaves causes gray blight disease and enormous loss to the tea industry. We used suppressive subtractive hybridization (SSH) technique to unravel the differential gene expression pattern during gray blight disease development in tea. Complementary DNA from P. theae-infected and uninfected leaves of disease tolerant cultivar UPASI-10 was used as tester and driver populations respectively. Subtraction efficiency was confirmed by comparing abundance of β-actin gene. A total of 377 and 720 clones with insert size >250 bp from forward and reverse library respectively were sequenced and analyzed. Basic Local Alignment Search Tool analysis revealed 17 sequences in forward SSH library have high degree of similarity with disease and hypersensitive response related genes and 20 sequences with hypothetical proteins while in reverse SSH library, 23 sequences have high degree of similarity with disease and stress response-related genes and 15 sequences with hypothetical proteins. Functional analysis indicated unknown (61 and 59 %) or hypothetical functions (23 and 18 %) for most of the differentially regulated genes in forward and reverse SSH library, respectively, while others have important role in different cellular activities. Majority of the upregulated genes are related to hypersensitive response and reactive oxygen species production. Based on these expressed sequence tag data, putative role of differentially expressed genes were discussed in relation to disease. We also demonstrated the efficiency of SSH as a tool in enriching gray blight disease related up- and downregulated genes in tea. The present study revealed that many genes related to disease resistance were suppressed during P. theae infection and enhancing these genes by the application of inducers may impart better disease tolerance to the plants.

  10. Identification of Genes Related to Fungicide Resistance in Fusarium fujikuroi

    PubMed Central

    Choi, Younghae; Jung, Boknam; Li, Taiying

    2017-01-01

    We identified two genes related to fungicide resistance in Fusarium fujikuroi through random mutagenesis. Targeted gene deletions showed that survival factor 1 deletion resulted in higher sensitivity to fungicides, while deletion of the gene encoding F-box/WD-repeat protein increased resistance, suggesting that the genes affect fungicide resistance in different ways. PMID:28781543

  11. Microarray analysis of gene regulations and potential association with acephate-resistance and fitness cost in Lygus lineolaris.

    PubMed

    Zhu, Yu Cheng; Guo, Zibiao; He, Yueping; Luttrell, Randall

    2012-01-01

    The tarnished plant bug has become increasingly resistant to organophosphates in recent years. To better understand acephate resistance mechanisms, biological, biochemical, and molecular experiments were systematically conducted with susceptible (LLS) and acephate-selected (LLR) strains. Selection of a field population with acephate significantly increased resistance ratio to 5.9-fold, coupled with a significant increase of esterase activities by 2-fold. Microarray analysis of 6,688 genes revealed 329 up- and 333 down-regulated (≥2-fold) genes in LLR. Six esterase, three P450, and one glutathione S-transferase genes were significantly up-regulated, and no such genes were down-regulated in LLR. All vitellogenin and eggshell protein genes were significantly down-regulated in LLR. Thirteen protease genes were significantly down-regulated and only 3 were up-regulated in LLR. More than twice the number of catalysis genes and more than 3.6-fold of metabolic genes were up-regulated, respectively, as compared to those down-regulated with the same molecular and biological functions. The large portion of metabolic or catalysis genes with significant up-regulations indicated a substantial increase of metabolic detoxification in LLR. Significant increase of acephate resistance, increases of esterase activities and gene expressions, and variable esterase sequences between LLS and LLR consistently demonstrated a major esterase-mediated resistance in LLR, which was functionally provable by abolishing the resistance with esterase inhibitors. In addition, significant elevation of P450 gene expression and reduced susceptibility to imidacloprid in LLR indicated a concurrent resistance risk that may impact other classes of insecticides. This study demonstrated the first association of down-regulation of reproductive- and digestive-related genes with resistance to conventional insecticides, suggesting potential fitness costs associated with resistance development. This study shed new light on the understanding of the molecular basis of insecticide resistance, and the information is highly valuable for development of chemical control guidelines and tactics to minimize resistance and cross-resistance risks.

  12. Mapping of stripe rust resistance gene in an Aegilops caudate introgression line in wheat and its genetic association with leaf rust resistance.

    PubMed

    Toor, Puneet Inder; Kaur, Satinder; Bansal, Mitaly; Yadav, Bharat; Chhuneja, Parveen

    2016-12-01

    A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcrossrecombinant inbred line (BC-RIL) population derived from the cross of a wheat-Ae. caudata introgression line (IL) T291- 2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.

  13. Plasmid-mediated resistance to protein biosynthesis inhibitors in staphylococci.

    PubMed

    Schwarz, Stefan; Fessler, Andrea T; Hauschild, Tomasz; Kehrenberg, Corinna; Kadlec, Kristina

    2011-12-01

    Protein biosynthesis inhibitors (PBIs) represent powerful antimicrobial agents for the control of bacterial infections. In staphylococci, numerous resistance genes are known to be involved in resistance to PBIs, most of which mediate resistance to a specific class/subclass of PBIs, though a few genes do confer a multidrug resistance phenotype-up to five classes/subclasses of PBIs. Plasmids play a key role in the dissemination of PBI resistance among staphylococci, as they primarily carry plasmid-borne PBI resistance genes; however, plasmids also can be vectors for transposon-borne PBI resistance genes. Small plasmids that carry single PBI resistance genes are widespread among staphylococci of human and animal origin. Various mechanisms exist by which they can recombine, form cointegrates, or integrate into chromosomal DNA or larger plasmids. We provide an overview of the current knowledge of plasmid-mediated PBI resistance in staphylococci, with particular reference to the currently known PBI resistance genes, their association with mobile genetic elements, and the recombination/integration processes that control their mobility. © 2011 New York Academy of Sciences.

  14. Immunochemical Proof that a Novel Rearranging Gene Encodes the T Cell Receptor δ Subunit

    NASA Astrophysics Data System (ADS)

    Band, Hamid; Hochstenbach, Frans; McLean, Joanne; Hata, Shingo; Krangel, Michael S.; Brenner, Michael B.

    1987-10-01

    The T cell receptor (TCR) δ protein is expressed as part of a heterodimer with TCR γ , in association with the CD3 polypeptides on a subset of functional peripheral blood T lymphocytes, thymocytes, and certain leukemic T cell lines. A monoclonal antibody directed against TCR δ was produced that binds specifically to the surface of several TCR γ δ cell lines and immunoprecipitates the TCR γ δ as a heterodimer from Triton X-100 detergent lysates and also immunoprecipitates the TCR δ subunit alone after chain separation. A candidate human TCR δ complementary DNA clone (IDP2 O-240/38), reported in a companion paper, was isolated by the subtractive library approach from a TCR γ δ cell line. This complementary DNA clone was used to direct the synthesis of a polypeptide that is specifically recognized by the monoclonal antibody to TCR δ . This complementary DNA clone thus corresponds to the gene that encodes the TCR δ subunit.

  15. Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens

    PubMed Central

    Kobayashi, Tetsuya; Yamamoto, Kimiko; Suetsugu, Yoshitaka; Kuwazaki, Seigo; Hattori, Makoto; Jairin, Jirapong; Sanada-Morimura, Sachiyo; Matsumura, Masaya

    2014-01-01

    Host plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1. QTL analysis in iso-female BPH lines with single-nucleotide polymorphism (SNP) markers detected a single region on the 10th linkage group responsible for the virulence. The QTL explained from 57 to 84% of the total phenotypic variation. Bulked segregant analysis with next-generation sequencing in F2 progenies identified five SNPs genetically linked to the virulence. These analyses showed that virulence to Bph1 was controlled by a single recessive gene. In contrast to previous studies, the gene-for-gene relationship between the major resistance gene Bph1 and virulence gene of BPH was confirmed. Identified markers are available for map-based cloning of the major gene controlling BPH virulence to rice resistance. PMID:24870048

  16. Characterization of antimicrobial resistance of Vibrio parahaemolyticus from cultured sea cucumbers (Apostichopus japonicas).

    PubMed

    Jiang, Y; Yao, L; Li, F; Tan, Z; Zhai, Y; Wang, L

    2014-08-01

    This study was aimed to evaluate the antimicrobial resistance and molecular resistance mechanisms of 87 Vibrio parahaemolyticus isolates from cultured sea cucumbers (Apostichopus japonicus). The results showed that all isolates were resistant to ampicillin and cephazolin, fewer of them were resistant to streptomycin (43·7%), cefuroxime sodium (18·4%), tetracycline (4·6%), sulphamethoxazole/trimethoprim (2·3%) and four quinolones (2·3%). More than half (56·2%) of the isolates displayed multiple resistance to at least three antimicrobials. The resistance genes were detected in all antimicrobial-resistant isolates except two tetracycline-resistant isolates. Among all these tested resistance genes, blaTEM , sul2, strA and strB were predominant, and none of blaSHV , blaCTX-M , blaOXA , sul1, sul3, tetA, tetM and tetQ genes was detected. Point mutations were found in quinolone resistance-determining regions of gyrA and parC genes in quinolone-resistant isolates. All isolates harboured class 1 integrons but only one carried gene cassette without any resistance genes, and none of them was positive to class 2, 3 integrons and SXT constins. These results indicate that the antimicrobial-resistant V. parahaemolyticus isolates from sea cucumbers and resistance genes could be potential risks to public health or other environments. This study is the first report on characterization of antimicrobial resistance of Vibrio parahaemolyticus from sea cucumbers (Apostichopus japonicus). Our findings reveal a high level of resistance to some antimicrobials and prevalence of the resistance genes in V. parahaemolyticus isolates from sea cucumbers and underline the need for prudent use of antimicrobials in aquaculture to minimize the spread of antimicrobial-resistant V. parahaemolyticus. © 2014 The Society for Applied Microbiology.

  17. Silencing of six susceptibility genes results in potato late blight resistance.

    PubMed

    Sun, Kaile; Wolters, Anne-Marie A; Vossen, Jack H; Rouwet, Maarten E; Loonen, Annelies E H M; Jacobsen, Evert; Visser, Richard G F; Bai, Yuling

    2016-10-01

    Phytophthora infestans, the causal agent of late blight, is a major threat to commercial potato production worldwide. Significant costs are required for crop protection to secure yield. Many dominant genes for resistance (R-genes) to potato late blight have been identified, and some of these R-genes have been applied in potato breeding. However, the P. infestans population rapidly accumulates new virulent strains that render R-genes ineffective. Here we introduce a new class of resistance which is based on the loss-of-function of a susceptibility gene (S-gene) encoding a product exploited by pathogens during infection and colonization. Impaired S-genes primarily result in recessive resistance traits in contrast to recognition-based resistance that is governed by dominant R-genes. In Arabidopsis thaliana, many S-genes have been detected in screens of mutant populations. In the present study, we selected 11 A. thaliana S-genes and silenced orthologous genes in the potato cultivar Desiree, which is highly susceptible to late blight. The silencing of five genes resulted in complete resistance to the P. infestans isolate Pic99189, and the silencing of a sixth S-gene resulted in reduced susceptibility. The application of S-genes to potato breeding for resistance to late blight is further discussed.

  18. Circular RNAs: Unexpected outputs of many protein-coding genes

    PubMed Central

    Wilusz, Jeremy E.

    2017-01-01

    ABSTRACT Pre-mRNAs from thousands of eukaryotic genes can be non-canonically spliced to generate circular RNAs, some of which accumulate to higher levels than their associated linear mRNA. Recent work has revealed widespread mechanisms that dictate whether the spliceosome generates a linear or circular RNA. For most genes, circular RNA biogenesis via backsplicing is far less efficient than canonical splicing, but circular RNAs can accumulate due to their long half-lives. Backsplicing is often initiated when complementary sequences from different introns base pair and bring the intervening splice sites close together. This process is further regulated by the combinatorial action of RNA binding proteins, which allow circular RNAs to be expressed in unique patterns. Some genes do not require complementary sequences to generate RNA circles and instead take advantage of exon skipping events. It is still unclear what most mature circular RNAs do, but future investigations into their functions will be facilitated by recently described methods to modulate circular RNA levels. PMID:27571848

  19. Induction of UO-44 gene expression by tamoxifen in the rat uterus and ovary.

    PubMed

    Huynh, H; Ng, C Y; Lim, K B; Ong, C K; Ong, C S; Tran, E; Tuyen Nguyen, T T; Chan, T W

    2001-07-01

    A complementary DNA, uterine-ovarian-specific gene 44 (UO-44), has been isolated from tamoxifen-induced rat uterine complementary DNA library using differential display techniques. UO-44 transcripts are found to be abundant in the uterus and ovary. UO-44 gene expression in the uterus is strictly regulated by estrogens, tamoxifen, and GH, whereas the pure antiestrogen ICI 182780 is inhibitory. Treatment of ovariectomized rats and hypophysectomized rats with tamoxifen and GH, respectively, resulted in up-regulation of UO-44 expression in a dose-dependent manner. In situ hybridization revealed that UO-44 gene expression was restricted to the luminal and glandular epithelial cells of the uterus and to granulosa cells of medium-size ovarian follicles. Transfection studies showed that UO-44 was a membrane-associated protein. Because estrogens, tamoxifen, and GH are stimulators of uterine luminal epithelial cell growth in vivo, UO-44 protein may serve as a mediator of the effect of these compounds in inducing epithelial proliferation and differentiation in these tissues.

  20. Reciprocal Expression of lin-41 and the microRNAs let-7 and mir-125 During Mouse Embryogenesis

    PubMed Central

    Schulman, Betsy R. Maller; Esquela-Kerscher, Aurora; Slack, Frank J.

    2008-01-01

    In C. elegans, heterochronic genes control the timing of cell fate determination during development. Two heterochronic genes, let-7 and lin-4, encode microRNAs (miRNAs) that down-regulate a third heterochronic gene lin-41 by binding to complementary sites in its 3’UTR. let-7 and lin-4 are conserved in mammals. Here we report the cloning and sequencing of mammalian lin-41 orthologs. We find that mouse and human lin-41 genes contain predicted conserved complementary sites for let-7 and the lin-4 ortholog, mir-125, in their 3’UTRs. Mouse lin-41 (Mlin-41) is temporally expressed in developing mouse embryos, most dramatically in the limb buds. Mlin-41 is down-regulated during mid-embryogenesis at the time when mouse let-7c and mir-125 RNA levels are up-regulated. Our results suggest that mammalian lin-41 is temporally regulated by miRNAs in order to direct key developmental events such as limb formation. PMID:16247770

  1. Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan.

    PubMed

    Hsu, Jih-Tay; Chen, Chia-Yang; Young, Chu-Wen; Chao, Wei-Liang; Li, Mao-Hao; Liu, Yung-Hsin; Lin, Chu-Ming; Ying, Chingwen

    2014-07-30

    Antibiotics are commonly used in swine feed to treat and prevent disease, as well as to promote growth. Antibiotics released into the environment via wastewater could accelerate the emergence of antibiotic-resistant bacteria and resistance genes in the surrounding environment. In this study, we quantified the occurrence of sulfonamides, sulfonamide-resistant microorganisms and resistance genes in the wastewater from a swine farm in northern Taiwan and its surrounding natural water bodies and soils. Sulfonamide levels were similar in the receiving downstream and upstream river water. However, the prevalence of sulfonamide-resistant bacteria and resistance genes, as analyzed by cultivation-dependent and -independent molecular approaches, was significantly greater in the downstream compared to the upstream river water samples. Barcoded-pyrosequencing revealed a highly diverse bacterial community structure in each sample. However, the sequence identity of the sulfonamide resistance gene sul1 in the wastewater and downstream environment samples was nearly identical (99-100%). The sul1 gene, which is genetically linked to class 1 integrons, was dominant in the downstream water bodies and soils. In conclusion, the increased prevalence of sulfonamide resistance genes in the wastewater from a swine farm, independent of the persistent presence of sulfonamides, could be a potential source of resistant gene pools in the surrounding environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The Maximal C3 Self-Complementary Trinucleotide Circular Code X in Genes of Bacteria, Archaea, Eukaryotes, Plasmids and Viruses

    PubMed Central

    Michel, Christian J.

    2017-01-01

    In 1996, a set X of 20 trinucleotides was identified in genes of both prokaryotes and eukaryotes which has on average the highest occurrence in reading frame compared to its two shifted frames. Furthermore, this set X has an interesting mathematical property as X is a maximal C3 self-complementary trinucleotide circular code. In 2015, by quantifying the inspection approach used in 1996, the circular code X was confirmed in the genes of bacteria and eukaryotes and was also identified in the genes of plasmids and viruses. The method was based on the preferential occurrence of trinucleotides among the three frames at the gene population level. We extend here this definition at the gene level. This new statistical approach considers all the genes, i.e., of large and small lengths, with the same weight for searching the circular code X. As a consequence, the concept of circular code, in particular the reading frame retrieval, is directly associated to each gene. At the gene level, the circular code X is strengthened in the genes of bacteria, eukaryotes, plasmids, and viruses, and is now also identified in the genes of archaea. The genes of mitochondria and chloroplasts contain a subset of the circular code X. Finally, by studying viral genes, the circular code X was found in DNA genomes, RNA genomes, double-stranded genomes, and single-stranded genomes. PMID:28420220

  3. Liquid biopsy in non-small cell lung cancer: a key role in the future of personalized medicine?

    PubMed

    Pi, Can; Zhang, Ming-Feng; Peng, Xiao-Xiao; Zhang, Yi-Chen; Xu, Chong-Rui; Zhou, Qing

    2017-12-01

    Liquid biopsies, especially the analysis of circulating tumor DNA (ctDNA), as a novel and non-invasive method for the diagnosis and monitoring of non-small cell lung cancer (NSCLC) have already been implemented in clinical settings. The majority of ctDNA is released from apoptotic or necrotic tumor cells, thus reflecting the genetic profile of a tumor. Numerous studies have reported a high concordance in mutation profiles derived from liquid biopsy and tissue biopsy, especially in driver genes. Liquid biopsy could overcome the clonal heterogeneity of tumour biopsy, as it provides a single snapshot of a tumour tissue. Moreover, non-invasiveness is the biggest advantage for liquid biopsy, and the procedure can be repeatedly performed during the treatment for the purpose of monitoring. Therefore, ctDNA could act as a potential complementary method for tissue biopsies in diagnosis, prognostic, treatment response and resistance. Areas covered: This review summarizes the recent advancements in liquid biopsy with a focus on NSCLC, including its applications and technologies associated with assessing ctDNA. The authors conclude the review by discussing the challenges associated with liquid biopsy. Expert commentary: The analysis of ctDNA represents a promising method for liquid biopsy, which will be a novel and potentially complementary method in diagnosis, treatment and prognostic in NSCLC at all stages.

  4. DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode.

    PubMed

    Fayazfar, H; Afshar, A; Dolati, M; Dolati, A

    2014-07-11

    For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended DNA concentration range, the change of charge transfer resistance was found to have a linear relationship in respect to the logarithm of the complementary oligonucleotides sequence concentrations in the wide range of 1.0×10(-15)-1.0×10(-7)M, with a detection limit of 1.0×10(-17)M (S/N=3). The prepared sensor also showed good stability (14 days), reproducibility (RSD=2.1%) and could be conveniently regenerated via dehybridization in hot water. The significant improvement in sensitivity illustrates that combining gold nanoparticles with the on-site fabricated aligned MWCNT array represents a promising platform for achieving sensitive biosensor for fast mutation screening related to most human cancer types. Copyright © 2014. Published by Elsevier B.V.

  5. Transport of tylosin and tylosin-resistance genes in subsurface drainage water from manured fields

    USDA-ARS?s Scientific Manuscript database

    Animal agriculture appears to contribute to the spread of antibiotic resistance genes, but few studies have quantified gene transport in agricultural fields. The transport of tylosin, tylosin-resistance genes (erm B, F, A) and tylosin-resistant Enterococcus were measured in tile drainage water from ...

  6. Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley

    PubMed Central

    2014-01-01

    Background Salinity tolerance is a physiologically multi-faceted trait attributed to multiple mechanisms. Three barley (Hordeum vulgare) varieties contrasting in their salinity tolerance were used to assess the relative contribution of ionic, osmotic and oxidative stress components towards overall salinity stress tolerance in this species, both at the whole-plant and cellular levels. In addition, transcriptional changes in the gene expression profile were studied for key genes mediating plant ionic and oxidative homeostasis (NHX; RBOH; SOD; AHA and GORK), to compare a contribution of transcriptional and post-translational factors towards the specific components of salinity tolerance. Results Our major findings are two-fold. First, plant tissue tolerance was a dominating component that has determined the overall plant responses to salinity, with root K+ retention ability and reduced sensitivity to stress-induced hydroxyl radical production being the main contributing tolerance mechanisms. Second, it was not possible to infer which cultivars were salinity tolerant based solely on expression profiling of candidate genes at one specific time point. For the genes studied and the time point selected that transcriptional changes in the expression of these specific genes had a small role for barley’s adaptive responses to salinity. Conclusions For better tissue tolerance, sodium sequestration, K+ retention and resistance to oxidative stress all appeared to be crucial. Because these traits are highly interrelated, it is suggested that a major progress in crop breeding for salinity tolerance can be achieved only if these complementary traits are targeted at the same time. This study also highlights the essentiality of post translational modifications in plant adaptive responses to salinity. PMID:24774965

  7. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.

    PubMed

    Rowe, Will; Baker, Kate S; Verner-Jeffreys, David; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan; Pearce, Gareth

    2015-01-01

    Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR is effective in detecting antimicrobial resistance genes in metagenomic and isolate sequencing data from both environmental metagenomes and sequencing data from clinical isolates.

  8. Resistant mechanisms and molecular epidemiology of imipenem-resistant Acinetobacter baumannii.

    PubMed

    Xiao, Shu-Zhen; Chu, Hai-Qing; Han, Li-Zhong; Zhang, Zhe-Min; Li, Bing; Zhao, Lan; Xu, Liyun

    2016-09-01

    The aim of the study was to investigate the resistant mechanisms and homology of imipenem-resistant Acinetobacter baumannii (A. baumannii). A total of 46 non-duplicate imipenem‑resistant A. baumannii clinical isolates were collected from three tertiary hospitals between July, 2011 and June, 2012. The minimal inhibitory concentrations (MICs) of antimicrobial agents were determined using the agar dilution method. Phenylalanine‑arginine β-naphthylamide was used to detect the presence of the efflux pump-mediated resistant mechanism. Polymerase chain reaction was employed to amplify genes associated with drug resistance, including β‑lactamase genes, efflux pump genes and outer membrane protein gene CarO. A few amplicons were randomly selected and sequenced. Multilocus sequence analysis (MLST) was employed in typing A. baumanni. A. baumannii was resistant to imipenem, simultaneously showing resistance to several other antimicrobials. In addtition, 13 A. baumannii were found to mediate drug resistance through operation of the efflux pump. Of the various drug resistance genes tested, blaOXA‑51 was present in 46 isolates, blaOXA‑23 gene was present in 44 isolates and blaNDM gene was found in only one strain. Other drug resistant‑associated genes, including blaKPC, blaIMP, blaOXA-24, blaOXA‑58, blaSHV, blaGIM and blaVIM were not detected. Mutation of adeS and outer membrane protein gene CarO were found in a few of the imipenem‑resistant isolates. The MLST analysis revealed that all 46 clinical isolates were clustered into 11 genotypes and the most frequent genotype was ST208. In conclusion, β‑lactamase genes, genes involved in efflux pump and mutation of outer membrane protein encoding gene may be important in mediating imipenem resistance in A. baumannii. Of the 11 different genotypes, ST11 was shared by the majority of A. baumannii, which may be due to horizontal transfer of patients from hospitals.

  9. Map-based cloning of a gene controlling Omega-3 fatty acid desaturation in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arondel, V.; Lemieux, B.; Hwang, I.

    1992-11-20

    A gene from the flowering plant Arabidopsis thaliana that encodes an omega-3 desaturase was cloned on the basis of the genetic map position of a mutation affecting membrane and storage lipid fatty acid composition. Yeast artificial chromosomes covering the genetic locus were identified and used to probe a seed complementary DNA library. A complementary DNA clone for the desaturase was identified and introduced into roots of both wild-type and mutant plants by Ti plasmid-mediated transformation. Transgenic tissues of both mutant and wild-type plants had significantly increased amounts of the fatty acid produced by this desaturase. 24 refs., 2 figs., 1more » tabs.« less

  10. Potential impact of environmental bacteriophages in spreading antibiotic resistance genes.

    PubMed

    Muniesa, Maite; Colomer-Lluch, Marta; Jofre, Juan

    2013-06-01

    The idea that bacteriophage transduction plays a role in the horizontal transfer of antibiotic resistance genes is gaining momentum. Such transduction might be vital in horizontal transfer from environmental to human body-associated biomes and here we review many lines of evidence supporting this notion. It is well accepted that bacteriophages are the most abundant entities in most environments, where they have been shown to be quite persistent. This fact, together with the ability of many phages to infect bacteria belonging to different taxa, makes them suitable vehicles for gene transfer. Metagenomic studies confirm that substantial percentages of the bacteriophage particles present in most environments contain bacterial genes, including mobile genetic elements and antibiotic resistance genes. When specific genes of resistance to antibiotics are detected by real-time PCR in the bacteriophage populations of different environments, only tenfold lower numbers of these genes are observed, compared with those found in the corresponding bacterial populations. In addition, the antibiotic resistance genes from these bacteriophages are functional and generate resistance to the bacteria when these genes are transfected. Finally, reports about the transduction of antibiotic resistance genes are on the increase.

  11. A bean common mosaic virus (BCMV)-resistance gene is fine-mapped to the same region as Rsv1-h in the soybean cultivar Suweon 97.

    PubMed

    Wu, Mian; Wu, Wen-Ping; Liu, Cheng-Chen; Liu, Ying-Na; Wu, Xiao-Yi; Ma, Fang-Fang; Zhu, An-Qi; Yang, Jia-Yin; Wang, Bin; Chen, Jian-Qun

    2018-06-16

    In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens. Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F 2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F 2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F 2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.

  12. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    PubMed Central

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  13. Zinc resistance within swine associated methicillin resistant Staphylococcus aureus (MRSA) isolates in the USA is associated with MLST lineage

    USDA-ARS?s Scientific Manuscript database

    Zinc resistance in livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) is mediated by the czrC gene co-located with the mecA gene, encoding methicillin resistance, on the type V SCCmec element. Since the czrC gene and the mecA gene are co-located on the SCCmec element, it has ...

  14. Gene-for-gene disease resistance: bridging insect pest and pathogen defense.

    PubMed

    Kaloshian, Isgouhi

    2004-12-01

    Active plant defense, also known as gene-for-gene resistance, is triggered when a plant resistance (R) gene recognizes the intrusion of a specific insect pest or pathogen. Activation of plant defense includes an array of physiological and transcriptional reprogramming. During the past decade, a large number of plant R genes that confer resistance to diverse group of pathogens have been cloned from a number of plant species. Based on predicted protein structures, these genes are classified into a small number of groups, indicating that structurally related R genes recognize phylogenetically distinct pathogens. An extreme example is the tomato Mi-1 gene, which confers resistance to potato aphid (Macrosiphum euphorbiae), whitefly (Bemisia tabaci), and root-knot nematodes (Meloidogyne spp.). While Mi-1 remains the only cloned insect R gene, there is evidence that gene-for-gene type of plant defense against piercing-sucking insects exists in a number of plant species.

  15. The expression of antibiotic resistance genes in antibiotic-producing bacteria.

    PubMed

    Mak, Stefanie; Xu, Ye; Nodwell, Justin R

    2014-08-01

    Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance. © 2014 John Wiley & Sons Ltd.

  16. Problem-Solving Test: Conditional Gene Targeting Using the Cre/loxP Recombination System

    ERIC Educational Resources Information Center

    Szeberényi, József

    2013-01-01

    Terms to be familiar with before you start to solve the test: gene targeting, knock-out mutation, bacteriophage, complementary base-pairing, homologous recombination, deletion, transgenic organisms, promoter, polyadenylation element, transgene, DNA replication, RNA polymerase, Shine-Dalgarno sequence, restriction endonuclease, polymerase chain…

  17. Impedimetric DNA biosensor based on a nanoporous alumina membrane for the detection of the specific oligonucleotide sequence of dengue virus.

    PubMed

    Deng, Jiajia; Toh, Chee-Seng

    2013-06-17

    A novel and integrated membrane sensing platform for DNA detection is developed based on an anodic aluminum oxide (AAO) membrane. Platinum electrodes (~50-100 nm thick) are coated directly on both sides of the alumina membrane to eliminate the solution resistance outside the nanopores. The electrochemical impedance technique is employed to monitor the impedance changes within the nanopores upon DNA binding. Pore resistance (Rp) linearly increases in response towards the increasing concentration of the target DNA in the range of 1 × 10⁻¹² to 1 × 10⁻⁶ M. Moreover, the biosensor selectively differentiates the complementary sequence from single base mismatched (MM-1) strands and non-complementary strands. This study reveals a simple, selective and sensitive method to fabricate a label-free DNA biosensor.

  18. Post-pregnancy aspirin resistance appears not to be related with recurrent hypertensive disorders of pregnancy.

    PubMed

    Abheiden, Carolien N H; Fuijkschot, Wessel W; Arduç, Arda; van Diemen, Jeske J K; Harmsze, Ankie M; de Boer, Marjon A; Thijs, Abel; de Vries, Johanna I P

    2017-03-01

    The FRUIT-RCT concluded that low-molecular-weight heparin added to aspirin compared to treatment with aspirin alone is beneficial in the prevention of early-onset hypertensive disorders of pregnancy (HD) in women with inheritable thrombophilia and prior HD and/or a small-for-gestational age (SGA) infant leading to delivery before 34 weeks gestation. The aim of this study is to answer the question whether aspirin resistance is associated with recurrent HD. Women with and without recurrent HD matched for age, study arm, and chronic hypertension were invited for this follow-up study 6-16 years after they participated in the FRUIT-RCT. Aspirin resistance was tested after 10days of aspirin intake using three complementary tests: PFA-200, VerifyNow ® and serum thromboxane B 2 (TXB 2 ). An independent t-test, Mann-Whitney U test, Fisher's Exact test and Chi 2 test were used for the statistical analyses. Thirteen of 24 women with recurrent HD and 16 of 24 women without recurrent HD participated. The prevalence of laboratory aspirin resistance was 34.5% according to the PFA-200, 3.4% according to the VerifyNow ® and 24.1% according to TXB 2 . The prevalence of aspirin resistance by any test was 51.7%. Aspirin resistance per individual test did not differ between women with and without recurrent HD. Aspirin resistance measured by any test occurred more frequently in women without recurrent HD (p<0.01), irrespective of low-molecular-weight heparin. No relation could be demonstrated between recurrent HD and aspirin resistance per test, measured up to 16 years after pregnancy. On the contrary, complementary aspirin resistance measurements were encountered more frequently in women without recurrent HD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Molecular characterization of antibiotic resistance in enterococci recovered from seagulls (Larus cachinnans) representing an environmental health problem.

    PubMed

    Radhouani, Hajer; Igrejas, Gilberto; Pinto, Luís; Gonçalves, Alexandre; Coelho, Céline; Rodrigues, Jorge; Poeta, Patrícia

    2011-08-01

    Antimicrobial resistance and the mechanisms implicated were studied in 54 enterococci recovered from 57 seagull fecal samples. Almost 78% of the recovered enterococci showed resistance against one or more antibiotics and these isolates were identified to the species level. E. faecium was the most prevalent species (52.4%). High percentages of erythromycin and tetracycline resistances were found among our isolates (95.2%), and lower percentages were identified to other antibiotics. Most of the tetracycline-resistant strains carried the tet(M) and/or tet(L) genes. Genes associated with Tn916/Tn1545 and/or Tn5397 transposons were detected in 45% of tetracycline-resistant isolates. The erm(B) gene was detected in 65% of erythromycin-resistant isolates. The vat(D) and vat(E) genes were present in 5.9% and 11.8% of quinupristin/dalfopristin-resistant isolates, respectively. The ant(6)-Ia gene was identified in 57.1% of streptomycin-resistant isolates. All nine kanamycin-resistant isolates carried the aph(3)'-IIIa gene. The cat(A) gene was found in two chloramphenicol-resistant isolates. Seagulls should be considered a risk species for spreading in the environment antimicrobial resistant enterococci and can serve as a sentinel for antibiotic pressure from the surrounding farm and urban setting.

  20. Detection of different β-lactamases encoding genes, including blaNDM, and plasmid-mediated quinolone resistance genes in different water sources from Brazil.

    PubMed

    Sanchez, Danilo Garcia; de Melo, Fernanda Maciel; Savazzi, Eduardo Angelino; Stehling, Eliana Guedes

    2018-06-16

    Bacterial resistance occurs by spontaneous mutations or horizontal gene transfer mediated by mobile genetic elements, which represents a great concern. Resistance to β-lactam antibiotics is mainly due to the production of β-lactamases, and an important mechanism of fluoroquinolone resistance is the acquisition plasmid determinants. The aim of this study was to verify the presence of β-lactamase-encoding genes and plasmid-mediated quinolone resistance genes in different water samples obtained from São Paulo state, Brazil. A high level of these resistance genes was detected, being the bla SHV , bla GES , and qnr the most prevalent. Besides that, the bla NDM gene, which codify an important and hazardous metallo-β-lactamase, was detected.

  1. An NB-LRR gene, TYNBS1, is responsible for resistance mediated by the Ty-2 Begomovirus resistance locus of tomato.

    PubMed

    Yamaguchi, Hirotaka; Ohnishi, Jun; Saito, Atsushi; Ohyama, Akio; Nunome, Tsukasa; Miyatake, Koji; Fukuoka, Hiroyuki

    2018-06-01

    An NB-LRR gene, TYNBS1, was isolated from Begomovirus-resistance locus Ty-2. Transgenic plant analysis revealed that TYNBS1 is a functional resistance gene. TYNBS1 is considered to be synonymous with Ty-2. Tomato yellow leaf curl disease caused by Tomato yellow leaf curl virus (TYLCV) is a serious threat to tomato (Solanum lycopersicum L.) production worldwide. A Begomovirus resistance gene, Ty-2, was introduced into cultivated tomato from Solanum habrochaites by interspecific crossing. To identify the Ty-2 gene, we performed genetic analysis. Identification of recombinant line 3701 confirmed the occurrence of a chromosome inversion in the Ty-2 region of the resistant haplotype. Genetic analysis revealed that the Ty-2 gene is linked to an introgression encompassing two markers, SL11_25_54277 and repeat A (approximately 200 kb). Genomic sequences of the upper and lower border of the inversion section of susceptible and resistant haplotypes were determined. Two nucleotide-binding domain and leucine-rich repeat-containing (NB-LRR) genes, TYNBS1 and TYNBS2, were identified around the upper and lower ends of the inversion section, respectively. TYNBS1 strictly co-segregated with TYLCV resistance, whereas TYNBS2 did not. Genetic introduction of genomic fragments containing the TYNBS1 gene into susceptible tomato plants conferred TYLCV resistance. These results demonstrate that TYNBS1 is a functional resistance gene for TYLCV, and is synonymous with the Ty-2 gene.

  2. Roles for Msx and Dlx homeoproteins in vertebrate development.

    PubMed

    Bendall, A J; Abate-Shen, C

    2000-04-18

    This review provides a comparative analysis of the expression patterns, functions, and biochemical properties of Msx and Dlx homeobox genes. These comprise multi-gene families that are closely related with respect to sequence features as well as expression patterns during vertebrate development. Thus, members of the Msx and Dlx families are expressed in overlapping, but distinct, patterns and display complementary or antagonistic functions, depending upon the context. A common theme shared among Msx and Dlx genes is that they are required during early, middle, and late phases of development where their differential expression mediates patterning, morphogenesis, and histogenesis of tissues in which they are expressed. With respect to their biochemical properties, Msx proteins function as transcriptional repressors, while Dlx proteins are transcriptional activators. Moreover, their ability to oppose each other's transcriptional actions implies a mechanism underlying their complementary or antagonistic functions during development.

  3. Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens.

    PubMed

    Kobayashi, Tetsuya; Yamamoto, Kimiko; Suetsugu, Yoshitaka; Kuwazaki, Seigo; Hattori, Makoto; Jairin, Jirapong; Sanada-Morimura, Sachiyo; Matsumura, Masaya

    2014-07-22

    Host plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1. QTL analysis in iso-female BPH lines with single-nucleotide polymorphism (SNP) markers detected a single region on the 10th linkage group responsible for the virulence. The QTL explained from 57 to 84% of the total phenotypic variation. Bulked segregant analysis with next-generation sequencing in F2 progenies identified five SNPs genetically linked to the virulence. These analyses showed that virulence to Bph1 was controlled by a single recessive gene. In contrast to previous studies, the gene-for-gene relationship between the major resistance gene Bph1 and virulence gene of BPH was confirmed. Identified markers are available for map-based cloning of the major gene controlling BPH virulence to rice resistance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Influence of tetracycline on tetracycline-resistant heterotrophs and tet genes in activated sludge process.

    PubMed

    Yu, Jie; Liu, Dongfang; Li, Kexun

    2015-03-01

    The concentrations of tetracycline-intermediate resistant, tetracycline-resistant heterotrophic bacteria, and total heterotrophic bacteria were examined to assess the influence of tetracycline on tetracycline-resistant heterotrophs by the R2A agar cultivation method in the tetracycline fortified activated sludge process and in the natural background. Results showed that the percentages of both tetracycline-intermediate resistant and tetracycline-resistant heterotrophic bacteria in total heterotrophic bacteria were significantly increased, after tetracycline was fed to activated sludge for a 3 months period under four different operating conditions, as compared with the background. In order to investigate the mechanism of activated sludge resistance to tetracycline, polymerase chain reaction experiments were carried out to analyze the existence and evolution of tet genes in the presence of tetracycline. Results revealed that only tet A and tet B genes out of the 11 target tet genes were observed in tetracycline treated activated sludge while no tet gene was detected in background. This indicated that tet A gene could accumulate in activated sludge with slower and continuous influent, while the accumulation of tet B gene could be attributed to shorter hydraulic retention time. Therefore, it was proposed in this study that tetracycline-resistant genes created by efflux pumps spread earlier and quicker to encode resistance to tetracycline, which facilitated the increase in tetracycline-resistance.

  5. Generation of novel resistance genes using mutation and targeted gene editing

    USDA-ARS?s Scientific Manuscript database

    Classical breeding for virus resistance is a lengthy process and is restricted by the availability of resistance genes. Precise genome editing is a "dream technology" to improve plants for virus resistance and these tools have opened new and very promising ways to generate virus resistant plants by ...

  6. Horizontal gene transfer and antibiotic resistance plasmids in multi-drug resistant Salmonella enterica serovars

    USDA-ARS?s Scientific Manuscript database

    Antibiotic resistant foodborne pathogens pose serious public health concerns and increase the burden of disease treatment. Antibiotic resistance genes can reside on the bacterial chromosome or on other self-replicating DNA molecules such as plasmids. The resistance genes/DNA can be transferred int...

  7. Abundances of Tetracycline, Sulphonamide and Beta-Lactam Antibiotic Resistance Genes in Conventional Wastewater Treatment Plants (WWTPs) with Different Waste Load

    PubMed Central

    Voolaid, Veiko; Ritz, Christian; Tenson, Tanel; Virta, Marko; Kisand, Veljo

    2014-01-01

    Antibiotics and antibiotic resistant bacteria enter wastewater treatment plants (WWTPs), an environment where resistance genes can potentially spread and exchange between microbes. Several antibiotic resistance genes (ARGs) were quantified using qPCR in three WWTPs of decreasing capacity located in Helsinki, Tallinn, and Tartu, respectively: sulphonamide resistance genes (sul1 and sul2), tetracycline resistance genes (tetM and tetC), and resistance genes for extended spectrum beta-lactams (blaoxa-58, blashv-34, and blactx-m-32). To avoid inconsistencies among qPCR assays we normalised the ARG abundances with 16S rRNA gene abundances while assessing if the respective genes increased or decreased during treatment. ARGs were detected in most samples; sul1, sul2, and tetM were detected in all samples. Statistically significant differences (adjusted p<0.01) between the inflow and effluent were detected in only four cases. Effluent values for blaoxa-58 and tetC decreased in the two larger plants while tetM decreased in the medium-sized plant. Only blashv-34 increased in the effluent from the medium-sized plant. In all other cases the purification process caused no significant change in the relative abundance of resistance genes, while the raw abundances fell by several orders of magnitude. Standard water quality variables (biological oxygen demand, total phosphorus and nitrogen, etc.) were weakly related or unrelated to the relative abundance of resistance genes. Based on our results we conclude that there is neither considerable enrichment nor purification of antibiotic resistance genes in studied conventional WWTPs. PMID:25084517

  8. Study on the association between drug‑resistance and gene mutations of the active efflux pump acrAB‑tolC gene and its regulatory genes.

    PubMed

    Ma, Quan-Ping; Su, Liang; Liu, Jing-Wen; Yao, Ming-Xiao; Yuan, Guang-Ying

    2018-06-01

    The aim of the present study was to investigate the correlation between the multi‑drug resistance of Shigella flexneri and the drug‑resistant gene cassette carried by integrons; in the meanwhile, to detect the associations between drug‑resistance and gene mutations of the active efflux pump acrAB‑tolC gene and its regulatory genes, including marOR, acrR and soxS. A total of 158 isolates were isolated from the stool samples of 1,026 children with diarrhoea aged 14 years old between May 2012 and October 2015 in Henan. The K‑B method was applied for the determination of drug resistance of Shigella flexneri, and polymerase chain reaction amplification was used for class 1, 2 and 3 integrase genes. Enzyme digestion and sequence analysis were performed for the variable regions of positive strains. Based on the drug sensitivity assessment, multi‑drug resistant strains that were resistant to five or more antibiotics, and sensitive strains were selected for amplification. Their active efflux pump genes, acrA and acrB, and regulatory genes, marOR, acrR and soxS, were selected for sequencing. The results revealed that 91.1% of the 158 strains were multi‑resistant to ampicillin, chloramphenicol, tetracycline and streptomycin, and 69.6% of the strains were multi‑resistant to sulfamethoxazole/trimethoprim. The resistance to ceftazidime, ciprofloxacin and levofloxacin was <32.9%. All strains (100%) were sensitive to cefoxitin, cefoperazone/sulbactam and imipenem. The rate of the class 1 integron positivity was 91.9% (144/158). Among these class 1 integron‑positive strains, 18 strains exhibited the resistance gene cassette dfrV in the variable region of the strain, four strains exhibited dfrA17‑aadA5 in the variable region and 140 strains exhibited blaOXA‑30‑aadA1 in the variable region. Four strains showed no resistance gene in the variable regions. The rate of class 2 integron positivity was 86.1% (136/158), and all positive strains harboured the dfrA1‑sat1‑aadA resistance gene cassette in the variable region. The class 3 integrase gene was not detected in these strains. The gene sequencing showed the deletion of base CATT in the 36, 37, 38, 39 site in the marOR gene, which is a regulatory gene of the active efflux pump, AcrAB‑TolC. Taken together, the multi‑drug resistance of Shigella flexneri was closely associated with gene mutations of class 1 and 2 integrons and the marOR gene.

  9. Phenotypes and genes of resistance of pneumococci to penicillin isolated from children.

    PubMed

    Kotevska, V; Trajkovska-Dokic, E; Jankoska, G; Kaftandzieva, A; Panovski, N; Petrovska, M

    2009-07-01

    (Full text is available at http://www.manu.edu.mk/prilozi). In recent decades, the increase of Streptococcus pneumoniae strains resistant to beta-lactams, to other classes of antimicrobial drugs and especially to penicillin (penicillin-resistant pneumococcus - PRP) has further complicated the treatment of pneumococcal infection. Penicillin resistance in pneumococci is due to the development of altered penicillin-binding proteins (PBPs) in the bacterial cell wall. PBPs are known as six different variants (PBP1a, 1b, 2x, 2a, 2b and 3). to compare the presence and types of genes responsible for penicillin resistance in Streptococcus pneumoniae isolates with the minimal inhibitory concentrations (MIC) of penicillin as well as their correlation within the period of childhood. A total of 45 pneumococci obtained from nasal swabs and tracheal aspirates of children treated at the University Paediatric Clinic in Skopje were examined. According to age, the children were grouped as 1-3, 4-6 and 7-10 years. the oxacillin test (1microg) was used as a rapid screening test for the detection of PRP. MIC of penicillin were determined using the agar dilution method and interpreted according to NCCLS as resistant (if MIC are > 2 microg/ml), intermediate resistant (between 0,12-1.0 microg/ml) and susceptible (< 0,06 microg/ml). The genes pbp2b and pbp 2x, which are the genes mainly responsible for the onset of PRP, were detected using polymerase chain reaction (PCR). the oxacillin test showed that 38 pneumococci were resistant and 7 susceptible to penicillin. MIC of penicillin showed that 7 strains were resistant, 33 strains were intermediate resistant (12, 18, and 3 with MIC of 0.5 microg/ml, 0.25 microg/ml and 0.12 microg/ml, respectively) and 5 susceptible. According to MIC, of the total 40 resistant/intermediate resistant pneumococci, in 22 genes pbp2b and/or pbp2x, were confirmed (3 resistant strains with both genes; 7 intermediate resistant and 3 resistant strains with pbp2x genes; whereas 8 intermediate resistance and 1 susceptible strain with pbp2b). In a total of 11 strains (10 intermediate resistant and one resistant according to MIC), pbp2b and/or pbp2x genes were not detected, and their resistance is probably due to some other mechanisms or other genes that code PBP. The largest number of the examined pneumococci (32) were isolated from children aged 1-3 years and in 18 of them either pbp2b or pbp2x genes were detected. the oxacillin test is not suitable for discriminating the intermediate resistant and resistant pneumococci, while it is relevant for the detection of susceptible strains. Penicillin resistance of pneumococci that were causes of infection in children was on a lower level (15.5% resistant strains with MIC 1double dagger2 mg/ml and 73.3% intermediate resistant strains with MIC 0.12double dagger1 microg/ml). Pbp2b and/or pbp2x genes were detected in 22 of the examined strains and all of them except one were intermediate resistant or resistant. The Pbp2b gene is mostly present in the intermediate resistant strains and because it was detected in one susceptible strain, this gene is responsible for a low level of resistance. The pbp2x gene was detected in all the resistant strains and that is why we could conclude that it was coding the high level of resistance. Streptococcus pneumoniae was predominantly isolated from the age group 1-3 years where the PRP were not significant (Chi square; p > 0.05). Key words: Streptococcus pneumoniae, Penicillin resistance, Minimal Inhibitory Concentration (MIC), Genes of Resistance.

  10. The scourge of antibiotic resistance: the important role of the environment.

    PubMed

    Finley, Rita L; Collignon, Peter; Larsson, D G Joakim; McEwen, Scott A; Li, Xian-Zhi; Gaze, William H; Reid-Smith, Richard; Timinouni, Mohammed; Graham, David W; Topp, Edward

    2013-09-01

    Antibiotic resistance and associated genes are ubiquitous and ancient, with most genes that encode resistance in human pathogens having originated in bacteria from the natural environment (eg, β-lactamases and fluoroquinolones resistance genes, such as qnr). The rapid evolution and spread of "new" antibiotic resistance genes has been enhanced by modern human activity and its influence on the environmental resistome. This highlights the importance of including the role of the environmental vectors, such as bacterial genetic diversity within soil and water, in resistance risk management. We need to take more steps to decrease the spread of resistance genes in environmental bacteria into human pathogens, to decrease the spread of resistant bacteria to people and animals via foodstuffs, wastes and water, and to minimize the levels of antibiotics and antibiotic-resistant bacteria introduced into the environment. Reducing this risk must include improved management of waste containing antibiotic residues and antibiotic-resistant microorganisms.

  11. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance

    PubMed Central

    Ndeve, Arsenio Daniel; Huynh, Bao-Lam; Matthews, William Charles; Roberts, Philip Alan

    2018-01-01

    Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN). Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL) population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL) were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance. PMID:29300744

  12. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    PubMed

    Santos, Jansen Rodrigo Pereira; Ndeve, Arsenio Daniel; Huynh, Bao-Lam; Matthews, William Charles; Roberts, Philip Alan

    2018-01-01

    Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN). Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL) population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL) were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  13. In vivo high-resolution magic angle spinning magnetic and electron paramagnetic resonance spectroscopic analysis of mitochondria-targeted peptide in Drosophila melanogaster with trauma-induced thoracic injury.

    PubMed

    Constantinou, Caterina; Apidianakis, Yiorgos; Psychogios, Nikolaos; Righi, Valeria; Mindrinos, Michael N; Khan, Nadeem; Swartz, Harold M; Szeto, Hazel H; Tompkins, Ronald G; Rahme, Laurence G; Tzika, A Aria

    2016-02-01

    Trauma is the most common cause of mortality among individuals aged between 1 and 44 years and the third leading cause of mortality overall in the US. In this study, we examined the effects of trauma on the expression of genes in Drosophila melanogaster, a useful model for investigating genetics and physiology. After trauma was induced by a non-lethal needle puncture of the thorax, we observed the differential expression of genes encoding for mitochondrial uncoupling proteins, as well as those encoding for apoptosis-related and insulin signaling-related proteins, thus indicating muscle functional dysregulation. These results prompted us to examine the link between insulin signaling and mitochondrial dysfunction using in vivo nuclear magnetic resonance (NMR) with complementary electron paramagnetic resonance (EPR) spectroscopy. Trauma significantly increased insulin resistance biomarkers, and the NMR spectral profile of the aged flies with trauma-induced thoracic injury resembled that of insulin-resistant chico mutant flies. In addition, the mitochondrial redox status, as measured by EPR, was significantly altered following trauma, indicating mitochondrial uncoupling. A mitochondria-targeted compound, Szeto-Schiller (SS)-31 that promotes adenosine triphosphate (ATP) synthesis normalized the NMR spectral profile, as well as the mitochondrial redox status of the flies with trauma-induced thoracic injury, as assessed by EPR. Based on these findings, we propose a molecular mechanism responsible for trauma-related mortality and also propose that trauma sequelae in aging are linked to insulin signaling and mitochondrial dysfunction. Our findings further suggest that SS-31 attenuates trauma-associated pathological changes.

  14. Environmental effects on resistance gene expression in milk stage popcorn kernels and associations with mycotoxin production.

    PubMed

    Dowd, Patrick F; Johnson, Eric T

    2015-05-01

    Like other forms of maize, popcorn is subject to increased levels of contamination by a variety of different mycotoxins under stress conditions, although levels generally are less than dent maize under comparable stress. Gene array analysis was used to determine expression differences of disease resistance-associated genes in milk stage kernels from commercial popcorn fields over 3 years. Relatively lower expression of resistance gene types was noted in years with higher temperatures and lower rainfall, which was consistent with prior results for many previously identified resistance response-associated genes. The lower rates of expression occurred for genes such as chitinases, protease inhibitors, and peroxidases; enzymes involved in the synthesis of cell wall barriers and secondary metabolites; and regulatory proteins. However, expression of several specific resistance genes previously associated with mycotoxins, such as aflatoxin in dent maize, was not affected. Insect damage altered the spectrum of resistance gene expression differences compared to undamaged ears. Correlation analyses showed expression differences of some previously reported resistance genes that were highly associated with mycotoxin levels and included glucanases, protease inhibitors, peroxidases, and thionins.

  15. Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes.

    PubMed

    Amos, G C A; Zhang, L; Hawkey, P M; Gaze, W H; Wellington, E M

    2014-07-16

    The environment harbours a significant diversity of uncultured bacteria and a potential source of novel and extant resistance genes which may recombine with clinically important bacteria disseminated into environmental reservoirs. There is evidence that pollution can select for resistance due to the aggregation of adaptive genes on mobile elements. The aim of this study was to establish the impact of waste water treatment plant (WWTP) effluent disposal to a river by using culture independent methods to study diversity of resistance genes downstream of the WWTP in comparison to upstream. Metagenomic libraries were constructed in Escherichia coli and screened for phenotypic resistance to amikacin, gentamicin, neomycin, ampicillin and ciprofloxacin. Resistance genes were identified by using transposon mutagenesis. A significant increase downstream of the WWTP was observed in the number of phenotypic resistant clones recovered in metagenomic libraries. Common β-lactamases such as blaTEM were recovered as well as a diverse range of acetyltransferases and unusual transporter genes, with evidence for newly emerging resistance mechanisms. The similarities of the predicted proteins to known sequences suggested origins of genes from a very diverse range of bacteria. The study suggests that waste water disposal increases the reservoir of resistance mechanisms in the environment either by addition of resistance genes or by input of agents selective for resistant phenotypes. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum.

    PubMed

    Widana Gamage, Shirani M K; McGrath, Desmond J; Persley, Denis M; Dietzgen, Ralf G

    2016-01-01

    Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops.

  17. Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum

    PubMed Central

    Widana Gamage, Shirani M. K.; McGrath, Desmond J.; Persley, Denis M.

    2016-01-01

    Background Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. Methodology/Principal Findings We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. Conclusion/Significance DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops. PMID:27398596

  18. Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding.

    PubMed

    Li, Changyan; Wei, Jing; Lin, Yongjun; Chen, Hao

    2012-05-01

    Resistant germplasm resources are valuable for developing resistant varieties in agricultural production. However, recessive resistance genes are usually overlooked in hybrid breeding. Compared with dominant traits, however, they may confer resistance to different pathogenic races or pest biotypes with different mechanisms of action. The recessive rice bacterial blight resistance gene xa13, also involved in pollen development, has been cloned and its resistance mechanism has been recently characterized. This report describes the conversion of bacterial blight resistance mediated by the recessive xa13 gene into a dominant trait to facilitate its use in a breeding program. This was achieved by knockdown of the corresponding dominant allele Xa13 in transgenic rice using recently developed artificial microRNA technology. Tissue-specific promoters were used to exclude most of the expression of artificial microRNA in the anther to ensure that Xa13 functioned normally during pollen development. A battery of highly bacterial blight resistant transgenic plants with normal seed setting rates were acquired, indicating that highly specific gene silencing had been achieved. Our success with xa13 provides a paradigm that can be adapted to other recessive resistance genes.

  19. DNA Cloning of Plasmodium falciparum Circumsporozoite Gene: Amino Acid Sequence of Repetitive Epitope

    NASA Astrophysics Data System (ADS)

    Enea, Vincenzo; Ellis, Joan; Zavala, Fidel; Arnot, David E.; Asavanich, Achara; Masuda, Aoi; Quakyi, Isabella; Nussenzweig, Ruth S.

    1984-08-01

    A clone of complementary DNA encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum has been isolated by screening an Escherichia coli complementary DNA library with a monoclonal antibody to the CS protein. The DNA sequence of the complementary DNA insert encodes a four-amino acid sequence: proline-asparagine-alanine-asparagine, tandemly repeated 23 times. The CS β -lactamase fusion protein specifically binds monoclonal antibodies to the CS protein and inhibits the binding of these antibodies to native Plasmodium falciparum CS protein. These findings provide a basis for the development of a vaccine against Plasmodium falciparum malaria.

  20. Methods for Genome-Wide Analysis of Gene Expression Changes in Polyploids

    PubMed Central

    Wang, Jianlin; Lee, Jinsuk J.; Tian, Lu; Lee, Hyeon-Se; Chen, Meng; Rao, Sheetal; Wei, Edward N.; Doerge, R. W.; Comai, Luca; Jeffrey Chen, Z.

    2007-01-01

    Polyploidy is an evolutionary innovation, providing extra sets of genetic material for phenotypic variation and adaptation. It is predicted that changes of gene expression by genetic and epigenetic mechanisms are responsible for novel variation in nascent and established polyploids (Liu and Wendel, 2002; Osborn et al., 2003; Pikaard, 2001). Studying gene expression changes in allopolyploids is more complicated than in autopolyploids, because allopolyploids contain more than two sets of genomes originating from divergent, but related, species. Here we describe two methods that are applicable to the genome-wide analysis of gene expression differences resulting from genome duplication in autopolyploids or interactions between homoeologous genomes in allopolyploids. First, we describe an amplified fragment length polymorphism (AFLP)–complementary DNA (cDNA) display method that allows the discrimination of homoeologous loci based on restriction polymorphisms between the progenitors. Second, we describe microarray analyses that can be used to compare gene expression differences between the allopolyploids and respective progenitors using appropriate experimental design and statistical analysis. We demonstrate the utility of these two complementary methods and discuss the pros and cons of using the methods to analyze gene expression changes in autopolyploids and allopolyploids. Furthermore, we describe these methods in general terms to be of wider applicability for comparative gene expression in a variety of evolutionary, genetic, biological, and physiological contexts. PMID:15865985

  1. Comparison of gene expression profiles between pansensitive and multidrug-resistant strains of Mycobacterium tuberculosis.

    PubMed

    Peñuelas-Urquides, K; González-Escalante, L; Villarreal-Treviño, L; Silva-Ramírez, B; Gutiérrez-Fuentes, D J; Mojica-Espinosa, R; Rangel-Escareño, C; Uribe-Figueroa, L; Molina-Salinas, G M; Dávila-Velderrain, J; Castorena-Torres, F; Bermúdez de León, M; Said-Fernández, S

    2013-09-01

    Mycobacterium tuberculosis has developed resistance to anti-tuberculosis first-line drugs. Multidrug-resistant strains complicate the control of tuberculosis and have converted it into a worldwide public health problem. Mutational studies of target genes have tried to envisage the resistance in clinical isolates; however, detection of these mutations in some cases is not sufficient to identify drug resistance, suggesting that other mechanisms are involved. Therefore, the identification of new markers of susceptibility or resistance to first-line drugs could contribute (1) to specifically diagnose the type of M. tuberculosis strain and prescribe an appropriate therapy, and (2) to elucidate the mechanisms of resistance in multidrug-resistant strains. In order to identify specific genes related to resistance in M. tuberculosis, we compared the gene expression profiles between the pansensitive H37Rv strain and a clinical CIBIN:UMF:15:99 multidrug-resistant isolate using microarray analysis. Quantitative real-time PCR confirmed that in the clinical multidrug-resistant isolate, the esxG, esxH, rpsA, esxI, and rpmI genes were upregulated, while the lipF, groES, and narG genes were downregulated. The modified genes could be involved in the mechanisms of resistance to first-line drugs in M. tuberculosis and could contribute to increased efficiency in molecular diagnosis approaches of infections with drug-resistant strains.

  2. New Rodent Population Models May Inform Human Health Risk Assessment and Identification of Genetic Susceptibility to Environmental Exposures.

    PubMed

    Harrill, Alison H; McAllister, Kimberly A

    2017-08-15

    This paper provides an introduction for environmental health scientists to emerging population-based rodent resources. Mouse reference populations provide an opportunity to model environmental exposures and gene-environment interactions in human disease and to inform human health risk assessment. This review will describe several mouse populations for toxicity assessment, including older models such as the Mouse Diversity Panel (MDP), and newer models that include the Collaborative Cross (CC) and Diversity Outbred (DO) models. This review will outline the features of the MDP, CC, and DO mouse models and will discuss published case studies investigating the use of these mouse population resources in each step of the risk assessment paradigm. These unique resources have the potential to be powerful tools for generating hypotheses related to gene-environment interplay in human disease, performing controlled exposure studies to understand the differential responses in humans for susceptibility or resistance to environmental exposures, and identifying gene variants that influence sensitivity to toxicity and disease states. These new resources offer substantial advances to classical toxicity testing paradigms by including genetically sensitive individuals that may inform toxicity risks for sensitive subpopulations. Both in vivo and complementary in vitro resources provide platforms with which to reduce uncertainty by providing population-level data around biological variability. https://doi.org/10.1289/EHP1274.

  3. Cloning and characterization of a novel chitinase gene (chi46) from Chaetomium globosum and identification of its biological activity.

    PubMed

    Liu, Z H; Yang, Q; Hu, S; Zhang, J D; Ma, J

    2008-08-01

    Chitinases play a major role in the defensive strategies of plants against fungal pathogens. In the current study, the gene for a 46-kDa endochitinase (chi46) was cloned from Chaetomium globosum, an important biocontrol fungus. The corresponding complementary deoxyribonucleic acid sequence was 1,350 bp in length, encoding 449 amino acid residues. The temporal expression of chi46, in response to the treatments of cell walls of six pathogens and confrontation against two fungal pathogens, was measured in C. globosum using real-time reverse transcription polymerase chain reaction. The expression of chi46 can be highly induced by exposure to the cell walls of plant pathogens and living pathogens, suggesting a role in plant disease resistance. The chi46 gene was inserted into the pPIC9 vector and transferred into the cells of Pichia pastoris GS115 for heterologous expression. The optimal reaction conditions for chitinase CHI46 activity were: 45 degrees C, pH of 5.0, and 5 mmol l(-1) of Cu2+. The maximum enzyme activity was 1.42 U ml(-1) following exposure to the cell wall chitin of Septoria tritici. The CHI46 enzyme can efficiently degrade cell walls of the phytopathogenic Rhizoctonia solani, Fusarium oxysporum, Sclerotinia sclerotiorum, Valsa sordida, S. tritici, and Phytophthora sojae, demonstrating that it may be involved in the biocontrol mechanism of C. globosum.

  4. Resistance to Colletotrichum lindemuthianum in Phaseolus vulgaris: a case study for mapping two independent genes.

    PubMed

    Geffroy, Valérie; Sévignac, Mireille; Billant, Paul; Dron, Michel; Langin, Thierry

    2008-02-01

    Anthracnose, caused by the hemibiotrophic fungal pathogen Colletotrichum lindemuthianum is a devastating disease of common bean. Resistant cultivars are economical means for defense against this pathogen. In the present study, we mapped resistance specificities against 7 C. lindemuthianum strains of various geographical origins revealing differential reactions on BAT93 and JaloEEP558, two parents of a recombinant inbred lines (RILs) population, of Meso-american and Andean origin, respectively. Six strains revealed the segregation of two independent resistance genes. A specific numerical code calculating the LOD score in the case of two independent segregating genes (i.e. genes with duplicate effects) in a RILs population was developed in order to provide a recombination value (r) between each of the two resistance genes and the tested marker. We mapped two closely linked Andean resistance genes (Co-x, Co-w) at the end of linkage group (LG) B1 and mapped one Meso-american resistance genes (Co-u) at the end of LG B2. We also confirmed the complexity of the previously identified B4 resistance gene cluster, because four of the seven tested strains revealed a resistance specificity near Co-y from JaloEEP558 and two strains identified a resistance specificity near Co-9 from BAT93. Resistance genes found within the same cluster confer resistance to different strains of a single pathogen such as the two anthracnose specificities Co-x and Co-w clustered at the end of LG B1. Clustering of resistance specificities to multiple pathogens such as fungi (Co-u) and viruses (I) was also observed at the end of LG B2.

  5. HUMAN GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE-2 (GAPD2) GENE IS EXPRESSED SPECIFICALLY IN SPERMATOGENIC CELLS

    EPA Science Inventory

    Although the process of glycolysis is highly conserved in eukaryotes, several glycolytic enzymes have unique structural or functional features in spermatogenic cells. We previously identified and characterized the mouse complementary DNA (cDNA) and a gene for 1 of these enzymes, ...

  6. Comparison of multiple gene assembly methods for metabolic engineering

    Treesearch

    Chenfeng Lu; Karen Mansoorabadi; Thomas Jeffries

    2007-01-01

    A universal, rapid DNA assembly method for efficient multigene plasmid construction is important for biological research and for optimizing gene expression in industrial microbes. Three different approaches to achieve this goal were evaluated. These included creating long complementary extensions using a uracil-DNA glycosylase technique, overlap extension polymerase...

  7. Breeding for resistance to gastrointestinal nematodes - the potential in low-input/output small ruminant production systems.

    PubMed

    Zvinorova, P I; Halimani, T E; Muchadeyi, F C; Matika, O; Riggio, V; Dzama, K

    2016-07-30

    The control of gastrointestinal nematodes (GIN) is mainly based on the use of drugs, grazing management, use of copper oxide wire particles and bioactive forages. Resistance to anthelmintic drugs in small ruminants is documented worldwide. Host genetic resistance to parasites, has been increasingly used as a complementary control strategy, along with the conventional intervention methods mentioned above. Genetic diversity in resistance to GIN has been well studied in experimental and commercial flocks in temperate climates and more developed economies. However, there are very few report outputs from the more extensive low-input/output smallholder systems in developing and emerging countries. Furthermore, results on quantitative trait loci (QTL) associated with nematode resistance from various studies have not always been consistent, mainly due to the different nematodes studied, different host breeds, ages, climates, natural infections versus artificial challenges, infection level at sampling periods, among others. The increasing use of genetic markers (Single Nucleotide Polymorphisms, SNPs) in GWAS or the use of whole genome sequence data and a plethora of analytic methods offer the potential to identify loci or regions associated nematode resistance. Genomic selection as a genome-wide level method overcomes the need to identify candidate genes. Benefits in genomic selection are now being realised in dairy cattle and sheep under commercial settings in the more advanced countries. However, despite the commercial benefits of using these tools, there are practical problems associated with incorporating the use of marker-assisted selection or genomic selection in low-input/output smallholder farming systems breeding schemes. Unlike anthelmintic resistance, there is no empirical evidence suggesting that nematodes will evolve rapidly in response to resistant hosts. The strategy of nematode control has evolved to a more practical manipulation of host-parasite equilibrium in grazing systems by implementation of various strategies, in which improvement of genetic resistance of small ruminant should be included. Therefore, selection for resistant hosts can be considered as one of the sustainable control strategy, although it will be most effective when used to complement other control strategies such as grazing management and improving efficiency of anthelmintics currently. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Novel thigmomorphogenetic responses in Carica papaya: touch decreases anthocyanin levels and stimulates petiole cork outgrowths

    PubMed Central

    Porter, Brad W.; Zhu, Yun J.; Webb, David T.; Christopher, David A.

    2009-01-01

    Background and Aims Because of its rapid growth rate, relative ease of transformation, sequenced genome and low gene number relative to Arabidopsis, the tropical fruit tree, Carica papaya, can serve as a complementary genetic model for complex traits. Here, new phenotypes and touch-regulated gene homologues have been identified that can be used to advance the understanding of thigmomorphogenesis, a multigenic response involving mechanoreception and morphological change. Methods Morphological alterations were quantified, and microscopy of tissue was conducted. Assays for hypocotyl anthocyanins, lignin and chlorophyll were performed, and predicted genes from C. papaya were compared with Arabidopsis touch-inducible (TCH) and Mechanosensitive channel of Small conductance-like genes (MscS-like or MSL). In addition, the expression of two papaya TCH1 homologues was characterized. Key Results On the abaxial side of petioles, treated plants were found to have novel, hypertrophic outgrowths associated with periderm and suberin. Touched plants also had higher lignin, dramatically less hypocotyl anthocyanins and chlorophyll, increased hypocotyl diameter, and decreased leaf width, stem length and root fresh weight. Papaya was found to have fewer MSL genes than Arabidopsis, and four touch-regulated genes in Arabidopsis had no counterparts in papaya. Water-spray treatment was found to enhance the expression of two papaya TCH1 homologues whereas induction following touch was only slightly correlated. Conclusions The novel petiole outgrowths caused by non-wounding, mechanical perturbation may be the result of hardening mechanisms, including added lignin, providing resistance against petiole movement. Inhibition of anthocyanin accumulation following touch, a new phenotypic association, may be caused by diversion of p-coumaroyl CoA away from chalcone synthase for lignin synthesis. The absence of MSL and touch-gene homologues indicates that papaya may have a smaller set of touch-regulated genes. The genes and novel touch-regulated phenotypes identified here will contribute to a more comprehensive view of thigmomorphogenesis in plants. PMID:19182220

  9. Novel thigmomorphogenetic responses in Carica papaya: touch decreases anthocyanin levels and stimulates petiole cork outgrowths.

    PubMed

    Porter, Brad W; Zhu, Yun J; Webb, David T; Christopher, David A

    2009-04-01

    Because of its rapid growth rate, relative ease of transformation, sequenced genome and low gene number relative to Arabidopsis, the tropical fruit tree, Carica papaya, can serve as a complementary genetic model for complex traits. Here, new phenotypes and touch-regulated gene homologues have been identified that can be used to advance the understanding of thigmomorphogenesis, a multigenic response involving mechanoreception and morphological change. Morphological alterations were quantified, and microscopy of tissue was conducted. Assays for hypocotyl anthocyanins, lignin and chlorophyll were performed, and predicted genes from C. papaya were compared with Arabidopsis touch-inducible (TCH) and Mechanosensitive channel of Small conductance-like genes (MscS-like or MSL). In addition, the expression of two papaya TCH1 homologues was characterized. On the abaxial side of petioles, treated plants were found to have novel, hypertrophic outgrowths associated with periderm and suberin. Touched plants also had higher lignin, dramatically less hypocotyl anthocyanins and chlorophyll, increased hypocotyl diameter, and decreased leaf width, stem length and root fresh weight. Papaya was found to have fewer MSL genes than Arabidopsis, and four touch-regulated genes in Arabidopsis had no counterparts in papaya. Water-spray treatment was found to enhance the expression of two papaya TCH1 homologues whereas induction following touch was only slightly correlated. The novel petiole outgrowths caused by non-wounding, mechanical perturbation may be the result of hardening mechanisms, including added lignin, providing resistance against petiole movement. Inhibition of anthocyanin accumulation following touch, a new phenotypic association, may be caused by diversion of p-coumaroyl CoA away from chalcone synthase for lignin synthesis. The absence of MSL and touch-gene homologues indicates that papaya may have a smaller set of touch-regulated genes. The genes and novel touch-regulated phenotypes identified here will contribute to a more comprehensive view of thigmomorphogenesis in plants.

  10. Genetic redundancy and persistence of plasmid-mediated trimethoprim/sulfamethoxazole resistant effluent and stream water Escherichia coli.

    PubMed

    Suhartono, Suhartono; Savin, Mary; Gbur, Edward E

    2016-10-15

    Antibiotic resistant bacteria may persist in effluent receiving surface water in the presence of low (sub-inhibitory) antibiotic concentrations if the bacteria possess multiple genes encoding resistance to the same antibiotic. This redundancy of antibiotic resistance genes may occur in plasmids harboring conjugation and mobilization (mob) and integrase (intI) genes. Plasmids extracted from 76 sulfamethoxazole-trimethoprim resistant Escherichia coli originally isolated from effluent and an effluent-receiving stream were used as DNA template to identify sulfamethoxazole (sul) and trimethoprim (dfr) resistances genes plus detect the presence of intI and mob genes using PCR. Sulfamethoxazole and trimethoprim resistance was plasmid-mediated with three sul (sul1, sul2 and sul3 genes) and four dfr genes (dfrA12, dfrA8, dfrA17, and dfrA1 gene) the most prevalently detected. Approximately half of the plasmids carried class 1 and/or 2 integron and, although unrelated, half were also transmissible. Sampling site in relationship to effluent input significantly affected the number of intI and mob but not the number of sul and dfr genes. In the presence of low (sub-inhibitory) sulfamethoxazole concentration, isolates persisted regardless of integron and mobilization gene designation, whereas in the presence of trimethoprim, the presence of both integron and mobilization genes made isolates less persistent than in the absence of both or the presence of a gene from either group individually. Regardless, isolates persisted in large concentrations throughout the experiment. Treated effluent containing antibiotic resistant bacteria may be an important source of integrase and mobilization genes into the stream environment. Sulfamethoxazole-trimethoprim resistant bacteria may have a high degree of genetic redundancy and diversity carrying resistance to each antibiotic, although the role of integrase and mobilization genes towards persistence is unclear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Using SNP genetic markers to elucidate the linkage of the Co-34/Phg-3 anthracnose and angular leaf spot resistance gene cluster with the Ur-14 resistance gene

    USDA-ARS?s Scientific Manuscript database

    The Ouro Negro common bean cultivar contains the Co-34/Phg-3 gene cluster that confers resistance to the anthracnose (ANT) and angular leaf spot (ALS) pathogens. These genes are tightly linked on chromosome 4. Ouro Negro also has the Ur-14 rust resistance gene, reportedly in the vicinity of Co- 34; ...

  12. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water.

    PubMed

    Harnisz, Monika; Korzeniewska, Ewa; Gołaś, Iwona

    2015-06-01

    The aim of this study was to assess the impact of a fish farm on the structure of antibiotic resistant bacteria and antibiotic resistance genes in water of Drwęca River. Samples of upstream river waters; post-production waters and treated post-production waters from fish farm; as well as downstream river waters were monitored for tetracycline resistant bacteria, tetracycline resistant genes, basic physico-chemical parameters and tetracyclines concentration. The river waters was characterized by low levels of pollution, which was determined based on water temperature, pH and concentrations of dissolved oxygen and tetracycline antibiotics. Culture-dependent (heterotrophic plate counts, counts of bacteria resistant to oxytetracycline (OTC(R)) and doxycycline (DOX(R)), minimum inhibitory concentrations for oxytetracycline and doxycycline, multidrug resistance of OTC(R) and DOX(R), qualitative composition of OTC(R) and DOX(R), prevalence of tet genes in resistant isolates) and culture-independent surveys (quantity of tet gene copies) revealed no significant differences in the abundance of antibiotic-resistant bacteria and antibiotic resistance genes between the studied samples. The only way in which the fish farm influenced water quality in the Drwęca River was by increasing the diversity of tetracycline-resistance genes. However, it should also be noted that the bacteria of the genera Aeromonas sp. and Acinetobacter sp. were able to transfer 6 out of 13 tested tet genes into Escherichiacoli, which can promote the spread of antibiotic resistance in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding.

    PubMed

    Brown, James K M; Chartrain, Laëtitia; Lasserre-Zuber, Pauline; Saintenac, Cyrille

    2015-06-01

    This paper reviews current knowledge about genes for resistance to Septoria tritici blotch (STB) of wheat, caused by Zymoseptoria tritici (formerly Mycosphaerella graminicola). These genes can be placed into two classes, although a few may have characteristics of both classes. Qualitative resistance is controlled by genes which control large fractions of genetic variation, 21 of which have been discovered and mapped so far. Most of them have been shown to be genotype-specific, being effective against the minority of Z. tritici isolates which are avirulent, and Stb6 has been shown to control a gene-for-gene relationship. Most qualitative resistances are unlikely to be durable and some formerly effective genes have been overcome by the evolution of pathogen virulence. Quantitative resistance is generally controlled by genes with small-to-moderate effects on STB. They have generally weaker specificity than qualitative genes and have provided more durable resistance. 89 genome regions carrying quantitative trait loci (QTL) or meta-QTL have been identified to date. Some QTL have been mapped at or near loci of qualitative genes, especially Stb6, which is present in several sources of resistance. Another gene of particular interest is Stb16q, which has been effective against all Z. tritici isolates tested so far. In addition to resistance, the susceptibility of wheat cultivars to STB can also be reduced by disease escape traits, some of which may be undesirable in breeding. The fundamental requirements for breeding for STB-resistance are genetic diversity for resistance in wheat germplasm and a field trial site at which STB epidemics occur regularly and effective selection can be conducted for resistance combined with other desirable traits. If these are in place, knowledge of resistance genes can be applied to improving control of STB. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. [Identification of lactic acid bacteria in commercial yogurt and their antibiotic resistance].

    PubMed

    Qin, Yuxuan; Li, Jing; Wang, Qiuya; Gao, Kexin; Zhu, Baoli; Lv, Na

    2013-08-04

    To identify lactic acid bacteria (LAB) in commercial yogurts and investigate their antibiotic resistance. LABs were cultured from 5 yogurt brands and the isolates were identified at the species level by 16S rRNA sequence. Genotyping was performed by repetitive extragenic palindromic PCR (rep-PCR). The sensitivity to 7 antibiotics was tested for all LAB isolates by Kirby-Bauer paper diffusion (K-B method). Meanwhile, 9 antibiotic resistance genes (ARGs), including erythromycin resistance genes (ermA and ermB) and tetracycline resistance genes (tetM, tetK, tetS, tetQ, tetO, tetL and tetW), were detected by PCR amplification in the identified LAB isolates. The PCR products were confirmed by sequencing. Total 100 LABs were isolated, including 23 Lactobacillus delbrueckii ssp. bulgaricus, 26 Lactobacillus casei, 30 Streptococcus thermophilus, 5 Lactobacillus acidophilus, 6 Lactobacillus plantarum, and 10 Lactobacillus paracasei. The drug susceptibility test shows that all 100 isolates were resistant to gentamicin and streptomycin, 42 isolates were resistant to vancomycin, and on the contrary all were sensitive to cefalexin, erythromycin, tetracycline and oxytetracycline. Moreover, 5 ARGs were found in the 28 sequencing confirmed isolates, ermB gene was detected in 8 isolates, tet K in 4 isolates, tetL in 2 isolates, tetM in 4 isolates, tetO in 2 isolates. erm A, tet S, tet Q and tet W genes were not detected in the isolates. Antibiotic resistance genes were found in 53.57% (15/28) sequenced isolates, 2 -3 antibiotic resistance genes were detected in 4 isolates of L. delbrueckii ssp. bulgaricus. Some LABs were not labeled in commercial yogurt products. Antibiotic resistance genes tend to be found in the starter culture of L. delbrueckii ssp. Bulgaricus and S. thermophilus. All the LAB isolates were sensitive to erythromycin and tetracycline, even though some carried erythromycin and/or tetracycline resistance genes. We proved again that LAB could carry antibiotic resistance gene(s) though it is sensitive to antibiotics.

  15. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae.

    PubMed

    Nemchinov, Lev G; Shao, Jonathan; Lee, Maya N; Postnikova, Olga A; Samac, Deborah A

    2017-01-01

    Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L). Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai) with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs) in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties.

  16. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae

    PubMed Central

    Shao, Jonathan; Lee, Maya N.; Postnikova, Olga A.; Samac, Deborah A.

    2017-01-01

    Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L). Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai) with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs) in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties. PMID:29244864

  17. Postulation of rust resistance genes in Nordic spring wheat genotypes and identification of widely effective sources of resistance against the Australian rust flora.

    PubMed

    Randhawa, Mandeep; Bansal, Urmil; Lillemo, Morten; Miah, Hanif; Bariana, Harbans

    2016-11-01

    Wild relatives, landraces and cultivars from different geographical regions have been demonstrated as the sources of genetic variation for resistance to rust diseases. This study involved assessment of diversity for resistance to three rust diseases among a set of Nordic spring wheat cultivars. These cultivars were tested at the seedling stage against several pathotypes of three rust pathogens in the greenhouse. All stage stem rust resistance genes Sr7b, Sr8a, Sr12, Sr15, Sr17, Sr23 and Sr30, and leaf rust resistance genes Lr1, Lr3a, Lr13, Lr14a, Lr16 and Lr20 were postulated either singly or in different combinations among these cultivars. A high proportion of cultivars were identified to carry linked rust resistance genes Sr15 and Lr20. Although 51 cultivars showed variation against Puccinia striiformis f. sp. tritici (Pst) pathotypes used in this study, results were not clearly contrasting to enable postulation of stripe rust resistance genes in these genotypes. Stripe rust resistance gene Yr27 was postulated in four cultivars and Yr1 was present in cultivar Zebra. Cultivar Tjalve produced low stripe rust response against all Pst pathotypes indicating the presence either of a widely effective resistance gene or combination of genes with compensating pathogenic specificities. Several cultivars carried moderate to high level of APR to leaf rust and stripe rust. Seedling stem rust susceptible cultivar Aston exhibited moderately resistant to moderately susceptible response, whereas other cultivars belonging to this class were rated moderately susceptible or higher. Molecular markers linked with APR genes Yr48, Lr34/Yr18/Sr57, Lr68 and Sr2 detected the presence of these genes in some genotypes.

  18. Transcriptional profiling of root-knot nematode induced feeding sites in cowpea (Vigna unguiculata L. Walp.) using a soybean genome array.

    PubMed

    Das, Sayan; Ehlers, Jeffrey D; Close, Timothy J; Roberts, Philip A

    2010-08-19

    The locus Rk confers resistance against several species of root-knot nematodes (Meloidogyne spp., RKN) in cowpea (Vigna unguiculata). Based on histological and reactive oxygen species (ROS) profiles, Rk confers a delayed but strong resistance mechanism without a hypersensitive reaction-mediated cell death process, which allows nematode development but blocks reproduction. Responses to M. incognita infection in roots of resistant genotype CB46 and a susceptible near-isogenic line (null-Rk) were investigated using a soybean Affymetrix GeneChip expression array at 3 and 9 days post-inoculation (dpi). At 9 dpi 552 genes were differentially expressed in incompatible interactions (infected resistant tissue compared with non-infected resistant tissue) and 1,060 genes were differentially expressed in compatible interactions (infected susceptible tissue compared with non-infected susceptible tissue). At 3 dpi the differentially expressed genes were 746 for the incompatible and 623 for the compatible interactions. When expression between infected resistant and susceptible genotypes was compared, 638 and 197 genes were differentially expressed at 9 and 3 dpi, respectively. In comparing the differentially expressed genes in response to nematode infection, a greater number and proportion of genes were down-regulated in the resistant than in the susceptible genotype, whereas more genes were up-regulated in the susceptible than in the resistant genotype. Gene ontology based functional categorization revealed that the typical defense response was partially suppressed in resistant roots, even at 9 dpi, allowing nematode juvenile development. Differences in ROS concentrations, induction of toxins and other defense related genes seem to play a role in this unique resistance mechanism.

  19. Dominant gene for rust resistance in pearl millet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanna, W.W.; Wells, H.D.; Burton, G.W.

    1985-01-01

    Rust (Puccinia substriata var. indica) resistance was discovered in three Pennisetum americanum (L.) Leeke subspecies monodii (Maire) Brunken accessions from Senegal. Resistant plant were free of rust, although the bottom one or two leaves of some plants did develop a brown discoloration without pustules. Resistance was controlled by a dominant gene assigned the gene symbol Rr1. Backcrossing has been effective in transferring resistance from the wild grassy, monodii to cultivated pearl millet. The Rr1 gene should be useful in the production of rust resistant pearl millet hybrids and cultivars. 6 references, 1 table.

  20. The first human report of mobile colistin resistance gene, mcr-1, in Finland.

    PubMed

    Gröndahl-Yli-Hannuksela, Kirsi; Lönnqvist, Emilia; Kallonen, Teemu; Lindholm, Laura; Jalava, Jari; Rantakokko-Jalava, Kaisu; Vuopio, Jaana

    2018-05-01

    Colistin resistance mediated by mobile mcr-1 gene has raised concern during the last years. After steep increase in mcr-1 reports, other mcr-gene variants (mcr-2 to mcr-5) have been revealed as well. In 2016, a clinical study was conducted on asymptomatic stool carriage of extended spectrum beta-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae among Finnish adults. All suspected ESBL producing bacterial isolates were first tested by phenotypic ESBL-confirmation methods, and then further analyzed with whole genome sequencing to identify the resistance genes. We found one study subject carrying a colistin resistant E. coli with a transferrable mcr-1 gene. This multi-drug resistant isolate, although initially suspected to be an ESBL producer, did not carry any ESBL genes, but was proven to carry several other resistance genes by using whole genome sequencing. Sequence type was ST93. The mcr-1 gene was connected to IncX4 plasmid which suggests that the colistin resistance gene locates in the respective plasmid. Here, we report the finding of a mcr-1 harboring human E. coli isolate from Finland. Clinical antimicrobial resistance (AMR) rates are low in Finland, and mobile colistin resistance has not been reported previously. This highlights the importance of AMR surveillance also in populations with low levels of resistance. © 2018 The Authors. APMIS published by John Wiley & Sons Ltd on behalf of Scandinavian Societies for Medical Microbiology and Pathology.

  1. Genetics and mapping of a new anthracnose resistance locus in Andean common bean Paloma.

    PubMed

    de Lima Castro, Sandra Aparecida; Gonçalves-Vidigal, Maria Celeste; Gilio, Thiago Alexandre Santana; Lacanallo, Giselly Figueiredo; Valentini, Giseli; da Silva Ramos Martins, Vanusa; Song, Qijian; Galván, Marta Zulema; Hurtado-Gonzales, Oscar P; Pastor-Corrales, Marcial Antonio

    2017-04-18

    The Andean cultivar Paloma is resistant to Mesoamerican and Andean races of Colletotrichum lindemuthianum, the fungal pathogen that causes the destructive anthracnose disease in common bean. Remarkably, Paloma is resistant to Mesoamerican races 2047 and 3481, which are among the most virulent races of the anthracnose pathogen. Most genes conferring anthracnose resistance in common bean are overcome by these races. The genetic mapping and the relationship between the resistant Co-Pa gene of Paloma and previously characterized anthracnose resistance genes can be a great contribution for breeding programs. The inheritance of resistance studies for Paloma was performed in F 2 population from the cross Paloma (resistant) × Cornell 49-242 (susceptible) inoculated with race 2047, and in F 2 and F 2:3 generations from the cross Paloma (resistant) × PI 207262 (susceptible) inoculated with race 3481. The results of these studies demonstrated that a single dominant gene confers the resistance in Paloma. Allelism tests performed with multiple races of C. lindemuthianum showed that the resistance gene in Paloma, provisionally named Co-Pa, is independent from the anthracnose resistance genes Co-1, Co-2, Co-3, Co-4, Co-5, Co-6, Co-12, Co-13, Co-14, Co-15 and Co-16. Bulk segregant analysis using the SNP chip BARCBean6K_3 positioned the approximate location of Co-Pa in the lower arm of chromosome Pv01. Further mapping analysis located the Co-Pa gene at a 390 kb region of Pv01 flanked by SNP markers SS82 and SS83 at a distance of 1.3 and 2.1 cM, respectively. The results presented here showed that Paloma cultivar has a new dominant gene conferring resistance to anthracnose, which is independent from those genes previously described. The linkage between the Co-Pa gene and the SS82 and SS83 SNP markers will be extremely important for marker-assisted introgression of the gene into elite cultivars in order to enhance resistance.

  2. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice.

    PubMed

    Suh, Jung-Pil; Jeung, Ji-Ung; Noh, Tae-Hwan; Cho, Young-Chan; Park, So-Hyun; Park, Hyun-Su; Shin, Mun-Sik; Kim, Chung-Kon; Jena, Kshirod K

    2013-02-08

    The development of resistant cultivars has been the most effective and economical strategy to control bacterial leaf blight (BB) disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Molecular markers have made it possible to identify and pyramid valuable genes of agronomic importance in resistance rice breeding. In this study, three resistance genes (Xa4 + xa5 + Xa21) were transferred from an indica donor (IRBB57), using a marker-assisted backcrossing (MAB) breeding strategy, into a BB-susceptible elite japonica rice cultivar, Mangeumbyeo, which is high yielding with good grain quality. Our analysis led to the development of three elite advanced backcross breeding lines (ABL) with three resistance genes by foreground and phenotypic selection in a japonica genetic background without linkage drag. The background genome recovery of the ABL expressed more than 92.1% using genome-wide SSR marker analysis. The pathogenicity assays of three resistance-gene-derived ABL were conducted under glasshouse conditions with the 18 isolates of Xoo prevalent in Korea. The ABL exhibited very small lesion lengths, indicating a hypersensitive reaction to all 18 isolates of Xoo, with agronomic and grain quality traits similar to those of the recurrent parent. Pyramiding the resistance genes Xa4, xa5 and Xa21 provided a higher resistance to Xoo than the introduction of the individual resistance genes. Additionally, the combination of two dominant and one recessive BB resistance gene did not express any negative effect on agronomic traits in the ABL. The strategy of simultaneous foreground and phenotypic selection to introduce multiple R genes is very useful to reduce the cost and the time required for the isolation of desirable recombinants with target resistance genes in rice. The resistance-gene-derived ABL have practical breeding value without a yield penalty by providing broad-spectrum resistance against most of the existing isolates of BB in South Korea and will have a high impact on the yield stability and sustainability of rice productivity.

  3. A Case Study on Soil Antibiotic Resistome in an Urban Community Garden.

    PubMed

    Mafiz, Abdullah Ibn; Perera, Liyanage Nirasha; He, Yingshu; Zhang, Wei; Xiao, Shujie; Hao, Weilong; Sun, Shi; Zhou, Kequan; Zhang, Yifan

    2018-05-29

    Urban agricultural soils can be an important reservoir of antibiotic resistance and have great food safety and public health indications. This study was to investigate antibiotic-resistant bacteria and antibiotic resistance genes in urban agricultural soils using phenotypic and metagenomic tools. A total of 207 soil bacteria were recovered from 41 soil samples collected from an urban agricultural garden in Detroit, USA. The most prevalent antibiotic resistance phenotypes demonstrated by Gram-negative bacteria was the resistance to ampicillin (94.2%), followed by chloramphenicol (80.0%), cefoxitin (79.5%), gentamicin (78.4%), and ceftriaxone (71.1%). Gram-positive bacteria were all resistant to gentamicin, kanamycin, and penicillin. Genes encoding resistance to quinolone, β-lactam, and tetracycline were the most prevalent and abundant in the soil. qepA and tetA, both encoding efflux pumps, predominated in quinolone and tetracycline resistance genes tested, respectively. Positive correlation (p < 0.05) was identified among groups of antibiotic resistance genes and between antibiotic resistance genes and metal resistance genes. The data demonstrated a diverse population of antibiotic resistance in urban agricultural soils. Phenotypic determination together with soil metagenomics proved to be a valuable tool to study the nature and extent of antibiotic resistance in the environment. Copyright © 2018. Published by Elsevier B.V.

  4. PREVALENCE OF SULFONAMIDE AND FLORFENICOL RESISTANCE GENES IN ESCHERICHIA COLI ISOLATED FROM YAKS (BOS GRUNNIENS) AND HERDSMEN IN THE TIBETAN PASTURE.

    PubMed

    Zhang, Anyun; Yang, Yunfei; Wang, Hongning; Lei, Changwei; Xu, Changwen; Guan, Zhongbin; Liu, Bihui; Huang, Xi; Peng, Linyao

    2015-07-01

    To determine the antimicrobial susceptibility profiles and prevalence of resistance genes in Escherichia coli isolated from yaks (Bos grunniens) and herdsmen in nine plateau pastures in Tibet, we isolated 184 nonidentical strains of E. coli from yaks and herdsmen. Antimicrobial susceptibility testing of 15 antimicrobials was conducted and the prevalence of sulfonamide resistance genes (sul1, sul2, and sul3) and florfenicol resistance genes (floR, cfr, cmlA, fexA, pexA, and estDL136) was determined. Escherichia coli isolated from yaks had a high resistance rate to sulfamethoxazole (44%), sulphafurazole (40.4%), and florfenicol (11.4%). Escherichia coli isolated from herdsmen had a high resistance rate to sulfamethoxazole (57%) and sulphafurazole (51%). In addition, sul genes were present in 93% of sulfonamide-resistant isolates (84/90), and 17 floR genes and four cmlA genes were found in 19 florfenicol-resistant isolates. Even though florfenicol is prohibited from use in humans, three floR genes were detected in strains isolated from herdsmen. The three floR-positive isolates from herdsmen had pulsed-field gel electrophoresis patterns similar to isolates from yaks. In addition to documenting the sul and floR genes in E. coli isolated from yaks and herdsmen in the Tibetan pasture, we demonstrated the potential risk that antimicrobial-resistant E. coli could spread among herdsmen and yaks.

  5. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China.

    PubMed

    Su, Jian-Qiang; An, Xin-Li; Li, Bing; Chen, Qing-Lin; Gillings, Michael R; Chen, Hong; Zhang, Tong; Zhu, Yong-Guan

    2017-07-19

    Antibiotic-resistant pathogens are challenging treatment of infections worldwide. Urban sewage is potentially a major conduit for dissemination of antibiotic resistance genes into various environmental compartments. However, the diversity and abundance of such genes in wastewater are not well known. Here, seasonal and geographical distributions of antibiotic resistance genes and their host bacterial communities from Chinese urban sewage were characterized, using metagenomic analyses and 16S rRNA gene-based Illumina sequencing, respectively. In total, 381 different resistance genes were detected, and these genes were extensively shared across China, with no geographical clustering. Seasonal variation in abundance of resistance genes was observed, with average concentrations of 3.27 × 10 11 and 1.79 × 10 12 copies/L in summer and winter, respectively. Bacterial communities did not exhibit geographical clusters, but did show a significant distance-decay relationship (P < 0.01). The core, shared resistome accounted for 57.7% of the total resistance genes, and was significantly associated with the core microbial community (P < 0.01). The core human gut microbiota was also strongly associated with the shared resistome, demonstrating the potential contribution of human gut microbiota to the dissemination of resistance elements via sewage disposal. This study provides a baseline for investigating environmental dissemination of resistance elements and raises the possibility of using the abundance of resistance genes in sewage as a tool for antibiotic stewardship.

  6. Cap 'n' collar C regulates genes responsible for imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Gaddelapati, Sharath Chandra; Kalsi, Megha; Roy, Amit; Palli, Subba Reddy

    2018-08-01

    The Colorado potato beetle (CPB), Leptinotarsa decemlineata developed resistance to imidacloprid after exposure to this insecticide for multiple generations. Our previous studies showed that xenobiotic transcription factor, cap 'n' collar isoform C (CncC) regulates the expression of multiple cytochrome P450 genes, which play essential roles in resistance to plant allelochemicals and insecticides. In this study, we sought to obtain a comprehensive picture of the genes regulated by CncC in imidacloprid-resistant CPB. We performed sequencing of RNA isolated from imidacloprid-resistant CPB treated with dsRNA targeting CncC or gene coding for green fluorescent protein (control). Comparative transcriptome analysis showed that CncC regulated the expression of 1798 genes, out of which 1499 genes were downregulated in CncC knockdown beetles. Interestingly, expression of 79% of imidacloprid induced P450 genes requires CncC. We performed quantitative real-time PCR to verify the reduction in the expression of 20 genes including those coding for detoxification enzymes (P450s, glutathione S-transferases, and esterases) and ABC transporters. The genes coding for ABC transporters are induced in insecticide resistant CPB and require CncC for their expression. Knockdown of genes coding for ABC transporters simultaneously or individually caused an increase in imidacloprid-induced mortality in resistant beetles confirming their contribution to insecticide resistance. These studies identified CncC as a transcription factor involved in regulation of genes responsible for imidacloprid resistance. Small molecule inhibitors of CncC or suppression of CncC by RNAi could provide effective synergists for pest control or management of insecticide resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products.

    PubMed

    Guo, Huiling; Pan, Lin; Li, Lina; Lu, Jie; Kwok, Laiyu; Menghe, Bilige; Zhang, Heping; Zhang, Wenyi

    2017-03-01

    Lactobacilli are widely used as starter cultures or probiotics in yoghurt, cheese, beer, wine, pickles, preserved food, and silage. They are generally recognized as safe (GRAS). However, recent studies have shown that some lactic acid bacteria (LAB) strains carry antibiotic resistance genes and are resistant to antibiotics. Some of them may even transfer their intrinsic antibiotic resistance genes to other LAB or pathogens via horizontal gene transfer, thus threatening human health. A total of 33 Lactobacillus strains was isolated from fermented milk collected from different areas of China. We analyzed (1) their levels of antibiotic resistance using a standardized dilution method, (2) their antibiotic resistance gene profiles by polymerase chain reaction (PCR) using gene-specific primers, and (3) the transferability of some of the detected resistance markers by a filter mating assay. All Lactobacillus strains were found to be resistant to vancomycin, but susceptible to gentamicin, linezolid, neomycin, erythromycin, and clindamycin. Their susceptibilities to tetracycline, kanamycin, ciprofloxacin, streptomycin, quinupristin/dalfopristin, trimethoprim, ampicillin, rifampicin, and chloramphenicol was different. Results from our PCR analysis revealed 19 vancomycin, 10 ciprofloxacin, and 1 tetracycline-resistant bacteria that carried the van(X), van(E), gyr(A), and tet(M) genes, respectively. Finally, no transferal of the monitored antibiotic resistance genes was observed in the filter mating assay. Taken together, our study generated the antibiotic resistance profiles of some milk-originated lactobacilli isolates and preliminarily assessed their risk of transferring antibiotic gene to other bacteria. The study may provide important data concerning the safe use of LAB. © 2017 Institute of Food Technologists®.

  8. Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest.

    PubMed

    Tien, Yuan-Ching; Li, Bing; Zhang, Tong; Scott, Andrew; Murray, Roger; Sabourin, Lyne; Marti, Romain; Topp, Edward

    2017-03-01

    Manuring ground used for crop production is an important agricultural practice. Should antibiotic-resistant enteric bacteria carried in the manure be transferred to crops that are consumed raw, their consumption by humans or animals will represent a route of exposure to antibiotic resistance genes. Treatment of manures prior to land application is a potential management option to reduce the abundance of antibiotic resistance genes entrained with manure application. In this study, dairy manure that was untreated, anaerobically digested, mechanically dewatered or composted was applied to field plots that were then cropped to lettuce, carrots and radishes. The impact of treatment on manure composition, persistence of antibiotic resistance gene targets in soil following application, and distribution of antibiotic resistance genes and bacteria on vegetables at harvest was determined. Composted manure had the lowest abundance of antibiotic resistance gene targets compared to the other manures. There was no significant difference in the persistence characteristics of antibiotic resistance genes following land application of the various manures. Compared to unmanured soil, antibiotic resistance genes were detected more frequently in soil receiving raw or digested manure, whereas they were not in soil receiving composted manure. The present study suggests that vegetables grown in ground receiving raw or digested manure are at risk of contamination with manure-borne antibiotic resistant bacteria, whereas vegetables grown in ground receiving composted manure are less so. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  9. Inheritance of resistance to watermelon mosaic virus in the cucumber line TMG-1: tissue-specific expression and relationship to zucchini yellow mosaic virus resistance.

    PubMed

    Wai, T; Grumet, R

    1995-09-01

    The inbred cucumber (Cucumis sativus L.) line TMG-1 is resistant to three potyviruses:zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and the watermelon strain of papaya ringspot virus (PRSV-W). The genetics of resistance to WMV and the relationship of WMV resistance to ZYMV resistance were examined. TMG-1 was crossed with WI-2757, a susceptible inbred line. F1, F2 and backcross progeny populations were screened for resistance to WMV and/or ZYMV. Two independently assorting factors conferred resistance to WMV. One resistance was conferred by a single recessive gene from TMG-1 (wmv-2). The second resistance was conferred by an epistatic interaction between a second recessive gene from TMG-1 (wmv-3) and either a dominant gene from WI-2757 (Wmv-4) or a third recessive gene from TMG-1 (wmv-4) located 20-30 cM from wmv-3. The two resistances exhibited tissue-specific expression. Resistance conferred by wmv-2 was expressed in the cotyledons and throughout the plant. Resistance conferred by wmv-3 + Wmv-4 (or wmv-4) was expressed only in true leaves. The gene conferring resistance to ZYMV appeared to be the same as, or tightly linked to one of the WMV resistance genes, wmv-3.

  10. Mapping fusiform rust resistance genes within a complex mating design of loblolly pine

    Treesearch

    Tania Quesada; Marcio F.R. Resende Jr.; Patricio Munoz; Jill L. Wegrzyn; David B. Neale; Matias Kirst; Gary F. Peter; Salvador A. Gezan; C.Dana Nelson; John M. Davis

    2014-01-01

    Fusiform rust resistance can involve gene-for-gene interactions where resistance (Fr) genes in the host interact with corresponding avirulence genes in the pathogen, Cronartium quercuum f.sp. fusiforme (Cqf). Here, we identify trees with Fr genes in a loblolly pine population derived from a complex mating design challenged with two Cqf inocula (one gall and 10 gall...

  11. Characterization of a Multiresistant Mosaic Plasmid from a Fish Farm Sediment Exiguobacterium sp. Isolate Reveals Aggregation of Functional Clinic-Associated Antibiotic Resistance Genes

    PubMed Central

    Yang, Jing; Wang, Chao; Wu, Jinyu; Liu, Li; Zhang, Gang

    2014-01-01

    The genus Exiguobacterium can adapt readily to, and survive in, diverse environments. Our study demonstrated that Exiguobacterium sp. strain S3-2, isolated from marine sediment, is resistant to five antibiotics. The plasmid pMC1 in this strain carries seven putative resistance genes. We functionally characterized these resistance genes in Escherichia coli, and genes encoding dihydrofolate reductase and macrolide phosphotransferase were considered novel resistance genes based on their low similarities to known resistance genes. The plasmid G+C content distribution was highly heterogeneous. Only the G+C content of one block, which shared significant similarity with a plasmid from Exiguobacterium arabatum, fit well with the mean G+C content of the host. The remainder of the plasmid was composed of mobile elements with a markedly lower G+C ratio than the host. Interestingly, five mobile elements located on pMC1 showed significant similarities to sequences found in pathogens. Our data provided an example of the link between resistance genes in strains from the environment and the clinic and revealed the aggregation of antibiotic resistance genes in bacteria isolated from fish farms. PMID:24362420

  12. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling

    PubMed Central

    2012-01-01

    Background Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most destructive insect pests of rice. The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF) are up-stream regulators of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA. They are key regulators for transcriptional expression in biological processes, and are probably involved in the BPH-induced pathways in resistant rice varieties. Results We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice cultivar, Rathu Heenati (RHT). We compared the expression profiles of TF genes in RHT with those of the susceptible rice cultivar Taichun Native 1 (TN1). We detected 2038 TF genes showing differential expression signals between the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and 229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC) of more than 2.0 (P<0.05). Among the 442 TF genes related to BPH-induced resistance, most of them were readily induced in TN1 than in RHT by BPH feeding, for instance, 154 TF genes were up-regulated in TN1, but only 31 TF genes were up-regulated in RHT at 24 hours after BPH infestation; 2–4 times more TF genes were induced in TN1 than in RHT by BPH. At an FC threshold of >10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT. Conclusions We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an important role in the defense response. The fundamental point of the resistance strategy is that plants protect themselves by reducing their metabolic level to inhibit feeding by BPH and prevent damage from water and nutrient loss. We have selected 21 TF genes related to BPH resistance for further analyses to understand the molecular responses to BPH feeding in rice. PMID:23228240

  13. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling.

    PubMed

    Wang, Yubing; Guo, Huimin; Li, Haichao; Zhang, Hao; Miao, Xuexia

    2012-12-10

    Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most destructive insect pests of rice. The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF) are up-stream regulators of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA. They are key regulators for transcriptional expression in biological processes, and are probably involved in the BPH-induced pathways in resistant rice varieties. We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice cultivar, Rathu Heenati (RHT). We compared the expression profiles of TF genes in RHT with those of the susceptible rice cultivar Taichun Native 1 (TN1). We detected 2038 TF genes showing differential expression signals between the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and 229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC) of more than 2.0 (P<0.05). Among the 442 TF genes related to BPH-induced resistance, most of them were readily induced in TN1 than in RHT by BPH feeding, for instance, 154 TF genes were up-regulated in TN1, but only 31 TF genes were up-regulated in RHT at 24 hours after BPH infestation; 2-4 times more TF genes were induced in TN1 than in RHT by BPH. At an FC threshold of >10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT. We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an important role in the defense response. The fundamental point of the resistance strategy is that plants protect themselves by reducing their metabolic level to inhibit feeding by BPH and prevent damage from water and nutrient loss. We have selected 21 TF genes related to BPH resistance for further analyses to understand the molecular responses to BPH feeding in rice.

  14. Small brown planthopper resistance loci in wild rice (Oryza officinalis).

    PubMed

    Zhang, Weilin; Dong, Yan; Yang, Ling; Ma, Bojun; Ma, Rongrong; Huang, Fudeng; Wang, Changchun; Hu, Haitao; Li, Chunshou; Yan, Chengqi; Chen, Jianping

    2014-06-01

    Host-plant resistance is the most practical and economical approach to control the rice planthoppers. However, up to date, few rice germplasm accessions that are resistant to the all three kinds of planthoppers (1) brown planthopper (BPH; Nilaparvata lugens Stål), (2) the small brown planthopper (SBPH; Laodelphax striatellus Fallen), and (3) the whitebacked planthopper (WBPH, Sogatella furcifera Horvath) have been identified; consequently, the genetic basis for host-plant broad spectrum resistance to rice planthoppers in a single variety has been seldom studied. Here, one wild species, Oryza officinalis (Acc. HY018, 2n = 24, CC), was detected showing resistance to the all three kinds of planthoppers. Because resistance to WBPH and BPH in O. officinalis has previously been reported, the study mainly focused on its SBPH resistance. The SBPH resistance gene(s) was (were) introduced into cultivated rice via asymmetric somatic hybridization. Three QTLs for SBPH resistance detected by the SSST method were mapped and confirmed on chromosomes 3, 7, and 12, respectively. The allelic/non-allelic relationship and relative map positions of the three kinds of planthopper resistance genes in O. officinalis show that the SBPH, WBPH, and BPH resistance genes in O. officinalis were governed by multiple genes, but not by any major gene. The data on the genetics of host-plant broad spectrum resistance to planthoppers in a single accession suggested that the most ideally practical and economical approach for rice breeders is to screen the sources of broad spectrum resistance to planthoppers, but not to employ broad spectrum resistance gene for the management of planthoppers. Pyramiding these genes in a variety can be an effective way for the management of planthoppers.

  15. Generation of Newly Discovered Resistance Gene mcr-1 Knockout in Escherichia coli Using the CRISPR/Cas9 System.

    PubMed

    Sun, Lichang; He, Tao; Zhang, Lili; Pang, Maoda; Zhang, Qiaoyan; Zhou, Yan; Bao, Hongduo; Wang, Ran

    2017-07-28

    The mcr-1 gene is a new "superbug" gene discoverd in China in 2016 that makes bacteria highly resistant to the last-resort class of antibiotics. The mcr-1 gene raised serious concern about its possible global dissemination and spread. Here, we report a potential anti-resistant strategy using the CRISPR/Cas9-mediated approach that can efficiently induce mcr-1 gene knockout in Escherichia coli . Our findings suggested that using the CRISPR/Cas9 system to knock out the resistance gene mcr-1 might be a potential anti-resistant strategy. Bovine myeloid antimicrobial peptide-27 could help deliver plasmid pCas::mcr targeting specific DNA sequences of the mcr-1 gene into microbial populations.

  16. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution.

    PubMed

    Erickson, Keesha E; Otoupal, Peter B; Chatterjee, Anushree

    2017-01-01

    Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress response processes known as adaptive resistance. Adaptive resistance fosters transient tolerance increases and the emergence of mutations conferring heritable drug resistance. In order to extend the applicable lifetime of new antibiotics, we must seek to hinder the occurrence of bacterial adaptive resistance; however, the regulation of adaptation is difficult to identify due to immense heterogeneity emerging during evolution. This study specifically seeks to generate heterogeneity by adapting bacteria to different stresses and then examines gene expression trends across the disparate populations in order to pinpoint key genes and pathways associated with adaptive resistance. The targets identified here may eventually inform strategies for impeding adaptive resistance and prolonging the effectiveness of antibiotic treatment.

  17. Complementary b/y fragment ion pairs from post-source decay of metastable YahO for calibration of MALDI-TOF-TOF-MS/MS

    USDA-ARS?s Scientific Manuscript database

    Complementary b/y fragment ion pairs from post-source decay (PSD) of metastable YahO protein ion were evaluated for use in the calibration of MALDI-TOF-TOF for tandem mass spectrometry (MS/MS). The yahO gene from pathogenic Escherichia coli O157:H7 strain EDL933 was cloned into a pBAD18 plasmid vect...

  18. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans

    PubMed Central

    Sugimoto, Takuma; Kato, Masayasu; Yoshida, Shinya; Matsumoto, Isao; Kobayashi, Tamotsu; Kaga, Akito; Hajika, Makita; Yamamoto, Ryo; Watanabe, Kazuhiko; Aino, Masataka; Matoh, Toru; Walker, David R.; Biggs, Alan R.; Ishimoto, Masao

    2012-01-01

    Phytophthora stem and root rot, caused by Phytophthora sojae, is one of the most destructive diseases of soybean [Glycine max (L.) Merr.], and the incidence of this disease has been increasing in several soybean-producing areas around the world. This presents serious limitations for soybean production, with yield losses from 4 to 100%. The most effective method to reduce damage would be to grow Phytophthora-resistant soybean cultivars, and two types of host resistance have been described. Race-specific resistance conditioned by single dominant Rps (“resistance to Phytophthora sojae”) genes and quantitatively inherited partial resistance conferred by multiple genes could both provide protection from the pathogen. Molecular markers linked to Rps genes or quantitative trait loci (QTLs) underlying partial resistance have been identified on several molecular linkage groups corresponding to chromosomes. These markers can be used to screen for Phytophthora-resistant plants rapidly and efficiently, and to combine multiple resistance genes in the same background. This paper reviews what is currently known about pathogenic races of P. sojae in the USA and Japan, selection of sources of Rps genes or minor genes providing partial resistance, and the current state and future scope of breeding Phytophthora-resistant soybean cultivars. PMID:23136490

  19. Taxonomically Different Co-Microsymbionts of a Relict Legume, Oxytropis popoviana, Have Complementary Sets of Symbiotic Genes and Together Increase the Efficiency of Plant Nodulation.

    PubMed

    Safronova, Vera I; Belimov, Andrey A; Sazanova, Anna L; Chirak, Elizaveta R; Verkhozina, Alla V; Kuznetsova, Irina G; Andronov, Evgeny E; Puhalsky, Jan V; Tikhonovich, Igor A

    2018-06-20

    Ten rhizobial strains were isolated from root nodules of a relict legume Oxytropis popoviana Peschkova. For identification of the isolates, sequencing of rrs, the internal transcribed spacer region, and housekeeping genes recA, glnII, and rpoB was used. Nine fast-growing isolates were Mesorhizobium-related; eight strains were identified as M. japonicum and one isolate belonged to M. kowhaii. The only slow-growing isolate was identified as a Bradyrhizobium sp. Two strains, M. japonicum Opo-242 and Bradyrhizobium sp. strain Opo-243, were isolated from the same nodule. Symbiotic genes of these isolates were searched throughout the whole-genome sequences. The common nodABC genes and other symbiotic genes required for plant nodulation and nitrogen fixation were present in the isolate Opo-242. Strain Opo-243 did not contain the principal nod, nif, and fix genes; however, five genes (nodP, nodQ, nifL, nolK, and noeL) affecting the specificity of plant-rhizobia interactions but absent in isolate Opo-242 were detected. Strain Opo-243 could not induce nodules but significantly accelerated the root nodule formation after coinoculation with isolate Opo-242. Thus, we demonstrated that taxonomically different strains of the archaic symbiotic system can be co-microsymbionts infecting the same nodule and promoting the nodulation process due to complementary sets of symbiotic genes.

  20. Staphylococcus aureus toxin gene hitchhikes on a transferable antibiotic resistance element.

    PubMed

    Otto, Michael

    2010-01-01

    Virulence and antibiotic resistance of the dangerous human pathogen Staphylococcus aureus are to large extent determined by the acquisition of mobile genetic elements (MGEs). Up to now, these elements were known to comprise either resistance or virulence determinants, but not a mixture of the two. Queck et al. now found a cytolysin gene of the phenol-soluble modulin (PSM) family within SCCmec elements, which contain methicillin resistance genes and are largely responsible for the spread of methicillin-resistant S. aureus (MRSA). The novel gene, called psm-mec, had a significant impact on virulence in MRSA strains that do not produce high levels of genome-encoded PSMs. This first example of a combination of toxin and resistance genes on one staphylococcal MGE shows that such bundling is possible and may lead to an even faster acquisition of toxin and resistance genes by S. aureus and other staphylococcal pathogens.

  1. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice.

    PubMed

    Jeung, J U; Kim, B R; Cho, Y C; Han, S S; Moon, H P; Lee, Y T; Jena, K K

    2007-11-01

    Rice blast disease caused by Magnaporthe grisea is a continuous threat to stable rice production worldwide. In a modernized agricultural system, the development of varieties with broad-spectrum and durable resistance to blast disease is essential for increased rice production and sustainability. In this study, a new gene is identified in the introgression line IR65482-4-136-2-2 that has inherited the resistance gene from an EE genome wild Oryza species, O. australiensis (Acc. 100882). Genetic and molecular analysis localized a major resistance gene, Pi40(t), on the short arm of chromosome 6, where four blast resistance genes (Piz, Piz-5, Piz-t, and Pi9) were also identified, flanked by the markers S2539 and RM3330. Through e-Landing, 14 BAC/PAC clones within the 1.81-Mb equivalent virtual contig were identified on Rice Pseudomolecule3. Highly stringent primer sets designed for 6 NBS-LRR motifs located within PAC clone P0649C11 facilitated high-resolution mapping of the new resistance gene, Pi40(t). Following association analysis and detailed haplotyping approaches, a DNA marker, 9871.T7E2b, was identified to be linked to the Pi40(t) gene at the 70 Kb chromosomal region, and differentiated the Pi40(t) gene from the LTH monogenic differential lines possessing genes Piz, Piz-5, Piz-t, and Pi-9. Pi40(t) was validated using the most virulent isolates of Korea as well as the Philippines, suggesting a broad spectrum for the resistance gene. Marker-assisted selection (MAS) and pathotyping of BC progenies having two japonica cultivar genetic backgrounds further supported the potential of the resistance gene in rice breeding. Our study based on new gene identification strategies provides insight into novel genetic resources for blast resistance as well as future studies on cloning and functional analysis of a blast resistance gene useful for rice improvement.

  2. Fine mapping of Ur-3, a historically important rust resistance locus in common bean

    USDA-ARS?s Scientific Manuscript database

    Resistance in common bean to the highly variable bean rust pathogen is conditioned by single and dominant genes. The Ur-3 gene confers resistance to 55 of 94 races of this pathogen maintained at Beltsville, MD, Ur-3 is also resistant to many races that overcome all other rust resistance genes in com...

  3. Noninvasive Evaluation of Special Alloys for Prostheses Using Complementary Methods

    NASA Astrophysics Data System (ADS)

    Savin, A.; Vizureanu, P.; Prevorovsky, Z.; Chlada, M.; Krofta, J.; Baltatu, M. S.; Istrate, B.; Steigmann, R.

    2018-06-01

    Ti-Mo-Si alloys have gained the attention of biomedical industry due to specific strength and corrosion resistance and the best biocompatibility among metallic materials used in medical prostheses. In order to characterize the material, the experimental determination of elastic matrix, mechanical wear and the probability of appearance and propagation of thin cracks are imposed. Thus, resonant ultrasound spectroscopy and acoustic emission as non-invasive methods and complementary methods as SEM, EDX are involved, to choose the best concentration of elements with the aim of mechanical properties improvement.

  4. Molecular characterization and genetic diversity of ESBL-producing Escherichia coli colonizing the migratory Franklin's gulls (Leucophaeus pipixcan) in Antofagasta, North of Chile.

    PubMed

    Báez, John; Hernández-García, Marta; Guamparito, Constanza; Díaz, Sofía; Olave, Abdon; Guerrero, Katherine; Cantón, Rafael; Baquero, Fernando; Gahona, Joselyne; Valenzuela, Nicomedes; Del Campo, Rosa; Silva, Juan

    2015-02-01

    The role of wild animals, particularly migratory birds, in the dissemination of antibiotic-resistant bacteria between geographically distant ecosystems is usually underestimated. The aim of this work was to characterize the Escherichia coli population from Franklin's gull feces, focusing on the extended-spectrum β-lactamase (ESBL)-producing strains. In the summer of 2011, 124 fecal swabs from seagulls (1 of each) migrating from the United States and Canada to the coast of Antofagasta, north of Chile, were collected. Samples were seeded on MacConkey agar supplemented with 2 μg/ml of cefotaxime and a single colony from each plate was tested for ESBL production by the double-disk ESBL synergy test. Antibiotic susceptibility was determined by the disk diffusion method and blaESBL genes were amplified and sequenced. The genetic diversity of isolates was explored by pulsed-field gel electrophoresis (PFGE)-XbaI and multilocus sequence typing. A total of 91 E. coli isolates with high rates of antibiotic resistance were identified. Carbapenemase production was not detected, whereas 67 of the 91 (54%) isolates exhibited an ESBL phenotype due to the presence of CTX-M-15 (61.3%), CTX-M-2 (19.3%), CTX-M-22 (16.1%), and CTX-M-3 (1.6%) coding genes. High genetic diversity was observed, with 30 PFGE patterns and 23 sequence types (STs), including ST131 (18%), ST44 (15%), ST617 (9%), and ST10 (9%). Results presented here are complementary to those previously reported by Hernández et al. in the same gull species, but located in the Central Region of Chile. Differences observed between gulls from both areas lead us to hypothesize that gulls from the northern location retain, as gut carriers, those resistant bacteria acquired in the United States and/or Canada.

  5. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides.

    PubMed

    Wang, Rui-Long; Zhu-Salzman, Keyan; Baerson, Scott R; Xin, Xiao-Wei; Li, Jun; Su, Yi-Juan; Zeng, Ren-Sen

    2017-04-01

    Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura, has developed resistance to a wide range of insecticides. In the present study, a novel P450 gene, CYP321B1, was cloned from S. litura. The function of CYP321B1 was assessed using RNA interference (RNAi) and monitoring resistance levels for three commonly used insecticides, including chlorpyrifos, β-cypermethrin and methomyl. The full-length complementary DNA sequence of CYP321B1 is 1814 bp long with an open reading frame of 1 488 bp encoding 495 amino acid residues. Quantitative reverse-transcriptase polymerase chain reaction analyses during larval and pupal development indicated that CYP321B1 expression was highest in the midgut of fifth-instar larvae, followed by fat body and cuticle. The expression of CYP321B1 in the midgut was up-regulated by chlorpyrifos, β-cypermethrin and methomyl with both lethal concentration at 15% (LC 15 ) (50, 100 and 150 μg/mL, respectively) and 50%(LC 50 ) dosages (100, 200 and 300 μg/mL, respectively). Addition of piperonyl butoxide (PBO) significantly increased the toxicity of chlorpyrifos, β-cypermethrin and methomyl to S. litura, suggesting a marked synergism of the three insecticides with PBO and P450-mediated detoxification. RNAi-mediated silencing of CYP321B1 further increased mortality by 25.6% and 38.9% when the fifth-instar larvae were exposed to chlorpyrifos and β-cypermethrin, respectively, at the LC 50 dose levels. The results demonstrate that CYP321B1 might play an important role in chlorpyrifos and β-cypermethrin detoxification in S. litura. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  6. Evolving ideas about genetics underlying insect virulence to plant resistance in rice-brown planthopper interactions.

    PubMed

    Kobayashi, Tetsuya

    2016-01-01

    Many plant-parasite interactions that include major plant resistance genes have subsequently been shown to exhibit features of gene-for-gene interactions between plant Resistance genes and parasite Avirulence genes. The brown planthopper (BPH) Nilaparvata lugens is an important pest of rice (Oryza sativa). Historically, major Resistance genes have played an important role in agriculture. As is common in gene-for-gene interactions, evolution of BPH virulence compromises the effectiveness of singly-deployed resistance genes. It is therefore surprising that laboratory studies of BPH have supported the conclusion that virulence is conferred by changes in many genes rather than a change in a single gene, as is proposed by the gene-for-gene model. Here we review the behaviour, physiology and genetics of the BPH in the context of host plant resistance. A problem for genetic understanding has been the use of various insect populations that differ in frequencies of virulent genotypes. We show that the previously proposed polygenic inheritance of BPH virulence can be explained by the heterogeneity of parental populations. Genetic mapping of Avirulence genes indicates that virulence is a monogenic trait. These evolving concepts, which have brought the gene-for-gene model back into the picture, are accelerating our understanding of rice-BPH interactions at the molecular level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Transcription of putative tonoplast transporters in response to glyphosate and paraquat stress in Conyza bonariensis and Conyza canadensis and selection of reference genes for qRT-PCR.

    PubMed

    Moretti, Marcelo L; Alárcon-Reverte, Rocio; Pearce, Stephen; Morran, Sarah; Hanson, Bradley D

    2017-01-01

    Herbicide resistance is a challenge for modern agriculture further complicated by cases of resistance to multiple herbicides. Conyza bonariensis and Conyza canadensis are invasive weeds of field crops, orchards, and non-cropped areas in many parts of the world. In California, USA, Conyza populations resistant to the herbicides glyphosate and paraquat have recently been described. Although the mechanism conferring resistance to glyphosate and paraquat in these species was not elucidated, reduced translocation of these herbicides was observed under experimental conditions in both species. Glyphosate and paraquat resistance associated with reduced translocation are hypothesized to be a result of sequestration of herbicides into the vacuole, with the possible involvement of over-expression of genes encoding tonoplast transporters of ABC-transporter families in cases of glyphosate resistance or cationic amino acid transporters (CAT) in cases of paraquat resistance. However, gene expression in response to herbicide treatment has not been studied in glyphosate and paraquat resistant populations. In the current study, we evaluated the transcript levels of genes possibly involved in resistance using real-time PCR. First, we evaluated eight candidate reference genes following herbicide treatment and selected three genes that exhibited stable expression profiles; ACTIN, HEAT-SHOCK-PROTEIN-70, and CYCLOPHILIN. The reference genes identified here can be used for further studies related to plant-herbicide interactions. We used these reference genes to assay the transcript levels of EPSPS, ABC transporters, and CAT in response to herbicide treatment in susceptible and resistant Conyza spp. lines. No transcription changes were observed in EPSPS or CAT genes after glyphosate or paraquat treatment, suggesting that these genes are not involved in the resistance mechanism. Transcription of the two ABC transporter genes increased following glyphosate treatment in all Conyza spp. lines. Transcription of ABC transporters also increased after paraquat treatment in all three lines of C. bonariensis. However, in C. canadensis, paraquat treatment increased transcription of only one ABC transporter gene in the susceptible line. The increase in transcription of ABC transporters after herbicide treatment is likely a stress response based on similar response observed across all Conyza lines regardless of resistance or sensitivity to glyphosate or paraquat, thus these genes do not appear to be directly involved in the mechanism of resistance in Conyza spp.

  8. Transcription of putative tonoplast transporters in response to glyphosate and paraquat stress in Conyza bonariensis and Conyza canadensis and selection of reference genes for qRT-PCR

    PubMed Central

    Alárcon-Reverte, Rocio; Pearce, Stephen; Morran, Sarah; Hanson, Bradley D.

    2017-01-01

    Herbicide resistance is a challenge for modern agriculture further complicated by cases of resistance to multiple herbicides. Conyza bonariensis and Conyza canadensis are invasive weeds of field crops, orchards, and non-cropped areas in many parts of the world. In California, USA, Conyza populations resistant to the herbicides glyphosate and paraquat have recently been described. Although the mechanism conferring resistance to glyphosate and paraquat in these species was not elucidated, reduced translocation of these herbicides was observed under experimental conditions in both species. Glyphosate and paraquat resistance associated with reduced translocation are hypothesized to be a result of sequestration of herbicides into the vacuole, with the possible involvement of over-expression of genes encoding tonoplast transporters of ABC-transporter families in cases of glyphosate resistance or cationic amino acid transporters (CAT) in cases of paraquat resistance. However, gene expression in response to herbicide treatment has not been studied in glyphosate and paraquat resistant populations. In the current study, we evaluated the transcript levels of genes possibly involved in resistance using real-time PCR. First, we evaluated eight candidate reference genes following herbicide treatment and selected three genes that exhibited stable expression profiles; ACTIN, HEAT-SHOCK-PROTEIN-70, and CYCLOPHILIN. The reference genes identified here can be used for further studies related to plant-herbicide interactions. We used these reference genes to assay the transcript levels of EPSPS, ABC transporters, and CAT in response to herbicide treatment in susceptible and resistant Conyza spp. lines. No transcription changes were observed in EPSPS or CAT genes after glyphosate or paraquat treatment, suggesting that these genes are not involved in the resistance mechanism. Transcription of the two ABC transporter genes increased following glyphosate treatment in all Conyza spp. lines. Transcription of ABC transporters also increased after paraquat treatment in all three lines of C. bonariensis. However, in C. canadensis, paraquat treatment increased transcription of only one ABC transporter gene in the susceptible line. The increase in transcription of ABC transporters after herbicide treatment is likely a stress response based on similar response observed across all Conyza lines regardless of resistance or sensitivity to glyphosate or paraquat, thus these genes do not appear to be directly involved in the mechanism of resistance in Conyza spp. PMID:28700644

  9. Amoeba-related health risk in drinking water systems: could monitoring of amoebae be a complementary approach to current quality control strategies?

    PubMed

    Codony, Francesc; Pérez, Leonardo Martín; Adrados, Bárbara; Agustí, Gemma; Fittipaldi, Mariana; Morató, Jordi

    2012-01-01

    Culture-based methods for fecal indicator microorganisms are the standard protocol to assess potential health risk from drinking water systems. However, these traditional fecal indicators are inappropriate surrogates for disinfection-resistant fecal pathogens and the indigenous pathogens that grow in drinking water systems. There is now a range of molecular-based methods, such as quantitative PCR, which allow detection of a variety of pathogens and alternative indicators. Hence, in addition to targeting total Escherichia coli (i.e., dead and alive) for the detection of fecal pollution, various amoebae may be suitable to indicate the potential presence of pathogenic amoeba-resisting microorganisms, such as Legionellae. Therefore, monitoring amoeba levels by quantitative PCR could be a useful tool for directly and indirectly evaluating health risk and could also be a complementary approach to current microbial quality control strategies for drinking water systems.

  10. The heterogeneous integration of single-walled carbon nanotubes onto complementary metal oxide semiconductor circuitry for sensing applications.

    PubMed

    Chen, Chia-Ling; Agarwal, Vinay; Sonkusale, Sameer; Dokmeci, Mehmet R

    2009-06-03

    A simple methodology for integrating single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry is presented. The SWNTs were incorporated onto the CMOS chip as the feedback resistor of a two-stage Miller compensated operational amplifier utilizing dielectrophoretic assembly. The measured electrical properties from the integrated SWNTs yield ohmic behavior with a two-terminal resistance of approximately 37.5 kOmega and the measured small signal ac gain (-2) from the inverting amplifier confirmed successful integration of carbon nanotubes onto the CMOS circuitry. Furthermore, the temperature response of the SWNTs integrated onto CMOS circuitry has been measured and had a thermal coefficient of resistance (TCR) of -0.4% degrees C(-1). This methodology, demonstrated for the integration of SWNTs onto CMOS technology, is versatile, high yield and paves the way for the realization of novel miniature carbon-nanotube-based sensor systems.

  11. Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability.

    PubMed

    Djian-Caporalino, Caroline; Palloix, Alain; Fazari, Ariane; Marteu, Nathalie; Barbary, Arnaud; Abad, Pierre; Sage-Palloix, Anne-Marie; Mateille, Thierry; Risso, Sabine; Lanza, Roger; Taussig, Catherine; Castagnone-Sereno, Philippe

    2014-02-22

    Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens.

  12. Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability

    PubMed Central

    2014-01-01

    Background Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. Results The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. Conclusions This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens. PMID:24559060

  13. The CC-NB-LRR-Type Rdg2a Resistance Gene Confers Immunity to the Seed-Borne Barley Leaf Stripe Pathogen in the Absence of Hypersensitive Cell Death

    PubMed Central

    Collins, Nicholas C.; Consonni, Gabriella; Stanca, Antonio M.; Schulze-Lefert, Paul; Valè, Giampiero

    2010-01-01

    Background Leaf stripe disease on barley (Hordeum vulgare) is caused by the seed-transmitted hemi-biotrophic fungus Pyrenophora graminea. Race-specific resistance to leaf stripe is controlled by two known Rdg (Resistance to Drechslera graminea) genes: the H. spontaneum-derived Rdg1a and Rdg2a, identified in H. vulgare. The aim of the present work was to isolate the Rdg2a leaf stripe resistance gene, to characterize the Rdg2a locus organization and evolution and to elucidate the histological bases of Rdg2a-based leaf stripe resistance. Principal Findings We describe here the positional cloning and functional characterization of the leaf stripe resistance gene Rdg2a. At the Rdg2a locus, three sequence-related coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NB-LRR) encoding genes were identified. Sequence comparisons suggested that paralogs of this resistance locus evolved through recent gene duplication, and were subjected to frequent sequence exchange. Transformation of the leaf stripe susceptible cv. Golden Promise with two Rdg2a-candidates under the control of their native 5′ regulatory sequences identified a member of the CC-NB-LRR gene family that conferred resistance against the Dg2 leaf stripe isolate, against which the Rdg2a-gene is effective. Histological analysis demonstrated that Rdg2a-mediated leaf stripe resistance involves autofluorescing cells and prevents pathogen colonization in the embryos without any detectable hypersensitive cell death response, supporting a cell wall reinforcement-based resistance mechanism. Conclusions This work reports about the cloning of a resistance gene effective against a seed borne disease. We observed that Rdg2a was subjected to diversifying selection which is consistent with a model in which the R gene co-evolves with a pathogen effector(s) gene. We propose that inducible responses giving rise to physical and chemical barriers to infection in the cell walls and intercellular spaces of the barley embryo tissues represent mechanisms by which the CC-NB-LRR-encoding Rdg2a gene mediates resistance to leaf stripe in the absence of hypersensitive cell death. PMID:20844752

  14. Fine Mapping for Identification of Citrus Alternaria Brown Spot Candidate Resistance Genes and Development of New SNP Markers for Marker-Assisted Selection

    PubMed Central

    Cuenca, Jose; Aleza, Pablo; Garcia-Lor, Andres; Ollitrault, Patrick; Navarro, Luis

    2016-01-01

    Alternaria brown spot (ABS) is a serious disease affecting susceptible citrus genotypes, which is a strong concern regarding citrus breeding programs. Resistance is conferred by a recessive locus (ABSr) previously located by our group within a 3.3 Mb genome region near the centromere in chromosome III. This work addresses fine-linkage mapping of this region for identifying candidate resistance genes and develops new molecular markers for ABS-resistance effective marker-assisted selection (MAS). Markers closely linked to ABSr locus were used for fine mapping using a 268-segregating diploid progeny derived from a heterozygous susceptible × resistant cross. Fine mapping limited the genomic region containing the ABSr resistance gene to 366 kb, flanked by markers at 0.4 and 0.7 cM. This region contains nine genes related to pathogen resistance. Among them, eight are resistance (R) gene homologs, with two of them harboring a serine/threonine protein kinase domain. These two genes along with a gene encoding a S-adenosyl-L-methionine-dependent-methyltransferase protein, should be considered as strong candidates for ABS-resistance. Moreover, the closest SNP was genotyped in 40 citrus varieties, revealing very high association with the resistant/susceptible phenotype. This new marker is currently used in our citrus breeding program for ABS-resistant parent and cultivar selection, at diploid, triploid and tetraploid level. PMID:28066498

  15. Genetic dissection of the resistance to nine anthracnose races in the common bean differential cultivars MDRK and TU.

    PubMed

    Campa, Ana; Giraldez, Ramón; Ferreira, Juan José

    2009-06-01

    Resistance to nine races of the pathogenic fungus Colletotrichum lindemuthianum, causal agent of anthracnose, was evaluated in F(3) families derived from the cross between the anthracnose differential bean cultivars TU (resistant to races, 3, 6, 7, 31, 38, 39, 102, and 449) and MDRK (resistant to races, 449, and 1545). Molecular marker analyses were carried out in the F(2) individuals in order to map and characterize the anthracnose resistance genes or gene clusters present in these two differential cultivars. The results of the combined segregation indicate that at least three independent loci conferring resistance to anthracnose are present in TU. One of them, corresponding to the previously described anthracnose resistance locus Co-5, is located in linkage group B7, and is formed by a cluster of different genes conferring specific resistance to races, 3, 6, 7, 31, 38, 39, 102, and 449. Evidence of intra-cluster recombination between these specific resistance genes was found. The second locus present in TU confers specific resistance to races 31 and 102, and the third locus confers specific resistance to race 102, the location of these two loci remains unknown. The resistance to race 1545 present in MDRK is due to two independent dominant genes. The results of the combined segregation of two F(4) families showing monogenic segregation for resistance to race 1545 indicates that one of these two genes is linked to marker OF10(530), located in linkage group B1, and corresponds to the previously described anthracnose resistance locus Co-1. The second gene conferring resistance to race 1545 in MDRK is linked to marker Pv-ctt001, located in linkage group B4, and corresponds to the Co-3/Co-9 cluster. The resistance to race 449 present in MDRK is conferred by a single gene, located in linkage group B4, probably included in the same Co-3/Co-9 cluster.

  16. Screening for Antimicrobial Resistance Genes and Virulence Factors via Genome Sequencing▿†

    PubMed Central

    Bennedsen, Mads; Stuer-Lauridsen, Birgitte; Danielsen, Morten; Johansen, Eric

    2011-01-01

    Second-generation genome sequencing and alignment of the resulting reads to in silico genomes containing antimicrobial resistance and virulence factor genes were used to screen for undesirable genes in 28 strains which could be used in human nutrition. No virulence factor genes were detected, while several isolates contained antimicrobial resistance genes. PMID:21335393

  17. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes.

    PubMed

    Ishak, Intan H; Kamgang, Basile; Ibrahim, Sulaiman S; Riveron, Jacob M; Irving, Helen; Wondji, Charles S

    2017-01-01

    Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb. The predominant over-expression of cytochrome P450s suggests that synergist-based (PBO) control tools could be utilised to improve control of this major dengue vector across Malaysia.

  18. Sulfonamide Resistance in Clinical Isolates of Campylobacter jejuni: Mutational Changes in the Chromosomal Dihydropteroate Synthase

    PubMed Central

    Gibreel, Amera; Sköld, Ola

    1999-01-01

    The characterization of the genetic basis of sulfonamide resistance in Campylobacter jejuni was attempted. The resistance determinant from a sulfonamide-resistant strain of C. jejuni was cloned and was found to show 42% identity with the folP gene (which codes for dihydropteroate synthase, the target of sulfonamides) of the related bacterium Helicobacter pylori. The sequences of the areas surrounding the folP gene in C. jejuni showed similarity to those of the areas surrounding the corresponding gene in H. pylori. The folP gene of C. jejuni, which mediates the resistance, was observed to show particular features when it was compared to other known folP genes. One of these features is the presence of two pairs of direct repeats (15 and 27 bp) within the coding sequence of the gene. Comparison of the C. jejuni folP genes that mediate susceptibility and resistance revealed the occurrence of mutations that changed four amino acid residues. Resistance of C. jejuni to sulfonamides could be associated with one or several of these four mutational substitutions, which all occurred in the five different resistant isolates studied. The codon for one of these changed amino acids was found to be located in the second direct repeat within the coding sequence of the gene. The change made the repeat perfect. The transformation of both the resistance and the susceptibility variants of the gene into an Escherichia coli folP knockout mutant was found to complement the dihydropteroate synthase deficiency, confirming that the characterized sulfonamide resistance determinant codes for the C. jejuni dihydropteroate synthase enzyme. Kinetic measurements established different affinities of sulfonamide for the dihydropteroate synthase enzyme isolated from the resistant and susceptible strains. In conclusion, sulfonamide resistance in C. jejuni was shown to be associated with mutational changes in the chromosomally located gene for dihydropteroate synthase, the target of sulfonamides. PMID:10471557

  19. A cis-antisense RNA acts in trans in Staphylococcus aureus to control translation of a human cytolytic peptide.

    PubMed

    Sayed, Nour; Jousselin, Ambre; Felden, Brice

    2011-12-25

    Antisense RNAs (asRNAs) pair to RNAs expressed from the complementary strand, and their functions are thought to depend on nucleotide overlap with genes on the opposite strand. There is little information on the roles and mechanisms of asRNAs. We show that a cis asRNA acts in trans, using a domain outside its target complementary sequence. SprA1 small regulatory RNA (sRNA) and SprA1(AS) asRNA are concomitantly expressed in S. aureus. SprA1(AS) forms a complex with SprA1, preventing translation of the SprA1-encoded open reading frame by occluding translation initiation signals through pairing interactions. The SprA1 peptide sequence is within two RNA pseudoknots. SprA1(AS) represses production of the SprA1-encoded cytolytic peptide in trans, as its overlapping region is dispensable for regulation. These findings demonstrate that sometimes asRNA functional domains are not their gene-target complementary sequences, suggesting there is a need for mechanistic re-evaluation of asRNAs expressed in prokaryotes and eukaryotes.

  20. Identification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum.

    PubMed

    Geffroy, V; Sicard, D; de Oliveira, J C; Sévignac, M; Cohen, S; Gepts, P; Neema, C; Langin, T; Dron, M

    1999-09-01

    The recent cloning of plant resistance (R) genes and the sequencing of resistance gene clusters have shed light on the molecular evolution of R genes. However, up to now, no attempt has been made to correlate this molecular evolution with the host-pathogen coevolution process at the population level. Cross-inoculations were carried out between 26 strains of the fungal pathogen Colletotrichum lindemuthianum and 48 Phaseolus vulgaris plants collected in the three centers of diversity of the host species. A high level of diversity for resistance against the pathogen was revealed. Most of the resistance specificities were overcome in sympatric situations, indicating an adaptation of the pathogen to the local host. In contrast, plants were generally resistant to allopatric strains, suggesting that R genes that were efficient against exotic strains but had been overcome locally were maintained in the plant genome. These results indicated that coevolution processes between the two protagonists led to a differentiation for resistance in the three centers of diversity of the host. To improve our understanding of the molecular evolution of these different specificities, a recombinant inbred (RI) population derived from two representative genotypes of the Andean (JaloEEP558) and Mesoamerican (BAT93) gene pools was used to map anthracnose specificities. A gene cluster comprising both Andean (Co-y; Co-z) and Mesoamerican (Co-9) host resistance specificities was identified, suggesting that this locus existed prior to the separation of the two major gene pools of P. vulgaris. Molecular analysis revealed a high level of complexity at this locus. It harbors 11 restriction fragment length polymorphisms when R gene analog (RGA) clones are used. The relationship between the coevolution process and diversification of resistance specificities at resistance gene clusters is discussed.

  1. An Integrated Bioinformatics Approach Identifies Elevated Cyclin E2 Expression and E2F Activity as Distinct Features of Tamoxifen Resistant Breast Tumors

    PubMed Central

    Huang, Lei; Zhao, Shuangping; Frasor, Jonna M.; Dai, Yang

    2011-01-01

    Approximately half of estrogen receptor (ER) positive breast tumors will fail to respond to endocrine therapy. Here we used an integrative bioinformatics approach to analyze three gene expression profiling data sets from breast tumors in an attempt to uncover underlying mechanisms contributing to the development of resistance and potential therapeutic strategies to counteract these mechanisms. Genes that are differentially expressed in tamoxifen resistant vs. sensitive breast tumors were identified from three different publically available microarray datasets. These differentially expressed (DE) genes were analyzed using gene function and gene set enrichment and examined in intrinsic subtypes of breast tumors. The Connectivity Map analysis was utilized to link gene expression profiles of tamoxifen resistant tumors to small molecules and validation studies were carried out in a tamoxifen resistant cell line. Despite little overlap in genes that are differentially expressed in tamoxifen resistant vs. sensitive tumors, a high degree of functional similarity was observed among the three datasets. Tamoxifen resistant tumors displayed enriched expression of genes related to cell cycle and proliferation, as well as elevated activity of E2F transcription factors, and were highly correlated with a Luminal intrinsic subtype. A number of small molecules, including phenothiazines, were found that induced a gene signature in breast cancer cell lines opposite to that found in tamoxifen resistant vs. sensitive tumors and the ability of phenothiazines to down-regulate cyclin E2 and inhibit proliferation of tamoxifen resistant breast cancer cells was validated. Our findings demonstrate that an integrated bioinformatics approach to analyze gene expression profiles from multiple breast tumor datasets can identify important biological pathways and potentially novel therapeutic options for tamoxifen-resistant breast cancers. PMID:21789246

  2. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce.

    PubMed

    Shen, K A; Meyers, B C; Islam-Faridi, M N; Chin, D B; Stelly, D M; Michelmore, R W

    1998-08-01

    The recent cloning of genes for resistance against diverse pathogens from a variety of plants has revealed that many share conserved sequence motifs. This provides the possibility of isolating numerous additional resistance genes by polymerase chain reaction (PCR) with degenerate oligonucleotide primers. We amplified resistance gene candidates (RGCs) from lettuce with multiple combinations of primers with low degeneracy designed from motifs in the nucleotide binding sites (NBSs) of RPS2 of Arabidopsis thaliana and N of tobacco. Genomic DNA, cDNA, and bacterial artificial chromosome (BAC) clones were successfully used as templates. Four families of sequences were identified that had the same similarity to each other as to resistance genes from other species. The relationship of the amplified products to resistance genes was evaluated by several sequence and genetic criteria. The amplified products contained open reading frames with additional sequences characteristic of NBSs. Hybridization of RGCs to genomic DNA and to BAC clones revealed large numbers of related sequences. Genetic analysis demonstrated the existence of clustered multigene families for each of the four RGC sequences. This parallels classical genetic data on clustering of disease resistance genes. Two of the four families mapped to known clusters of resistance genes; these two families were therefore studied in greater detail. Additional evidence that these RGCs could be resistance genes was gained by the identification of leucine-rich repeat (LRR) regions in sequences adjoining the NBS similar to those in RPM1 and RPS2 of A. thaliana. Fluorescent in situ hybridization confirmed the clustered genomic distribution of these sequences. The use of PCR with degenerate oligonucleotide primers is therefore an efficient method to identify numerous RGCs in plants.

  3. Deregulation of Genes Associated with Alternate Drug Resistance Mechanisms in Mycobacterium tuberculosis.

    PubMed

    Sriraman, Kalpana; Nilgiriwala, Kayzad; Saranath, Dhananjaya; Chatterjee, Anirvan; Mistry, Nerges

    2018-04-01

    Alternate mechanisms of drug resistance involving intrinsic defense pathways play an important role in development of drug resistance. Deregulation of drug efflux, cellular metabolism, and DNA repair have been indicated to have effect on drug tolerance and persistence. Here we chose eight genes from these pathways to investigate their association with development of multidrug resistance (MDR). We generated mono drug resistant and MDR strains of rifampicin and isoniazid and examined the differential expression of genes belonging to efflux, DNA repair and cell wall lipid synthesis pathways. Rv1687c, recB, ppsD and embC genes showed significant (P <0.05) upregulation in mono-resistant (both rifampicin and isoniazid) as well as MDR strains. mmr showed significant upregulation with rifampicin resistance while Rv1457c showed significant upregulation only with mono-resistant strains. Highest expression change was observed with Rv1687c and ppsD. The study identified potential key genes that are significantly associated with development of drug resistance in vitro. These genes may help identify clinical strains predisposed to acquiring drug resistance in patients during the course of treatment or help in management of MDR forms of tuberculosis.

  4. Cytoplasmic Control of Sense-Antisense mRNA Pairs.

    PubMed

    Sinturel, Flore; Navickas, Albertas; Wery, Maxime; Descrimes, Marc; Morillon, Antonin; Torchet, Claire; Benard, Lionel

    2015-09-22

    Transcriptome analyses have revealed that convergent gene transcription can produce many 3'-overlapping mRNAs in diverse organisms. Few studies have examined the fate of 3'-complementary mRNAs in double-stranded RNA-dependent nuclear phenomena, and nothing is known about the cytoplasmic destiny of 3'-overlapping messengers or their impact on gene expression. Here, we demonstrate that the complementary tails of 3'-overlapping mRNAs can interact in the cytoplasm and promote post-transcriptional regulatory events including no-go decay (NGD) in Saccharomyces cerevisiae. Genome-wide experiments confirm that these messenger-interacting mRNAs (mimRNAs) form RNA duplexes in wild-type cells and thus have potential roles in modulating the mRNA levels of their convergent gene pattern under different growth conditions. We show that the post-transcriptional fate of hundreds of mimRNAs is controlled by Xrn1, revealing the extent to which this conserved 5'-3' cytoplasmic exoribonuclease plays an unexpected but key role in the post-transcriptional control of convergent gene expression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Avirulence Genes in Cereal Powdery Mildews: The Gene-for-Gene Hypothesis 2.0.

    PubMed

    Bourras, Salim; McNally, Kaitlin E; Müller, Marion C; Wicker, Thomas; Keller, Beat

    2016-01-01

    The gene-for-gene hypothesis states that for each gene controlling resistance in the host, there is a corresponding, specific gene controlling avirulence in the pathogen. Allelic series of the cereal mildew resistance genes Pm3 and Mla provide an excellent system for genetic and molecular analysis of resistance specificity. Despite this opportunity for molecular research, avirulence genes in mildews remain underexplored. Earlier work in barley powdery mildew (B.g. hordei) has shown that the reaction to some Mla resistance alleles is controlled by multiple genes. Similarly, several genes are involved in the specific interaction of wheat mildew (B.g. tritici) with the Pm3 allelic series. We found that two mildew genes control avirulence on Pm3f: one gene is involved in recognition by the resistance protein as demonstrated by functional studies in wheat and the heterologous host Nicotiana benthamiana. A second gene is a suppressor, and resistance is only observed in mildew genotypes combining the inactive suppressor and the recognized Avr. We propose that such suppressor/avirulence gene combinations provide the basis of specificity in mildews. Depending on the particular gene combinations in a mildew race, different genes will be genetically identified as the "avirulence" gene. Additionally, the observation of two LINE retrotransposon-encoded avirulence genes in B.g. hordei further suggests that the control of avirulence in mildew is more complex than a canonical gene-for-gene interaction. To fully understand the mildew-cereal interactions, more knowledge on avirulence determinants is needed and we propose ways how this can be achieved based on recent advances in the field.

  6. Avirulence Genes in Cereal Powdery Mildews: The Gene-for-Gene Hypothesis 2.0

    PubMed Central

    Bourras, Salim; McNally, Kaitlin E.; Müller, Marion C.; Wicker, Thomas; Keller, Beat

    2016-01-01

    The gene-for-gene hypothesis states that for each gene controlling resistance in the host, there is a corresponding, specific gene controlling avirulence in the pathogen. Allelic series of the cereal mildew resistance genes Pm3 and Mla provide an excellent system for genetic and molecular analysis of resistance specificity. Despite this opportunity for molecular research, avirulence genes in mildews remain underexplored. Earlier work in barley powdery mildew (B.g. hordei) has shown that the reaction to some Mla resistance alleles is controlled by multiple genes. Similarly, several genes are involved in the specific interaction of wheat mildew (B.g. tritici) with the Pm3 allelic series. We found that two mildew genes control avirulence on Pm3f: one gene is involved in recognition by the resistance protein as demonstrated by functional studies in wheat and the heterologous host Nicotiana benthamiana. A second gene is a suppressor, and resistance is only observed in mildew genotypes combining the inactive suppressor and the recognized Avr. We propose that such suppressor/avirulence gene combinations provide the basis of specificity in mildews. Depending on the particular gene combinations in a mildew race, different genes will be genetically identified as the “avirulence” gene. Additionally, the observation of two LINE retrotransposon-encoded avirulence genes in B.g. hordei further suggests that the control of avirulence in mildew is more complex than a canonical gene-for-gene interaction. To fully understand the mildew–cereal interactions, more knowledge on avirulence determinants is needed and we propose ways how this can be achieved based on recent advances in the field. PMID:26973683

  7. Diversity, distribution and quantification of antibiotic resistance genes in goat and lamb slaughterhouse surfaces and meat products.

    PubMed

    Lavilla Lerma, Leyre; Benomar, Nabil; Knapp, Charles W; Correa Galeote, David; Gálvez, Antonio; Abriouel, Hikmate

    2014-01-01

    The distribution and quantification of tetracycline, sulfonamide and beta-lactam resistance genes were assessed in slaughterhouse zones throughout meat chain production and the meat products; this study represents the first to report quantitatively monitor antibiotic resistance genes (ARG) in goat and lamb slaughterhouse using a culture independent approach, since most studies focused on individual bacterial species and their specific resistance types. Quantitative PCR (qPCR) revealed a high prevalence of tetracycline resistance genes tetA and tetB in almost all slaughterhouse zones. Sulfonamide resistance genes were largely distributed, while beta-lactam resistance genes were less predominant. Statistical analysis revealed that resistant bacteria, in most cases, were spread by the same route in almost all slaughterhouse zones, except for tetB, blaCTX and blaTEM genes, which occurred in few zones as isolated 'hot spots.' The sum of all analyzed ARG indicated that slaughterhouse surfaces and end products act as reservoirs of ARG, mainly tet genes, which were more prevalent in slaughtering room (SR), cutting room (CR) and commercial meat products (MP). Resistance gene patterns suggest they were disseminated throughout slaughterhouse zones being also detected in commercial meat products, with significant correlations between different sampling zones/end products and total resistance in SR, CR and white room (WR) zones, and also refrigerator 4 (F4) and MP were observed. Strategically controlling key zones in slaughterhouse (SR, CR and WR) by adequate disinfection methods could strategically reduce the risks of ARG transmission and minimize the issues of food safety and environment contamination.

  8. Diversity, Distribution and Quantification of Antibiotic Resistance Genes in Goat and Lamb Slaughterhouse Surfaces and Meat Products

    PubMed Central

    Lavilla Lerma, Leyre; Benomar, Nabil; Knapp, Charles W.; Correa Galeote, David; Gálvez, Antonio; Abriouel, Hikmate

    2014-01-01

    The distribution and quantification of tetracycline, sulfonamide and beta-lactam resistance genes were assessed in slaughterhouse zones throughout meat chain production and the meat products; this study represents the first to report quantitatively monitor antibiotic resistance genes (ARG) in goat and lamb slaughterhouse using a culture independent approach, since most studies focused on individual bacterial species and their specific resistance types. Quantitative PCR (qPCR) revealed a high prevalence of tetracycline resistance genes tetA and tetB in almost all slaughterhouse zones. Sulfonamide resistance genes were largely distributed, while beta-lactam resistance genes were less predominant. Statistical analysis revealed that resistant bacteria, in most cases, were spread by the same route in almost all slaughterhouse zones, except for tetB, blaCTX and blaTEM genes, which occurred in few zones as isolated ‘hot spots.’ The sum of all analyzed ARG indicated that slaughterhouse surfaces and end products act as reservoirs of ARG, mainly tet genes, which were more prevalent in slaughtering room (SR), cutting room (CR) and commercial meat products (MP). Resistance gene patterns suggest they were disseminated throughout slaughterhouse zones being also detected in commercial meat products, with significant correlations between different sampling zones/end products and total resistance in SR, CR and white room (WR) zones, and also refrigerator 4 (F4) and MP were observed. Strategically controlling key zones in slaughterhouse (SR, CR and WR) by adequate disinfection methods could strategically reduce the risks of ARG transmission and minimize the issues of food safety and environment contamination. PMID:25479100

  9. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes.

    PubMed

    Kebede, Aida Z; Johnston, Anne; Schneiderman, Danielle; Bosnich, Whynn; Harris, Linda J

    2018-02-09

    Gibberella ear rot (GER) is one of the most economically important fungal diseases of maize in the temperate zone due to moldy grain contaminated with health threatening mycotoxins. To develop resistant genotypes and control the disease, understanding the host-pathogen interaction is essential. RNA-Seq-derived transcriptome profiles of fungal- and mock-inoculated developing kernel tissues of two maize inbred lines were used to identify differentially expressed transcripts and propose candidate genes mapping within GER resistance quantitative trait loci (QTL). A total of 1255 transcripts were significantly (P ≤ 0.05) up regulated due to fungal infection in both susceptible and resistant inbreds. A greater number of transcripts were up regulated in the former (1174) than the latter (497) and increased as the infection progressed from 1 to 2 days after inoculation. Focusing on differentially expressed genes located within QTL regions for GER resistance, we identified 81 genes involved in membrane transport, hormone regulation, cell wall modification, cell detoxification, and biosynthesis of pathogenesis related proteins and phytoalexins as candidate genes contributing to resistance. Applying droplet digital PCR, we validated the expression profiles of a subset of these candidate genes from QTL regions contributed by the resistant inbred on chromosomes 1, 2 and 9. By screening global gene expression profiles for differentially expressed genes mapping within resistance QTL regions, we have identified candidate genes for gibberella ear rot resistance on several maize chromosomes which could potentially lead to a better understanding of Fusarium resistance mechanisms.

  10. Antimicrobial resistance genes in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs.

    PubMed

    Dayao, Dae; Gibson, J S; Blackall, P J; Turni, C

    2016-07-01

    To identify genes associated with the observed antimicrobial resistance in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs. Isolates with known phenotypic resistance to β-lactams, macrolides and tetracycline were screened for the presence of antimicrobial resistance genes. A total of 68 A. pleuropneumoniae, 62 H. parasuis and 20 P. multocida isolates exhibiting phenotypic antimicrobial resistance (A. pleuropneumoniae and P. multocida) or elevated minimal inhibitory concentrations (MICs) (H. parasuis) to any of the following antimicrobial agents - ampicillin, erythromycin, penicillin, tetracycline, tilmicosin and tulathromycin - were screened for a total of 19 associated antimicrobial resistance genes (ARGs) by PCR. The gene bla ROB-1 was found in all ampicillin- and penicillin-resistant isolates, but none harboured the bla TEM-1 gene. The tetB gene was found in 76% (74/97) of tetracycline-resistant isolates, 49/53 A. pleuropneumoniae, 17/30 H. parasuis and 8/14 P. multocida. One A. pleuropneumoniae isolate harboured the tetH gene, but none of the 97 isolates had tetA, tetC, tetD, tetE, tetL, tetM or tetO. A total of 92 isolates were screened for the presence of macrolide resistance genes. None was found to have ermA, ermB, ermC, erm42, mphE, mefA, msrA or msrE. The current study has provided a genetic explanation for the resistance or elevated MIC of the majority of isolates of Australian porcine respiratory pathogens to ampicillin, penicillin and tetracycline. However, the macrolide resistance observed by phenotypic testing remains genetically unexplained and further studies are required. © 2016 Australian Veterinary Association.

  11. Restriction to gene flow is associated with changes in the molecular basis of pyrethroid resistance in the malaria vector Anopheles funestus

    PubMed Central

    Barnes, Kayla G.; Irving, Helen; Chiumia, Martin; Mzilahowa, Themba; Coleman, Michael; Hemingway, Janet; Wondji, Charles S.

    2017-01-01

    Resistance to pyrethroids, the sole insecticide class recommended for treating bed nets, threatens the control of major malaria vectors, including Anopheles funestus. Effective management of resistance requires an understanding of the dynamics and mechanisms driving resistance. Here, using genome-wide transcription and genetic diversity analyses, we show that a shift in the molecular basis of pyrethroid resistance in southern African populations of this species is associated with a restricted gene flow. Across the most highly endemic and densely populated regions in Malawi, An. funestus is resistant to pyrethroids, carbamates, and organochlorides. Genome-wide microarray-based transcription analysis identified overexpression of cytochrome P450 genes as the main mechanism driving this resistance. The most up-regulated genes include cytochrome P450s (CYP) CYP6P9a, CYP6P9b and CYP6M7. However, a significant shift in the overexpression profile of these genes was detected across a south/north transect, with CYP6P9a and CYP6P9b more highly overexpressed in the southern resistance front and CYP6M7 predominant in the northern front. A genome-wide genetic structure analysis of southern African populations of An. funestus from Zambia, Malawi, and Mozambique revealed a restriction of gene flow between populations, in line with the geographical variation observed in the transcriptomic analysis. Genetic polymorphism analysis of the three key resistance genes, CYP6P9a, CYP6P9b, and CYP6M7, support barriers to gene flow that are shaping the underlying molecular basis of pyrethroid resistance across southern Africa. This barrier to gene flow is likely to impact the design and implementation of resistance management strategies in the region. PMID:28003461

  12. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    PubMed

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2017-07-01

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Genetic analysis and fine mapping of LH1 and LH2, a set of complementary genes controlling late heading in rice (Oryza sativa L.)

    PubMed Central

    Liu, Shuang; Wang, Feng; Gao, Li Jun; Li, Jin Hua; Li, Rong Bai; Gao, Han Liang; Deng, Guo Fu; Yang, Jin Shui; Luo, Xiao Jin

    2012-01-01

    Heading date in rice (Oryza sativa L.) is a critical agronomic trait with a complex inheritance. To investigate the genetic basis and mechanism of gene interaction in heading date, we conducted genetic analysis on segregation populations derived from crosses among the indica cultivars Bo B, Yuefeng B and Baoxuan 2. A set of dominant complementary genes controlling late heading, designated LH1 and LH2, were detected by molecular marker mapping. Genetic analysis revealed that Baoxuan 2 contains both dominant genes, while Bo B and Yuefeng B each possess either LH1 or LH2. Using larger populations with segregant ratios of 3 : 1, we fine-mapped LH1 to a 63-kb region near the centromere of chromosome 7 flanked by markers RM5436 and RM8034, and LH2 to a 177-kb region on the short arm of chromosome 8 between flanking markers Indel22468-3 and RM25. Some candidate genes were identified through sequencing of Bo B and Yuefeng B in these target regions. Our work provides a solid foundation for further study on gene interaction in heading date and has application in marker-assisted breeding of photosensitive hybrid rice in China. PMID:23341744

  14. Genetic analysis and fine mapping of LH1 and LH2, a set of complementary genes controlling late heading in rice (Oryza sativa L.).

    PubMed

    Liu, Shuang; Wang, Feng; Gao, Li Jun; Li, Jin Hua; Li, Rong Bai; Gao, Han Liang; Deng, Guo Fu; Yang, Jin Shui; Luo, Xiao Jin

    2012-12-01

    Heading date in rice (Oryza sativa L.) is a critical agronomic trait with a complex inheritance. To investigate the genetic basis and mechanism of gene interaction in heading date, we conducted genetic analysis on segregation populations derived from crosses among the indica cultivars Bo B, Yuefeng B and Baoxuan 2. A set of dominant complementary genes controlling late heading, designated LH1 and LH2, were detected by molecular marker mapping. Genetic analysis revealed that Baoxuan 2 contains both dominant genes, while Bo B and Yuefeng B each possess either LH1 or LH2. Using larger populations with segregant ratios of 3 : 1, we fine-mapped LH1 to a 63-kb region near the centromere of chromosome 7 flanked by markers RM5436 and RM8034, and LH2 to a 177-kb region on the short arm of chromosome 8 between flanking markers Indel22468-3 and RM25. Some candidate genes were identified through sequencing of Bo B and Yuefeng B in these target regions. Our work provides a solid foundation for further study on gene interaction in heading date and has application in marker-assisted breeding of photosensitive hybrid rice in China.

  15. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    NASA Astrophysics Data System (ADS)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  16. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste.

    PubMed

    Chee-Sanford, Joanne C; Mackie, Roderick I; Koike, Satoshi; Krapac, Ivan G; Lin, Yu-Feng; Yannarell, Anthony C; Maxwell, Scott; Aminov, Rustam I

    2009-01-01

    Antibiotics are used in animal livestock production for therapeutic treatment of disease and at subtherapeutic levels for growth promotion and improvement of feed efficiency. It is estimated that approximately 75% of antibiotics are not absorbed by animals and are excreted in waste. Antibiotic resistance selection occurs among gastrointestinal bacteria, which are also excreted in manure and stored in waste holding systems. Land application of animal waste is a common disposal method used in the United States and is a means for environmental entry of both antibiotics and genetic resistance determinants. Concerns for bacterial resistance gene selection and dissemination of resistance genes have prompted interest about the concentrations and biological activity of drug residues and break-down metabolites, and their fate and transport. Fecal bacteria can survive for weeks to months in the environment, depending on species and temperature, however, genetic elements can persist regardless of cell viability. Phylogenetic analyses indicate antibiotic resistance genes have evolved, although some genes have been maintained in bacteria before the modern antibiotic era. Quantitative measurements of drug residues and levels of resistance genes are needed, in addition to understanding the environmental mechanisms of genetic selection, gene acquisition, and the spatiotemporal dynamics of these resistance genes and their bacterial hosts. This review article discusses an accumulation of findings that address aspects of the fate, transport, and persistence of antibiotics and antibiotic resistance genes in natural environments, with emphasis on mechanisms pertaining to soil environments following land application of animal waste effluent.

  17. Isolation and characterization of NBS-LRR- resistance gene candidates in turmeric (Curcuma longa cv. surama).

    PubMed

    Joshi, R K; Mohanty, S; Subudhi, E; Nayak, S

    2010-09-08

    Turmeric (Curcuma longa), an important asexually reproducing spice crop of the family Zingiberaceae is highly susceptible to bacterial and fungal pathogens. The identification of resistance gene analogs holds great promise for development of resistant turmeric cultivars. Degenerate primers designed based on known resistance genes (R-genes) were used in combinations to elucidate resistance gene analogs from Curcuma longa cultivar surama. The three primers resulted in amplicons with expected sizes of 450-600 bp. The nucleotide sequence of these amplicons was obtained through sequencing; their predicted amino acid sequences compared to each other and to the amino acid sequences of known R-genes revealed significant sequence similarity. The finding of conserved domains, viz., kinase-1a, kinase-2 and hydrophobic motif, provided evidence that the sequences belong to the NBS-LRR class gene family. The presence of tryptophan as the last residue of kinase-2 motif further qualified them to be in the non-TIR-NBS-LRR subfamily of resistance genes. A cluster analysis based on the neighbor-joining method was carried out using Curcuma NBS analogs together with several resistance gene analogs and known R-genes, which classified them into two distinct subclasses, corresponding to clades N3 and N4 of non-TIR-NBS sequences described in plants. The NBS analogs that we isolated can be used as guidelines to eventually isolate numerous R-genes in turmeric.

  18. Large scale germplasm screening for identification of novel rice blast resistance sources

    PubMed Central

    Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.

    2014-01-01

    Rice is a major cereal crop that contributes significantly to global food security. Biotic stresses, including the rice blast fungus, cause severe yield losses that significantly impair rice production worldwide. The rapid genetic evolution of the fungus often overcomes the resistance conferred by major genes after a few years of intensive agricultural use. Therefore, resistance breeding requires continuous efforts of enriching the reservoir of resistance genes/alleles to effectively tackle the disease. Seed banks represent a rich stock of genetic diversity, however, they are still under-explored for identifying novel genes and/or their functional alleles. We conducted a large-scale screen for new rice blast resistance sources in 4246 geographically diverse rice accessions originating from 13 major rice-growing countries. The accessions were selected from a total collection of over 120,000 accessions based on their annotated rice blast resistance information in the International Rice Genebank. A two-step resistance screening protocol was used involving natural infection in a rice uniform blast nursery and subsequent artificial infections with five single rice blast isolates. The nursery-resistant accessions showed varied disease responses when infected with single isolates, suggesting the presence of diverse resistance genes/alleles in this accession collection. In addition, 289 accessions showed broad-spectrum resistance against all five single rice blast isolates. The selected resistant accessions were genotyped for the presence of the Pi2 resistance gene, thereby identifying potential accessions for isolation of allelic variants of this blast resistance gene. Together, the accession collection with broad spectrum and isolate specific blast resistance represent the core material for isolation of previously unknown blast resistance genes and/or their allelic variants that can be deployed in rice breeding programs. PMID:25324853

  19. Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers.

    PubMed

    Chełkowski, Jerzy; Tyrka, Mirosław; Sobkiewicz, Andrzej

    2003-01-01

    Current information on barley resistance genes available from scientific papers and on-line databases is summarised. The recent literature contains information on 107 major resistance genes (R genes) against fungal pathogens (excluding powdery mildew), pathogenic viruses and aphids identified in Hordeum vulgare accessions. The highest number of resistance genes was identified against Puccinia hordei, Rhynchosporium secalis, and the viruses BaYMV and BaMMV, with 17, 14 and 13 genes respectively. There is still a lot of confusion regarding symbols for R genes against powdery mildew. Among the 23 loci described to date, two regions Mla and Mlo comprise approximately 31 and 25 alleles. Over 50 R genes have already been localised and over 30 mapped on 7 barley chromosomes. Four barley R genes have been cloned recently: Mlo, Rpg1, Mla1 and Mla6, and their structures (sequences) are available. The paper presents a catalogue of barley resistance gene symbols, their chromosomalocation and the list of available DNA markers useful in characterising cultivars and breeding accessions.

  20. Incorporation of Bacterial Blight Resistance Genes Into Lowland Rice Cultivar Through Marker-Assisted Backcross Breeding.

    PubMed

    Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Pandit, Elssa; Behera, Lambodar; Anandan, Annamalai; Mukherjee, Arup Kumar; Lenka, Srikanta; Barik, Durga Prasad

    2016-07-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.

  1. A maize resistance gene functions against bacterial streak disease in rice

    PubMed Central

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-01-01

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease. PMID:16230639

  2. A maize resistance gene functions against bacterial streak disease in rice.

    PubMed

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-10-25

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease.

  3. geneCommittee: a web-based tool for extensively testing the discriminatory power of biologically relevant gene sets in microarray data classification.

    PubMed

    Reboiro-Jato, Miguel; Arrais, Joel P; Oliveira, José Luis; Fdez-Riverola, Florentino

    2014-01-30

    The diagnosis and prognosis of several diseases can be shortened through the use of different large-scale genome experiments. In this context, microarrays can generate expression data for a huge set of genes. However, to obtain solid statistical evidence from the resulting data, it is necessary to train and to validate many classification techniques in order to find the best discriminative method. This is a time-consuming process that normally depends on intricate statistical tools. geneCommittee is a web-based interactive tool for routinely evaluating the discriminative classification power of custom hypothesis in the form of biologically relevant gene sets. While the user can work with different gene set collections and several microarray data files to configure specific classification experiments, the tool is able to run several tests in parallel. Provided with a straightforward and intuitive interface, geneCommittee is able to render valuable information for diagnostic analyses and clinical management decisions based on systematically evaluating custom hypothesis over different data sets using complementary classifiers, a key aspect in clinical research. geneCommittee allows the enrichment of microarrays raw data with gene functional annotations, producing integrated datasets that simplify the construction of better discriminative hypothesis, and allows the creation of a set of complementary classifiers. The trained committees can then be used for clinical research and diagnosis. Full documentation including common use cases and guided analysis workflows is freely available at http://sing.ei.uvigo.es/GC/.

  4. Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome.

    PubMed

    Warejko, Jillian K; Tan, Weizhen; Daga, Ankana; Schapiro, David; Lawson, Jennifer A; Shril, Shirlee; Lovric, Svjetlana; Ashraf, Shazia; Rao, Jia; Hermle, Tobias; Jobst-Schwan, Tilman; Widmeier, Eugen; Majmundar, Amar J; Schneider, Ronen; Gee, Heon Yung; Schmidt, J Magdalena; Vivante, Asaf; van der Ven, Amelie T; Ityel, Hadas; Chen, Jing; Sadowski, Carolin E; Kohl, Stefan; Pabst, Werner L; Nakayama, Makiko; Somers, Michael J G; Rodig, Nancy M; Daouk, Ghaleb; Baum, Michelle; Stein, Deborah R; Ferguson, Michael A; Traum, Avram Z; Soliman, Neveen A; Kari, Jameela A; El Desoky, Sherif; Fathy, Hanan; Zenker, Martin; Bakkaloglu, Sevcan A; Müller, Dominik; Noyan, Aytul; Ozaltin, Fatih; Cadnapaphornchai, Melissa A; Hashmi, Seema; Hopcian, Jeffrey; Kopp, Jeffrey B; Benador, Nadine; Bockenhauer, Detlef; Bogdanovic, Radovan; Stajić, Nataša; Chernin, Gil; Ettenger, Robert; Fehrenbach, Henry; Kemper, Markus; Munarriz, Reyner Loza; Podracka, Ludmila; Büscher, Rainer; Serdaroglu, Erkin; Tasic, Velibor; Mane, Shrikant; Lifton, Richard P; Braun, Daniela A; Hildebrandt, Friedhelm

    2018-01-06

    Steroid-resistant nephrotic syndrome overwhelmingly progresses to ESRD. More than 30 monogenic genes have been identified to cause steroid-resistant nephrotic syndrome. We previously detected causative mutations using targeted panel sequencing in 30% of patients with steroid-resistant nephrotic syndrome. Panel sequencing has a number of limitations when compared with whole exome sequencing. We employed whole exome sequencing to detect monogenic causes of steroid-resistant nephrotic syndrome in an international cohort of 300 families. Three hundred thirty-five individuals with steroid-resistant nephrotic syndrome from 300 families were recruited from April of 1998 to June of 2016. Age of onset was restricted to <25 years of age. Exome data were evaluated for 33 known monogenic steroid-resistant nephrotic syndrome genes. In 74 of 300 families (25%), we identified a causative mutation in one of 20 genes known to cause steroid-resistant nephrotic syndrome. In 11 families (3.7%), we detected a mutation in a gene that causes a phenocopy of steroid-resistant nephrotic syndrome. This is consistent with our previously published identification of mutations using a panel approach. We detected a causative mutation in a known steroid-resistant nephrotic syndrome gene in 38% of consanguineous families and in 13% of nonconsanguineous families, and 48% of children with congenital nephrotic syndrome. A total of 68 different mutations were detected in 20 of 33 steroid-resistant nephrotic syndrome genes. Fifteen of these mutations were novel. NPHS1 , PLCE1 , NPHS2 , and SMARCAL1 were the most common genes in which we detected a mutation. In another 28% of families, we detected mutations in one or more candidate genes for steroid-resistant nephrotic syndrome. Whole exome sequencing is a sensitive approach toward diagnosis of monogenic causes of steroid-resistant nephrotic syndrome. A molecular genetic diagnosis of steroid-resistant nephrotic syndrome may have important consequences for the management of treatment and kidney transplantation in steroid-resistant nephrotic syndrome. Copyright © 2018 by the American Society of Nephrology.

  5. Functional markers based molecular characterization and cloning of resistance gene analogs encoding NBS-LRR disease resistance proteins in finger millet (Eleusine coracana).

    PubMed

    Panwar, Preety; Jha, Anand Kumar; Pandey, P K; Gupta, Arun K; Kumar, Anil

    2011-06-01

    Magnaporthe grisea, the blast fungus is one of the main pathological threats to finger millet crop worldwide. A systematic search for the blast resistance gene analogs was carried out, using functional molecular markers. Three-fourths of the recognition-dependent disease resistance genes (R-genes) identified in plants encodes nucleotide binding site (NBS) leucine-rich repeat (LRR) proteins. NBS-LRR homologs have only been isolated on a limited scale from Eleusine coracana. Genomic DNA sequences sharing homology with NBS region of resistance gene analogs were isolated and characterized from resistant genotypes of finger millet using PCR based approach with primers designed from conserved regions of NBS domain. Attempts were made to identify molecular markers linked to the resistance gene and to differentiate the resistant bulk from the susceptible bulk. A total of 9 NBS-LRR and 11 EST-SSR markers generated 75.6 and 73.5% polymorphism respectively amongst 73 finger millet genotypes. NBS-5, NBS-9, NBS-3 and EST-SSR-04 markers showed a clear polymorphism which differentiated resistant genotypes from susceptible genotypes. By comparing the banding pattern of different resistant and susceptible genotypes, five DNA amplifications of NBS and EST-SSR primers (NBS-05(504,) NBS-09(711), NBS-07(688), NBS-03(509) and EST-SSR-04(241)) were identified as markers for the blast resistance in resistant genotypes. Principal coordinate plot and UPGMA analysis formed similar groups of the genotypes and placed most of the resistant genotypes together showing a high level of genetic relatedness and the susceptible genotypes were placed in different groups on the basis of differential disease score. Our results provided a clue for the cloning of finger millet blast resistance gene analogs which not only facilitate the process of plant breeding but also molecular characterization of blast resistance gene analogs from Eleusine coracana.

  6. Antimicrobial Resistance in the Food Chain: A Review

    PubMed Central

    Verraes, Claire; Van Boxstael, Sigrid; Van Meervenne, Eva; Van Coillie, Els; Butaye, Patrick; Catry, Boudewijn; de Schaetzen, Marie-Athénaïs; Van Huffel, Xavier; Imberechts, Hein; Dierick, Katelijne; Daube, George; Saegerman, Claude; De Block, Jan; Dewulf, Jeroen; Herman, Lieve

    2013-01-01

    Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance. PMID:23812024

  7. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    PubMed

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  8. The Chromosomal Arsenic Resistance Genes of Thiobacillus ferrooxidans Have an Unusual Arrangement and Confer Increased Arsenic and Antimony Resistance to Escherichia coli

    PubMed Central

    Butcher, Bronwyn G.; Deane, Shelly M.; Rawlings, Douglas E.

    2000-01-01

    The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and antimony. Therefore, despite the fact that the ars genes originated from an obligately acidophilic bacterium, they were functional in E. coli. Although T. ferrooxidans is gram negative, its ArsC was more closely related to the ArsC molecules of gram-positive bacteria. Furthermore, a functional trxA (thioredoxin) gene was required for ArsC-mediated arsenate resistance in E. coli; this finding confirmed the gram-positive ArsC-like status of this resistance and indicated that the division of ArsC molecules based on Gram staining results is artificial. Although arsH was expressed in an E. coli-derived in vitro transcription-translation system, ArsH was not required for and did not enhance arsenic resistance in E. coli. The T. ferrooxidans ars genes were arranged in an unusual manner, and the putative arsR and arsC genes and the arsBH genes were translated in opposite directions. This divergent orientation was conserved in the four T. ferrooxidans strains investigated. PMID:10788346

  9. Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system.

    PubMed

    Li, Jianan; Cheng, Weixiao; Xu, Like; Strong, P J; Chen, Hong

    2015-03-01

    In this study, we determined the abundance of 8 antibiotics (3 tetracyclines, 4 sulfonamides, and 1 trimethoprim), 12 antibiotic-resistant genes (10 tet, 2 sul), 4 antibiotic-resistant bacteria (tetracycline, sulfamethoxazole, and combined resistance), and class 1 integron integrase gene (intI1) in the effluent of residential areas, hospitals, and municipal wastewater treatment plant (WWTP) systems. The concentrations of total/individual targets (antibiotics, genes, and bacteria) varied remarkably among different samples, but the hospital samples generally had a lower abundance than the residential area samples. The WWTP demonstrated removal efficiencies of 50.8% tetracyclines, 66.8% sulfonamides, 0.5 logs to 2.5 logs tet genes, and less than 1 log of sul and intI1 genes, as well as 0.5 log to 1 log removal for target bacteria. Except for the total tetracycline concentration and the proportion of tetracycline-resistant bacteria (R (2) = 0.330, P < 0.05), there was no significant correlation between antibiotics and the corresponding resistant bacteria (P > 0.05). In contrast, various relationships were identified between antibiotics and antibiotic resistance genes (P < 0.05). Tet (A) and tet (B) displayed noticeable relationships with both tetracycline and combined antibiotic-resistant bacteria (P < 0.01).

  10. Poly(adenylic acid) complementary DNA real-time polymerase chain reaction in pancreatic ductal juice in patients undergoing pancreaticoduodenectomy.

    PubMed

    Oliveira-Cunha, Melissa; Byers, Richard J; Siriwardena, Ajith K

    2010-03-01

    There is a need to develop methods of early diagnosis for pancreatic cancer. Pancreatic juice is easily collected by endoscopic retrograde cholangiopancreatography and may facilitate diagnosis using molecular markers. The aim of this work was to explore the feasibility of measurement of gene expression in RNA isolated from ductal juice. Intraoperative sampling of pancreatic juice was undertaken in 27 patients undergoing pancreaticoduodenectomy for suspected tumor. Total RNA was extracted and used as template for poly(adenylic acid) (poly[A]) polymerase chain reaction (PCR) to generate a globally amplified complementary DNA pool representative of all expressed messenger RNAs. Real-time PCR was performed for trefoil factor 2 (TFF2), carboxypeptidase B1 (CPB1), and kallikrein-related peptidase 3 (KLK3) in a subset of samples; all samples were normalized for 3 reference genes (glyceraldehyde-3-phosphate dehydrogenase [GAPDH], PSMB6, and beta-2-microglobulin [B2M]). The median volume of the pancreatic juice obtained was 1245 microL (range, 50-5000 microL). The RNA integrity number ranged from 1.9 to 10. Reverse transcriptase PCR was positive for pancreas-specific genes (TFF2 and CPB1) and negative for prostatic-specific antigen in all samples. These results demonstrate that RNA analysis of pancreatic juice is feasible using a combination of poly(A) PCR and real-time PCR. In addition, the poly(A) complementary DNA generated can be probed for multiple genes and is indefinitely renewable, thereby representing a molecular block of importance for future research.

  11. Establishing a herbicide-metabolizing enzyme library in Beckmannia syzigachne to identify genes associated with metabolic resistance.

    PubMed

    Pan, Lang; Gao, Haitao; Xia, Wenwen; Zhang, Teng; Dong, Liyao

    2016-03-01

    Non-target site resistance (NTSR) to herbicides is an increasing concern for weed control. Metabolic herbicide resistance is an important mechanism for NTSR. However, little is known about metabolic resistance at the genetic level. In this study, we have identified three fenoxaprop-P-ethyl-resistant American sloughgrass (Beckmannia syzigachne Steud.) populations, in which the molecular basis for NTSR remains unclear. To reveal the mechanisms of metabolic resistance, the genes likely to be involved in herbicide metabolism (e.g. for cytochrome P450s, esterases, hydrolases, oxidases, peroxidases, glutathione S-transferases, glycosyltransferases, and transporter proteins) were isolated using transcriptome sequencing, in combination with RT-PCR (reverse transcription-PCR) and RACE (rapid amplification of cDNA ends). Consequently, we established a herbicide-metabolizing enzyme library containing at least 332 genes, and each of these genes was cloned and the sequence and the expression level compared between the fenoxaprop-P-ethyl-resistant and susceptible populations. Fifteen metabolic enzyme genes were found to be possibly involved in fenoxaprop-P-ethyl resistance. In addition, we found five metabolizing enzyme genes that have a different gene sequence in plants of susceptible versus resistant B. syzigachne populations. These genes may be major candidates for herbicide metabolic resistance. This established metabolic enzyme library represents an important step forward towards a better understanding of herbicide metabolism and metabolic resistance in this and possibly other closely related weed species. This new information may help to understand weed metabolic resistance and to develop novel strategies of weed management. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Differential gene expression in response to Fusarium oxysporum infection in resistant and susceptible genotypes of flax (Linum usitatissimum L.).

    PubMed

    Dmitriev, Alexey A; Krasnov, George S; Rozhmina, Tatiana A; Novakovskiy, Roman O; Snezhkina, Anastasiya V; Fedorova, Maria S; Yurkevich, Olga Yu; Muravenko, Olga V; Bolsheva, Nadezhda L; Kudryavtseva, Anna V; Melnikova, Nataliya V

    2017-12-28

    Flax (Linum usitatissimum L.) is a crop plant used for fiber and oil production. Although potentially high-yielding flax varieties have been developed, environmental stresses markedly decrease flax production. Among biotic stresses, Fusarium oxysporum f. sp. lini is recognized as one of the most devastating flax pathogens. It causes wilt disease that is one of the major limiting factors for flax production worldwide. Breeding and cultivation of flax varieties resistant to F. oxysporum is the most effective method for controlling wilt disease. Although the mechanisms of flax response to Fusarium have been actively studied, data on the plant response to infection and resistance gene candidates are currently very limited. The transcriptomes of two resistant and two susceptible flax cultivars with respect to Fusarium wilt, as well as two resistant BC 2 F 5 populations, which were grown under control conditions or inoculated with F. oxysporum, were sequenced using the Illumina platform. Genes showing changes in expression under F. oxysporum infection were identified in both resistant and susceptible flax genotypes. We observed the predominant overexpression of numerous genes that are involved in defense response. This was more pronounced in resistant cultivars. In susceptible cultivars, significant downregulation of genes involved in cell wall organization or biogenesis was observed in response to F. oxysporum. In the resistant genotypes, upregulation of genes related to NAD(P)H oxidase activity was detected. Upregulation of a number of genes, including that encoding beta-1,3-glucanase, was significantly greater in the cultivars and BC 2 F 5 populations resistant to Fusarium wilt than in susceptible cultivars in response to F. oxysporum infection. Using high-throughput sequencing, we identified genes involved in the early defense response of L. usitatissimum against the fungus F. oxysporum. In response to F. oxysporum infection, we detected changes in the expression of pathogenesis-related protein-encoding genes and genes involved in ROS production or related to cell wall biogenesis. Furthermore, we identified genes that were upregulated specifically in flax genotypes resistant to Fusarium wilt. We suggest that the identified genes in resistant cultivars and BC 2 F 5 populations showing induced expression in response to F. oxysporum infection are the most promising resistance gene candidates.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doi, Nobutaka; New Products Research & Development, Gene Engineering Division, NIPPON GENE Co., Ltd.; Ogawa, Ryohei, E-mail: ogawa@med.u-toyama.ac.jp

    The cancer cells residing in the hypoxic layer are resistant to radiation and these are ones responsible for cancer recurrence after radiation therapy. One of the reasons why hypoxic cancer cells acquire radioresistance may be attributable to changes in the gene expression profile by the activation of hypoxia inducible factors (HIFs). However, the details underlying this process remain unknown. In this study, we investigated the effects of knockdown of HIF subunit genes to elucidate how HIF subunit genes may be involved in the radioresistance acquired by HeLa cells following exposure to a hypoxia mimic. Interestingly, HIF-1α and HIF-2α seemed mutuallymore » complementary for each other when either of them was suppressed. We thus suppressed the expression of both genes simultaneously. To do this, we developed a short hairpin RNA (shRNA) targeting a high homology region between HIF-1α and HIF-2α. It was shown that the expression of the shRNA effectively suppressed the acquisition of radioresistance following the hypoxia mimic. Moreover, it was confirmed that suppression of both subunits resulted in the downregulation of stem cell markers and the suppression of spheroid formation during the hypoxia mimicking-conditions. This shRNA-mediated knockdown method targeting a common region shared by a family of genes may offer a new candidate cancer treatment. - Highlights: • Incubation with CoCl{sub 2} confers radioresistance to HeLa cells. • Both HIF-1α and HIF-2α are involved in the acquisition of radioresistance. • An shRNA to a homology region of HIF-1α and HIF-2α suppressed the radioresistance. • The shRNA decreased cells with stem cell markers and a stem cell phenotype.« less

  14. microRNAs Databases: Developmental Methodologies, Structural and Functional Annotations.

    PubMed

    Singh, Nagendra Kumar

    2017-09-01

    microRNA (miRNA) is an endogenous and evolutionary conserved non-coding RNA, involved in post-transcriptional process as gene repressor and mRNA cleavage through RNA-induced silencing complex (RISC) formation. In RISC, miRNA binds in complementary base pair with targeted mRNA along with Argonaut proteins complex, causes gene repression or endonucleolytic cleavage of mRNAs and results in many diseases and syndromes. After the discovery of miRNA lin-4 and let-7, subsequently large numbers of miRNAs were discovered by low-throughput and high-throughput experimental techniques along with computational process in various biological and metabolic processes. The miRNAs are important non-coding RNA for understanding the complex biological phenomena of organism because it controls the gene regulation. This paper reviews miRNA databases with structural and functional annotations developed by various researchers. These databases contain structural and functional information of animal, plant and virus miRNAs including miRNAs-associated diseases, stress resistance in plant, miRNAs take part in various biological processes, effect of miRNAs interaction on drugs and environment, effect of variance on miRNAs, miRNAs gene expression analysis, sequence of miRNAs, structure of miRNAs. This review focuses on the developmental methodology of miRNA databases such as computational tools and methods used for extraction of miRNAs annotation from different resources or through experiment. This study also discusses the efficiency of user interface design of every database along with current entry and annotations of miRNA (pathways, gene ontology, disease ontology, etc.). Here, an integrated schematic diagram of construction process for databases is also drawn along with tabular and graphical comparison of various types of entries in different databases. Aim of this paper is to present the importance of miRNAs-related resources at a single place.

  15. Genomic and proteomic analysis of the Alkali-Tolerance Response (AlTR) in Listeria monocytogenes 10403S

    PubMed Central

    Giotis, Efstathios S; Muthaiyan, Arunachalam; Blair, Ian S; Wilkinson, Brian J; McDowell, David A

    2008-01-01

    Background Information regarding the Alkali-Tolerance Response (AlTR) in Listeria monocytogenes is very limited. Treatment of alkali-adapted cells with the protein synthesis inhibitor chloramphenicol has revealed that the AlTR is at least partially protein-dependent. In order to gain a more comprehensive perspective on the physiology and regulation of the AlTR, we compared differential gene expression and protein content of cells adapted at pH 9.5 and un-adapted cells (pH 7.0) using complementary DNA (cDNA) microarray and two-dimensional (2D) gel electrophoresis, (combined with mass spectrometry) respectively. Results In this study, L. monocytogenes was shown to exhibit a significant AlTR following a 1-h exposure to mild alkali (pH 9.5), which is capable of protecting cells from subsequent lethal alkali stress (pH 12.0). Adaptive intracellular gene expression involved genes that are associated with virulence, the general stress response, cell division, and changes in cell wall structure and included many genes with unknown functions. The observed variability between results of cDNA arrays and 2D gel electrophoresis may be accounted for by posttranslational modifications. Interestingly, several alkali induced genes/proteins can provide a cross protective overlap to other types of stresses. Conclusion Alkali pH provides therefore L. monocytogenes with nonspecific multiple-stress resistance that may be vital for survival in the human gastrointestinal tract as well as within food processing systems where alkali conditions prevail. This study showed strong evidence that the AlTR in L. monocytogenes functions as to minimize excess alkalisation and energy expenditures while mobilizing available carbon sources. PMID:18577215

  16. The therapeutic potential of HIF-2 antagonism in renal cell carcinoma

    PubMed Central

    2017-01-01

    Hypoxia, the insufficient delivery of oxygen for the demand of a tissue, contributes to the development of an aggressive phenotype, resistance to radiation therapy and chemotherapy, and is predictive of a poor outcome in numerous tumor types. Adaptation to hypoxia is mediated by hypoxia-inducible factors (HIFs), including HIF-1α and HIF-2α, which regulate genes promoting angiogenesis, increased tumor growth or metastasis. In kidney cancer, HIF-2α is believed to be the most important driver for development and progression of clear cell renal cell carcinoma (ccRCC), highlighting the therapeutic potential of HIF-2 antagonists in this disease. Recent studies show that HIF-2α can be targeted by selective, and orally active new class of inhibitors. In conjunction with the restricted expression of HIF-2α in normal adult physiology, these studies suggest that such therapeutic approach might be favorable for patients with lower toxicity than current anti-angiogenic drugs like sunitinib. However, the differential sensitivity to these HIF-2α antagonists along with the potential mechanisms of resistance reported in these studies advocate for the identification of biomarkers to determine which patients are more likely to benefit from these therapies as well as paving the way for second generation inhibitors or complementary inhibitory approaches. PMID:28217462

  17. Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp.

    PubMed

    Wang, Liying; Wang, Jin; Jing, Chuanyong

    2017-01-01

    Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC -like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC -like genes, As resistance gene clusters arsRBC or arsRBCH were found in 15 Pantoea genomes. These ars clusters were found to be acquired by horizontal gene transfer (HGT) from sources related to Franconibacter helveticus, Serratia marcescens , and Citrobacter freundii . During the history of evolution, the ars clusters were acquired more than once in some species, and were lost in some strains, producing strains without As resistance capability. This study revealed the organization, distribution and the complex evolutionary history of As resistance genes in Pantoea spp.. The insights gained in this study improved our understanding on the As resistance strategy of Pantoea spp. and its roles in the biogeochemical cycling of As.

  18. Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp.

    PubMed Central

    Wang, Liying; Wang, Jin; Jing, Chuanyong

    2017-01-01

    Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC-like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC-like genes, As resistance gene clusters arsRBC or arsRBCH were found in 15 Pantoea genomes. These ars clusters were found to be acquired by horizontal gene transfer (HGT) from sources related to Franconibacter helveticus, Serratia marcescens, and Citrobacter freundii. During the history of evolution, the ars clusters were acquired more than once in some species, and were lost in some strains, producing strains without As resistance capability. This study revealed the organization, distribution and the complex evolutionary history of As resistance genes in Pantoea spp.. The insights gained in this study improved our understanding on the As resistance strategy of Pantoea spp. and its roles in the biogeochemical cycling of As. PMID:28377759

  19. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature

    PubMed Central

    Chen, Shisheng; Zhang, Wenjun; Bolus, Stephen; Rouse, Matthew N.

    2018-01-01

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating foliar disease. The Ug99 race group has combined virulence to most stem rust (Sr) resistance genes deployed in wheat and is a threat to global wheat production. Here we identified a coiled-coil, nucleotide-binding leucine-rich repeat protein (NLR) completely linked to the Ug99 resistance gene Sr21 from Triticum monococcum. Loss-of-function mutations and transgenic complementation confirmed that this gene is Sr21. Sr21 transcripts were significantly higher at high temperatures, and this was associated with significant upregulation of pathogenesis related (PR) genes and increased levels of resistance at those temperatures. Introgression of Sr21 into hexaploid wheat resulted in lower levels of resistance than in diploid wheat, but transgenic hexaploid wheat lines with high levels of Sr21 expression showed high levels of resistance. Sr21 can be a valuable component of transgenic cassettes or gene pyramids combining multiple resistance genes against Ug99. PMID:29614079

  20. Dissemination of Genes Encoding Aminoglycoside-Modifying Enzymes and armA Among Enterobacteriaceae Isolates in Northwest Iran.

    PubMed

    Ghotaslou, Reza; Yeganeh Sefidan, Fatemeh; Akhi, Mohammad Taghi; Asgharzadeh, Mohammad; Mohammadzadeh Asl, Yalda

    2017-10-01

    Enzymatic inactivation is one of the most important mechanisms of resistance to aminoglycosides. The aim of this study was to investigate the prevalence of armA and diversity of the genes encoding aminoglycoside-modifying enzymes (AMEs) and their associations with resistance phenotypes in Enterobacteriaceae isolates. Three hundred and seven Enterobacteriaceae isolates were collected from five hospitals in northwest Iran. The disk diffusion method for amikacin, gentamicin, tobramycin, kanamycin, and streptomycin, as well as the minimum inhibitory concentration for amikacin, gentamicin, tobramycin, and kanamycin were done for susceptibility testing. Thirteen AME genes and armA methylase were screened using the PCR and sequencing assays. Two hundred and twenty (71.7%) of isolates were resistant to aminoglycosides and 155 (70.5%) of them were positive for aminoglycoside resistance genes. The most prevalent AME genes were ant(3″)-Ia and aph(3″)-Ib with the frequency 35.9% and 30.5%, respectively. Also, 21 (9.5%) of resistant isolates were positive for armA methylase gene. The prevalence of resistance to aminoglycoside is high and AME genes frequently are disseminated in Enterobacteriaceae isolates. There is an association between phenotypic resistance and the presence of some aminoglycoside genes.

  1. Genomic evidence for genes encoding leucine-rich repeat receptors linked to resistance against the eukaryotic extra- and intracellular Brassica napus pathogens Leptosphaeria maculans and Plasmodiophora brassicae.

    PubMed

    Stotz, Henrik U; Harvey, Pascoe J; Haddadi, Parham; Mashanova, Alla; Kukol, Andreas; Larkan, Nicholas J; Borhan, M Hossein; Fitt, Bruce D L

    2018-01-01

    Genes coding for nucleotide-binding leucine-rich repeat (LRR) receptors (NLRs) control resistance against intracellular (cell-penetrating) pathogens. However, evidence for a role of genes coding for proteins with LRR domains in resistance against extracellular (apoplastic) fungal pathogens is limited. Here, the distribution of genes coding for proteins with eLRR domains but lacking kinase domains was determined for the Brassica napus genome. Predictions of signal peptide and transmembrane regions divided these genes into 184 coding for receptor-like proteins (RLPs) and 121 coding for secreted proteins (SPs). Together with previously annotated NLRs, a total of 720 LRR genes were found. Leptosphaeria maculans-induced expression during a compatible interaction with cultivar Topas differed between RLP, SP and NLR gene families; NLR genes were induced relatively late, during the necrotrophic phase of pathogen colonization. Seven RLP, one SP and two NLR genes were found in Rlm1 and Rlm3/Rlm4/Rlm7/Rlm9 loci for resistance against L. maculans on chromosome A07 of B. napus. One NLR gene at the Rlm9 locus was positively selected, as was the RLP gene on chromosome A10 with LepR3 and Rlm2 alleles conferring resistance against L. maculans races with corresponding effectors AvrLm1 and AvrLm2, respectively. Known loci for resistance against L. maculans (extracellular hemi-biotrophic fungus), Sclerotinia sclerotiorum (necrotrophic fungus) and Plasmodiophora brassicae (intracellular, obligate biotrophic protist) were examined for presence of RLPs, SPs and NLRs in these regions. Whereas loci for resistance against P. brassicae were enriched for NLRs, no such signature was observed for the other pathogens. These findings demonstrate involvement of (i) NLR genes in resistance against the intracellular pathogen P. brassicae and a putative NLR gene in Rlm9-mediated resistance against the extracellular pathogen L. maculans.

  2. Antibiotic Resistance Characterization of Environmental E. coli Isolated from River Mula-Mutha, Pune District, India.

    PubMed

    Dhawde, Rutuja; Macaden, Ragini; Saranath, Dhananjaya; Nilgiriwala, Kayzad; Ghadge, Appasaheb; Birdi, Tannaz

    2018-06-12

    In the current study, ceftazidime- and ciprofloxacin-resistant—or dual drug-resistant (DDR)— E. coli were isolated from river Mula-Mutha, which flows through rural Pune district and Pune city. The DDR E. coli were further examined for antibiotic resistance to six additional antibiotics. The study also included detection of genes responsible for ceftazidime and ciprofloxacin resistance and vectors for horizontal gene transfer. Twenty-eight percent of the identified DDR E. coli were resistant to more than six antibiotics, with 12% being resistant to all eight antibiotics tested. Quinolone resistance was determined through the detection of qnrA , qnrB , qnrS and oqxA genes, whereas cephalosporin resistance was confirmed through detection of TEM, CTX-M-15, CTX-M-27 and SHV genes. Out of 219 DDR E. coli , 8.2% were qnrS positive and 0.4% were qnrB positive. Percentage of isolates positive for the TEM, CTX-M-15 and CTX-M-27 genes were 32%, 46% and 0.9%, respectively. None of the DDR E. coli tested carried the qnrA , SHV and oqxA genes. Percentage of DDR E. coli carrying Class 1 and 2 integrons (mobile genetic elements) were 47% and 8%, respectively. The results showed that antibiotic resistance genes (ARGs) and integrons were present in the E. coli isolated from the river at points adjoining and downstream of Pune city.

  3. Molecular cloning of a gene encoding translation initiation factor (TIF) from Candida albicans.

    PubMed

    Mirbod, F; Nakashima, S; Kitajima, Y; Ghannoum, M A; Cannon, R D; Nozawa, Y

    1996-01-01

    The differential display technique was applied to compare mRNAs from two clinical isolates of Candida albicans with different virulence; high (potent strain, 16240) and low (weak strain, 18084) extracellular phospholipase activities. Complementary DNA fragments corresponding to several apparently differentially expressed mRNAs were recovered and sequenced. A complementary DNA fragment seen distinctly in the potent phospholipase producing strain was highly homologous to the yeast translation initiation factor (TIF). The selected DNA fragment was then used as a probe to isolate its corresponding complementary DNA clone from a library of C. albicans genomic DNA. The sequence of isolated gene revealed an open reading frame of 1194 nucleotides with the potential to encode a protein of 397 amino acids with a predicted molecular weight of 43 kDa. Over its entire length, the amino acid sequence showed strong homology (78-89%) to Saccharomyces cerevisiae TIF and (63-80%) to mouse eIF-4A proteins. Therefore, our C. albicans gene was identified to be TIF (Ca TIF). Northern blot analysis in the two strains of C. albicans revealed that Ca TIF expression is 1.5-fold higher in the potent phospholipase producing strain. The restriction endonuclease digestion of genomic DNA from this potent strain revealed at least two hybridized bands in Southern blot analysis, suggesting two or more closely related sequences in the C. albicans genome.

  4. Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater.

    PubMed

    Guo, Mei-Ting; Yuan, Qing-Bin; Yang, Jian

    2013-11-01

    Antibiotic resistance in wastewater is becoming a major public health concern, but poorly understood about impact of disinfection on antibiotic resistant bacteria and antibiotic resistance genes. The UV disinfection of antibiotic resistant heterotrophic bacteria and their relevant genes in the wastewater of a municipal wastewater treatment plant has been evaluated. Two commonly used antibiotics, erythromycin and tetracycline were selected because of their wide occurrences in regard to the antibiotic resistance problem. After UV treatment at a fluence of 5mJcm(-2), the log reductions of heterotrophic bacteria resistant to erythromycin and tetracycline in the wastewater were found to be 1.4±0.1 and 1.1±0.1, respectively. The proportion of tetracycline-resistant bacteria (5%) was nearly double of that before UV disinfection (3%). Tetracycline-resistant bacteria exhibited more tolerance to UV irradiation compared to the erythromycin-resistant bacteria (p<0.05). Gene copy numbers were quantified via qPCR and normalized to the volume of original sample. The total concentrations of erythromycin- and tetracycline-resistance genes were (3.6±0.2)×10(5) and (2.5±0.1)×10(5) copies L(-1), respectively. UV treatment at a fluence of 5mJcm(-2) removed the total erythromycin- and tetracycline-resistance genes by 3.0±0.1 log and 1.9±0.1 log, respectively. UV treatment was effective in reducing antibiotic resistance in the wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. RNA-primed complementary-sense DNA synthesis of the geminivirus African cassava mosaic virus.

    PubMed Central

    Saunders, K; Lucy, A; Stanley, J

    1992-01-01

    The plant DNA virus African cassava mosaic virus (ACMV) is believed to replicate by a rolling circle mechanism. To investigate complementary-sense DNA (lagging strand) synthesis, we have analysed the heterogenous form of complementary-sense DNA (H3 DNA) from infected Nicotiana benthamiana by two-dimensional agarose gel electrophoresis and blot hybridisation. The presence of an RNA moeity is demonstrated by comparison of results for nucleic acids resolved on neutral/alkaline and neutral/formamide gels, suggesting that complementary-sense DNA synthesis on the virus-sense single-stranded DNA template is preceded by the synthesis of an RNA primer. Hybridisation with probes to specific parts of ACMV DNA A genome indicates that synthesis of the putative RNA primer initiates between nucleotides 2581-221, a region that includes intergenic sequences that have been implicated in geminivirus DNA replication and the control of gene expression. Images PMID:1475192

  6. Factors that cause trimethoprim resistance in Streptococcus pyogenes.

    PubMed

    Bergmann, René; van der Linden, Mark; Chhatwal, Gursharan S; Nitsche-Schmitz, D Patric

    2014-01-01

    The use of trimethoprim in treatment of Streptococcus pyogenes infections has long been discouraged because it has been widely believed that this pathogen is resistant to this antibiotic. To gain more insight into the extent and molecular basis of trimethoprim resistance in S. pyogenes, we tested isolates from India and Germany and sought the factors that conferred the resistance. Resistant isolates were identified in tests for trimethoprim or trimethoprim-sulfamethoxazole (SXT) susceptibility. Resistant isolates were screened for the known horizontally transferable trimethoprim-insensitive dihydrofolate reductase (dfr) genes dfrG, dfrF, dfrA, dfrD, and dfrK. The nucleotide sequence of the intrinsic dfr gene was determined for resistant isolates lacking the horizontally transferable genes. Based on tentative criteria, 69 out of 268 isolates (25.7%) from India were resistant to trimethoprim. Occurring in 42 of the 69 resistant isolates (60.9%), dfrF appeared more frequently than dfrG (23 isolates; 33.3%) in India. The dfrF gene was also present in a collection of SXT-resistant isolates from Germany, in which it was the only detected trimethoprim resistance factor. The dfrF gene caused resistance in 4 out of 5 trimethoprim-resistant isolates from the German collection. An amino acid substitution in the intrinsic dihydrofolate reductase known from trimethoprim-resistant Streptococcus pneumoniae conferred resistance to S. pyogenes isolates of emm type 102.2, which lacked other aforementioned dfr genes. Trimethoprim may be more useful in treatment of S. pyogenes infections than previously thought. However, the factors described herein may lead to the rapid development and spread of resistance of S. pyogenes to this antibiotic agent.

  7. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture

    PubMed Central

    Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; Cole, James R.; Hashsham, Syed A.; Looft, Torey; Zhu, Yong-Guan

    2016-01-01

    ABSTRACT   Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. PMID:27073098

  8. Factors That Cause Trimethoprim Resistance in Streptococcus pyogenes

    PubMed Central

    Bergmann, René; van der Linden, Mark; Chhatwal, Gursharan S.

    2014-01-01

    The use of trimethoprim in treatment of Streptococcus pyogenes infections has long been discouraged because it has been widely believed that this pathogen is resistant to this antibiotic. To gain more insight into the extent and molecular basis of trimethoprim resistance in S. pyogenes, we tested isolates from India and Germany and sought the factors that conferred the resistance. Resistant isolates were identified in tests for trimethoprim or trimethoprim-sulfamethoxazole (SXT) susceptibility. Resistant isolates were screened for the known horizontally transferable trimethoprim-insensitive dihydrofolate reductase (dfr) genes dfrG, dfrF, dfrA, dfrD, and dfrK. The nucleotide sequence of the intrinsic dfr gene was determined for resistant isolates lacking the horizontally transferable genes. Based on tentative criteria, 69 out of 268 isolates (25.7%) from India were resistant to trimethoprim. Occurring in 42 of the 69 resistant isolates (60.9%), dfrF appeared more frequently than dfrG (23 isolates; 33.3%) in India. The dfrF gene was also present in a collection of SXT-resistant isolates from Germany, in which it was the only detected trimethoprim resistance factor. The dfrF gene caused resistance in 4 out of 5 trimethoprim-resistant isolates from the German collection. An amino acid substitution in the intrinsic dihydrofolate reductase known from trimethoprim-resistant Streptococcus pneumoniae conferred resistance to S. pyogenes isolates of emm type 102.2, which lacked other aforementioned dfr genes. Trimethoprim may be more useful in treatment of S. pyogenes infections than previously thought. However, the factors described herein may lead to the rapid development and spread of resistance of S. pyogenes to this antibiotic agent. PMID:24492367

  9. Rapid Detection of Bacterial Antibiotic Resistance: Preliminary Evaluation of PCR Assays Targeting Tetracycline Resistance Genes

    DTIC Science & Technology

    2007-08-01

    gonorrheae strain 2309 plasmid pOZ101; AF440277, Lactobacillus plantarum plasmid pMD5057; X75073, Neisseria meningitidis plasmid DNA for tet(M...tetracycline resistance tet(M) gene; AY057892, Staphylococcus aureus strain 1802 tetracycline resistance protein tet(M) gene; AY149596, Lactobacillus sakei

  10. An intragenic approach to confer glyphosate resistance in chile (Capsicum annuum) by introducing an in vitro mutagenized chile EPSPS gene encoding for a glyphosate resistant EPSPS protein

    PubMed Central

    Bagga, Suman; Apodaca, Kimberly; Lucero, Yvonne

    2018-01-01

    Chile pepper (Capsicum annuum) is an important high valued crop worldwide, and when grown on a large scale has problems with weeds. One important herbicide used is glyphosate. Glyphosate inactivates the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), a key enzyme in the synthesis of aromatic amino acids. A transgenic approach towards making glyphosate resistant plants, entails introducing copies of a gene encoding for glyphosate-resistant EPSPS enzyme into the plant. The main objective of our work was to use an intragenic approach to confer resistance to glyphosate in chile which would require using only chile genes for transformation including the selectable marker. Tobacco was used as the transgenic system to identify different gene constructs that would allow for the development of the intragenic system for chile, since chile transformation is inefficient. An EPSPS gene was isolated from chile and mutagenized to introduce substitutions that are known to make the encoded enzyme resistant to glyphosate. The promoter for EPSPS gene was isolated from chile and the mutagenized chile EPSPS cDNA was engineered behind both the CaMV35S promoter and the EPSPS promoter. The leaves from the transformants were checked for resistance to glyphosate using a cut leaf assay. In tobacco, though both gene constructs exhibited some degree of resistance to glyphosate, the construct with the CaMV35S promoter was more effective and as such chile was transformed with this gene construct. The chile transformants showed resistance to low concentrations of glyphosate. Furthermore, preliminary studies showed that the mutated EPSPS gene driven by the CaMV35S promoter could be used as a selectable marker for transformation. We have shown that an intragenic approach can be used to confer glyphosate-resistance in chile. However, we need a stronger chile promoter and a mutated chile gene that encodes for a more glyphosate resistant EPSPS protein. PMID:29649228

  11. Genomic characterization of an extensively-drug resistance Salmonella enterica serotype Indiana strain harboring blaNDM-1 gene isolated from a chicken carcass in China.

    PubMed

    Wang, Wei; Peng, Zixin; Baloch, Zulqarnain; Hu, Yujie; Xu, Jin; Zhang, Wenhui; Fanning, Séamus; Li, Fengqin

    2017-11-01

    The objective of this study was to genetically characterize the antimicrobial resistance mechanisms of Salmonella enterica serotype Indiana C629 isolated from a chicken carcass in China in 2014. Antimicrobial susceptibility against a panel of 23 antimicrobial agents was carried out on Salmonella enterica serotype Indiana C629 and assessed according to CLSI standards. Whole-genome sequencing of this isolate was conducted to obtain the complete genome of S. Indiana. Salmonella Indiana C629 expressed an XDR phenotype being resistant to more than 20 antimicrobial agents, including imipenem and meropenem. From the analysis of the resistance mechanisms, two mutations were identified in subunit A of DNA gyrase within the quinolone resistance determining region, in addition to the acquisition of mobile efflux pumps encoding oqxA/B/R. Additionally, four beta-lactamases resistance genes (bla CTX-M-65 , bla TEM-1 , bla OXA-1 , and bla NDM-1 ), five aminoglycosides resistance genes (aac(3)-IV, aac(6')-Ib-cr, aadA2, aadA5, and aph(4)-Ia), two phenicol resistance genes (catB3 and floR), and five trimethoprim/sulfamethoxazole resistance genes (sul1/2/3 and dfrA12/17) were also identified. A total of 191 virulence genes were identified. Among them, 57 belonged to type-three secretion system (T3SS) encoding genes, 55 belonged to fimbrial adherence encoding genes, and 39 belonged to flagella-encoding genes CONCLUSIONS: This study demonstrated that multi-resistance mechanisms consistent with an XDR-phenotype, along with various virulence encoding genes of a S. Indiana strain in China These findings highlight the importance of cooperation among different sectors in order to monitor the spread of resistant pathogens among food animal, foods of animal origin and human beings that might further take measures to protect consumers' health. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Identification of downy mildew resistance gene candidates by positional cloning in maize (Zea mays subsp. mays; Poaceae)1

    PubMed Central

    Kim, Jae Yoon; Moon, Jun-Cheol; Kim, Hyo Chul; Shin, Seungho; Song, Kitae; Kim, Kyung-Hee; Lee, Byung-Moo

    2017-01-01

    Premise of the study: Positional cloning in combination with phenotyping is a general approach to identify disease-resistance gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combined strategy to improve the identification of disease-resistance gene candidates. Methods and Results: Downy mildew (DM)–resistant maize was selected from five cultivars using a spreader row technique. Positional cloning and bioinformatics tools were used to identify the DM-resistance quantitative trait locus marker (bnlg1702) and 47 protein-coding gene annotations. Eventually, five DM-resistance gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative reverse-transcription PCR (RT-PCR) without fine mapping of the bnlg1702 locus. Conclusions: The combined protocol with the spreader row technique, quantitative trait locus positional cloning, and quantitative RT-PCR was effective for identifying DM-resistance candidate genes. This cloning approach may be applied to other whole-genome-sequenced crops or resistance to other diseases. PMID:28224059

  13. Sulfadiazine resistance in Toxoplasma gondii: no involvement of overexpression or polymorphisms in genes of therapeutic targets and ABC transporters

    PubMed Central

    Doliwa, Christelle; Escotte-Binet, Sandie; Aubert, Dominique; Sauvage, Virginie; Velard, Frédéric; Schmid, Aline; Villena, Isabelle

    2013-01-01

    Several treatment failures have been reported for the treatment of toxoplasmic encephalitis, chorioretinitis, and congenital toxoplasmosis. Recently we found three Toxoplasma gondii strains naturally resistant to sulfadiazine and we developed in vitro two sulfadiazine resistant strains, RH-RSDZ and ME-49-RSDZ, by gradual pressure. In Plasmodium, common mechanisms of drug resistance involve, among others, mutations and/or amplification within genes encoding the therapeutic targets dhps and dhfr and/or the ABC transporter genes family. To identify genotypic and/or phenotypic markers of resistance in T. gondii, we sequenced and analyzed the expression levels of therapeutic targets dhps and dhfr, three ABC genes, two Pgp, TgABC.B1 and TgABC.B2, and one MRP, TgABC.C1, on sensitive strains compared to sulfadiazine resistant strains. Neither polymorphism nor overexpression was identified. Contrary to Plasmodium, in which mutations and/or overexpression within gene targets and ABC transporters are involved in antimalarial resistance, T. gondii sulfadiazine resistance is not related to these toxoplasmic genes studied. PMID:23707894

  14. Occurrence of tetracycline-resistant fecal coliforms and their resistance genes in an urban river impacted by municipal wastewater treatment plant discharges.

    PubMed

    Zhang, Chong-Miao; Du, Cong; Xu, Huan; Miao, Yan-Hui; Cheng, Yan-Yan; Tang, Hao; Zhou, Jin-Hong; Wang, Xiao-Chang

    2015-01-01

    Antibiotic resistance of fecal coliforms in an urban river poses great threats to both human health and the environment. To investigate the occurrence and distribution of antibiotic resistant bacteria in an urban river, water samples were collected from the Chanhe River in Xi'an, China. After membrane filtration of water samples, the tetracycline resistance rate of fecal coliforms and their resistance genes were detected by plating and polymerase chain reaction (PCR), respectively. We found that fecal coliforms were generally resistant to tetracycline and saw average resistance rates of 44.7%. The genes tetA and tetB were widely detected, and their positive rate was 60%-100% and 40%-90%, respectively. We found few strains containing tetC, tetK, tetQ and tetX, and we did not identify any strains containing tetG, tetM or tetO. The prevalence of tetA and tetB over other genes indicated that the main mechanism for resistance to tetracycline is by changes to the efflux pump. Our analysis of the types and proportion of tetracycline resistance genes in the Chanhe River at locations upstream and downstream of the urban center suggests that the increased number of tetracycline-resistant fecal coliforms and spatial variation of tetracycline resistance genes diversity were related to municipal wastewater treatment plant discharge.

  15. Antimicrobial resistance and prevalence of resistance genes of obligate anaerobes isolated from periodontal abscesses.

    PubMed

    Xie, Yi; Chen, Jiazhen; He, Junlin; Miao, Xinyu; Xu, Meng; Wu, Xingwen; Xu, Beiyun; Yu, Liying; Zhang, Wenhong

    2014-02-01

    This study attempts to determine the antimicrobial resistance profiles of obligate anaerobic bacteria that were isolated from a periodontal abscess and to evaluate the prevalence of resistance genes in these bacteria. Forty-one periodontal abscess samples were cultivated on selective and non-selective culture media to isolate the oral anaerobes. Their antibiotic susceptibilities to clindamycin, doxycycline, amoxicillin, imipenem, cefradine, cefixime, roxithromycin, and metronidazole were determined using the agar dilution method, and polymerase chain reaction assays were performed to detect the presence of the ermF, tetQ, nim, and cfxA drug resistance genes. A total of 60 different bacterial colonies was isolated and identified. All of the isolates were sensitive to imipenem. Of the strains, 6.7%, 13.3%, 16.7%, and 25% were resistant to doxycycline, metronidazole, cefixime, and amoxicillin, respectively. The resistance rate for both clindamycin and roxithromycin was 31.7%. Approximately 60.7% of the strains had the ermF gene, and 53.3% of the amoxicillin-resistant strains were found to have the cfxA gene. Two nim genes that were found in eight metronidazole-resistant strains were identified as nimB. In the present study, the Prevotella species are the most frequently isolated obligate anaerobes from periodontal abscesses. The current results show their alarmingly high resistance rate against clindamycin and roxithromycin; thus, the use of these antibiotics is unacceptable for the empirical therapy of periodontal abscesses. A brief prevalence of four resistance genes in the anaerobic bacteria that were isolated was also demonstrated.

  16. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste.

    PubMed

    Marathe, Nachiket P; Janzon, Anders; Kotsakis, Stathis D; Flach, Carl-Fredrik; Razavi, Mohammad; Berglund, Fanny; Kristiansson, Erik; Larsson, D G Joakim

    2018-03-01

    Evolution has provided environmental bacteria with a plethora of genes that give resistance to antibiotic compounds. Under anthropogenic selection pressures, some of these genes are believed to be recruited over time into pathogens by horizontal gene transfer. River sediment polluted with fluoroquinolones and other drugs discharged from bulk drug production in India constitute an environment with unprecedented, long-term antibiotic selection pressures. It is therefore plausible that previously unknown resistance genes have evolved and/or are promoted here. In order to search for novel resistance genes, we therefore analyzed such river sediments by a functional metagenomics approach. DNA fragments providing resistance to different antibiotics in E. coli were sequenced using Sanger and PacBio RSII platforms. We recaptured the majority of known antibiotic resistance genes previously identified by open shot-gun metagenomics sequencing of the same samples. In addition, seven novel resistance gene candidates (six beta-lactamases and one amikacin resistance gene) were identified. Two class A beta-lactamases, bla RSA1 and bla RSA2 , were phylogenetically close to clinically important ESBLs like bla GES , bla BEL and bla L2 , and were further characterized for their substrate spectra. The blaRSA1 protein, encoded as an integron gene cassette, efficiently hydrolysed penicillins, first generation cephalosporins and cefotaxime, while blaRSA2 was an inducible class A beta-lactamase, capable of hydrolyzing carbapenems albeit with limited efficiency, similar to the L2 beta-lactamase from Stenotrophomonas maltophilia. All detected novel genes were associated with plasmid mobilization proteins, integrons, and/or other resistance genes, suggesting a potential for mobility. This study provides insight into a resistome shaped by an exceptionally strong and long-term antibiotic selection pressure. An improved knowledge of mobilized resistance factors in the external environment may make us better prepared for the resistance challenges that we may face in clinics in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance

    PubMed Central

    Hawkins, Leigh K.; Mylroie, J. Erik; Oliveira, Dafne A.; Smith, J. Spencer; Ozkan, Seval; Windham, Gary L.; Williams, W. Paul; Warburton, Marilyn L.

    2015-01-01

    Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait. PMID:26090679

  18. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance.

    PubMed

    Hawkins, Leigh K; Mylroie, J Erik; Oliveira, Dafne A; Smith, J Spencer; Ozkan, Seval; Windham, Gary L; Williams, W Paul; Warburton, Marilyn L

    2015-01-01

    Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait.

  19. Diverse Antibiotic Resistance Genes in Dairy Cow Manure

    PubMed Central

    Wichmann, Fabienne; Udikovic-Kolic, Nikolina; Andrew, Sheila; Handelsman, Jo

    2014-01-01

    ABSTRACT Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. PMID:24757214

  20. High Diversity of Genes for Nonhost Resistance of Barley to Heterologous Rust Fungi

    PubMed Central

    Jafary, Hossein; Albertazzi, Giorgia; Marcel, Thierry C.; Niks, Rients E.

    2008-01-01

    Inheritance studies on the nonhost resistance of plants would normally require interspecific crosses that suffer from sterility and abnormal segregation. Therefore, we developed the barley–Puccinia rust model system to study, using forward genetics, the specificity, number, and diversity of genes involved in nonhost resistance. We developed two mapping populations by crossing the line SusPtrit, with exceptional susceptibility to heterologous rust species, with the immune barley cultivars Vada and Cebada Capa. These two mapping populations along with the Oregon Wolfe Barley population, which showed unexpected segregation for resistance to heterologous rusts, were phenotyped with four heterologous rust fungal species. Positions of QTL conferring nonhost resistance in the three mapping populations were compared using an integrated consensus map. The results confirmed that nonhost resistance in barley to heterologous rust species is controlled by QTL with different and overlapping specificities and by an occasional contribution of an R-gene for hypersensitivity. In each population, different sets of loci were implicated in resistance. Few genes were common between the populations, suggesting a high diversity of genes conferring nonhost resistance to heterologous pathogens. These loci were significantly associated with QTL for partial resistance to the pathogen Puccinia hordei and with defense-related genes. PMID:18430953

  1. Mapping the resistance-associated mobilome of a carbapenem-resistant Klebsiella pneumoniae strain reveals insights into factors shaping these regions and facilitates generation of a 'resistance-disarmed' model organism.

    PubMed

    Bi, Dexi; Jiang, Xiaofei; Sheng, Zi-Ke; Ngmenterebo, David; Tai, Cui; Wang, Minggui; Deng, Zixin; Rajakumar, Kumar; Ou, Hong-Yu

    2015-10-01

    This study aims to investigate the landscape of the mobile genome, with a focus on antibiotic resistance-associated factors in carbapenem-resistant Klebsiella pneumoniae. The mobile genome of the completely sequenced K. pneumoniae HS11286 strain (an ST11, carbapenem-resistant, near-pan-resistant, clinical isolate) was annotated in fine detail. The identified mobile genetic elements were mapped to the genetic contexts of resistance genes. The blaKPC-2 gene and a 26 kb region containing 12 clustered antibiotic resistance genes and one biocide resistance gene were deleted, and the MICs were determined again to ensure that antibiotic resistance had been lost. HS11286 contains six plasmids, 49 ISs, nine transposons, two separate In2-related integron remnants, two integrative and conjugative elements (ICEs) and seven prophages. Sixteen plasmid-borne resistance genes were identified, 14 of which were found to be directly associated with Tn1721-, Tn3-, Tn5393-, In2-, ISCR2- and ISCR3-derived elements. IS26 appears to have actively moulded several of these genetic regions. The deletion of blaKPC-2, followed by the deletion of a 26 kb region containing 12 clustered antibiotic resistance genes, progressively decreased the spectrum and level of resistance exhibited by the resultant mutant strains. This study has reiterated the role of plasmids as bearers of the vast majority of resistance genes in this species and has provided valuable insights into the vital role played by ISs, transposons and integrons in shaping the resistance-coding regions in this important strain. The 'resistance-disarmed' K. pneumoniae ST11 strain generated in this study will offer a more benign and readily genetically modifiable model organism for future extensive functional studies. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Transcriptomic Analysis and the Expression of Disease-Resistant Genes in Oryza meyeriana under Native Condition

    PubMed Central

    He, Bin; Tao, Xiang; Gu, Yinghong; Wei, Changhe; Cheng, Xiaojie; Xiao, Suqin; Cheng, Zaiquan; Zhang, Yizheng

    2015-01-01

    Oryza meyeriana (O. meyeriana), with a GG genome type (2n = 24), accumulated plentiful excellent characteristics with respect to resistance to many diseases such as rice shade and blast, even immunity to bacterial blight. It is very important to know if the diseases-resistant genes exist and express in this wild rice under native conditions. However, limited genomic or transcriptomic data of O. meyeriana are currently available. In this study, we present the first comprehensive characterization of the O. meyeriana transcriptome using RNA-seq and obtained 185,323 contigs with an average length of 1,692 bp and an N50 of 2,391 bp. Through differential expression analysis, it was found that there were most tissue-specifically expressed genes in roots, and next to stems and leaves. By similarity search against protein databases, 146,450 had at least a significant alignment to existed gene models. Comparison with the Oryza sativa (japonica-type Nipponbare and indica-type 93–11) genomes revealed that 13% of the O. meyeriana contigs had not been detected in O. sativa. Many diseases-resistant genes, such as bacterial blight resistant, blast resistant, rust resistant, fusarium resistant, cyst nematode resistant and downy mildew gene, were mined from the transcriptomic database. There are two kinds of rice bacterial blight-resistant genes (Xa1 and Xa26) differentially or specifically expressed in O. meyeriana. The 4 Xa1 contigs were all only expressed in root, while three of Xa26 contigs have the highest expression level in leaves, two of Xa26 contigs have the highest expression profile in stems and one of Xa26 contigs was expressed dominantly in roots. The transcriptomic database of O. meyeriana has been constructed and many diseases-resistant genes were found to express under native condition, which provides a foundation for future discovery of a number of novel genes and provides a basis for studying the molecular mechanisms associated with disease resistance in O. meyeriana. PMID:26640944

  3. Exploring the abomasal lymph node transcriptome for genes associated with resistance to the sheep nematode Teladorsagia circumcincta

    PubMed Central

    2013-01-01

    This study exploited Blackface lambs that varied in their resistance to the abomasal nematode parasite, Teladorsagia circumcincta. Infection of these lambs over 3 months identified susceptible (high adult worm count, high faecal egg count and low IgA antibody) and resistant animals that had excluded all parasites. Previous work had shown that susceptibility and resistance is dependent on the differential immune response to the parasite, which occurs within the abomasal (gastric) lymph node (ALN) that drains the site of infection. The Affymetrix ovine gene array was used to interrogate the transcriptome of the ALN to identify genes and physiological pathways associated with resistance. We used a bovine RT-qPCR array of 84 genes to validate the gene array, and also report digital gene expression analysis on the same tissues, reanalysed using the Oar v3.1 sheep genome assembly. These analyses identified Humoral Immune Response, Protein Synthesis, Inflammatory Response and Hematological System Development and Function as the two top-ranked networks associated with resistance. Central genes within these networks were IL4, IL5, IL13RA2 and in particular IL13, which confirmed that differential activation of Th2 polarized responses is critical to the resistance phenotype. Furthermore, in resistant sheep there was up-regulation of genes linked to control and suppression of inflammation. The identity of differentially-expressed chemokines and receptors in the resistant and susceptible sheep also begins to explain the cellular nature of the host response to infection. This work will greatly help in the identification of candidate genes as potential selectable markers of genetic resistance. PMID:23927007

  4. Mapping of the apple scab-resistance gene Vb.

    PubMed

    Erdin, N; Tartarini, S; Broggini, G A L; Gennari, F; Sansavini, S; Gessler, C; Patocchi, A

    2006-10-01

    Apple scab, caused by the fungus Venturia inaequalis, is the major production constraint in temperate zones with humid springs. Normally, its control relies on frequent and regular fungicide applications. Because this control strategy has come under increasing criticism, major efforts are being directed toward the breeding of scab-resistant apple cultivars. Modern apple breeding programs include the use of molecular markers, making it possible to combine several different scab-resistance genes in 1 apple cultivar (pyramiding) and to speed up the breeding process. The apple scab-resistance gene Vb is derived from the Siberian crab apple 'Hansen's baccata #2', and is 1 of the 6 "historical" major apple scab-resistance genes (Vf, Va, Vr, Vbj, Vm, and Vb). Molecular markers have been published for all these genes, except Vr. In testcross experiments conducted in the 1960s, it was reported that Vb segregated independently from 3 other major resistance genes, including Vf. Recently, however, Vb and Vf have both been mapped on linkage group 1, a result that contrasts with the findings from former testcross experiments. In this study, simple sequence repeat (SSR) markers were used to identify the precise position of Vb in a cross of 'Golden Delicious' (vbvb) and 'Hansen's baccata #2' (Vbvb). A genome scanning approach, a fast method already used to map apple scab-resistance genes Vr2 and Vm, was used, and the Vb locus was identified on linkage group 12, between the SSR markers Hi02d05 and Hi07f01. This finding confirms the independent segregation of Vb from Vf. With the identification of SSR markers linked to Vb, another major apple scab-resistance gene has become available; breeders can use it to develop durable resistant cultivars with several different resistance genes.

  5. H33: A wheat gene providing Hessian fly resistance for the southeastern United States

    USDA-ARS?s Scientific Manuscript database

    Although more than 33 genes have been identified that confer resistance against Hessian fly attack in wheat, only five genes are currently effective against fly populations in the southeastern US. Because Hessian fly populations adapt to overcome newly deployed resistance genes within a few years of...

  6. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato

    PubMed Central

    Tai, Thomas H.; Dahlbeck, Douglas; Clark, Eszter T.; Gajiwala, Paresh; Pasion, Romela; Whalen, Maureen C.; Stall, Robert E.; Staskawicz, Brian J.

    1999-01-01

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site–leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species. PMID:10570214

  7. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato.

    PubMed

    Tai, T H; Dahlbeck, D; Clark, E T; Gajiwala, P; Pasion, R; Whalen, M C; Stall, R E; Staskawicz, B J

    1999-11-23

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site-leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

  8. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.

    1989-06-01

    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  9. Molecular Basis of Sulfonamide and Trimethoprim Resistance in Fish-Pathogenic Aeromonas Isolates ▿

    PubMed Central

    Kadlec, Kristina; von Czapiewski, Ellen; Kaspar, Heike; Wallmann, Jürgen; Michael, Geovana Brenner; Steinacker, Ulrike; Schwarz, Stefan

    2011-01-01

    Sulfonamide-trimethoprim-resistant Aeromonas salmonicida and motile Aeromonas spp. from diseased fish of the GERM-Vet study carried the sul1 gene together with mostly cassette-borne trimethoprim resistance genes, including the novel gene dfrA28. The seven dfrA and dfrB genes identified were located mostly in class 1 integrons which commonly harbored other gene cassettes. PMID:21764945

  10. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics

    PubMed Central

    Corwin, Jason A.; Copeland, Daniel; Feusier, Julie; Subedy, Anushriya; Eshbaugh, Robert; Palmer, Christine; Maloof, Julin; Kliebenstein, Daniel J.

    2016-01-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes. PMID:26866607

  11. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics.

    PubMed

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie; Subedy, Anushriya; Eshbaugh, Robert; Palmer, Christine; Maloof, Julin; Kliebenstein, Daniel J

    2016-02-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes.

  12. Sulfonamide-Resistant Bacteria and Their Resistance Genes in Soils Fertilized with Manures from Jiangsu Province, Southeastern China

    PubMed Central

    Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs) increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (p<0.05). The combination of sul1 and sul2 was the most frequent, and the co-existence of sul1 and sul3 was not found either in the genomic DNA or plasmids. The sample type, animal type and sampling time can influence the prevalence and distribution pattern of sulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China. PMID:25405870

  13. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China.

    PubMed

    Wang, Na; Yang, Xiaohong; Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs) increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (p<0.05). The combination of sul1 and sul2 was the most frequent, and the co-existence of sul1 and sul3 was not found either in the genomic DNA or plasmids. The sample type, animal type and sampling time can influence the prevalence and distribution pattern of sulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China.

  14. Antimicrobial resistance and virulence-related genes of Streptococcus obtained from dairy cows with mastitis in Inner Mongolia, China.

    PubMed

    Ding, Yuexia; Zhao, Junli; He, Xiuling; Li, Man; Guan, Hong; Zhang, Ziying; Li, Peifeng

    2016-01-01

    Mastitis is the most expensive disease in the dairy cattle industry and results in decreased reproductive performance. Streptococcus, especially Streptococcus agalactiae, possesses a variety of virulence factors that contribute to pathogenicity. Streptococcus isolated from mastitis was tested to assess the prevalence of antimicrobial resistance and distribution of antibiotic resistance- and virulence-related genes. Eighty-one Streptococcus isolates were phenotypically characterized for antimicrobial resistance against 15 antibiotics by determining minimum inhibitory concentrations (MIC) using a micro-dilution method. Resistance- and virulence-related genes were detected by PCR. High percentage of resistance to β-lactams, along with tetracycline and erythromycin, was found. Resistance to three or more of seven antimicrobial agents was observed at 88.9%, with penicillin-tetracycline-erythromycin-clindamycin as the major profile in Streptococcus isolates. Resistant genes were detected by PCR, the result showed that 86.4, 86.4, 81.5, and 38.3% of isolates were mainly carrying the pbp2b, tetL, tetM, and ermB genes, respectively. Nine virulence genes were investigated. Genes cyl, glnA, cfb, hylB, and scaA were found to be in 50% of isolates, while 3.7, 21, and 4.9% of isolates were positive for bca, lmb, and scpB, genes, respectively. None of the isolates carried the bac gene. This study suggests the need for prudent use of antimicrobial agents in veterinary clinical medicine to avoid the increase and dissemination of antimicrobial resistance arising from the use of antimicrobial drugs in animals.

  15. EPSPS Gene Copy Number and Whole-Plant Glyphosate Resistance Level in Kochia scoparia.

    PubMed

    Gaines, Todd A; Barker, Abigail L; Patterson, Eric L; Westra, Philip; Westra, Eric P; Wilson, Robert G; Jha, Prashant; Kumar, Vipan; Kniss, Andrew R

    2016-01-01

    Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebraska, and Montana. Glyphosate resistance was also confirmed in K. scoparia accessions collected from wheat-fallow fields in Montana. All GR samples had increased EPSPS gene copy number, with median population values up to 11 from sugarbeet fields and up to 13 in Montana wheat-fallow fields. The results indicate that glyphosate susceptibility can be accurately diagnosed using EPSPS gene copy number.

  16. Temperature-dependent Wsm1 and Wsm2 gene-specific blockage of viral long-distance transport provides resistance to Wheat streak mosaic virus and Triticum mosaic virus in wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cultivars Mace with the resistance gene Wsm1 and Snowmass with the resistance gene Wsm2 are resistant to WSMV and TriMV, and WSMV, respectively. Viral resistance in both cult...

  17. Transcriptome profiling of the whitefly Bemisia tabaci reveals stage-specific gene expression signatures for thiamethoxam resistance

    PubMed Central

    Yang, N; Xie, W; Jones, CM; Bass, C; Jiao, X; Yang, X; Liu, B; Li, R; Zhang, Y

    2013-01-01

    Bemisia tabaci has developed high levels of resistance to many insecticides including the neonicotinoids and there is strong evidence that for some compounds resistance is stage-specific. To investigate the molecular basis of B. tabaci resistance to the neonicotinoid thiamethoxam we used a custom whitefly microarray to compare gene expression in the egg, nymph and adult stages of a thiamethoxam-resistant strain (TH-R) with a susceptible strain (TH-S). Gene ontology and bioinformatic analyses revealed that in all life stages many of the differentially expressed transcripts encoded enzymes involved in metabolic processes and/or metabolism of xenobiotics. Several of these are candidate resistance genes and include the cytochrome P450 CYP6CM1, which has been shown to confer resistance to several neonicotinoids previously, a P450 belonging to the Cytochrome P450s 4 family and a glutathione S-transferase (GST) belonging to the sigma class. Finally several ATP-binding cassette transporters of the ABCG subfamily were highly over-expressed in the adult stage of the TH-R strain and may play a role in resistance by active efflux. Here, we evaluated both common and stage-specific gene expression signatures and identified several candidate resistance genes that may underlie B. tabaci resistance to thiamethoxam. PMID:23889345

  18. Identification of stem rust resistance genes in wheat cultivars in China using molecular markers.

    PubMed

    Xu, Xiaofeng; Yuan, Depeng; Li, Dandan; Gao, Yue; Wang, Ziyuan; Liu, Yang; Wang, Siting; Xuan, Yuanhu; Zhao, Hui; Li, Tianya; Wu, Yuanhua

    2018-01-01

    Wheat stem rust caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. ( Pgt ), is a major disease that has been effectively controlled using resistance genes. The appearance and spread of Pgt races such as Ug99, TKTTF, and TTTTF, which are virulent to most stem rust-resistant genes currently deployed in wheat breeding programs, renewed the interest in breeding cultivars resistant to wheat stem rust. It is therefore important to investigate the levels of resistance or vulnerability of wheat cultivars to Pgt races. Resistance to Pgt races 21C3CTHQM, 34MKGQM, and 34C3RTGQM was evaluated in 136 Chinese wheat cultivars at the seedling stage. A total of 124 cultivars (91.2%) were resistant to the three races. Resistance genes Sr2 , Sr24 , Sr25 , Sr26 , Sr31 , and Sr38 were analyzed using molecular markers closely linked to them, and 63 of the 136 wheat cultivars carried at least one of these genes: 21, 25, and 28 wheat cultivars likely carried Sr2 , Sr31 , and Sr38 , respectively. Cultivars "Kehan 3" and "Jimai 22" likely carried Sr25 . None of the cultivars carried Sr24 or Sr26 . These cultivars with known stem rust resistance genes provide valuable genetic material for breeding resistant wheat cultivars.

  19. Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice.

    PubMed

    Hu, Jie; Xiao, Cong; He, Yuqing

    2016-12-01

    Brown planthopper (BPH) is the most devastating pest of rice. Host-plant resistance is the most desirable and economic strategy in the management of BPH. To date, 29 major BPH resistance genes have been identified from indica cultivars and wild rice species, and more than ten genes have been fine mapped to chromosome regions of less than 200 kb. Four genes (Bph14, Bph26, Bph17 and bph29) have been cloned. The increasing number of fine-mapped and cloned genes provide a solid foundation for development of functional markers for use in breeding. Several BPH resistant introgression lines (ILs), near-isogenic lines (NILs) and pyramided lines (PLs) carrying single or multiple resistance genes were developed by marker assisted backcross breeding (MABC). Here we review recent progress on the genetics and molecular breeding of BPH resistance in rice. Prospect for developing cultivars with durable, broad-spectrum BPH resistance are discussed.

  20. Clonality, virulence and antimicrobial resistance of enteroaggregative Escherichia coli from Mirzapur, Bangladesh.

    PubMed

    Chattaway, Marie Anne; Day, Michaela; Mtwale, Julia; White, Emma; Rogers, James; Day, Martin; Powell, David; Ahmad, Marwa; Harris, Ross; Talukder, Kaisar Ali; Wain, John; Jenkins, Claire; Cravioto, Alejandro

    2017-10-01

    This study investigates the virulence and antimicrobial resistance in association with common clonal complexes (CCs) of enteroaggregative Escherichia coli (EAEC) isolated from Bangladesh. The aim was to determine whether specific CCs were more likely to be associated with putative virulence genes and/or antimicrobial resistance. The presence of 15 virulence genes (by PCR) and susceptibility to 18 antibiotics were determined for 151 EAEC isolated from cases and controls during an intestinal infectious disease study carried out between 2007-2011 in the rural setting of Mirzapur, Bangladesh (Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH et al.Clin Infect Dis 2012;55:S232-S245). These data were then analysed in the context of previously determined serotypes and clonal complexes defined by multi-locus sequence typing. Overall there was no association between the presence of virulence or antimicrobial resistance genes in isolates of EAEC from cases versus controls. However, when stratified by clonal complex (CC) one CC associated with cases harboured more virulence factors (CC40) and one CC harboured more resistance genes (CC38) than the average. There was no direct link between the virulence gene content and antibiotic resistance. Strains within a single CC had variable virulence and resistance gene content indicating independent and multiple gene acquisitions over time. In Bangladesh, there are multiple clonal complexes of EAEC harbouring a variety of virulence and resistance genes. The emergence of two of the most successful clones appeared to be linked to either increased virulence (CC40) or antimicrobial resistance (CC38), but increased resistance and virulence were not found in the same clonal complexes.

  1. The Soybean Rhg1 Locus for Resistance to the Soybean Cyst Nematode Heterodera glycines Regulates the Expression of a Large Number of Stress- and Defense-Related Genes in Degenerating Feeding Cells1[C][W][OA

    PubMed Central

    Kandoth, Pramod Kaitheri; Ithal, Nagabhushana; Recknor, Justin; Maier, Tom; Nettleton, Dan; Baum, Thomas J.; Mitchum, Melissa G.

    2011-01-01

    To gain new insights into the mechanism of soybean (Glycine max) resistance to the soybean cyst nematode (Heterodera glycines), we compared gene expression profiles of developing syncytia in soybean near-isogenic lines differing at Rhg1 (for resistance to Heterodera glycines), a major quantitative trait locus for resistance, by coupling laser capture microdissection with microarray analysis. Gene expression profiling revealed that 1,447 genes were differentially expressed between the two lines. Of these, 241 (16.8%) were stress- and defense-related genes. Several stress-related genes were up-regulated in the resistant line, including those encoding homologs of enzymes that lead to increased levels of reactive oxygen species and proteins associated with the unfolded protein response. These results indicate that syncytia induced in the resistant line are undergoing severe oxidative stress and imbalanced endoplasmic reticulum homeostasis, both of which likely contribute to the resistance reaction. Defense-related genes up-regulated within syncytia of the resistant line included those predominantly involved in apoptotic cell death, the plant hypersensitive response, and salicylic acid-mediated defense signaling; many of these genes were either partially suppressed or not induced to the same level by a virulent soybean cyst nematode population for successful nematode reproduction and development on the resistant line. Our study demonstrates that a network of molecular events take place during Rhg1-mediated resistance, leading to a highly complex defense response against a root pathogen. PMID:21335526

  2. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar

    PubMed Central

    González, Ana M.; Godoy, Luís

    2017-01-01

    Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F2 populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL), Natural Resistance Associated Macrophage (NRAMP) and Pentatricopeptide Repeat family (PPR) proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s) in UI3 genotype. PMID:29168746

  3. Presence of the resistance genes vanC1 and pbp5 in phenotypically vancomycin and ampicillin susceptible Enterococcus faecalis.

    PubMed

    Schwaiger, Karin; Bauer, Johann; Hörmansdorfer, Stefan; Mölle, Gabriele; Preikschat, Petra; Kämpf, Peter; Bauer-Unkauf, Ilse; Bischoff, Meike; Hölzel, Christina

    2012-08-01

    Ampicillin and vancomycin are important antibiotics for the therapy of Enterococcus faecalis infections. The ampicillin resistance gene pbp5 is intrinsic in Enterococcus faecium. The vanC1 gene confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Both genes are chromosomally located. Resistance to ampicillin and vancomycin was determined in 484 E. faecalis of human and porcine origin by microdilution. Since E. faecalis are highly skilled to acquire resistance genes, all strains were investigated for the presence of pbp5 (and, in positive strains, for the penicillin-binding protein synthesis repressor gene psr) and vanC1 (and, in positive strains, for vanXYc and vanT) by using polymerase chain reaction (PCR). One porcine and one human isolate were phenotypically resistant to ampicillin; no strain was vancomycin resistant. Four E. faecalis (3/1 of porcine/human origin) carried pbp5 (MIC=1 mg/L), and four porcine strains were vanC1 positive (minimum inhibitory concentration [MIC]=1 mg/L). Real-time reverse transcriptase (RT)-PCR revealed that the genes were not expressed. The psr gene was absent in the four pbp5-positive strains; the vanXYc gene was absent in the four vanC1-positive strains. However, vanT of the vanC gene cluster was detected in two vanC1-positive strains. To our knowledge, this is the first report on the presence of pbp5, identical with the "E. faecium pbp5 gene," and of vanC1/vanT in E. faecalis. Even if resistance is not expressed in these strains, this study shows that E. faecalis have a strong ability to acquire resistance genes-and potentially to spread them to other bacteria. Therefore, close monitoring of this species should be continued.

  4. Evaluating the Frequency of aac(6')-IIa, ant(2″)-I, intl1, and intl2 Genes in Aminoglycosides Resistant Klebsiella pneumoniae Isolates Obtained from Hospitalized Patients in Yazd, Iran.

    PubMed

    Mokhtari, Hesam; Eslami, Gilda; Zandi, Hengameh; Dehghan-Banadkouki, Amin; Vakili, Mahmood

    2018-01-01

    Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen that could be resistant to many antimicrobial agents. Resistance genes can be carried among gram-negative bacteria by integrons. Enzymatic inactivation is the most important mechanism of resistance to aminoglycosides. In this study, the frequencies of two important resistance gene aac(6')-II a and ant(2″)-I, and genes coding integrase I and II, in K. pneumoniae isolates resistant to aminoglycosides were evaluated. In this cross-sectional study, an attempt was made to assess the antibiotic susceptibility of 130 K. pneumoniae isolates obtained from different samples of patients hospitalized in training hospitals of Yazd evaluated by disk diffusion method. The frequencies of aac(6')-II a, ant(2″)-I, intl1 , and intl2 genes were determined by PCR method. Data were analyzed by chi-square method using SPSS software (Ver. 16). our results showed that resistance to gentamicin, tobramycin, kanamycin, and amikacin were 34.6, 33.8, 43.8, and 14.6%, respectively. The frequencies of aac (6')-II a, ant(2″)-I, intl1 , and intl2 genes were 44.6, 27.7, 90, and 0%, respectively. This study showed there are high frequencies of genes coding aminoglycosides resistance in K. pneumoniae isolates. Hence, it is very important to monitor and inhibit the spread of antibiotic resistance genes.

  5. Cytochrome P450s--Their expression, regulation, and role in insecticide resistance.

    PubMed

    Liu, Nannan; Li, Ming; Gong, Youhui; Liu, Feng; Li, Ting

    2015-05-01

    P450s are known to be critical for the detoxification and/or activation of xenobiotics such as drugs and pesticides and overexpression of P450 genes can significantly affect the disposition of xenobiotics in the tissues of organisms, altering their pharmacological/toxicological effects. In insects, P450s play an important role in detoxifying exogenous compounds such as insecticides and plant toxins and their overexpression can result in increased levels of P450 proteins and P450 activities. This has been associated with enhanced metabolic detoxification of insecticides and has been implicated in the development of insecticide resistance in insects. Multiple P450 genes have been found to be co-overexpressed in individual insect species via several constitutive overexpression and induction mechanisms, which in turn are co-responsible for high levels of insecticide resistance. Many studies have also demonstrated that the transcriptional overexpression of P450 genes in resistant insects is regulated by trans and/or cis regulatory genes/factors. Taken together, these earlier findings suggest not only that insecticide resistance is conferred via multi-resistance P450 genes, but also that it is mediated through the interaction of regulatory genes/factors and resistance genes. This chapter reviews our current understanding of how the molecular mechanisms of P450 interaction/gene regulation govern the development of insecticide resistance in insects and our progress along the road to a comprehensive characterization of P450 detoxification-mediated insecticide resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Characterization of Integrons and Sulfonamide Resistance Genes among Bacteria from Drinking Water Distribution Systems in Southwestern Nigeria.

    PubMed

    Adesoji, Ayodele T; Ogunjobi, Adeniyi A; Olatoye, Isaac O

    2017-01-01

    The emergence of antibiotic resistance among pathogenic bacteria in clinical and environmental settings is a global problem. Many antibiotic resistance genes are located on mobile genetic elements such as plasmids and integrons, enabling their transfer among a variety of bacterial species. Water distribution systems may be reservoirs for the spread of antibiotic resistance. Bacteria isolated from raw, treated, and municipal tap water samples from selected water distribution systems in south-western Nigeria were investigated using the point inoculation method with seeded antibiotics, PCR amplification, and sequencing for the determination of bacterial resistance profiles and class 1/2 integrase genes and gene cassettes, respectively. sul1,sul2, and sul3 were detected in 21.6, 27.8, and 0% of the isolates, respectively (n = 162). Class 1 and class 2 integrons were detected in 21.42 and 3.6% of the isolates, respectively (n = 168). Genes encoding resistance to aminoglycosides (aadA2, aadA1, and aadB), trimethoprim (dfrA15, dfr7, and dfrA1), and sulfonamide (sul1) were detected among bacteria with class 1 integrons, while genes that encodes resistance to strepthothricin (sat2) and trimethoprim (dfrA15) were detected among bacteria with class 2 integrons. Bacteria from these water samples are a potential reservoir of multidrug-resistant traits including sul genes and mobile resistance elements, i.e. the integrase gene. © 2016 S. Karger AG, Basel.

  7. Gene amplification confers glyphosate resistance in Amaranthus palmeri

    PubMed Central

    Gaines, Todd A.; Zhang, Wenli; Wang, Dafu; Bukun, Bekir; Chisholm, Stephen T.; Shaner, Dale L.; Nissen, Scott J.; Patzoldt, William L.; Tranel, Patrick J.; Culpepper, A. Stanley; Grey, Timothy L.; Webster, Theodore M.; Vencill, William K.; Sammons, R. Douglas; Jiang, Jiming; Preston, Christopher; Leach, Jan E.; Westra, Philip

    2009-01-01

    The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology. PMID:20018685

  8. Genetic Background of β-Lactamases in Enterobacteriaceae Isolates from Environmental Samples.

    PubMed

    de Oliveira, Daniele V; Nunes, Luciana S; Barth, Afonso Luís; Van Der Sand, Sueli T

    2017-10-01

    The prevalence of β-lactamase-producing Enterobacteriaceae has increased worldwide. Although antibiotic-resistant bacteria are usually associated with hospitals, there are a growing number of reports of resistant bacteria in other environments. Concern about resistant microorganisms outside the hospital setting highlights the need to investigate mechanisms of antibiotic resistance in isolates collected from the environment. The present study evaluated the resistance mechanism to β-lactam antibiotics in 40 isolates from hospital sewage and surface water from the Dilúvio Stream, Porto Alegre City, Southern Brazil. The multiplex PCR technique was used to detect several resistance genes of β-lactamases: extended-spectrum β-lactamases (ESBLs), carbapenemases, and β-lactamase AmpC. After genes, detection amplicons were sequenced to confirm their identification. The clonal relationship was established by DNA macrorestriction using the XbaI enzyme, followed by pulsed-field gel electrophoresis (PFGE). The results indicated that resistance genes were present in 85% of the isolates. The most prevalent genes encoded narrow-spectrum β-lactamase, such as TEM-1 and SHV-1 with 70% of the strains, followed by carbapenemase KPC and GES (45%), ESBL types SHV-5 and CTX-M-8 (27.5%), and AmpC (ACT-1/MIR-1) (2.5%). Twelve isolates contained only one resistance gene, 14 contained two, and eight isolates had three resistance genes. PFGE indicated a clonal relationship among K. pneumoniae isolates. It was not possible to establish a clonal relationship between Enterobacter sp. isolates. The results highlight the potential of these resistance genes to spread in the polluted environment and to present a health risk to communities. This report is the first description of these resistance genes present in environmental samples other than a hospital in the city of Porto Alegre/RS.

  9. High-throughput genotyping-by-sequencing facilitates molecular tagging of a novel rust resistance gene, R 15 , in sunflower (Helianthus annuus L.).

    PubMed

    Ma, G J; Song, Q J; Markell, S G; Qi, L L

    2018-07-01

    A novel rust resistance gene, R 15 , derived from the cultivated sunflower HA-R8 was assigned to linkage group 8 of the sunflower genome using a genotyping-by-sequencing approach. SNP markers closely linked to R 15 were identified, facilitating marker-assisted selection of resistance genes. The rust virulence gene is co-evolving with the resistance gene in sunflower, leading to the emergence of new physiologic pathotypes. This presents a continuous threat to the sunflower crop necessitating the development of resistant sunflower hybrids providing a more efficient, durable, and environmentally friendly host plant resistance. The inbred line HA-R8 carries a gene conferring resistance to all known races of the rust pathogen in North America and can be used as a broad-spectrum resistance resource. Based on phenotypic assessments of 140 F 2 individuals derived from a cross of HA 89 with HA-R8, rust resistance in the population was found to be conferred by a single dominant gene (R 15 ) originating from HA-R8. Genotypic analysis with the currently available SSR markers failed to find any association between rust resistance and any markers. Therefore, we used genotyping-by-sequencing (GBS) analysis to achieve better genomic coverage. The GBS data showed that R 15 was located at the top end of linkage group (LG) 8. Saturation with 71 previously mapped SNP markers selected within this region further showed that it was located in a resistance gene cluster on LG8, and mapped to a 1.0-cM region between three co-segregating SNP makers SFW01920, SFW00128, and SFW05824 as well as the NSA_008457 SNP marker. These closely linked markers will facilitate marker-assisted selection and breeding in sunflower.

  10. Genetic variation associated with increased insecticide resistance in the malaria mosquito, Anopheles coluzzii.

    PubMed

    Main, Bradley J; Everitt, Amanda; Cornel, Anthony J; Hormozdiari, Fereydoun; Lanzaro, Gregory C

    2018-04-04

    Malaria mortality rates in sub-Saharan Africa have declined significantly in recent years as a result of increased insecticide-treated bed net (ITN) usage. A major challenge to further progress is the emergence and spread of insecticide resistance alleles in the Anopheles mosquito vectors, like An. coluzzii. A non-synonymous mutation in the para voltage-gated sodium channel gene reduces pyrethroid-binding affinity, resulting in knockdown resistance (kdr). Metabolic mechanisms of insecticide resistance involving detoxification genes like cytochrome P450 genes, carboxylesterases, and glutathione S-transferases are also important. As some gene activity is tissue-specific and/or environmentally induced, gene regulatory variation may be overlooked when comparing expression from whole mosquito bodies under standard rearing conditions. We detected complex insecticide resistance in a 2014 An. coluzzii colony from southern Mali using bottle bioassays. Additional bioassays involving recombinant genotypes from a cross with a relatively susceptible 1995 An. coluzzii colony from Mali confirmed the importance of kdr and associated increased permethrin resistance to the CYP9K1 locus on the X chromosome. Significant differential expression of CYP9K1 was not observed among these colonies in Malpighian tubules. However, the P450 gene CYP6Z1 was overexpressed in resistant individuals following sublethal permethrin exposure and the carboxylesterase gene COEAE5G was constitutively overexpressed. The significant P450-related insecticide resistance observed in the 2014 An. coluzzii colony indicates that ITNs treated with the P450 inhibitor piperonyl butoxide (PBO) would be more effective in this region. The known insecticide resistance gene CYP6Z1 was differentially expressed exclusively in the context of sublethal permethrin exposure, highlighting the importance of tissue-specificity and environmental conditions in gene expression studies. The increased activity of the carboxylesterase COEAE5G in the resistant An. coluzzii colony suggests resistance to other insecticides like organophosphates. Additional gene expression studies involving other tissues (e.g. fat body) would provide a more comprehensive view of genes underlying metabolic insecticide resistance in An. coluzzii from Mali. Identifying genetic markers linked to these regulatory alleles is an important next step that would substantially improve insecticide resistance surveillance and population genetic studies in this important vector species.

  11. Spontaneous and evolutionary changes in the antibiotic resistance of Burkholderia cenocepacia observed by global gene expression analysis.

    PubMed

    Sass, Andrea; Marchbank, Angela; Tullis, Elizabeth; Lipuma, John J; Mahenthiralingam, Eshwar

    2011-07-22

    Burkholderia cenocepacia is a member of the Burkholderia cepacia complex group of bacteria that cause infections in individuals with cystic fibrosis. B. cenocepacia isolate J2315 has been genome sequenced and is representative of a virulent, epidemic CF strain (ET12). Its genome encodes multiple antimicrobial resistance pathways and it is not known which of these is important for intrinsic or spontaneous resistance. To map these pathways, transcriptomic analysis was performed on: (i) strain J2315 exposed to sub-inhibitory concentrations of antibiotics and the antibiotic potentiator chlorpromazine, and (ii) on spontaneous mutants derived from J2315 and with increased resistance to the antibiotics amikacin, meropenem and trimethoprim-sulfamethoxazole. Two pan-resistant ET12 outbreak isolates recovered two decades after J2315 were also compared to identify naturally evolved gene expression changes. Spontaneous resistance in B. cenocepacia involved more gene expression changes and different subsets of genes than those provoked by exposure to sub inhibitory concentrations of each antibiotic. The phenotype and altered gene expression in the resistant mutants was also stable irrespective of the presence of the priming antibiotic. Both known and novel genes involved in efflux, antibiotic degradation/modification, membrane function, regulation and unknown functions were mapped. A novel role for the phenylacetic acid (PA) degradation pathway genes was identified in relation to spontaneous resistance to meropenem and glucose was found to repress their expression. Subsequently, 20 mM glucose was found to produce greater that 2-fold reductions in the MIC of multiple antibiotics against B. cenocepacia J2315. Mutation of an RND multidrug efflux pump locus (BCAM0925-27) and squalene-hopene cyclase gene (BCAS0167), both upregulated after chlorpromazine exposure, confirmed their role in resistance. The recently isolated outbreak isolates had altered the expression of multiple genes which mirrored changes seen in the antibiotic resistant mutants, corroborating the strategy used to model resistance. Mutation of an ABC transporter gene (BCAS0081) upregulated in both outbreak strains, confirmed its role in B. cenocepacia resistance. Global mapping of the genetic pathways which mediate antibiotic resistance in B. cenocepacia has revealed that they are multifactorial, identified potential therapeutic targets and also demonstrated that putative catabolite repression of genes by glucose can improve antibiotic efficacy.

  12. The non-gibberellic acid-responsive semi-dwarfing gene uzu affects Fusarium crown rot resistance in barley.

    PubMed

    Chen, Guangdeng; Yan, Wei; Liu, Yaxi; Wei, Yuming; Zhou, Meixue; Zheng, You-Liang; Manners, John M; Liu, Chunji

    2014-01-13

    Studies in Arabidopsis show that DELLA genes may differentially affect responses to biotrophic and necrophic pathogens. A recent report based on the study of DELLA-producing reduced height (Rht) genes in wheat and barley also hypothesized that DELLA genes likely increased susceptibility to necrotrophs but increased resistance to biotrophs. Effects of uzu, a non-GA (gibberellic acid)-responsive semi-dwarfing gene, on Fusarium crown rot (FCR) resistance in barley were investigated. Fifteen pairs of near isogenic lines for this gene were generated and assessed under two different temperature regimes. Similar to its impacts on plant height, the semi-dwarfing gene uzu also showed larger effects on FCR severity in the high temperature regime when compared with that in the low temperature regime. Results from this study add to the growing evidence showing that the effects of plant height on Fusarium resistances are unlikely related to DELLA genes but due to direct or indirect effects of height difference per se. The interaction between these two characteristics highlights the importance of understanding relationships between resistance and other traits of agronomic importance as the value of a resistance gene could be compromised if it dramatically affects plant development and morphology.

  13. Antimicrobial Resistance Genes in Pigeons from Public Parks in Costa Rica.

    PubMed

    Blanco-Peña, K; Esperón, F; Torres-Mejía, A M; de la Torre, A; de la Cruz, E; Jiménez-Soto, M

    2017-11-01

    Antimicrobial resistance is known to be an emerging problem, but the extent of the issue remains incomplete. The aim of this study was to determine the presence or absence of nine resistance genes (bla TEM , catI, mecA, qnrS, sulI, sulII, tet(A), tet(Q), vanA) in the faeces of 141 pigeons from four urban parks in Alajuela, Guadalupe, Tres Ríos and San José in Costa Rica. The genes were identified by real-time PCR directly from enema samples. About 30% of the samples were positive for genes catI and sulI; between 13% and 17% were positive for qnrS, sulII, tet(A) and tet(Q); and 4% were positive for bla TEM . The mecA and vanA genes were not detected. The average of antimicrobial resistance genes detected per pigeon was 2. Eight different patterns of resistance were identified, without differences in the sampling areas, being the most common pattern 2 (sulII positive samples). During rainy season, the genes more frequently found were sulI and tet(A). In conclusion, the urban inhabiting pigeons tested are currently carrying antimicrobial resistance genes, potentially acting as reservoirs of resistant bacteria and vectors to humans. To the authors' knowledge, this is the first study carried out on direct detection of resistance genes in the digestive metagenomes of pigeons. © 2017 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  14. Current trends of human infections and antibiotic resistance of the genus Shewanella.

    PubMed

    Yousfi, K; Bekal, S; Usongo, V; Touati, A

    2017-08-01

    Shewanella spp. are commonly known as environmental bacteria and are most frequently isolated from aquatic areas. Currently, diseases syndromes and multidrug resistance have increasingly been reported in the genus Shewanella. Some species are associated with various infections, such as skin and soft tissue infections, as well as bacteremia. Generally, these bacteria are opportunistic and mostly affect people with an impaired immune system. This genus is also a probable vehicle and progenitor of antibiotic resistance genes. In fact, several resistance genes and mobile genetic elements have been identified in some resistant species isolated from environmental or clinical settings. These genes confer resistance to different antibiotic classes, including those used in therapies such as β-lactams and quinolones, and are generally located on the chromosome. Recently, a multidrug-resistant (MDR) plasmid harboring several drug resistance genes associated with transposons and integrons has been identified in Shewanella xiamenensis. These antibiotic resistance genes can circulate in the environment and contribute to the emergence of antibiotic resistance. This review describes different aspects of Shewanella, focusing on the infections caused by this genus, as well as their role in the propagation of antibiotic resistance via mobile genetic elements.

  15. Development of a Gene Cloning System in Methanogens.

    DTIC Science & Technology

    1987-03-27

    Genetic transfer via DNA-dependent natural transformation was achieved for two markers, 5-fluorouracil-resistance, and 6- mercaptopurine resistance...resistance genes, and genes coding for enzymes that produce colored products will be tested as markers for plasmid transformation. A functional plasmid...clones, which include resistances to mercaptopurine , azahypoxanthine, diazauracil, kanamycin, mitomycin C, and fluorouracil- mercaptopurine and

  16. Survey of rice blast race identity for blast resistance gene identification in the USA and Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Rice blast disease is a significant threat to stable rice production in the USA and worldwide. The major resistance gene (Pi-ta) located within a cluster of resistance genes on rice chromosome 12 has been demonstrated to confer resistance to the rice blast disease. Katy, a rice cultivar released in ...

  17. Transport and persistence of tylosin-resistant enterococci, erm genes, and tylosin in soil and drainage water from fields receiving swine manure

    USDA-ARS?s Scientific Manuscript database

    Land application of manure from tylosin-treated swine introduces tylosin-resistant enterococci, erm genes, which confer resistance to tylosin, and tylosin. This study documents the occurrence and transport of tylosin-resistant enterococci, erm genes, and tylosin in tile-drained chisel plow and no-ti...

  18. Mapping the pathways of resistance to targeted therapies

    PubMed Central

    Wood, Kris C.

    2015-01-01

    Resistance substantially limits the depth and duration of clinical responses to targeted anticancer therapies. Through the use of complementary experimental approaches, investigators have revealed that cancer cells can achieve resistance through adaptation or selection driven by specific genetic, epigenetic, or microenvironmental alterations. Ultimately, these diverse alterations often lead to the activation of signaling pathways that, when co-opted, enable cancer cells to survive drug treatments. Recently developed methods enable the direct and scalable identification of the signaling pathways capable of driving resistance in specific contexts. Using these methods, novel pathways of resistance to clinically approved drugs have been identified and validated. By combining systematic resistance pathway mapping methods with studies revealing biomarkers of specific resistance pathways and pharmacological approaches to block these pathways, it may be possible to rationally construct drug combinations that yield more penetrant and lasting responses in patients. PMID:26392071

  19. Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice.

    PubMed

    Li, Ting; Huang, Sheng; Zhou, Junhui; Yang, Bing

    2013-05-01

    TAL (transcription activator-like) effectors from Xanthomonas bacteria activate the cognate host genes, leading to disease susceptibility or resistance dependent on the genetic context of host target genes. The modular nature and DNA recognition code of TAL effectors enable custom-engineering of designer TAL effectors (dTALE) for gene activation. However, the feasibility of dTALEs as transcription activators for gene functional analysis has not been demonstrated. Here, we report the use of dTALEs, as expressed and delivered by the pathogenic Xanthomonas oryzae pv. oryzae (Xoo), in revealing the new function of two previously identified disease-related genes and the potential of one developmental gene for disease susceptibility in rice/Xoo interactions. The dTALE gene dTALE-xa27, designed to target the susceptible allele of the resistance gene Xa27, elicited a resistant reaction in the otherwise susceptible rice cultivar IR24. Four dTALE genes were made to induce the four annotated Xa27 homologous genes in rice cultivar Nipponbare, but none of the four induced Xa27-like genes conferred resistance to the dTALE-containing Xoo strains. A dTALE gene was also generated to activate the recessive resistance gene xa13, an allele of the disease-susceptibility gene Os8N3 (also named Xa13 or OsSWEET11, a member of sucrose efflux transporter SWEET gene family). The induction of xa13 by the dTALE rendered the resistant rice IRBB13 (xa13/xa13) susceptible to Xoo. Finally, OsSWEET12, an as-yet uncharacterized SWEET gene with no corresponding naturally occurring TAL effector identified, conferred susceptibility to the Xoo strains expressing the corresponding dTALE genes. Our results demonstrate that dTALEs can be delivered through the bacterial secretion system to activate genes of interest for functional analysis in plants.

  20. Characterization of antimicrobial susceptibility and virulence genes of Salmonella serovars collected at a commercial turkey processing plant.

    PubMed

    Nde, C W; Logue, C M

    2008-01-01

    To determine the antimicrobial susceptibility profiles, distribution of class 1 integrons, virulence genes and genes encoding resistance to tetracycline (tetA, tetC, tetD and tetE) and streptomycin (strA, strB and aadA1) in Salmonella recovered from turkeys. The antimicrobial susceptibility of 80 isolates was determined using National Antimicrobial Resistance Monitoring System. The distribution of resistance genes, class 1 integrons and virulence genes was determined using PCR. Resistances to tetracycline (76 x 3%) and streptomycin (40%) were common. Sixty-two (77 x 5%) isolates displayed resistance against one or more antimicrobials and 33 were multi-drug resistant. tetA was detected in 72 x 5% of the isolates, while tetC, tetD and tetE were not detected. The strA and strB genes were detected in 73 x 8% of the isolates. Two isolates possessed class 1 integrons of 1 kb in size, containing the aadA1 gene conferring resistance to streptomycin and spectinomycin. Fourteen of the virulence genes were detected in over 80% of the isolates. This study shows that continuous use of tetracycline and streptomycin in poultry production selects for resistant strains. The Salmonella isolates recovered possess significant ability to cause human illness. Information from this study can be employed in guiding future strategies for the use of antimicrobials in poultry production.

  1. Identifying resistance gene analogs associated with resistances to different pathogens in common bean.

    PubMed

    López, Camilo E; Acosta, Iván F; Jara, Carlos; Pedraza, Fabio; Gaitán-Solís, Eliana; Gallego, Gerardo; Beebe, Steve; Tohme, Joe

    2003-01-01

    ABSTRACT A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.

  2. Identification of Novel Associations of Candidate Genes with Resistance to Late Blight in Solanum tuberosum Group Phureja

    PubMed Central

    Álvarez, María F.; Angarita, Myrian; Delgado, María C.; García, Celsa; Jiménez-Gomez, José; Gebhardt, Christiane; Mosquera, Teresa

    2017-01-01

    The genetic basis of quantitative disease resistance has been studied in crops for several decades as an alternative to R gene mediated resistance. The most important disease in the potato crop is late blight, caused by the oomycete Phytophthora infestans. Quantitative disease resistance (QDR), as any other quantitative trait in plants, can be genetically mapped to understand the genetic architecture. Association mapping using DNA-based markers has been implemented in many crops to dissect quantitative traits. We used an association mapping approach with candidate genes to identify the first genes associated with quantitative resistance to late blight in Solanum tuberosum Group Phureja. Twenty-nine candidate genes were selected from a set of genes that were differentially expressed during the resistance response to late blight in tetraploid European potato cultivars. The 29 genes were amplified and sequenced in 104 accessions of S. tuberosum Group Phureja from Latin America. We identified 238 SNPs in the selected genes and tested them for association with resistance to late blight. The phenotypic data were obtained under field conditions by determining the area under disease progress curve (AUDPC) in two seasons and in two locations. Two genes were associated with QDR to late blight, a potato homolog of thylakoid lumen 15 kDa protein (StTL15A) and a stem 28 kDa glycoprotein (StGP28). Key message: A first association mapping experiment was conducted in Solanum tuberosum Group Phureja germplasm, which identified among 29 candidates two genes associated with quantitative resistance to late blight. PMID:28674545

  3. Identification of Novel Associations of Candidate Genes with Resistance to Late Blight in Solanum tuberosum Group Phureja.

    PubMed

    Álvarez, María F; Angarita, Myrian; Delgado, María C; García, Celsa; Jiménez-Gomez, José; Gebhardt, Christiane; Mosquera, Teresa

    2017-01-01

    The genetic basis of quantitative disease resistance has been studied in crops for several decades as an alternative to R gene mediated resistance. The most important disease in the potato crop is late blight, caused by the oomycete Phytophthora infestans. Quantitative disease resistance (QDR), as any other quantitative trait in plants, can be genetically mapped to understand the genetic architecture. Association mapping using DNA-based markers has been implemented in many crops to dissect quantitative traits. We used an association mapping approach with candidate genes to identify the first genes associated with quantitative resistance to late blight in Solanum tuberosum Group Phureja. Twenty-nine candidate genes were selected from a set of genes that were differentially expressed during the resistance response to late blight in tetraploid European potato cultivars. The 29 genes were amplified and sequenced in 104 accessions of S. tuberosum Group Phureja from Latin America. We identified 238 SNPs in the selected genes and tested them for association with resistance to late blight. The phenotypic data were obtained under field conditions by determining the area under disease progress curve (AUDPC) in two seasons and in two locations. Two genes were associated with QDR to late blight, a potato homolog of thylakoid lumen 15 kDa protein ( StTL15A ) and a stem 28 kDa glycoprotein ( StGP28 ). Key message : A first association mapping experiment was conducted in Solanum tuberosum Group Phureja germplasm, which identified among 29 candidates two genes associated with quantitative resistance to late blight.

  4. Identification of antibiotic resistance genes in the multidrug-resistant Acinetobacter baumannii strain, MDR-SHH02, using whole-genome sequencing.

    PubMed

    Wang, Hualiang; Wang, Jinghua; Yu, Peijuan; Ge, Ping; Jiang, Yanqun; Xu, Rong; Chen, Rong; Liu, Xuejie

    2017-02-01

    This study aimed to investigate antibiotic resistance genes in the multidrug-resistant (MDR) Acinetobacter baumannii (A. baumanii) strain, MDR-SHH02, using whole‑genome sequencing (WGS). The antibiotic resistance of MDR-SHH02 isolated from a patient with breast cancer to 19 types of antibiotics was determined using the Kirby‑Bauer method. WGS of MDR-SHH02 was then performed. Following quality control and transcriptome assembly, functional annotation of genes was conducted, and the phylogenetic tree of MDR-SHH02, along with another 5 A. baumanii species and 2 Acinetobacter species, was constructed using PHYLIP 3.695 and FigTree v1.4.2. Furthermore, pathogenicity islands (PAIs) were predicted by the pathogenicity island database. Potential antibiotic resistance genes in MDR-SHH02 were predicted based on the information in the Antibiotic Resistance Genes Database (ARDB). MDR-SHH02 was found to be resistant to all of the tested antibiotics. The total draft genome length of MDR-SHH02 was 4,003,808 bp. There were 74.25% of coding sequences to be annotated into 21 of the Clusters of Orthologous Groups (COGs) of protein terms, such as 'transcription' and 'amino acid transport and metabolism'. Furthermore, there were 45 PAIs homologous to the sequence MDRSHH02000806. Additionally, a total of 12 gene sequences in MDR-SHH02 were highly similar to the sequences of antibiotic resistance genes in ARDB, including genes encoding aminoglycoside‑modifying enzymes [e.g., aac(3)-Ia, ant(2'')‑Ia, aph33ib and aph(3')-Ia], β-lactamase genes (bl2b_tem and bl2b_tem1), sulfonamide-resistant dihydropteroate synthase genes (sul1 and sul2), catb3 and tetb. These results suggest that numerous genes mediate resistance to various antibiotics in MDR-SHH02, and provide a clinical guidance for the personalized therapy of A. baumannii-infected patients.

  5. Antimicrobial resistance and virulence characterization of Staphylococcus aureus and coagulase-negative staphylococci from imported beef meat.

    PubMed

    Osman, Kamelia; Alvarez-Ordóñez, Avelino; Ruiz, Lorena; Badr, Jihan; ElHofy, Fatma; Al-Maary, Khalid S; Moussa, Ihab M I; Hessain, Ashgan M; Orabi, Ahmed; Saad, Alaa; Elhadidy, Mohamed

    2017-05-10

    The objectives of this study were to characterize the diversity and magnitude of antimicrobial resistance among Staphylococcus species recovered from imported beef meat sold in the Egyptian market and the potential mechanisms underlying the antimicrobial resistance phenotypes including harboring of resistance genes (mecA, cfr, gyrA, gyrB, and grlA) and biofilm formation. The resistance gene mecA was detected in 50% of methicillin-resistant non-Staphylococcus aureus isolates (4/8). Interestingly, our results showed that: (i) resistance genes mecA, gyrA, gyrB, grlA, and cfr were absent in Staphylococcus hominis and Staphylococcus hemolyticus isolates, although S. hominis was phenotypically resistant to methicillin (MR-non-S. aureus) while S. hemolyticus was resistant to vancomycin only; (ii) S. aureus isolates did not carry the mecA gene (100%) and were phenotypically characterized as methicillin- susceptible S. aureus (MSS); and (iii) the resistance gene mecA was present in one isolate (1/3) of Staphylococcus lugdunensis that was phenotypically characterized as methicillin-susceptible non-S. aureus (MSNSA). Our findings highlight the potential risk for consumers, in the absence of actionable risk management information systems, of imported foods and advice a strict implementation of international standards by different venues such as CODEX to avoid the increase in prevalence of coagulase positive and coagulase negative Staphylococcus isolates and their antibiotic resistance genes in imported beef meat at the Egyptian market.

  6. Limited dissemination of the wastewater treatment plant core resistome.

    PubMed

    Munck, Christian; Albertsen, Mads; Telke, Amar; Ellabaan, Mostafa; Nielsen, Per Halkjær; Sommer, Morten O A

    2015-09-30

    Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role in the dissemination of antibiotic resistance genes. However, the contribution of the dominant members of the WWTP resistome to resistance in human pathogens remains poorly understood. Here we use a combination of metagenomic functional selections and comprehensive metagenomic sequencing to uncover the dominant genes of the WWTP resistome. We find that this core resistome is unique to the WWTP environment, with <10% of the resistance genes found outside the WWTP environment. Our data highlight that, despite an abundance of functional resistance genes within WWTPs, only few genes are found in other environments, suggesting that the overall dissemination of the WWTP resistome is comparable to that of the soil resistome.

  7. Limited dissemination of the wastewater treatment plant core resistome

    PubMed Central

    Munck, Christian; Albertsen, Mads; Telke, Amar; Ellabaan, Mostafa; Nielsen, Per Halkjær; Sommer, Morten O. A.

    2015-01-01

    Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role in the dissemination of antibiotic resistance genes. However, the contribution of the dominant members of the WWTP resistome to resistance in human pathogens remains poorly understood. Here we use a combination of metagenomic functional selections and comprehensive metagenomic sequencing to uncover the dominant genes of the WWTP resistome. We find that this core resistome is unique to the WWTP environment, with <10% of the resistance genes found outside the WWTP environment. Our data highlight that, despite an abundance of functional resistance genes within WWTPs, only few genes are found in other environments, suggesting that the overall dissemination of the WWTP resistome is comparable to that of the soil resistome. PMID:26419330

  8. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes

    PubMed Central

    Ishak, Intan H.; Kamgang, Basile; Ibrahim, Sulaiman S.; Riveron, Jacob M.; Irving, Helen

    2017-01-01

    Background Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Methodology/Principal Findings Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb. Conclusion/significance The predominant over-expression of cytochrome P450s suggests that synergist-based (PBO) control tools could be utilised to improve control of this major dengue vector across Malaysia. PMID:28114328

  9. Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease

    PubMed Central

    Yang, Sihai; Li, Jing; Zhang, Xiaohui; Zhang, Qijun; Huang, Ju; Chen, Jian-Qun; Hartl, Daniel L.; Tian, Dacheng

    2013-01-01

    We show that the genomes of maize, sorghum, and brachypodium contain genes that, when transformed into rice, confer resistance to rice blast disease. The genes are resistance genes (R genes) that encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains (NBS–LRR proteins). By using criteria associated with rapid molecular evolution, we identified three rapidly evolving R-gene families in these species as well as in rice, and transformed a randomly chosen subset of these genes into rice strains known to be sensitive to rice blast disease caused by the fungus Magnaporthe oryzae. The transformed strains were then tested for sensitivity or resistance to 12 diverse strains of M. oryzae. A total of 15 functional blast R genes were identified among 60 NBS–LRR genes cloned from maize, sorghum, and brachypodium; and 13 blast R genes were obtained from 20 NBS–LRR paralogs in rice. These results show that abundant blast R genes occur not only within species but also among species, and that the R genes in the same rapidly evolving gene family can exhibit an effector response that confers resistance to rapidly evolving fungal pathogens. Neither conventional evolutionary conservation nor conventional evolutionary convergence supplies a satisfactory explanation of our findings. We suggest a unique mechanism termed “constrained divergence,” in which R genes and pathogen effectors can follow only limited evolutionary pathways to increase fitness. Our results open avenues for R-gene identification that will help to elucidate R-gene vs. effector mechanisms and may yield new sources of durable pathogen resistance. PMID:24145399

  10. Plant Genetic Background Increasing the Efficiency and Durability of Major Resistance Genes to Root-knot Nematodes Can Be Resolved into a Few Resistance QTLs

    PubMed Central

    Barbary, Arnaud; Djian-Caporalino, Caroline; Marteu, Nathalie; Fazari, Ariane; Caromel, Bernard; Castagnone-Sereno, Philippe; Palloix, Alain

    2016-01-01

    With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS–LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes. PMID:27242835

  11. Characterization and mapping of leaf rust resistance in four durum wheat cultivars.

    PubMed

    Kthiri, Dhouha; Loladze, Alexander; MacLachlan, P R; N'Diaye, Amidou; Walkowiak, Sean; Nilsen, Kirby; Dreisigacker, Susanne; Ammar, Karim; Pozniak, Curtis J

    2018-01-01

    Widening the genetic basis of leaf rust resistance is a primary objective of the global durum wheat breeding effort at the International Wheat and Maize Improvement Center (CIMMYT). Breeding programs in North America are following suit, especially after the emergence of new races of Puccinia triticina such as BBG/BP and BBBQD in Mexico and the United States, respectively. This study was conducted to characterize and map previously undescribed genes for leaf rust resistance in durum wheat and to develop reliable molecular markers for marker-assisted breeding. Four recombinant inbred line (RIL) mapping populations derived from the resistance sources Amria, Byblos, Geromtel_3 and Tunsyr_2, which were crossed to the susceptible line ATRED #2, were evaluated for their reaction to the Mexican race BBG/BP of P. triticina. Genetic analyses of host reactions indicated that leaf rust resistance in these genotypes was based on major seedling resistance genes. Allelism tests among resistant parents supported that Amria and Byblos carried allelic or closely linked genes. The resistance in Geromtel_3 and Tunsyr_2 also appeared to be allelic. Bulked segregant analysis using the Infinium iSelect 90K single nucleotide polymorphism (SNP) array identified two genomic regions for leaf rust resistance; one on chromosome 6BS for Geromtel_3 and Tunsyr_2 and the other on chromosome 7BL for Amria and Byblos. Polymorphic SNPs identified within these regions were converted to kompetitive allele-specific PCR (KASP) assays and used to genotype the RIL populations. KASP markers usw215 and usw218 were the closest to the resistance genes in Geromtel_3 and Tunsyr_2, while usw260 was closely linked to the resistance genes in Amria and Byblos. DNA sequences associated with these SNP markers were anchored to the wild emmer wheat (WEW) reference sequence, which identified several candidate resistance genes. The molecular markers reported herein will be useful to effectively pyramid these resistance genes with other previously marked genes into adapted, elite durum wheat genotypes.

  12. Characterization and mapping of leaf rust resistance in four durum wheat cultivars

    PubMed Central

    Kthiri, Dhouha; Loladze, Alexander; MacLachlan, P. R.; N’Diaye, Amidou; Walkowiak, Sean; Nilsen, Kirby; Dreisigacker, Susanne; Ammar, Karim

    2018-01-01

    Widening the genetic basis of leaf rust resistance is a primary objective of the global durum wheat breeding effort at the International Wheat and Maize Improvement Center (CIMMYT). Breeding programs in North America are following suit, especially after the emergence of new races of Puccinia triticina such as BBG/BP and BBBQD in Mexico and the United States, respectively. This study was conducted to characterize and map previously undescribed genes for leaf rust resistance in durum wheat and to develop reliable molecular markers for marker-assisted breeding. Four recombinant inbred line (RIL) mapping populations derived from the resistance sources Amria, Byblos, Geromtel_3 and Tunsyr_2, which were crossed to the susceptible line ATRED #2, were evaluated for their reaction to the Mexican race BBG/BP of P. triticina. Genetic analyses of host reactions indicated that leaf rust resistance in these genotypes was based on major seedling resistance genes. Allelism tests among resistant parents supported that Amria and Byblos carried allelic or closely linked genes. The resistance in Geromtel_3 and Tunsyr_2 also appeared to be allelic. Bulked segregant analysis using the Infinium iSelect 90K single nucleotide polymorphism (SNP) array identified two genomic regions for leaf rust resistance; one on chromosome 6BS for Geromtel_3 and Tunsyr_2 and the other on chromosome 7BL for Amria and Byblos. Polymorphic SNPs identified within these regions were converted to kompetitive allele-specific PCR (KASP) assays and used to genotype the RIL populations. KASP markers usw215 and usw218 were the closest to the resistance genes in Geromtel_3 and Tunsyr_2, while usw260 was closely linked to the resistance genes in Amria and Byblos. DNA sequences associated with these SNP markers were anchored to the wild emmer wheat (WEW) reference sequence, which identified several candidate resistance genes. The molecular markers reported herein will be useful to effectively pyramid these resistance genes with other previously marked genes into adapted, elite durum wheat genotypes. PMID:29746580

  13. Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach.

    PubMed

    Paal, Jürgen; Henselewski, Heike; Muth, Jost; Meksem, Khalid; Menéndez, Cristina M; Salamini, Francesco; Ballvora, Agim; Gebhardt, Christiane

    2004-04-01

    The endoparasitic root cyst nematode Globodera rostochiensis causes considerable damage in potato cultivation. In the past, major genes for nematode resistance have been introgressed from related potato species into cultivars. Elucidating the molecular basis of resistance will contribute to the understanding of nematode-plant interactions and assist in breeding nematode-resistant cultivars. The Gro1 resistance locus to G. rostochiensis on potato chromosome VII co-localized with a resistance-gene-like (RGL) DNA marker. This marker was used to isolate from genomic libraries 15 members of a closely related candidate gene family. Analysis of inheritance, linkage mapping, and sequencing reduced the number of candidate genes to three. Complementation analysis by stable potato transformation showed that the gene Gro1-4 conferred resistance to G. rostochiensis pathotype Ro1. Gro1-4 encodes a protein of 1136 amino acids that contains Toll-interleukin 1 receptor (TIR), nucleotide-binding (NB), leucine-rich repeat (LRR) homology domains and a C-terminal domain with unknown function. The deduced Gro1-4 protein differed by 29 amino acid changes from susceptible members of the Gro1 gene family. Sequence characterization of 13 members of the Gro1 gene family revealed putative regulatory elements and a variable microsatellite in the promoter region, insertion of a retrotransposon-like element in the first intron, and a stop codon in the NB coding region of some genes. Sequence analysis of RT-PCR products showed that Gro1-4 is expressed, among other members of the family including putative pseudogenes, in non-infected roots of nematode-resistant plants. RT-PCR also demonstrated that members of the Gro1 gene family are expressed in most potato tissues.

  14. Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis.

    PubMed

    Upadhyaya, Hari D; Wang, Yi-Hong; Sharma, Rajan; Sharma, Shivali

    2013-06-01

    Anthracnose in sorghum caused by Colletotrichum sublineolum is one of the most destructive diseases affecting sorghum production under warm and humid conditions. Markers and genes linked to resistance to the disease are important for plant breeding. Using 14,739 SNP markers, we have mapped eight loci linked to resistance in sorghum through association analysis of a sorghum mini-core collection consisting of 242 diverse accessions evaluated for anthracnose resistance for 2 years in the field. The mini-core was representative of the International Crops Research Institute for the Semi-Arid Tropics' world-wide sorghum landrace collection. Eight marker loci were associated with anthracnose resistance in both years. Except locus 8, disease resistance-related genes were found in all loci based on their physical distance from linked SNP markers. These include two NB-ARC class of R genes on chromosome 10 that were partially homologous to the rice blast resistance gene Pib, two hypersensitive response-related genes: autophagy-related protein 3 on chromosome 1 and 4 harpin-induced 1 (Hin1) homologs on chromosome 8, a RAV transcription factor that is also part of R gene pathway, an oxysterol-binding protein that functions in the non-specific host resistance, and homologs of menthone:neomenthol reductase (MNR) that catalyzes a menthone reduction to produce the antimicrobial neomenthol. These genes and markers may be developed into molecular tools for genetic improvement of anthracnose resistance in sorghum.

  15. sugE: A gene involved in tributyltin (TBT) resistance of Aeromonas molluscorum Av27.

    PubMed

    Cruz, Andreia; Micaelo, Nuno; Félix, Vitor; Song, Jun-Young; Kitamura, Shin-Ichi; Suzuki, Satoru; Mendo, Sónia

    2013-01-01

    The mechanism of bacterial resistance to tributyltin (TBT) is still unclear. The results herein presented contribute to clarify that mechanism in the TBT-resistant bacterium Aeromonas molluscorum Av27. We have identified and cloned a new gene that is involved in TBT resistance in this strain. The gene is highly homologous (84%) to the Aeromonas hydrophila-sugE gene belonging to the small multidrug resistance gene family (SMR), which includes genes involved in the transport of lipophilic drugs. In Av27, expression of the Av27-sugE was observed at the early logarithmic growth phase in the presence of a high TBT concentration (500 μM), thus suggesting the contribution of this gene for TBT resistance. E. coli cells transformed with Av27-sugE become resistant to ethidium bromide (EtBr), chloramphenicol (CP) and tetracycline (TE), besides TBT. According to the Moriguchi logP (miLogP) values, EtBr, CP and TE have similar properties and are substrates for the sugE-efflux system. Despite the different miLogP of TBT, E. coli cells transformed with Av27-sugE become resistant to this compound. So it seems that TBT is also a substrate for the SugE protein. The modelling studies performed also support this hypothesis. The data herein presented clearly indicate that sugE is involved in TBT resistance of this bacterium.

  16. Amino acid substitutions in the VanS sensor of the VanA-type vancomycin-resistant Enterococcus strains result in high-level vancomycin resistance and low-level teicoplanin resistance.

    PubMed

    Hashimoto, Y; Tanimoto, K; Ozawa, Y; Murata, T; Ike, Y

    2000-04-15

    The vancomycin-resistant enterococci GV1, GV2 and GV3, which were isolated from droppings from broiler farms in Japan have been characterized as VanA-type VRE, which express high-level vancomycin resistance (256 or 512 microg ml(-1), MIC) and low-level teicoplanin resistance (1 or 2 microg ml(-1), MIC). The vancomycin resistances were encoded on plasmids. The vancomycin resistance conjugative plasmid pMG2 was isolated from the GV2 strain. The VanA determinant of pMG2 showed the same genetic organization as that of the VanA genes encoded on the representative transposon Tn1546, which comprises vanRSHAXYZ. The nucleotide sequences of all the genes, except the gene related to the vanS gene on Tn1546, were completely identical to the genes encoded on Tn1546. Three amino acid substitutions in the N-terminal region of the deduced VanS were detected in the nucleotide sequence of vanS encoded on pMG2. There were also three amino acid substitutions in the vanS gene of the GV1 and GV3 strains in the same positions as in the vanS gene of pMG2. Vancomycin induced the increased teicoplanin resistance in these strains.

  17. Coexpression network analysis of the genes regulated by two types of resistance responses to powdery mildew in wheat

    PubMed Central

    Zhang, Juncheng; Zheng, Hongyuan; Li, Yiwen; Li, Hongjie; Liu, Xin; Qin, Huanju; Dong, Lingli; Wang, Daowen

    2016-01-01

    Powdery mildew disease caused by Blumeria graminis f. sp. tritici (Bgt) inflicts severe economic losses in wheat crops. A systematic understanding of the molecular mechanisms involved in wheat resistance to Bgt is essential for effectively controlling the disease. Here, using the diploid wheat Triticum urartu as a host, the genes regulated by immune (IM) and hypersensitive reaction (HR) resistance responses to Bgt were investigated through transcriptome sequencing. Four gene coexpression networks (GCNs) were developed using transcriptomic data generated for 20 T. urartu accessions showing IM, HR or susceptible responses. The powdery mildew resistance regulated (PMRR) genes whose expression was significantly correlated with Bgt resistance were identified, and they tended to be hubs and enriched in six major modules. A wide occurrence of negative regulation of PMRR genes was observed. Three new candidate immune receptor genes (TRIUR3_13045, TRIUR3_01037 and TRIUR3_06195) positively associated with Bgt resistance were discovered. Finally, the involvement of TRIUR3_01037 in Bgt resistance was tentatively verified through cosegregation analysis in a F2 population and functional expression assay in Bgt susceptible leaf cells. This research provides insights into the global network properties of PMRR genes. Potential molecular differences between IM and HR resistance responses to Bgt are discussed. PMID:27033636

  18. Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania.

    PubMed

    Shah, Syed Q A; Colquhoun, Duncan J; Nikuli, Hamisi L; Sørum, Henning

    2012-08-21

    The use of a wide variety of antimicrobials in human and veterinary medicine, including aquaculture, has led to the emergence of antibiotic resistant pathogens. In the present study, bacteria from water, sediments, and fish were collected from fish farms in Pakistan and Tanzania with no recorded history of antibiotic use. The isolates were screened for the presence of resistance genes against various antimicrobials used in aquaculture and animal husbandry. Resistant isolates selected by disk diffusion and genotyped by Southern hybridization were further screened by polymerase chain reaction (PCR) and amplicon sequencing. The prominent resistance genes identified encoded tetracycline [tetA(A) and tetA(G)], trimethoprim [dfrA1, dfrA5, dfrA7, dfrA12, and dfrA15], amoxicillin [bla(TEM)], streptomycin [strA-strB], chloramphenicol [cat-1], and erythromycin resistance [mefA]. The int1 gene was found in more than 30% of the bacterial isolates in association with gene cassettes. MAR indices ranged from 0.2 to 1. The bla(NDM-1) gene was not identified in ertapenem resistant isolates. It is hypothesized that integrated fish farming practices utilizing domestic farm and poultry waste along with antibiotic residues from animal husbandry may have contributed to a pool of resistance genes in the aquaculture systems studied.

  19. Femara® and the future: tailoring treatment and combination therapies with Femara

    PubMed Central

    Ma, Cynthia

    2007-01-01

    Long-term estrogen deprivation treatment for breast cancer can, in some patients, lead to the activation of alternate cellular pathways, resulting in the re-emergence of the disease. This is a distressing scenario for oncologists and patients, but recent intensive molecular and biochemical studies are beginning to unravel these pathways, revealing opportunities for new targeted treatments. Far from making present therapies redundant, these new discoveries open the door to novel combination therapies that promise to provide enhanced efficacy or overcome treatment resistance. Letrozole, one of the most potent aromatase inhibitors, is the ideal candidate for combination therapy; indeed, it is one of the most intensively studied aromatase inhibitors in the evolving combinatorial setting. Complementary to the use of combination therapy is the development of molecular tools to identify patients who will benefit the most from these new treatments. Microarray gene profiling studies, designed to detect letrozole-responsive targets, are currently under way to understand how the use of the drug can be tailored more efficiently to specific patient needs. PMID:17912640

  20. The role of aluminum sensing and signaling in plant aluminum resistance.

    PubMed

    Liu, Jiping; Piñeros, Miguel A; Kochian, Leon V

    2014-03-01

    As researchers have gained a better understanding in recent years into the physiological, molecular, and genetic basis of how plants deal with aluminum (Al) toxicity in acid soils prevalent in the tropics and sub-tropics, it has become clear that an important component of these responses is the triggering and regulation of cellular pathways and processes by Al. In this review of plant Al signaling, we begin by summarizing the understanding of physiological mechanisms of Al resistance, which first led researchers to realize that Al stress induces gene expression and modifies protein function during the activation of Al resistance responses. Subsequently, an overview of Al resistance genes and their function provides verification that Al induction of gene expression plays a major role in Al resistance in many plant species. More recent research into the mechanistic basis for Al-induced transcriptional activation of resistance genes has led to the identification of several transcription factors as well as cis-elements in the promoters of Al resistance genes that play a role in greater Al-induced gene expression as well as higher constitutive expression of resistance genes in some plant species. Finally, the post-transcriptional and translational regulation of Al resistance proteins is addressed, where recent research has shown that Al can both directly bind to and alter activity of certain organic acid transporters, and also influence Al resistance proteins indirectly, via protein phosphorylation. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  1. The Ectopic Overexpression of the Cotton Ve1 and Ve2-Homolog Sequences Leads to Resistance Response to Verticillium Wilt in Arabidopsis

    PubMed Central

    Chen, Jieyin; Li, Nanyang; Ma, Xuefeng; Gupta, Vijai K.; Zhang, Dandan; Li, Tinggang; Dai, Xiaofeng

    2017-01-01

    Verticillium wilt, caused by the Verticillium dahliae phytopathogen, is a devastating disease affecting many economically important crops. A receptor-like protein (RLP) gene, Ve1, has been reported to confer resistance to V. dahliae in tomato plants, but few genes have been found to be involved in cotton Verticillium wilt resistance. Here, we cloned two RLP gene homologs, Gossypium barbadense resistance gene to Verticillium dahliae 1 (GbaVd1) and GbaVd2, from the Verticillium wilt-resistant cultivar G. barbadense cv. Hai7124. GbaVd1 and GbaVd2 display sequence divergence, but both encode typical RLPs. Virus-induced gene silencing of GbaVd1 or GbaVd2 compromised the resistance of cotton to V. dahliae, and both genes conferred Verticillium wilt resistance after interfamily transfer into Arabidopsis. Microarray analysis revealed that GbaVd1 and GbaVd2 participate in Verticillium wilt resistance in Arabidopsis through activation of defense responses, including the endocytosis process, signaling factors, transcription factors and reinforcement of the cell wall, as demonstrated by lignification in Arabidopsis transgenic plants. In addition, microarray analysis showed that GbaVd1 and GbaVd2 differentially mediate resistance signaling and activation of defense responses after overexpression in Arabidopsis. Thus, GbaVd1 and GbaVd2 encode RLPs and act as disease resistance genes that mediate the defense response against V. dahliae in cotton. PMID:28611793

  2. Plasmodium falciparum parasite population structure and gene flow associated to anti-malarial drugs resistance in Cambodia.

    PubMed

    Dwivedi, Ankit; Khim, Nimol; Reynes, Christelle; Ravel, Patrice; Ma, Laurence; Tichit, Magali; Bourchier, Christiane; Kim, Saorin; Dourng, Dany; Khean, Chanra; Chim, Pheaktra; Siv, Sovannaroth; Frutos, Roger; Lek, Dysoley; Mercereau-Puijalon, Odile; Ariey, Frédéric; Menard, Didier; Cornillot, Emmanuel

    2016-06-14

    Western Cambodia is recognized as the epicentre of emergence of Plasmodium falciparum multi-drug resistance. The emergence of artemisinin resistance has been observed in this area since 2008-2009 and molecular signatures associated to artemisinin resistance have been characterized in k13 gene. At present, one of the major threats faced, is the possible spread of Asian artemisinin resistant parasites over the world threatening millions of people and jeopardizing malaria elimination programme efforts. To anticipate the diffusion of artemisinin resistance, the identification of the P. falciparum population structure and the gene flow among the parasite population in Cambodia are essential. To this end, a mid-throughput PCR-LDR-FMA approach based on LUMINEX technology was developed to screen for genetic barcode in 533 blood samples collected in 2010-2011 from 16 health centres in malaria endemics areas in Cambodia. Based on successful typing of 282 samples, subpopulations were characterized along the borders of the country. Each 11-loci barcode provides evidence supporting allele distribution gradient related to subpopulations and gene flow. The 11-loci barcode successfully identifies recently emerging parasite subpopulations in western Cambodia that are associated with the C580Y dominant allele for artemisinin resistance in k13 gene. A subpopulation was identified in northern Cambodia that was associated to artemisinin (R539T resistant allele of k13 gene) and mefloquine resistance. The gene flow between these subpopulations might have driven the spread of artemisinin resistance over Cambodia.

  3. Antibiotic resistance genes across a wide variety of metagenomes.

    PubMed

    Fitzpatrick, David; Walsh, Fiona

    2016-02-01

    The distribution of potential clinically relevant antibiotic resistance (AR) genes across soil, water, animal, plant and human microbiomes is not well understood. We aimed to investigate if there were differences in the distribution and relative abundances of resistance genes across a variety of ecological niches. All sequence reads (human, animal, water, soil, plant and insect metagenomes) from the MG-RAST database were downloaded and assembled into a local sequence database. We show that there are many reservoirs of the basic form of resistance genes e.g. blaTEM, but the human and mammalian gut microbiomes contain the widest diversity of clinically relevant resistance genes using metagenomic analysis. The human microbiomes contained a high relative abundance of resistance genes, while the relative abundances varied greatly in the marine and soil metagenomes, when datasets with greater than one million genes were compared. While these results reflect a bias in the distribution of AR genes across the metagenomes, we note this interpretation with caution. Metagenomics analysis includes limits in terms of detection and identification of AR genes in complex and diverse microbiome population. Therefore, if we do not detect the AR gene is it in fact not there or just below the limits of our techniques? © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Comparative Digital Gene Expression Analysis of Tissue-Cultured Plantlets of Highly Resistant and Susceptible Banana Cultivars in Response to Fusarium oxysporum

    PubMed Central

    Niu, Yuqing; Hu, Bei; Li, Xiaoquan; Chen, Houbin; Šamaj, Jozef; Xu, Chunxiang

    2018-01-01

    Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the most destructive soil-borne diseases. In this study, young tissue-cultured plantlets of banana (Musa spp. AAA) cultivars differing in Foc susceptibility were used to reveal their differential responses to this pathogen using digital gene expression (DGE). Data were evaluated by various bioinformatic tools (Venn diagrams, gene ontology (GO) annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses) and immunofluorescence labelling method to support the identification of gene candidates determining the resistance of banana against Foc. Interestingly, we have identified MaWRKY50 as an important gene involved in both constitutive and induced resistance. We also identified new genes involved in the resistance of banana to Foc, including several other transcription factors (TFs), pathogenesis-related (PR) genes and some genes related to the plant cell wall biosynthesis or degradation (e.g., pectinesterases, β-glucosidases, xyloglucan endotransglucosylase/hydrolase and endoglucanase). The resistant banana cultivar shows activation of PR-3 and PR-4 genes as well as formation of different constitutive cell barriers to restrict spreading of the pathogen. These data suggest new mechanisms of banana resistance to Foc. PMID:29364855

  5. Duplication and amplification of antibiotic resistance genes enable increased resistance in isolates of multidrug-resistant Salmonella Typhimurium

    USDA-ARS?s Scientific Manuscript database

    During normal bacterial DNA replication, gene duplication and amplification (GDA) events occur randomly at a low frequency in the genome throughout a population. In the absence of selection, GDA events that increase the number of copies of a bacterial gene (or a set of genes) are lost. Antibiotic ...

  6. A novel bacterial blight resistance gene from Oryza nivara mapped to 38 kb region on chromosome 4L and transferred to Oryza sativa L.

    PubMed

    Cheema, Kuljit K; Grewal, Navjit K; Vikal, Yogesh; Sharma, Rajiv; Lore, Jagjeet S; Das, Aparna; Bhatia, Dharminder; Mahajan, Ritu; Gupta, Vikas; Bharaj, Tajinder S; Singh, Kuldeep

    2008-10-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv oryzae (Xoo) is one of the major constraints to productivity in South-East Asia. The strategy of using major genes, singly or in combination, continues to be the most effective approach for BB management. Currently, more than two dozen genes have been designated but not all the known genes are effective against all the prevalent pathotypes. The challenge, therefore, is to continue to expand the gene pool of effective and potentially durable resistance genes. Wild species constitute an important reservoir of the resistance genes including BB. An accession of Oryza nivara (IRGC 81825) was found to be resistant to all the seven Xoo pathotypes prevalent in northern states of India. Inheritance and mapping of resistance in O. nivara was studied by using F2, BC2F2, BC3F1 and BC3F2 progenies of the cross involving Oryza sativa cv PR114 and the O. nivara acc. 81825 using the most virulent Xoo pathotype. Genetic analysis of the segregating progenies revealed that the BB resistance in O. nivara was conditioned by a single dominant gene. Bulked segregant analysis (BSA) of F2 population using 191 polymorphic SSR markers identified a approximately 35 centiMorgans (cM) chromosomal region on 4L, bracketed by RM317 and RM562, to be associated with BB resistance. Screening of BC3F1 and BC2F2 progenies and their genotyping with more than 30 polymorphic SSR markers in the region, covering Bacterial artificial chromosome (BAC) clone OSJNBb0085C12, led to mapping of the resistance gene between the STS markers based on annotated genes LOC_Os04g53060 and LOC_Os04g53120, which is approximately 38.4 kb. Since none of the known Xa genes, which are mapped on chromosome 4L, are effective against the Xoo pathotypes tested, the BB resistance gene identified and transferred from O. nivara is novel and is tentatively designated as Xa30(t). Homozygous resistant BC3F3 progenies with smallest introgression region have been identified.

  7. [Distribution of anaerobes in periodontal abscess and its resistance to antibiotics].

    PubMed

    He, Jun-lin; Yu, Li-ying; Chen, Jia-zhen

    2012-12-01

    To isolate and culture the predominant anaerobes from the periodontal abscesses, and to test the antibiotic susceptibility and drug resistant genes of the strains. The isolated strains were identified by both API20A biochemical method and polymerase chain reaction (PCR) method. The antibiotic susceptibility test was performed by agar dilution method. The resistant genes of the drug-resistant strains obtained were screened by PCR. The anaerobes were detected in 48% (28/58) of the samples and Prevotella melaninogenica (Pm) was mostly identified in 43% (12/28). API20A biochemical method had 82% (23/28) agreement with the 16SrRNA method in identification rate. Anaerobes were resistant to metronidazole, clindamycin and cefmetazole. The erythromycin-resistant methylase genes F (ermF) gene was detected in three of eight clindamycin resistant strains. None of them was found coded on bacterial plasmids. However, no metronidazole resistant gene was detected on drug resistant strains. Pm was the predominant species dectected in the periodontal abscess of the patients. The antibiotic agents should be used based on the genotypes and general condition of the patients.

  8. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post- chemotherapy tissues

    PubMed Central

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-01-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens. PMID:26515599

  9. Genetic analysis of resistance to ticks, gastrointestinal nematodes and Eimeria spp. in Nellore cattle.

    PubMed

    Passafaro, Tiago Luciano; Carrera, Juan Pablo Botero; dos Santos, Livia Loiola; Raidan, Fernanda Santos Silva; dos Santos, Dalinne Chrystian Carvalho; Cardoso, Eduardo Penteado; Leite, Romário Cerqueira; Toral, Fabio Luiz Buranelo

    2015-06-15

    The aim of the present study was to obtain genetic parameters for resistance to ticks, gastrointestinal nematodes (worms) and Eimeria spp. in Nellore cattle, analyze the inclusion of resistance traits in Nellore breeding programs and evaluate genetic selection as a complementary tool in parasite control programs. Counting of ticks, gastrointestinal nematode eggs and Eimeria spp. oocysts per gram of feces totaling 4270; 3872 and 3872 records from 1188; 1142 and 1142 animals, respectively, aged 146 to 597 days were used. The animals were classified as resistant (counts equal to zero) or susceptible (counts above zero) to each parasite. The statistical models included systematics effects of contemporary groups and the mean trajectory. The random effects included additive genetic effects, direct permanent environmental effects and residual. The mean trajectory and random effects were modeled with linear Legendre polynomials for all traits except for the mean trajectory of resistance to Eimeria spp., which employed the cubic polynomial. Heritability estimates were of low to moderate magnitude and ranged from 0.06 to 0.30, 0.06 to 0.33 and 0.04 to 0.33 for resistance to ticks, gastrointestinal nematodes and Eimeria spp., respectively. The posterior mean of genetic and environmental correlations for the same trait at different ages (205, 365, 450 and 550 days) were favorable at adjacent ages and unfavorable at distant ages. In general, the posterior mean of the genetic and environmental correlations between traits of resistance were low and high-density intervals were large and included zero in many cases. The heritability estimates support the inclusion of resistance to ticks, gastrointestinal nematodes and Eimeria spp. in Nellore breeding programs. Genetic selection can increase the frequency of resistant animals and be used as a complementary tool in parasite control programs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. RNA-Seq Analysis Reveals Candidate Genes for Ontogenic Resistance in Malus-Venturia Pathosystem

    PubMed Central

    Gusberti, Michele; Gessler, Cesare; Broggini, Giovanni A. L.

    2013-01-01

    Ontogenic scab resistance in apple leaves and fruits is a horizontal resistance against the plant pathogen Venturia inaequalis and is expressed as a decrease in disease symptoms and incidence with the ageing of the leaves. Several studies at the biochemical level tried to unveil the nature of this resistance; however, no conclusive results were reported. We decided therefore to investigate the genetic origin of this phenomenon by performing a full quantitative transcriptome sequencing and comparison of young (susceptible) and old (ontogenic resistant) leaves, infected or not with the pathogen. Two time points at 72 and 96 hours post-inoculation were chosen for RNA sampling and sequencing. Comparison between the different conditions (young and old leaves, inoculated or not) should allow the identification of differentially expressed genes which may represent different induced plant defence reactions leading to ontogenic resistance or may be the cause of a constitutive (uninoculated with the pathogen) shift toward resistance in old leaves. Differentially expressed genes were then characterised for their function by homology to A. thaliana and other plant genes, particularly looking for genes involved in pathways already suspected of appertaining to ontogenic resistance in apple or other hosts, or to plant defence mechanisms in general. In this work, five candidate genes putatively involved in the ontogenic resistance of apple were identified: a gene encoding an “enhanced disease susceptibility 1 protein” was found to be down-regulated in both uninoculated and inoculated old leaves at 96 hpi, while the other four genes encoding proteins (metallothionein3-like protein, lipoxygenase, lipid transfer protein, and a peroxidase 3) were found to be constitutively up-regulated in inoculated and uninoculated old leaves. The modulation of the five candidate genes has been validated using the real-time quantitative PCR. Thus, ontogenic resistance may be the result of the corresponding up- and down-regulation of these genes. PMID:24223809

  11. Vancomycin-resistance phenotypes, vancomycin-resistance genes, and resistance to antibiotics of enterococci isolated from food of animal origin.

    PubMed

    Gousia, Panagiota; Economou, Vangelis; Bozidis, Petros; Papadopoulou, Chrissanthy

    2015-03-01

    In the present study, 500 raw beef, pork, and chicken meat samples and 100 pooled egg samples were analyzed for the presence of vancomycin-resistant enterococci, vancomycin-resistance phenotypes, and resistance genes. Of 141 isolates of enterococci, 88 strains of Enterococcus faecium and 53 strains of E. faecalis were identified. The most prevalent species was E. faecium. Resistance to ampicillin (n = 93, 66%), ciprofloxacin (n = 74, 52.5%), erythromycin (n = 73, 51.8%), penicillin (n = 59, 41.8%) and tetracycline (n = 52, 36.9%) was observed, while 53.2% (n = 75) of the isolates were multiresistant and 15.6% (n = 22) were susceptible to all antibiotics. Resistance to vancomycin was exhibited in 34.1% (n = 30) of the E. faecium isolates (n = 88) and 1.9% (n = 1) of the E. faecalis isolates (n = 53) using the disc-diffusion test and the E-test. All isolates were tested for vanA and vanB using real-time polymerase chain reaction (PCR) and multiplex PCR, and for vanC, vanD, vanE, vanG genes using multiplex PCR only. Among E. faecalis isolates, no resistance genes were identified. Among the E. faecium isolates, 28 carried the vanA gene when tested by multiplex PCR and 29 when tested with real-time PCR. No isolate carrying the vanC, vanD, vanE, or vanG genes was identified. Melting-curve analysis of the positive real-time PCR E. faecium isolates showed that 22 isolates carried the vanA gene only, 2 isolates the vanB2,3 genes only, and seven isolates carried both the vanA and vanB2,3 genes. Enterococci should be considered a significant zoonotic pathogen and a possible reservoir of genes encoding resistance potentially transferred to other bacterial species.

  12. Gene Transfer Efficiency in Gonococcal Biofilms: Role of Biofilm Age, Architecture, and Pilin Antigenic Variation.

    PubMed

    Kouzel, Nadzeya; Oldewurtel, Enno R; Maier, Berenike

    2015-07-01

    Extracellular DNA is an important structural component of many bacterial biofilms. It is unknown, however, to which extent external DNA is used to transfer genes by means of transformation. Here, we quantified the acquisition of multidrug resistance and visualized its spread under selective and nonselective conditions in biofilms formed by Neisseria gonorrhoeae. The density and architecture of the biofilms were controlled by microstructuring the substratum for bacterial adhesion. Horizontal transfer of antibiotic resistance genes between cocultured strains, each carrying a single resistance, occurred efficiently in early biofilms. The efficiency of gene transfer was higher in early biofilms than between planktonic cells. It was strongly reduced after 24 h and independent of biofilm density. Pilin antigenic variation caused a high fraction of nonpiliated bacteria but was not responsible for the reduced gene transfer at later stages. When selective pressure was applied to dense biofilms using antibiotics at their MIC, the double-resistant bacteria did not show a significant growth advantage. In loosely connected biofilms, the spreading of double-resistant clones was prominent. We conclude that multidrug resistance readily develops in early gonococcal biofilms through horizontal gene transfer. However, selection and spreading of the multiresistant clones are heavily suppressed in dense biofilms. Biofilms are considered ideal reaction chambers for horizontal gene transfer and development of multidrug resistances. The rate at which genes are exchanged within biofilms is unknown. Here, we quantified the acquisition of double-drug resistance by gene transfer between gonococci with single resistances. At early biofilm stages, the transfer efficiency was higher than for planktonic cells but then decreased with biofilm age. The surface topography affected the architecture of the biofilm. While the efficiency of gene transfer was independent of the architecture, spreading of double-resistant bacteria under selective conditions was strongly enhanced in loose biofilms. We propose that while biofilms help generating multiresistant strains, selection takes place mostly after dispersal from the biofilm. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae.

    PubMed

    Das, Alok; Soubam, D; Singh, P K; Thakur, S; Singh, N K; Sharma, T R

    2012-06-01

    The dominant rice blast resistance gene, Pi54 confers resistance to Magnaporthe oryzae in different parts of India. In our effort to identify more effective forms of this gene, we isolated an orthologue of Pi54 named as Pi54rh from the blast-resistant wild species of rice, Oryza rhizomatis, using allele mining approach and validated by complementation. The Pi54rh belongs to CC-NBS-LRR family of disease resistance genes with a unique Zinc finger (C(3)H type) domain. The 1,447 bp Pi54rh transcript comprises of 101 bp 5'-UTR, 1,083 bp coding region and 263 bp 3'-UTR, driven by pathogen inducible promoter. We showed the extracellular localization of Pi54rh protein and the presence of glycosylation, myristoylation and phosphorylation sites which implicates its role in signal transduction process. This is in contrast to other blast resistance genes that are predicted to be intracellular NBS-LRR-type resistance proteins. The Pi54rh was found to express constitutively at basal level in the leaves, but upregulates 3.8-fold at 96 h post-inoculation with the pathogen. Functional validation of cloned Pi54rh gene using complementation test showed high degree of resistance to seven isolates of M. oryzae collected from different geographical locations of India. In this study, for the first time, we demonstrated that a rice blast resistance gene Pi54rh cloned from wild species of rice provides broad spectrum resistance to M. oryzae hence can be used in rice improvement breeding programme.

  14. Epistatic Interactions Among Herbicide Resistances in Arabidopsis thaliana: The Fitness Cost of Multiresistance

    PubMed Central

    Roux, Fabrice; Camilleri, Christine; Giancola, Sandra; Brunel, Dominique; Reboud, Xavier

    2005-01-01

    The type of interactions among deleterious mutations is considered to be crucial in numerous areas of evolutionary biology, including the evolution of sex and recombination, the evolution of ploidy, the evolution of selfing, and the conservation of small populations. Because the herbicide resistance genes could be viewed as slightly deleterious mutations in the absence of the pesticide selection pressure, the epistatic interactions among three herbicide resistance genes (acetolactate synthase CSR, cellulose synthase IXR1, and auxin-induced AXR1 target genes) were estimated in both the homozygous and the heterozygous states, giving 27 genotype combinations in the model plant Arabidopsis thaliana. By analyzing eight quantitative traits in a segregating population for the three herbicide resistances in the absence of herbicide, we found that most interactions in both the homozygous and the heterozygous states were best explained by multiplicative effects (each additional resistance gene causes a comparable reduction in fitness) rather than by synergistic effects (each additional resistance gene causes a disproportionate fitness reduction). Dominance coefficients of the herbicide resistance cost ranged from partial dominance to underdominance, with a mean dominance coefficient of 0.07. It was suggested that the csr1-1, ixr1-2, and axr1-3 resistance alleles are nearly fully recessive for the fitness cost. More interestingly, the dominance of a specific resistance gene in the absence of herbicide varied according to, first, the presence of the other resistance genes and, second, the quantitative trait analyzed. These results and their implications for multiresistance evolution are discussed in relation to the maintenance of polymorphism at resistance loci in a heterogeneous environment. PMID:16020787

  15. The antibiotic resistance "mobilome": searching for the link between environment and clinic.

    PubMed

    Perry, Julie A; Wright, Gerard D

    2013-01-01

    Antibiotic resistance is an ancient problem, owing to the co-evolution of antibiotic-producing and target organisms in the soil and other environments over millennia. The environmental "resistome" is the collection of all genes that directly or indirectly contribute to antibiotic resistance. Many of these resistance determinants originate in antibiotic-producing organisms (where they serve to mediate self-immunity), while others become resistance determinants only when mobilized and over-expressed in non-native hosts (like plasmid-encoded β-lactamases). The modern environmental resistome is under selective pressure from human activities such as agriculture, which may influence the composition of the local resistome and lead to gene transfer events. Beyond the environment, we are challenged in the clinic by the rise in both frequency and diversity of antibiotic resistant pathogens. We assume that clinical resistance originated in the environment, but few examples of direct gene exchange between the environmental resistome and the clinical resistome have been documented. Strong evidence exists to suggest that clinical aminoglycoside and vancomycin resistance enzymes, the extended-spectrum β-lactamase CTX-M and the quinolone resistance gene qnr have direct links to the environmental resistome. In this review, we highlight recent advances in our understanding of horizontal gene transfer of antibiotic resistance genes from the environment to the clinic. Improvements in sequencing technologies coupled with functional metagenomic studies have revealed previously underappreciated diversity in the environmental resistome, and also established novel genetic links to the clinic. Understanding mechanisms of gene exchange becomes vital in controlling the future dissemination of antibiotic resistance.

  16. The antibiotic resistance “mobilome”: searching for the link between environment and clinic

    PubMed Central

    Perry, Julie A.; Wright, Gerard D.

    2013-01-01

    Antibiotic resistance is an ancient problem, owing to the co-evolution of antibiotic-producing and target organisms in the soil and other environments over millennia. The environmental “resistome” is the collection of all genes that directly or indirectly contribute to antibiotic resistance. Many of these resistance determinants originate in antibiotic-producing organisms (where they serve to mediate self-immunity), while others become resistance determinants only when mobilized and over-expressed in non-native hosts (like plasmid-encoded β-lactamases). The modern environmental resistome is under selective pressure from human activities such as agriculture, which may influence the composition of the local resistome and lead to gene transfer events. Beyond the environment, we are challenged in the clinic by the rise in both frequency and diversity of antibiotic resistant pathogens. We assume that clinical resistance originated in the environment, but few examples of direct gene exchange between the environmental resistome and the clinical resistome have been documented. Strong evidence exists to suggest that clinical aminoglycoside and vancomycin resistance enzymes, the extended-spectrum β-lactamase CTX-M and the quinolone resistance gene qnr have direct links to the environmental resistome. In this review, we highlight recent advances in our understanding of horizontal gene transfer of antibiotic resistance genes from the environment to the clinic. Improvements in sequencing technologies coupled with functional metagenomic studies have revealed previously underappreciated diversity in the environmental resistome, and also established novel genetic links to the clinic. Understanding mechanisms of gene exchange becomes vital in controlling the future dissemination of antibiotic resistance. PMID:23755047

  17. Distinct effects of struvite and biochar amendment on the class 1 integron antibiotic resistance gene cassettes in phyllosphere and rhizosphere.

    PubMed

    An, Xin-Li; Chen, Qing-Lin; Zhu, Dong; Su, Jian-Qiang

    2018-08-01

    Struvite recovered from wastewater is promising for recycling phosphorus into soil as fertilizers. However, struvite application may prompt the proliferation of antibiotic resistance in soil and plant. This study examined the impacts of struvite application and biochar amendment on integrons abundance and gene cassette contexts in rhizosphere soil and phyllosphere using quantitative PCR and clone library analysis. Microcosm experiments revealed that class 1 integron was the most prevalent in all samples, with higher concentration and higher relative abundance in rhizosphere than those in phyllosphere. The majority of resistance gene cassettes were associated with genes encoding resistance to aminoglycosides, beta-lactams and chloramphenicols. Struvite application significantly increased the genetic diversity of antibiotic resistance gene cassettes in both rhizosphere and phyllosphere. However, biochar amendment attenuated the increasing effect of struvite application exerting on the class 1 integron antibiotic resistance gene cassette pool in phyllosphere. These findings highlighted human activities to be the source of integron gene cassette pool and raised the possibility of using biochar amendment as an alternative mean for mitigating antibiotic resistance in environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Involvement of Vacuolar Sequestration and Active Transport in Tolerance of Saccharomyces cerevisiae to Hop Iso-α-Acids▿ † ¶

    PubMed Central

    Hazelwood, Lucie A.; Walsh, Michael C.; Pronk, Jack T.; Daran, Jean-Marc

    2010-01-01

    The hop plant, Humulus lupulus L., has an exceptionally high content of secondary metabolites, the hop α-acids, which possess a range of beneficial properties, including antiseptic action. Studies performed on the mode of action of hop iso-α-acids have hitherto been restricted to lactic acid bacteria. The present study investigated molecular mechanisms of hop iso-α-acid resistance in the model eukaryote Saccharomyces cerevisiae. Growth inhibition occurred at concentrations of hop iso-α-acids that were an order of magnitude higher than those found with hop-tolerant prokaryotes. Chemostat-based transcriptome analysis and phenotype screening of the S. cerevisiae haploid gene deletion collection were used as complementary methods to screen for genes involved in hop iso-α-acid detoxification and tolerance. This screening and further analysis of deletion mutants confirmed that yeast tolerance to hop iso-α-acids involves three major processes, active proton pumping into the vacuole by the vacuolar-type ATPase to enable vacuolar sequestration of iso-α-acids and alteration of cell wall structure and, to a lesser extent, active export of iso-α-acids across the plasma membrane. Furthermore, iso-α-acids were shown to affect cellular metal homeostasis by acting as strong zinc and iron chelators. PMID:19915041

  19. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB

    PubMed Central

    Munir, Ahsan; Waseem, Hassan; Williams, Maggie R.; Stedtfeld, Robert D.; Gulari, Erdogan; Tiedje, James M.; Hashsham, Syed A.

    2017-01-01

    Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R2 = 0.8131). PMID:28555058

  20. Step-wise loss of bacterial flagellar torsion confers progressive phagocytic evasion.

    PubMed

    Lovewell, Rustin R; Collins, Ryan M; Acker, Julie L; O'Toole, George A; Wargo, Matthew J; Berwin, Brent

    2011-09-01

    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria.

  1. Step-Wise Loss of Bacterial Flagellar Torsion Confers Progressive Phagocytic Evasion

    PubMed Central

    Lovewell, Rustin R.; Collins, Ryan M.; Acker, Julie L.; O'Toole, George A.; Wargo, Matthew J.; Berwin, Brent

    2011-01-01

    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria. PMID:21949654

  2. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB.

    PubMed

    Munir, Ahsan; Waseem, Hassan; Williams, Maggie R; Stedtfeld, Robert D; Gulari, Erdogan; Tiedje, James M; Hashsham, Syed A

    2017-05-29

    Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R² = 0.8131).

  3. Polyphenolic Extract from Maple Syrup Potentiates Antibiotic Susceptibility and Reduces Biofilm Formation of Pathogenic Bacteria

    PubMed Central

    Maisuria, Vimal B.; Hosseinidoust, Zeinab

    2015-01-01

    Phenolic compounds are believed to be promising candidates as complementary therapeutics. Maple syrup, prepared by concentrating the sap from the North American maple tree, is a rich source of natural and process-derived phenolic compounds. In this work, we report the antimicrobial activity of a phenolic-rich maple syrup extract (PRMSE). PRMSE exhibited antimicrobial activity as well as strong synergistic interaction with selected antibiotics against Gram-negative clinical strains of Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa. Among the phenolic constituents of PRMSE, catechol exhibited strong synergy with antibiotics as well as with other phenolic components of PRMSE against bacterial growth. At sublethal concentrations, PRMSE and catechol efficiently reduced biofilm formation and increased the susceptibility of bacterial biofilms to antibiotics. In an effort to elucidate the mechanism for the observed synergy with antibiotics, PRMSE was found to increase outer membrane permeability of all bacterial strains and effectively inhibit efflux pump activity. Furthermore, transcriptome analysis revealed that PRMSE significantly repressed multiple-drug resistance genes as well as genes associated with motility, adhesion, biofilm formation, and virulence. Overall, this study provides a proof of concept and starting point for investigating the molecular mechanism of the reported increase in bacterial antibiotic susceptibility in the presence of PRMSE. PMID:25819960

  4. Polyphenolic extract from maple syrup potentiates antibiotic susceptibility and reduces biofilm formation of pathogenic bacteria.

    PubMed

    Maisuria, Vimal B; Hosseinidoust, Zeinab; Tufenkji, Nathalie

    2015-06-01

    Phenolic compounds are believed to be promising candidates as complementary therapeutics. Maple syrup, prepared by concentrating the sap from the North American maple tree, is a rich source of natural and process-derived phenolic compounds. In this work, we report the antimicrobial activity of a phenolic-rich maple syrup extract (PRMSE). PRMSE exhibited antimicrobial activity as well as strong synergistic interaction with selected antibiotics against Gram-negative clinical strains of Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa. Among the phenolic constituents of PRMSE, catechol exhibited strong synergy with antibiotics as well as with other phenolic components of PRMSE against bacterial growth. At sublethal concentrations, PRMSE and catechol efficiently reduced biofilm formation and increased the susceptibility of bacterial biofilms to antibiotics. In an effort to elucidate the mechanism for the observed synergy with antibiotics, PRMSE was found to increase outer membrane permeability of all bacterial strains and effectively inhibit efflux pump activity. Furthermore, transcriptome analysis revealed that PRMSE significantly repressed multiple-drug resistance genes as well as genes associated with motility, adhesion, biofilm formation, and virulence. Overall, this study provides a proof of concept and starting point for investigating the molecular mechanism of the reported increase in bacterial antibiotic susceptibility in the presence of PRMSE. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Vascular plants mediate the effects of aridity and soil properties on ammonia-oxidizing bacteria and archaea.

    PubMed

    Delgado-Baquerizo, Manuel; Gallardo, Antonio; Wallenstein, Matthew D; Maestre, Fernando T

    2013-08-01

    An integrated perspective of the most important factors driving the abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in natural ecosystems is lacking, especially in drylands. We evaluated how different climatic, abiotic, and nutrient-related factors determine AOA and AOB abundance in bare and vegetated microsites from grasslands throughout the Mediterranean Basin. We found a strong negative relationship between the abundance of AOA genes and soil fertility (availability of C, N, and P). Aridity and other abiotic factors (pH, sand content, and electrical conductivity) were more important than soil fertility in modulating the AOA/AOB ratio. AOB were more abundant under vegetated microsites, while AOA, highly resistant to stressful conditions, were more abundant in bare ground areas. These results suggest that AOA may carry out nitrification in less fertile microsites, while AOB predominate under more fertile conditions. Our results indicate that the influence of aridity and pH on the relative dominance of AOA and AOB genes is ultimately determined by local-scale environmental changes promoted by perennial vegetation. Thus, in spatially heterogeneous ecosystems such as drylands, there is a mutual exclusion and niche division between these microorganisms, suggesting that they may be functionally complementary. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Genotyping-by-sequencing targeting of a novel downy mildew resistance gene Pl 20 from wild Helianthus argophyllus for sunflower (Helianthus annuus L.).

    PubMed

    Ma, G J; Markell, S G; Song, Q J; Qi, L L

    2017-07-01

    Genotyping-by-sequencing revealed a new downy mildew resistance gene, Pl 20 , from wild Helianthus argophyllus located on linkage group 8 of the sunflower genome and closely linked to SNP markers that facilitate the marker-assisted selection of resistance genes. Downy mildew (DM), caused by Plasmopara halstedii, is one of the most devastating and yield-limiting diseases of sunflower. Downy mildew resistance identified in wild Helianthus argophyllus accession PI 494578 was determined to be effective against the predominant and virulent races of P. halstedii occurring in the United States. The evaluation of 114 BC 1 F 2:3 families derived from the cross between HA 89 and PI 494578 against P. halstedii race 734 revealed that single dominant gene controls downy mildew resistance in the population. Genotyping-by-sequencing analysis conducted in the BC 1 F 2 population indicated that the DM resistance gene derived from wild H. argophyllus PI 494578 is located on the upper end of the linkage group (LG) 8 of the sunflower genome, as was determined single nucleotide polymorphism (SNP) markers associated with DM resistance. Analysis of 11 additional SNP markers previously mapped to this region revealed that the resistance gene, named Pl 20 , co-segregated with four markers, SFW02745, SFW09076, S8_11272025, and S8_11272046, and is flanked by SFW04358 and S8_100385559 at an interval of 1.8 cM. The newly discovered P. halstedii resistance gene has been introgressed from wild species into cultivated sunflower to provide a novel gene with DM resistance. The homozygous resistant individuals were selected from BC 2 F 2 progenies with the use of markers linked to the Pl 20 gene, and these lines should benefit the sunflower community for Helianthus improvement.

  7. SSTAR, a Stand-Alone Easy-To-Use Antimicrobial Resistance Gene Predictor.

    PubMed

    de Man, Tom J B; Limbago, Brandi M

    2016-01-01

    We present the easy-to-use Sequence Search Tool for Antimicrobial Resistance, SSTAR. It combines a locally executed BLASTN search against a customizable database with an intuitive graphical user interface for identifying antimicrobial resistance (AR) genes from genomic data. Although the database is initially populated from a public repository of acquired resistance determinants (i.e., ARG-ANNOT), it can be customized for particular pathogen groups and resistance mechanisms. For instance, outer membrane porin sequences associated with carbapenem resistance phenotypes can be added, and known intrinsic mechanisms can be included. Unique about this tool is the ability to easily detect putative new alleles and truncated versions of existing AR genes. Variants and potential new alleles are brought to the attention of the user for further investigation. For instance, SSTAR is able to identify modified or truncated versions of porins, which may be of great importance in carbapenemase-negative carbapenem-resistant Enterobacteriaceae. SSTAR is written in Java and is therefore platform independent and compatible with both Windows and Unix operating systems. SSTAR and its manual, which includes a simple installation guide, are freely available from https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-. IMPORTANCE Whole-genome sequencing (WGS) is quickly becoming a routine method for identifying genes associated with antimicrobial resistance (AR). However, for many microbiologists, the use and analysis of WGS data present a substantial challenge. We developed SSTAR, software with a graphical user interface that enables the identification of known AR genes from WGS and has the unique capacity to easily detect new variants of known AR genes, including truncated protein variants. Current software solutions do not notify the user when genes are truncated and, therefore, likely nonfunctional, which makes phenotype predictions less accurate. SSTAR users can apply any AR database of interest as a reference comparator and can manually add genes that impact resistance, even if such genes are not resistance determinants per se (e.g., porins and efflux pumps).

  8. Monitoring of resistance genes in Listeria monocytogenes isolates and their presence in the extracellular DNA of biofilms: a case study from the Czech Republic.

    PubMed

    Boháčová, Martina; Zdeňková, Kamila; Tomáštíková, Zuzana; Fuchsová, Viviana; Demnerová, Kateřina; Karpíšková, Renáta; Pazlarová, Jarmila

    2018-04-21

    The alarming occurrence of antibiotic resistance genes in food production demands continuous monitoring worldwide. One reservoir of resistance genes is thought to be eDNA. There is currently little available information in Europe about either the extracellular DNA distribution of the bacterium or the spread of resistance genes in L. monocytogenes. Therefore, our aims were to give insight into the Listeria monocytogenes resistance situation in the Czech Republic and assess the presence of resistance genes in their extracellular DNA (eDNA). First, susceptibility tests were performed on 49 isolates of L. monocytogenes with selected antibiotics. Next, we tested DNA of suspected isolates for the presence of resistance genes in both planktonic cells and the eDNA of biofilms. Finally, fluorescent confocal microscopy was used to observe the eDNA pattern of selected isolates under conditions that mimicked the food processing environment and the human body. Susceptibility tests found isolates intermediate resistant to chloramphenicol, tetracycline, and ciprofloxacin as well as isolates resistant to ciprofloxacin. For all suspected isolates, PCR confirmed the presence of the gene lde encoding efflux pump in both types of DNA. When the biofilm was observed using confocal laser scanning microscope, the eDNA distribution patterns varied considerably according to the culture conditions. Furthermore, the food and clinical isolates varied in terms of the amount of eDNA detected. The presence of an efflux pump in both types of DNA suggests that the eDNA might serve as a reservoir of resistance genes. Surprising differences were observed in the eDNA pattern. Our results suggest that the current risk of the spread of L. monocytogenes resistance genes is low in the Czech Republic, but they also indicate the need for continuous long-term monitoring of the situation.

  9. Chromosomal Location and Comparative Genomics Analysis of Powdery Mildew Resistance Gene Pm51 in a Putative Wheat-Thinopyrum ponticum Introgression Line

    PubMed Central

    Zhang, Xiaojun; Li, Xin; Guo, Huijuan; Gong, Wenping; Jia, Juqing; Qiao, Linyi; Ren, Yongkang; Yang, Zujun; Chang, Zhijian

    2014-01-01

    Powdery mildew (PM) is a very destructive disease of wheat (Triticum aestivum L.). Wheat-Thinopyrum ponticum introgression line CH7086 was shown to possess powdery mildew resistance possibly originating from Th. ponticum. Genomic in situ hybridization and molecular characterization of the alien introgression failed to identify alien chromatin. To study the genetics of resistance, CH7086 was crossed with susceptible genotypes. Segregation in F2 populations and F2:3 lines tested with Chinese Bgt race E09 under controlled conditions indicated that CH7086 carries a single dominant gene for powdery mildew resistance. Fourteen SSR and EST-PCR markers linked with the locus were identified. The genetic distances between the locus and the two flanking markers were 1.5 and 3.2 cM, respectively. Based on the locations of the markers by nullisomic-tetrasomic and deletion lines of ‘Chinese Spring’, the resistance gene was located in deletion bin 2BL-0.89-1.00. Conserved orthologous marker analysis indicated that the genomic region flanking the resistance gene has a high level of collinearity to that of rice chromosome 4 and Brachypodium chromosome 5. Both resistance specificities and tests of allelism suggested the resistance gene in CH7086 was different from previously reported powdery mildew resistance genes on 2BL, and the gene was provisionally designated PmCH86. Molecular analysis of PmCH86 compared with other genes for resistance to Bgt in the 2BL-0.89-1.00 region suggested that PmCH86 may be a new PM resistance gene, and it was therefore designated as Pm51. The closely linked flanking markers could be useful in exploiting this putative wheat-Thinopyrum translocation line for rapid transfer of Pm51 to wheat breeding programs. PMID:25415194

  10. Expression Profile of Genes during Resistance Reversal in a Temephos Selected Strain of the Dengue Vector, Aedes aegypti

    PubMed Central

    Strode, Clare; de Melo-Santos, Maria; Magalhães, Tereza; Araújo, Ana; Ayres, Contancia

    2012-01-01

    Background The mosquito Aedes aegypti is one of the most important disease vectors because it transmits two major arboviruses, dengue and yellow fever, which cause significant global morbidity and mortality. Chemical insecticides form the cornerstone of vector control. The organophosphate temephos a larvicide recommended by WHO for controlling Ae. aegypti, however, resistance to this compound has been reported in many countries, including Brazil. Methodology/Principal Findings The aim of this study was to identify genes implicated in metabolic resistance in an Ae. aegypti temephos resistant strain, named RecR, through microarray analysis. We utilized a custom ‘Ae. aegypti detox chip’ and validated microarray data through RT-PCR comparing susceptible and resistant individuals. In addition, we analyzed gene expression in 4th instar larvae from a reversed susceptible strain (RecRev), exposed and unexposed to temephos. The results obtained revealed a set of 13 and 6 genes significantly over expressed in resistant adult mosquitoes and larvae, respectively. One of these genes, the cytochrome P450 CYP6N12, was up-regulated in both stages. RT-PCR confirmed the microarray results and, additionally, showed no difference in gene expression between temephos exposed and unexposed RecRev mosquitoes. This suggested that the differences in the transcript profiles among the strains are heritable due to a selection process and are not caused by immediate insecticide exposure. Reversal of temephos resistance was demonstrated and, importantly, there was a positive correlation between a decrease in the resistance ratio and an accompanying decrease in the expression levels of previously over expressed genes. Some of the genes identified here have also been implicated in metabolic resistance in other mosquito species and insecticide resistant populations of Ae. aegypti. Conclusions/Significance The identification of gene expression signatures associated to insecticide resistance and their suppression could greatly aid the development of improved strategies of vector control. PMID:22870187

  11. Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain.

    PubMed

    Guerrero-Ramos, Emilia; Cordero, Jorge; Molina-González, Diana; Poeta, Patrícia; Igrejas, Gilberto; Alonso-Calleja, Carlos; Capita, Rosa

    2016-02-01

    A total of 55 enterococci (45 Enterococcus faecium, 7 Enterococcus faecalis, and three Enterococcus durans) isolated from the meat of wild game animals (roe deer, boar, rabbit, pheasant, and pigeon) in North-Western Spain were tested for susceptibility to 14 antimicrobials by the disc diffusion method. All strains showed a multi-resistant phenotype (resistance to between three and 10 antimicrobials). The strains exhibited high percentages of resistance to erythromycin (89.1%), tetracycline (67.3%), ciprofloxacin (92.7%), nitrofurantoin (67.3%), and quinupristin-dalfopristin (81.8%). The lowest values (9.1%) were observed for high-level resistance to gentamicin, kanamycin, and streptomycin. The average number of resistances per strain was 5.8 for E. faecium isolates, 7.9 for E. faecalis, and 5.7 for E. durans. Genes encoding antimicrobial resistance and virulence were studied by polymerase chain reaction. A total of 15 (57.7%) of the 26 vancomycin-resistant isolates harboured the vanA gene. Other resistance genes detected included vanB, erm(B) and/or erm(C), tet(L) and/or tet(M), acc(6')-aph(2″), and aph(3')-IIIa in strains resistant to vancomycin, erythromycin, tetracycline, gentamicin, and kanamycin, respectively. Specific genes of the Tn5397 transposon were detected in 54.8% of the tet(M)-positive enterococci. Nine virulence factors (gelE, agg, ace, cpd, frs, esp, hyl, efaAfs and efaAfm) were studied. All virulence genes, with the exception of the frs gene, were found to be present in the enterococcal isolates. At least one virulence gene was detected in 20.0% of E. faecium, 71.4% of E. faecalis and 33.3% of E. durans isolates, with ace and cpd being the most frequently detected genes (6 isolates each). This suggests that wild game meat might play a role in the spreading through the food chain of enterococci with antimicrobial resistance and virulence determinants to humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A Novel aadA Aminoglycoside Resistance Gene in Bovine and Porcine Pathogens.

    PubMed

    Cameron, Andrew; Klima, Cassidy L; Ha, Reuben; Gruninger, Robert J; Zaheer, Rahat; McAllister, Tim A

    2018-01-01

    A novel variant of the AAD(3″) class of aminoglycoside-modifying enzymes was discovered in fatal bovine respiratory disease-associated pathogens Pasteurella multocida and Histophilus somni . The aadA31 gene encodes a spectinomycin/streptomycin adenylyltransferase and was located in a variant of the integrative and conjugative element ICE Mh1 , a mobile genetic element transmissible among members of the family Pasteurellaceae . The gene was also detected in Mannheimia haemolytica from a case of porcine pneumonia and in Moraxella bovoculi from a case of keratoconjunctivitis. IMPORTANCE Aminoglycosides are important antimicrobials used worldwide for prophylaxis and/or therapy in multiple production animal species. The emergence of new resistance genes jeopardizes current pathogen detection and treatment methods. The risk of resistance gene transfer to other animal and human pathogens is elevated when resistance genes are carried by mobile genetic elements. This study identified a new variant of a spectinomycin/streptomycin resistance gene harbored in a self-transmissible mobile element. The gene was also present in four different bovine pathogen species.

  13. A Novel aadA Aminoglycoside Resistance Gene in Bovine and Porcine Pathogens

    PubMed Central

    Cameron, Andrew; Klima, Cassidy L.; Ha, Reuben; Gruninger, Robert J.; Zaheer, Rahat

    2018-01-01

    ABSTRACT A novel variant of the AAD(3″) class of aminoglycoside-modifying enzymes was discovered in fatal bovine respiratory disease-associated pathogens Pasteurella multocida and Histophilus somni. The aadA31 gene encodes a spectinomycin/streptomycin adenylyltransferase and was located in a variant of the integrative and conjugative element ICEMh1, a mobile genetic element transmissible among members of the family Pasteurellaceae. The gene was also detected in Mannheimia haemolytica from a case of porcine pneumonia and in Moraxella bovoculi from a case of keratoconjunctivitis. IMPORTANCE Aminoglycosides are important antimicrobials used worldwide for prophylaxis and/or therapy in multiple production animal species. The emergence of new resistance genes jeopardizes current pathogen detection and treatment methods. The risk of resistance gene transfer to other animal and human pathogens is elevated when resistance genes are carried by mobile genetic elements. This study identified a new variant of a spectinomycin/streptomycin resistance gene harbored in a self-transmissible mobile element. The gene was also present in four different bovine pathogen species. PMID:29507894

  14. Identification and fine-mapping of Xa33, a novel gene for resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Kumar, P Natraj; Sujatha, K; Laha, G S; Rao, K Srinivasa; Mishra, B; Viraktamath, B C; Hari, Y; Reddy, C S; Balachandran, S M; Ram, T; Madhav, M Sheshu; Rani, N Shobha; Neeraja, C N; Reddy, G Ashok; Shaik, H; Sundaram, R M

    2012-02-01

    Broadening of the genetic base for identification and transfer of genes for resistance to insect pests and diseases from wild relatives of rice is an important strategy in resistance breeding programs across the world. An accession of Oryza nivara, International Rice Germplasm Collection (IRGC) accession number 105710, was identified to exhibit high level and broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. In order to study the genetics of resistance and to tag and map the resistance gene or genes present in IRGC 105710, it was crossed with the bacterial blight (BB)-susceptible varieties 'TN1' and 'Samba Mahsuri' (SM) and then backcrossed to generate backcross mapping populations. Analysis of these populations and their progeny testing revealed that a single dominant gene controls resistance in IRGC 105710. The BC(1)F(2) population derived from the cross IRGC 105710/TN1//TN1 was screened with a set of 72 polymorphic simple-sequence repeat (SSR) markers distributed across the rice genome and the resistance gene was coarse mapped on chromosome 7 between the SSR markers RM5711 and RM6728 at a genetic distance of 17.0 and 19.3 centimorgans (cM), respectively. After analysis involving 49 SSR markers located between the genomic interval spanned by RM5711 and RM6728, and BC(2)F(2) population consisting of 2,011 individuals derived from the cross IRGC 105710/TN1//TN1, the gene was fine mapped between two SSR markers (RMWR7.1 and RMWR7.6) located at a genetic distance of 0.9 and 1.2 cM, respectively, from the gene and flanking it. The linkage distances were validated in a BC(1)F(2) mapping population derived from the cross IRGC 105710/SM//2 × SM. The BB resistance gene present in the O. nivara accession was identified to be novel based on its unique map location on chromosome 7 and wider spectrum of BB resistance; this gene has been named Xa33. The genomic region between the two closely flanking SSR markers was in silico analyzed for putatively expressed candidate genes. In total, eight genes were identified in the region and a putative gene encoding serinethreonine kinase appears to be a candidate for the Xa33 gene.

  15. EPSPS Gene Copy Number and Whole-Plant Glyphosate Resistance Level in Kochia scoparia

    PubMed Central

    Gaines, Todd A.; Barker, Abigail L.; Patterson, Eric L.; Westra, Philip; Westra, Eric P.; Wilson, Robert G.; Jha, Prashant; Kumar, Vipan

    2016-01-01

    Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebraska, and Montana. Glyphosate resistance was also confirmed in K. scoparia accessions collected from wheat-fallow fields in Montana. All GR samples had increased EPSPS gene copy number, with median population values up to 11 from sugarbeet fields and up to 13 in Montana wheat-fallow fields. The results indicate that glyphosate susceptibility can be accurately diagnosed using EPSPS gene copy number. PMID:27992501

  16. Members of the Genera Paenibacillus and Rhodococcus Harbor Genes Homologous to Enterococcal Glycopeptide Resistance Genes vanA and vanB

    PubMed Central

    Guardabassi, L.; Christensen, H.; Hasman, H.; Dalsgaard, A.

    2004-01-01

    Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative d-Ala:d-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related to vanA (92 and 87%) and flanked by genes homologous to vanH and vanX in vanA operons. PMID:15561881

  17. Members of the genera Paenibacillus and Rhodococcus harbor genes homologous to enterococcal glycopeptide resistance genes vanA and vanB.

    PubMed

    Guardabassi, L; Christensen, H; Hasman, H; Dalsgaard, A

    2004-12-01

    Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative D-Ala:D-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related to vanA (92 and 87%) and flanked by genes homologous to vanH and vanX in vanA operons.

  18. Characteristics of carboxylesterase genes and their expression-level between acaricide-susceptible and resistant Tetranychus cinnabarinus (Boisduval).

    PubMed

    Wei, Peng; Shi, Li; Shen, Guangmao; Xu, Zhifeng; Liu, Jialu; Pan, Yu; He, Lin

    2016-07-01

    Carboxylesterases (CarEs) play important roles in metabolism and detoxification of dietary and environmental xenobiotics in insects and mites. On the basis of the Tetranychuscinnabarinus transcriptome dataset, 23 CarE genes (6 genes are full sequence and 17 genes are partial sequence) were identified. Synergist bioassay showed that CarEs were involved in acaricide detoxification and resistance in fenpropathrin- (FeR) and cyflumetofen-resistant (CyR) strains. In order to further reveal the relationship between CarE gene's expression and acaricide-resistance in T. cinnabarinus, we profiled their expression in susceptible (SS) and resistant strains (FeR, and CyR). There were 8 and 4 over-expressed carboxylesterase genes in FeR and CyR, respectively, from which the over-expressions were detected at mRNA level, but not DNA level. Pesticide induction experiment elucidated that 4 of 8 and 2 of 4 up-regulated genes were inducible with significance in FeR and CyR strains, respectively, but they could not be induced in SS strain, which indicated that these genes became more enhanced and effective to withstand the pesticides' stress in resistant T. cinnabarinus. Most expression-changed and all inducible genes possess the Abhydrolase_3 motif, which is a catalytic domain for hydrolyzing. As a whole, these findings in current study provide clues for further elucidating the function and regulation mechanism of these carboxylesterase genes in T. cinnabarinus' resistance formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Overexpression of antibiotic resistance genes in hospital effluents over time.

    PubMed

    Rowe, Will P M; Baker-Austin, Craig; Verner-Jeffreys, David W; Ryan, Jim J; Micallef, Christianne; Maskell, Duncan J; Pearce, Gareth P

    2017-06-01

    Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ  = 0.9, two-tailed P  <0.0001) and farm ( ρ  = 0.5, two-tailed P   <0.0001) effluents and that two β-lactam resistance genes ( bla GES and bla OXA ) were overexpressed in all hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  20. Overexpression of antibiotic resistance genes in hospital effluents over time

    PubMed Central

    Baker-Austin, Craig; Verner-Jeffreys, David W.; Ryan, Jim J.; Micallef, Christianne; Maskell, Duncan J.; Pearce, Gareth P.

    2017-01-01

    Objectives: Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Methods: Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. Results: We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital (ρ = 0.9, two-tailed P <0.0001) and farm (ρ = 0.5, two-tailed P  <0.0001) effluents and that two β-lactam resistance genes (blaGES and blaOXA) were overexpressed in all hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. Conclusions: We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source. PMID:28175320

  1. Mapping and Genetic Structure Analysis of the Anthracnose Resistance Locus Co-1HY in the Common Bean (Phaseolus vulgaris L.).

    PubMed

    Chen, Mingli; Wu, Jing; Wang, Lanfen; Mantri, Nitin; Zhang, Xiaoyan; Zhu, Zhendong; Wang, Shumin

    2017-01-01

    Anthracnose is a destructive disease of the common bean (Phaseolus vulgaris L.). The Andean cultivar Hongyundou has been demonstrated to possess strong resistance to anthracnose race 81. To study the genetics of this resistance, the Hongyundou cultivar was crossed with a susceptible genotype Jingdou. Segregation of resistance for race 81 was assessed in the F2 population and F2:3 lines under controlled conditions. Results indicate that Hongyundou carries a single dominant gene for anthracnose resistance. An allele test by crossing Hongyundou with another resistant cultivar revealed that the resistance gene is in the Co-1 locus (therefore named Co-1HY). The physical distance between this locus and the two flanking markers was 46 kb, and this region included four candidate genes, namely, Phvul.001G243500, Phvul.001G243600, Phvul.001G243700 and Phvul.001G243800. These candidate genes encoded serine/threonine-protein kinases. Expression analysis of the four candidate genes in the resistant and susceptible cultivars under control condition and inoculated treatment revealed that all the four candidate genes are expressed at significantly higher levels in the resistant genotype than in susceptible genotype. Phvul.001G243600 and Phvul.001G243700 are expressed nearly 15-fold and 90-fold higher in the resistant genotype than in the susceptible parent before inoculation, respectively. Four candidate genes will provide useful information for further research into the resistance mechanism of anthracnose in common bean. The closely linked flanking markers identified here may be useful for transferring the resistance allele Co-1HY from Hongyundou to elite anthracnose susceptible common bean lines.

  2. Mapping and Genetic Structure Analysis of the Anthracnose Resistance Locus Co-1HY in the Common Bean (Phaseolus vulgaris L.)

    PubMed Central

    Wang, Lanfen; Mantri, Nitin; Zhang, Xiaoyan; Zhu, Zhendong; Wang, Shumin

    2017-01-01

    Anthracnose is a destructive disease of the common bean (Phaseolus vulgaris L.). The Andean cultivar Hongyundou has been demonstrated to possess strong resistance to anthracnose race 81. To study the genetics of this resistance, the Hongyundou cultivar was crossed with a susceptible genotype Jingdou. Segregation of resistance for race 81 was assessed in the F2 population and F2:3 lines under controlled conditions. Results indicate that Hongyundou carries a single dominant gene for anthracnose resistance. An allele test by crossing Hongyundou with another resistant cultivar revealed that the resistance gene is in the Co-1 locus (therefore named Co-1HY). The physical distance between this locus and the two flanking markers was 46 kb, and this region included four candidate genes, namely, Phvul.001G243500, Phvul.001G243600, Phvul.001G243700 and Phvul.001G243800. These candidate genes encoded serine/threonine-protein kinases. Expression analysis of the four candidate genes in the resistant and susceptible cultivars under control condition and inoculated treatment revealed that all the four candidate genes are expressed at significantly higher levels in the resistant genotype than in susceptible genotype. Phvul.001G243600 and Phvul.001G243700 are expressed nearly 15-fold and 90-fold higher in the resistant genotype than in the susceptible parent before inoculation, respectively. Four candidate genes will provide useful information for further research into the resistance mechanism of anthracnose in common bean. The closely linked flanking markers identified here may be useful for transferring the resistance allele Co-1HY from Hongyundou to elite anthracnose susceptible common bean lines. PMID:28076395

  3. Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana

    PubMed Central

    Müller, Pie; Donnelly, Martin J; Ranson, Hilary

    2007-01-01

    Background Mosquito resistance to the pyrethroid insecticides used to treat bednets threatens the sustainability of malaria control in sub-Saharan Africa. While the impact of target site insensitivity alleles is being widely discussed the implications of insecticide detoxification – though equally important – remains elusive. The successful development of new tools for malaria intervention and management requires a comprehensive understanding of insecticide resistance, including metabolic resistance mechanisms. Although three enzyme families (cytochrome P450s, glutathione S-transferases and carboxylesterases) have been widely associated with insecticide detoxification the role of individual enzymes is largely unknown. Results Here, constitutive expression patterns of genes putatively involved in conferring pyrethroid resistance was investigated in a recently colonised pyrethroid resistant Anopheles gambiae strain from Odumasy, Southern Ghana. RNA from the resistant strain and a standard laboratory susceptible strain, of both sexes was extracted, reverse transcribed and labelled with either Cy3- or Cy5-dye. Labelled cDNA was co-hybridised to the detox chip, a custom-made microarray containing over 230 A. gambiae gene fragments predominantly from enzyme families associated with insecticide resistance. After hybridisation, Cy3- and Cy5-signal intensities were measured and compared gene by gene. In both females and males of the resistant strain the cytochrome P450s CYP6Z2 and CYP6M2 are highly over-expressed along with a member of the superoxide dismutase (SOD) gene family. Conclusion These genes differ from those found up-regulated in East African strains of pyrethroid resistant A. gambiae and constitute a novel set of candidate genes implicated in insecticide detoxification. These data suggest that metabolic resistance may have multiple origins in A. gambiae, which has strong implications for the management of resistance. PMID:17261191

  4. The Use of a Combined Bioinformatics Approach to Locate Antibiotic Resistance Genes on Plasmids From Whole Genome Sequences of Salmonella enterica Serovars From Humans in Ghana.

    PubMed

    Kudirkiene, Egle; Andoh, Linda A; Ahmed, Shahana; Herrero-Fresno, Ana; Dalsgaard, Anders; Obiri-Danso, Kwasi; Olsen, John E

    2018-01-01

    In the current study, we identified plasmids carrying antimicrobial resistance genes in draft whole genome sequences of 16 selected Salmonella enterica isolates representing six different serovars from humans in Ghana. The plasmids and the location of resistance genes in the genomes were predicted using a combination of PlasmidFinder, ResFinder, plasmidSPAdes and BLAST genomic analysis tools. Subsequently, S1-PFGE was employed for analysis of plasmid profiles. Whole genome sequencing confirmed the presence of antimicrobial resistance genes in Salmonella isolates showing multidrug resistance phenotypically. ESBL, either bla TEM52-B or bla CTX-M15 were present in two cephalosporin resistant isolates of S . Virchow and S . Poona, respectively. The systematic genome analysis revealed the presence of different plasmids in different serovars, with or without insertion of antimicrobial resistance genes. In S . Enteritidis, resistance genes were carried predominantly on plasmids of IncN type, in S . Typhimurium on plasmids of IncFII(S)/IncFIB(S)/IncQ1 type. In S . Virchow and in S . Poona, resistance genes were detected on plasmids of IncX1 and TrfA/IncHI2/IncHI2A type, respectively. The latter two plasmids were described for the first time in these serovars. The combination of genomic analytical tools allowed nearly full mapping of the resistance plasmids in all Salmonella strains analyzed. The results suggest that the improved analytical approach used in the current study may be used to identify plasmids that are specifically associated with resistance phenotypes in whole genome sequences. Such knowledge would allow the development of rapid multidrug resistance tracking tools in Salmonella populations using WGS.

  5. [Effects of long-term application of pig manure containing residual tetracycline on the formation of drug-resistant bacteria and resistance genes].

    PubMed

    Zhang, Jun; Yang, Xiao-Hong; Ge, Feng; Wang, Na; Jiao, Shao-Jun; Jiao, Shao-Jun

    2014-06-01

    The effect of residual veterinary tetracycline on the formation of drug-resistant bacteria and corresponding resistance genes was investigated. During the research, the soil with long-term application of pig manure containing residual tetracycline was collected in autumn and summer respectively in the farmland around a certain pig farm in Shuyang City, Huang Huai area, north of Jiangsu province. At the same time, soils without application of pig manure in the farmland of this area were collected as the reference sample. Composition of drug-resistant bacteria in all soil samples was analyzed and three common tetracycline-resistance genes (tetA, tetC, tetE) were studied by PCR as well. During the research, 59 drug-resistant bacteria belonging to 13 bacterial genus respectively were separated from the soil sample collected in autumn while 35 drug- resistant bacteria belonging to 10 bacterial genus respectively were separated from the soil sample collected in summer and as for the reference sample, 3 drug-resistant bacteria belonging to 1 bacterial genus (Streptomyces) were separated with pathogenic bacteria up to 38.14% of total drug-resistant bacteria. PCR result showed that resistance genes were detected in all drug-resistant bacteria and tetC accounted for the most. At the same time, the residual tetracycline in the soil which was in a range of 41.1-61.9 microg x kg(-1) correlated with the amount of resistance genes (4.63 x 10(5)-37.42 x 10(5) copies x g(-1)). Besides, the climate was found accelerating the formation of drug-resistant bacteria and resistance genes.

  6. Characterization and immune response expression of the Rig-I-like receptor mda5 in common carp Cyprinus carpio.

    PubMed

    Zhu, Y Y; Xing, W X; Shan, S J; Zhang, S Q; Li, Y Q; Li, T; An, L; Yang, G W

    2016-06-01

    In this study, the full-length complementary (c)DNA of common carp Cyprinus carpio melanoma differentiation-associated gene 5 (mda5) was cloned. The complete open reading frame of C. carpio mda5 contained 2982 bp and encodes 993 amino acids. The deduced amino acids contained six functional domains: two caspase activation and recruitment domains (CARD), a conserved restriction domain of bacterial type III restriction enzyme (ResIII), a DExD/H box-containing domain (DEXDc), a helicase super family C-terminal domain (HELICc) and a C-terminal regulatory domain (RD). The mda5 gene was expressed in all tested tissues, with high levels in the gills and spleen, while lower expressed in gonad and blood. The copy numbers of mda5 were increased in the liver, spleen, head kidney and the mucosal-associated immune tissues such as the foregut, hindgut, gills and skin after stimulation with polyinosinic polycytidylic [poly(I:C)] and Aeromonas hydrophila. The myxovirus resistance gene (mx) messenger (m)RNA levels in the spleen, head kidney, foregut and gills were significantly up-regulated after poly(I:C) injection. When injected with poly(I:C), mda5 and mx transcripts were also significantly induced in vitro. These results implied that mda5 might be involved in both antiviral and antibacterial innate immune processes in C. carpio. © 2016 The Authors. Journal of Fish Biology © 2016 The Fisheries Society of the British Isles. © 2016 The Fisheries Society of the British Isles.

  7. Specificity of a Rust Resistance Suppressor on 7DL in the Spring Wheat Cultivar Canthatch.

    PubMed

    Talajoor, Mina; Jin, Yue; Wan, Anmin; Chen, Xianming; Bhavani, Sridhar; Tabe, Linda; Lagudah, Evans; Huang, Li

    2015-04-01

    The spring wheat 'Canthatch' has been shown to suppress stem rust resistance genes in the background due to the presence of a suppressor gene located on the long arm of chromosome 7D. However, it is unclear whether the suppressor also suppresses resistance genes against leaf rust and stripe rust. In this study, we investigated the specificity of the resistance suppression. To determine whether the suppression is genome origin specific, chromosome location specific, or rust species or race specific, we introduced 11 known rust resistance genes into the Canthatch background, including resistance to leaf, stripe, or stem rusts, originating from A, B, or D genomes and located on different chromosome homologous groups. F1 plants of each cross were tested with the corresponding rust race, and the infection types were scored and compared with the parents. Our results show that the Canthatch 7DL suppressor only suppressed stem rust resistance genes derived from either the A or B genome, and the pattern of the suppression is gene specific and independent of chromosomal location.

  8. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis.

    PubMed

    Zaw, Myo T; Emran, Nor A; Lin, Zaw

    2018-04-26

    Rifampicin (RIF) plays a pivotal role in the treatment of tuberculosis due to its bactericidal effects. Because the action of RIF is on rpoB gene encoding RNA polymerase β subunit, 95% of RIF resistant mutations are present in rpoB gene. The majority of the mutations in rpoB gene are found within an 81bp RIF-resistance determining region (RRDR). Literatures on RIF resistant mutations published between 2010 and 2016 were thoroughly reviewed. The most commonly mutated codons in RRDR of rpoB gene are 531, 526 and 516. The possibilities of absence of mutation in RRDR of rpoB gene in MDR-TB isolates in few studies was due to existence of other rare rpoB mutations outside RRDR or different mechanism of rifampicin resistance. Molecular methods which can identify extensive mutations associated with multiple anti-tuberculous drugs are in urgent need so that the research on drug resistant mutations should be extended. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Appearance of drug resistance-associated mutations in human immunodeficiency virus type 1 protease and reverse transcriptase derived from drug-treated Indonesian patients.

    PubMed

    Khairunisa, Siti Qamariyah; Kotaki, Tomohiro; Witaningrum, Adiana Mutamsari; Yunifiar M, Muhammad Qushai; Sukartiningrum, Septhia Dwi; Nasronudin; Kameoka, Masanori

    2015-02-01

    Although HIV-1 drug resistance is a major obstacle in Indonesia, information on drug resistance is limited. In this study, the viral subtype and appearance of drug resistance mutations in the HIV-1 protease (PR) and reverse transcriptase (RT) genes were determined among drug-treated, HIV-1-infected patients in Surabaya. HIV-1 patients who received antiretroviral therapy (ART) more than 2 years were randomly recruited regardless of the viral load or ART failure. Fifty-eight HIV-1 PR genes and 53 RT genes were sequenced. CRF01_AE viruses were identified as the predominant strain. Major drug resistance mutations were not detected in the PR genes. In contrast, 37.7% (20/53) of the participants had one or more major drug resistance mutations in the RT genes, predominantly M184V (28.3%), K103N (11.3%), and thymidine analogue mutations (TAMs) (20.8%). The high prevalence of drug resistance mutations in RT genes indicated the necessity of monitoring the effectiveness of ART in Indonesia.

  10. Rmg7, a New Gene for Resistance to Triticum Isolates of Pyricularia oryzae Identified in Tetraploid Wheat.

    PubMed

    Tagle, Analiza Grubanzo; Chuma, Izumi; Tosa, Yukio

    2015-04-01

    A single gene for resistance, designated Rmg7 (Resistance to Magnaporthe grisea 7), was identified in a tetraploid wheat accession, St24 (Triticum dicoccum, KU120), against Br48, a Triticum isolate of Pyricularia oryzae. Two other wheat accessions, St17 (T. dicoccum, KU112) and St25 (T. dicoccum, KU122), were also resistant against Br48 and showed a similar disease reaction pattern to St24. Crosses between these resistant accessions yielded no susceptible F2 seedlings, suggesting that St24, St17, and St25 carry the same resistance gene. Furthermore, a single avirulence gene corresponding to Rmg7 was detected in a segregation analysis of random F1 progenies between Br48 and MZ5-1-6, an Eleusine isolate virulent to St24 at a higher temperature. This avirulence gene was recognized not only by St24, but also by St17 and St25, thus supporting the preceding results indicating that all three accessions carry Rmg7. This resistance gene may have potential in future wheat breeding programs.

  11. Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis.

    PubMed

    Yu, Guotai; Champouret, Nicolas; Steuernagel, Burkhard; Olivera, Pablo D; Simmons, Jamie; Williams, Cole; Johnson, Ryan; Moscou, Matthew J; Hernández-Pinzón, Inmaculada; Green, Phon; Sela, Hanan; Millet, Eitan; Jones, Jonathan D G; Ward, Eric R; Steffenson, Brian J; Wulff, Brande B H

    2017-06-01

    We identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen. Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F 6 recombinant inbred line and an F 2 population, two genes were identified that mapped to the short arm of chromosome 1S sh , designated as Sr-1644-1Sh, and the long arm of chromosome 5S sh , designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.

  12. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica.

    PubMed

    Zhu, Fang; Li, Ting; Zhang, Lee; Liu, Nannan

    2008-09-25

    Insects may use various biochemical pathways to enable them to tolerate the lethal action of insecticides. For example, increased cytochrome P450 detoxification is known to play an important role in many insect species. Both constitutively increased expression (overexpression) and induction of P450s are thought to be responsible for increased levels of detoxification of insecticides. However, unlike constitutively overexpressed P450 genes, whose expression association with insecticide resistance has been extensively studied, the induction of P450s is less well characterized in insecticide resistance. The current study focuses on the characterization of individual P450 genes that are induced in response to permethrin treatment in permethrin resistant house flies. The expression of 3 P450 genes, CYP4D4v2, CYP4G2, and CYP6A38, was co-up-regulated by permethrin treatment in permethrin resistant ALHF house flies in a time and dose-dependent manner. Comparison of the deduced protein sequences of these three P450s from resistant ALHF and susceptible aabys and CS house flies revealed identical protein sequences. Genetic linkage analysis located CYP4D4v2 and CYP6A38 on autosome 5, corresponding to the linkage of P450-mediated resistance in ALHF, whereas CYP4G2 was located on autosome 3, where the major insecticide resistance factor(s) for ALHF had been mapped but no P450 genes reported prior to this study. Our study provides the first direct evidence that multiple P450 genes are co-up-regulated in permethrin resistant house flies through the induction mechanism, which increases overall expression levels of P450 genes in resistant house flies. Taken together with the significant induction of CYP4D4v2, CYP4G2, and CYP6A38 expression by permethrin only in permethrin resistant house flies and the correlation of the linkage of the genes with resistance and/or P450-mediated resistance in resistant ALHF house flies, this study sheds new light on the functional importance of P450 genes in response to insecticide treatment, detoxification of insecticides, the adaptation of insects to their environment, and the evolution of insecticide resistance.

  13. Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome.

    PubMed

    Hartmann, Erica M; Hickey, Roxana; Hsu, Tiffany; Betancourt Román, Clarisse M; Chen, Jing; Schwager, Randall; Kline, Jeff; Brown, G Z; Halden, Rolf U; Huttenhower, Curtis; Green, Jessica L

    2016-09-20

    Antibiotic resistance is increasingly widespread, largely due to human influence. Here, we explore the relationship between antibiotic resistance genes and the antimicrobial chemicals triclosan, triclocarban, and methyl-, ethyl-, propyl-, and butylparaben in the dust microbiome. Dust samples from a mixed-use athletic and educational facility were subjected to microbial and chemical analyses using a combination of 16S rRNA amplicon sequencing, shotgun metagenome sequencing, and liquid chromatography tandem mass spectrometry. The dust resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database (CARD) from the metagenomes of each sample using the Short, Better Representative Extract Data set (ShortBRED). The three most highly abundant antibiotic resistance genes were tet(W), blaSRT-1, and erm(B). The complete dust resistome was then compared against the measured concentrations of antimicrobial chemicals, which for triclosan ranged from 0.5 to 1970 ng/g dust. We observed six significant positive associations between the concentration of an antimicrobial chemical and the relative abundance of an antibiotic resistance gene, including one between the ubiquitous antimicrobial triclosan and erm(X), a 23S rRNA methyltransferase implicated in resistance to several antibiotics. This study is the first to look for an association between antibiotic resistance genes and antimicrobial chemicals in dust.

  14. Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.

    PubMed

    Panwar, Vinay; Bakkeren, Guus

    2017-01-01

    Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.

  15. [Mechanisms of endogenous drug resistance acquisition by spontaneous chromosomal gene mutation].

    PubMed

    Fukuda, H; Hiramatsu, K

    1997-05-01

    Endogenous resistance in bacteria is caused by a change or loss of function and generally genetically recessive. However, this type of resistance acquisition are now prevalent in clinical setting. Chromosomal genes that afford endogenous resistance are the genes correlated with the target of the drug, the drug inactivating enzymes, and permeability of the molecules including the antibacterial agents. Endogenous alteration of the drug target are mediated by the spontaneous mutation of their structural gene. This mutation provides much lower affinity of the drugs for the target. Gene expression of the inactivating enzymes, such as class C beta-lactamase, is generally regulated by regulatory genes. Spontaneous mutations in the regulatory genes cause constitutive enzyme production and provides the resistant to the agent which is usually stable for such enzymes. Spontaneous mutation in the structural gene gives the enzyme extra-spectrum substrate specificity, like ESBL (Extra-Spectrum-beta-Lactamase). Expression of structural genes encoding the permeability systems are also regulated by some regulatory genes. The spontaneous mutation of the regulatory genes reduce an amount of porin protein. This mutation causes much lower influx of the drug in the cell. Spontaneous mutation in promoter region of the structural gene of efflux protein was observed. This mutation raised the gene transcription and overproduced efflux protein. This protein progresses the drug efflux from the cell.

  16. Phenotypical and Genotypical Antimicrobial Resistance of Coagulase-negative staphylococci Isolated from Cow Mastitis.

    PubMed

    Klimiene, I; Virgailis, M; Pavilonis, A; Siugzdiniene, R; Mockeliunas, R; Ruzauskas, M

    2016-09-01

    The objectives of this study were to determine the prevalence and antimicrobial resistance of coagulase-negative staphylococci (CNS) isolated from dairy cows with subclinical mastitis. Antimicrobial resistance in staphylococci were evaluated by breakpoint values specific to the species (EU-CAST). The presence of resistance-encoding genes was detected by multiplex PCR. A total of 191 CNS isolates were obtained. The CNS isolates were typically resistant to penicillin (67.4%), tetracyc-line (18.9%), and erythromycin (13.7%). CNS isolates (78.0%) were resistant to at least one antimicrobial compound, and 22.0% were multiresistant. The multiresistant isolates were predominantly Staphylococcus chromogenes (28.6%), Staphylococcus warneri (19%) and Staphylococcus haemolyticus (14.3%). According to MIC pattern data, multiresistant isolates showed the highest resistance (p<0.05) rates to penicillin (85.7%), tetracycline (66.7%), and erythromycin (48.2%), but all of them were sensitive to daptomycin, oxacillin, qiunupristin/dalfopristin, and vancomycin. S. chromogenes (9.5%), S. haemolyticus (4.8%), and S. capitis ss capitis (2.4%) strains were resistant to methicillin; their resistance to oxacillin and penicillin was more than 8 mg/l. A high rate of resistance to penicillin was linked to a blaZ gene found in 66.6% of the isolated multiresistant CNS strains. Resistance to tetracycline via the tetK (38.1%) gene and penicillin via the mecA (23.8%) gene were detected less frequently. Gene msrAB was responsible for macrolides and lincosamides resistance and detected in 28.6% of the CNS isolates. Antimicrobial resistance genes were identified more frequently in S. epidermidis, S. chromogenes, and S. warneri.

  17. Identification of dfrA14 in two distinct plasmids conferring trimethoprim resistance in Actinobacillus pleuropneumoniae

    PubMed Central

    Bossé, Janine T.; Li, Yanwen; Walker, Stephanie; Atherton, Tom; Fernandez Crespo, Roberto; Williamson, Susanna M.; Rogers, Jon; Chaudhuri, Roy R.; Weinert, Lucy A.; Oshota, Olusegun; Holden, Matt T. G.; Maskell, Duncan J.; Tucker, Alexander W.; Wren, Brendan W.; Rycroft, Andrew N.; Langford, Paul R.

    2015-01-01

    Objectives The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. Methods Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. Results A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. Conclusions This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial. PMID:25957382

  18. Contribution of putative efflux pump genes to isoniazid resistance in clinical isolates of Mycobacterium tuberculosis.

    PubMed

    Narang, Anshika; Giri, Astha; Gupta, Shraddha; Garima, Kushal; Bose, Mridula; Varma-Basil, Mandira

    2017-01-01

    Isoniazid (INH) resistance in Mycobacterium tuberculosis has been mainly attributed to mutations in katG (64%) and inhA (19%). However, 20%-30% resistance to INH cannot be explained by mutations alone. Hence, other mechanisms besides mutations may play a significant role in providing drug resistance. Here, we explored the role of 24 putative efflux pump genes conferring INH-resistance in M. tuberculosis. Real-time expression profiling of the efflux pump genes was performed in five INH-susceptible and six high-level INH-resistant clinical isolates of M. tuberculosis exposed to the drug. Isolates were also analyzed for mutations in katG and inhA. Four high-level INH-resistant isolates (minimum inhibitory concentration [MIC] ≥2.5 mg/L) with mutations at codon 315 (AGC-ACC) of katG showed upregulation of one of the efflux genes Rv1634, Rv0849, efpA, or p55. Another high-level INH-resistant isolate (MIC 1.5 mg/L), with no mutations at katG or inhA overexpressed 8/24 efflux genes, namely, Rv1273c, Rv0194, Rv1634, Rv1250, Rv3823c, Rv0507, jefA, and p55. Five of these, namely, Rv0194, Rv1634, Rv1250, Rv0507, and p55 were induced only in resistant isolates. The high number of efflux genes overexpressed in an INH-resistant isolate with no known INH resistance associated mutations, suggests a role for efflux pumps in resistance to this antituberculous agent, with the role of Rv0194 and Rv0507 in INH resistance being reported for the first time.

  19. Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide

    PubMed Central

    Dusfour, Isabelle; Zorrilla, Pilar; Guidez, Amandine; Issaly, Jean; Girod, Romain; Guillaumot, Laurent; Robello, Carlos; Strode, Clare

    2015-01-01

    Background Aedes aegypti is a cosmopolite mosquito, vector of arboviruses. The worldwide studies of its insecticide resistance have demonstrated a strong loss of susceptibility to pyrethroids, the major class of insecticide used for vector control. French overseas territories such as French Guiana (South America), Guadeloupe islands (Lesser Antilles) as well as New Caledonia (Pacific Ocean), have encountered such resistance. Methodology/Principal Findings We initiated a research program on the pyrethroid resistance in French Guiana, Guadeloupe and New Caledonia. Aedes aegypti populations were tested for their deltamethrin resistance level then screened by an improved microarray developed to specifically study metabolic resistance mechanisms. Cytochrome P450 genes were implicated in conferring resistance. CYP6BB2, CYP6M11, CYP6N12, CYP9J9, CYP9J10 and CCE3 genes were upregulated in the resistant populations and were common to other populations at a regional scale. The implication of these genes in resistance phenomenon is therefore strongly suggested. Other genes from detoxification pathways were also differentially regulated. Screening for target site mutations on the voltage-gated sodium channel gene demonstrated the presence of I1016 and C1534. Conclusion /significance This study highlighted the presence of a common set of differentially up-regulated detoxifying genes, mainly cytochrome P450 genes in all three populations. GUA and GUY populations shared a higher number of those genes compared to CAL. Two kdr mutations well known to be associated to pyrethroid resistance were also detected in those two populations but not in CAL. Different selective pressures and genetic backgrounds can explain such differences. These results are also compared with those obtained from other parts of the world and are discussed in the context of integrative research on vector competence. PMID:26588076

  20. Clonality, virulence and antimicrobial resistance of enteroaggregative Escherichia coli from Mirzapur, Bangladesh

    PubMed Central

    Chattaway, Marie Anne; Day, Michaela; Mtwale, Julia; White, Emma; Rogers, James; Day, Martin; Powell, David; Ahmad, Marwa; Harris, Ross; Talukder, Kaisar Ali; Wain, John; Jenkins, Claire; Cravioto, Alejandro

    2017-01-01

    Purpose This study investigates the virulence and antimicrobial resistance in association with common clonal complexes (CCs) of enteroaggregative Escherichia coli (EAEC) isolated from Bangladesh. The aim was to determine whether specific CCs were more likely to be associated with putative virulence genes and/or antimicrobial resistance. Methodology The presence of 15 virulence genes (by PCR) and susceptibility to 18 antibiotics were determined for 151 EAEC isolated from cases and controls during an intestinal infectious disease study carried out between 2007–2011 in the rural setting of Mirzapur, Bangladesh (Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH et al. Clin Infect Dis 2012;55:S232–S245). These data were then analysed in the context of previously determined serotypes and clonal complexes defined by multi-locus sequence typing. Results Overall there was no association between the presence of virulence or antimicrobial resistance genes in isolates of EAEC from cases versus controls. However, when stratified by clonal complex (CC) one CC associated with cases harboured more virulence factors (CC40) and one CC harboured more resistance genes (CC38) than the average. There was no direct link between the virulence gene content and antibiotic resistance. Strains within a single CC had variable virulence and resistance gene content indicating independent and multiple gene acquisitions over time. Conclusion In Bangladesh, there are multiple clonal complexes of EAEC harbouring a variety of virulence and resistance genes. The emergence of two of the most successful clones appeared to be linked to either increased virulence (CC40) or antimicrobial resistance (CC38), but increased resistance and virulence were not found in the same clonal complexes. PMID:28945190

  1. Genome-Wide Architecture of Disease Resistance Genes in Lettuce

    PubMed Central

    Christopoulou, Marilena; Wo, Sebastian Reyes-Chin; Kozik, Alex; McHale, Leah K.; Truco, Maria-Jose; Wroblewski, Tadeusz; Michelmore, Richard W.

    2015-01-01

    Genome-wide motif searches identified 1134 genes in the lettuce reference genome of cv. Salinas that are potentially involved in pathogen recognition, of which 385 were predicted to encode nucleotide binding-leucine rich repeat receptor (NLR) proteins. Using a maximum-likelihood approach, we grouped the NLRs into 25 multigene families and 17 singletons. Forty-one percent of these NLR-encoding genes belong to three families, the largest being RGC16 with 62 genes in cv. Salinas. The majority of NLR-encoding genes are located in five major resistance clusters (MRCs) on chromosomes 1, 2, 3, 4, and 8 and cosegregate with multiple disease resistance phenotypes. Most MRCs contain primarily members of a single NLR gene family but a few are more complex. MRC2 spans 73 Mb and contains 61 NLRs of six different gene families that cosegregate with nine disease resistance phenotypes. MRC3, which is 25 Mb, contains 22 RGC21 genes and colocates with Dm13. A library of 33 transgenic RNA interference tester stocks was generated for functional analysis of NLR-encoding genes that cosegregated with disease resistance phenotypes in each of the MRCs. Members of four NLR-encoding families, RGC1, RGC2, RGC21, and RGC12 were shown to be required for 16 disease resistance phenotypes in lettuce. The general composition of MRCs is conserved across different genotypes; however, the specific repertoire of NLR-encoding genes varied particularly of the rapidly evolving Type I genes. These tester stocks are valuable resources for future analyses of additional resistance phenotypes. PMID:26449254

  2. Marker-assisted pyramiding of brown planthopper (Nilaparvata lugens Stål) resistance genes Bph1 and Bph2 on rice chromosome 12.

    PubMed

    Sharma, Prem N; Torii, Akihide; Takumi, Shigeo; Mori, Naoki; Nakamura, Chiharu

    2004-01-01

    Brown planthopper (BPH) (Nilaparvata lugens Stål) is a significant insect pest of rice (Oryza sativa L.). We constructed a gene-pyramided japonica line, in which two BPH resistance genes Bph1 and Bph2 on the long arm of chromosome 12 independently derived from two indica resistance lines were combined through the recombinant selection. The gene-pyramiding was achieved based on the previously constructed high-resolution linkage maps of the two genes. Two co-dominant and four dominant PCR-based markers flanking the loci were used to select for a homozygous recombinant line in a segregating population that was derived from a cross between the parental homozygous single-gene introgression lines. BPH bioassay showed that the resistance level of the pyramided line was equivalent to that of the Bph1-single introgression line, which showed a higher level of resistance than the Bph2-single introgression line. The pyramid line should provide a useful experimental means for studying the fine structure of the chromosomal region covering these two major BPH resistance genes.

  3. Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene in wheat.

    PubMed

    Singla, Jyoti; Lüthi, Linda; Wicker, Thomas; Bansal, Urmil; Krattinger, Simon G; Keller, Beat

    2017-01-01

    Here, we describe a strategy to improve broad-spectrum leaf rust resistance by marker-assisted combination of two partial resistance genes. One of them represents a novel partial adult plant resistance gene, named Lr75. Leaf rust caused by the fungal pathogen Puccinia triticina is a damaging disease of wheat (Triticum aestivum L.). The combination of several, additively-acting partial disease resistance genes has been proposed as a suitable strategy to breed wheat cultivars with high levels of durable field resistance. The Swiss winter wheat cultivar 'Forno' continues to show near-immunity to leaf rust since its release in the 1980s. This resistance is conferred by the presence of at least six quantitative trait loci (QTL), one of which is associated with the morphological trait leaf tip necrosis. Here, we used a marker-informed strategy to introgress two 'Forno' QTLs into the leaf rust-susceptible Swiss winter wheat cultivar 'Arina'. The resulting backcross line 'ArinaLrFor' showed markedly increased leaf rust resistance in multiple locations over several years. One of the introgressed QTLs, QLr.sfr-1BS, is located on chromosome 1BS. We developed chromosome 1B-specific microsatellite markers by exploiting the Illumina survey sequences of wheat cv. 'Chinese Spring' and mapped QLr.sfr-1BS to a 4.3 cM interval flanked by the SSR markers gwm604 and swm271. QLr.sfr-1BS does not share a genetic location with any of the described leaf rust resistance genes present on chromosome 1B. Therefore, QLr.sfr-1BS is novel and was designated as Lr75. We conclude that marker-assisted combination of partial resistance genes is a feasible strategy to increase broad-spectrum leaf rust resistance. The identification of Lr75 adds a novel and highly useful gene to the small set of known partial, adult plant leaf rust resistance genes.

  4. Antimicrobial Resistance Gene Transfer in Drug Resistant Acinetobacter Species

    USDA-ARS?s Scientific Manuscript database

    Abstract: Antibiotic resistance is rapidly developing into one of the most formidable challenges for healthcare providers and researchers alike. To combat the rapid evolution of resistance, it will be important to uncover different mechanisms that bacteria use to acquire drug resistance genes. Acine...

  5. Complementary Information Derived from CRISPR Cas9 Mediated Gene Deletion and Suppression. | Office of Cancer Genomics

    Cancer.gov

    CRISPR-Cas9 provides the means to perform genome editing and facilitates loss-of-function screens. However, we and others demonstrated that expression of the Cas9 endonuclease induces a gene-independent response that correlates with the number of target sequences in the genome. An alternative approach to suppressing gene expression is to block transcription using a catalytically inactive Cas9 (dCas9). Here we directly compare genome editing by CRISPR-Cas9 (cutting, CRISPRc) and gene suppression using KRAB-dCas9 (CRISPRi) in loss-of-function screens to identify cell essential genes.

  6. Characterization of resistance gene analogues (RGAs) in Apple (Malus 6domestica Borkh.) and their evolutionary history of the Rosaceae family

    USDA-ARS?s Scientific Manuscript database

    The family of resistance gene analogues (RGAs) with a nucleotide-binding site (NBS) domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh.) cultivar ‘Golden...

  7. Influence of tra genes of IncP and F plasmids on the mobilization of small Kanamycin resistance ColE1-Like plasmids in bacterial biofilms

    USDA-ARS?s Scientific Manuscript database

    Background: Horizontal gene transfer is a mechanism for movement of antibiotic resistance genes among bacteria. Some small kanamycin resistance (KanR) ColE1-like plasmids isolated from different serotypes of Salmonella enterica were shown to carry mobilization genes; although not self-transmissibl...

  8. Shattering a myth - Whooping cough susceptible to antibiotics.

    PubMed

    Syed, Muhammad Ali; Jamil, Bushra; Bokhari, Habib

    2016-05-01

    Bordetella parapertussis is the causative agent of a milder form of pertussis or whooping cough. Little is reported about the antibiotic resistance patterns and mechanism of drug resistance of Bordetella parapertussis. The objective of this study has been to investigate antimicrobial resistance, distribution of integrons and presence of gene cassettes to quinolones (qnr) and sulfonamides (sul) among B. parapertussis strains' isolated from Pakistan. Thirty-five (35) samples were collected from various hospitals of Pakistan from children (median age 3 years) with pertussis-like symptoms, all were tested and confirmed to be B. Parapertussis. Resistance profile of Ampicillin, Cephalexin, Sulphamethoxazole, Chloramphenicol, Ofloxacin, Nalidixic acid, Gentamycin and Erythromycin were investigated through all samples. Majority of the isolates were found to be resistant to the afore-mentioned antibiotics except erythromycin. All isolates were resistant to quinolones phenotypically, but qnr genes were detected in only 25.7% (9/35) of isolates. On the other hand, 71.4% (25/35) isolates were resistant to sulfonamides phenotypically. From these 71% strains showing phenotypical resistance, 96% (24/25) were found to possess sul genes. Only two isolates were carrying class 1 integrons, which also harbored sul gene and qnr gene cassettes. It can be safely concluded that the phenotypic resistance patterns seemed mostly independent of presence of integrons. However, interestingly both integrons harboring strains were resistant to quinolones and sulfonamides and also possessed qnr and sul genes.

  9. Verification of STS markers for leaf rust resistance genes of wheat by seven European laboratories.

    PubMed

    Błaszczyk, Lidia; Chełkowski, Jerzy; Korzun, Victor; Kraic, Jan; Ordon, Frank; Ovesná, Jaroslava; Purnhauser, Laszlo; Tar, Melinda; Vida, Gyula

    2004-01-01

    A set of Thatcher near-isogenic lines and two breeding lines were used to examine sequence tagged site (STS) markers linked to leaf rust resistance genes Lr9, Lr10, Lr19, Lr24, Lr28, Lr29, Lr35, and a simple sequenced repeat (SSR) marker for Lr39. The selected STS markers for resistance genes Lr9, Lr10, Lr19, Lr24 and Lr28 were identified in seven accessions by seven European laboratories. Near-isogenic lines of the spring wheat Thatcher were used as positive controls. Markers for resistance genes Lr9, Lr10, Lr19, Lr24 were identified in all seven laboratories as amplification products of 1100 bp, 310 bp, 130 bp and 310 bp, respectively. The STS markers linked to resistance genes Lr9, Lr10, Lr19, Lr24, Lr29, Lr35 and the SSR marker for Lr39 were robust and highly specific for these genes and will be useful in marker-assisted selection in wheat. However, the amplification product of 378 bp that corresponded with resistance gene Lr28 was detected in all accessions including genotypes lacking this gene in all seven laboratories. This marker needs to be improved.

  10. Selection of Differential Isolates of Magnaporthe oryzae for Postulation of Blast Resistance Genes.

    PubMed

    Fang, W W; Liu, C C; Zhang, H W; Xu, H; Zhou, S; Fang, K X; Peng, Y L; Zhao, W S

    2018-05-21

    A set of differential isolates of Magnaporthe oryzae is needed for the postulation of blast resistance genes in numerous rice varieties and breeding materials. In this study, the pathotypes of 1,377 M. oryzae isolates from different regions of China were determined by inoculating detached rice leaves of 24 monogenic lines. Among them, 25 isolates were selected as differential isolates based on the following characteristics: they had distinct responses on the monogenic lines, contained the minimum number of avirulence genes, were stable in pathogenicity and conidiation during consecutive culture, were consistent colony growth rate, and, together, could differentiate combinations of the 24 major blast resistance genes. Seedlings of rice cultivars were inoculated with this differential set of isolates to postulate whether they contain 1 or more than 1 of the 24 blast resistance genes. The results were consistent with those from polymerase chain reaction analysis of target resistance genes. Establishment of a standard set of differential isolates will facilitate breeding for blast resistance and improved management of rice blast disease.

  11. Genotypic and phenotypic characteristics of aminoglycoside-resistant Mycobacterium tuberculosis isolates in Latvia.

    PubMed

    Bauskenieks, Matiss; Pole, Ilva; Skenders, Girts; Jansone, Inta; Broka, Lonija; Nodieva, Anda; Ozere, Iveta; Kalvisa, Adrija; Ranka, Renate; Baumanis, Viesturs

    2015-03-01

    Mutations causing resistance to aminoglycosides, such as kanamycin (KAN), amikacin (AMK), and streptomycin, are not completely understood. In this study, polymorphisms of aminoglycoside resistance influencing genes such as rrs, eis, rpsL, and gidB in 41 drug-resistant and 17 pan-sensitive Mycobacterium tuberculosis clinical isolates in Latvia were analyzed. Mutation A1400G in rrs gene was detected in 92% isolates with high resistance level to KAN and diverse MIC level to AMK. Mutations in promoter region of eis were detected in 80% isolates with low-level MIC of KAN. The association of K43R mutation in rpsL gene, a mutation in the rrs gene at position 513, and various polymorphisms in gidB gene with distinct genetic lineages of M. tuberculosis was observed. The results of this study suggest that association of different controversial mutations of M. tuberculosis genes to the drug resistance phenotype should be done in respect to genetic lineages. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve.

    PubMed

    Martínez, Noelia; Luque, Roberto; Milani, Christian; Ventura, Marco; Bañuelos, Oscar; Margolles, Abelardo

    2018-05-15

    Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve -sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island. IMPORTANCE Bifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this, because probiotic bacteria are used for human and animal consumption, one of the safety concerns over these bacteria is the presence of antibiotic resistance genes, since the human gut is a densely populated habitat that could favor the transfer of genetic material to potential pathogens. In this study, we analyzed the genetic basis responsible for the erythromycin and clindamycin resistance phenotype of B. breve CECT7263. We were able to identify and characterize a novel gene homologous to rRNA methylase genes which confers erythromycin and clindamycin resistance. This gene seems to be very uncommon in other bifidobacteria and in the gut microbiomes of both adults and infants. Even though conjugation experiments showed the absence of transferability under in vitro conditions, it has been predicted to be located in a putative genomic island recently acquired by specific bifidobacterial strains. Copyright © 2018 American Society for Microbiology.

  13. Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei.

    PubMed

    Coram, Tristan E; Pang, Edwin C K

    2006-11-01

    Using microarray technology and a set of chickpea (Cicer arietinum L.) unigenes, grasspea (Lathyrus sativus L.) expressed sequence tags (ESTs) and lentil (Lens culinaris Med.) resistance gene analogues, the ascochyta blight (Ascochyta rabiei (Pass.) L.) resistance response was studied in four chickpea genotypes, including resistant, moderately resistant, susceptible and wild relative (Cicer echinospermum L.) genotypes. The experimental system minimized environmental effects and was conducted in reference design, in which samples from mock-inoculated controls acted as reference against post-inoculation samples. Robust data quality was achieved through the use of three biological replicates (including a dye swap), the inclusion of negative controls and strict selection criteria for differentially expressed genes, including a fold change cut-off determined by self-self hybridizations, Student's t-test and multiple testing correction (P < 0.05). Microarray observations were also validated by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). The time course expression patterns of 756 microarray features resulted in the differential expression of 97 genes in at least one genotype at one time point. k-means clustering grouped the genes into clusters of similar observations for each genotype, and comparisons between A. rabiei-resistant and A. rabiei-susceptible genotypes revealed potential gene 'signatures' predictive of effective A. rabiei resistance. These genes included several pathogenesis-related proteins, SNAKIN2 antimicrobial peptide, proline-rich protein, disease resistance response protein DRRG49-C, environmental stress-inducible protein, leucine-zipper protein, polymorphic antigen membrane protein, Ca-binding protein and several unknown proteins. The potential involvement of these genes and their pathways of induction are discussed. This study represents the first large-scale gene expression profiling in chickpea, and future work will focus on the functional validation of the genes of interest.

  14. Molecular characterisation of the broad-spectrum resistance to powdery mildew conferred by the Stpk-V gene from the wild species Haynaldia villosa.

    PubMed

    Qian, C; Cui, C; Wang, X; Zhou, C; Hu, P; Li, M; Li, R; Xiao, J; Wang, X; Chen, P; Xing, L; Cao, A

    2017-11-01

    A key member of the Pm21 resistance gene locus, Stpk-V, derived from Haynaldia villosa, was shown to confer broad-spectrum resistance to wheat powdery mildew. The present study was planned to investigate the resistance mechanism mediated by Stpk-V. Transcriptome analysis was performed in Stpk-V transgenic plants and recipient Yangmai158 upon Bgt infection, and detailed histochemical observations were conducted. Chromosome location of Stpk-V orthologous genes in Triticeae species was conducted for evolutionary study and over-expression of Stpk-V both in barley and Arabidopsis was performed for functional study. The transcriptome results indicate, at the early infection stage, the ROS pathway, JA pathway and some PR proteins associated with the SA pathway were activated in both the resistant Stpk-V transgenic plants and susceptible Yangmai158. However, at the later infection stage, the genes up-regulated at the early stage were continuously held only in the transgenic plants, and a large number of new genes were also activated in the transgenic plants but not in Yangmai158. Results indicate that sustained activation of the early response genes combined with later-activated genes mediated by Stpk-V is critical for resistance in Stpk-V transgenic plants. Stpk-V orthologous genes in the representative grass species are all located on homologous group six chromosomes, indicating that Stpk-V is an ancient gene in the grasses. Over-expression of Stpk-V enhanced host resistance to powdery mildew in barley but not in Arabidopsis. Our results enable a better understanding of the resistance mechanism mediated by Stpk-V, and establish a solid foundation for its use in cereal breeding as a gene resource. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  15. Antibiotic Resistance Genes in the Bacteriophage DNA Fraction of Environmental Samples

    PubMed Central

    Colomer-Lluch, Marta; Jofre, Juan; Muniesa, Maite

    2011-01-01

    Antibiotic resistance is an increasing global problem resulting from the pressure of antibiotic usage, greater mobility of the population, and industrialization. Many antibiotic resistance genes are believed to have originated in microorganisms in the environment, and to have been transferred to other bacteria through mobile genetic elements. Among others, β-lactam antibiotics show clinical efficacy and low toxicity, and they are thus widely used as antimicrobials. Resistance to β-lactam antibiotics is conferred by β-lactamase genes and penicillin-binding proteins, which are chromosomal- or plasmid-encoded, although there is little information available on the contribution of other mobile genetic elements, such as phages. This study is focused on three genes that confer resistance to β-lactam antibiotics, namely two β-lactamase genes (blaTEM and blaCTX-M9) and one encoding a penicillin-binding protein (mecA) in bacteriophage DNA isolated from environmental water samples. The three genes were quantified in the DNA isolated from bacteriophages collected from 30 urban sewage and river water samples, using quantitative PCR amplification. All three genes were detected in the DNA of phages from all the samples tested, in some cases reaching 104 gene copies (GC) of blaTEM or 102 GC of blaCTX-M and mecA. These values are consistent with the amount of fecal pollution in the sample, except for mecA, which showed a higher number of copies in river water samples than in urban sewage. The bla genes from phage DNA were transferred by electroporation to sensitive host bacteria, which became resistant to ampicillin. blaTEM and blaCTX were detected in the DNA of the resistant clones after transfection. This study indicates that phages are reservoirs of resistance genes in the environment. PMID:21390233

  16. Antibiotic Resistance in an Indian Rural Community: A 'One-Health' Observational Study on Commensal Coliform from Humans, Animals, and Water.

    PubMed

    Purohit, Manju Raj; Chandran, Salesh; Shah, Harshada; Diwan, Vishal; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2017-04-06

    Antibiotic-resistant bacteria are an escalating grim menace to global public health. Our aim is to phenotype and genotype antibiotic-resistant commensal Escherichia coli (E. coli) from humans, animals, and water from the same community with a 'one-health' approach. The samples were collected from a village belonging to demographic surveillance site of Ruxmaniben Deepchand (R.D.) Gardi Medical College Ujjain, Central India. Commensal coliforms from stool samples from children aged 1-3 years and their environment (animals, drinking water from children's households, common source- and waste-water) were studied for antibiotic susceptibility and plasmid-encoded resistance genes. E. coli isolates from human ( n = 127), animal ( n = 21), waste- ( n = 12), source- ( n = 10), and household drinking water ( n = 122) carried 70%, 29%, 41%, 30%, and 30% multi-drug resistance, respectively. Extended spectrum beta-lactamase (ESBL) producers were 57% in human and 23% in environmental isolates. Co-resistance was frequent in penicillin, cephalosporin, and quinolone. Antibiotic-resistance genes bla CTX-M-9 and qnrS were most frequent. Group D-type isolates with resistance genes were mainly from humans and wastewater. Colistin resistance, or the mcr-1 gene, was not detected. The frequency of resistance, co-resistance, and resistant genes are high and similar in coliforms from humans and their environment. This emphasizes the need to mitigate antibiotic resistance with a 'one-health' approach.

  17. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria.

    PubMed

    Sagova-Mareckova, Marketa; Ulanova, Dana; Sanderova, Petra; Omelka, Marek; Kamenik, Zdenek; Olsovska, Jana; Kopecky, Jan

    2015-04-01

    Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite scaffolds occurring more likely in taxonomically distant producers but suggest that the antibiotic selection of gene pools is also influenced by site conditions.

  18. Transfer of Downy Mildew Resistance from Wild Basil (Ocimum americanum) to Sweet Basil (O. basilicum).

    PubMed

    Ben-Naim, Yariv; Falach, Lidan; Cohen, Yigal

    2018-01-01

    Sweet basil (Ocimum basilicum) is susceptible to downy mildew caused by the oomycete foliar pathogen Peronospora belbahrii. No resistant varieties of sweet basil are commercially available. Here, we report on the transfer of resistance gene Pb1 from the highly resistant tetraploid wild basil O. americanum var. americanum (PI 500945, 2n = 4x = 48) to the tetraploid susceptible O. basilicum 'Sweet basil' (2n = 4x = 48). F1 progeny plants derived from the interspecific hybridization PI 500945 × Sweet basil were resistant, indicating that the gene controlling resistance (Pb1) is dominant, but sterile due to the genetic distance between the parents. Despite their sterility, F1 plants were pollinated with the susceptible parent and 115 first backcross generation to the susceptible parent (BCs1) embryos were rescued in vitro. The emerging BCs1 plants segregated, upon inoculation, 5:1 resistant/susceptible, suggesting that resistance in F1 was controlled by a pair of dominant genes (Pb1A and Pb1A'). Thirty-one partially fertile BCs1 plants were self-pollinated to obtain BCs1-F2 or were backcrossed to Sweet basil to obtain the second backcross generation to the susceptible parent (BCs2). In total, 1 BCs1-F2 and 22 BCs2 progenies were obtained. The BCs1-F2 progeny segregated 35:1 resistant/susceptible, as expected from a tetraploid parent with two dominant resistant genes. The 22 BCs2 progenies segregated 1:1 resistant/susceptible (for a BCs1 parent that carried one dominant gene for resistance) or 5:1 (for a BCs1 parent that carried two dominant genes for resistance) at a ratio of 4:1. The data suggest that a pair of dominant genes (Pb1A and Pb1A') residing on a two homeologous chromosomes is responsible for resistance of PI 500945 against P. belbahrii.

  19. Characterization of the duodenase-1 gene and its associations with resistance to Streptococuus agalactiae in hybrid tilapia (Oreochromis spp.).

    PubMed

    Shen, Yubang; Fu, Gui Hong; Liu, Feng; Yue, Gen Hua

    2015-08-01

    Tilapia is a group of cultured teleost fishes whose production is threatened by some diseases. Identification of DNA markers associated with disease resistance in candidate genes may facilitate to accelerate the selection of disease resistance. The gene encoding a duodenase, which can trigger immune response, has not been studied in fish. We characterized the cDNA of duodenase-1 gene of hybrid tilapia. Its ORF is 759 bp, encoding a serine protease of 252 amino acids. This gene consisted of five exons and four introns. Its expression was detected in all 10 tissues examined, and it was highly expressed in the intestine and kidney. After a challenge with the bacterial pathogen, Streptococcus agalactiae, its expression was up-regulated significantly in the intestine, liver and spleen. We identified seven SNPs in the gene and found that four of them were significantly associated with the resistance to S. agalactiae (P < 0.05). The CGTCC haplotype, CAGTC/CGGTC and CGTCC/CGTCC diplotype were significantly associated with the resistance to S. agalactiae (P = 0.00, 0.04 and < 0.0001, respectively). In addition, one SNP was associated significantly with growth traits (P < 0.05). These findings suggest that the duodenase-1 gene plays an important role in the resistance to S. agalactiae in tilapia. The SNP markers in the duodenase-1 gene associated with resistance to the bacterial pathogen, may facilitate the selection of tilapia resistant to the bacterial disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Class 1 Integrons and the Antiseptic Resistance Gene (qacEΔ1) in Municipal and Swine Slaughterhouse Wastewater Treatment Plants and Wastewater—Associated Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Wan, Min Tao; Chou, Chin Cheng

    2015-01-01

    Class 1 integrons are mobile gene elements (MGEs) containing qacEΔ1 that are resistant to quaternary ammonium compound (QAC) disinfectants. This study compared the abundances of class 1 integrons and antiseptic resistance genes in municipal (M) and swine slaughterhouse (S) wastewater treatment plants (WWTPs) and investigated the presence of class 1 integrons and antiseptic resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) isolated from wastewater samples. The abundances of intI1 and qacEΔ1 genes in 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR), and 113 MRSA isolates recovered from the wastewater samples were detected class 1 integrons and linked antiseptic resistance genes (qacEΔ1), and minimum inhibitory concentrations (MICs) for QAC antiseptics. The intI1 and qacEΔ1 genes were detected in all the wastewater samples, and they were more abundant in S-WWTP samples than in M-WWTP samples. A higher percentage of MRSA isolates carried qacEΔ1 in MRSA from swine wastewater samples (62.8%) than in municipal MRSA (3.7%). All the MRSA isolates showed high MICs for antiseptic agents. This study provides important evidence regarding the abundances of intI1 and qacEΔ1 genes in municipal and swine slaughterhouse wastewater, and antiseptic-resistant MRSA strains were detected in swine slaughterhouse wastewater. PMID:26042365

  1. Class 1 Integrons and the Antiseptic Resistance Gene (qacEΔ1) in Municipal and Swine Slaughterhouse Wastewater Treatment Plants and Wastewater-Associated Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Wan, Min Tao; Chou, Chin Cheng

    2015-06-02

    Class 1 integrons are mobile gene elements (MGEs) containing qacEΔ1 that are resistant to quaternary ammonium compound (QAC) disinfectants. This study compared the abundances of class 1 integrons and antiseptic resistance genes in municipal (M) and swine slaughterhouse (S) wastewater treatment plants (WWTPs) and investigated the presence of class 1 integrons and antiseptic resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) isolated from wastewater samples. The abundances of intI1 and qacEΔ1 genes in 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR), and 113 MRSA isolates recovered from the wastewater samples were detected class 1 integrons and linked antiseptic resistance genes (qacEΔ1), and minimum inhibitory concentrations (MICs) for QAC antiseptics. The intI1 and qacEΔ1 genes were detected in all the wastewater samples, and they were more abundant in S-WWTP samples than in M-WWTP samples. A higher percentage of MRSA isolates carried qacEΔ1 in MRSA from swine wastewater samples (62.8%) than in municipal MRSA (3.7%). All the MRSA isolates showed high MICs for antiseptic agents. This study provides important evidence regarding the abundances of intI1 and qacEΔ1 genes in municipal and swine slaughterhouse wastewater, and antiseptic-resistant MRSA strains were detected in swine slaughterhouse wastewater.

  2. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode.

    PubMed

    Yang, Yan; Zhou, Yuan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2017-12-19

    WRKY proteins are a superfamily of plant transcription factors with important roles in plants. WRKY proteins have been extensively analyzed in plant species including Arabidopsis and rice. Here we report characterization of soybean WRKY gene family and their functional analysis in resistance to soybean cyst nematode (SCN), the most important soybean pathogen. Through search of the soybean genome, we identified 174 genes encoding WRKY proteins that can be classified into seven groups as established in other plants. WRKY variants including a WRKY-related protein unique to legumes have also been identified. Expression analysis reveals both diverse expression patterns in different soybean tissues and preferential expression of specific WRKY groups in certain tissues. Furthermore, a large number of soybean WRKY genes were responsive to salicylic acid. To identify soybean WRKY genes that promote soybean resistance to SCN, we first screened soybean WRKY genes for enhancing SCN resistance when over-expressed in transgenic soybean hairy roots. To confirm the results, we transformed five WRKY genes into a SCN-susceptible soybean cultivar and generated transgenic soybean lines. Transgenic soybean lines overexpressing three WRKY transgenes displayed increased resistance to SCN. Thus, WRKY genes could be explored to develop new soybean cultivars with enhanced resistance to SCN.

  3. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.)

    PubMed Central

    Liang, Danna; Liu, Min; Hu, Qijing; He, Min; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao

    2015-01-01

    Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphids (Aphis gossypii Glover) are among the most serious pests in cucumber production and often cause severe loss of yield and make fruit quality get worse. Identifying genes that render cucumbers resistant to aphid-induced damage and breeding aphid-resistant cucumber varieties have become the most promising control strategies. In this study, a Illumina Genome Analyzer platform was applied to monitor changes in gene expression in the whole genome of the cucumber cultivar ‘EP6392’ which is resistant to aphids. Nine DGE libraries were constructed from infected and uninfected leaves. In total, 49 differentially expressed genes related to cucumber aphid resistance were screened during the treatment period. These genes are mainly associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism and sugar metabolism pathways. Eight of the 49 genes may be associated with aphid resistance. Finally, expression of 9 randomly selected genes was evaluated by qRT-PCR to verify the results for the tag-mapped genes. With the exception of 1-aminocyclopropane-1-carboxylate oxidase homolog 6, the expression of the chosen genes was in agreement with the results of the tag-sequencing analysis patterns. PMID:25959296

  4. The non-gibberellic acid-responsive semi-dwarfing gene uzu affects Fusarium crown rot resistance in barley

    PubMed Central

    2014-01-01

    Background Studies in Arabidopsis show that DELLA genes may differentially affect responses to biotrophic and necrophic pathogens. A recent report based on the study of DELLA-producing reduced height (Rht) genes in wheat and barley also hypothesized that DELLA genes likely increased susceptibility to necrotrophs but increased resistance to biotrophs. Results Effects of uzu, a non-GA (gibberellic acid)-responsive semi-dwarfing gene, on Fusarium crown rot (FCR) resistance in barley were investigated. Fifteen pairs of near isogenic lines for this gene were generated and assessed under two different temperature regimes. Similar to its impacts on plant height, the semi-dwarfing gene uzu also showed larger effects on FCR severity in the high temperature regime when compared with that in the low temperature regime. Conclusions Results from this study add to the growing evidence showing that the effects of plant height on Fusarium resistances are unlikely related to DELLA genes but due to direct or indirect effects of height difference per se. The interaction between these two characteristics highlights the importance of understanding relationships between resistance and other traits of agronomic importance as the value of a resistance gene could be compromised if it dramatically affects plant development and morphology. PMID:24418007

  5. BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism.

    PubMed

    Lv, Wentang; Du, Ba; Shangguan, Xinxin; Zhao, Yan; Pan, Yufang; Zhu, Lili; He, Yuqing; He, Guangcun

    2014-08-11

    Brown planthopper (BPH, Nilaparvata lugens Stål), is the most destructive phloem-feeding insect pest of rice (Oryza sativa). The BPH-resistance gene BPH15 has been proved to be effective in controlling the pest and widely applied in rice breeding programs. Nevertheless, molecular mechanism of the resistance remain unclear. In this study, we narrowed down the position of BPH15 on chromosome 4 and investigated the transcriptome of BPH15 rice after BPH attacked. We analyzed 13,000 BC2F2 plants of cross between susceptible rice TN1 and the recombinant inbred line RI93 that carrying the BPH15 gene from original resistant donor B5. BPH15 was mapped to a 0.0269 cM region on chromosome 4, which is 210-kb in the reference genome of Nipponbare. Sequencing bacterial artificial chromosome (BAC) clones that span the BPH15 region revealed that the physical size of BPH15 region in resistant rice B5 is 580-kb, much bigger than the corresponding region in the reference genome of Nipponbare. There were 87 predicted genes in the BPH15 region in resistant rice. The expression profiles of predicted genes were analyzed. Four jacalin-related lectin proteins genes and one LRR protein gene were found constitutively expressed in resistant parent and considered the candidate genes of BPH15. The transcriptomes of resistant BPH15 introgression line and the susceptible recipient line were analyzed using high-throughput RNA sequencing. In total, 2,914 differentially expressed genes (DEGs) were identified. BPH-responsive transcript profiles were distinct between resistant and susceptible plants and between the early stage (6 h after infestation, HAI) and late stage (48 HAI). The key defense mechanism was related to jasmonate signaling, ethylene signaling, receptor kinase, MAPK cascades, Ca(2+) signaling, PR genes, transcription factors, and protein posttranslational modifications. Our work combined BAC and RNA sequencing to identify candidate genes of BPH15 and revealed the resistance mechanism that it mediated. These results increase our understanding of plant-insect interactions and can be used to protect against this destructive agricultural pest.

  6. DNA methylation of phosphatase and actin regulator 3 detects colorectal cancer in stool and complements FIT.

    PubMed

    Bosch, Linda J W; Oort, Frank A; Neerincx, Maarten; Khalid-de Bakker, Carolina A J; Terhaar sive Droste, Jochim S; Melotte, Veerle; Jonkers, Daisy M A E; Masclee, Ad A M; Mongera, Sandra; Grooteclaes, Madeleine; Louwagie, Joost; van Criekinge, Wim; Coupé, Veerle M H; Mulder, Chris J; van Engeland, Manon; Carvalho, Beatriz; Meijer, Gerrit A

    2012-03-01

    Using a bioinformatics-based strategy, we set out to identify hypermethylated genes that could serve as biomarkers for early detection of colorectal cancer (CRC) in stool. In addition, the complementary value to a Fecal Immunochemical Test (FIT) was evaluated. Candidate genes were selected by applying cluster alignment and computational analysis of promoter regions to microarray-expression data of colorectal adenomas and carcinomas. DNA methylation was measured by quantitative methylation-specific PCR on 34 normal colon mucosa, 71 advanced adenoma, and 64 CRC tissues. The performance as biomarker was tested in whole stool samples from in total 193 subjects, including 19 with advanced adenoma and 66 with CRC. For a large proportion of these series, methylation data for GATA4 and OSMR were available for comparison. The complementary value to FIT was measured in stool subsamples from 92 subjects including 44 with advanced adenoma or CRC. Phosphatase and Actin Regulator 3 (PHACTR3) was identified as a novel hypermethylated gene showing more than 70-fold increased DNA methylation levels in advanced neoplasia compared with normal colon mucosa. In a stool training set, PHACTR3 methylation showed a sensitivity of 55% (95% CI: 33-75) for CRC and a specificity of 95% (95% CI: 87-98). In a stool validation set, sensitivity reached 66% (95% CI: 50-79) for CRC and 32% (95% CI: 14-57) for advanced adenomas at a specificity of 100% (95% CI: 86-100). Adding PHACTR3 methylation to FIT increased sensitivity for CRC up to 15%. PHACTR3 is a new hypermethylated gene in CRC with a good performance in stool DNA testing and has complementary value to FIT.

  7. Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from Vallée du Kou, Burkina Faso

    PubMed Central

    Kwiatkowska, Rachel M.; Platt, Naomi; Poupardin, Rodolphe; Irving, Helen; Dabire, Roch K.; Mitchell, Sara; Jones, Christopher M.; Diabaté, Abdoulaye; Ranson, Hilary; Wondji, Charles S.

    2013-01-01

    With the exception of target site mutations, insecticide resistance mechanisms in the principle malaria vector Anopheles gambiae, remains largely uncharacterized in Burkina Faso. Here we detected high prevalence of resistance in Vallée du Kou (VK) to pyrethroids, DDT and dieldrin, moderate level for carbamates and full susceptibility to organophosphates. High frequencies of L1014F kdr (75%) and Rdl (87%) mutations were observed showing strong correlation with pyrethroids/DDT and dieldrin resistance. The frequency of ace1R mutation was low even in carbamate resistant mosquitoes. Microarray analysis identified genes significantly over-transcribed in VK. These include the cytochrome P450 genes, CYP6P3 and CYP6Z2, previously associated with pyrethroid resistance. Gene Ontology (GO) enrichment analysis suggested that elevated neurotransmitter activity is associated with resistance, with the over-transcription of target site resistance genes such as acetylcholinesterase and the GABA receptor. A rhodopsin receptor gene previously associated with pyrethroid resistance in Culex pipiens pallens was also over-transcribed in VK. This study highlights the complex network of mechanisms conferring multiple resistance in malaria vectors and such information should be taken into account when designing and implementing resistance control strategies. PMID:23380570

  8. Identification of a rice gene (Bph 1) conferring resistance to brown planthopper (Nilaparvata lugens Stal) using STS markers.

    PubMed

    Kim, Suk-Man; Sohn, Jae-Keun

    2005-08-31

    This study was carried out to identify a high-resolution marker for a gene conferring resistance to brown planthopper (BPH) biotype 1, using japonica type resistant lines. Bulked segregant analyses were conducted using 520 RAPD primers to identify RAPD fragments linked to the BPH resistance gene. Eleven RAPDs were shown to be polymorphic amplicons between resistant and susceptible progeny. One of these primers, OPE 18, which amplified a 923 bp band tightly linked to resistance, was converted into a sequence-tagged-site (STS) marker. The STS marker, BpE18-3, was easily detectable as a dominant band with tight linkage (3.9cM) to Bph1. It promises to be useful as a marker for assisted selection of resistant progeny in backcross breeding programs to introgress the resistance gene into elite japonica cultivars.

  9. Genetic Basis and Clonal Population Structure of Antibiotic Resistance in Campylobacter jejuni Isolated From Broiler Carcasses in Belgium.

    PubMed

    Elhadidy, Mohamed; Miller, William G; Arguello, Hector; Álvarez-Ordóñez, Avelino; Duarte, Alexandra; Dierick, Katelijne; Botteldoorn, Nadine

    2018-01-01

    Human campylobacteriosis is the leading food-borne zoonosis in industrialized countries. This study characterized the clonal population structure, antimicrobial resistance profiles and occurrence of antimicrobial resistance determinants of a set of Campylobacter jejuni strains isolated from broiler carcasses in Belgium. Minimum inhibitory concentrations (MICs) against five commonly-used antibiotics (ciprofloxacin, nalidixic acid, tetracycline, gentamicin, and erythromycin) were determined for 204 C. jejuni isolates. More than half of the isolates were resistant to ciprofloxacin or nalidixic acid. In contrast, a lower percentage of screened isolates were resistant to gentamicin or erythromycin. C. jejuni isolates resistant to ciprofloxacin and/or nalidixic acid were screened for the substitution T86I in the quinolone resistance determining region (QRDR) of the gyrA gene, while C. jejuni isolates resistant to tetracycline were screened for the presence of the tet(O) gene. These resistance determinants were observed in most but not all resistant isolates. Regarding resistance to erythromycin, different mutations occurred in diverse genetic loci, including mutations in the 23S rRNA gene, the rplD and rplV ribosomal genes, and the intergenic region between cmeR and cmeABC . Interestingly, and contrary to previous reports, the A2075G transition mutation in the 23S rRNA gene was only found in one strain displaying a high level of resistance to erythromycin. Ultimately, molecular typing by multilocus sequence typing revealed that two sequence types (ST-824 and ST-2274) were associated to quinolones resistance by the presence of mutations in the gene gyrA ( p = 0.01). In addition, ST-2274 was linked to the CIP-NAL-TET-AMR multidrug resistant phenotype. In contrast, clonal complex CC-45 was linked to increased susceptibility to the tested antibiotics. The results obtained in this study provide better understanding of the phenotypic and the molecular basis of antibiotic resistance in C. jejuni , unraveling some the mechanisms which confer antimicrobial resistance and particular clones associated to the carriage and spread of resistance genes.

  10. Predominance of carbapenem-resistant Pseudomonas aeruginosa isolates carrying blaIMP and blaVIM metallo-β-lactamases in a major hospital in Costa Rica.

    PubMed

    Toval, Francisco; Guzmán-Marte, Anel; Madriz, Vivian; Somogyi, Teresita; Rodríguez, César; García, Fernando

    2015-01-01

    This study aimed to assess the molecular basis of the resistance to carbapenems in clinical isolates of Pseudomonas aeruginosa recovered from a tertiary-level health facility in San José, Costa Rica. A total of 198 non-duplicated isolates were evaluated for their susceptibility to β-lactams, aminoglycosides and fluoroquinolones. The production of metallo-β-lactamases (MBLs), the presence of MBL encoding genes (blaIMP, blaVIM and blaGIM-1) and the occurrence of these genes within class 1 integrons were investigated. In addition, an ERIC2 PCR fingerprinting method was used to elucidate the distribution of the detected MBL genes within the strain collection. Of the 198 isolates tested, 125 (63.1 %) were categorized as carbapenem-resistant. The majority (88.8 %) of the carbapemen-resistant isolates also showed resistance to ceftazidime, cefepime, aztreonam, ticarcillin/clavulanic acid, amikacin, gentamicin, tobramycin, ciprofloxacin and gatifloxacin. Among the carbapenem-resistant isolates, 102 (81.6 %) showed MBL activity. Strikingly, both blaIMP and blaVIM genes were simultaneously detected in most (94.1 %) of the 102 MBL producers. Five carbapenem-resistant MBL producers were positive only for blaIMP genes. Almost 70 % of the isolates examined harboured the intI1 gene, accompanied by the sul1 and qacEΔ1 genes in 136 (99 %) and 122 (89 %) isolates, respectively. The majority (94.4 %) of the carbapenem-resistant isolates carried the intI1 gene, in contrast to 26 % of the carbapenem-susceptible isolates. Ninety-three out of 96 (96.9 %) isolates carrying both blaIMP and blaVIM genes also harboured the intI1, sul1 and qacEΔ1 genes. Gene cassettes from carbapenem-susceptible and MBL-negative carbapenem-resistant isolates encoded aminoglycoside-resistance enzymes (aadA2, aadA4 and aadA6) as well as orfD and qacF genes. RAPD analysis distributed 126 of the isolates in 29 clusters. Eighty of the 90 blaIMP (+) blaVIM (+) isolates were sorted into 16 different clusters, suggesting that the blaIMP and blaVIM genes detected were located within a genetic element capable of lateral transfer. Carbapenem-resistant MBL-positive isolates were recovered from almost all hospital wards and were over-represented in samples obtained from the surgical emergency and intensive care therapy units. Remarkably, three carbapenem-resistant isolates, exhibiting MBL activity and carrying both blaIMP and blaVIM genes, were recovered from outpatients. Sequence analysis of both bla genes in various isolates revealed that they correspond to the alleles blaIMP-18 and blaVIM-2. To our knowledge, this is the first report of the combination of two metallo-β-lactamases encoded by the blaIMP-18 and blaVIM-2 genes in P. aeruginosa. © 2015 The Authors.

  11. Characterization of resistance to tetracyclines and aminoglycosides of sheep mastitis pathogens: study of the effect of gene content on resistance.

    PubMed

    Lollai, S A; Ziccheddu, M; Duprè, I; Piras, D

    2016-10-01

    Mastitis causes economic losses and antimicrobials are frequently used for mastitis treatment. Antimicrobial resistance surveys are still rare in the ovine field and characterization of strains is important in order to acquire information about resistance and for optimization of therapy. Bacterial pathogens recovered in milk samples from mastitis-affected ewes were characterized for resistance to tetracyclines and aminoglycosides, members of which are frequently used antimicrobials in small ruminants. A total of 185 strains of staphylococci, streptococci, and enterococci, common mastitis pathogens, were tested for minimal inhibitory concentration (MIC) to tetracycline, doxycycline, minocycline, gentamicin, kanamycin, streptomycin, and for resistance genes by PCR. Effects of different tet genes arrangements on MICs were also investigated. Staphylococci expressed the lowest MIC for tetracycline and tet(K) was the most common gene recovered; tet(M) and tet(O) were also found. Gene content was shown to influence the tetracycline MIC values. Enterococci and streptococci showed higher MICs to tetracyclines and nonsusceptible strains always harboured at least one ribosomal protection gene (MIC above 8 μg ml(-1) ). Streptococci often harboured two or more tet determinants. As regards the resistance to aminoglycosides, staphylococci showed the lowest gentamicin and kanamycin median MIC along with streptomycin high level resistant (HLR) strains (MIC >1024 μg ml(-1) ) all harbouring str gene. The resistance determinant aac(6')-Ie-aph(2″)-Ia was present in few strains. Streptococci were basically nonsusceptible to aminoglycosides but neither HLR isolates nor resistance genes were detected. Enterococci revealed the highest MICs for gentamicin; two str harbouring isolates were shown to be HLR to streptomycin. Evidence was obtained for the circulation of antimicrobial-resistant strains and genes in sheep dairy farming. Tetracycline MIC of 64 μg ml(-1) and high-level resistance were detected for streptomycin (MIC >1024 μg ml(-1) ), so that effectiveness of common treatments may be at risk. © 2016 The Society for Applied Microbiology.

  12. Molecular mapping and candidate gene analysis for resistance to powdery mildew in Cucumis sativus stem.

    PubMed

    Liu, P N; Miao, H; Lu, H W; Cui, J Y; Tian, G L; Wehner, T C; Gu, X F; Zhang, S P

    2017-08-31

    Powdery mildew (PM) of cucumber (Cucumis sativus), caused by Podosphaera xanthii, is a major foliar disease worldwide and resistance is one of the main objectives in cucumber breeding programs. The resistance to PM in cucumber stem is important to the resistance for the whole plant. In this study, genetic analysis and gene mapping were implemented with cucumber inbred lines NCG-122 (with resistance to PM in the stem) and NCG-121 (with susceptibility in the stem). Genetic analysis showed that resistance to PM in the stem of NCG-122 was qualitative and controlled by a single-recessive nuclear gene (pm-s). Susceptibility was dominant to resistance. In the initial genetic mapping of the pm-s gene, 10 SSR markers were discovered to be linked to pm-s, which was mapped to chromosome 5 (Chr.5) of cucumber. The pm-s gene's closest flanking markers were SSR20486 and SSR06184/SSR13237 with genetic distances of 0.9 and 1.8 cM, respectively. One hundred and fifty-seven pairs of new SSR primers were exploited by the sequence information in the initial mapping region of pm-s. The analysis on the F 2 mapping population using the new molecular markers showed that 17 SSR markers were confirmed to be linked to the pm-s gene. The two closest flanking markers, pmSSR27and pmSSR17, were 0.1 and 0.7 cM from pm-s, respectively, confirming the location of this gene on Chr.5. The physical length of the genomic region containing pm-s was 135.7 kb harboring 21 predicted genes. Among these genes, the gene Csa5G623470 annotated as encoding Mlo-related protein was defined as the most probable candidate gene for the pm-s. The results of this study will provide a basis for marker-assisted selection, and make the benefit for the cloning of the resistance gene.

  13. Analysis of resistance genes of clinical Pannonibacter phragmitetus strain 31801 by complete genome sequencing.

    PubMed

    Ming, De-Song; Chen, Qing-Qing; Chen, Xiao-Tin

    2018-05-14

    To clarify the resistance mechanisms of Pannonibacter phragmitetus 31801, isolated from the blood of a liver abscess patient, at the genomic level, we performed whole genomic sequencing using a PacBio RS II single-molecule real-time long-read sequencer. Bioinformatic analysis of the resulting sequence was then carried out to identify any possible resistance genes. Analyses included Basic Local Alignment Search Tool searches against the Antibiotic Resistance Genes Database, ResFinder analysis of the genome sequence, and Resistance Gene Identifier analysis within the Comprehensive Antibiotic Resistance Database. Prophages, clustered regularly interspaced short palindromic repeats (CRISPR), and other putative virulence factors were also identified using PHAST, CRISPRfinder, and the Virulence Factors Database, respectively. The circular chromosome and single plasmid of P. phragmitetus 31801 contained multiple antibiotic resistance genes, including those coding for three different types of β-lactamase [NPS β-lactamase (EC 3.5.2.6), β-lactamase class C, and a metal-dependent hydrolase of β-lactamase superfamily I]. In addition, genes coding for subunits of several multidrug-resistance efflux pumps were identified, including those targeting macrolides (adeJ, cmeB), tetracycline (acrB, adeAB), fluoroquinolones (acrF, ceoB), and aminoglycosides (acrD, amrB, ceoB, mexY, smeB). However, apart from the tripartite macrolide efflux pump macAB-tolC, the genome did not appear to contain the complete complement of subunit genes required for production of most of the major multidrug-resistance efflux pumps.

  14. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.).

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-03-01

    The Gram-positive bacterium Bacillus thuringiensis (Bt) produces Cry toxins that have been used to control important agricultural pests. Evolution of resistance in target pests threatens the effectiveness of these toxins when used either in sprayed biopesticides or in Bt transgenic crops. Although alterations of the midgut cadherin-like receptor can lead to Bt Cry toxin resistance in many insects, whether the cadherin gene is involved in Cry1Ac resistance of Plutella xylostella (L.) remains unclear. Here, we present experimental evidence that resistance to Cry1Ac or Bt var. kurstaki (Btk) in P. xylostella is not due to alterations of the cadherin gene. The bona fide P. xylostella cadherin cDNA sequence was cloned and analyzed, and comparisons of the cadherin cDNA sequence among susceptible and resistant P. xylostella strains confirmed that Cry1Ac resistance was independent of mutations in this gene. In addition, real-time quantitative PCR (qPCR) indicated that cadherin transcript levels did not significantly differ among susceptible and resistant P. xylostella strains. RNA interference (RNAi)-mediated suppression of cadherin gene expression did not affect larval susceptibility to Cry1Ac toxin. Furthermore, genetic linkage assays using four cadherin gDNA allelic biomarkers confirmed that the cadherin gene is not linked to resistance against Cry1Ac in P. xylostella. Taken together, our findings demonstrate that Cry1Ac resistance of P. xylostella is independent of the cadherin gene. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Blue light photoreceptors and methods of using the same

    DOEpatents

    Cashmore, Anthony Robert; Ahmad, Margaret; Lin, Chentao

    1998-01-01

    The invention features a substantially pure preparation of a nucleic acid encoding a HY4 or a HY4-related gene. The invention further features transgenic plants encoding a HY4 gene having a shorter stem than substantially homozygous wild type nontransgenic plants; and, transgenic plants comprising complementary HY4 sequences having a longer stem than substantially homozygous wild type nontransgenic plants.

  16. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOEpatents

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  17. Fate of antibiotic resistance genes and metal resistance genes during thermophilic aerobic digestion of sewage sludge.

    PubMed

    Jang, Hyun Min; Lee, Jangwoo; Kim, Young Beom; Jeon, Jong Hun; Shin, Jingyeong; Park, Mee-Rye; Kim, Young Mo

    2018-02-01

    This study examines the fate of twenty-three representative antibiotic resistance genes (ARGs) encoding tetracyclines, sulfonamides, quinolones, β-lactam antibiotics, macrolides, florfenicol and multidrug resistance during thermophilic aerobic digestion (TAD) of sewage sludge. The bacterial community, class 1 integrons (intI1) and four metal resistance genes (MRGs) were also quantified to determine the key drivers of changes in ARGs during TAD. At the end of digestion, significant decreases in the quantities of ARGs, MRGs and intI1 as well as 16S rRNA genes were observed. Partial redundancy analysis (RDA) showed that shifts in temperature were the key factors affecting a decrease in ARGs. Shifts in temperature led to decreased amounts of ARGs by reducing resistome and bacterial diversity, rather than by lowering horizontal transfer potential via intI1 or co-resistance via MRGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Integrating a DNA barcoding project with an ecological survey: a case study on temperate intertidal polychaete communities in Qingdao, China

    NASA Astrophysics Data System (ADS)

    Zhou, Hong; Zhang, Zhinan; Chen, Haiyan; Sun, Renhua; Wang, Hui; Guo, Lei; Pan, Haijian

    2010-07-01

    In this study, we integrated a DNA barcoding project with an ecological survey on intertidal polychaete communities and investigated the utility of CO1 gene sequence as a DNA barcode for the classification of the intertidal polychaetes. Using 16S rDNA as a complementary marker and combining morphological and ecological characterization, some of dominant and common polychaete species from Chinese coasts were assessed for their taxonomic status. We obtained 22 haplotype gene sequences of 13 taxa, including 10 CO1 sequences and 12 16S rDNA sequences. Based on intra- and inter-specific distances, we built phylogenetic trees using the neighbor-joining method. Our study suggested that the mitochondrial CO1 gene was a valid DNA barcoding marker for species identification in polychaetes, but other genes, such as 16S rDNA, could be used as a complementary genetic marker. For more accurate species identification and effective testing of species hypothesis, DNA barcoding should be incorporated with morphological, ecological, biogeographical, and phylogenetic information. The application of DNA barcoding and molecular identification in the ecological survey on the intertidal polychaete communities demonstrated the feasibility of integrating DNA taxonomy and ecology.

  19. Characterisation of the genes encoding resistance to metronidazole (rdxA and frxA) and clarithromycin (the 23S-rRNA genes) in South African isolates of Helicobacter pylori

    PubMed Central

    Tanih, N F; Ndip, L M; Ndip, R N

    2011-01-01

    Helicobacter pylori has been incriminated in human diseases, such as peptic ulcer, gastritis and gastric malignancy. Although modern triple-drug regimens are usually highly effective in the treatment of H. pylori infection, the emergence of resistance to two of the most used antibiotics, metronidazole (Mtz) and clarithromycin (Cla), is a serious and increasing problem. Truncations in the rdxA and frxA genes of H. pylori are thought to be associated with Mtz resistance whereas mutations in the pathogen’s 23S-ribosomal-RNA (23S-rRNA) genes are associated with Cla resistance. In a recent study, PCR and sequence analysis of the rdxA, frxA and 23S-rRNA genes were used to explore the genetic basis of resistance to Mtz and Cla in H. pylori. When 200 isolates of H. pylori from the Eastern Cape province of South Africa were tested for antibiotic susceptibility, almost all (95·5%) were found resistant to Mtz and 20·0% were found resistant to Cla. Only the Mtz-resistant isolates showed rdxA and frxA truncation. Two point mutations were detected in the 23S-rRNA genes of the Cla-resistant isolates. Many significant changes (resulting in 13 amino-acid substitutions in nine loci and truncated proteins in 14 loci) were observed in the rdxA genes of the Mtz-resistant isolates, and it appears that, compared with the rarer changes detected in frxA, such mutations may contribute more significantly to the high prevalence of Mtz resistance. To guide empiric treatment, the genotypes and antibiotic susceptibility of H. pylori in the Eastern Cape province of South Africa need to be monitored regularly. PMID:21801504

  20. Characterisation of the genes encoding resistance to metronidazole (rdxA and frxA) and clarithromycin (the 23S-rRNA genes) in South African isolates of Helicobacter pylori.

    PubMed

    Tanih, N F; Ndip, L M; Ndip, R N

    2011-04-01

    Helicobacter pylori has been incriminated in human diseases, such as peptic ulcer, gastritis and gastric malignancy. Although modern triple-drug regimens are usually highly effective in the treatment of H. pylori infection, the emergence of resistance to two of the most used antibiotics, metronidazole (Mtz) and clarithromycin (Cla), is a serious and increasing problem. Truncations in the rdxA and frxA genes of H. pylori are thought to be associated with Mtz resistance whereas mutations in the pathogen's 23S-ribosomal-RNA (23S-rRNA) genes are associated with Cla resistance. In a recent study, PCR and sequence analysis of the rdxA, frxA and 23S-rRNA genes were used to explore the genetic basis of resistance to Mtz and Cla in H. pylori. When 200 isolates of H. pylori from the Eastern Cape province of South Africa were tested for antibiotic susceptibility, almost all (95·5%) were found resistant to Mtz and 20·0% were found resistant to Cla. Only the Mtz-resistant isolates showed rdxA and frxA truncation. Two point mutations were detected in the 23S-rRNA genes of the Cla-resistant isolates. Many significant changes (resulting in 13 amino-acid substitutions in nine loci and truncated proteins in 14 loci) were observed in the rdxA genes of the Mtz-resistant isolates, and it appears that, compared with the rarer changes detected in frxA, such mutations may contribute more significantly to the high prevalence of Mtz resistance. To guide empiric treatment, the genotypes and antibiotic susceptibility of H. pylori in the Eastern Cape province of South Africa need to be monitored regularly.

Top