Mesophilic Aeromonas sp. serogroup O:11 resistance to complement-mediated killing.
Merino, S; Rubires, X; Aguilar, A; Albertí, S; Hernandez-Allés, S; Benedí, V J; Tomas, J M
1996-01-01
The complement activation by and resistance to complement-mediated killing of Aeromonas sp. strains from serogroup O:11 were investigated by using different wild-type strains (with an S-layer characteristic of this serogroup) and their isogenic mutants characterized for their surface components (S-layer and lipopolysaccharide [LPS]). All of the Aeromonas sp. serogroup O:11 wild-type strains are unable to activate complement, which suggested that the S-layer completely covered the LPS molecules. We found that the classical complement pathway is involved in serum killing of susceptible Aeromonas sp. mutant strains of serogroup O11, while the alternative complement pathway seems not to be involved, and that the complement activation seems to be independent of antibody. The smooth mutant strains devoid of the S-layer (S-layer isogenic mutants) or isogenic LPS mutant strains with a complete or rather complete LPS core (also without the S-layer) are able to activate complement but are resistant to complement-mediated killing. The reasons for this resistance are that C3b is rapidly degraded, and therefore the lytic membrane attack complex (C5b-9) is not formed. Isogenic LPS rough mutants with an incomplete LPS core are serum sensitive because they bind more C3b than the resistant strains, the C3b is not completely degraded, and therefore the lytic complex (C5b-9) is formed. PMID:8945581
Hua, Ying; Sun, Qi; Wang, Xiangyu; DU, Yanli; Shao, Na; Zhang, Qiwei; Zhao, Wei; Wan, Chengsong
2015-11-01
To construct enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains with delection espF gene and its nucleotide fragment and with espF gene complementation. A pair of homologous arm primers was designed to amplify the gene fragment of kanamycin resistance, which was transformed into EHEC O157:H7 EDL933w strain via the PKD46 plasmid by electroporation. The replacement of the espF gene by kanamycin resistance gene through the PKD46-mediated red recombination system was confirmed by PCR and sequencing. The entire coding region of espF along with its nucleotide fragment was amplified by PCR and cloned into pBAD33 plasmid, which was transformed into a mutant strain to construct the strain with espF complementation. RT-PCR was used to verify the transcription of espF and its nucleotide fragment in the complemented mutant strain. We established EHEC O157:H7 EDL933w strains with espF gene deletion and with espF gene complementation. Both espF and its nucleotide fragment were transcribed in the complemented mutant strain. The two strains provide a basis for further study of the regulatory mechanism of espF.
Vega-Palas, M A; Madueño, F; Herrero, A; Flores, E
1990-01-01
Twenty-seven mutants that were unable to assimilate nitrate were isolated from Synechococcus sp. strain PCC 7942. In addition to mutants that lacked nitrate reductase or nitrite reductase, seven pleiotropic mutants impaired in both reductases, glutamine synthetase, and methylammonium transport were also isolated. One of the pleiotropic mutants was complemented by transformation with a cosmid gene bank from wild-type strain PCC 7942. Three complementing cosmids were isolated, and a 3.1-kilobase-pair DNA fragment that was still able to complement the mutant was identified. The regulatory gene that was cloned (ntcA) appeared to be required for full expression of proteins subject to ammonium repression in Synechococcus sp. PMID:1967601
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunn, D.N.; Lidstrom, M.E.
A method has been developed for the direct selection of methanol oxidation mutants of the facultative methylotroph Methylobacterium sp. strain AM1 (formerly Pseudomonas sp. strain AM1). Using this direct selection technique, we have isolated mutants of Methylobacterium sp. strain AM1 that are no longer capable of growth on methanol but retain the ability to grow on methylamine. These methanol oxidation (Mox) mutants were complemented with a genomic clone bank of this organism constructed in the broad-host-range cosmid pVK100, and subcloning and Tn5 mutagenesis experiments have assigned the Mox mutants to 10 distinct complementation groups. Using an open reading frame beta-galactosidasemore » fusion vector and antibodies specific for Methylobacterium sp. strain AM1 methanol dehydrogenase, we have identified the methanol dehydrogenase structural gene and determined the direction of transcription. The results suggest that the synthesis and utilization of an active methanol dehydrogenase in this organism requires at least 10 different gene functions.« less
Complementation studies in Niemann-Pick disease type C indicate the existence of a second group.
Steinberg, S J; Ward, C P; Fensom, A H
1994-01-01
Niemann-Pick disease type C is a clinically heterogeneous storage disorder with an unknown primary metabolic defect. We have undertaken somatic cell hybridisation experiments using skin fibroblast strains from 12 patients representing a wide clinical spectrum. Preliminary experiments using filipin staining of free cholesterol as a marker for complementation indicated the existence of one major group (group alpha) and one minor group (group beta) represented by one mutant strain. Subsequent experiments in which sphingomyelinase activity was measured as a marker for complementation using five mutant strains showing activity consistently < 40% control levels confirmed the existence of the second group. Images PMID:8071958
Moores, J C; Magazin, M; Ditta, G S; Leong, J
1984-01-01
A gene bank of DNA from plant growth-promoting Pseudomonas sp. strain B10 was constructed using the broad host-range conjugative cosmid pLAFR1. The recombinant cosmids contained insert DNA averaging 21.5 kilobase pairs in length. Nonfluorescent mutants of Pseudomonas sp. strain B10 were obtained by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine, ethyl methanesulfonate, or UV light and were defective in the biosynthesis of its yellow-green, fluorescent siderophore (microbial iron transport agent) pseudobactin. No yellow-green, fluorescent mutants defective in the production of pseudobactin were identified. Nonfluorescent mutants were individually complemented by mating the gene bank en masse and identifying fluorescent transconjugants. Eight recombinant cosmids were sufficient to complement 154 nonfluorescent mutants. The pattern of complementation suggests that a minimum of 12 genes arranged in four gene clusters is required for the biosynthesis of pseudobactin. This minimum number of genes seems reasonable considering the structural complexity of pseudobactin. Images PMID:6690426
Narasaki, Craig T; Mertens, Katja; Samuel, James E
2011-01-01
Coxiella burnetii, the etiologic agent of human Q fever, is a gram-negative and naturally obligate intracellular bacterium. The O-specific polysaccharide chain (O-PS) of the lipopolysaccharide (LPS) of C. burnetii is considered a heteropolymer of the two unusual sugars β-D-virenose and dihydrohydroxystreptose and mannose. We hypothesize that GDP-D-mannose is a metabolic intermediate to GDP-β-D-virenose. GDP-D-mannose is synthesized from fructose-6-phosphate in 3 successive reactions; Isomerization to mannose-6-phosphate catalyzed by a phosphomannose isomerase (PMI), followed by conversion to mannose-1-phosphate mediated by a phosphomannomutase (PMM) and addition of GDP by a GDP-mannose pyrophosphorylase (GMP). GDP-D-mannose is then likely converted to GDP-6-deoxy-D-lyxo-hex-4-ulopyranose (GDP-Sug), a virenose intermediate, by a GDP-mannose-4,6-dehydratase (GMD). To test the validity of this pathway in C. burnetii, three open reading frames (CBU0671, CBU0294 and CBU0689) annotated as bifunctional type II PMI, as PMM or GMD were functionally characterized by complementation of corresponding E. coli mutant strains and in enzymatic assays. CBU0671, failed to complement an Escherichia coli manA (PMM) mutant strain. However, complementation of an E. coli manC (GMP) mutant strain restored capsular polysaccharide biosynthesis. CBU0294 complemented a Pseudomonas aeruginosa algC (GMP) mutant strain and showed phosphoglucomutase activity (PGM) in a pgm E. coli mutant strain. Despite the inability to complement a manA mutant, recombinant C. burnetii PMI protein showed PMM enzymatic activity in biochemical assays. CBU0689 showed dehydratase activity and determined kinetic parameters were consistent with previously reported data from other organisms. These results show the biological function of three C. burnetii LPS biosynthesis enzymes required for the formation of GDP-D-mannose and GDP-Sug. A fundamental understanding of C. burnetii genes that encode PMI, PMM and GMP is critical to fully understand the biosynthesic pathway of GDP-β-D-virenose and LPS structure in C. burnetii.
Kaewnum, Supaporn; Zheng, Desen; Reid, Cheryl L; Johnson, Kameka L; Gee, Jodi C; Burr, Thomas J
2013-05-01
Nontumorigenic Agrobacterium vitis strain F2/5 is able to prevent crown gall caused by tumorigenic A. vitis on grape but not on other plant species such as tobacco. Mutations in a quorum-sensing transcription factor, aviR, and in caseinolytic protease (clp) component genes clpA and clpP1 resulted in reduced or loss of biological control. All mutants were complemented; however, restoration of biological control by complemented clpA and clpP1 mutants was dependent on the copy number of vector that was used as well as timing of application of the complemented mutants to grape wounds in relation to inoculation with pathogen. Mutations in other quorum-sensing and clp genes and in a gene associated with polyketide synthesis did not affect biological control. It was determined that, although F2/5 inhibits transformation by tumorigenic A. vitis strains on grape, it does not affect growth of the pathogen in wounded grape tissue over time.
Bacterial genes involved in incorporation of nickel into a hydrogenase enzyme.
Fu, C; Javedan, S; Moshiri, F; Maier, R J
1994-01-01
Nickel is an essential component of all H2-uptake hydrogenases. A fragment of DNA that complements a H2-uptake-deficient but nickel-cured mutant strain (JHK7) of Bradyrhizobium japonicum was isolated and sequenced. This 4.5-kb DNA fragment contains four open reading frames designated as ORF1, hupN, hupO, and hupP, which encode polypeptides with predicted masses of 17, 40, 19, and 63.5 kDa, respectively. The last three open reading frames (hupNOP) are most likely organized as an operon with a putative sigma 54-type promoter. Based on its hydropathy profile, HupN is predicted to be a transmembrane protein. It has 56% identity to the previously described HoxN (high-affinity nickel transport protein) of Alcaligenes eutrophus. A subclone (pJF23) containing the hupNOP genes excluding ORF1 completely complemented (in trans) strain JHK7 for hydrogenase activity in low nickel conditions. pJF26 containing only a functional hupN complemented the hydrogenase activity of mutant strain JHK7 to 30-55% of the wild-type level. Mutant strain JHK70, with a chromosomal deletion in hupP but with an intact hupNO, showed greater activities than pJF26-complemented JHK7 but still had lower activities than the wild type at all nickel levels tested. pJF25, containing the entire hupO and hupP, but without hupN (a portion of hupN was deleted), did not complement hydrogenase activity of mutant strain JHK7. The results suggest that the products of the hupNOP operon are all involved in nickel incorporation/metabolism into the hydrogenase apoprotein. Based on (previous) nickel transport studies of strain JHK7, the hupNOP genes appear not to be involved in nickel transport by whole cells. The deleterious effects on hydrogenase expression are most pronounced by lack of the HupN product. PMID:8197192
Hernandez Pando, Rogelio; Aguilar, Leon Diana; Smith, Issar; Manganelli, Riccardo
2010-07-01
Tuberculosis is still one of the main challenges to human global health, leading to about two million deaths every year. One of the reasons for its success is the lack of efficacy of the widely used vaccine Mycobacterium bovis BCG. In this article, we analyze the potential use of an attenuated mutant of Mycobacterium tuberculosis H37Rv lacking the sigma factor sigma(E) as a live vaccine. We have demonstrated that BALB/c mice infected by the intratracheal route with this mutant strain showed significantly higher survival rates and less tissue damage than animals infected with the parental or complemented mutant strain. Although animals infected with the sigE mutant had low bacillary loads, their lungs showed significantly higher production of the protective factors gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), inducible nitric oxide synthase (iNOS), and beta-defensins than those of animals infected with the parental or complemented mutant strain. Moreover, we demonstrate that the sigE mutant, when inoculated subcutaneously, was more attenuated than BCG in immunodeficient nude mice, thus representing a good candidate for a novel attenuated live vaccine strain. Finally, when we used the sigE mutant as a subcutaneous vaccine, it was able to induce a higher level of protection than did BCG with both H37Rv and a highly virulent strain of M. tuberculosis (Beijing code 9501000). Taken together, our findings suggest that the sigE mutant is a very promising strain for the development of a new vaccine against tuberculosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunn, D.N.; Lidstrom, M.E.
Twenty-five methanol oxidation mutants of the facultative methylotroph Methylobacterium sp. strain AM1 have been characterized by complementation analysis and assigned to 10 complementation groups, Mox A1, A2, A3, and B through H. In this study we have characterized each of the mutants belonging to the 10 Mox complementation groups for the following criteria: (i) phenazine methosulfate-dichlorophenolindophenol dye-linked methanol dehydrogenase activity; (ii) methanol-dependent whole-cell oxygen consumption; (iii) the presence or absence of methanol dehydrogenase protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting; (iv) the absorption spectra of purified mutant methanol dehydrogenase proteins; and (v) the presence or absence ofmore » the soluble cytochrome c proteins of Methylobacterium sp. strain AM1, as determined by reduced-oxidized difference spectra and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With this information, we have proposed functions for each of the genes deficient in the mutants of the 10 Mox complementation groups. These proposed gene functions include two linked genes that encode the methanol dehydrogenase structural protein and the soluble cytochrome c/sub L/, a gene encoding a secretion function essential for the synthesis and export of methanol dehydrogenase and cytochrome c/sub L/, three gene functions responsible for the proper association of the pyrrolo-quinoline quinone prosthetic group with the methanol dehydrogenase apoprotein, and four positive regulatory gene functions controlling the expression of the ability to oxidize methanol.« less
Zhao, Feng; Meng, Songsong; Zhou, Deqing
2016-02-04
To construct heptyl glycosyltransferase gene II (waaF) gene deletion mutant of Vibrio parahaemolyticus, and explore the function of the waaF gene in Vibrio parahaemolyticus. The waaF gene deletion mutant was constructed by chitin-based transformation technology using clinical isolates, and then the growth rate, morphology and serotypes were identified. The different sources (O3, O5 and O10) waaF gene complementations were constructed through E. coli S17λpir strains conjugative transferring with Vibrio parahaemolyticus, and the function of the waaF gene was further verified by serotypes. The waaF gene deletion mutant strain was successfully constructed and it grew normally. The growth rate and morphology of mutant were similar with the wild type strains (WT), but the mutant could not occurred agglutination reaction with O antisera. The O3 and O5 sources waaF gene complementations occurred agglutination reaction with O antisera, but the O10 sources waaF gene complementations was not. The waaF gene was related with O-antigen synthesis and it was the key gene of O-antigen synthesis pathway in Vibrio parahaemolyticus. The function of different sources waaF gene were not the same.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neill, G.P.; Michelsen, U.; Soll, D.
Ethylmethane sulfonate-induced mutants of several Escherichia coli strains that required {delta}-aminolevulinic acid (ALA) for growth were isolated by penicillin enrichment or by selection for respiratory-defective strains resistant to the aminoglycoside antibiotic kanamycin. Three classes of mutants were obtained. Two-thirds of the strains were mutants in hemA. Representative of a third of the mutations was the hem-201 mutation. This mutation was mapped to min 8.6 to 8.7. Complementation of the auxotrophic phenotype by wild-type DNA from the corresponding phage 8F10 allowed the isolation of the gene. DNA sequence analysis revealed that the hem-201 gene encoded ALA dehydratase and was similar tomore » a known hemB gene of E. coli. Complementation studies of hem-201 and hemB1 mutant strains with various hem-201 gene subfragments showed that hem-201 and the previously reported hemB1 mutation are in the same gene and that no other gene is required to complement the hem-201 mutant. ALA-forming activity from glutamate could not be detected by in vitro or in vivo assays. Extracts of hem-201 cells had drastically reduce ALA dehydratase levels, while cells transformed with the plasmid-encoded wild-type gene possessed highly elevated enzyme levels. The ALA requirement for growth, the lack of any ALA-forming enzymatic activity, and greatly reduced ALA dehydratase activity of the hem-201 strain suggest that a diffusible product of an enzyme in the heme biosynthetic pathway after ALA formation is involved in positive regulation of ALA biosynthesis. Analysis of another class of ALA-requiring mutants showed that the auxotrophy of the hem-205 mutant could be relieved by either methionine or cysteine and that the mutation maps in the cysG gene, which encodes uroporphyrinogen III methylase. The properties of these nonleaky ALA-requiring strains suggest that ALA is involved more extensively in E. coli intermediary metabolism than has been appreciated to date.« less
Al-Laaeiby, Ayat; Kershaw, Michael J.; Penn, Tina J.; Thornton, Christopher R.
2016-01-01
The dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H2O2), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H2O2 treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not contribute to its resistance to amphotericin B. PMID:27023523
Al-Laaeiby, Ayat; Kershaw, Michael J; Penn, Tina J; Thornton, Christopher R
2016-03-24
The dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H₂O₂), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H₂O₂ treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not contribute to its resistance to amphotericin B.
Genetics of Ustilago violacea. I. Carotenoid mutants and carotenogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garber, E.D.; Baird, M.L.; Chapman, D.J.
1975-12-01
Wild-type strains of Ustilago violacea produce pink colonies on laboratory medium and yield white, orange, pumpkin, and yellow colonies after uv mutagenesis. The wild-type strains contain neurosporene and lycopene; one orange mutant, $gamma$-carotene; and one yellow mutant, $beta$-carotene. One white mutant had no detectable carotenoids. Diploid colonies heterozygous for wild type and orange, pumpkin, yellow, or white are phenotypically wild type. Diploid colonies heterozygous for yellow and orange are also phenotypically wild type. Diploid colonies heterozygous for white and orange; white and yellow; and white, yellow, and orange are phenotypically light orange, light yellow, and orange- yellow, respectively. The whitemore » mutants give a circular complementation map; the color mutants fit a linear complementation map. We propose a multienzyme of four identical dehydrogenases and one or two identical cyclases for carotenogenesis in this species. The white and color mutants represent structural mutations altering the conformation of the dehydrogenase or cyclase, respectively. Furthermore, cyclases may or may not aggregate in association with the dehydrogenase aggregate to form the multienzyme aggregate responsible for the color mutants. (auth)« less
Bearson, Bradley L.
2013-01-01
Although molecular mechanisms promoting adherence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 on epithelial cells are well characterized, regulatory mechanisms controlling biofilm formation are not fully understood. In this study, we demonstrate that biofilm formation in EHEC O157:H7 strain 86-24 is highly repressed compared to that in an isogenic hha mutant. The hha mutant produced large quantities of biofilm compared to the wild-type strain at 30°C and 37°C. Complementation of the hha mutant reduced the level of biofilm formation to that of the wild-type strain, indicating that Hha is a negative regulator of biofilm production. While swimming motility and expression of the flagellar gene fliC were significantly reduced, the expression of csgA (encoding curlin of curli fimbriae) and the ability to bind Congo red were significantly enhanced. The expression of both fliC and csgA and the phenotypes of motility and curli production affected by these two genes, respectively, were restored to wild-type levels in the complemented hha mutant. The csgA deletion abolished biofilm formation in the hha mutant and wild-type strain, and csgA complementation restored biofilm formation to these strains, indicating the importance of csgA and curli in biofilm formation. The regulatory effects of Hha on flagellar and curli gene expression appear to occur via the induction and repression of FlhDC and CsgD, as demonstrated by reduced flhD and increased csgD transcription in the hha mutant, respectively. In gel shift assays Hha interacted with flhDC and csgD promoters. In conclusion, Hha regulates biofilm formation in EHEC O157:H7 by differential regulation of FlhDC and CsgD, the global regulators of motility and curli production, respectively. PMID:23377937
Sharma, Vijay K; Bearson, Bradley L
2013-04-01
Although molecular mechanisms promoting adherence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 on epithelial cells are well characterized, regulatory mechanisms controlling biofilm formation are not fully understood. In this study, we demonstrate that biofilm formation in EHEC O157:H7 strain 86-24 is highly repressed compared to that in an isogenic hha mutant. The hha mutant produced large quantities of biofilm compared to the wild-type strain at 30°C and 37°C. Complementation of the hha mutant reduced the level of biofilm formation to that of the wild-type strain, indicating that Hha is a negative regulator of biofilm production. While swimming motility and expression of the flagellar gene fliC were significantly reduced, the expression of csgA (encoding curlin of curli fimbriae) and the ability to bind Congo red were significantly enhanced. The expression of both fliC and csgA and the phenotypes of motility and curli production affected by these two genes, respectively, were restored to wild-type levels in the complemented hha mutant. The csgA deletion abolished biofilm formation in the hha mutant and wild-type strain, and csgA complementation restored biofilm formation to these strains, indicating the importance of csgA and curli in biofilm formation. The regulatory effects of Hha on flagellar and curli gene expression appear to occur via the induction and repression of FlhDC and CsgD, as demonstrated by reduced flhD and increased csgD transcription in the hha mutant, respectively. In gel shift assays Hha interacted with flhDC and csgD promoters. In conclusion, Hha regulates biofilm formation in EHEC O157:H7 by differential regulation of FlhDC and CsgD, the global regulators of motility and curli production, respectively.
Honda-Ogawa, Mariko; Ogawa, Taiji; Terao, Yutaka; Sumitomo, Tomoko; Nakata, Masanobu; Ikebe, Kazunori; Maeda, Yoshinobu; Kawabata, Shigetada
2013-05-31
Streptococcus pyogenes is an important human pathogen that causes invasive diseases such as necrotizing fasciitis, sepsis, and streptococcal toxic shock syndrome. We investigated the function of a major cysteine protease from S. pyogenes that affects the amount of C1-esterase inhibitor (C1-INH) and other complement factors and aimed to elucidate the mechanism involved in occurrence of streptococcal toxic shock syndrome from the aspect of the complement system. First, we revealed that culture supernatant of a given S. pyogenes strain and recombinant SpeB degraded the C1-INH. Then, we determined the N-terminal sequence of the C1-INH fragment degraded by recombinant SpeB. Interestingly, the region containing one of the identified cleavage sites is not present in patients with C1-INH deficiency. Scanning electron microscopy of the speB mutant incubated in human serum showed the abnormal superficial architecture and irregular oval structure. Furthermore, unlike the wild-type strain, that mutant strain showed lower survival capacity than normal as compared with heat-inactivated serum, whereas it had a significantly higher survival rate in serum without the C1-INH than in normal serum. Also, SpeB degraded multiple complement factors and the membrane attack complex. Flow cytometric analyses revealed deposition of C9, one of the components of membrane the attack complex, in greater amounts on the surface of the speB mutant, whereas lower amounts of C9 were bound to the wild-type strain surface. These results suggest that SpeB can interrupt the human complement system via degrading the C1-INH, thus enabling S. pyogenes to evade eradication in a hostile environment.
Wiebe, M G; Robson, G D; Shuster, J; Trinci, A P
2001-04-20
Fusarium venenatum JeRS 325 is a transformant of strain A3/5 which produces Aspergillus niger glucoamylase (GAM) under the control of a Fusarium oxysporum trypsin-like protease promoter. The evolution of JeRS 325 was studied in glucose-limited chemostat cultures grown on NaNO3 or (NH4)2SO4 as the nitrogen source. Thirteen mutants which were more highly branched and four mutants which were more sparsely branched than the parental strain were isolated from the NaNO3 chemostat. The highly branched mutants detected in this chemostat did not displace the sparsely branched population. The mutants isolated from the NaNO3 chemostat complemented representative strains previously isolated from glucose-limited chemostat cultures of F. venenatum A3/5 grown on (NH4)2SO4, but showed little complementation between themselves. By contrast, a highly branched mutant isolated from the (NH4)2SO4 chemostat culture displaced the sparsely branched mycelial population. None of the mutants isolated from the NaNO3 or (NH4)2SO4 chemostats produced as much GAM as JeRS 325. Southern blot analysis showed that all except one mutant had lost copies of both the glucoamylase and the acetamidase (the selectable marker) genes. However, specific GAM production was not necessarily correlated with the extent of glaA gene loss observed. Further, 10 of the mutants had lost the ability to grow on acetamide as the sole nitrogen source, although they retained copies of the amdS gene. In competition studies, mutants which could not utilize acetamide displaced mutants which could. The presence of foreign DNA in JeRS 325 resulted in a reduced specific growth rate (compared to A3/5), but the presence of the foreign DNA did not prevent the evolution of the strain or the isolation of mutants which had improved growth rates. Copyright 2001 John Wiley & Sons, Inc.
Genetic studies on a nitrogen-fixing cyanobacterium. [Anabaena; Escherichi coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolk, C.P.; Cardemil, L.; Elhai, J.
1987-04-01
Mutants of Anabaena PCC7120 capable of aerobic growth with NO/sub 3//sup -/ but not N/sub 2/, and capable of microaerobic reduction of C/sub 2/H/sub 2/, were isolated by penicillin enrichment after UV irradiation. Heterocysts of two mutants lack the principal envelope glycolipid, those of EF116 have a non-cohesive envelope polysaccharide, and those of other strains have other defects. A Nm/sup r/ cosmid library of DNA from wild type Anabaena PCC7120 was established in Escherichia coli bearing the Ap helper plasmid pDS4101. A conjugative plasmid was introduced, and the bacteria replicated to lawns of individual mutant strains of Anabaena. After onemore » day of non-selective growth, selection was applied for Nm/sup r/ and nitrogen fixation. Overlapping cosmids complementing EF116 and one complementing another mutant have been mapped. The complementing genes are thought to act early in differentiation. Inclusion, in an E. coli donor of an appropriate methylase gene enhanced, by a factor of 10/sup 2/ to 10/sup 3/, transfer to Anabaena PCC7120 of a plasmid containing numerous sites for the Anabaena restriction endonuclease, AvaII.« less
Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav
2015-06-01
Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Urease Activity Represents an Alternative Pathway for Mycobacterium tuberculosis Nitrogen Metabolism
Lin, Wenwei; Mathys, Vanessa; Ang, Emily Lei Yin; Koh, Vanessa Hui Qi; Martínez Gómez, Julia María; Ang, Michelle Lay Teng; Zainul Rahim, Siti Zarina; Tan, Mai Ping; Pethe, Kevin
2012-01-01
Urease represents a critical virulence factor for some bacterial species through its alkalizing effect, which helps neutralize the acidic microenvironment of the pathogen. In addition, urease serves as a nitrogen source provider for bacterial growth. Pathogenic mycobacteria express a functional urease, but its role during infection has yet to be characterized. In this study, we constructed a urease-deficient Mycobacterium tuberculosis strain and confirmed the alkalizing effect of the urease activity within the mycobacterium-containing vacuole in resting macrophages but not in the more acidic phagolysosomal compartment of activated macrophages. However, the urease-mediated alkalizing effect did not confer any growth advantage on M. tuberculosis in macrophages, as evidenced by comparable growth profiles for the mutant, wild-type (WT), and complemented strains. In contrast, the urease-deficient mutant exhibited impaired in vitro growth compared to the WT and complemented strains when urea was the sole source of nitrogen. Substantial amounts of ammonia were produced by the WT and complemented strains, but not with the urease-deficient mutant, which represents the actual nitrogen source for mycobacterial growth. However, the urease-deficient mutant displayed parental colonization profiles in the lungs, spleen, and liver in mice. Together, our data demonstrate a role for the urease activity in M. tuberculosis nitrogen metabolism that could be crucial for the pathogen's survival in nutrient-limited microenvironments where urea is the sole nitrogen source. Our work supports the notion that M. tuberculosis virulence correlates with its unique metabolic versatility and ability to utilize virtually any carbon and nitrogen sources available in its environment. PMID:22645285
Diao, Jingyu; Bouwman, Catrien; Yan, Donghong; Kang, Jing; Katakam, Anand K.; Liu, Peter; Pantua, Homer; Abbas, Alexander R.; Nickerson, Nicholas N.; Austin, Cary; Reichelt, Mike; Sandoval, Wendy; Xu, Min
2017-01-01
ABSTRACT Murein lipoprotein (Lpp) and peptidoglycan-associated lipoprotein (Pal) are major outer membrane lipoproteins in Escherichia coli. Their roles in cell-envelope integrity have been documented in E. coli laboratory strains, and while Lpp has been linked to serum resistance in vitro, the underlying mechanism has not been established. Here, lpp and pal mutants of uropathogenic E. coli strain CFT073 showed reduced survival in a mouse bacteremia model, but only the lpp mutant was sensitive to serum killing in vitro. The peptidoglycan-bound Lpp form was specifically required for preventing complement-mediated bacterial lysis in vitro and complement-mediated clearance in vivo. Compared to the wild-type strain, the lpp mutant had impaired K2 capsular polysaccharide production and was unable to respond to exposure to serum by elevating capsular polysaccharide amounts. These properties correlated with altered cellular distribution of KpsD, the predicted outer membrane translocon for “group 2” capsular polysaccharides. We identified a novel Lpp-dependent association between functional KpsD and peptidoglycan, highlighting important interplay between cell envelope components required for resistance to complement-mediated lysis in uropathogenic E. coli isolates. PMID:28536290
A proteomic analysis of ferulic acid metabolism in Amycolatopsis sp. ATCC 39116.
Meyer, Florian; Netzer, Julius; Meinert, Christina; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander
2018-05-16
The pseudonocardiate Amycolatopsis sp. ATCC 39116 is used for the biotechnical production of natural vanillin from ferulic acid. Our laboratory has performed genetic modifications of this strain previously, but there are still many gaps in our knowledge regarding its vanillin tolerance and the general metabolism. We performed cultivations with this bacterium and compared the proteomes of stationary phase cells before ferulic acid feeding with those during ferulic acid feeding. Thereby, we identified 143 differently expressed proteins. Deletion mutants were constructed and characterized to analyze the function of nine corresponding genes. Using these mutants, we identified an active ferulic acid β-oxidation pathway and the enzymes which constitute this pathway. A combined deletion mutant in which the β-oxidation as well as non-β-oxidation pathways of ferulic acid degradation were deleted was unable to grow on ferulic acid as the sole source of carbon and energy. This mutant differs from the single deletion mutants and was unable to grow on ferulic acid. Furthermore, we showed that the non-β-oxidation pathway is involved in caffeic acid degradation; however, its deletion is complemented even in the double deletion mutant. This shows that both pathways can complement each other. The β-oxidation deletion mutant produced significantly reduced amounts of vanillic acid (0.12 instead of 0.35 g/l). Therefore, the resulting mutant could be used as an improved production strain. The quinone oxidoreductase deletion mutant (ΔytfG) degraded ferulic acid slower at first but produced comparable amounts of vanillin and significantly less vanillyl alcohol when compared to the parent strain.
Clay, Corey D.; Soni, Shilpa; Gunn, John S.; Schlesinger, Larry S.
2009-01-01
The bacterium Francisella tularensis (Ft) is a potential weapon of bioterrorism when aerosolized. Macrophage infection is necessary for disease progression and efficient phagocytosis by human macrophages requires serum opsonization by complement. Microbial complement activation leads to surface deposition of a highly regulated protein complex resulting in opsonization or membrane lysis. The nature of complement component C3 deposition, i.e., C3b (opsonization and lysis) or C3bi (opsonization only) fragment deposition, is central to the outcome of activation. In this study, we examine the mechanisms of Ft resistance to complement-mediated lysis, C3 component deposition on the Ft surface, and complement activation. Upon incubation in fresh nonimmune human serum, Schu S4 (Ft subsp. tularensis), Fn (Ft subsp. novicida), and LVS (Ft subsp. holarctica live vaccine strain) were resistant to complement-mediated lysis, but LVSG and LVSR (LVS strains altered in surface carbohydrate structures) were susceptible. C3 deposition, however, occurred on all strains. Complement-susceptible strains had markedly increased C3 fragment deposition, including the persistent presence of C3b compared with C3bi, which indicates that C3b inactivation results in survival of complement-resistant strains. C1q, an essential component of the classical activation pathway, was necessary for lysis of complement-susceptible strains and optimal C3 deposition on all strains. Finally, use of Francisella LPS mutants confirmed O Ag as a major regulator of complement resistance. These data provide evidence that pathogenic Francisella activate complement, but are resistant to complement-mediated lysis in part due to limited C3 deposition, rapid conversion of surface-bound C3b to C3bi, and the presence of LPS O Ag. PMID:18832715
To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle
2011-05-01
Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-L-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells.
To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle
2011-01-01
Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-l-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells. PMID:21421775
Pei, Dong; Jiang, Jinjin; Yu, Wanqin; Kukutla, Phanidhar; Uentillie, Alejandro; Xu, Jiannong
2015-08-27
The mosquito gut harbors a variety of bacteria that are dynamically associated with mosquitoes in various contexts. However, little is known about bacterial factors that affect bacterial inhabitation in the gut microbial community. Enterobacter sp. Ag1 is a predominant Gram negative bacterium in the mosquito midgut. In a mutant library that was generated using transposon Tn5-mediated mutagenesis, a mutant was identified, in which the gene waaL was disrupted by the Tn5 insertion. The waaL encodes O antigen ligase, which is required for the attachment of O antigen to the outer core oligosaccharide of the lipopolysaccharide (LPS). The waaL(-) mutation caused the O antigen repeat missing in the LPS. The normal LPS structure was restored when the mutant was complemented with a plasmid containing waaL gene. The waaL(-) mutation did not affect bacterial proliferation in LB culture, the mutant cells grew at a rate the same as the wildtype (wt) cells. However, when waaL(-) strain were co-cultured with the wt strain or complemented strain, the mutant cells proliferated with a slower rate, indicating that the mutants were less competitive than wt cells in a community setting. Similarly, in a co-feeding assay, when fluorescently tagged wt strain and waaL(-) strain were orally co-introduced into the gut of Anopheles stephensi mosquitoes, the mutant cells were less prevalent in both sugar-fed and blood-fed guts. The data suggest that the mutation compromised the bacterial inhabitation in the gut community. Besides, the mutant was more sensitive to oxidative stress, demonstrated by lower survival rate upon exposure to 20 mM H₂O₂. Lack of the O antigen structure in LPS of Enterobacter compromised the effective growth in co-culture and co-feeding assays. In addition, O-antigen was involved in protection against oxidative stress. The findings suggest that intact LPS is crucial for the bacteria to steadily stay in the gut microbial community.
Isolation and preliminary characterization of temperature-sensitive mutants of influenza virus.
Sugiura, A; Tobita, K; Kilbourne, E D
1972-10-01
Isolation of temperature-sensitive (ts) mutants was attempted from the WSN strain of influenza A virus which was grown and assayed in MDBK cells. After growth of wild-type virus in the presence of 5-fluorouracil, 15 ts mutants were selected for which the ratio of plaquing efficiency at 39.5 C to that at 33 C was 10(-3) or less. In pairwise crosses of ts mutants, recombination and complementation were either very efficient or undetectable. It is suggested, therefore, that the viral genome consists of physically discrete units and recombination occurs as an exchange of these units. All 15 mutants have been assigned with certainty into five recombination groups. Three mutants are suspected to be double mutants. Any two complementing mutants always recombined with each other, and noncomplementing mutants did not recombine. In physiological tests, mutants showed diverse patterns of functional defects at the nonpermissive temperature. However, it was not always possible to correlate these physiological defects with the results of genetic characterization.
Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion.
Ivanov, E L; Kovaltzova, S V; Korolev, V G
1989-08-01
We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.
Newman, Karyn L; Chatterjee, Subhadeep; Ho, Kimberly A; Lindow, Steven E
2008-03-01
Diffusible signal factor (DSF) is a fatty acid signal molecule involved in regulation of virulence in several Xanthomonas species as well as Xylella fastidiosa. In this study, we identified a variety of bacteria that could disrupt DSF-mediated induction of virulence factors in Xanthomonas campestris pv. campestris. While many bacteria had the ability to degrade DSF, several bacterial strains belonging to genera Bacillus, Paenibacillus, Microbacterium, Staphylococcus, and Pseudomonas were identified that were capable of particularly rapid degradation of DSF. The molecular determinants for rapid degradation of DSF in Pseudomonas spp. strain G were elucidated. Random transposon mutants of strain G lacking the ability to degrade DSF were isolated. Cloning and characterization of disrupted genes in these strains revealed that carAB, required for the synthesis of carbamoylphosphate, a precursor for pyrimidine and arginine biosynthesis is required for rapid degradation of DSF in strain G. Complementation of carAB mutants restored both pyrimidine prototrophy and DSF degradation ability of the strain G mutant. An Escherichia coli strain harboring carAB of Pseudomonas spp. strain G degrades DSF more rapidly than the parental strain, and overexpression of carAB in trans increased the ability of Pseudomonas spp. strain G to degrade as compared with the parental strain. Coinoculation of X. campestris pv. campestris with DSF-degrading bacteria into mustard and cabbage leaves reduced disease severity up to twofold compared with plants inoculated only with the pathogen. Likewise, disease incidence and severity in grape stems coinoculated with Xylella fastidiosa and DSF-degrading strains were significantly reduced compared with plants inoculated with the pathogen alone. Coinoculation of grape plants with a carAB mutant of Pseudomonas spp. strain G complemented with carAB in trans reduced disease severity as well or better than the parental strain. These results indicate that overexpression of carAB in other endophytes could be a useful strategy of biocontrol for the control of diseases caused by plant pathogens that produce DSF.
Critical role of LuxS in the virulence of Campylobacter jejuni in a guinea pig model of abortion.
Plummer, Paul; Sahin, Orhan; Burrough, Eric; Sippy, Rachel; Mou, Kathy; Rabenold, Jessica; Yaeger, Mike; Zhang, Qijing
2012-02-01
Previous studies on Campylobacter jejuni have demonstrated the role of LuxS in motility, cytolethal distending toxin production, agglutination, and intestinal colonization; however, its direct involvement in virulence has not been reported. In this study, we demonstrate a direct role of luxS in the virulence of C. jejuni in two different animal hosts. The IA3902 strain, a highly virulent sheep abortion strain recently described by our laboratory, along with its isogenic luxS mutant and luxS complement strains, was inoculated by the oral route into both a pregnant guinea pig virulence model and a chicken colonization model. In both cases, the IA3902 luxS mutant demonstrated a complete loss of ability to colonize the intestinal tract. In the pregnant model, the mutant also failed to induce abortion, while the wild-type strain was highly abortifacient. Genetic complementation of the luxS gene fully restored the virulent phenotype in both models. Interestingly, when the organism was inoculated into guinea pigs by the intraperitoneal route, no difference in virulence (abortion induction) was observed between the luxS mutant and the wild-type strain, suggesting that the defect in virulence following oral inoculation is likely associated with a defect in colonization and/or translocation of the organism out of the intestine. These studies provide the first direct evidence that LuxS plays an important role in the virulence of C. jejuni using an in vivo model of natural disease.
Suwunnakorn, Sumanun; Cooper, Chester R; Kummasook, Aksarakorn; Pongpom, Monsicha; Vanittanakom, Pramote; Vanittanakom, Nongnuch
2015-02-01
Penicillium marneffei is a human pathogenic fungus and the only thermally dimorphic species of the genus. At 25°C, P. marneffei grows as a mycelium that produces conidia in chains. However, when incubated at 37°C or following infection of host tissue, the fungus develops as a fission yeast. Previously, a mutant (strain I133) defective in morphogenesis was generated via Agrobacterium-mediated transformation. Specifically, the rtt109 gene (subsequently designated rttA) in this mutant was interrupted by T-DNA insertion. We characterized strain I133 and the possible roles of the mutated rttA gene in altered P. marneffei phenotypes. At 25°C, the rttA mutant produces fewer conidia than the wild type and a complemented mutant strain, as well as slower rates of conidial germination; however, strain I133 continued to grow as a yeast in 37°C-incubated cultures. Furthermore, whereas the wild type exhibited increased expression of rttA at 37°C in response to the DNA-damaging agent methyl methane sulfonate, strain I133 was hypersensitive to this and other genotoxic agents. Under similar conditions, the rttA mutant exhibited decreased expression of genes associated with carbohydrate metabolism and oxidative stress. Importantly, when compared with the wild-type and the complemented strain, I133 was significantly less virulent in a Galleria infection model when the larvae were incubated at 37°C. Moreover, the mutant exhibited inappropriate phase transition in vivo. In conclusion, the rttA gene plays important roles in morphogenesis, carbohydrate metabolism, stress response, and pathogenesis in P. marneffei, suggesting that this gene may be a potential target for the development of antifungal compounds. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Garcia, J P; Adams, V; Beingesser, J; Hughes, M L; Poon, R; Lyras, D; Hill, A; McClane, B A; Rood, J I; Uzal, F A
2013-07-01
Clostridium perfringens type D causes disease in sheep, goats, and other ruminants. Type D isolates produce, at minimum, alpha and epsilon (ETX) toxins, but some express up to five different toxins, raising questions about which toxins are necessary for the virulence of these bacteria. We evaluated the contribution of ETX to C. perfringens type D pathogenicity in an intraduodenal challenge model in sheep, goats, and mice using a virulent C. perfringens type D wild-type strain (WT), an isogenic ETX null mutant (etx mutant), and a strain where the etx mutation has been reversed (etx complemented). All sheep and goats, and most mice, challenged with the WT isolate developed acute clinical disease followed by death in most cases. Sheep developed various gross and/or histological changes that included edema of brain, lungs, and heart as well as hydropericardium. Goats developed various effects, including necrotizing colitis, pulmonary edema, and hydropericardium. No significant gross or histological abnormalities were observed in any mice infected with the WT strain. All sheep, goats, and mice challenged with the isogenic etx mutant remained clinically healthy for ≥24 h, and no gross or histological abnormalities were observed in those animals. Complementation of etx knockout restored virulence; most goats, sheep, and mice receiving this complemented mutant developed clinical and pathological changes similar to those observed in WT-infected animals. These results indicate that ETX is necessary for type D isolates to induce disease, supporting a key role for this toxin in type D disease pathogenesis.
Ling, Selina Oh Siew; Storms, Reginald; Zheng, Yun; Rodzi, Mohd Rohaizad Mohd; Mahadi, Nor Muhammad; Illias, Rosli Md
2013-01-01
The ease with which auxotrophic strains and genes that complement them can be manipulated, as well as the stability of auxotrophic selection systems, are amongst the advantages of using auxotrophic markers to produce heterologous proteins. Most auxotrophic markers in Aspergillus oryzae originate from chemical or physical mutagenesis that may yield undesirable mutations along with the mutation of interest. An auxotrophic A. oryzae strain S1 was generated by deleting the orotidine-5′-monophosphate decarboxylase gene (pyrG) by targeted gene replacement. The uridine requirement of the resulting strain GR6 pyrGΔ0 was complemented by plasmids carrying a pyrG gene from either Aspergillus nidulans or A. oryzae. β-Galactosidase expression by strain GR6 pyrGΔ0 transformed with an A. niger plasmid encoding a heterologous β-galactosidase was at least 150 times more than that obtained with the untransformed strain. Targeted gene replacement is thus an efficient way of developing auxotrophic mutants in A. oryzae and the auxotrophic strain GR6 pyrGΔ0 facilitated the production of a heterologous protein in this fungus. PMID:24381522
Costa, José M.; Loper, Joyce E.
1994-01-01
Erwinia carotovora subsp. betavasculorum Ecb168 produces an antibiotic(s) that suppresses growth of the related bacterium Erwinia carotovora subsp. carotovora in culture and in wounds of potato tubers. Strain Ecb168 also produces and secretes pectolytic enzymes and causes a vascular necrosis and root rot of sugar beet. Genes (out) involved in secretion of pectolytic enzymes by Ecb168 were localized to two HindIII fragments (8.5 and 10.5 kb) of Ecb168 genomic DNA by hybridization to the cloned out region of E. carotovora subsp. carotovora and by complementation of Out- mutants of E. carotovora subsp. carotovora. Out- mutants of Ecb168, which did not secrete pectate lyase into the culture medium, were obtained when deletions internal to either HindIII fragment were introduced into the genome of Ecb168 through marker exchange mutagenesis. Out- mutants of Ecb168 were complemented to the Out+ phenotype by introduction of the corresponding cloned HindIII fragment. Out- mutants of Ecb168 were less virulent than the Out+ parental strain on potato tubers. Strain Ecb168 and Out- derivatives inhibited the growth of E. carotovora subsp. carotovora in culture, indicating that the uncharacterized antibiotic(s) responsible for antagonism was exported through an out-independent mechanism. Strain Ecb168 and Out- derivatives reduced the establishment of large populations of E. carotovora subsp. carotovora in wounds of potato tubers and suppressed tuber soft rot caused by E. carotovora subsp. carotovora. PMID:16349316
Phenotypic characterization of ten methanol oxidation (Mox) mutant classes in methylobacterium AM1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunn, D.N.; Lidstrom, M.E.
Twenty-five methanol oxidation mutants of the facultative methylotroph Methylobacterium strain AM1 have been characterized by complementation analysis and assigned to ten complementation groups, Mox A1,A2,A3 and B-H. We have characterized each of the mutants belonging to the ten Mox complementation groups by PMS-DCPIP dye linked methanol dehydrogenase activity, by methanol-dependent whole cell oxygen consumption, by the presence or absence of methanol dehydrogenase protein by SDS-polyacrylamide gels and Western blotting, by the absorption spectra of purified mutant methanol dehydrogenase proteins and by the presence or absence of the soluble cytochrome c proteins of Methylobacterium AM1. We propose functions for each ofmore » the genes deficient in the mutants of the ten Mox complementation groups. These functions include two linked genes that encode the methanol dehydrogenase structural protein and the soluble cytochrome c/sub L/, a gene encoding a secretion function essential for the synthesis and export of methanol dehydrogenase and cytochrome c/sub L/, three gene functions responsible for the proper association of the PQQ prosthetic group with the methanol dehydrogenase apoprotein and four positive regulatory gene functions controlling the expression of the ability to oxidize methanol. 24 refs., 5 figs., 2 tabs.« less
Sun, Shuhua; Schilling, Birgit; Tarantino, Laurie; Tullius, Michael V.; Gibson, Bradford W.; Munson, Robert S.
2000-01-01
Haemophilus ducreyi is the etiologic agent of chancroid, a genital ulcer disease. The lipooligosaccharide (LOS) is considered to be a major virulence determinant and has been implicated in the adherence of H. ducreyi to keratinocytes. Strain A77, an isolate from the Paris collection, is serum sensitive, poorly adherent to fibroblasts, and deficient in microcolony formation. Structural analysis indicates that the LOS of strain A77 lacks the galactose residue found in the N-acetyllactosamine portion of the strain 35000HP LOS as well as the sialic acid substitution. From an H. ducreyi 35000HP genomic DNA library, a clone complementing the defect in A77 was identified by immunologic screening with monoclonal antibody (MAb) 3F11, a MAb which recognizes the N-acetyllactosamine portion of strain 35000HP LOS. The clone contained a 4-kb insert that was sequenced. One open reading frame which encodes a protein with a molecular weight of 33,400 was identified. This protein has homology to glycosyltransferases of Haemophilus influenzae, Haemophilus somnus, Neisseria species, and Pasteurella haemolytica. The putative H. ducreyi glycosyltransferase gene was insertionally inactivated, and an isogenic mutant of strain 35000HP was constructed. The most complex LOS glycoform produced by the mutant has a mobility on sodium dodecyl sulfate-polyacrylamide gel identical to that of the LOS of strain A77 and lacks the 3F11-binding epitope. Structural studies confirm that the most complex glycoform of the LOS isolated from the mutant lacks the galactose residue found in the N-acetyllactosamine portion of the strain 35000HP LOS. Although previously published data suggested that the serum-sensitive phenotype of A77 was due to the LOS mutation, we observed that the complemented A77 strain retained its serum-sensitive phenotype and that the galactosyltransferase mutant retained its serum-resistant phenotype. Thus, the serum sensitivity of strain A77 cannot be attributed to the galactosyltransferase mutation in strain A77. PMID:10735874
Geryk, J; Mazo, A; Svoboda, J; Hlozánek, I
1980-01-01
The replication of transformation-defective mutants of the Prague strain of Rous sarcoma virus subgroup C was studied using roller cultures. Under such conditions, 10(5)--10(6) infectous units of virus per 0.2 ml were produced, as revealed in both the reverse transcriptase and 16Q complementation tests. A new td daPR-RSV-C mutant was isolated from duck-adapted PR-RSV-C. This mutant replicated in roller cultures with equal efficiency as the original td PR-RSV-C. It was verified that td daPR-RSV-C does not transform chicken fibroblasts, is not oncogenic for 3-week-old chickens and has subgroup C host-range specificity. Both td mutants replicate in duck cells and reach the same titres.
Mycobacterium tuberculosis Pili promote adhesion to and invasion of THP-1 macrophages.
Ramsugit, Saiyur; Pillay, Manormoney
2014-01-01
Central to the paradigm of the pathogenesis of Mycobacterium tuberculosis is its ability to attach to, enter, and subsequently survive in host macrophages. However, little is known regarding the bacterial adhesins and invasins involved in this interaction with host macrophages. Pili are cell-surface structures produced by certain bacteria and have been implicated in adhesion to and invasion of phagocytes in several species. M. tuberculosis pili (MTP) are encoded by the Rv3312A (mtp) gene. In the present study, we assessed the ability of a Δmtp mutant and an mtp-complemented clinical strain to adhere to and invade THP-1 macrophages in comparison with the parental strain by determining colony-forming units. Both adhesion to and invasion of macrophages, although not reaching significance, were markedly reduced by 42.16% (P = 0.107) and 69.02% (P = 0.052), respectively, in the pili-deficient Δmtp mutant as compared with the wild-type. The pili-overexpressing complemented strain showed significantly higher levels of THP-1 macrophage adhesion (P = 0.000) and invasion (P = 0.040) than the mutant. We, thus, identified a novel adhesin and invasin of M. tuberculosis involved in adhesion to and invasion of macrophages.
HlyU Is a Positive Regulator of Hemolysin Expression in Vibrio anguillarum ▿
Li, Ling; Mou, Xiangyu; Nelson, David R.
2011-01-01
The two hemolysin gene clusters previously identified in Vibrio anguillarum, the vah1 cluster and the rtxACHBDE cluster, are responsible for the hemolytic and cytotoxic activities of V. anguillarum in fish. In this study, we used degenerate PCR to identify a positive hemolysin regulatory gene, hlyU, from the unsequenced V. anguillarum genome. The hlyU gene of V. anguillarum encodes a 92-amino-acid protein and is highly homologous to other bacterial HlyU proteins. An hlyU mutant was constructed, which exhibited an ∼5-fold decrease in hemolytic activity on sheep blood agar with no statistically significant decrease in cytotoxicity of the wild-type strain. Complementation of the hlyU mutation restored both hemolytic activity and cytotoxic activity. Both semiquantitative reverse transcription-PCR (RT-PCR) and quantitative real-time RT-PCR (qRT-PCR) were used to examine expression of the hemolysin genes under exponential and stationary-phase conditions in wild-type, hlyU mutant, and hlyU complemented strains. Compared to the wild-type strain, expression of rtx genes decreased in the hlyU mutant, while expression of vah1 and plp was not affected in the hlyU mutant. Complementation of the hlyU mutation restored expression of the rtx genes and increased vah1 and plp expression to levels higher than those in the wild type. The transcriptional start sites in both the vah1-plp and rtxH-rtxB genes' intergenic regions were determined using 5′ random amplification of cDNA ends (5′-RACE), and the binding sites for purified HlyU were discovered using DNA gel mobility shift experiments and DNase protection assays. PMID:21764937
Deletion of HAPS_2096 Increases Sensitivity to Cecropin B in Haemophilus parasuis.
Chen, Fanjie; Hu, Han; Li, Zhonghua; Huang, Jiacheng; Cai, Xuwang; Wang, Chunmei; He, Qigai; Cao, Jiyue
2015-01-01
Cecropin B (CB) is a very effective natural antimicrobial peptide that has shown great potential for future antimicrobial drug development. HAPS_2096 is a Haemophilus parasuis gene that encodes the periplasmic substrate-binding protein of an ATP-binding cassette-type amino acid transporter. In this research, we constructed and verified an HAPS_2096 deletion mutant and a complementary HAPS_2096 mutant of H. parasuis JS0135. A bactericidal assay revealed that the HAPS_2096 deletion mutant was significantly more sensitive than the wild-type strain to 0.25-0.5 µg/ml CB. However, the gene complementation alleviated the CB sensitivity of the mutant. Immunoelectron microscopy observation following a 30-min treatment with a sublethal concentration of CB (0.25 μg/ml) revealed more extensive morphological damage in the mutant strain than in the wild-type strain. Hence, our results suggest that the HAPS_2096 gene contributes to H. parasuis resistance to CB. © 2015 S. Karger AG, Basel.
CovR Regulates Streptococcus mutans Susceptibility To Complement Immunity and Survival in Blood
Alves, Lívia A.; Nomura, Ryota; Mariano, Flávia S.; Harth-Chu, Erika N.; Stipp, Rafael N.; Nakano, Kazuhiko
2016-01-01
Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro. Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans. Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization. PMID:27572331
Giuntini, Serena; Reason, Donald C; Granoff, Dan M
2012-01-01
Meningococcal vaccines containing factor H binding protein (fHbp) are in clinical development. fHbp binds human fH, which enables the meningococcus to resist complement-mediated bacteriolysis. Previously, we found that chimeric human IgG1 mouse anti-fHbp monoclonal antibodies (MAbs) had human complement-mediated bactericidal activity only if the MAb inhibited fH binding. Since IgG subclasses differ in their ability to activate complement, we investigated the role of human IgG subclasses on antibody functional activity. We constructed chimeric MAbs in which three different murine fHbp-specific binding domains were each paired with human IgG1, IgG2, or IgG3. Against a wild-type group B isolate, all three IgG3 MAbs, irrespective of their ability to inhibit fH binding, had bactericidal activity that was >5-fold higher than the respective IgG1 MAbs, while the IgG2 MAbs had the least activity. Against a mutant with increased fHbp expression, the anti-fHbp MAbs elicited greater C4b deposition (classical pathway) and greater bactericidal activity than against the wild-type strain, and the IgG1 MAbs had similar or greater activity than the respective IgG3 MAbs. The bactericidal activity against both wild-type and mutant strains also was dependent, in part, on activation of the alternative complement pathway. Thus, at lower epitope density in the wild-type strain, the IgG3 anti-fHbp MAbs had the greatest bactericidal activity. At a higher epitope density in the mutant, the IgG1 MAbs had similar or greater bactericidal activity than the IgG3 MAbs, and the activity was less dependent on the inhibition of fH binding than at a lower epitope density.
USDA-ARS?s Scientific Manuscript database
Acidovorax citrulli is a seed-borne pathogen that causes bacterial fruit blotch of cucurbits including melon and watermelon. We investigated the roles of quorum sensing in the wild-type group II strain Aac-5 of A. citrulli by generating aacR and aacI knockout mutants and their complementation strain...
Charizanis, C; Juhnke, H; Krems, B; Entian, K D
1999-10-01
In Saccharomyces cerevisiae two transcription factors, Pos9 (Skn7) and Yap1, are involved in the response to oxidative stress. Fusion of the Pos9 response-regulator domain to the Gal4 DNA-binding domain results in a transcription factor which renders the expression of a GAL1-lacZ reporter gene dependent on oxidative stress. To identify genes which are involved in the oxygen-dependent activation of the Gal4-Pos9 hybrid protein we screened for mutants that failed to induce the heterologous test system upon oxidative stress (fap mutants for factors activating Pos9). We isolated several respiration-deficient and some respiration-competent mutants by this means. We selected for further characterization only those mutants which also displayed an oxidative-stress-sensitive phenotype. One of the respiration-deficient mutants (complementation groupfap6) could be complemented by the ISM1 gene, which encodes mitochondrial isoleucyl tRNA synthetase, suggesting that respiration competence was important for signalling of oxidative stress. In accordance with this notion a rho0 strain and a wild-type strain in which respiration had been blocked (by treatment with antimycin A or with cyanide) also failed to activate Gal4-Pos9 upon imposition of oxidative stress. Another mutant, fap24, which was respiration-competent, could be complemented by CCP1, which encodes the mitochondrial cytochrome c peroxidase. Mitochondrial cytochrome c peroxidase degrades reactive oxygen species within the mitochondria. This suggested a possible sensor function for the enzyme in the oxidative stress response. To test this we used the previously described point mutant ccp1 W191F, which is characterized by a 10(4)-fold decrease in electron flux between cytochrome c and cytochrome c peroxidase. The Ccp1W191F mutant was still capable of activating the Pos9 transcriptional activation domain, suggesting that the signalling function of Ccp1 is independent of electron flux rates.
Pöntinen, Anna; Lindström, Miia; Skurnik, Mikael; Korkeala, Hannu
2017-08-01
To study the role of each two-component system (TCS) histidine kinase (HK) in stress tolerance of Listeria monocytogenes EGD-e, we monitored the growth of individual HK deletion mutant strains under heat (42.5 °C), acid (pH 5.6), alkali (pH 9.4), osmotic (6% NaCl), ethanol (3.5 vol%), and oxidative (5 mM H 2 O 2 ) stresses. The growth of ΔliaS (Δlmo1021) strain was impaired under each stress, with the most notable decrease under heat and osmotic stresses. The ΔvirS (Δlmo1741) strain showed nearly completely restricted growth at high temperature and impaired growth in ethanol. The growth of ΔagrC (Δlmo0050) strain was impaired under osmotic stress and slightly under oxidative stress. We successfully complemented the HK mutations using a novel allelic exchange based approach. This approach avoided the copy-number problems associated with in trans complementation from a plasmid. The mutant phenotypes were restored to the wild-type level in the complemented strains. This study reveals novel knowledge on the HKs needed for growth of L. monocytogenes EGD-e under abovementioned stress conditions, with LiaS playing multiple roles in stress tolerance of L. monocytogenes EGD-e. Copyright © 2017 Elsevier Ltd. All rights reserved.
A chitinase is required for Xylella fastidiosa colonization of its insect and plant hosts.
Labroussaa, Fabien; Ionescu, Michael; Zeilinger, Adam R; Lindow, Steven E; Almeida, Rodrigo P P
2017-04-01
Xylella fastidiosa colonizes the xylem network of host plant species as well as the foregut of its required insect vectors to ensure efficient propagation. Disease management strategies remain inefficient due to a limited comprehension of the mechanisms governing both insect and plant colonization. It was previously shown that X. fastidiosa has a functional chitinase (ChiA), and that chitin likely serves as a carbon source for this bacterium. We expand on that research, showing that a chiA mutant strain is unable to grow on chitin as the sole carbon source. Quantitative PCR assays allowed us to detect bacterial cells in the foregut of vectors after pathogen acquisition; populations of the wild-type and complemented mutant strain were both significantly larger than the chiA mutant strain 10 days, but not 3 days, post acquisition. These results indicate that adhesion of the chiA mutant strain to vectors may not be impaired, but that cell multiplication is limited. The mutant was also affected in its transmission by vectors to plants. In addition, the chiA mutant strain was unable to colonize host plants, suggesting that the enzyme has other substrates associated with plant colonization. Lastly, ChiA requires other X. fastidiosa protein(s) for its in vitro chitinolytic activity. The observation that the chiA mutant strain is not able to colonize plants warrants future attention to be paid to the substrates for this enzyme.
Anisimov, Andrey P; Bakhteeva, Irina V; Panfertsev, Evgeniy A; Svetoch, Tat'yana E; Kravchenko, Tat'yana B; Platonov, Mikhail E; Titareva, Galina M; Kombarova, Tat'yana I; Ivanov, Sergey A; Rakin, Alexander V; Amoako, Kingsley K; Dentovskaya, Svetlana V
2009-01-01
Two isogenic sets of Yersinia pestis strains were generated, composed of wild-type strains 231 and I-1996, their non-polar pH 6(-) mutants with deletions in the psaA gene that codes for its structural subunit or the whole operon, as well as strains with restored ability for temperature- and pH-dependent synthesis of adhesion pili or constitutive production of pH 6 antigen. The mutants were generated by site-directed mutagenesis of the psa operon and subsequent complementation in trans. It was shown that the loss of synthesis or constitutive production of pH 6 antigen did not influence Y. pestis virulence or the average survival time of subcutaneously inoculated BALB/c naïve mice or animals immunized with this antigen.
Zou, Yanming; He, Lina; Chi, Feng; Jong, Ambrose; Huang, Sheng-He
2008-12-01
IbeT is a downstream gene of the invasion determinant ibeA in the chromosome of a clinical isolate of Escherichia coli K1 strain RS218 (serotype 018:K1:H7). Both ibeT and ibeA are in the same operon. Our previous mutagenesis and complementation studies suggested that ibeT may coordinately contribute to E. coli K1 invasion with ibeA. An isogenic in-frame deletion mutant of ibeT has been made by chromosomal gene replacement with a recombinant suicide vector carrying a fragment with an ibeT internal deletion. The characteristics of the mutant in meningitic E. coli infection were examined in vitro [cell culture of human brain microvascular endothelial cells (HBMEC)] and in vivo (infant rat model of E. coli meningitis) in comparison with the parent strain. The ibeT deletion mutant was significantly less adhesive and invasive than its parent strain E. coli E44 in vitro, and the adhesion- and invasion-deficient phenotypes of the mutant can be complemented by the ibeT gene. Recombinant IbeT protein is able to block E. coli E44 invasion of HBMEC. Furthermore, the ibeT deletion mutant is less capable of colonizing intestine and less virulent in bacterial translocation across the blood-brain barrier (BBB) than its parent E. coli E44 in vivo. These data suggest that ibeT-mediated E. coli K1 adhesion is associated with the bacterial invasion process.
Kim, In Seon; Yang, Si Young; Park, Seur Kee; Kim, Young Cheol
2017-01-01
Chromobacterium sp. strain C61 has strong biocontrol activity; however, the genetic and biochemical determinants of its plant disease suppression activity are not well understood. Here, we report the identification and characterization of two new determinants of its biocontrol activity. Transposon mutagenesis was used to identify mutants that were deficient in fungal suppression. One of these mutants had an insertion in a homologue of depD, a structural gene in the dep operon, that encodes a protein involved in non-ribosomal peptide synthesis. In the second mutant, the insertion was in a homologue of the luxI gene, which encodes a homoserine lactone synthase. The luxI - and depD - mutants had no antifungal activity in vitro and a dramatically reduced capacity to suppress various plant diseases in planta. Antifungal production and biocontrol were restored by complementation of the luxI - mutant. Other phenotypes associated with effective biological control, including motility and lytic enzyme secretion, were also affected by the luxI mutation. Biochemical analysis of ethyl acetate extracts of culture filtrates of the mutant and wild-type strains showed that a key antifungal compound, chromobactomycin, was produced by wild-type C61 and the complemented luxI - mutant, but not by the luxI - or depD - mutant. These data suggest that multiple biocontrol-related phenotypes are regulated by homoserine lactones in C61. Thus, quorum sensing plays an essential role in the biological control potential of diverse bacterial lineages. © 2016 BSPP and John Wiley & Sons Ltd.
Iñón de Iannino, Nora; Briones, Gabriel; Tolmasky, Marcelo; Ugalde, Rodolfo A.
1998-01-01
The animal pathogen Brucella abortus contains a gene, cgs, that complemented a Rhizobium meliloti nodule development (ndvB) mutant and an Agrobacterium tumefaciens chromosomal virulence (chvB) mutant. The complemented strains recovered the synthesis of cyclic β(1-2) glucan, motility, virulence in A. tumefaciens, and nitrogen fixation in R. meliloti; all traits were strictly associated with the presence of an active cyclic β(1-2) glucan synthetase protein in the membranes. Nucleotide sequencing revealed the presence in B. abortus of an 8.49-kb open reading frame coding for a predicted membrane protein of 2,831 amino acids (316.2 kDa) and with 51% identity to R. meliloti NdvB. Four regions of the B. abortus protein spanning amino acids 520 to 800, 1025 to 1124, 1284 to 1526, and 2400 to 2660 displayed similarities of higher than 80% with R. meliloti NdvB. Tn3-HoHo1 mutagenesis showed that the C-terminal 825 amino acids of the Brucella protein, although highly conserved in Rhizobium, are not necessary for cyclic β(1-2) glucan synthesis. Confirmation of the identity of this protein as B. abortus cyclic β(1-2) glucan synthetase was done by the construction of a B. abortus Tn3-HoHo1 insertion mutant that does not form cyclic β(1-2) glucan and lacks the 316.2-kDa membrane protein. The recovery of this mutant from the spleens of inoculated mice was decreased by 3 orders of magnitude compared with that of the parental strain; this result suggests that cyclic β(1-2) glucan may be a virulence factor in Brucella infection. PMID:9721274
Complementation of a red-light-indifferent cyanobacterial mutant.
Chiang, G G; Schaefer, M R; Grossman, A R
1992-01-01
Many cyanobacteria alter their phycobilisome composition in response to changes in light wavelength in a process termed complementary chromatic adaptation. Mutant strains FdR1 and FdR2 of the filamentous cyanobacterium Fremyella diplosiphon are characterized by aberrant chromatic adaptation. Instead of adjusting to different wavelengths of light, FdR1 and FdR2 behave as if they are always in green light; they do not respond to red light. We have previously reported complementation of FdR1 by conjugal transfer of a wild-type genomic library. The complementing DNA has now been localized by genetic analysis to a region on the rescued genomic subclone that contains a gene designated rcaC. This region of DNA is also able to complement FdR2. Southern blot analysis of genomic DNA from FdR1 and FdR2 indicates that these strains harbor DNA insertions within the rcaC sequence that may have resulted from the activity of transposable genetic elements. The predicted amino acid sequence of RcaC shares strong identity to response regulators of bacterial two-component regulatory systems. This relationship is discussed in the context of the signal-transduction pathway mediating regulation of genes encoding phycobilisome polypeptides during chromatic adaptation. Images PMID:1409650
Falcone, D L; Tabita, F R
1991-01-01
A Rhodobacter sphaeroides ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion strain was constructed that was complemented by plasmids containing either the form I or form II CO2 fixation gene cluster. This strain was also complemented by genes encoding foreign RubisCO enzymes expressed from a Rhodospirillum rubrum RubisCO promoter. In R. sphaeroides, the R. rubrum promoter was regulated, resulting in variable levels of disparate RubisCO molecules under different growth conditions. Photosynthetic growth of the R. sphaeroides deletion strain complemented with cyanobacterial RubisCO revealed physiological properties reflective of the unique cellular environment of the cyanobacterial enzyme. The R. sphaeroides RubisCO deletion strain and R. rubrum promoter system may be used to assess the properties of mutagenized proteins in vivo, as well as provide a potential means to select for altered RubisCO molecules after random mutagenesis of entire genes or gene regions encoding RubisCO enzymes. Images PMID:1900508
De Sousa-D'Auria, Célia; Kacem, Raoudha; Puech, Virginie; Tropis, Marielle; Leblon, Gérard; Houssin, Christine; Daffé, Mamadou
2003-07-15
Mycolic acids, the major lipid constituents of Corynebacterineae, play an essential role in maintaining the integrity of the bacterial cell envelope. We have previously characterized a corynebacterial mycoloyltransferase (PS1) homologous in its N-terminal part to the three known mycobacterial mycoloyltransferases, the so-called fibronectin-binding proteins A, B and C. The genomes of Corynebacterium glutamicum (ATCC13032 and CGL2005) and Corynebacterium diphtheriae were explored for the occurrence of other putative corynebacterial mycoloyltransferase-encoding genes (cmyt). In addition to csp1 (renamed cmytA), five new cmyt genes (cmytB-F) were identified in the two strains of C. glutamicum and three cmyt genes in C. diphtheriae. In silico analysis showed that each of the putative cMyts contains the esterase domain, including the three key amino acids necessary for the catalysis. In C. glutamicum CGL2005 cmytE is a pseudogene. The four new cmyt genes were disrupted in this strain and overexpressed in the inactivated strains. Quantitative analyses of the mycolate content of all these mutants demonstrated that each of the new cMyt-defective strains, except cMytC, accumulated trehalose monocorynomycolate and exhibited a lower content of covalently bound corynomycolate than did the parent strain. For each mutant, the mycolate content was fully restored by complementation with the corresponding wild-type gene. Finally, complementation of the cmytA-inactivated mutant by the individual new cmyt genes established the existence of two classes of mycoloyltransferases in corynebacteria.
Meng, Xianrong; Liu, Xueling; Zhang, Liyuan; Hou, Bo; Li, Binyou; Tan, Chen; Li, Zili; Zhou, Rui; Li, Shaowen
2016-09-01
Outer membrane protein X (OmpX) and its homologues have been proposed to contribute to the virulence in various bacterial species. But, their role in virulence of extraintestinal pathogenic Escherichia coli (ExPEC) is yet to be determined. This study evaluates the role of OmpX in ExPEC virulence in vitro and in vivo using a clinical strain PPECC42 of porcine origin. The ompX deletion mutant exhibited increased swimming motility and decreased adhesion to, and invasion of pulmonary epithelial A549 cell, compared to the wild-type strain. A mild increase in LD50 and distinct decrease in bacterial load in such organs as heart, liver, spleen, lung and kidney were observed in mice infected with the ompX mutant. Complementation of the complete ompX gene in trans restored the virulence of mutant strain to the level of wild-type strain. Our results reveal that OmpX contributes to ExPEC virulence, but may be not an indispensable virulence determinant.
Nowrousian, Minou; Ringelberg, Carol; Dunlap, Jay C; Loros, Jennifer J; Kück, Ulrich
2005-04-01
The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies that protect the developing ascospores and ensure their proper discharge. Several regulatory genes essential for fruiting body development were previously isolated by complementation of the sterile mutants pro1, pro11 and pro22. To establish the genetic relationships between these genes and to identify downstream targets, we have conducted cross-species microarray hybridizations using cDNA arrays derived from the closely related fungus Neurospora crassa and RNA probes prepared from wild-type S. macrospora and the three developmental mutants. Of the 1,420 genes which gave a signal with the probes from all the strains used, 172 (12%) were regulated differently in at least one of the three mutants compared to the wild type, and 17 (1.2%) were regulated differently in all three mutant strains. Microarray data were verified by Northern analysis or quantitative real time PCR. Among the genes that are up- or down-regulated in the mutant strains are genes encoding the pheromone precursors, enzymes involved in melanin biosynthesis and a lectin-like protein. Analysis of gene expression in double mutants revealed a complex network of interaction between the pro gene products.
Diao, Jingyu; Bouwman, Catrien; Yan, Donghong; Kang, Jing; Katakam, Anand K; Liu, Peter; Pantua, Homer; Abbas, Alexander R; Nickerson, Nicholas N; Austin, Cary; Reichelt, Mike; Sandoval, Wendy; Xu, Min; Whitfield, Chris; Kapadia, Sharookh B
2017-05-23
Murein lipoprotein (Lpp) and peptidoglycan-associated lipoprotein (Pal) are major outer membrane lipoproteins in Escherichia coli Their roles in cell-envelope integrity have been documented in E. coli laboratory strains, and while Lpp has been linked to serum resistance in vitro , the underlying mechanism has not been established. Here, lpp and pal mutants of uropathogenic E. coli strain CFT073 showed reduced survival in a mouse bacteremia model, but only the lpp mutant was sensitive to serum killing in vitro The peptidoglycan-bound Lpp form was specifically required for preventing complement-mediated bacterial lysis in vitro and complement-mediated clearance in vivo Compared to the wild-type strain, the lpp mutant had impaired K2 capsular polysaccharide production and was unable to respond to exposure to serum by elevating capsular polysaccharide amounts. These properties correlated with altered cellular distribution of KpsD, the predicted outer membrane translocon for "group 2" capsular polysaccharides. We identified a novel Lpp-dependent association between functional KpsD and peptidoglycan, highlighting important interplay between cell envelope components required for resistance to complement-mediated lysis in uropathogenic E. coli isolates. IMPORTANCE Uropathogenic E. coli (UPEC) isolates represent a significant cause of nosocomial urinary tract and bloodstream infections. Many UPEC isolates are resistant to serum killing. Here, we show that a major cell-envelope lipoprotein (murein lipoprotein) is required for serum resistance in vitro and for complement-mediated bacterial clearance in vivo This is mediated, in part, through a novel mechanism by which murein lipoprotein affects the proper assembly of a key component of the machinery involved in production of "group 2" capsules. The absence of murein lipoprotein results in impaired production of the capsule layer, a known participant in complement resistance. These results demonstrate an important role for murein lipoprotein in complex interactions between different outer membrane biogenesis pathways and further highlight the importance of lipoprotein assembly and transport in bacterial pathogenesis. Copyright © 2017 Diao et al.
Denoel, P A; Crawford, R M; Zygmunt, M S; Tibor, A; Weynants, V E; Godfroid, F; Hoover, D L; Letesson, J J
1997-01-01
A bacterioferritin (BFR) deletion mutant of Brucella melitensis 16M was generated by gene replacement. The deletion was complemented with a broad-host-range vector carrying the wild-type bfr gene, pBBR-bfr. The survival and growth of the mutant, B. melitensis PAD 2-78, were similar to those of its parental strain in human monocyte-derived macrophages (MDM). These results suggest that BFR is not essential for the intracellular survival of B. melitensis in human MDM. PMID:9317046
Hsieh, Yu-Chia; Lin, Tzu-Lung; Lin, Che-Ming; Wang, Jin-Town
2015-01-01
The pneumococcal genome is variable and there are minimal data on the influence of the accessory genome on phenotype. Pneumococcal serotype 14 sequence type (ST) 46 had been the most prevalent clone causing pneumonia in children in Taiwan. A microarray was constructed using the genomic DNA of a clinical strain (NTUH-P15) of serotype 14 ST46. Using DNA hybridization, genomic variations in NTUH-P15 were compared to those of 3 control strains. Microarray analysis identified 7 genomic regions that had significant increases in hybridization signals in the NTUH-P15 strain compared to control strains. One of these regions encoded PblB, a phage-encoded virulence factor implicated (in Streptococcus mitis) in infective endocarditis. The isogenic pblB mutant decreased adherence to A549 human lung epithelial cell compared to wild-type NTUH-P15 strain (P = 0.01). Complementation with pblB restored the adherence. PblB is predicted to contain a galactose-binding domain-like region. Preincubation of NTUH-P15 with D-galactose resulted in decreases of adherence to A549 cell in a dose-dependent manner. Challenge of mice with NTUH-P15, isogenic pblB mutant and pblB complementation strains determined that PblB was required for bacterial persistence in the nasopharynx and lung. PblB, as an adhesin mediating the galactose-specific adhesion activity of pneumococci, promote pneumococcal clonal success. PMID:26193794
Heddergott, Christoph; Bruns, Sandra; Nietzsche, Sandor; Leonhardt, Ines; Kurzai, Oliver; Kniemeyer, Olaf; Brakhage, Axel A
2012-05-01
Dermatophytes are the most common cause of superficial mycoses in humans and animals. They can coexist with their hosts for many years without causing significant symptoms but also cause highly inflammatory diseases. To identify mechanisms involved in the modulation of the host response during infection caused by the zoophilic dermatophyte Arthroderma benhamiae, cell wall-associated surface proteins were studied. By two-dimensional gel electrophoresis, we found that a hydrophobin protein designated HypA was the dominant cell surface protein. HypA was also detected in the supernatant during the growth and conidiation of the fungus. The A. benhamiae genome harbors only a single hydrophobin gene, designated hypA. A hypA deletion mutant was generated, as was a complemented hypA mutant strain (hypA(C)). In contrast to the wild type and the complemented strain, the hypA deletion mutant exhibited "easily wettable" mycelia and conidia, indicating the loss of surface hydrophobicity of both morphotypes. Compared with the wild type, the hypA deletion mutant triggered an increased activation of human neutrophil granulocytes and dendritic cells, characterized by an increased release of the immune mediators interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis factor alpha (TNF-α). For the first time, we observed the formation of neutrophil extracellular traps against dermatophytes, whose level of formation was increased by the ΔhypA mutant compared with the wild type. Furthermore, conidia of the ΔhypA strain were killed more effectively by neutrophils. Our data suggest that the recognition of A. benhamiae by the cellular immune defense system is notably influenced by the presence of the surface rodlet layer formed by the hydrophobin HypA.
Heddergott, Christoph; Bruns, Sandra; Nietzsche, Sandor; Leonhardt, Ines; Kurzai, Oliver; Kniemeyer, Olaf
2012-01-01
Dermatophytes are the most common cause of superficial mycoses in humans and animals. They can coexist with their hosts for many years without causing significant symptoms but also cause highly inflammatory diseases. To identify mechanisms involved in the modulation of the host response during infection caused by the zoophilic dermatophyte Arthroderma benhamiae, cell wall-associated surface proteins were studied. By two-dimensional gel electrophoresis, we found that a hydrophobin protein designated HypA was the dominant cell surface protein. HypA was also detected in the supernatant during the growth and conidiation of the fungus. The A. benhamiae genome harbors only a single hydrophobin gene, designated hypA. A hypA deletion mutant was generated, as was a complemented hypA mutant strain (hypAC). In contrast to the wild type and the complemented strain, the hypA deletion mutant exhibited “easily wettable” mycelia and conidia, indicating the loss of surface hydrophobicity of both morphotypes. Compared with the wild type, the hypA deletion mutant triggered an increased activation of human neutrophil granulocytes and dendritic cells, characterized by an increased release of the immune mediators interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis factor alpha (TNF-α). For the first time, we observed the formation of neutrophil extracellular traps against dermatophytes, whose level of formation was increased by the ΔhypA mutant compared with the wild type. Furthermore, conidia of the ΔhypA strain were killed more effectively by neutrophils. Our data suggest that the recognition of A. benhamiae by the cellular immune defense system is notably influenced by the presence of the surface rodlet layer formed by the hydrophobin HypA. PMID:22408226
Packiam, Mathanraj; Yedery, Roshan D.; Begum, Afrin A.; Carlson, Russell W.; Ganguly, Jhuma; Sempowski, Gregory D.; Ventevogel, Melissa S.; Shafer, William M.
2014-01-01
The induction of an intense inflammatory response by Neisseria gonorrhoeae and the persistence of this pathogen in the presence of innate effectors is a fascinating aspect of gonorrhea. Phosphoethanolamine (PEA) decoration of lipid A increases gonococcal resistance to complement-mediated bacteriolysis and cationic antimicrobial peptides (CAMPs), and recently we reported that wild-type N. gonorrhoeae strain FA1090 has a survival advantage relative to a PEA transferase A (lptA) mutant in the human urethral-challenge and murine lower genital tract infection models. Here we tested the immunostimulatory role of this lipid A modification. Purified lipooligosaccharide (LOS) containing lipid A devoid of the PEA modification and an lptA mutant of strain FA19 induced significantly lower levels of NF-κB in human embryonic kidney Toll-like receptor 4 (TLR4) cells and murine embryonic fibroblasts than wild-type LOS of the parent strain. Moreover, vaginal proinflammatory cytokines and chemokines were not elevated in female mice infected with the isogenic lptA mutant, in contrast to mice infected with the wild-type and complemented lptA mutant bacteria. We also demonstrated that lptA mutant bacteria were more susceptible to human and murine cathelicidins due to increased binding by these peptides and that the differential induction of NF-κB by wild-type and unmodified lipid A was more pronounced in the presence of CAMPs. This work demonstrates that PEA decoration of lipid A plays both protective and immunostimulatory roles and that host-derived CAMPs may further reduce the capacity of PEA-deficient lipid A to interact with TLR4 during infection. PMID:24686069
Bhat, Ashwin; Tamuli, Ranjan; Kasbekar, Durgadas P
2004-01-01
The pseudohomothallic fungus Neurospora tetrasperma is naturally resistant to the antibiotic hygromycin. We discovered that mutation of its erg-3 (sterol C-14 reductase) gene confers a hygromycin-sensitive phenotype that can be used to select transformants on hygromycin medium by complementation with the N. crassa erg-3+ and bacterial hph genes. Cotransformation of hph with PCR-amplified DNA of other genes enabled us to construct strains duplicated for the amplified DNA. Using transformation we constructed self-fertile strains that were homoallelic for an ectopic erg-3+ transgene and a mutant erg-3 allele at the endogenous locus. Self-crosses of these strains yielded erg-3 mutant ascospores that produced colonies with the characteristic morphology on Vogel's sorbose agar described previously for erg-3 mutants of N. crassa. The mutants were generated by repeat-induced point mutation (RIP), a genome defense process that causes numerous G:C to A:T mutations in duplicated DNA sequences. Homozygosity for novel recessive RIP-deficient mutations was signaled by self-crosses of erg-3-duplication strains that fail to produce erg-3 mutant progeny. Using this assay we isolated a UV-induced mutant with a putative partial RIP defect. RIP-induced mutants were isolated in rid-1 and sad-1, which are essential genes, respectively, for RIP and another genome defense mechanism called meiotic silencing by unpaired DNA. PMID:15280231
Hussain, Muzaffar; Haggar, Axana; Heilmann, Christine; Peters, Georg; Flock, Jan-Ingmar; Herrmann, Mathias
2002-06-01
To initiate invasive infection, Staphylococcus aureus must adhere to host substrates, such as the extracellular matrix or eukaryotic cells, by virtue of different surface proteins (adhesins). Recently, we identified a 60-kDa cell-secreted extracellular adherence protein (Eap) of S. aureus strain Newman with broad-spectrum binding characteristics (M. Palma, A. Haggar, and J. I. Flock, J. Bacteriol. 181:2840-2845, 1999), and we have molecularly confirmed Eap to be an analogue of the previously identified major histocompatibility complex class II analog protein (Map) (M. Hussain, K. Becker, C. von Eiff, G. Peter, and M. Herrmann, Clin. Diagn. Lab. Immunol. 8:1281-1286, 2001). Previous analyses of the Eap/Map function performed with purified protein did not allow dissection of its precise role in the complex situation of the staphylococcal whole cell presenting several secreted and wall-bound adhesins. Therefore, the role of Eap was investigated by constructing a stable eap::ermB deletion in strain Newman and by complementation of the mutant. Patterns of extracted cell surface proteins analyzed both by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by Western ligand assays with various adhesive matrix molecules clearly confirmed the absence of Eap in the mutant. However, binding and adhesion tests using whole staphylococcal cells demonstrated that both the parent and mutant strains bound equally well to fibronectin- and fibrinogen-coated surfaces, possibly due to their recognition by other staphylococcal adhesins. Furthermore, Eap mediated staphylococcal agglutination of both wild-type and mutant cells. In contrast, the mutant adhered to a significantly lesser extent to cultured fibroblasts (P < 0.001) than did the wild type, while adherence was restorable upon complementation. Furthermore, adherence to both epithelial cells (P < 0.05) and fibroblasts (not significant) could be blocked with antibodies against Eap, whereas preimmune serum was not active. In conclusion, Eap may contribute to pathogenicity by promoting adhesion of whole staphylococcal cells to complex eukaryotic substrates.
Bozue, Joel; Cote, Christopher K; Chance, Taylor; Kugelman, Jeffrey; Kern, Steven J; Kijek, Todd K; Jenkins, Amy; Mou, Sherry; Moody, Krishna; Fritz, David; Robinson, Camenzind G; Bell, Todd; Worsham, Patricia
2014-01-01
Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.
Bozue, Joel; Cote, Christopher K.; Chance, Taylor; Kugelman, Jeffrey; Kern, Steven J.; Kijek, Todd K.; Jenkins, Amy; Mou, Sherry; Moody, Krishna; Fritz, David; Robinson, Camenzind G.; Bell, Todd; Worsham, Patricia
2014-01-01
Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge. PMID:25101850
Genes Required for Vacuolar Acidity in Saccharomyces Cerevisiae
Preston, R. A.; Reinagel, P. S.; Jones, E. W.
1992-01-01
Mutations that cause loss of acidity in the vacuole (lysosome) of Saccharomyces cerevisiae were identified by screening colonies labeled with the fluorescent, pH-sensitive, vacuolar labeling agent, 6-carboxyfluorescein. Thirty nine vacuolar pH (Vph(-)) mutants were identified. Four of these contained mutant alleles of the previously described PEP3, PEP5, PEP6 and PEP7 genes. The remaining mutants defined eight complementation groups of vph mutations. No alleles of the VAT2 or TFP1 genes (known to encode subunits of the vacuolar H(+)-ATPase) were identified in the Vph(-) screen. Strains bearing mutations in any of six of the VPH genes failed to grow on medium buffered at neutral pH; otherwise, none of the vph mutations caused notable growth inhibition on standard yeast media. Expression of the vacuolar protease, carboxypeptidase Y, was defective in strains bearing vph4 mutations but was apparently normal in strains bearing any of the other vph mutations. Defects in vacuolar morphology at the light microscope level were evident in all Vph(-) mutants. Strains that contained representative mutant alleles of the 17 previously described PEP genes were assayed for vacuolar pH; mutations in seven of the PEP genes (including PEP3, PEP5, PEP6 and PEP7) caused loss of vacuolar acidity. PMID:1628805
Liu, Youzhou; Baird, Sonya M; Qiao, Junqing; Du, Yan; Lu, Shi-En
2015-05-01
Strain YL23 was isolated from soybean root tips and identified to be Pseudomonas sp. This strain showed broad-spectrum antibacterial activity against bacterial pathogens that are economically important in agriculture. To characterize the genes dedicated to antibacterial activities against microbial phytopathogens, a Tn5-mutation library of YL23 was constructed. Plate bioassays revealed that the mutant YL23-93 lost its antibacterial activities against Erwinia amylovora and Dickeya chrysanthemi as compared with its wild type strain. Genetic and sequencing analyses localized the transposon in a homolog of the secG gene in the mutant YL23-93. Constitutive expression plasmid pUCP26-secG was constructed and electroporated into the mutant YL23-93. Introduction of the plasmid pUCP26-secG restored antibacterial activities of the mutant YL23-93 to E. amylovora and D. chrysanthemi. As expected, empty plasmid pUCP26 could not complement the phenotype of the antibacterial activity in the mutant. Thus the secG gene, belonging to the Sec protein translocation system, is required for antibacterial activity of strain YL23 against E. amylovora and D. chrysanthemi. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mutants of Yeast Defective in Sucrose Utilization
Carlson, Marian; Osmond, Barbara C.; Botstein, David
1981-01-01
Utilization of sucrose as a source of carbon and energy in yeast (Saccharomyces) is controlled by the classical SUC genes, which confer the ability to produce the sucrose-degrading enzyme invertase (Mortimer and Hawthorne 1969). Mutants of S. cerevisiae strain S288C (SUC2+) unable to grow anaerobically on sucrose, but still able to use glucose, were isolated. Two major complementation groups were identified: twenty-four recessive mutations at the SUC2 locus (suc2-); and five recessive mutations defining a new locus, SNF1 (for sucrose nonfermenting), essential for sucrose utilization. Two minor complementation groups, each comprising a single member with a leaky sucrose-nonfermenting phenotype, were also identified. The suc2 mutations isolated include four suppressible amber mutations and five mutations apparently exhibiting intragenic complementation; complementation analysis and mitotic mapping studies indicated that all of the suc2 mutations are alleles of a single gene. These results suggest that SUC2 encodes a protein, probably a dimer or multimer. No invertase activity was detected in suc2 mutants.—The SNF1 locus is not tightly linked to SUC2. The snf1 mutations were found to be pleiotropic, preventing sucrose utilization by SUC2+ and SUC7+ strains, and also preventing utilization of galactose, maltose and several nonfermentable carbon sources. Although snf1 mutants thus display a petite phenotype, classic petite mutations do not interfere with utilization of sucrose, galactose or maltose. A common feature of all the carbon utilization systems affected by SNF1 is that all are regulated by glucose repression. The snf1 mutants were found to produce the constitutive nonglycosylated form of invertase, but failed to produce the glucose-repressible, glycosylated, secreted invertase. This failure cannot be attributed to a general defect in production of glycosylated and secreted proteins because synthesis of acid phosphatase, a glycosylated secreted protein not subject to glucose repression, was not affected by snf1 mutations. These findings suggest that the SNF1 locus is involved in the regulation of gene expression by glucose repression. PMID:7040163
The Klebsiella pneumoniae O Antigen Contributes to Bacteremia and Lethality during Murine Pneumonia
Shankar-Sinha, Sunita; Valencia, Gabriel A.; Janes, Brian K.; Rosenberg, Jessica K.; Whitfield, Chris; Bender, Robert A.; Standiford, Ted J.; Younger, John G.
2004-01-01
Bacterial surface carbohydrates are important pathogenic factors in gram-negative pneumonia infections. Among these factors, O antigen has been reported to protect pathogens against complement-mediated killing. To examine further the role of O antigen, we insertionally inactivated the gene encoding a galactosyltransferase necessary for serotype O1 O-antigen synthesis (wbbO) from Klebsiella pneumoniae 43816. Analysis of the mutant lipopolysaccharide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed the absence of O antigen. In vitro, there were no detectable differences between wild-type K. pneumoniae and the O-antigen-deficient mutant in regard to avid binding by murine complement C3 or resistance to serum- or whole-blood-mediated killing. Nevertheless, the 72-h 50% lethal dose of the wild-type strain was 30-fold greater than that of the mutant (2 × 103 versus 6 × 104 CFU) after intratracheal injection in ICR strain mice. Despite being less lethal, the mutant organism exhibited comparable intrapulmonary proliferation at 24 h compared to the level of the wild type. Whole-lung chemokine expression (CCL3 and CXCL2) and bronchoalveolar inflammatory cell content were also similar between the two infections. However, whereas the wild-type organism produced bacteremia within 24 h of infection in every instance, bacteremia was not seen in mutant-infected mice. These results suggest that during murine pneumonia caused by K. pneumoniae, O antigen contributes to lethality by increasing the propensity for bacteremia and not by significantly changing the early course of intrapulmonary infection. PMID:14977947
Yang, Yang; Yin, Chuntao; Li, Weizhi; Xu, Xudong
2008-01-01
Unlike Escherichia coli, the cyanobacterium Synechocystis sp. strain PCC 6803 is insensitive to chill (5°C) in the dark but rapidly losses viability when exposed to chill in the light (100 μmol photons m−2 s−1). Preconditioning at a low temperature (15°C) greatly enhances the chill-light tolerance of Synechocystis sp. strain PCC 6803. This phenomenon is called acquired chill-light tolerance (ACLT). Preconditioned wild-type cells maintained a substantially higher level of α-tocopherol after exposure to chill-light stress. Mutants unable to synthesize α-tocopherol, such as slr1736, slr1737, slr0089, and slr0090 mutants, almost completely lost ACLT. When exposed to chill without light, these mutants showed no or a slight difference from the wild type. When complemented, the slr0089 mutant regained its ACLT. Copper-regulated expression of slr0090 from PpetE controlled the level of α-tocopherol and ACLT. We conclude that α-tocopherol is essential for ACLT of Synechocystis sp. strain PCC 6803. The role of α-tocopherol in ACLT may be based largely on a nonantioxidant activity that is not possessed by other tocopherols or pathway intermediates. PMID:18165303
Shaw, Duncan J.; Guest, John R.; Meganathan, Rangaswamy; Bentley, Ronald
1982-01-01
Four independent menaquinone (vitamin K2)-deficient mutants of Escherichia coli, blocked in the conversion of o-succinylbenzoate (OSB) to 1,4-dihydroxy-2-naphthoate (DHNA), were found to represent two distinct classes. Enzymatic complementation was observed when a cell-free extract of one mutant was mixed with extracts of any of the remaining three mutants. The missing enzymes in the two classes were identified by in vitro complementation with preparations of OSB-coenzyme A (CoA) synthetase or DHNA synthase isolated from Mycobacterium phlei. Mutants lacking DHNA synthase (and therefore complementing with M. phlei DHNA synthase) were designated menB, and the mutant lacking OSB-CoA synthetase (and therefore complementing with M. phlei OSB-CoA synthetase) was designated menE. The menB mutants produced only the spirodilactone form of OSB when extracts were incubated with [2,3-14C2]OSB, ATP, and CoA; the OSB was unchanged on incubation with an extract from the menE mutant under these conditions. Experiments with strains lysogenized by a λ men transducing phage (λG68) and transduction studies with phage P1 indicated that the menB and menE genes form part of a cluster of four genes, controlling the early steps in menaquinone biosynthesis, located at 48.5 min in the E. coli linkage map. Evidence was obtained for the clockwise gene order gyrA....menC- 0000100000 0000110000 0011111000 0000111000 0011111000 0001110000 0000110101 0001111111 0001100000 0000100000 0001101100 0011111000 0011000000 0011000000 0111000111 0111101110 -B-D, where the asterisk denotes the uncertain position of menE relative to menC and menB. The transducing phage (λG68) contained functional menB, menC, and menE genes, but only part of the menD gene, and it was designated λ menCB(D). PMID:6754698
Saranathan, Rajagopalan; Pagal, Sudhakar; Sawant, Ajit R; Tomar, Archana; Madhangi, M; Sah, Suresh; Satti, Annapurna; Arunkumar, K P; Prashanth, K
2017-10-03
Acinetobacter baumannii is an important human pathogen and considered as a major threat due to its extreme drug resistance. In this study, the genome of a hyper-virulent MDR strain PKAB07 of A. baumannii isolated from an Indian patient was sequenced and analyzed to understand its mechanisms of virulence, resistance and evolution. Comparative genome analysis of PKAB07 revealed virulence and resistance related genes scattered throughout the genome, instead of being organized as an island, indicating the highly mosaic nature of the genome. Many intermittent horizontal gene transfer events, insertion sequence (IS) element insertions identified were augmenting resistance machinery and elevating the SNP densities in A. baumannii eventually aiding in their swift evolution. ISAba1, the most widely distributed insertion sequence in A. baumannii was found in multiple sites in PKAB07. Out of many ISAba1 insertions, we identified novel insertions in 9 different genes wherein insertional inactivation of adeN (tetR type regulator) was significant. To assess the significance of this disruption in A. baumannii, adeN mutant and complement strains were constructed in A. baumannii ATCC 17978 strain and studied. Biofilm levels were abrogated in the adeN knockout when compared with the wild type and complemented strain of adeN knockout. Virulence of the adeN knockout mutant strain was observed to be high, which was validated by in vitro experiments and Galleria mellonella infection model. The overexpression of adeJ, a major component of AdeIJK efflux pump observed in adeN knockout strain could be the possible reason for the elevated virulence in adeN mutant and PKB07 strain. Knocking out of adeN in ATCC strain led to increased resistance and virulence at par with the PKAB07. Disruption of tetR type regulator adeN by ISAba1 consequently has led to elevated virulence in this pathogen.
Pence, Morgan A; Rooijakkers, Suzan H M; Cogen, Anna L; Cole, Jason N; Hollands, Andrew; Gallo, Richard L; Nizet, Victor
2010-01-01
Streptococcal inhibitor of complement (SIC) is a highly polymorphic extracellular protein and putative virulence factor secreted by M1 and M57 strains of group A Streptococcus (GAS). The sic gene is highly upregulated in invasive M1T1 GAS isolates following selection of mutations in the covR/S regulatory locus in vivo. Previous work has shown that SIC (allelic form 1.01) binds to and inactivates complement C5b67 and human cathelicidin LL-37. We examined the contribution of SIC to innate immune resistance phenotypes of GAS in the intact organism, using (1) targeted deletion of sic in wild-type and animal-passaged (covS mutant) M1T1 GAS harboring the sic 1.84 allele and (2) heterologous expression of sic in M49 GAS, which does not possess the sic genein its genome. We find that M1T1 SIC production is strongly upregulated upon covS mutation but that the sic gene is not required for generation and selection of covS mutants in vivo. SIC 1.84 bound both human and murine cathelicidins and was necessary and sufficient to promote covS mutant M1T1 GAS resistance to LL-37, growth in human whole blood and virulence in a murine model of systemic infection. Finally, the sic knockout mutant M1T1 GAS strain was deficient in growth in human serum and intracellular macrophage survival. We conclude that SIC contributes to M1T1 GAS immune resistance and virulence phenotypes. Copyright © 2010 S. Karger AG, Basel.
Marvel, Deborah J.; Kuldau, Gretchen; Hirsch, Ann; Richards, Eric; Torrey, John G.; Ausubel, Frederick M.
1985-01-01
Parasponia, a woody member of the elm family, is the only nonlegume genus whose members are known to form an effective nitrogen-fixing symbiosis with a Rhizobium species. The bacterial strain RP501 is a slow-growing strain of Rhizobium isolated from Parasponia nodules. Strain RP501 also nodulates the legumes siratro (Macroptilium atropurpureum) and cowpea (Vigna unguiculata). Using a cosmid clone bank of RP501 DNA, we isolated a 13.4-kilobase (kb) EcoRI fragment that complemented insertion and point mutations in three contiguous nodulation genes (nodABC) of Rhizobium meliloti, the endosymbiont of alfalfa (Medicago sativa). The complemented R. meliloti nod mutants induced effective nitrogen-fixing nodules on alfalfa seedlings but not on siratro, cowpeas, or Parasponia. The cloned RP501 nodulation locus hybridized to DNA fragments carrying the R. meliloti nodABC genes. A 3-kb cluster of Tn5 insertion mutations on the RP501 13.4-kb EcoRI fragment prevented complementation of R. meliloti nodABC mutations. Images PMID:16593600
Horn, Nikki; Wegmann, Udo; Dertli, Enes; Mulholland, Francis; Collins, Samuel R A; Waldron, Keith W; Bongaerts, Roy J; Mayer, Melinda J; Narbad, Arjan
2013-01-01
As a competitive exclusion agent, Lactobacillus johnsonii FI9785 has been shown to prevent the colonization of selected pathogenic bacteria from the chicken gastrointestinal tract. During growth of the bacterium a rare but consistent emergence of an altered phenotype was noted, generating smooth colonies in contrast to the wild type rough form. A smooth colony variant was isolated and two-dimensional gel analysis of both strains revealed a protein spot with different migration properties in the two phenotypes. The spot in both gels was identified as a putative tyrosine kinase (EpsC), associated with a predicted exopolysaccharide gene cluster. Sequencing of the epsC gene from the smooth mutant revealed a single substitution (G to A) in the coding strand, resulting in the amino acid change D88N in the corresponding gene product. A native plasmid of L. johnsonii was engineered to produce a novel vector for constitutive expression and this was used to demonstrate that expression of the wild type epsC gene in the smooth mutant produced a reversion to the rough colony phenotype. Both the mutant and epsC complemented strains had increased levels of exopolysaccharides compared to the wild type strain, indicating that the rough phenotype is not solely associated with the quantity of exopolysaccharide. Another gene in the cluster, epsE, that encoded a putative undecaprenyl-phosphate galactosephosphotransferase, was deleted in order to investigate its role in exopolysaccharide biosynthesis. The ΔepsE strain exhibited a large increase in cell aggregation and a reduction in exopolysaccharide content, while plasmid complementation of epsE restored the wild type phenotype. Flow cytometry showed that the wild type and derivative strains exhibited clear differences in their adhesive ability to HT29 monolayers in tissue culture, demonstrating an impact of EPS on surface properties and bacteria-host interactions.
A hybrid two-component system protein from Azospirillum brasilense Sp7 was involved in chemotaxis.
Cui, Yanhua; Tu, Ran; Wu, Lixian; Hong, Yuanyuan; Chen, Sanfeng
2011-09-20
We here report the sequence and functional analysis of org35 of Azospirillum brasilense Sp7, which was originally identified to be able to interact with NifA in yeast-two-hybrid system. The org35 encodes a hybrid two-component system protein, including N-terminal PAS domains, a histidine kinase (HPK) domain and a response regulator (RR) domain in C-terminal. To determine the function of the Org35, a deletion-insertion mutant in PAS domain [named Sp7353] and a complemental strain Sp7353C were constructed. The mutant had reduced chemotaxis ability compared to that of wild-type, and the complemental strain was similar to the wild-type strain. These data suggested that the A. brasilense org35 played a key role in chemotaxis. Variants containing different domains of the org35 were expressed, and the functions of these domains were studied in vitro. Phosphorylation assays in vitro demonstrated that the HPK domain of Org35 possessed the autokinase activity and that the phosphorylated HPK was able to transfer phosphate groups to the RR domain. The result indicated Org35 was a phosphorylation-communicating protein. Copyright © 2010 Elsevier GmbH. All rights reserved.
An 'instant gene bank' method for gene cloning by mutant complementation.
Gems, D; Aleksenko, A; Belenky, L; Robertson, S; Ramsden, M; Vinetski, Y; Clutterbuck, A J
1994-02-01
We describe a new method of gene cloning by complementation of mutant alleles which obviates the need for construction of a gene library in a plasmid vector in vitro and its amplification in Escherichia coli. The method involves simultaneous transformation of mutant strains of the fungus Aspergillus nidulans with (i) fragmented chromosomal DNA from a donor species and (ii) DNA of a plasmid without a selectable marker gene, but with a fungal origin of DNA replication ('helper plasmid'). Transformant colonies appear as the result of the joining of chromosomal DNA fragments carrying the wild-type copies of the mutant allele with the helper plasmid. Joining may occur either by ligation (if the helper plasmid is in linear form) or recombination (if it is cccDNA). This event occurs with high efficiency in vivo, and generates an autonomously replicating plasmid cointegrate. Transformants containing Penicillium chrysogenum genomic DNA complementing A. nidulans niaD, nirA and argB mutations have been obtained. While some of these cointegrates were evidently rearranged or consisted only of unaltered replicating plasmid, in other cases plasmids could be recovered into E. coli and were subsequently shown to contain the selected gene. The utility of this "instant gene bank" technique is demonstrated here by the molecular cloning of the P. canescens trpC gene.
Isolation and Characterization of Mms-Sensitive Mutants of SACCHAROMYCES CEREVISIAE
Prakash, Louise; Prakash, Satya
1977-01-01
We have isolated mutants sensitive to methyl methanesulfonate (MMS) in Saccharomyces cerevisiae. Alleles of rad1, rad4, rad6, rad52, rad55 and rad57 were found among these mms mutants. Twenty-nine of the mms mutants which complement the existing radiation-sensitive (rad and rev ) mutants belong to 22 new complementation groups. Mutants from five complementation groups are sensitive only to MMS. Mutants of 11 complementation groups are sensitive to UV or X rays in addition to MMS, mutants of six complementation groups are sensitive to all three agents. The cross-sensitivities of these mms mutants to UV and X rays are discussed in terms of their possible involvement in DNA repair. Sporulation is reduced or absent in homozygous diploids of mms mutants from nine complementation groups. PMID:195865
Plaut, Roger D; Beaber, John W; Zemansky, Jason; Kaur, Ajinder P; George, Matroner; Biswas, Biswajit; Henry, Matthew; Bishop-Lilly, Kimberly A; Mokashi, Vishwesh; Hannah, Ryan M; Pope, Robert K; Read, Timothy D; Stibitz, Scott; Calendar, Richard; Sozhamannan, Shanmuga
2014-03-01
In order to better characterize the Bacillus anthracis typing phage AP50c, we designed a genetic screen to identify its bacterial receptor. Insertions of the transposon mariner or targeted deletions of the structural gene for the S-layer protein Sap and the sporulation genes spo0A, spo0B, and spo0F in B. anthracis Sterne resulted in phage resistance with concomitant defects in phage adsorption and infectivity. Electron microscopy of bacteria incubated with AP50c revealed phage particles associated with the surface of bacilli of the Sterne strain but not with the surfaces of Δsap, Δspo0A, Δspo0B, or Δspo0F mutants. The amount of Sap in the S layer of each of the spo0 mutant strains was substantially reduced compared to that of the parent strain, and incubation of AP50c with purified recombinant Sap led to a substantial reduction in phage activity. Phylogenetic analysis based on whole-genome sequences of B. cereus sensu lato strains revealed several closely related B. cereus and B. thuringiensis strains that carry sap genes with very high similarities to the sap gene of B. anthracis. Complementation of the Δsap mutant in trans with the wild-type B. anthracis sap or the sap gene from either of two different B. cereus strains that are sensitive to AP50c infection restored phage sensitivity, and electron microscopy confirmed attachment of phage particles to the surface of each of the complemented strains. Based on these data, we postulate that Sap is involved in AP50c infectivity, most likely acting as the phage receptor, and that the spo0 genes may regulate synthesis of Sap and/or formation of the S layer.
Beaber, John W.; Zemansky, Jason; Kaur, Ajinder P.; George, Matroner; Biswas, Biswajit; Henry, Matthew; Bishop-Lilly, Kimberly A.; Mokashi, Vishwesh; Hannah, Ryan M.; Pope, Robert K.; Read, Timothy D.; Stibitz, Scott; Calendar, Richard; Sozhamannan, Shanmuga
2014-01-01
In order to better characterize the Bacillus anthracis typing phage AP50c, we designed a genetic screen to identify its bacterial receptor. Insertions of the transposon mariner or targeted deletions of the structural gene for the S-layer protein Sap and the sporulation genes spo0A, spo0B, and spo0F in B. anthracis Sterne resulted in phage resistance with concomitant defects in phage adsorption and infectivity. Electron microscopy of bacteria incubated with AP50c revealed phage particles associated with the surface of bacilli of the Sterne strain but not with the surfaces of Δsap, Δspo0A, Δspo0B, or Δspo0F mutants. The amount of Sap in the S layer of each of the spo0 mutant strains was substantially reduced compared to that of the parent strain, and incubation of AP50c with purified recombinant Sap led to a substantial reduction in phage activity. Phylogenetic analysis based on whole-genome sequences of B. cereus sensu lato strains revealed several closely related B. cereus and B. thuringiensis strains that carry sap genes with very high similarities to the sap gene of B. anthracis. Complementation of the Δsap mutant in trans with the wild-type B. anthracis sap or the sap gene from either of two different B. cereus strains that are sensitive to AP50c infection restored phage sensitivity, and electron microscopy confirmed attachment of phage particles to the surface of each of the complemented strains. Based on these data, we postulate that Sap is involved in AP50c infectivity, most likely acting as the phage receptor, and that the spo0 genes may regulate synthesis of Sap and/or formation of the S layer. PMID:24363347
Hama, S; Kimura, G
1980-01-01
Eleven temperature-sensitive mutants of adenovirus type 12, capable of forming plaques in human cells at 33 C but not at 39.5 C, were isolated from a stock of a wild-type strain after treatment with either nitrous acid or hydroxylamine. Complementation tests in doubly infected human cells permitted a tentative assignment of eight of these mutants to six complementation groups. Temperature-shift experiments revealed that one mutant is affected early and most of the other mutants are affected late. Only the early mutant, H12ts505, was temperature sensitive in viral DNA replication. Infectious virions of all the mutants except H12ts505 and two of the late mutants produced at 33 C, appeared to be more heat labile than those of the wild type. Only H12ts505 was temperature sensitive for the establishment of transformation of rat 3Y1 cells. One of the late mutants (H12ts504) had an increased transforming ability at the permissive temperature. Results of temperature-shift transformation experiments suggest that a viral function affected in H12ts505 is required for "initiation" of transformation. Some of the growth properties of H12ts505-transformed cells were also temperature dependent, suggesting that a functional expression of a gene mutation in H12ts505 is required to maintain at least some aspects of the transformed state.
van der Maten, Erika; van den Broek, Bryan; de Jonge, Marien I; Rensen, Kim J W; Eleveld, Marc J; Zomer, Aldert L; Cremers, Amelieke J H; Ferwerda, Gerben; de Groot, Ronald; Langereis, Jeroen D; van der Flier, Michiel
2018-04-01
The pneumococcal capsular serotype is an important determinant of complement resistance and invasive disease potential, but other virulence factors have also been found to contribute. Pneumococcal surface protein C (PspC), a highly variable virulence protein that binds complement factor H to evade C3 opsonization, is divided into two subgroups: choline-bound subgroup I and LPxTG-anchored subgroup II. The prevalence of different PspC subgroups in invasive pneumococcal disease (IPD) and functional differences in complement evasion are unknown. The prevalence of PspC subgroups in IPD isolates was determined in a collection of 349 sequenced strains of Streptococcus pneumoniae isolated from adult patients. pspC deletion mutants and isogenic pspC switch mutants were constructed to study differences in factor H binding and complement evasion in relation to capsule thickness. Subgroup I pspC was far more prevalent in IPD isolates than subgroup II pspC The presence of capsule was associated with a greater ability of bound factor H to reduce complement opsonization. Pneumococcal subgroup I PspC bound significantly more factor H and showed more effective complement evasion than subgroup II PspC in isogenic encapsulated pneumococci. We conclude that variation in the PspC subgroups, independent of capsule serotypes, affects pneumococcal factor H binding and its ability to evade complement deposition. Copyright © 2018 American Society for Microbiology.
Duan, Qiangde; Zhou, Mingxu; Zhu, Xiaofang; Bao, Wenbin; Wu, Shenglong; Ruan, Xiaosai; Zhang, Weiping; Yang, Yang; Zhu, Jun; Zhu, Guoqiang
2012-11-09
Bacterial flagella contribute to pathogen virulence; however, the role of flagella in the pathogenesis of F18ab E. coli-mediated swine edema disease (ED) is not currently known. We therefore evaluated the role of flagella in F18ab E. coli adhesion, invasion, biofilm formation, and IL-8 production using an in vitro cell infection model approach with gene-deletion mutant and complemented bacterial strains. We demonstrated that the flagellin-deficient fliC mutant had a marked decrease in the ability to adhere to and invade porcine epithelial IPEC-J2 cells. Surprisingly, there was no difference in adhesion between the F18 fimbriae-deficient ΔfedA mutant and its parent strain. In addition, both the ΔfedA and double ΔfliCΔfedA mutants exhibited an increased ability to invade IPEC-J2 cells compared to the wild-type strain, although this may be due to increased expression of other adhesins following the loss of F18ab fimbriae and flagella. Compared to the wild-type strain, the ΔfliC mutant showed significantly reduced ability to form biofilm, whereas the ΔfedA mutant increased biofilm formation. Although ΔfliC, ΔfedA, and ΔfliCΔfedA mutants had a reduced ability to stimulate IL-8 production from infected Caco-2 cells, the ΔfliC mutant impaired this ability to a greater extent than the ΔfedA mutant. The results from this study clearly demonstrate that flagella are required for efficient F18ab E. coli adhesion, invasion, biofilm formation, and IL-8 production in vitro. Copyright © 2012 Elsevier B.V. All rights reserved.
Bartsevich, V V; Pakrasi, H B
1995-01-01
During photosynthesis, the photosystem II (PSII) pigment-protein complex catalyzes oxygen evolution, a reaction in which a four-manganese ensemble plays a crucial role. Using a newly developed selection scheme, we have isolated BP13, a random photosynthesis-deficient mutant strain of the cyanobacterium, Synechocystis 6803. This mutant grew slowly under photoautotrophic conditions, and had a low oxygen evolution activity. Biochemical analysis revealed that the lesion in this mutant strain had specifically affected the Mn ensemble in PSII. Interestingly, incubation of BP13 cells with micromolar levels of added Mn induced rapid recovery of oxygen evolution activity. The mutant could be complemented with a fragment of wild-type chromosomal DNA containing three closely linked genes, mntA, mntB and mntC. These gene products showed significant sequence similarities with polypeptide components of bacterial permeases that are members of the 'ABC (ATP binding cassette) superfamily' of transporter proteins. We determined that in the BP13 strain, a single nucleotide change had resulted in the replacement of an alanine by an aspartic acid residue in MntA, a soluble protein containing ATP binding motifs. These results suggest that the mntCAB gene cluster encodes polypeptide components of a Mn transporter, the first such protein complex identified in any organism. PMID:7743991
Seitz, Maren; Beineke, Andreas; Singpiel, Alena; Willenborg, Jörg; Dutow, Pavel; Goethe, Ralph; Valentin-Weigand, Peter; Klos, Andreas; Baums, Christoph G
2014-06-01
Virulent Streptococcus suis serotype 2 strains are invasive extracellular bacteria causing septicemia and meningitis in piglets and humans. One objective of this study was to elucidate the function of complement in innate immune defense against S. suis. Experimental infection of wild-type (WT) and C3(-/-) mice demonstrated for the first time that the complement system protects naive mice against invasive mucosal S. suis infection. S. suis WT but not an unencapsulated mutant caused mortality associated with meningitis and other pathologies in C3(-/-) mice. The capsule contributed also substantially to colonization of the upper respiratory tract. Experimental infection of C3(-/-) mice with a suilysin mutant indicated that suilysin expression facilitated an early disease onset and the pathogenesis of meningitis. Flow cytometric analysis revealed C3 antigen deposition on the surface of ca. 40% of S. suis WT bacteria after opsonization with naive WT mouse serum, although to a significantly lower intensity than on the unencapsulated mutant. Ex vivo multiplication in murine WT and C3(-/-) blood depended on capsule but not suilysin expression. Interestingly, S. suis invasion of inner organs was also detectable in C5aR(-/-) mice, suggesting that chemotaxis and activation of immune cells via the anaphylatoxin receptor C5aR is, in addition to opsonization, a further important function of the complement system in defense against mucosal S. suis infection. In conclusion, we unequivocally demonstrate here the importance of complement against mucosal S. suis serotype 2 infection and that the capsule of this pathogen is also involved in escape from complement-independent immunity.
Manterola, Lorea; Guzmán-Verri, Caterina; Chaves-Olarte, Esteban; Barquero-Calvo, Elías; de Miguel, María-Jesús; Moriyón, Ignacio; Grilló, María-Jesús; López-Goñi, Ignacio; Moreno, Edgardo
2007-01-01
The Brucella abortus two-component regulatory system BvrR/BvrS controls the expression of outer membrane proteins (Omp) Omp3a (Omp25) and Omp3b (Omp22). Disruption of bvrS or bvrR generates avirulent mutants with altered cell permeability, higher sensitivity to microbicidal peptides, and complement. Consequently, the role of Omp3a and Omp3b in virulence was examined. Similar to bvrS or bvrR mutants, omp3a and omp3b mutants displayed increased attachment to cells, indicating surface alterations. However, they showed unaltered permeability; normal expression of Omp10, Omp16, Omp19, Omp2b, and Omp1; native hapten polysaccharide; and lipopolysaccharide and were resistant to complement and polymyxin B at ranges similar to those of the wild-type (WT) counterpart. Likewise, omp3a and omp3b mutants were able to replicate in murine macrophages and in HeLa cells, were resistant to the killing action of human neutrophils, and persisted in mice, like the WT strain. Murine macrophages infected with the omp3a mutant generated slightly higher levels of tumor necrosis factor alpha than the WT, whereas the bvrS mutant induced lower levels of this cytokine. Since the absence of Omp3a or Omp3b does not result in attenuation, it can be concluded that BvrR/BvrS influences additional Brucella properties involved in virulence. Our results are discussed in the light of previous works suggesting that disruption of omp3a generates attenuated Brucella strains, and we speculate on the role of group 3 Omps. PMID:17664262
The Surface-Exposed Protein SntA Contributes to Complement Evasion in Zoonotic Streptococcus suis.
Deng, Simin; Xu, Tong; Fang, Qiong; Yu, Lei; Zhu, Jiaqi; Chen, Long; Liu, Jiahui; Zhou, Rui
2018-01-01
Streptococcus suis is an emerging zoonotic pathogen causing streptococcal toxic shock like syndrome (STSLS), meningitis, septicemia, and even sudden death in human and pigs. Serious septicemia indicates this bacterium can evade the host complement surveillance. In our previous study, a functionally unknown protein SntA of S. suis has been identified as a heme-binding protein, and contributes to virulence in pigs. SntA can interact with the host antioxidant protein AOP2 and consequently inhibit its antioxidant activity. In the present study, SntA is identified as a cell wall anchored protein that functions as an important player in S. suis complement evasion. The C3 deposition and membrane attack complex (MAC) formation on the surface of sntA -deleted mutant strain Δ sntA are demonstrated to be significantly higher than the parental strain SC-19 and the complementary strain CΔ sntA . The abilities of anti-phagocytosis, survival in blood, and in vivo colonization of Δ sntA are obviously reduced. SntA can interact with C1q and inhibit hemolytic activity via the classical pathway. Complement activation assays reveal that SntA can also directly activate classical and lectin pathways, resulting in complement consumption. These two complement evasion strategies may be crucial for the pathogenesis of this zoonotic pathogen. Concerning that SntA is a bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase in many species of Gram-positive bacteria, these complement evasion strategies may have common biological significance.
Bairl, A; Müller, P
1998-11-01
The TnphoA-induced Bradyrhizobium japonicum mutant 184 shows slow growth and aberrant colonization of soybean nodules. Using a DNA fragment adjacent to the transposon insertion site as a probe, a 3.4-kb BglII fragment of B. japonicum 110spc4 DNA was identified and cloned. Sequence analysis indicated that two truncated ORFs and three complete ORFs were encoded on this fragment. A database search revealed homologies to several other prokaryotic proteins: PdxJ (an enzyme involved in vitamin B6 biosynthesis), AcpS (acyl carrier protein synthase), Lep or Sip (prokaryotic type I signal peptidase), RNase III (an endoribonuclease which processes double-stranded rRNA precursors and mRNA) and Era (a GTP-binding protein required for cell division). The mutation in strain 184 was found to lie within the signal peptidase gene, which was designated sipF. Therefore, sipF is located in a region that encodes gene products involved in posttranscriptional and posttranslational processing processes. By complementation of the lep(ts) E. coli mutant strain IT41 it was demonstrated that sipF indeed encodes a functional signal peptidase, and genetic complementation of B. japonicum mutant 184 by a 2.8-kb SalI fragment indicated that sipF is expressed from a promoter located directly upstream of sipF. Using a non-polar kanamycin resistance cassette, a specific sipF mutant was constructed which exhibited defects in symbiosis similar to those of the original mutant 184.
Izquierdo, Luis; Coderch, Núria; Piqué, Nuria; Bedini, Emiliano; Michela Corsaro, Maria; Merino, Susana; Fresno, Sandra; Tomás, Juan M.; Regué, Miguel
2003-01-01
To determine the function of the wabG gene in the biosynthesis of the core lipopolysaccharide (LPS) of Klebsiella pneumoniae, we constructed wabG nonpolar mutants. Data obtained from the comparative chemical and structural analysis of LPS samples obtained from the wild type, the mutant strain, and the complemented mutant demonstrated that the wabG gene is involved in attachment to α-l-glycero-d-manno-heptopyranose II (l,d-HeppII) at the O-3 position of an α-d-galactopyranosyluronic acid (α-d-GalAp) residue. K. pneumoniae nonpolar wabG mutants were devoid of the cell-attached capsular polysaccharide but were still able to produce capsular polysaccharide. Similar results were obtained with K. pneumoniae nonpolar waaC and waaF mutants, which produce shorter LPS core molecules than do wabG mutants. Other outer core K. pneumoniae nonpolar mutants in the waa gene cluster were encapsulated. K. pneumoniae waaC, waaF, and wabG mutants were avirulent when tested in different animal models. Furthermore, these mutants were more sensitive to some hydrophobic compounds than the wild-type strains. All these characteristics were rescued by reintroduction of the waaC, waaF, and wabG genes from K. pneumoniae. PMID:14645282
Pilatti, Livia; Boldrin de Paiva, Jacqueline; Rojas, Thaís Cabrera Galvão; Leite, Janaína Luisa; Conceição, Rogério Arcuri; Nakazato, Gerson; Dias da Silveira, Wanderley
2016-03-10
Avian pathogenic Escherichia coli strains cause extraintestinal diseases in birds, leading to substantial economic losses to the poultry industry worldwide. Bacteria that invade cells can overcome the host humoral immune response, resulting in a higher pathogenicity potential. Invasins are members of a large family of outer membrane proteins that allow pathogen invasion into host cells by interacting with specific receptors on the cell surface. An in silico analysis of the genome of a septicemic APEC strain (SEPT362) demonstrated the presence of a putative invasin homologous to the ychO gene from E. coli str. K-12 substr. MG1655. In vitro and in vivo assays comparing a mutant strain carrying a null mutation of this gene, a complemented strain, and its counterpart wild-type strain showed that ychO plays a role in the pathogenicity of APEC strain SEPT362. In vitro assays demonstrated that the mutant strain exhibited significant decreases in bacterial adhesiveness and invasiveness in chicken cells and biofilm formation. In vivo assay indicated a decrease in pathogenicity of the mutant strain. Moreover, transcriptome analysis demonstrated that the ychO deletion affected the expression of 426 genes. Among the altered genes, 93.66% were downregulated in the mutant, including membrane proteins and metabolism genes. The results led us to propose that gene ychO contributes to the pathogenicity of APEC strain SEPT362 influencing, in a pleiotropic manner, many biological characteristics, such as adhesion and invasion of in vitro cultured cells, biofilm formation and motility, which could be due to the possible membrane location of this protein. All of these results suggest that the absence of gene ychO would influence the virulence of the APEC strain herein studied.
Lee, Ji Young; Jun, Do Youn; Park, Ju Eun; Kwon, Gi Hyun; Kim, Jong-Sik; Kim, Young Ho
2017-03-28
To examine the pro-apoptotic role of the human ortholog (YPEL5) of the Drosophila Yippee protein, the cell viability of Saccharomyces cerevisiae mutant strain with deleted MOH1 , the yeast ortholog, was compared with that of the wild-type (WT)- MOH1 strain after exposure to different apoptogenic stimulants, including UV irradiation, methyl methanesulfonate (MMS), camptothecin (CPT), heat shock, and hyperosmotic shock. The moh1 Δ mutant exhibited enhanced cell viability compared with the WT- MOH1 strain when treated with lethal UV irradiation, 1.8 mM MMS, 100 µ CPT, heat shock at 50°C, or 1.2 M KCl. At the same time, the level of Moh1 protein was commonly up-regulated in the WT- MOH1 strain as was that of Ynk1 protein, which is known as a marker for DNA damage. Although the enhanced UV resistance of the moh1 Δ mutant largely disappeared following transformation with the yeast MOH1 gene or one of the human YPEL1-YPEL5 genes, the transformant bearing pYES2- YPEL5 was more sensitive to lethal UV irradiation and its UV sensitivity was similar to that of the WT- MOH1 strain. Under these conditions, the UV irradiation-induced apoptotic events, such as FITC-Annexin V stainability, mitochondrial membrane potential (ΔΨm) loss, and metacaspase activation, occurred to a much lesser extent in the moh1 Δ mutant compared with the WT- MOH1 strain and the mutant strain bearing pYES2- MOH1 or pYES2- YPEL5 . These results demonstrate the functional conservation between yeast Moh1 and human YPEL5, and their involvement in mitochondria-dependent apoptosis induced by DNA damage.
Gordenin, D A; Inge-Vechtomov, S G
1981-01-01
Ultraviolet light (UV) at 3000 ergs/mm-2 induces ade2 mutants with a frequency about 10(-4) in wild-type haploid strains of yeast and about 10(-5) in diploid wild-type strains. UV irradiation effectively induced mitotic segregation of ade2 in the heterozygous diploid (the frequency of segregation is 6%). Interallelic complementation and localization spectra are similar for mutations induced both in haploids and diploids. The occurrence of ade2 mutants in diploids correlated with mitotic segregation of the marker his8 which is situated in the same arm of XY chromosome as ade2 is, distal to the centromere. Our data about the frequency of ade2 mutants in diploids and haploids, the frequency of ade2 mitotic segregation, mitotic segregation of other markers and genetic characteristics of ade2 mutations confirm the suggestion that the major mechanism of diploid ade2 mutants appearance is mutation in one of the two ADE2 alleles and consequent mitotic homozygotisation of mutation as a result of mitotic crossingover between ade2 and the centromere.
Yu, Qiang; Lepp, Dion; Mehdizadeh Gohari, Iman; Wu, Tao; Zhou, Hongzhuan; Yin, Xianhua; Yu, Hai; Prescott, John F; Nie, Shao-Ping; Xie, Ming-Yong; Gong, Joshua
2017-06-01
Clostridium perfringens encodes at least two different quorum sensing (QS) systems, the Agr-like and LuxS, and recent studies have highlighted their importance in the regulation of toxin production and virulence. The role of QS in the pathogenesis of necrotic enteritis (NE) in poultry and the regulation of NetB, the key toxin involved, has not yet been investigated. We have generated isogenic agrB -null and complemented strains from parent strain CP1 and demonstrated that the virulence of the agrB -null mutant was strongly attenuated in a chicken NE model system and restored by complementation. The production of NetB, a key NE-associated toxin, was dramatically reduced in the agrB mutant at both the transcriptional and protein levels, though not in a luxS mutant. Transwell assays confirmed that the Agr-like QS system controls NetB production through a diffusible signal. Global gene expression analysis of the agrB mutant identified additional genes modulated by Agr-like QS, including operons related to phospholipid metabolism and adherence, which may also play a role in NE pathogenesis. This study provides the first evidence that the Agr-like QS system is critical for NE pathogenesis and identifies a number of Agr-regulated genes, most notably netB , that are potentially involved in mediating its effects. The Agr-like QS system thus may serve as a target for developing novel interventions to prevent NE in chickens. © Crown copyright 2017.
Mitochondrial translational-initiation and elongation factors in Saccharomyces cerevisiae.
Vambutas, A; Ackerman, S H; Tzagoloff, A
1991-11-01
C155 and E252 are respiratory-defective mutants of Saccharomyces cerevisiae, previously assigned to complementation groups G37 and G142, respectively. The following evidence suggested that both mutants were likely to have lesions in components of the mitochondrial translational machinery: C155 and E252 display a pleiotropic deficiency in cytochromes a, a3 and b; both strains are severly limited in their ability to incorporate radioactive methionine into the mitochondrial translation products and, in addition, display a tendency to loose wild-type mitochondrial DNA. This set of characteristics is commonly found in strains affected in mitochondrial protein synthesis. To identify the biochemical lesions, each mutant was transformed with a wild-type yeast genomic library and clones complemented for the respiratory defect were selected for growth on a non-fermentable substrate. Analysis of the cloned genes revealed that C155 has a mutation in a protein which has high sequence similarity to bacterial elongation factor G and that E252 has a mutation in a protein homologous to bacterial initiation factor 2. Disruption of the chromosomal copy of each gene in a wild-type haploid yeast induced a phenotype analogous to that of the original mutants, but does not affect cell viability. These results indicate that both gene products function exclusively in mitochondrial protein synthesis. Subcloning of the IFM1 gene, coding for the mitochondrial initiation factor, indicates that the amino-terminal 423 residues of the protein are sufficient to promote peptide-chain initiation in vivo.
Santander, Javier; Xin, Wei; Yang, Zhao; Curtiss, Roy
2010-01-01
asdA mutants of Gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd+ plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd+ plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric Gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd+ expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd+ vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd+ plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry. PMID:21209920
Santander, Javier; Xin, Wei; Yang, Zhao; Curtiss, Roy
2010-12-29
asdA mutants of gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd(+) plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd(+) plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd(+) expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd(+) vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd(+) plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry.
TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines.
Reddy, Joseph D; Reddy, Stephanie L; Hopkins, Don L; Gabriel, Dean W
2007-04-01
Xylella fastidiosa infects a wide range of hosts and causes serious diseases on some of them. The complete genomic sequences of both a citrus variegated chlorosis (CVC) and a Pierce's disease (PD) strain revealed two type I protein secretion plus two multidrug resistance efflux systems, and all evidently were dependent on a single tolC homolog. Marker exchange mutagenesis of the single tolC gene in PD strain Temecula resulted in a total loss of pathogenicity on grape. Importantly, the tolC- mutant strains were not recovered after inoculation into grape xylem, strongly indicating that multidrug efflux is critical to survival of this fastidious pathogen. Both survival and pathogenicity were restored by complementation using tolC cloned in shuttle vector pBBR1MCS-5, which was shown to replicate autonomously, without selection, for 60 days in Temecula growing in planta. These results also demonstrate the ability to complement mutations in X. fastidiosa.
Nowrousian, Minou; Masloff, Sandra; Pöggeler, Stefanie; Kück, Ulrich
1999-01-01
During sexual development, mycelial cells from most filamentous fungi differentiate into typical fruiting bodies. Here, we describe the isolation and characterization of the Sordaria macrospora developmental mutant per5, which exhibits a sterile phenotype with defects in fruiting body maturation. Cytological investigations revealed that the mutant strain forms only ascus precursors without any mature spores. Using an indexed cosmid library, we were able to complement the mutant to fertility by DNA-mediated transformation. A single cosmid clone, carrying a 3.5-kb region able to complement the mutant phenotype, has been identified. Sequencing of the 3.5-kb region revealed an open reading frame of 2.1 kb interrupted by a 66-bp intron. The predicted polypeptide (674 amino acids) shows significant homology to eukaryotic ATP citrate lyases (ACLs), with 62 to 65% amino acid identity, and the gene was named acl1. The molecular mass of the S. macrospora ACL1 polypeptide is 73 kDa, as was verified by Western blot analysis with a hemagglutinin (HA) epitope-tagged ACL1 polypeptide. Immunological in situ detection of the HA-tagged polypeptide demonstrated that ACL is located within the cytosol. Sequencing of the mutant acl1 gene revealed a 1-nucleotide transition within the coding region, resulting in an amino acid substitution within the predicted polypeptide. Further evidence that ACL1 is essential for fruiting body maturation comes from experiments in which truncated and mutated versions of the acl1 gene were used for transformation. None of these copies was able to reconstitute the fertile phenotype in transformed per5 recipient strains. ACLs are usually involved in the formation of cytosolic acetyl coenzyme A (acetyl-CoA), which is used for the biosynthesis of fatty acids and sterols. Protein extracts from the mutant strain showed a drastic reduction in enzymatic activity compared to values obtained from the wild-type strain. Investigation of the time course of ACL expression suggests that ACL is specifically induced at the beginning of the sexual cycle and produces acetyl-CoA, which most probably is a prerequisite for fruiting body formation during later stages of sexual development. We discuss the contribution of ACL activity to the life cycle of S. macrospora. PMID:9858569
Nowrousian, M; Masloff, S; Pöggeler, S; Kück, U
1999-01-01
During sexual development, mycelial cells from most filamentous fungi differentiate into typical fruiting bodies. Here, we describe the isolation and characterization of the Sordaria macrospora developmental mutant per5, which exhibits a sterile phenotype with defects in fruiting body maturation. Cytological investigations revealed that the mutant strain forms only ascus precursors without any mature spores. Using an indexed cosmid library, we were able to complement the mutant to fertility by DNA-mediated transformation. A single cosmid clone, carrying a 3.5-kb region able to complement the mutant phenotype, has been identified. Sequencing of the 3.5-kb region revealed an open reading frame of 2.1 kb interrupted by a 66-bp intron. The predicted polypeptide (674 amino acids) shows significant homology to eukaryotic ATP citrate lyases (ACLs), with 62 to 65% amino acid identity, and the gene was named acl1. The molecular mass of the S. macrospora ACL1 polypeptide is 73 kDa, as was verified by Western blot analysis with a hemagglutinin (HA) epitope-tagged ACL1 polypeptide. Immunological in situ detection of the HA-tagged polypeptide demonstrated that ACL is located within the cytosol. Sequencing of the mutant acl1 gene revealed a 1-nucleotide transition within the coding region, resulting in an amino acid substitution within the predicted polypeptide. Further evidence that ACL1 is essential for fruiting body maturation comes from experiments in which truncated and mutated versions of the acl1 gene were used for transformation. None of these copies was able to reconstitute the fertile phenotype in transformed per5 recipient strains. ACLs are usually involved in the formation of cytosolic acetyl coenzyme A (acetyl-CoA), which is used for the biosynthesis of fatty acids and sterols. Protein extracts from the mutant strain showed a drastic reduction in enzymatic activity compared to values obtained from the wild-type strain. Investigation of the time course of ACL expression suggests that ACL is specifically induced at the beginning of the sexual cycle and produces acetyl-CoA, which most probably is a prerequisite for fruiting body formation during later stages of sexual development. We discuss the contribution of ACL activity to the life cycle of S. macrospora.
Seitz, Maren; Beineke, Andreas; Singpiel, Alena; Willenborg, Jörg; Dutow, Pavel; Goethe, Ralph; Valentin-Weigand, Peter; Klos, Andreas
2014-01-01
Virulent Streptococcus suis serotype 2 strains are invasive extracellular bacteria causing septicemia and meningitis in piglets and humans. One objective of this study was to elucidate the function of complement in innate immune defense against S. suis. Experimental infection of wild-type (WT) and C3−/− mice demonstrated for the first time that the complement system protects naive mice against invasive mucosal S. suis infection. S. suis WT but not an unencapsulated mutant caused mortality associated with meningitis and other pathologies in C3−/− mice. The capsule contributed also substantially to colonization of the upper respiratory tract. Experimental infection of C3−/− mice with a suilysin mutant indicated that suilysin expression facilitated an early disease onset and the pathogenesis of meningitis. Flow cytometric analysis revealed C3 antigen deposition on the surface of ca. 40% of S. suis WT bacteria after opsonization with naive WT mouse serum, although to a significantly lower intensity than on the unencapsulated mutant. Ex vivo multiplication in murine WT and C3−/− blood depended on capsule but not suilysin expression. Interestingly, S. suis invasion of inner organs was also detectable in C5aR−/− mice, suggesting that chemotaxis and activation of immune cells via the anaphylatoxin receptor C5aR is, in addition to opsonization, a further important function of the complement system in defense against mucosal S. suis infection. In conclusion, we unequivocally demonstrate here the importance of complement against mucosal S. suis serotype 2 infection and that the capsule of this pathogen is also involved in escape from complement-independent immunity. PMID:24686060
Bloss, Tanja; Clemens, Stephan; Nies, Dietrich H
2002-03-01
The ZAT1p zinc transporter from Arabidopsis thaliana (L.) Heynh. is a member of the cation diffusion facilitator (CDF) protein family. When heterologously expressed in Escherichia coli, ZAT1p bound zinc in a metal blot. Binding of zinc occurred mainly to the hydrophilic amino acid region from H182 to H232. A ZAT1p/ZAT1p*Delta(M1-I25) protein mixture was purified and reconstituted into proteoliposomes. Uptake of zinc into the proteoliposomes did not require a proton gradient across the liposomal membrane. ZAT1p did not transport cobalt, and transported cadmium at only 1% of the zinc transport rate. ZAT1p functioned as an uptake system for 65Zn2+ in two strains of the Gram-negative bacterium Ralstonia metallidurans, which were different in their content of zinc-efflux systems. The ZAT1 gene did not rescue increased zinc sensitivity of a Delta ZRC1single-mutant strain or of a Delta ZRC1 Delta COT1 double-mutant strain of Saccharomyces cerevisiae, but ZAT1 complemented this phenotype in a Delta SpZRC1 mutant strain of Schizosaccharomyces pombe.
Involvement of Clostridium botulinum ATCC 3502 Sigma Factor K in Early-Stage Sporulation
Kirk, David G.; Dahlsten, Elias; Zhang, Zhen; Korkeala, Hannu
2012-01-01
A key survival mechanism of Clostridium botulinum, the notorious neurotoxic food pathogen, is the ability to form heat-resistant spores. While the genetic mechanisms of sporulation are well understood in the model organism Bacillus subtilis, nothing is known about these mechanisms in C. botulinum. Using the ClosTron gene-knockout tool, sigK, encoding late-stage (stage IV) sporulation sigma factor K in B. subtilis, was disrupted in C. botulinum ATCC 3502 to produce two different mutants with distinct insertion sites and orientations. Both mutants were unable to form spores, and their elongated cell morphology suggested that the sporulation pathway was blocked at an early stage. In contrast, sigK-complemented mutants sporulated successfully. Quantitative real-time PCR analysis of sigK in the parent strain revealed expression at the late log growth phase in the parent strain. Analysis of spo0A, encoding the sporulation master switch, in the sigK mutant and the parent showed significantly reduced relative levels of spo0A expression in the sigK mutant compared to the parent strain. Similarly, sigF showed significantly lower relative transcription levels in the sigK mutant than the parent strain, suggesting that the sporulation pathway was blocked in the sigK mutant at an early stage. We conclude that σK is essential for early-stage sporulation in C. botulinum ATCC 3502, rather than being involved in late-stage sporulation, as reported for the sporulation model organism B. subtilis. Understanding the sporulation mechanism of C. botulinum provides keys to control the public health risks that the spores of this dangerous pathogen cause through foods. PMID:22544236
Involvement of Clostridium botulinum ATCC 3502 sigma factor K in early-stage sporulation.
Kirk, David G; Dahlsten, Elias; Zhang, Zhen; Korkeala, Hannu; Lindström, Miia
2012-07-01
A key survival mechanism of Clostridium botulinum, the notorious neurotoxic food pathogen, is the ability to form heat-resistant spores. While the genetic mechanisms of sporulation are well understood in the model organism Bacillus subtilis, nothing is known about these mechanisms in C. botulinum. Using the ClosTron gene-knockout tool, sigK, encoding late-stage (stage IV) sporulation sigma factor K in B. subtilis, was disrupted in C. botulinum ATCC 3502 to produce two different mutants with distinct insertion sites and orientations. Both mutants were unable to form spores, and their elongated cell morphology suggested that the sporulation pathway was blocked at an early stage. In contrast, sigK-complemented mutants sporulated successfully. Quantitative real-time PCR analysis of sigK in the parent strain revealed expression at the late log growth phase in the parent strain. Analysis of spo0A, encoding the sporulation master switch, in the sigK mutant and the parent showed significantly reduced relative levels of spo0A expression in the sigK mutant compared to the parent strain. Similarly, sigF showed significantly lower relative transcription levels in the sigK mutant than the parent strain, suggesting that the sporulation pathway was blocked in the sigK mutant at an early stage. We conclude that σ(K) is essential for early-stage sporulation in C. botulinum ATCC 3502, rather than being involved in late-stage sporulation, as reported for the sporulation model organism B. subtilis. Understanding the sporulation mechanism of C. botulinum provides keys to control the public health risks that the spores of this dangerous pathogen cause through foods.
Chang, Perng-Kuang; Zhang, Qi; Scharfenstein, Leslie; Mack, Brian; Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu
2018-06-01
Many glycosylphosphatidylinositol-anchored proteins (GPI-APs) of fungi are membrane enzymes, organization components, and extracellular matrix adhesins. We analyzed eight Aspergillus flavus transcriptome sets for the GPI-AP gene family and identified AFLA_040110, AFLA_063860, and AFLA_113120 to be among the top 5 highly expressed genes of the 36 family genes analyzed. Disruption of the former two genes did not drastically affect A. flavus growth and development. In contrast, disruption of AFLA_113120, an orthologue of Saccharomyces cerevisiae ECM33, caused a significant decrease in vegetative growth and conidiation, promoted sclerotial production, and altered conidial pigmentation. The A. flavus ecm33 null mutant, compared with the wild type and the complemented strain, produced predominantly aflatoxin B 2 but accumulated comparable amounts of cyclopiazonic acid. It showed decreased sensitivity to Congo red at low concentrations (25-50 μg/mL) but had increased sensitivity to calcofluor white at high concentrations (250-500 μg/mL). Analyses of cell wall carbohydrates indicated that the α-glucan content was decreased significantly (p < 0.05), but the contents of chitin and ß-glucan were increased in the mutant strain. In a maize colonization study, the mutant was shown to be impaired in its infectivity and produced 3- to 4-fold lower amounts of conidia than the wild type and the complemented strain. A. flavus Ecm33 is required for proper cell wall composition and plays an important role in normal fungal growth and development, aflatoxin biosynthesis, and seed colonization.
The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase
Rensing, Christopher; Mitra, Bharati; Rosen, Barry P.
1997-01-01
The first Zn(II)-translocating P-type ATPase has been identified as the product of o732, a potential gene identified in the sequencing of the Escherichia coli genome. This gene, termed zntA, was disrupted by insertion of a kanamycin gene through homologous recombination. The mutant strain exhibited hypersensitivity to zinc and cadmium salts but not salts of other metals, suggesting a role in zinc homeostasis in E. coli. Everted membrane vesicles from a wild-type strain accumulated 65Zn(II) and 109Cd(II) by using ATP as an energy source. Transport was sensitive to vanadate, an inhibitor of P-type ATPases. Membrane vesicles from the zntA∷kan strain did not accumulate those metal ions. Both the sensitive phenotype and transport defect of the mutant were complemented by expression of zntA on a plasmid. PMID:9405611
USDA-ARS?s Scientific Manuscript database
Transformation of a Drosophila virilis white mutant host strain was attempted by using a hobo vector containing the D. melanogaster mini-white+ cassette (H[w+, hawN]) and an unmodified or heat shock regulated hobo transposase helper. Two transformant lines were recovered with the unmodified helper (...
Philipps, Gabriele; Krawietz, Danuta; Hemschemeier, Anja; Happe, Thomas
2011-04-01
The green alga Chlamydomonas reinhardtii has a complex anaerobic metabolism characterized by a plastidic hydrogenase (HYD1) coupled to photosynthesis and a bacterial-type fermentation system in which pyruvate formate lyase (PFL1) is the central fermentative enzyme. To identify mutant strains with altered hydrogen metabolism, a C. reinhardtii nuclear transformant library was screened. Mutant strain 48F5 showed lower light-dependent hydrogen (H₂) evolution rates and reduced in vitro hydrogenase activity, and fermentative H₂ production in the dark was enhanced. The transformant has a single integration of the paromomycin resistance cassette within the PFL1 gene, and is unable to synthesize PFL1 protein. 48F5 secretes no formate, but produces more ethanol, D-lactate and CO₂ than the wild type. Moreover, HYD1 transcript and HYD1 protein levels were lower in the pfl1 mutant strain. Complementation of strain 48F5 with an intact copy of the PFL1 gene restored formate excretion and hydrogenase activity to the wild type level. This analysis shows that the PFL1 pathway has a significant impact on hydrogen metabolism in C. reinhardtii. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Role of capsule and O antigen in the virulence of uropathogenic Escherichia coli.
Sarkar, Sohinee; Ulett, Glen C; Totsika, Makrina; Phan, Minh-Duy; Schembri, Mark A
2014-01-01
Urinary tract infection (UTI) is one of the most common bacterial infections in humans, with uropathogenic Escherichia coli (UPEC) the leading causative organism. UPEC has a number of virulence factors that enable it to overcome host defenses within the urinary tract and establish infection. The O antigen and the capsular polysaccharide are two such factors that provide a survival advantage to UPEC. Here we describe the application of the rpsL counter selection system to construct capsule (kpsD) and O antigen (waaL) mutants and complemented derivatives of three reference UPEC strains: CFT073 (O6:K2:H1), RS218 (O18:K1:H7) and 1177 (O1:K1:H7). We observed that while the O1, O6 and O18 antigens were required for survival in human serum, the role of the capsule was less clear and linked to O antigen type. In contrast, both the K1 and K2 capsular antigens provided a survival advantage to UPEC in whole blood. In the mouse urinary tract, mutation of the O6 antigen significantly attenuated CFT073 bladder colonization. Overall, this study contrasts the role of capsule and O antigen in three common UPEC serotypes using defined mutant and complemented strains. The combined mutagenesis-complementation strategy can be applied to study other virulence factors with complex functions both in vitro and in vivo.
Genetic analysis of biodegradation of tetralin by a Sphingomonas strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernaez, M.J.; Santero, E.; Reineke, W.
Tetralin (1,2,3,4-tetrahydronaphthalene) is produced for industrial purposes from naphthalene by catalytic hydrogenation or from anthracene by cracking. A strain designated TFA which very efficiently utilizes tetralin has been isolated from the Rhine river. The strain has been identified as Sphingomonas macrogoltabidus, based on 16S rDNA sequence similarity. Genetic analysis of tetralin biodegradation has been performed by insertion mutagenesis and by physical analysis and analysis of complementation between the mutants. The genes involved in tetralin utilization are clustered in a region of 9 kb, comprising at least five genes grouped in two divergently transcribed operons.
Horn, Nikki; Wegmann, Udo; Dertli, Enes; Mulholland, Francis; Collins, Samuel R. A.; Waldron, Keith W.; Bongaerts, Roy J.; Mayer, Melinda J.; Narbad, Arjan
2013-01-01
As a competitive exclusion agent, Lactobacillus johnsonii FI9785 has been shown to prevent the colonization of selected pathogenic bacteria from the chicken gastrointestinal tract. During growth of the bacterium a rare but consistent emergence of an altered phenotype was noted, generating smooth colonies in contrast to the wild type rough form. A smooth colony variant was isolated and two-dimensional gel analysis of both strains revealed a protein spot with different migration properties in the two phenotypes. The spot in both gels was identified as a putative tyrosine kinase (EpsC), associated with a predicted exopolysaccharide gene cluster. Sequencing of the epsC gene from the smooth mutant revealed a single substitution (G to A) in the coding strand, resulting in the amino acid change D88N in the corresponding gene product. A native plasmid of L. johnsonii was engineered to produce a novel vector for constitutive expression and this was used to demonstrate that expression of the wild type epsC gene in the smooth mutant produced a reversion to the rough colony phenotype. Both the mutant and epsC complemented strains had increased levels of exopolysaccharides compared to the wild type strain, indicating that the rough phenotype is not solely associated with the quantity of exopolysaccharide. Another gene in the cluster, epsE, that encoded a putative undecaprenyl-phosphate galactosephosphotransferase, was deleted in order to investigate its role in exopolysaccharide biosynthesis. The ΔepsE strain exhibited a large increase in cell aggregation and a reduction in exopolysaccharide content, while plasmid complementation of epsE restored the wild type phenotype. Flow cytometry showed that the wild type and derivative strains exhibited clear differences in their adhesive ability to HT29 monolayers in tissue culture, demonstrating an impact of EPS on surface properties and bacteria-host interactions. PMID:23544114
Masum, Md. Mahidul Islam; Yang, Yingzi; Li, Bin; Olaitan, Ogunyemi Solabomi; Chen, Jie; Zhang, Yang; Fang, Yushi; Qiu, Wen; Wang, Yanli; Sun, Guochang
2017-01-01
The Type VI secretion system (T6SS) is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2) and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations ΔpppA, ΔclpB, Δhcp, ΔdotU, ΔicmF, ΔimpJ, and ΔimpM caused similar virulence characteristics as RS-2. Moreover, the mutant ΔpppA, ΔclpB, ΔicmF, ΔimpJ and ΔimpM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants ΔpppA, ΔclpB, ΔicmF and Δhcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa. PMID:28934168
Characterization of the RpoS Status of Clinical Isolates of Salmonella enterica
Robbe-Saule, Véronique; Algorta, Gabriela; Rouilhac, Isabelle; Norel, Françoise
2003-01-01
The stationary-phase-inducible sigma factor, σS (RpoS), is the master regulator of the general stress response in Salmonella and is required for virulence in mice. rpoS mutants can frequently be isolated from highly passaged laboratory strains of Salmonella. We examined the rpoS status of 116 human clinical isolates of Salmonella, including 41 Salmonella enterica serotype Typhi strains isolated from blood, 38 S. enterica serotype Typhimurium strains isolated from blood, and 37 Salmonella serotype Typhimurium strains isolated from feces. We examined the abilities of these strains to produce the σS protein, to express RpoS-dependent catalase activity, and to resist to oxidative stress in the stationary phase of growth. We also carried out complementation experiments with a cloned wild-type rpoS gene. Our results showed that 15 of the 41 Salmonella serotype Typhi isolates were defective in RpoS. We sequenced the rpoS allele of 12 strains. This led to identification of small insertions, deletions, and point mutations resulting in premature stop codons or affecting regions 1 and 2 of σS, showing that the rpoS mutations are not clonal. Thus, mutant rpoS alleles can be found in freshly isolated clinical strains of Salmonella serotype Typhi, and they may affect virulence properties. Interestingly however, no rpoS mutants were found among the 75 Salmonella serotype Typhimurium isolates. Strains that differed in catalase activity and resistance to hydrogen peroxide were found, but the differences were not linked to the rpoS status. This suggests that Salmonella serotype Typhimurium rpoS mutants are counterselected because rpoS plays a role in the pathogenesis of Salmonella serotype Typhimurium in humans or in the transmission cycle of the disease. PMID:12902215
Almási, Asztéria; Nemes, Katalin; Csömör, Zsófia; Tóbiás, István; Palkovics, László; Salánki, Katalin
2017-06-01
The nonstructural protein (NSs) of Tomato spotted wilt virus (TSWV) was previously identified as an avirulence determinant for Tsw-based resistance on pepper. The NSs of wild-type (WT) and resistance-breaking (RB) TSWV strains isolated in Hungary had only two amino acid substitutions (104, 461). We have analysed the ability of the NSs and their point mutant variants to trigger Tsw-mediated hypersensitive responses and RNA silencing suppressor (RSS) activity in patch assays. We identified a single amino acid change at position 104 (T-A) that was responsible for the necrosis induction or loss, while a significant difference was not detected in the RSS activity of the two parental strains. We have successfully complemented the infection of the WT strain on resistant pepper cultivar with the infectious S RNA transcript of the RB strain and the WT-T104A point mutant. Our work provides direct evidence that a single amino acid change can induce an RB phenotype.
Isolation, characterization, and complementation of a motility mutant of Spiroplasma citri.
Jacob, C; Nouzières, F; Duret, S; Bové, J M; Renaudin, J
1997-01-01
The helical mollicute Spiroplasma citri, when growing on low-agar medium, forms fuzzy colonies with occasional surrounding satellite colonies due to the ability of the spiroplasmal cells to move through the agar matrix. In liquid medium, these helical organisms flex, twist, and rotate rapidly. By using Tn4001 insertion mutagenesis, a motility mutant was isolated on the basis of its nondiffuse, sharp-edged colonies. Dark-field microscopy observations revealed that the organism flexed at a low frequency and had lost the ability to rotate about the helix axis. In this mutant, the transposon was shown to be inserted into an open reading frame encoding a putative polypeptide of 409 amino acids for which no significant homology with known proteins was found. The corresponding gene, named scm1, was recovered from the wild-type strain and introduced into the motility mutant by using the S. citri oriC plasmid pBOT1 as the vector. The appearance of fuzzy colonies and the observation that spiroplasma cells displayed rotatory and flexional movements showed the motile phenotype to be restored in the spiroplasmal transformants. The functional complementation of the motility mutant proves the scm1 gene product to be involved in the motility mechanism of S. citri. PMID:9244268
Tzagoloff, A; Shtanko, A
1995-06-01
Three complementation groups of a pet mutant collection have been found to be composed of respiratory-deficient deficient mutants with lesions in mitochondrial protein synthesis. Recombinant plasmids capable of restoring respiration were cloned by transformation of representatives of each complementation group with a yeast genomic library. The plasmids were used to characterize the complementing genes and to institute disruption of the chromosomal copies of each gene in respiratory-proficient yeast. The sequences of the cloned genes indicate that they code for isoleucyl-, arginyl- and glutamyl-tRNA synthetases. The properties of the mutants used to obtain the genes and of strains with the disrupted genes indicate that all three aminoacyl-tRNA synthetases function exclusively in mitochondrial proteins synthesis. The ISM1 gene for mitochondrial isoleucyl-tRNA synthetase has been localized to chromosome XVI next to UME5. The MSR1 gene for the arginyl-tRNA synthetase was previously located on yeast chromosome VIII. The third gene MSE1 for the mitochondrial glutamyl-tRNA synthetase has not been localized. The identification of three new genes coding for mitochondrial-specific aminoacyl-tRNA synthetases indicates that in Saccharomyces cerevisiae at least 11 members of this protein family are encoded by genes distinct from those coding for the homologous cytoplasmic enzymes.
Maneu, V; Roig, P; Gozalbo, D
2000-11-01
We have demonstrated that the expression of Candida albicans genes involved in translation and protein folding (EFB1 and SSB1) complements the phenotype of Saccharomyces cerevisiae mutants. The elongation factor 1beta (EF-1beta) is essential for growth and efb1 S. cerevisiae null mutant cells are not viable; however, viable haploid cells, carrying the disrupted chromosomal allele of the S. cerevisiae EFB1 gene and pEFB1, were isolated upon sporulation of a diploid strain which was heterozygous at the EFB1 locus and transformed with pEFB1 (a pEMBLYe23 derivative plasmid containing an 8-kb DNA fragment from the C. albicans genome which contains the EFB1 gene). This indicates that the C. albicans EFB1 gene encodes a functional EF-1beta. Expression of the SSB1 gene from C. albicans, which codes for a member of the 70-kDa heat shock protein family, in S. cerevisiae ssb1 ssb2 double mutant complements the mutant phenotype (poor growth particularly at low temperature, and sensitivity to certain protein synthesis inhibitors, such as paromomycin). This complementation indicates that C. albicans Ssbl may function as a molecular chaperone on the translating ribosomes, as described in S. cerevisiae. Northern blot analysis showed that SSB mRNA levels increased after mild cold shift (28 degrees C to 23 degrees C) and rapidly decreased after mild heat shift (from 28 degrees C to 37 degrees C, and particularly to 42 degrees C), indicating that SSB1 expression is regulated by temperature. Therefore, Ssb1 may be considered as a molecular chaperone whose pattern of expression is similar to that found in ribosomal proteins, according to its common role in translation.
Moleleki, Lucy Novungayo; Pretorius, Rudolph Gustav; Tanui, Collins Kipngetich; Mosina, Gabolwelwe; Theron, Jacques
2017-01-01
Pectobacterium carotovorum ssp. brasiliense 1692 (Pcb1692) is an important emerging pathogen of potatoes causing blackleg in the field and soft rot during post-harvest storage. Blackleg diseases involve the bacterial colonization of vascular tissue and the formation of aggregates, also known as biofilms. To understand the role of quorum sensing in vascular colonization by Pcb1692, we generated a Pcb1692ΔexpI mutant strain. Inactivation of expI led to the reduced production of plant cell wall-degrading enzymes (PCWDEs), the inability to produce acyl homoserine lactone (AHL) and reduced virulence in potato tubers and stems. Complementation of the mutant strain with the wild-type expI gene in trans successfully restored AHL and PCWDE production as well as virulence. Transmission electron microscopy and in vitro motility assays demonstrated hyperpiliation and loss of flagella and swimming motility in the mutant strain compared with the wild-type Pcb1692. Furthermore, we noted that, in the early stages of infection, Pcb1692 wild-type cells had intact flagella which were shed at the later stages of infection. Confocal laser microscopy of PcbΔexpI-inoculated plants showed that the mutant strain tended to aggregate in intercellular spaces, but was unable to transit to xylem tissue. On the contrary, the wild-type strain was often observed forming aggregates within xylem tissue of potato stems. Gene expression analyses confirmed that flagella are part of the quorum sensing regulon, whereas fimbriae and pili appear to be negatively regulated by quorum sensing. The relative expression levels of other important putative virulence genes, such as those encoding different groups of PCWDEs, were down-regulated in the mutant compared with the wild-type strain. © 2016 BSPP and John Wiley & Sons Ltd.
Varicella-zoster virus complements herpes simplex virus type 1 temperature-sensitive mutants.
Felser, J M; Straus, S E; Ostrove, J M
1987-01-01
Varicella-zoster virus (VZV) can complement temperature-sensitive mutants of herpes simplex virus. Of seven mutants tested, two, carrying mutations in the immediate-early ICP4 and ICP27 proteins, were complemented. This complementation was not seen in coinfections with adenovirus type 5 or cytomegalovirus. Following transfection into CV-1 cells, a DNA fragment containing the VZV short repeat sequence complemented the ICP4 mutant. These data demonstrate a functional relationship between VZV and herpes simplex virus and have allowed localization of a putative VZV immediate-early gene. PMID:3023701
Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.
Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich
2012-02-01
The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.
Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes
Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich
2012-01-01
The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information. PMID:22384404
Takala, T M; Saris, P E J; Tynkkynen, S S H
2003-01-01
A new food-grade host/vector system for Lactobacillus casei based on lactose selection was constructed. The wild-type non-starter host Lb. casei strain E utilizes lactose via a plasmid-encoded phosphotransferase system. For food-grade cloning, a stable lactose-deficient mutant was constructed by deleting a 141-bp fragment from the phospho-beta-galactosidase gene lacG via gene replacement. The deletion resulted in an inactive phospho-beta-galactosidase enzyme with an internal in-frame deletion of 47 amino acids. A complementation plasmid was constructed containing a replicon from Lactococcus lactis, the lacG gene from Lb. casei, and the constitutive promoter of pepR for lacG expression from Lb. rhamnosus. The expression of the lacG gene from the resulting food-grade plasmid pLEB600 restored the ability of the lactose-negative mutant strain to grow on lactose to the wild-type level. The vector pLEB600 was used for expression of the proline iminopeptidase gene pepI from Lb. helveticus in Lb. casei. The results show that the food-grade expression system reported in this paper can be used for expression of foreign genes in Lb. casei.
Concerted Action of Sphingomyelinase and Non-Hemolytic Enterotoxin in Pathogenic Bacillus cereus
Doll, Viktoria M.
2013-01-01
Bacillus cereus causes food poisoning and serious non-gastrointestinal-tract infections. Non-hemolytic enterotoxin (Nhe), which is present in most B. cereus strains, is considered to be one of the main virulence factors. However, a B. cereus ΔnheBC mutant strain lacking Nhe is still cytotoxic to intestinal epithelial cells. In a screen for additional cytotoxic factors using an in vitro model for polarized colon epithelial cells we identified B. cereus sphingomyelinase (SMase) as a strong inducer of epithelial cell death. Using single and double deletion mutants of sph, the gene encoding for SMase, and nheBC in B. cereus we demonstrated that SMase is an important factor for B. cereus cytotoxicity in vitro and pathogenicity in vivo. SMase substantially complemented Nhe induced cytotoxicity in vitro. In addition, SMase but not Nhe contributed significantly to the mortality rate of larvae in vivo in the insect model Galleria mellonella. Our study suggests that the role of B. cereus SMase as a secreted virulence factor for in vivo pathogenesis has been underestimated and that Nhe and SMase complement each other significantly to cause full B. cereus virulence hence disease formation. PMID:23613846
Mycoviruses as Triggers and Targets of RNA Silencing in White Mold Fungus Sclerotinia sclerotiorum.
Mochama, Pauline; Jadhav, Prajakta; Neupane, Achal; Lee Marzano, Shin-Yi
2018-04-22
This study aimed to demonstrate the existence of antiviral RNA silencing mechanisms in Sclerotinia sclerotiorum by infecting wild-type and RNA-silencing-deficient strains of the fungus with an RNA virus and a DNA virus. Key silencing-related genes were disrupted to dissect the RNA silencing pathway. Specifically, dicer genes ( dcl-1, dcl-2 , and both dcl-1 / dcl-2 ) were displaced by selective marker(s). Disruption mutants were then compared for changes in phenotype, virulence, and susceptibility to virus infections. Wild-type and mutant strains were transfected with a single-stranded RNA virus, SsHV2-L, and copies of a single-stranded DNA mycovirus, SsHADV-1, as a synthetic virus constructed in this study. Disruption of dcl-1 or dcl-2 resulted in no changes in phenotype compared to wild-type S. sclerotiorum ; however, the double dicer mutant strain exhibited significantly slower growth. Furthermore, the Δdcl-1/dcl-2 double mutant, which was slow growing without virus infection, exhibited much more severe debilitation following virus infections including phenotypic changes such as slower growth, reduced pigmentation, and delayed sclerotial formation. These phenotypic changes were absent in the single mutants, Δdcl-1 and Δdcl-2 . Complementation of a single dicer in the double disruption mutant reversed viral susceptibility to the wild-type state. Virus-derived small RNAs were accumulated from virus-infected wild-type strains with strand bias towards the negative sense. The findings of these studies indicate that S. sclerotiorum has robust RNA silencing mechanisms that process both DNA and RNA mycoviruses and that, when both dicers are silenced, invasive nucleic acids can greatly debilitate the virulence of this fungus.
Ito, Masahiro; Kim, Yun-Gi; Tsuji, Hirokazu; Takahashi, Takuya; Kiwaki, Mayumi; Nomoto, Koji; Danbara, Hirofumi; Okada, Nobuhiko
2014-01-01
Lactobacillus casei ATCC 27139 enhances host innate immunity, and the J1 phage-resistant mutants of this strain lose the activity. A transposon insertion mutant library of L. casei ATCC 27139 was constructed, and nine J1 phage-resistant mutants out of them were obtained. Cloning and sequencing analyses identified three independent genes that were disrupted by insertion of the transposon element: asnH, encoding asparagine synthetase, and dnaJ and dnaK, encoding the molecular chaperones DnaJ and DnaK, respectively. Using an in vivo mouse model of Listeria infection, only asnH mutant showed deficiency in their ability to enhance host innate immunity, and complementation of the mutation by introduction of the wild-type asnH in the mutant strain recovered the immuno-augmenting activity. AsnH protein exhibited asparagine synthetase activity when the lysozyme-treated cell wall extracts of L. casei ATCC 27139 was added as substrate. The asnH mutants lost the thick and rigid peptidoglycan features that are characteristic to the wild-type cells, indicating that AsnH of L. casei is involved in peptidoglycan biosynthesis. These results indicate that asnH is required for the construction of the peptidoglycan composition involved in the immune-activating capacity of L. casei ATCC 27139.
A novel factor H-Fc chimeric immunotherapeutic molecule against Neisseria gonorrhoeae
Shaughnessy, Jutamas; Gulati, Sunita; Agarwal, Sarika; Unemo, Magnus; Ohnishi, Makoto; Su, Xia-Hong; Monks, Brian G.; Visintin, Alberto; Madico, Guillermo; Lewis, Lisa A.; Golenbock, Douglas T.; Reed, George W.; Rice, Peter A.; Ram, Sanjay
2015-01-01
Neisseria gonorrhoeae (Ng), the causative agent of the sexually transmitted infection gonorrhea, has developed resistance to almost every conventional antibiotic. There is an urgent need to develop novel therapies against gonorrhea. Many pathogens, including Ng, bind the complement inhibitor factor H (FH) to evade complement-dependent killing. Sialylation of gonococcal lipooligosaccharide, as occurs in vivo, augments binding of human FH through its domains 18-20 (FH18-20). We explored the utility of fusing FH18-20 with IgG Fc (FH18-20/Fc) to create a novel anti-infective immunotherapeutic. FH18-20 also binds to select host glycosaminoglycans to limit unwanted complement activation on host cells. To identify mutation(s) in FH18-20 that eliminated complement activation on host cells, yet maintained binding to Ng, we created four mutations in domains 19 or 20 described in atypical hemolytic uremic syndrome that prevented binding of mutated fH to human erythrocytes. One of the mutant proteins (D to G at position 1119 in domain 19; FHD1119G/Fc) facilitated complement-dependent killing of gonococci similar to unmodified FH18-20/Fc, but unlike FH18-20/Fc, did not lyse human erythrocytes. FHD1119G/Fc bound to all (100%) of 15 sialylated clinical Ng isolates tested (including three contemporary ceftriaxone-resistant strains), mediated complement-dependent killing of 10/15 (67%) strains and enhanced C3 deposition (≥10-fold above baseline levels) on each of the five isolates not directly killed by complement. FHD1119G/Fc facilitated opsonophagocytic killing of a serum-resistant strain by human polymorphonuclear neutrophils. FHD1119G/Fc administered intravaginally significantly reduced the duration and burden of gonococcal infection in the mouse vaginal colonization model. FHD1119G/Fc represents a novel immunotherapeutic against multidrug-resistant Ng. PMID:26773149
Bacterial rep- mutations that block development of small DNA bacteriophages late in infection.
Tessman, E S; Peterson, P K
1976-01-01
Several related mutants of Escherichia coli C have been isolated that block the growth of the small icosahedral DNA phages phiX174 and S13 late in infection. Phage G6 is also blocked, at a stage not yet known. Growth of the filamentous phage M13, though not blocked, is affected in these strains. These host mutations co-transduce with ilv at high frequency, as do rep- mutations. However, the new mutants, designated groL-, differ from previously studied rep- mutants in that they permit synthesis of progeny replicative-form DNA. The groL- mutants are blocked in synthesis of stable single-stranded DNA of phiX174 and related phages. They are gro+ for P2. Evidence that groL- mutations and rep- mutations are in the same gene is presented. Spontaneous mutants (ogr) of phiX174, S13, and the G phages can grow on groL- strains. The ogr mutations are located in the phage's major capsid gene, F, as determined by complementation tests. There are numerous sites for mutation to ogr. Some mutations in genes A and F interfere with the ogr property when combined with an ogr mutation on the same genome. The ogr mutations are cis acting in a groL- cell; i.e., an ogr mutant gives very poor rescue of a non-ogr mutant. The wild-type form of each G phage appears to be naturally in the ogr mutant state for one or more groL- strains. It is suggested that a complex between F and rep proteins is involved in phage maturation. The A protein appears to interact with this complex. PMID:789914
CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101.
Li, Jihong; Freedman, John C; Evans, Daniel R; McClane, Bruce A
2017-03-01
Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY -null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY -null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY -null mutant strain but significantly increased in the SM101 codY -null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation. Copyright © 2017 American Society for Microbiology.
CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101
Li, Jihong; Freedman, John C.; Evans, Daniel R.
2017-01-01
ABSTRACT Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY-null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY-null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY-null mutant strain but significantly increased in the SM101 codY-null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation. PMID:28052992
Hoe, Nancy P; Ireland, Robin M; DeLeo, Frank R; Gowen, Brian B; Dorward, David W; Voyich, Jovanka M; Liu, Mengyao; Burns, Eugene H; Culnan, Derek M; Bretscher, Anthony; Musser, James M
2002-05-28
Streptococcal inhibitor of complement (Sic) is a secreted protein made predominantly by serotype M1 Group A Streptococcus (GAS), which contributes to persistence in the mammalian upper respiratory tract and epidemics of human disease. Unexpectedly, an isogenic sic-negative mutant adhered to human epithelial cells significantly better than the wild-type parental strain. Purified Sic inhibited the adherence of a sic negative serotype M1 mutant and of non-Sic-producing GAS strains to human epithelial cells. Sic was rapidly internalized by human epithelial cells, inducing cell flattening and loss of microvilli. Ezrin and moesin, human proteins that functionally link the cytoskeleton to the plasma membrane, were identified as Sic-binding proteins by affinity chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Sic colocalized with ezrin inside epithelial cells and bound to the F-actin-binding site region located in the carboxyl terminus of ezrin and moesin. Synthetic peptides corresponding to two regions of Sic had GAS adherence-inhibitory activity equivalent to mature Sic and inhibited binding of Sic to ezrin. In addition, the sic mutant was phagocytosed and killed by human polymorphonuclear leukocytes significantly better than the wild-type strain, and Sic colocalized with ezrin in discrete regions of polymorphonuclear leukocytes. The data suggest that binding of Sic to ezrin alters cellular processes critical for efficient GAS contact, internalization, and killing. Sic enhances bacterial survival by enabling the pathogen to avoid the intracellular environment. This process contributes to the abundance of M1 GAS in human infections and their ability to cause epidemics.
Shpakovski, G V; Acker, J; Wintzerith, M; Lacroix, J F; Thuriaux, P; Vigneron, M
1995-01-01
Four cDNAs encoding human polypeptides hRPB7.0, hRPB7.6, hRPB17, and hRPB14.4 (referred to as Hs10 alpha, Hs10 beta, Hs8, and Hs6, respectively), homologous to the ABC10 alpha, ABC10 beta, ABC14.5, and ABC23 RNA polymerase subunits (referred to as Sc10 alpha, Sc10 beta, Sc8, and Sc6, respectively) of Saccharomyces cerevisiae, were cloned and characterized for their ability to complement defective yeast mutants. Hs10 alpha and the corresponding Sp10 alpha of Schizosaccharomyces pombe can complement an S. cerevisiae mutant (rpc10-delta::HIS3) defective in Sc10 alpha. The peptide sequences are highly conserved in their carboxy-terminal halves, with an invariant motif CX2CX12RCX2CGXR corresponding to a canonical zinc-binding domain. Hs10 beta, Sc10 beta, and the N subunit of archaeal RNA polymerase are homologous. An invariant CX2CGXnCCR motif presumably forms an atypical zinc-binding domain. Hs10 beta, but not the archaeal subunit, complemented an S. cerevisiae mutant (rpb10-delta 1::HIS3) lacking Sc10 beta. Hs8 complemented a yeast mutant (rpb8-delta 1::LYS2) defective in the corresponding Sc8 subunit, although with a strong thermosensitive phenotype. Interspecific complementation also occurred with Hs6 and with the corresponding Dm6 cDNA of Drosophila melanogaster. Hs6 cDNA and the Sp6 cDNA of S. pombe are dosage-dependent suppressors of rpo21-4, a mutation generating a slowly growing yeast defective in the largest subunit of RNA polymerase II. Finally, a doubly chimeric S. cerevisiae strain bearing the Sp6 cDNA and the human Hs10 beta cDNA was also viable. No interspecific complementation was observed for the human hRPB25 (Hs5) homolog of the yeast ABC27 (Sc5) subunit. PMID:7651387
Heuermann, D; Haas, R
1998-03-01
A versatile plasmid shuttle vector system was constructed, which is useful for genetic complementation of Helicobacter pylori strains or mutants with cloned genes of homologous or heterologous origin. The individual plasmid vectors consist of the minimal essential genetic elements, including an origin of replication for Escherichia coli, a H. pylori-specific replicon originally identified on a small cryptic H. pylori plasmid, an oriT sequence and a multiple cloning site. Shuttle plasmid pHel2 carries a chloramphenicol resistance cassette (catGC) and pHel3 contains a kanamycin resistance gene (aphA-3) as the selectable marker; both are functional in E. coli and H. pylori. The shuttle plasmids were introduced into the H. pylori strain P1 by natural transformation. A efficiency of 7.0 x 10(-7) and 4.7 x 10(-7) transformants per viable recipient was achieved with pHel2 and pHel3, respectively, and both vectors showed stable, autonomous replication in H. pylori. An approximately 100-fold higher H. pylori transformation rate was obtained when the shuttle vectors for transformation were isolated from the homologous H. pylori strain, rather than E. coli, indicating that DNA restriction and modification mechanisms play a crucial role in plasmid transformation. Interestingly, both shuttle vectors could also be mobilized efficiently from E. coli into different H. pylori recipients, with pHel2 showing an efficiency of 2.0 x 10(-5) transconjugants per viable H. pylori P1 recipient. Thus, DNA restriction seems to be strongly reduced or absent during conjugal transfer. The functional complementation of a recA-deficient H. pylori mutant by the cloned H. pylori recA+ gene, and the expression of the heterologous green fluorescent protein (GFP) in H. pylori demonstrate the general usefulness of this system, which will significantly facilitate the molecular analysis of H. pylori virulence factors in the future.
Shankar, Jayendra; Walker, Rachel G; Wilkinson, Mark C; Ward, Deborah; Horsburgh, Malcolm J
2012-07-01
The culture supernatant fraction of an Enterococcus faecalis gelE mutant of strain OG1RF contained elevated levels of the secreted antigen SalB. Using differential fluorescence gel electrophoresis (DIGE) the salB mutant was shown to possess a unique complement of exoproteins. Differentially abundant exoproteins were identified using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Stress-related proteins including DnaK, Dps family protein, SOD, and NADH peroxidase were present in greater quantity in the OG1RF salB mutant culture supernatant. Moreover, several proteins involved in cell wall synthesis and cell division, including d-Ala-d-Lac ligase and EzrA, were present in reduced quantity in OG1RF salB relative to the parent strain. The salB mutant displayed reduced viability and anomalous cell division, and these phenotypes were exacerbated in a gelE salB double mutant. An epistatic relationship between gelE and salB was not identified with respect to increased autolysis and cell morphological changes observed in the salB mutant. SalB was purified as a six-histidine-tagged protein to investigate peptidoglycan hydrolytic activity; however, activity was not evident. High-pressure liquid chromatography (HPLC) analysis of reduced muropeptides from peptidoglycan digested with mutanolysin revealed that the salB mutant and OG1RF were indistinguishable.
Isolation of an essential Schizosaccharomyces pombe gene, prp31+, that links splicing and meiosis
Bishop, Danielle T.; McDonald, W. Hayes; Gould, Kathleen L.; Forsburg, Susan L.
2000-01-01
We carried out a screen for mutants that arrest prior to premeiotic S phase. One of the strains we isolated contains a temperature-sensitive allele mutation in the fission yeast prp31+ gene. The prp31-E1 mutant is defective in vegetative cell growth and in meiotic progression. It is synthetically lethal with prp6 and displays a pre-mRNA splicing defect at the restrictive temperature. We cloned the wild-type gene by complementation of the temperature-sensitive mutant phenotype. Prp31p is closely related to human and budding yeast PRP31 homologs and is likely to function as a general splicing factor in both vegetative growth and sexual differentiation. PMID:10871341
Al-Saadi, Abdulwahid; Reddy, Joseph D; Duan, Yong P; Brunings, Asha M; Yuan, Qiaoping; Gabriel, Dean W
2007-08-01
Citrus canker disease is caused by five groups of Xanthomonas citri strains that are distinguished primarily by host range: three from Asia (A, A*, and A(w)) and two that form a phylogenetically distinct clade and originated in South America (B and C). Every X. citri strain carries multiple DNA fragments that hybridize with pthA, which is essential for the pathogenicity of wide-host-range X. citri group A strain 3213. DNA fragments that hybridized with pthA were cloned from a representative strain from all five groups. Each strain carried one and only one pthA homolog that functionally complemented a knockout mutation of pthA in 3213. Every complementing homolog was of identical size to pthA and carried 17.5 nearly identical, direct tandem repeats, including three new genes from narrow-host-range groups C (pthC), A(w) (pthAW), and A* (pthA*). Every noncomplementing paralog was of a different size; one of these was sequenced from group A* (pthA*-2) and was found to have an intact promoter and full-length reading frame but with 15.5 repeats. None of the complementing homologs nor any of the noncomplementing paralogs conferred avirulence to 3213 on grapefruit or suppressed avirulence of a group A* strain on grapefruit. A knockout mutation of pthC in a group C strain resulted in loss of pathogenicity on lime, but the strain was unaffected in ability to elicit an HR on grapefruit. This pthC- mutant was fully complemented by pthA, pthB, or pthC. Analysis of the predicted amino-acid sequences of all functional pthA homologs and nonfunctional paralogs indicated that the specific sequence of the 17th repeat may be essential for pathogenicity of X. citri on citrus.
Souza, André L F; Invitti, Adriana L; Rego, Fabiane G M; Monteiro, Rose A; Klassen, Giseli; Souza, Emanuel M; Chubatsu, Leda S; Pedrosa, Fábio O; Rigo, Liu U
2010-02-01
The pathway of electron transport to nitrogenase in the endophytic beta-Proteobacterium Herbaspirillum seropedicae has not been characterized. We have generated mutants in two nif-associated genes encoding putative ferredoxins, fdxA and fdxN. The fdxA gene is part of the operon nifHDKENXorf1orf2fdxAnifQmodABC and is transcribed from the nifH promoter, as revealed by lacZ gene fusion. The fdxN gene is probably cotranscribed with the nifB gene. Mutational analysis suggests that the FdxA protein is essential for maximum nitrogenase activity, since the nitrogenase activity of the fdxA mutant strain was reduced to about 30% of that of the wild-type strain. In addition, the fdxA mutation had no effect on the nitrogenase switch-off in response to ammonium. Nitrogenase activity of a mutant strain lacking the fdxN gene was completely abolished. This phenotype was reverted by complementation with fdxN expressed under lacZ promoter control. The results suggest that the products of both the fdxA and fdxN genes are probably involved in electron transfer during nitrogen fixation.
Egener, Tanja; Martin, Dietmar E.; Sarkar, Abhijit; Reinhold-Hurek, Barbara
2001-01-01
The endophytic diazotroph Azoarcus sp. strain BH72 is capable of infecting rice roots and of expressing the nitrogenase (nif) genes there. In order to study the genetic background for nitrogen fixation in strain BH72, the structural genes of nitrogenase (nifHDK) were cloned and sequenced. The sequence analysis revealed an unusual gene organization: downstream of nifHDK, a ferredoxin gene (fdxN; 59% amino acid sequence identity to R. capsulatus FdxN) and open reading frames showing 52 and 36% amino acid sequence identity to nifY of Pseudomonas stutzeri A15 and ORF1 of Azotobacter vinelandii were located. Northern blot analysis, reverse transcriptase PCR and primer extension analysis revealed that these six genes are located on one transcript transcribed from a ς54-type promoter. Shorter transcripts sequentially missing genes of the 3′ part of the full-length mRNA were more abundantly detected. Mutational analyses suggested that FdxN is an important but not the essential electron donor for dinitrogenase reductase. An in-frame deletion of fdxN resulted in reduced growth rates (59% ± 9%) and nitrogenase activities (81%) in nitrogen-fixing pure cultures in comparison to the wild type. Nitrogenase activity was fully complemented in an fdxN mutant which carried a nifH promoter-driven fdxN gene in trans. Also, in coculture with the ascomycete Acremonium alternatum, where strain BH72 develops intracytoplasmic membrane stacks, the nitrogenase activity in the fdxN deletion mutant was decreased to 56% of the wild-type level. Surprisingly, the fdxN deletion also had an effect on the rapid “switch-off” of nitrogenase activity in response to ammonium. Wild-type strain BH72 and the deletion mutant complemented with fdxN in trans showed a rapid reversible inactivation of acetylene reduction, while the deletion mutant did not cease to reduce acetylene. In concordance with the hypothesis that changes in the redox state of NifH or electron flux towards nitrogenase may be involved in the mechanism of physiological nitrogenase switch-off, our results suggest that the ferredoxin may be a component involved in this process. PMID:11371540
Parreira, Valeria R; Ojha, Shivani; Lepp, Dion; Mehdizadeh Gohari, Iman; Zhou, Hongzhuan; Susta, Leonardo; Gong, Jianhua; Prescott, John F
2017-09-01
Necrotic enteritis (NE) caused by netB-positive strains of Clostridium perfringens is an important disease of intensively-reared broiler chickens. It is widely controlled by antibiotic use, but this practice that has come under increasing scrutiny and alternative approaches are required. As part of the search for alternative approaches over the last decade, advances have been made in understanding its pathogenesis but much remains to be understood and applied to the control of NE. The objective of this work was to assess the effect on virulence of mutation of the cyclic-di-GMP signaling genes present on the large pathogenicity locus (NELoc-1) in the tcp-encoding conjugative virulence plasmid, pNetB. For this purpose, the diguanylate cyclase (dgc) and phosphodiesterase (pde) genes were individually insertionally inactivated and the two mutants were subsequently complemented with their respective genes. Southern blotting showed that a single gene insertion was present. Mutation of either gene resulted in almost total attenuation of the mutants to cause NE in experimentally-infected broiler chickens, which was fully restored in each case by complementation of the respective mutated gene. Production of NetB-associated cytotoxicity for Leghorn male hepatoma (LMH) cells was unaffected in mutants. We conclude that the cyclic-di-GMP signaling system is important in controlling virulence in a NE C. perfringens strain and might be a target for control of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Chenevert, J M; Naumovski, L; Schultz, R A; Friedberg, E C
1986-04-01
The denV gene of bacteriophage T4 was reconstituted from two overlapping DNA fragments cloned in M13 vectors. The coding region of the intact gene was tailored into a series of plasmid vectors containing different promoters suitable for expression of the gene in E. coli and in yeast. Induction of the TAC promoter with IPTG resulted in overexpression of the gene, which was lethal to E. coli. Expression of the TACdenV gene in the absence of IPTG, or the use of the yeast GAL1 or ADH promoters resulted in partial complementation of the UV sensitivity of uvrA, uvrB, uvrC and recA mutants of E. coli and rad1, rad2, rad3, rad4 and rad10 mutants of S. cerevisiae. The extent of denV-mediated reactivation of excision-defective mutants was approximately equal to that of photoreactivation of such strains. Excision proficient E. coli cells transformed with a plasmid containing the denV gene were slightly more resistant to ultraviolet (UV) radiation than control cells without the denV gene. On the other hand, excision proficient yeast cells were slightly more sensitive to killing by UV radiation following transformation with a plasmid containing the denV gene. This effect was more pronounced in yeast mutants of the RAD52 epistasis group.
Autoinducer-2 Quorum Sensing Contributes to Regulation of Microcin PDI in Escherichia coli
Lu, Shao-Yeh; Zhao, Zhe; Avillan, Johannetsy J.; Liu, Jinxin; Call, Douglas R.
2017-01-01
The Escherichia coli quorum sensing (QS) signal molecule, autoinducer-2 (AI-2), reaches its maximum concentration during mid-to-late growth phase after which it quickly degrades during stationary phase. This pattern of AI-2 concentration coincides with the up- then down-regulation of a recently described microcin PDI (mccPDI) effector protein (McpM). To determine if there is a functional relationship between these systems, a prototypical mccPDI-expressing strain of E. coli 25 was used to generate ΔluxS, ΔlsrACDBFG (Δlsr), and ΔlsrR mutant strains that are deficient in AI-2 production, transportation, and AI-2 transport regulation, respectively. Trans-complementation, RT-qPCR, and western blot assays were used to detect changes of microcin expression and synthesis under co-culture and monoculture conditions. Compared to the wild-type strain, the AI-2-deficient strain (ΔluxS) and -uptake negative strain (Δlsr) were >1,000-fold less inhibitory to susceptible bacteria (P < 0.05). With in trans complementation of luxS, the AI-2 deficient mutant reduced the susceptible E. coli population by 4-log, which was within 1-log of the wild-type phenotype. RT-qPCR and western blot results for the AI-2 deficient E. coli 25 showed a 5-fold reduction in mcpM transcription with an average 2-h delay in McpM synthesis. Furthermore, overexpression of sRNA micC and micF (both involved in porin protein regulation) was correlated with mcpM regulation, consistent with a possible link between QS and mcpM regulation. This is the direct first evidence that microcin regulation can be linked to quorum sensing in a Gram-negative bacterium. PMID:29312248
Cancer-Associated Mutants of RNA Helicase DDX3X Are Defective in RNA-Stimulated ATP Hydrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epling, Leslie B.; Grace, Christy R.; Lowe, Brandon R.
The DEAD-box RNA helicase DDX3X is frequently mutated in pediatric medulloblastoma. We dissect how these mutants affect DDX3X function with structural, biochemical, and genetic experiments. We identify an N-terminal extension (“ATP-binding loop”, ABL) that is critical for the stimulation of ATP hydrolysis by RNA. We present crystal structures suggesting that the ABL interacts dynamically with ATP and confirming that the interaction occurs in solution by NMR chemical shift perturbation and isothermal titration calorimetry. DEAD-box helicases require interaction between two conserved RecA-like helicase domains, D1 and D2 for function. We use NMR chemical shift perturbation to show that DDX3X interacts specificallymore » with double-stranded RNA through its D1 domain, with contact mediated by residues G302 and G325. Mutants of these residues, G302V and G325E, are associated with pediatric medulloblastoma. These mutants are defective in RNA-stimulated ATP hydrolysis. We show that DDX3X complements the growth defect in a ded1 temperature-sensitive strain of Schizosaccharomyces pombe, but the cancer-associated mutants G302V and G325E do not complement and exhibit protein expression defects. In conclusion, taken together, our results suggest that impaired translation of important mRNA targets by mutant DDX3X represents a key step in the development of medulloblastoma.« less
Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji
2013-12-01
The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus. Copyright © 2013 John Wiley & Sons, Ltd.
Cancer-Associated Mutants of RNA Helicase DDX3X Are Defective in RNA-Stimulated ATP Hydrolysis
Epling, Leslie B.; Grace, Christy R.; Lowe, Brandon R.; ...
2015-02-25
The DEAD-box RNA helicase DDX3X is frequently mutated in pediatric medulloblastoma. We dissect how these mutants affect DDX3X function with structural, biochemical, and genetic experiments. We identify an N-terminal extension (“ATP-binding loop”, ABL) that is critical for the stimulation of ATP hydrolysis by RNA. We present crystal structures suggesting that the ABL interacts dynamically with ATP and confirming that the interaction occurs in solution by NMR chemical shift perturbation and isothermal titration calorimetry. DEAD-box helicases require interaction between two conserved RecA-like helicase domains, D1 and D2 for function. We use NMR chemical shift perturbation to show that DDX3X interacts specificallymore » with double-stranded RNA through its D1 domain, with contact mediated by residues G302 and G325. Mutants of these residues, G302V and G325E, are associated with pediatric medulloblastoma. These mutants are defective in RNA-stimulated ATP hydrolysis. We show that DDX3X complements the growth defect in a ded1 temperature-sensitive strain of Schizosaccharomyces pombe, but the cancer-associated mutants G302V and G325E do not complement and exhibit protein expression defects. In conclusion, taken together, our results suggest that impaired translation of important mRNA targets by mutant DDX3X represents a key step in the development of medulloblastoma.« less
Increased Chain Length Promotes Pneumococcal Adherence and Colonization
Rodriguez, Jesse L.; Dalia, Ankur B.
2012-01-01
Streptococcus pneumoniae is a mucosal pathogen that grows in chains of variable lengths. Short-chain forms are less likely to activate complement, and as a consequence they evade opsonophagocytic clearance more effectively during invasive disease. When grown in human nasal airway surface fluid, pneumococci exhibited both short- and long-chain forms. Here, we determined whether longer chains provide an advantage during colonization when the organism is attached to the epithelial surface. Chain-forming mutants and the parental strain grown under conditions to promote chain formation showed increased adherence to human epithelial cells (A549 cells) in vitro. Additionally, adherence to A549 cells selected for longer chains within the wild-type strain. In vivo in a murine model of colonization, chain-forming mutants outcompeted the parental strain. Together, our results demonstrate that morphological heterogeneity in the pneumococcus may promote colonization of the upper respiratory tract by enhancing the ability of the organism to bind to the epithelial surface. PMID:22825449
Xiong, Anming; Jayaswal, Radheshyam K.
1998-01-01
A DNA fragment conferring resistance to zinc and cobalt ions was isolated from a genomic DNA library of Staphylococcus aureus RN450. The DNA sequence analysis revealed two consecutive open reading frames, designated zntR and zntA. The predicted ZntR and ZntA showed significant homology to members of ArsR and cation diffusion families, respectively. A mutant strain containing the null allele of zntA was more sensitive to zinc and cobalt ions than was the parent strain. The metal-sensitive phenotype of the mutant was complemented by a 2.9-kb DNA fragment containing zntR and zntA. An S. aureus strain harboring multiple copies of zntR and zntA showed an increased resistance to zinc. The resistance to zinc in the wild-type strain was inducible. Transcriptional analysis indicated that zntR and zntA genes were cotranscribed. The zinc uptake studies suggested that the zntA product was involved in the export of zinc ions out of cells. PMID:9696746
Honda-Ogawa, Mariko; Sumitomo, Tomoko; Mori, Yasushi; Hamd, Dalia Talat; Ogawa, Taiji; Yamaguchi, Masaya; Nakata, Masanobu; Kawabata, Shigetada
2017-01-01
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes, PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (ΔpepO) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by ΔpepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with ΔpepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites. PMID:28154192
Fu, Jiafang; Zong, Gongli; Zhang, Peipei; Gu, Yuanxin; Cao, Guangxiang
2018-04-01
Rv1057 is the only β-propeller protein in Mycobacterium tuberculosis, but its biological function is still unclear. In this study, we generated a deletion mutant of Rv1057 (D1057) in the virulent M. tuberculosis strain H37Rv and examined the characteristics of the mutant in vitro and in macrophages. We found that deletion of Rv1057 reduces secretion of the major virulence factor ESAT-6 and ESAT-6 stops in the cell envelope fraction during secretion, although ESAT-6 levels were similar in lysates of the mutant and control strains. In infected macrophages, Rv1057 deletion significantly reduced the secretion levels of cytokines IL-1β, IL-10, TNF-α, and INF-γ, but did not affect IL-4 and IL-8. D1057-infected macrophages also release less LDH and produce more nitric oxide (NO) than H37Rv- and D1057com (Rv1057 complemented strain of D1057com)-infected macrophages, indicating that D1057 has the decreased cytotoxicity compared to H37Rv or D1057com. In addition, the capacity of the Rv1057 deletion mutant to grow in macrophages was significantly lower than that of H37Rv and D1057com. Our findings support a role for Rv1057 in ESAT-6 secretion and in modulating the interactions between M. tuberculosis and macrophages.
Role of PII proteins in nitrogen fixation control of Herbaspirillum seropedicae strain SmR1
2011-01-01
Background The PII protein family comprises homotrimeric proteins which act as transducers of the cellular nitrogen and carbon status in prokaryotes and plants. In Herbaspirillum seropedicae, two PII-like proteins (GlnB and GlnK), encoded by the genes glnB and glnK, were identified. The glnB gene is monocistronic and its expression is constitutive, while glnK is located in the nlmAglnKamtB operon and is expressed under nitrogen-limiting conditions. Results In order to determine the involvement of the H. seropedicae glnB and glnK gene products in nitrogen fixation, a series of mutant strains were constructed and characterized. The glnK- mutants were deficient in nitrogen fixation and they were complemented by plasmids expressing the GlnK protein or an N-truncated form of NifA. The nitrogenase post-translational control by ammonium was studied and the results showed that the glnK mutant is partially defective in nitrogenase inactivation upon addition of ammonium while the glnB mutant has a wild-type phenotype. Conclusions Our results indicate that GlnK is mainly responsible for NifA activity regulation and ammonium-dependent post-translational regulation of nitrogenase in H. seropedicae. PMID:21223584
Role of PII proteins in nitrogen fixation control of Herbaspirillum seropedicae strain SmR1.
Noindorf, Lilian; Bonatto, Ana C; Monteiro, Rose A; Souza, Emanuel M; Rigo, Liu U; Pedrosa, Fabio O; Steffens, Maria B R; Chubatsu, Leda S
2011-01-11
The PII protein family comprises homotrimeric proteins which act as transducers of the cellular nitrogen and carbon status in prokaryotes and plants. In Herbaspirillum seropedicae, two PII-like proteins (GlnB and GlnK), encoded by the genes glnB and glnK, were identified. The glnB gene is monocistronic and its expression is constitutive, while glnK is located in the nlmAglnKamtB operon and is expressed under nitrogen-limiting conditions. In order to determine the involvement of the H. seropedicae glnB and glnK gene products in nitrogen fixation, a series of mutant strains were constructed and characterized. The glnK- mutants were deficient in nitrogen fixation and they were complemented by plasmids expressing the GlnK protein or an N-truncated form of NifA. The nitrogenase post-translational control by ammonium was studied and the results showed that the glnK mutant is partially defective in nitrogenase inactivation upon addition of ammonium while the glnB mutant has a wild-type phenotype. Our results indicate that GlnK is mainly responsible for NifA activity regulation and ammonium-dependent post-translational regulation of nitrogenase in H. seropedicae.
Niu, Jing; Arentshorst, Mark; Nair, P. Deepa S.; Dai, Ziyu; Baker, Scott E.; Frisvad, Jens C.; Nielsen, Kristian F.; Punt, Peter J.; Ram, Arthur F.J.
2015-01-01
The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations. PMID:26566947
Niu, Jing; Arentshorst, Mark; Nair, P Deepa S; Dai, Ziyu; Baker, Scott E; Frisvad, Jens C; Nielsen, Kristian F; Punt, Peter J; Ram, Arthur F J
2015-11-13
The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations. Copyright © 2016 Niu et al.
Niu, Jing; Arentshorst, Mark; Nair, P. Deepa S.; ...
2015-11-13
The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. nigermore » has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a Δ laeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. As a result, we show that our systems genetics approach is a powerful tool to identify trait mutations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Jing; Arentshorst, Mark; Nair, P. Deepa S.
The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. nigermore » has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a Δ laeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. As a result, we show that our systems genetics approach is a powerful tool to identify trait mutations.« less
Temperature-sensitive Mutants of Sindbis Virus: Biochemical Correlates of Complementation
Burge, Boyce W.; Pfefferkorn, E. R.
1967-01-01
Temperature-sensitive mutants of Sindbis virus fail to grow at a temperature that permits growth of the wild type, but when certain pairs of these mutants, mixed together, infect cells at that temperature, viral growth (i.e., complementation) occurs. The yield from this complementation, however, is of the same order of magnitude as the infectivity in the inoculum. Since in animal virus infections the protein components of the virion probably enter the cell with the viral nucleic acid, it was necessary to demonstrate that the observed complementation required synthesis of new viral protein and nucleic acid rather than some sort of rearrangement of the structural components of the inoculum. To demonstrate that complementation does require new biosynthesis, three biochemical events of normal virus growth have been observed during complementation and correlated with the efficiency of viral growth seen in complementation. These events include: (i) entrance of parental viral ribonucleic acid (RNA) into a double-stranded form; (ii) subsequent synthesis of viral RNA; and (iii) synthesis and subsequent incorporation of viral protein(s) into cell membranes where they were detected by hemadsorption. Although the infecting single-stranded RNA genome of the wild type was converted to a ribonuclease-resistant form, the genome of a mutant (ts-11) incapable of RNA synthesis at a nonpermissive temperature was not so converted. However, during complementation with another mutant also defective in viral RNA synthesis, some of the RNA of mutant ts-11 was converted to a ribonuclease-resistant form, and total synthesis of virus-specific RNA was markedly enhanced. The virus-specific alteration of the cell surface, detected by hemadsorption, was also extensively increased during complementation. These observations support the view that complementation between temperature-sensitive mutants and replication of wild-type virus are similar processes. PMID:5630228
Flores, C L; Gancedo, C
1997-08-04
We investigated the effects of the expression of the Escherichia coli ppc gene encoding PEP carboxylase in Saccharomyces cerevisiae mutants devoid of pyruvate carboxylase. Functional expression of the ppc gene restored the ability of the yeast mutants to grow in glucose-ammonium medium. Growth yield in this medium was the same in the transformed yeast than in the wild type although the growth rate of the transformed yeast was slower. Growth in pyruvate was slowed down in the transformed strain, likely due to a futile cycle produced by the simultaneous action of PEP carboxykinase and PEP carboxylase.
van Heemst, D; Swart, K; Holub, E F; van Dijk, R; Offenberg, H H; Goosen, T; van den Broek, H W; Heyting, C
1997-05-01
We have cloned the uvsC gene of Aspergillus nidulans by complementation of the A. nidulans uvsC114 mutant. The predicted protein UVSC shows 67.4% sequence identity to the Saccharomyces cerevisiae Rad51 protein and 27.4% sequence identity to the Escherichia coli RecA protein. Transcription of uvsC is induced by methyl-methane sulphonate (MMS), as is transcription of RAD51 of yeast. Similar levels of uvsC transcription were observed after MMS induction in a uvsC+ strain and the uvsC114 mutant. The coding sequence of the uvsC114 allele has a deletion of 6 bp, which results in deletion of two amino acids and replacement of one amino acid in the translation product. In order to gain more insight into the biological function of the uvsC gene, a uvsC null mutant was constructed, in which the entire uvsC coding sequence was replaced by a selectable marker gene. Meiotic and mitotic phenotypes of a uvsC+ strain, the uvsC114 mutant and the uvsC null mutant were compared. The uvsC null mutant was more sensitive to both UV and MMS than the uvsC114 mutant. The uvsC114 mutant arrested in meiotic prophase-I. The uvsC null mutant arrested at an earlier stage, before the onset of meiosis. One possible interpretation of these meiotic phenotypes is that the A. nidulans homologue of Rad51 of yeast has a role both in the specialized processes preceding meiosis and in meiotic prophase I.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, R.L.; Haygood, M.G.; Lidstrom, M.E.
An open-reading-frame fragment of a Methylobacterium sp. strain AM1 gene (moxF) encoding a portion of the methanol dehydrogenase structural protein has been used as a hybridization probe to detect similar sequences in a variety of methylotrophic bacteria. This hybridization was used to isolate clones containing putative moxF genes from two obligate methanotrophic bacteria, Methylococcus capsulatus Bath and Methylomonas albus BG8. The identity of these genes was confirmed in two ways. A T7 expression vector was used to produce methanol dehydrogenase protein in Escherichia coli from the cloned genes,a and in each case the protein was identified by immunoblotting with antiserummore » against the Methylomonas albus methanol dehydrogenase. In addition, a moxF mutant of Methylobacterium strain AM1 was complemented to a methanol-positive phenotype that partially restored methanol dehydrogenase activity, using broad-host-range plasmids containing the moxF genes from each methanotroph. The partial complementation of a moxF mutant in a facultative serine pathway methanol utilizer by moxF genes from type I and type X obligate methane utilizers suggests broad functional conservation of the methanol oxidation system among gram-negative methylotrophs.« less
Menendez-Bravo, Simón; Paganini, Julián; Avignone-Rossa, Claudio; Gramajo, Hugo; Arabolaza, Ana
2017-01-01
Oleaginous microorganisms represent possible platforms for the sustainable production of oleochemicals and biofuels due to their metabolic robustness and the possibility to be engineered. Streptomyces coelicolor is among the narrow group of prokaryotes capable of accumulating triacylglycerol (TAG) as carbon and energy reserve. Although the pathways for TAG biosynthesis in this organism have been widely addressed, the set of genes required for their breakdown have remained elusive so far. Here, we identified and characterized three gene clusters involved in the β-oxidation of fatty acids (FA). The role of each of the three different S. coelicolor FadAB proteins in FA catabolism was confirmed by complementation of an Escherichia coliΔfadBA mutant strain deficient in β-oxidation. In S. coelicolor, the expression profile of the three gene clusters showed variation related with the stage of growth and the presence of FA in media. Flux balance analyses using a corrected version of the current S. coelicolor metabolic model containing detailed TAG biosynthesis reactions suggested the relevance of the identified fadAB genes in the accumulation of TAG. Thus, through the construction and analysis of fadAB knockout mutant strains, we obtained an S. coelicolor mutant that showed a 4.3-fold increase in the TAG content compared to the wild type strain grown under the same culture conditions. PMID:28824562
NilD CRISPR RNA contributes to Xenorhabdus nematophila colonization of symbiotic host nematodes
Veesenmeyer, Jeff L.; Andersen, Aaron W.; Lu, Xiaojun; Hussa, Elizabeth A.; Murfin, Kristen E.; Chaston, John M.; Dillman, Adler R.; Wassarman, Karen M.; Sternberg, Paul W.; Goodrich-Blair, Heidi
2014-01-01
Summary The bacterium Xenorhabdus nematophila is a mutualist of entomopathogenic Steinernema carpocapsae nematodes and facilitates infection of insect hosts. X. nematophila colonizes the intestine of S. carpocapsae which carries it between insects. In the X. nematophila colonization-defective mutant nilD6::Tn5, the transposon is inserted in a region lacking obvious coding potential. We demonstrate that the transposon disrupts expression of a single CRISPR RNA, NilD RNA. A variant NilD RNA also is expressed by X. nematophila strains from S. anatoliense and S. websteri nematodes. Only nilD from the S. carpocapsae strain of X. nematophila rescued the colonization defect of the nilD6::Tn5 mutant, and this mutant was defective in colonizing all three nematode host species. NilD expression depends on the presence of the associated Cas6e but not Cas3, components of the Type I-E CRISPR-associated machinery. While cas6e deletion in the complemented strain abolished nematode colonization, its disruption in the wild-type parent did not. Likewise, nilD deletion in the parental strain did not impact colonization of the nematode, revealing that the requirement for NilD is evident only in certain genetic backgrounds. Our data demonstrate that NilD RNA is conditionally necessary for mutualistic host colonization and suggest that it functions to regulate endogenous gene expression. PMID:25041533
Loss of Regulatory Protein RfaH Attenuates Virulence of Uropathogenic Escherichia coli
Nagy, Gábor; Dobrindt, Ulrich; Schneider, György; Khan, A. Salam; Hacker, Jörg; Emödy, Levente
2002-01-01
RfaH is a regulatory protein in Escherichia coli and Salmonella enterica serovar Typhimurium. Although it enhances expression of different factors that are proposed to play a role in bacterial virulence, a direct effect of RfaH on virulence has not been investigated so far. We report that inactivation of rfaH dramatically decreases the virulence of uropathogenic E. coli strain 536 in an ascending mouse model of urinary tract infection. The mortality rate caused by the wild-type strain in this assay is 100%, whereas that of its isogenic rfaH mutant does not exceed 18%. In the case of coinfection, the wild-type strain 536 shows higher potential to colonize the urinary tract even when it is outnumbered 100-fold by its rfaH mutant in the inoculum. In contrast to the wild-type strain, serum resistance of strain 536rfaH::cat is fully abolished. Furthermore, we give evidence that, besides a major decrease in the amount of hemin receptor ChuA (G. Nagy, U. Dobrindt, M. Kupfer, L. Emody, H. Karch, and J. Hacker, Infect. Immun. 69:1924-1928, 2001), loss of the RfaH protein results in an altered lipopolysaccharide phenotype as well as decreased expression of K15 capsule and alpha-hemolysin, whereas levels of other pathogenicity factors such as siderophores, flagella, Prf, and S fimbriae appear to be unaltered in strain 536rfaH::cat in comparison to the wild-type strain. trans complementation of the mutant strain with the rfaH gene restores wild-type levels of the affected virulence factors and consequently restitutes virulence in the mouse model of ascending urinary tract infection. PMID:12117951
Schmerk, Crystal L.; Duplantis, Barry N.; Howard, Perry L.; Nano, Francis E.
2009-01-01
Several genes contained in the Francisella pathogenicity island (FPI) encode proteins needed for intracellular growth and virulence of Francisella tularensis. The pdpA gene is the first cistron in the larger of the two operons found in the FPI. In this work we studied the intracellular growth phenotype of a Francisella novicida mutant in the pdpA gene. The ΔpdpA strain was capable of a small amount of intracellular replication but, unlike wild-type F. novicida, remained associated with the lysosomal marker LAMP-1, suggesting that PdpA is necessary for progression from the early phagosome phase of infection. Strains with in cis complementation of the ΔpdpA lesion showed a restoration of intracellular growth to wild-type levels. Infection of macrophages with the ΔpdpA mutant generated a host-cell mRNA profile distinct from that generated by infection with wild-type F. novicida. The transcriptional response of the host macrophage indicates that PdpA functions directly or indirectly to suppress macrophage ability to signal via growth factors, cytokines and adhesion ligands. PMID:19372155
Chen, Wen-Ming; Prell, Jurgen; James, Euan K; Sheu, Der-Shyan; Sheu, Shih-Yi
2012-07-01
Burkholderia phymatum STM815 and Cupriavidus taiwanensis LMG19424 are betaproteobacterial strains that can effectively nodulate several species of the large legume genus Mimosa. A Tn5 mutant, derived from B. phymatum STM815 (KM60), and another derived from C. taiwanensis LMG19424 (KM184-55) induced Fix(-) nodules on Mimosa pudica. The Tn5-interrupted genes of the mutants showed strong homologies to ilvE, which encodes a branched-chain amino acid aminotransferase, and leuC, which encodes the large subunit of isopropylmalate isomerase. Both enzymes are known to be involved in the biosynthetic pathways for branched-chain amino acids (BCAAs) (leucine, valine and isoleucine). The B. phymatum ilvE mutant, KM60, was not auxotrophic for BCAAs and could grow well on minimal medium with pyruvate as a carbon source and ammonia as a nitrogen source. However, it grew less efficiently than the wild-type (WT) strain when ammonia was substituted with valine or isoleucine as a nitrogen source. The BCAA aminotransferase activity of KM60 was significantly reduced relative to the WT strain, especially with isoleucine and valine as amino group donors. The C. taiwanensis leuC mutant, KM184-55, could not grow on a minimal medium with pyruvate as a carbon source and ammonia as a nitrogen source, but its growth was restored when leucine was added to the medium. The isopropylmalate isomerase activity of KM184-55 was completely lost compared with the WT strain. Both mutants recovered their respective enzyme activities after complementation with the WT ilvE or leuC genes and were subsequently able to grow as well as their parental strains on minimal medium. They were also able to form nitrogen-fixing nodules on M. pudica. We conclude that the biosynthesis of BCAAs is essential for the free-living growth of betarhizobia, as well as for their ability to form effective symbioses with their host plant.
Genetic and physical analyses of Methylobacterium organophilum XX genes encoding methanol oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machlin, S.M.; Tam, P.E.; Bastien, C.A.
When allyl alcohol was used as a suicide substrate, spontaneous mutants and UV light- and nitrous acid-generated mutants of Methylobacterium organophilum XX were selected which grew on methylamine but not on methanol. There was no detectable methanol dehydrogenase (MDH) activity in crude extracts of these mutants, yet Western blots revealed that some mutants still produced MDH protein. Complementation of 50 mutants by a cosmid gene bank of M. organophilum XX demonstrated that three major regions of the genome, each of which was separated by a minimum of 40 kilobases, were required for expression of active MDH. By subcloning and Tn5more » insertion mutagenesis of subcloned fragments, at least 11 genes clustered within these three regions were subsequently identified. The identity of the MDH structural gene, which was initially determined by hybridization to the structural gene of Methylobacterium sp. strain AM1, was confirmed by Western blot analysis of an MDH-..beta..-galactosidase fusion protein.« less
Subashchandrabose, Sargurunathan; Leveque, Rhiannon M.; Kirkwood, Roy N.; Kiupel, Matti
2013-01-01
Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, an economically important disease of pigs. The hfq gene in A. pleuropneumoniae, encoding the RNA chaperone and posttranscriptional regulator Hfq, is upregulated during infection of porcine lungs. To investigate the role of this in vivo-induced gene in A. pleuropneumoniae, an hfq mutant strain was constructed. The hfq mutant was defective in biofilm formation on abiotic surfaces. The level of pgaC transcript, encoding the biosynthesis of poly-β-1,6-N-acetylglucosamine (PNAG), a major biofilm matrix component, was lower and PNAG content was 10-fold lower in the hfq mutant than in the wild-type strain. When outer membrane proteins were examined, cysteine synthase, implicated in resistance to oxidative stress and tellurite, was not found at detectable levels in the absence of Hfq. The hfq mutant displayed enhanced sensitivity to superoxide generated by methyl viologen and tellurite. These phenotypes were readily reversed by complementation with the hfq gene expressed from its native promoter. The role of Hfq in the fitness of A. pleuropneumoniae was assessed in a natural host infection model. The hfq mutant failed to colonize porcine lungs and was outcompeted by the wild-type strain (median competitive index of 2 × 10−5). Our data demonstrate that the in vivo-induced gene hfq is involved in the regulation of PNAG-dependent biofilm formation, resistance to superoxide stress, and the fitness and virulence of A. pleuropneumoniae in pigs and begin to elucidate the role of an in vivo-induced gene in the pathogenesis of pleuropneumonia. PMID:23732171
Camargo, Tarsila M; Stipp, Rafael N; Alves, Lívia A; Harth-Chu, Erika N; Höfling, José F; Mattos-Graner, Renata O
2018-04-01
Streptococcus sanguinis is a pioneer species of teeth and a common opportunistic pathogen of infective endocarditis. In this study, we identified a two-component system, S. sanguinis SptRS (SptRS Ss ), affecting S. sanguinis survival in saliva and biofilm formation. Isogenic mutants of sptR Ss (SKsptR) and sptS Ss (SKsptS) showed reduced cell counts in ex vivo assays of viability in saliva compared to those of parent strain SK36 and complemented mutants. Reduced counts of the mutants in saliva were associated with reduced growth rates in nutrient-poor medium (RPMI) and increased susceptibility to the deposition of C3b and the membrane attach complex (MAC) of the complement system, a defense component of saliva and serum. Conversely, sptR Ss and sptS Ss mutants showed increased biofilm formation associated with higher levels of production of H 2 O 2 and extracellular DNA. Reverse transcription-quantitative PCR (RT-qPCR) comparisons of strains indicated a global role of SptRS Ss in repressing genes for H 2 O 2 production (2.5- to 15-fold upregulation of spxB , spxR , vicR , tpk , and ackA in sptR Ss and sptS Ss mutants), biofilm formation, and/or evasion of host immunity (2.1- to 11.4-fold upregulation of srtA , pcsB , cwdP , iga , and nt5e ). Compatible with the homology of SptR Ss with AraC-type regulators, duplicate to multiple conserved repeats were identified in 1,000-bp regulatory regions of downstream genes, suggesting that SptR Ss regulates transcription by DNA looping. Significant transcriptional changes in the regulatory genes vicR , spxR , comE , comX , and mecA in the sptR Ss and sptS Ss mutants further indicated that SptRS Ss is part of a regulatory network that coordinates cell wall homeostasis, H 2 O 2 production, and competence. This study reveals that SptRS Ss is involved in the regulation of crucial functions for S. sanguinis persistence in the oral cavity. Copyright © 2018 American Society for Microbiology.
Lazar Adler, Natalie R; Stevens, Mark P; Dean, Rachel E; Saint, Richard J; Pankhania, Depesh; Prior, Joann L; Atkins, Timothy P; Kessler, Bianca; Nithichanon, Arnone; Lertmemongkolchai, Ganjana; Galyov, Edouard E
2015-01-01
Burkholderia pseudomallei is the causative agent of the severe tropical disease melioidosis, which commonly presents as sepsis. The B. pseudomallei K96243 genome encodes eleven predicted autotransporters, a diverse family of secreted and outer membrane proteins often associated with virulence. In a systematic study of these autotransporters, we constructed insertion mutants in each gene predicted to encode an autotransporter and assessed them for three pathogenesis-associated phenotypes: virulence in the BALB/c intra-peritoneal mouse melioidosis model, net intracellular replication in J774.2 murine macrophage-like cells and survival in 45% (v/v) normal human serum. From the complete repertoire of eleven autotransporter mutants, we identified eight mutants which exhibited an increase in median lethal dose of 1 to 2-log10 compared to the isogenic parent strain (bcaA, boaA, boaB, bpaA, bpaC, bpaE, bpaF and bimA). Four mutants, all demonstrating attenuation for virulence, exhibited reduced net intracellular replication in J774.2 macrophage-like cells (bimA, boaB, bpaC and bpaE). A single mutant (bpaC) was identified that exhibited significantly reduced serum survival compared to wild-type. The bpaC mutant, which demonstrated attenuation for virulence and net intracellular replication, was sensitive to complement-mediated killing via the classical and/or lectin pathway. Serum resistance was rescued by in trans complementation. Subsequently, we expressed recombinant proteins of the passenger domain of four predicted autotransporters representing each of the phenotypic groups identified: those attenuated for virulence (BcaA), those attenuated for virulence and net intracellular replication (BpaE), the BpaC mutant with defects in virulence, net intracellular replication and serum resistance and those displaying wild-type phenotypes (BatA). Only BcaA and BpaE elicited a strong IFN-γ response in a restimulation assay using whole blood from seropositive donors and were recognised by seropositive human sera from the endemic area. To conclude, several predicted autotransporters contribute to B. pseudomallei virulence and BpaC may do so by conferring resistance against complement-mediated killing.
Liu, Guangjin; Zhang, Wei; Liu, Yongjie; Yao, Huochun; Lu, Chengping; Xu, Pao
2014-10-26
Since 2009, large-scale Streptococcus agalactiae infections have broken out in cultured tilapia farms in China, resulting in considerable economic losses. Screening of the surface proteins is required to identify virulence factors or protective antigens involved in piscine S.agalactiae infections in tilapia. Pre-absorbed immunoproteomics method (PAIM) is a useful method previously established in our laboratory for identifying bacterial surface proteins. A serine-rich repeat protein family 1 (Srr-1), designated XF, was identified by PAIM in piscine S. agalactiae isolate GD201008-001. To investigate the role of XF in the pathogenesis of piscine S. agalactiae, an isogenic xf mutant strain (Δxf) and a complemented strain (CΔxf) were successfully constructed. The Δxf mutant and CΔxf showed no significant differences in growth characteristics and adherence to HEp-2 cells compared with the wild-type strain. However the 50% lethal dose of Δxf was increased (4-fold) compared with that of the parental strain in a zebrafish infection model. The findings demonstrated that XF is a virulence-related, highly immunoreactive surface protein and is involved in the pathogenicity of S. agalactiae infections in fish.
The Bordetella bhu Locus Is Required for Heme Iron Utilization
Vanderpool, Carin K.; Armstrong, Sandra K.
2001-01-01
Bordetella pertussis and Bordetella bronchiseptica are capable of obtaining iron from hemin and hemoglobin. Genes encoding a putative bacterial heme iron acquisition system (bhu, for Bordetella heme utilization) were identified in a B. pertussis genomic sequence database, and the corresponding DNA was isolated from a virulent strain of B. pertussis. A B. pertussis bhuR mutant, predicted to lack the heme outer membrane receptor, was generated by allelic exchange. In contrast to the wild-type strain, bhuR mutant PM5 was incapable of acquiring iron from hemin and hemoglobin; genetic complementation of PM5 with the cloned bhuRSTUV genes restored heme utilization to wild-type levels. In parallel studies, B. bronchiseptica bhu sequences were also identified and a B. bronchiseptica bhuR mutant was constructed and confirmed to be defective in heme iron acquisition. The wild-type B. bronchiseptica parent strain grown under low-iron conditions produced the presumptive BhuR protein, which was absent in the bhuR mutant. Furthermore, production of BhuR by iron-starved B. bronchiseptica was markedly enhanced by culture in hemin-supplemented medium, suggesting that these organisms sense and respond to heme in the environment. Analysis of the genetic region upstream of the bhu cluster identified open reading frames predicted to encode homologs of the Escherichia coli ferric citrate uptake regulators FecI and FecR. These putative Bordetella regulators may mediate heme-responsive positive transcriptional control of the bhu genes. PMID:11418569
Fields, Joshua A; Li, Jiaqi; Gulbronson, Connor J; Hendrixson, David R; Thompson, Stuart A
2016-01-01
Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5' end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis.
Fields, Joshua A.; Li, Jiaqi; Gulbronson, Connor J.; Hendrixson, David R.
2016-01-01
Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5’ end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis. PMID:27257952
Ramos, Laura S.; Lehman, Brian L.; Peter, Kari A.
2014-01-01
Fire blight is caused by Erwinia amylovora and is the most destructive bacterial disease of apples and pears worldwide. In this study, we found that E. amylovora argD(1000)::Tn5, an argD Tn5 transposon mutant that has the Tn5 transposon inserted after nucleotide 999 in the argD gene-coding region, was an arginine auxotroph that did not cause fire blight in apple and had reduced virulence in immature pear fruits. The E. amylovora argD gene encodes a predicted N-acetylornithine aminotransferase enzyme, which is involved in the production of the amino acid arginine. A plasmid-borne copy of the wild-type argD gene complemented both the nonpathogenic and the arginine auxotrophic phenotypes of the argD(1000)::Tn5 mutant. However, even when mixed with virulent E. amylovora cells and inoculated onto immature apple fruit, the argD(1000)::Tn5 mutant still failed to grow, while the virulent strain grew and caused disease. Furthermore, the pCR2.1-argD complementation plasmid was stably maintained in the argD(1000)::Tn5 mutant growing in host tissues without any antibiotic selection. Therefore, the pCR2.1-argD complementation plasmid could be useful for the expression of genes, markers, and reporters in E. amylovora growing in planta, without concern about losing the plasmid over time. The ArgD protein cannot be considered an E. amylovora virulence factor because the argD(1000)::Tn5 mutant was auxotrophic and had a primary metabolism defect. Nevertheless, these results are informative about the parasitic nature of the fire blight disease interaction, since they indicate that E. amylovora cannot obtain sufficient arginine from apple and pear fruit tissues or from apple vegetative tissues, either at the beginning of the infection process or after the infection has progressed to an advanced state. PMID:25172854
Ramos, Laura S; Lehman, Brian L; Peter, Kari A; McNellis, Timothy W
2014-11-01
Fire blight is caused by Erwinia amylovora and is the most destructive bacterial disease of apples and pears worldwide. In this study, we found that E. amylovora argD(1000)::Tn5, an argD Tn5 transposon mutant that has the Tn5 transposon inserted after nucleotide 999 in the argD gene-coding region, was an arginine auxotroph that did not cause fire blight in apple and had reduced virulence in immature pear fruits. The E. amylovora argD gene encodes a predicted N-acetylornithine aminotransferase enzyme, which is involved in the production of the amino acid arginine. A plasmid-borne copy of the wild-type argD gene complemented both the nonpathogenic and the arginine auxotrophic phenotypes of the argD(1000)::Tn5 mutant. However, even when mixed with virulent E. amylovora cells and inoculated onto immature apple fruit, the argD(1000)::Tn5 mutant still failed to grow, while the virulent strain grew and caused disease. Furthermore, the pCR2.1-argD complementation plasmid was stably maintained in the argD(1000)::Tn5 mutant growing in host tissues without any antibiotic selection. Therefore, the pCR2.1-argD complementation plasmid could be useful for the expression of genes, markers, and reporters in E. amylovora growing in planta, without concern about losing the plasmid over time. The ArgD protein cannot be considered an E. amylovora virulence factor because the argD(1000)::Tn5 mutant was auxotrophic and had a primary metabolism defect. Nevertheless, these results are informative about the parasitic nature of the fire blight disease interaction, since they indicate that E. amylovora cannot obtain sufficient arginine from apple and pear fruit tissues or from apple vegetative tissues, either at the beginning of the infection process or after the infection has progressed to an advanced state. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius
Wagner, Michaela; van Wolferen, Marleen; Wagner, Alexander; Lassak, Kerstin; Meyer, Benjamin H.; Reimann, Julia; Albers, Sonja-Verena
2012-01-01
For reverse genetic approaches inactivation or selective modification of genes are required to elucidate their putative function. Sulfolobus acidocaldarius is a thermoacidophilic Crenarchaeon which grows optimally at 76°C and pH 3. As many antibiotics do not withstand these conditions the development of a genetic system in this organism is dependent on auxotrophies. Therefore we constructed a pyrE deletion mutant of S. acidocaldarius wild type strain DSM639 missing 322 bp called MW001. Using this strain as the starting point, we describe here different methods using single as well as double crossover events to obtain markerless deletion mutants, tag genes genomically and ectopically integrate foreign DNA into MW001. These methods enable us to construct single, double, and triple deletions strains that can still be complemented with the pRN1 based expression vector. Taken together we have developed a versatile and robust genetic tool box for the crenarchaeote S. acidocaldarius that will promote the study of unknown gene functions in this organism and makes it a suitable host for synthetic biology approaches. PMID:22707949
Han, Shu; Song, Ping; Ren, Ting; Huang, Xunduan; Cao, Cheng; Zhang, Buchang
2011-08-01
SACE_7040 is presumed to be a member of the TetR family of transcriptional regulators in Saccharopolyspora erythraea, but its biological function is unknown. It was shown that the SACE_7040 gene knockout mutant formed aerial mycelium earlier than its original strain, and this phenotype could be restored by complementation of a single copy of SACE_7040 gene, demonstrating that SACE_7040 is an important regulator of the morphological differentiation of Sac. erythraea. When SACE_7040 gene was disrupted in the bldD mutant, we intriguingly found that the defect in aerial development exhibited by the bldD mutant could be overcome, suggesting a crosstalk between SACE_7040 and BldD in Sac. erythraea morphogenesis. These findings provide novel insights toward the Sac. erythraea developmental biology.
In vivo induced antigenic determinants of Actinobacillus actinomycetemcomitans.
Cao, Sam Linsen; Progulske-Fox, Ann; Hillman, Jeffrey D; Handfield, Martin
2004-08-01
Actinobacillus actinomycetemcomitans is a Gram-negative capnophilic rod and the etiological agent of localized aggressive periodontitis. The genome-wide survey of A. actinomycetemcomitans using in vivo induced antigen technology (IVIAT) has previously resulted in the discovery of antigenic determinants expressed specifically in diseased patients. The present study evaluated the potential of these antigens as putative disease markers, and investigating their contribution to the pathogenesis of the microorganism. Sera from patients had a significantly greater antibody titer than sera from healthy controls against six antigens, which supports the in vivo expression of these antigens, and suggests their usefulness as disease markers. A. actinomycetemcomitans invasion of epithelium-derived HeLa cells resulted in the induction of all three genes tested, as evidenced by real-time PCR. Isogenic mutants of these three genes were constructed and the adhesion and intracellular survival of the mutants was assayed in a competition assay with the wild-type strain. A significant defect in the intracellular survival of two of these mutant strains (orf1402 and orf859) was found. This defect could not be attributed to an adhesion defect. In contrast, a mutation in vapA, a homologue of a novel putative transcriptional regulator, out-competed the wild-type strain in the same assay. The virulent phenotype was restored for a mutant strain in orf859 upon complementation. This data provided new insight into the pathogenic personality of A. actinomycetemcomitans in vivo and supported the use of HeLa cells as a valid in vitro host-pathogen interactions model for that microorganism. IVIAT is applicable to most pathogens and will undoubtedly lead to the discovery of novel therapies, antibiotics and diagnostic tools.
An, Jang-Hyun; Kurokawa, Kenji; Jung, Dong-Jun; Kim, Min-Jung; Kim, Chan-Hee; Fujimoto, Yukari; Fukase, Koichi; Coggeshall, K. Mark; Lee, Bok Luel
2014-01-01
The human pathogen Staphylococcus aureus is responsible for many community-acquired and hospital-associated infections and is associated with high mortality. Concern over the emergence of multidrug-resistant strains has renewed interest in the elucidation of host mechanisms that defend against S. aureus infection. We recently demonstrated that human serum mannose-binding lectin (MBL) binds to S. aureus wall teichoic acid (WTA), a cell wall glycopolymer, a discovery that prompted further screening to identify additional serum proteins that recognize S. aureus cell wall components. In this report, we incubated human serum with 10 different S. aureus mutants and determined that serum amyloid P component (SAP) bound specifically to a WTA-deficient S. aureus ΔtagO mutant, but not to tagO-complemented, WTA-expressing cells. Biochemical characterization revealed that SAP recognizes bacterial peptidoglycan as a ligand and that WTA inhibits this interaction. Although SAP binding to peptidoglycan was not observed to induce complement activation, SAP-bound ΔtagO cells were phagocytosed by human polymorphonuclear leukocytes in an Fcγ receptor-dependent manner. These results indicate that SAP functions as a host defense factor, similar to other peptidoglycan recognition proteins and nucleotide-binding oligomerization domain (NOD)-like receptors. PMID:23966633
Honda-Ogawa, Mariko; Sumitomo, Tomoko; Mori, Yasushi; Hamd, Dalia Talat; Ogawa, Taiji; Yamaguchi, Masaya; Nakata, Masanobu; Kawabata, Shigetada
2017-03-10
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes , PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (Δ pepO ) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by Δ pepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with Δ pepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Shak, Joshua R.; Canizalez-Roman, Adrian
2015-01-01
Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms. PMID:25824838
Impact of pe_pgrs33 Gene Polymorphisms on Mycobacterium tuberculosis Infection and Pathogenesis.
Camassa, Serena; Palucci, Ivana; Iantomasi, Raffaella; Cubeddu, Tiziana; Minerva, Mariachiara; De Maio, Flavio; Jouny, Samuel; Petruccioli, Elisa; Goletti, Delia; Ria, Francesco; Sali, Michela; Sanguinetti, Maurizio; Manganelli, Riccardo; Rocca, Stefano; Brodin, Priscille; Delogu, Giovanni
2017-01-01
PE_PGRS33 is a surface-exposed protein of Mycobacterium tuberculosis ( Mtb ) which exerts its role in macrophages entry and immunomodulation. In this study, we aimed to investigate the polymorphisms in the pe_pgrs33 gene of Mtb clinical isolates and evaluate their impact on protein functions. We sequenced pe_pgrs33 in a collection of 135 clinical strains, genotyped by 15-loci MIRU-VNTR and spoligotyping and belonging to the Mtb complex (MTBC). Overall, an association between pe_pgrs33 alleles and MTBC genotypes was observed and a dN/dS ratio of 0.64 was obtained, suggesting that a purifying selective pressure is acting on pe_pgrs33 against deleterious SNPs. Among a total of 19 pe_pgrs33 alleles identified in this study, 5 were cloned and used to complement the pe_pgrs33 knock-out mutant strain of Mtb H37Rv ( Mtb Δ33) to assess the functional impact of the respective polymorphisms in in vitro infections of primary macrophages. In human monocyte-derived macrophages (MDMs) infection, large in-frame and frameshift mutations were unable to restore the phenotype of Mtb H37Rv, impairing the cell entry capacity of Mtb , but neither its intracellular replication rate nor its immunomodulatory properties. In vivo studies performed in the murine model of tuberculosis (TB) demonstrated that the Mtb Δ33 mutant strain was not impaired in the ability to infect and replicate in the lung tissue compared to the parental strain. Interestingly, Mtb Δ33 showed an enhanced virulence during the chronic steps of infection compared to Mtb H37Rv. Similarly, the complementation of Mtb Δ33 with a frameshift allele also resulted in a Mtb strain capable of causing a surprisingly enhanced tissue damage in murine lungs, during the chronic steps of infection. Together, these results further support the role of PE_PGRS33 in the pathogenesis and virulence of Mtb .
Huang, Yannan; Ells, Timothy C; Truelstrup Hansen, Lisbeth
2015-04-01
This research aimed to determine whether the SigB (σ(B)) regulon and osmolytes impact the survival of the foodborne pathogen, Listeria monocytogenes, during desiccation in simulated food soils with varying salt and nutrient contents on food grade stainless steel (SS) surfaces. L. monocytogenes 568 (Lm568, serotype 1/2a), its isogenic sigB mutant (ΔsigB) and the back-complemented ΔsigB were desiccated in BHI, TSB with 1% glucose (TSB-glu), peptone physiological saline (PPS) and minimal media (MM) for 21 days at 43% relative humidity (RH) and 15 °C on SS. The effect of food related osmolytes (proline, betaine and carnitine) on desiccation survival was studied by (a) pre-culturing strains in MM with an osmolyte followed by desiccation in MM and (b) by desiccating strains in MM with an osmolyte. Desiccation survival of L. monocytogenes was positively correlated to the nutrient and osmolyte concentrations in the desiccation substrates. Initial Lm568 levels of 8 Log(CFU/cm(2)) decreased by 0.9 Log(CFU/cm(2)) in BHI and 1.1-2.9 Log(CFU/cm(2)) in TSB-glu, PPS and MM after 21 days. Comparatively, the initial survival of ΔsigB was reduced in PS and MM, while no differences were observed among the three strains in BHI and TSB-glu. Pre-culture in osmolyte containing MM enhanced (p < 0.05) desiccation survival of all strains. Desiccation in osmolyte-containing MM improved desiccation survival of all strains, albeit the protection was less than that observed after pre-culture with the osmolytes. Complementation of the ΔsigB mutant restored the wildtype phenotype. In conclusion, this work shows the protective effect of osmolytes in desiccation survival of L. monocytogenes, while the σ(B) regulon only improved the initial survival in nutrient and osmolyte poor environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hubert, Kerstin; Pawlik, Marie-Christin; Claus, Heike; Jarva, Hanna; Meri, Seppo; Vogel, Ulrich
2012-01-01
Neisseria meningitidis employs polysaccharides and outer membrane proteins to cope with human serum complement attack. To screen for factors influencing serum resistance, an assay was developed based on a colorimetric serum bactericidal assay. The screening used a genetically modified sequence type (ST)-41/44 clonal complex (cc) strain lacking LPS sialylation, polysaccharide capsule, the factor H binding protein (fHbp) and MutS, a protein of the DNA repair mechanism. After killing of >99.9% of the bacterial cells by serum treatment, the colorimetric assay was used to screen 1000 colonies, of which 35 showed enhanced serum resistance. Three mutant classes were identified. In the first class of mutants, enhanced expression of Opc was identified. Opc expression was associated with vitronectin binding and reduced membrane attack complex deposition confirming recent observations. Lipopolysaccharide (LPS) immunotype switch from immunotype L3 to L8/L1 by lgtA and lgtC phase variation represented the second class. Isogenic mutant analysis demonstrated that in ST-41/44 cc strains the L8/L1 immunotype was more serum resistant than the L3 immunotype. Consecutive analysis revealed that the immunotypes L8 and L1 were frequently observed in ST-41/44 cc isolates from both carriage and disease. Immunotype switch to L8/L1 is therefore suggested to contribute to the adaptive capacity of this meningococcal lineage. The third mutant class displayed a pilE allelic exchange associated with enhanced autoaggregation. The mutation of the C terminal hypervariable region D of PilE included a residue previously associated with increased pilus bundle formation. We suggest that autoaggregation reduced the surface area accessible to serum complement and protected from killing. The study highlights the ability of meningococci to adapt to environmental stress by phase variation and intrachromosomal recombination affecting subcapsular antigens.
Hubert, Kerstin; Pawlik, Marie-Christin; Claus, Heike; Jarva, Hanna; Meri, Seppo; Vogel, Ulrich
2012-01-01
Neisseria meningitidis employs polysaccharides and outer membrane proteins to cope with human serum complement attack. To screen for factors influencing serum resistance, an assay was developed based on a colorimetric serum bactericidal assay. The screening used a genetically modified sequence type (ST)-41/44 clonal complex (cc) strain lacking LPS sialylation, polysaccharide capsule, the factor H binding protein (fHbp) and MutS, a protein of the DNA repair mechanism. After killing of >99.9% of the bacterial cells by serum treatment, the colorimetric assay was used to screen 1000 colonies, of which 35 showed enhanced serum resistance. Three mutant classes were identified. In the first class of mutants, enhanced expression of Opc was identified. Opc expression was associated with vitronectin binding and reduced membrane attack complex deposition confirming recent observations. Lipopolysaccharide (LPS) immunotype switch from immunotype L3 to L8/L1 by lgtA and lgtC phase variation represented the second class. Isogenic mutant analysis demonstrated that in ST-41/44 cc strains the L8/L1 immunotype was more serum resistant than the L3 immunotype. Consecutive analysis revealed that the immunotypes L8 and L1 were frequently observed in ST-41/44 cc isolates from both carriage and disease. Immunotype switch to L8/L1 is therefore suggested to contribute to the adaptive capacity of this meningococcal lineage. The third mutant class displayed a pilE allelic exchange associated with enhanced autoaggregation. The mutation of the C terminal hypervariable region D of PilE included a residue previously associated with increased pilus bundle formation. We suggest that autoaggregation reduced the surface area accessible to serum complement and protected from killing. The study highlights the ability of meningococci to adapt to environmental stress by phase variation and intrachromosomal recombination affecting subcapsular antigens. PMID:23028802
Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa.
de Chial, Magaly; Ghysels, Bart; Beatson, Scott A; Geoffroy, Valérie; Meyer, Jean Marie; Pattery, Theresa; Baysse, Christine; Chablain, Patrice; Parsons, Yasmin N; Winstanley, Craig; Cordwell, Stuart J; Cornelis, Pierre
2003-04-01
Pseudomonas aeruginosa produces, under conditions of iron limitation, a high-affinity siderophore, pyoverdine (PVD), which is recognized at the level of the outer membrane by a specific TonB-dependent receptor, FpvA. So far, for P. aeruginosa, three different PVDs, differing in their peptide chain, have been described (types I-III), but only the FpvA receptor for type I is known. Two PVD-producing P. aeruginosa strains, one type II and one type III, were mutagenized by a mini-TnphoA3 transposon. In each case, one mutant unable to grow in the presence of the strong iron chelator ethylenediaminedihydroxyphenylacetic acid (EDDHA) and the cognate PVD was selected. The first mutant, which had an insertion in the pvdE gene, upstream of fpvA, was unable to take up type II PVD and showed resistance to pyocin S3, which is known to use type II FpvA as receptor. The second mutant was unable to take up type III PVD and had the transposon insertion in fpvA. Cosmid libraries of the respective type II and type III PVD wild-type strains were constructed and screened for clones restoring the capacity to grow in the presence of PVD. From the respective complementing genomic fragments, type II and type III fpvA sequences were determined. When in trans, type II and type III fpvA restored PVD production, uptake, growth in the presence of EDDHA and, in the case of type II fpvA, pyocin S3 sensitivity. Complementation of fpvA mutants obtained by allelic exchange was achieved by the presence of cognate fpvA in trans. All three receptors posses an N-terminal extension of about 70 amino acids, similar to FecA of Escherichia coli, but only FpvAI has a TAT export sequence at its N-terminal end.
Doherty, Neil; Holden, Matthew T. G.; Qazi, Saara N.; Williams, Paul; Winzer, Klaus
2006-01-01
The function of AI-2 in many bacteria and the physiological role of LuxS, the enzyme responsible for its production, remain matters of debate. Here, we show that in Staphylococcus aureus the luxS gene forms a monocistronic transcriptional unit under the control of a σ70-dependent promoter. The gene was transcribed throughout growth under a variety of conditions, including intracellular growth in MAC-T cells. AI-2 was produced in rich media under aerobic and anaerobic conditions, peaking during the transition to stationary phase, but was hardly detectable in a sulfur-limited defined medium. In the presence of glucose or under anaerobic conditions, cultures retained considerable AI-2 activity after entry into stationary phase. Inactivation of luxS in various S. aureus strains did not affect virulence-associated traits, such as production of hemolysins and extracellular proteases, biofilm formation, and the agr signaling system. Conversely, AI-2 production remained unchanged in an agr mutant. However, luxS mutants grown in a sulfur-limited defined medium exhibited a growth defect. When grown together with the wild type in mixed culture, luxS mutants of various S. aureus strains showed reduced ability to compete for growth under these conditions. In contrast, a complemented luxS mutant grew as well as the parent strain, suggesting that the observed growth defect was of an intracellular nature and had not been caused by either second-site mutations or the lack of a diffusible factor. However, the LuxS/AI-2 system does not appear to contribute to the overall fitness of S. aureus RN6390B during intracellular growth in epithelial cells: the wild type and a luxS mutant showed very similar growth patterns after their internalization by MAC-T cells. PMID:16585750
Peng, Liang; Jiang, Qiao; Pan, Jia-Yun; Deng, Cong; Yu, Jing-Yi; Wu, Xiao-Man; Huang, Sheng-He; Deng, Xiao-Yan
2016-04-01
Proteus mirabilis (P. mirabilis), a gram-negative enteric bacterium, frequently causes urinary tract infections. Many virulence factors of uropathogenic P. mirabilis have been identified, including urease, flagella, hemolysin and fimbriae. However, the functions of polyphosphate kinase (PPK), which are related to the pathogenicity of many bacteria, remain entirely unknown in P. mirabilis. In this study, a ppk gene encoding the PPK insertional mutant in P. mirabilis strain HI4320 was constructed, and its biological functions were examined. The results of survival studies demonstrated that the ppk mutant was deficient in resistance to oxidative, hyperosmotic and heat stress. The swarming and biofilm formation abilities of P. mirabilis were also attenuated after the ppk interruption. In vitro and in vivo experiments suggested that ppk was required for P. mirabilis to invade the bladder. The negative phenotypes of the ppk mutant could be restored by ppk gene complementation. Furthermore, two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry were used to analyze the proteomes of the wild-type strain and the ppk mutant. Compared with the wild-type strain, seven proteins including TonB-dependent receptor, universal stress protein G, major mannose-resistant/Proteus-like fimbrial protein (MR/P fimbriae), heat shock protein, flagellar capping protein, putative membrane protein and multidrug efflux protein were down-regulated, and four proteins including exported peptidase, repressor protein for FtsI, FKBP-type peptidyl-prolyl cis-trans isomerase and phosphotransferase were up-regulated in the ppk mutant. As a whole, these results indicate that PPK is an important regulator and plays a crucial role in stress tolerance and virulence in uropathogenic P. mirabilis.
Xu, Ying; Xu, Tingting; Wang, Bin; Dong, Xue; Sheng, Aibo; Zhang, Xiao-Hua
2014-04-01
Edwardsiella tarda, a Gram-negative bacterium of the family Enterobacteriaceae, is the causative agent of the systemic disease edwardsiellosis, which is a major problem in aquaculture industry worldwide. Many virulence-related genes in E. tarda have been investigated, but the Rcs phosphorelay, a two-component pathway, which regulates several cell-surface-associated structures related to invasion and survival in host cells, has not yet been thoroughly studied. In the present study, an rcsB in-frame deletion mutant ΔrcsB was constructed through double-crossover allelic exchange. To complement the rcsB mutation, the ΔrcsB (pACYC184K-rcsB) mutant was constructed by transformation of a low-copy plasmid carrying the intact rcsB into the ΔrcsB mutant of E. tarda. Several virulence-associated characters of the mutants and wild-type strain were tested. Compared with wild-type strain EIB202, biofilm formation decreased significantly in ΔrcsB, while ΔrcsB (pACYC184K-rcsB) recovered the phenotype to some extent. In addition, the capacity for autoagglutination, the percentage of adherence and internalization to Epithelioma papulosum cyprini cells and lethality toward zebrafish embryos significantly increased in ΔrcsB. All these phenomena displayed by mutant ΔrcsB showed a certain degree of recovery, though incomplete, in strain ΔrcsB (pACYC184K-rcsB). Present results indicate that rcsB is involved in regulating the gene expression of virulence factors in E. tarda, as shown in other members of Enterobacteriaceae. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav
2015-01-01
Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
SMU.940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans.
Senpuku, Hidenobu; Yonezawa, Hideo; Yoneda, Saori; Suzuki, Itaru; Nagasawa, Ryo; Narisawa, Naoki
2018-02-01
The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence-stimulating peptide. Eight competence-stimulating peptide-dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran-dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild-type. GbpC is known to be involved in the dextran-dependent aggregation of S. mutans. An SMU.940-gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran-dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran-dependent aggregation and biofilm formation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Qian, Yilei; Tabita, F. Robert
1998-01-01
In a ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO)-deficient mutant of Rhodobacter sphaeroides, strain 16PHC, nitrogenase activity was derepressed in the presence of ammonia under photoheterotrophic growth conditions. Previous studies also showed that reintroduction of a functional RubisCO and Calvin-Benson-Bassham (CBB) pathway suppressed the deregulation of nitrogenase synthesis in this strain. In this study, the derepression of nitrogenase synthesis in the presence of ammonia in strain 16PHC was further explored by using a glnB::lacZ fusion, since the product of the glnB gene is known to have a negative effect on ammonia-regulated nif control. It was found that glnB expression was repressed in strain 16PHC under photoheterotrophic growth conditions with either ammonia or glutamate as the nitrogen source; glutamine synthetase (GS) levels were also affected in this strain. However, when cells regained a functional CBB pathway by trans complementation of the deleted genes, wild-type levels of GS and glnB expression were restored. Furthermore, a glnB-like gene, glnK, was isolated from this organism, and its expression was found to be under tight nitrogen control in the wild type. Surprisingly, glnK expression was found to be derepressed in strain 16PHC under photoheterotrophic conditions in the presence of ammonia. PMID:9721307
Brown, Darby G.; Swanson, Jill K.; Allen, Caitilyn
2007-01-01
Multidrug efflux pumps (MDRs) are hypothesized to protect pathogenic bacteria from toxic host defense compounds. We created mutations in the Ralstonia solanacearum acrA and dinF genes, which encode putative MDRs in the broad-host-range plant pathogen. Both mutations reduced the ability of R. solanacearum to grow in the presence of various toxic compounds, including antibiotics, phytoalexins, and detergents. Both acrAB and dinF mutants were significantly less virulent on the tomato plant than the wild-type strain. Complementation restored near-wild-type levels of virulence to both mutants. Addition of either dinF or acrAB to Escherichia coli MDR mutants KAM3 and KAM32 restored the resistance of these strains to several toxins, demonstrating that the R. solanacearum genes can function heterologously to complement known MDR mutations. Toxic and DNA-damaging compounds induced expression of acrA and dinF, as did growth in both susceptible and resistant tomato plants. Carbon limitation also increased expression of acrA and dinF, while the stress-related sigma factor RpoS was required at a high cell density (>107 CFU/ml) to obtain wild-type levels of acrA expression both in minimal medium and in planta. The type III secretion system regulator HrpB negatively regulated dinF expression in culture at high cell densities. Together, these results show that acrAB and dinF encode MDRs in R. solanacearum and that they contribute to the overall aggressiveness of this phytopathogen, probably by protecting the bacterium from the toxic effects of host antimicrobial compounds. PMID:17337552
Brown, Darby G; Swanson, Jill K; Allen, Caitilyn
2007-05-01
Multidrug efflux pumps (MDRs) are hypothesized to protect pathogenic bacteria from toxic host defense compounds. We created mutations in the Ralstonia solanacearum acrA and dinF genes, which encode putative MDRs in the broad-host-range plant pathogen. Both mutations reduced the ability of R. solanacearum to grow in the presence of various toxic compounds, including antibiotics, phytoalexins, and detergents. Both acrAB and dinF mutants were significantly less virulent on the tomato plant than the wild-type strain. Complementation restored near-wild-type levels of virulence to both mutants. Addition of either dinF or acrAB to Escherichia coli MDR mutants KAM3 and KAM32 restored the resistance of these strains to several toxins, demonstrating that the R. solanacearum genes can function heterologously to complement known MDR mutations. Toxic and DNA-damaging compounds induced expression of acrA and dinF, as did growth in both susceptible and resistant tomato plants. Carbon limitation also increased expression of acrA and dinF, while the stress-related sigma factor RpoS was required at a high cell density (>10(7) CFU/ml) to obtain wild-type levels of acrA expression both in minimal medium and in planta. The type III secretion system regulator HrpB negatively regulated dinF expression in culture at high cell densities. Together, these results show that acrAB and dinF encode MDRs in R. solanacearum and that they contribute to the overall aggressiveness of this phytopathogen, probably by protecting the bacterium from the toxic effects of host antimicrobial compounds.
Microinjection of cytoplasm as a test of complementation in Paramecium
1982-01-01
Mutants in Paramecium tetraurelia, unable to generate action potentials, have been isolated as cells which show no backward swimming in response to ionic stimulation. These "pawn" mutants belong to at least three complementation groups designated pwA, pwB, and pwC. We have found that microinjection of cytoplasm from a wild-type donor into a pawn recipient of any of the three complementation groups restores the ability of the pawn to generate action potentials and hence swim backward. In addition, the cytoplasm from a pawn cannot restore a recipient of the same complementation group, but that from a pawn of a different group can. Electrophysiological analysis had demonstrated that the restoration of backward swimming is not due to a simple addition of ions but represents a profound change in the excitable membrane of the recipient pawn cells. Using known pawn mutants and those which had previously been unclassified, we have been able to establish a perfect concordance of genetic complementation and complementation by cytoplasmic transfer through microinjection. This method has been used to classify pawn mutants that are sterile or hard- to-mate and to examine the ability of cytoplasms from different species of ciliated protozoa to restore the ability to swim backward in the pawn mutants of P. tetraurelia. A cell homogenate has also been fractionated by centrifugation to further purify the active components. These results demonstrate that transfer of cytoplasm between cells by microinjection can be a valid and systematic method to classify mutants. This test is simpler to perform than the genetic complementation test and can be used under favorable conditions in mutants that are sterile and in cells of different species. PMID:7061597
Li, Miao; Cai, Ru-Jian; Li, Chun-Ling; Song, Shuai; Li, Yan; Jiang, Zhi-Yong; Yang, Dong-Xia
2017-01-01
Streptococcus suis serotype 2 (SS2) is a major porcine and human pathogen which causes arthritis, meningitis, and septicemia. Streptococcus suis nuclease A (SsnA) is a recently discovered deoxyribonuclease (DNase), which has been demonstrated to contribute to escape killing in neutrophil extracellular traps (NETs). To further determine the effects of ssnA on virulence, the ssnA deletion mutant (ΔssnA) and its complemented strain (C-ΔssnA) were constructed. The ability of ΔssnA mutant to interact with human laryngeal epithelial cell (Hep-2) was evaluated and it exhibited dramatically decreased ability to adhere to and invade Hep-2 cells. This mutation was found to exhibit significant attenuation of virulence when evaluated in CD1 mice, suggesting ssnA plays a critical role in the pathogenesis of SS2. Finally, we found that immunization with the ΔssnA mutant triggered both antibody responses and cell-mediated immunity, and conferred 80% protection against virulent SS2 challenge in mice. Taken together, our results suggest that ΔssnA represents an attractive candidate for designing an attenuated live vaccine against SS2.
Deng, Ying; Nagachar, Nivedita; Xiao, Chaowen; Tien, Ming
2013-01-01
The acs operon of Gluconacetobacter is thought to encode AcsA, AcsB, AcsC, and AcsD proteins that constitute the cellulose synthase complex, required for the synthesis and secretion of crystalline cellulose microfibrils. A few other genes have been shown to be involved in this process, but their precise role is unclear. We report here the use of Tn5 transposon insertion mutagenesis to identify and characterize six non-cellulose-producing (Cel−) mutants of Gluconacetobacter hansenii ATCC 23769. The genes disrupted were acsA, acsC, ccpAx (encoding cellulose-complementing protein [the subscript “Ax” indicates genes from organisms formerly classified as Acetobacter xylinum]), dgc1 (encoding guanylate dicyclase), and crp-fnr (encoding a cyclic AMP receptor protein/fumarate nitrate reductase transcriptional regulator). Protein blot analysis revealed that (i) AcsB and AcsC were absent in the acsA mutant, (ii) the levels of AcsB and AcsC were significantly reduced in the ccpAx mutant, and (iii) the level of AcsD was not affected in any of the Cel− mutants. Promoter analysis showed that the acs operon does not include acsD, unlike the organization of the acs operon of several strains of closely related Gluconacetobacter xylinus. Complementation experiments confirmed that the gene disrupted in each Cel− mutant was responsible for the phenotype. Quantitative real-time PCR and protein blotting results suggest that the transcription of bglAx (encoding β-glucosidase and located immediately downstream from acsD) was strongly dependent on Crp/Fnr. A bglAx knockout mutant, generated via homologous recombination, produced only ∼16% of the wild-type cellulose level. Since the crp-fnr mutant did not produce any cellulose, Crp/Fnr may regulate the expression of other gene(s) involved in cellulose biosynthesis. PMID:24013627
Alteration in the contents of unsaturated fatty acids in dnaA mutants of Escherichia coli.
Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T
1998-04-01
DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, has a high affinity for acidic phospholipids containing unsaturated fatty acids. We have examined here the fatty acid composition of phospholipids in dnaA mutants. A temperature-sensitive dnaA46 mutant showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) at 42 degrees C (non-permissive temperature) and at 37 degrees C (semi-permissive temperature), but not at 28 degrees C (permissive temperature), compared with the wild-type strain. Plasmid complementation analysis revealed that the dnaA46 mutation is responsible for the phenotype. Other temperature-sensitive dnaA mutants showed similar results. On the other hand, a cold-sensitive dnaAcos mutant, in which over-initiation of DNA replication occurs at low temperature (28 degrees C), showed a higher level of unsaturation of fatty acids at 28 degrees C. Based on these observations, we discuss the role of phospholipids in the regulation of the activity of DnaA protein.
Isolation and Characterization of Sex-Linked Female-Sterile Mutants in DROSOPHILA MELANOGASTER
Gans, Madeleine; Audit, Claudie; Masson, Michele
1975-01-01
The purpose of the experiments described was to identify X chromosome genes functioning mainly or exclusively during oogenesis. Two mutagenesis experiments were carried out with ethyl methane sulfonate. Following treatment inducing 60% lethals, 9% of the treated X chromosomes carried a female sterility mutation which did not otherwise seriously affect viability. Among —95 isolated mutants, 19 were heat-sensitive and 5 cold-sensitive. The mutants have been classified as follows: I (16 mutants; 12 complementation groups): the females laid few or no eggs; the defect concerned either ovulation or oogenesis. II (37 mutants; 18 complementation groups): the female laid morphologically abnormal eggs, often with increased membrane permeability. III A (13 mutants; at least 8 complementation groups): the homozygous females were sterile if mated to mutant males; their progeny (homo- and hemizygous) died at a late embryonic stage (11 mutants), at the larval stage (1 mutant) or at the pupal stage (1 mutant). However fertility was partly restored by breeding to wild-type males as shown by survival of some heterozygous descendants. III B (29 mutants; 22 complementation groups): the fertility of the females was not restored by breeding to a wild-type male. Most of the eggs of 13 of the mutants died at a late stage of embryogenesis. The eggs of the others ceased development earlier or, perhaps, remained unfertilized. The distribution of the number of mutants per complementation group led to an estimation of a total of about 150 X-linked genes involved in female fertility. The females of three mutants, heat-sensitive and totally sterile at 29°, produced at a lower temperature descendants morphologically abnormal or deprived of germ cells. Three other mutants not described in detail showed a reduction in female fertility with many descendants lacking germ cells. A desirable mutant which was not recovered was one with normal fertile females producing descendants which, regardless of their genotype, bore specific morphological abnormalities. The value of the mutants isolated for analysis of the complex processes leading to egg formation and initiation of development is discussed. PMID:814037
Molecular and cellular characterisation of the zinc uptake (Znu) system of Nostoc punctiforme.
Hudek, Lee; Pearson, Leanne A; Michalczyk, Agnes; Neilan, Brett A; Ackland, M Leigh
2013-11-01
Metal homoeostasis in cyanobacteria is based on uptake and export systems that are controlled by their own regulators. This study characterises the zinc uptake (Znu) system in Nostoc punctiforme. The system was found to comprise of three subunits in an ACB operon: a Zn(2+)-binding protein (ZnuA18), a transmembrane domain (ZnuB) and an ATPase (ZnuC). These proteins are encoded within the znu operon regulated by a zinc uptake transcription repressor (Zur). Interestingly, a second Zn(2+)-binding protein (ZnuA08) was also identified at a distal genomic location. Interactions between components of the ZnuACB system were investigated using knockouts of the individual genes. The znuA08(-), znuA18(-), znuB(-) and znuC(-) mutants displayed overall reduced znuACB transcript levels, suggesting that all system components are required for normal expression of znu genes. Zinc uptake assays in the Zn(2+)-binding protein mutant strains showed that the disruption of znuA18 had a greater negative effect on zinc uptake than disruption of znuA08. Complementation studies in Escherichia coli indicated that both znuA08 and znuA18 were able to restore zinc uptake in a znuA(-) mutant, with znuA18 permitting the highest zinc uptake rate. The N. punctiforme zur was also able to complement the E. coli zur(-) mutant. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Feng, Saixiang; Xu, Chenggang; Yang, Kaijie; Wang, Haihong; Fan, Huiying; Liao, Ming
2017-01-01
In Haemophilus parasuis , the genes HAPS_0217 and HAPS_1695 are predicted to encode long-chain fatty acid-CoA ligases (FACSs). These proteins contain ATP/AMP signature motifs and FACS conserved motifs that are homologous to those in Escherichia coli FadD (EcFadD). In this study, we demonstrate that HAPS_0217 and HAPS_1695 can functionally replace EcFadD in the E. coli fadD mutant JW1794, and were thus designated fadD1 and fadD2 , respectively. An evaluation of kinetic parameters indicated that FadD1 and FadD2 have a substrate preference for long-chain fatty acids. Moreover, FadD2 exhibited substrate inhibition in the presence of high concentrations of oleic acid. Single mutants of each of the fadD genes were easily constructed, whereas double mutants were not. These results were further confirmed using genomic site-directed mutagenesis, which supported the idea that H. parasuis requires either fadD1 or fadD2 for survival. The fadD1 mutant exhibited slower growth than the wild-type strain SC096, and its complementation resulted in a restored phenotype. The wild-type strain did not grow on chemically defined medium without the addition of oleic acid, indicating that lipids are a vital nutrient for this bacterium. Additionally, strains with a disrupted fadD1 gene also exhibited increased sensitivity to quinolone antibiotics, including levofloxacin, enrofloxacin, ciprofloxacin and nalidixic acid.
Xie, Fang; Li, Gang; Zhang, Wanjiang; Zhang, Yanhe; Zhou, Long; Liu, Shuanghong; Liu, Siguo; Wang, Chunlai
2016-02-01
The outer membrane proteins of Actinobacillus pleuropneumoniae are mediators of infection, acting as targets for the host's defense system. The outer membrane lipoprotein VacJ is involved in serum resistance and intercellular spreading in several pathogenic bacteria. To investigate the role of VacJ in the pathogenicity of Actinobacillus pleuropneumoniae, the vacJ gene-deletion mutant MD12 ΔvacJ was constructed. The increased susceptibility to KCl, SDS plus EDTA, and several antibiotics in the MD12ΔvacJ mutant suggested that the stability of the outer membrane was impaired as a result of the mutation in the vacJ gene. The increased NPN fluorescence and significant cellular morphological variation in the MD12ΔvacJ mutant further demonstrated the crucial role of the VacJ lipoprotein in maintaining the outer membrane integrity of A. pleuropneumoniae. In addition, the MD12ΔvacJ mutant exhibited decreased survival from the serum and complement killing compared to the wild-type strain. Interestingly, the MD12ΔvacJ mutant showed reduced biofilm formation compared to the wild-type strain. To our knowledge, this is the first description of the VacJ lipoprotein contributing to bacterial biofilm formation. The data presented in this study illustrate the important role of the VacJ lipoprotein in the maintenance of cellular integrity, serum resistance, and biofilm formation in A. pleuropneumoniae. Copyright © 2015 Elsevier B.V. All rights reserved.
Bourai, Neema; Jacobs, William R; Narayanan, Sujatha
2012-02-01
Mycobacterium tuberculosis genome encodes several high and low molecular mass penicillin binding proteins. One such low molecular mass protein is DacB2 encoded by open reading frame Rv2911 of M. tuberculosis which is predicted to play a role in peptidoglycan synthesis. In this study we have tried to gain an insight into the role of this accessory cell division protein in mycobacterial physiology by performing overexpression and deletion studies. The overproduction of DacB2 in non-pathogenic, fast growing mycobacterium Mycobacterium smegmatis mc(2)155 resulted in reduced growth, an altered colony morphology, a defect in sliding motility and biofilm formation. A point mutant of DacB2 was made wherein the active site serine residue was mutated to cysteine to abolish the penicillin binding function of protein. The overexpression of mutant protein showed similar results indicating that the effects produced were independent of protein's penicillin binding function. The gene encoding DacB2 was deleted in M. tuberculosis by specialized transduction method. The deletion mutant showed reduced growth in Sauton's medium under acidic and low oxygen availability. The in vitro infection studies with THP-1 cells showed increased intracellular survival of dacB2 mutant compared to parent and complemented strains. The colony morphology and antibiotic sensitivity of mutant and wild-type strains were similar. Copyright © 2011 Elsevier Ltd. All rights reserved.
Isaza, Maria P; Duncan, Matthew S; Kaplan, Jeffrey B; Kachlany, Scott C
2008-08-01
Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans is a pathogen that causes localized aggressive periodontitis and extraoral infections including infective endocarditis. Recently, we reported that A. actinomycetemcomitans is beta-hemolytic on certain growth media due to the production of leukotoxin (LtxA). Based on this observation and our ability to generate random transposon insertions in A. actinomycetemcomitans, we developed and carried out a rapid screen for LtxA mutants. Using PCR, we mapped several of the mutations to genes that are known or predicted to be required for LtxA production, including ltxA, ltxB, ltxD, and tdeA. In addition, we identified an insertion in a gene previously not recognized to be involved in LtxA biosynthesis, ptsH. ptsH encodes the protein HPr, a phosphocarrier protein that is part of the sugar phosphotransferase system. HPr results in the phosphorylation of other proteins and ultimately in the activation of adenylate cyclase and cyclic AMP (cAMP) production. The ptsH mutant showed only partial hemolysis on blood agar and did not produce LtxA. The phenotype was complemented by supplying wild-type ptsH in trans, and real-time PCR analysis showed that the ptsH mutant produced approximately 10-fold less ltxA mRNA than the wild-type strain. The levels of cAMP in the ptsH mutant were significantly lower than in the wild-type strain, and LtxA production could be restored by adding exogenous cAMP to the culture.
Corsaro, M Michela; Parrilli, Ermenegilda; Lanzetta, Rosa; Naldi, Teresa; Pieretti, Giuseppina; Lindner, Buko; Carpentieri, Andrea; Parrilli, Michelangelo; Tutino, M Luisa
2009-08-01
The role of lipopolysaccharides (LPSs) in the biogenesis of outer membrane proteins have been investigated in several studies. Some of these analyses showed that LPS is required for correct and efficient folding of outer membrane proteins; other studies support the idea of independence of outer membrane proteins biogenesis from LPS structure. In this article, we investigated the involvement of LPS structure in the anomalous aggregation of outer membrane proteins in a E. coli mutant strain (S17-1(lambdapir)). To achieve this aim, the LPS structure of the mutant strain was carefully determined and compared with the E. coli K-12 one. It turned out that LPS of these two strains differs in the inner core for the absence of a heptose residue (HepIII). We demonstrated that this difference is due to a mutation in waaQ, a gene encoding the transferase for the branch heptose HepIII residue. The mutation was complemented to find out if the restoration of LPS structure influenced the observed outer membrane proteins aggregation. Data reported in this work demonstrated that, in E. coli S17-1(lambdapir) there is no influence of LPS structure on the outer membrane proteins inclusion bodies formation.
Isolation of ntrA-like mutants of Azotobacter vinelandii.
Santero, E; Luque, F; Medina, J R; Tortolero, M
1986-01-01
A number of chlorate-resistant mutants of Azotobacter vinelandii affected in a general control of nitrogen metabolism were isolated. These mutants could not utilize dinitrogen, nitrate, or nitrite as a nitrogen source. The reason for this inability is that they were simultaneously deficient in nitrogenase and nitrate and nitrite reductase activities. They were complemented by a cosmid carrying a DNA fragment of A. vinelandii able to complement ntrA mutants of Escherichia coli, so they seemed to be ntrA-like mutants. PMID:3009406
Leonhardt, Tereza; Sácký, Jan; Kotrba, Pavel
2018-04-01
A search of R. atropurpurea transcriptome for sequences encoding the transporters of the Zrt-, Irt-like Protein (ZIP) family, which are in eukaryotes integral to Zn supply into cytoplasm, allowed the identification of RaZIP1 cDNA with a predicted product belonging to ZIP I subfamily; it was subjected to functional studies in mutant Saccharomyces cerevisiae strains. The expression of RaZIP1, but not RaZIP1 H208A or RaZIP1 H232A mutants lacking conserved-among-ZIPs transmembrane histidyls, complemented Zn uptake deficiency in zrt1Δzrt2Δ yeasts. RaZIP1 substantially increased cellular Zn uptake in this strain and added to Zn sensitivity in zrc1Δcot1Δ mutant. The Fe uptake deficiency in ftr1Δ strain was not rescued and Mn uptake was insufficient for toxicity in Mn-sensitive pmr1Δ yeasts. By contrast, RaZIP1 increased Cd sensitivity in yap1Δ strain and conferred Cd transport activity in yeasts, albeit with substantially lower efficiency compared to Zn transport. In metal uptake assays, the accumulation of Zn in zrt1Δzrt2Δ strain remained unaffected by Cd, Fe, and Mn present in 20-fold molar excess over Zn. Immunofluorescence microscopy detected functional hemagglutinin-tagged HA::RaZIP1 on the yeast cell protoplast periphery. Altogether, these data indicate that RaZIP1 is a high-affinity plasma membrane transporter specialized in Zn uptake, and improve the understanding of the cellular and molecular biology of Zn in R. atropurpurea that is known for its ability to accumulate remarkably high concentrations of Zn.
Trigger factor of Streptococcus suis is involved in stress tolerance and virulence.
Wu, Tao; Zhao, Zhanqin; Zhang, Lin; Ma, Hongwei; Lu, Ka; Ren, Wen; Liu, Zhengya; Chang, Haitao; Bei, Weicheng; Qiu, Yinsheng; Chen, Huanchun
2011-01-01
Streptococcus suis serotype 2 is an important zoonotic pathogen that causes serious diseases such as meningitis, septicemia, endocarditis, arthritis and septic shock in pigs and humans. Little is known about the regulation of virulence gene expression in S. suis serotype 2. In this study, we cloned and deleted the entire tig gene from the chromosome of S. suis serotype 2 SC21 strain, and constructed a mutant strain (Δtig) and a complementation strain (CΔtig). The results demonstrated that the tig gene, encoding trigger factor from S. suis serotype 2 SC21, affects the stress tolerance and the expression of a few virulence genes of S. suis serotype 2. Deletion of the tig gene of S. suis serotype 2 resulted in mutant strain, ΔTig, which exhibited a significant decrease in adherence to cell line HEp-2, and lacked hemolytic activity. Tig deficiency diminishes stresses tolerance of S. suis serotype 2 such as survive thermal, oxidative and acid stresses. Quantification of expression levels of known S. suis serotype 2 SC21 virulence genes by real-time polymerase chain reaction in vitro revealed that trigger factor influences the expression of epf, cps, adh, rpob, fbps, hyl, sly, mrp and hrcA virulence-associated genes. ΔTig was shown to be attenuated in a LD50 assay and bacteriology, indicating that trigger factor plays an important part in the pathogenesis and stress tolerance of. S. suis serotype 2 infection. Mutant ΔTig was 100% defective in virulence in CD1 mice at up to 107 CFU, and provided 100% protection when challenged with 107 CFU of the SC21 strain. Copyright © 2010. Published by Elsevier India Pvt Ltd.
Garcia, Laetitia G; Lemaire, Sandrine; Kahl, Barbara C; Becker, Karsten; Proctor, Richard A; Tulkens, Paul M; Van Bambeke, Françoise
2012-12-01
In a previous study (L. G. Garcia et al., Antimicrob. Agents Chemother. 56:3700-3711, 2012), we evaluated the intracellular fate of menD and hemB mutants (corresponding to menadione- and hemin-dependent small-colony variants, respectively) of the parental COL methicillin-resistant Staphylococcus aureus strain and the pharmacodynamic profile of the intracellular activity of a series of antibiotics in human THP-1 monocytes. We have now examined the phagocytosis and intracellular persistence of the same strains in THP-1 cells activated by phorbol 12-myristate 13-acetate (PMA) and measured the intracellular activity of gentamicin, moxifloxacin, and oritavancin in these cells. Postphagocytosis intracellular counts and intracellular survival were lower in PMA-activated cells, probably due to their higher killing capacities. Gentamicin and moxifloxacin showed a 5- to 7-fold higher potency (lower static concentrations) against the parental strain, its hemB mutant, and the genetically complemented strain in PMA-activated cells and against the menD strain in both activated and nonactivated cells. This effect was inhibited when cells were incubated with N-acetylcysteine (a scavenger of oxidant species). In parallel, we observed that the MICs of these drugs were markedly reduced if bacteria had been preexposed to H(2)O(2). In contrast, the intracellular potency of oritavancin was not different in activated and nonactivated cells and was not decreased by the addition of N-acetylcysteine, regardless of the phenotype of the strains. The oritavancin MIC was also unaffected by preincubation of the bacteria with H(2)O(2). Thus, activation of THP-1 cells by PMA may increase the intracellular potency of certain antibiotics (probably due to synergy with reactive oxygen species), but this effect cannot be generalized to all antibiotics.
Yasugi, Mayo; Sugahara, Yuki; Hoshi, Hidenobu; Kondo, Kaori; Talukdar, Prabhat K; Sarker, Mahfuzur R; Yamamoto, Shigeki; Kamata, Yoichi; Miyake, Masami
2015-08-01
Clostridium perfringens type A is a common source of food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases in humans. In the intestinal tract, the vegetative cells sporulate and produce a major pathogenic factor, C. perfringens enterotoxin (CPE). Most type A FP isolates carry a chromosomal cpe gene, whereas NFB type A isolates typically carry a plasmid-encoded cpe. In vitro, the purified CPE protein binds to a receptor and forms pores, exerting a cytotoxic activity in epithelial cells. However, it remains unclear if CPE is indispensable for C. perfringens cytotoxicity. In this study, we examined the cytotoxicity of cpe-harboring C. perfringens isolates co-cultured with human intestinal epithelial Caco-2 cells. The FP strains showed severe cytotoxicity during sporulation and CPE production, but not during vegetative cell growth. While Caco-2 cells were intact during co-culturing with cpe-null mutant derivative of strain SM101 (a FP strain carrying a chromosomal cpe gene), the wild-type level cytotoxicity was observed with cpe-complemented strain. In contrast, both wild-type and cpe-null mutant derivative of the NFB strain F4969 induced Caco-2 cell death during both vegetative and sporulation growth. Collectively, the Caco-2 cell cytotoxicity caused by C. perfringens strain SM101 is considered to be exclusively dependent on CPE production, whereas some additional toxins should be involved in F4969-mediated in vitro cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stephenson, Stacy Ann-Marie; Brown, Paul D
2016-01-01
Urinary tract infections (UTI) are among the most frequently encountered infections in clinical practice globally. Predominantly a burden among female adults and infants, UTIs primarily caused by uropathogenic Escherichia coli (UPEC) results in high morbidity and fiscal health strains. During pathogenesis, colonization of the urinary tract via fimbrial adhesion to mucosal cells is the most critical point in infection and has been linked to DNA methylation. Furthermore, with continuous exposure to antibiotics as the standard therapeutic strategy, UPEC has evolved to become highly adaptable in circumventing the effect of antimicrobial agents and host defenses. Hence, the need for alternative treatment strategies arises. Since differential DNA methylation is observed as a critical precursor to virulence in various pathogenic bacteria, this body of work sought to assess the influence of the DNA adenine methylase (dam) gene on gene expression and cellular adhesion in UPEC and its potential as a therapeutic target. To monitor the influence of dam on attachment and FQ resistance, selected UPEC dam mutants created via one-step allelic exchange were transformed with cloned qnrA and dam complement plasmid for comparative analysis of growth rate, antimicrobial susceptibility, biofilm formation, gene expression, and mammalian cell attachment. The absence of DNA methylation among dam mutants was apparent. Varying deficiencies in cell growth, antimicrobial resistance and biofilm formation, alongside low-level increases in gene expression (recA and papI), and adherence to HEK-293 and HTB-9 mammalian cells were also detected as a factor of SOS induction to result in increased mutability. Phenotypic characteristics of parental strains were restored in dam complement strains. Dam's vital role in DNA methylation and gene expression in local UPEC isolates was confirmed. Similarly to dam-deficient Enterohemorrhagic E. coli (EHEC), these findings suggest unsuccessful therapeutic use of Dam inhibitors against UPEC or dam-deficient UPEC strains as attenuated live vaccines. However, further investigations are necessary to determine the post-transcriptional influence of dam on the regulatory network of virulence genes central to pathogenesis.
Redanz, Sylvio; Standar, Kerstin; Podbielski, Andreas; Kreikemeyer, Bernd
2012-01-01
Numerous studies have claimed deleterious effects of LuxS mutation on many bacterial phenotypes, including bacterial biofilm formation. Genetic complementation mostly restored the observed mutant phenotypes to WT levels, leading to the postulation that quorum sensing via a family of molecules generically termed autoinducer-2 (AI-2) is essential for many phenotypes. Because LuxS mutation has dual effects, this hypothesis needs to be investigated into the details for each bacterial species. In this study we used S. sanguinis SK36 as a model biofilm bacterium and employed physiological characterization and transcriptome approaches on WT and luxS-deficient strains, in combination with chemical, luxS, and sahH complementation experiments. SahH enables a direct conversion of SAH to homocysteine and thereby restores the activated methionine cycle in a luxS-negative background without formation of the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione. With this strategy we were able to dissect the individual contribution of LuxS and AI-2 activity in detail. Our data revealed that S. sanguinis biofilm formation is independent from AI-2 substance pools and is rather supported by an intact activated methyl cycle. Of 216 differentially transcribed genes in the luxS mutant, 209 were restored by complementation with a gene encoding the S-adenosylhomocysteine hydrolase. Only nine genes, mainly involved in natural competence, were directly affected by the AI-2 quorum-sensing substance pool. Cumulatively, this suggested that biofilm formation in S. sanguinis is not under control of AI-2. Our study suggests that previously evaluated LuxS mutants in other species need to be revisited to resolve the precise contribution of AI-2 substance pools and the methionine pathways. PMID:22942290
Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants.
García-Contreras, Rodolfo; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Hernández-González, Ismael L; Maeda, Toshinari; Hashimoto, Takahiro; Boogerd, Fred C; Sheng, Lili; Wood, Thomas K; Moreno-Sánchez, Rafael
2013-12-01
Pseudomonas aeruginosa PA14 cells resistant to the novel antimicrobial gallium nitrate (Ga) were developed using transposon mutagenesis and by selecting spontaneous mutants. The mutants showing the highest growth in the presence of Ga were selected for further characterization. These mutants showed 4- to 12-fold higher Ga minimal inhibitory growth concentrations and a greater than 8-fold increase in the minimum biofilm eliminating Ga concentration. Both types of mutants produced Ga resistant biofilms whereas the formation of wild-type biofilms was strongly inhibited by Ga. The gene interrupted in the transposon mutant was hitA, which encodes a periplasmic iron binding protein that delivers Fe³⁺ to the HitB iron permease; complementation of the mutant with the hitA gene restored the Ga sensitivity. This hitA mutant showed a 14-fold decrease in Ga internalization versus the wild-type strain, indicating that the HitAB system is also involved in the Ga uptake. Ga uptake in the spontaneous mutant was also lower, although no mutations were found in the hitAB genes. Instead, this mutant harbored 64 non-silent mutations in several genes including those of the phenazine pyocyanin biosynthesis. The spontaneous mutant produced 2-fold higher pyocyanin basal levels than the wild-type; the addition of this phenazine to wild-type cultures protected them from the Ga bacteriostatic effect. The present data indicate that mutations affecting Ga transport and probably pyocyanin biosynthesis enable cells to develop resistance to Ga. Copyright © 2013 Elsevier GmbH. All rights reserved.
2013-01-01
Background The catabolic pathways of N-acetyl-D-galactosamine (Aga) and D-galactosamine (Gam) in E. coli were proposed from bioinformatic analysis of the aga/gam regulon in E. coli K-12 and later from studies using E. coli C. Of the thirteen genes in this cluster, the roles of agaA, agaI, and agaS predicted to code for Aga-6-P-deacetylase, Gam-6-P deaminase/isomerase, and ketose-aldolase isomerase, respectively, have not been experimentally tested. Here we study their roles in Aga and Gam utilization in E. coli O157:H7 and in E. coli C. Results Knockout mutants in agaA, agaI, and agaS were constructed to test their roles in Aga and Gam utilization. Knockout mutants in the N-acetylglucosamine (GlcNAc) pathway genes nagA and nagB coding for GlcNAc-6-P deacetylase and glucosamine-6-P deaminase/isomerase, respectively, and double knockout mutants ΔagaA ΔnagA and ∆agaI ∆nagB were also constructed to investigate if there is any interplay of these enzymes between the Aga/Gam and the GlcNAc pathways. It is shown that Aga utilization was unaffected in ΔagaA mutants but ΔagaA ΔnagA mutants were blocked in Aga and GlcNAc utilization. E. coli C ΔnagA could not grow on GlcNAc but could grow when the aga/gam regulon was constitutively expressed. Complementation of ΔagaA ΔnagA mutants with either agaA or nagA resulted in growth on both Aga and GlcNAc. It was also found that ΔagaI, ΔnagB, and ∆agaI ΔnagB mutants were unaffected in utilization of Aga and Gam. Importantly, ΔagaS mutants were blocked in Aga and Gam utilization. Expression analysis of relevant genes in these strains with different genetic backgrounds by real time RT-PCR supported these observations. Conclusions Aga utilization was not affected in ΔagaA mutants because nagA was expressed and substituted for agaA. Complementation of ΔagaA ΔnagA mutants with either agaA or nagA also showed that both agaA and nagA can substitute for each other. The ∆agaI, ∆nagB, and ∆agaI ∆nagB mutants were not affected in Aga and Gam utilization indicating that neither agaI nor nagB is involved in the deamination and isomerization of Gam-6-P. We propose that agaS codes for Gam-6-P deaminase/isomerase in the Aga/Gam pathway. PMID:23634833
The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development.
Zhukov, Vladimir; Radutoiu, Simona; Madsen, Lene H; Rychagova, Tamara; Ovchinnikova, Evgenia; Borisov, Alex; Tikhonovich, Igor; Stougaard, Jens
2008-12-01
Phenotypic characterization of pea symbiotic mutants has provided a detailed description of the symbiosis with Rhizobium leguminosarum bv. viciae strains. We show here that two allelic non-nodulating pea mutants, RisNod4 and K24, are affected in the PsSym37 gene, encoding a LysM receptor kinase similar to Lotus japonicus NFR1 and Medicago truncatula LYK3. Phenotypic analysis of RisNod4 and K24 suggests a role for the SYM37 in regulation of infection-thread initiation and nodule development from cortical-cell division foci. We show that RisNod4 plants carrying an L to F substitution in the LysM1 domain display a restrictive symbiotic phenotype comparable to the PsSym2(A) lines that distinguish 'European' and 'Middle East' Rhizobium leguminosarum bv. viciae strains. RisNod4 mutants develop nodules only in the presence of a 'Middle East' Rhizobium strain producing O-acetylated Nod factors indicating the SYM37 involvement in Nod-factor recognition. Along with the PsSym37, a homologous LysM receptor kinase gene, PsK1, was isolated and characterized. We show that PsK1 and PsSym37 are genetically linked to each other and to the PsSym2 locus. Allelic complementation analyses and sequencing of the extracellular regions of PsSym37 and PsK1 in several 'European' and 'Afghan' pea cultivars point towards PsK1 as possible candidate for the elusive PsSym2 gene.
Simms, Amy N.; Mobley, Harry L. T.
2008-01-01
Two surface organelles of uropathogenic Escherichia coli (UPEC), flagella and type 1 fimbriae, are critical for colonization of the urinary tract but mediate opposite actions. Flagella propel bacteria through urine and along mucus layers, while type 1 fimbriae allow bacteria to adhere to specific receptors present on uroepithelial cells. Constitutive expression of type 1 fimbriae leads to repression of motility and chemotaxis in UPEC strain CFT073, suggesting that UPEC may coordinately regulate motility and adherence. To identify genes involved in this regulation of motility by type 1 fimbriae, transposon mutagenesis was performed on a phase-locked type 1 fimbrial ON variant of strain CFT073 (CFT073 fim L-ON), followed by a screen for restoration of motility in soft agar. Functions of the genes identified included attachment, metabolism, transport, DNA mismatch repair, and transcriptional regulation, and a number of genes had hypothetical function. Isogenic deletion mutants of these genes were also constructed in CFT073 fim L-ON. Motility was partially restored in six of these mutants, including complementable mutations in four genes encoding known transcriptional regulators, lrhA, lrp, slyA, and papX; a mismatch repair gene, mutS; and one hypothetical gene, ydiV. Type 1 fimbrial expression in these mutants was unaltered, and the majority of these mutants expressed larger amounts of flagellin than the fim L-ON parental strain. Our results indicate that repression of motility in CFT073 fim L-ON is not solely due to the constitutive expression of type 1 fimbriae on the surfaces of the bacteria and that multiple genes may contribute to this repression. PMID:18359812
Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen
2015-01-01
In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum.
Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen
2015-01-01
In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum. PMID:25560310
Chatterjee, Subhadeep; Killiny, Nabil; Almeida, Rodrigo P P; Lindow, Steven E
2010-10-01
Xylella fastidiosa must coordinately regulate a variety of traits contributing to biofilm formation, host plant and vector colonization, and transmission between plants. Traits such as production of extracellular polysaccharides (EPS), adhesins, extracellular enzymes, and pili are expressed in a cell-density-dependent fashion mediated by a cell-to-cell signaling system involving a fatty acid diffusible signaling factor (DSF). The expression of gene PD0279 (which has a GGDEF domain) is downregulated in the presence of DSF and may be involved in intracellular signaling by modulating the levels of cyclic di-GMP. PD0279, designated cyclic di-GMP synthase A (cgsA), is required for biofilm formation, plant virulence, and vector transmission. cgsA mutants exhibited a hyperadhesive phenotype in vitro and overexpressed gumJ, hxfA, hxfB, xadA, and fimA, which promote attachment of cells to surfaces and, hence, biofilm formation. The mutants were greatly reduced in virulence to grape albeit still transmissible by insect vectors, although at a reduced level compared with transmission rates of the wild-type strain, despite the fact that similar numbers of cells of the cgsA mutant were acquired by the insects from infected plants. High levels of EPS were measured in cgsA mutants compared with wild-type strains, and scanning electron microscopy analysis also revealed a thicker amorphous layer surrounding the mutants. Overexpression of cgsA in a cgsA-complemented mutant conferred the opposite phenotypes in vitro. These results suggest that decreases of cyclic di-GMP result from the accumulation of DSF as cell density increases, leading to a phenotypic transition from a planktonic state capable of colonizing host plants to an adhesive state that is insect transmissible.
Ohya, Y.; Botstein, D.
1994-01-01
Conditional-lethal mutations of the single calmodulin gene in Saccharomyces cerevisiae have been very difficult to isolate by random and systematic methods, despite the fact that deletions cause recessive lethality. We report here the isolation of numerous conditional-lethal mutants that were recovered by systematically altering phenylalanine residues. The phenylalanine residues of calmodulin were implicated in function both by structural studies of calmodulin bound to target peptides and by their extraordinary conservation in evolution. Seven single and 26 multiple Phe -> Ala mutations were constructed. Mutant phenotypes were examined in a haploid cmd1 disrupted strain under three conditions: single copy, low copy, and overexpressed. Whereas all but one of the single mutations caused no obvious phenotype, most of the multiple mutations caused obvious growth phenotypes. Five were lethal, 6 were lethal only in synthetic medium, 13 were temperature-sensitive lethal and 2 had no discernible phenotypic consequences. Overexpression of some of the mutant genes restored the phenotype to nearly wild type. Several temperature-sensitive calmodulin mutations were suppressed by elevated concentration of CaCl(2) in the medium. Mutant calmodulin protein was detected at normal levels in extracts of most of the lethal mutant cells, suggesting that the deleterious phenotypes were due to loss of the calmodulin function and not protein instability. Analysis of diploid strains heterozygous for all combinations of cmd1-ts alleles revealed four intragenic complementation groups. The contributions of individual phe->ala changes to mutant phenotypes support the idea of internal functional redundancy in the symmetrical calmodulin protein molecule. These results suggest that the several phenylalanine residues in calmodulin are required to different extents in different combinations in order to carry out each of the several essential tasks. PMID:7896089
Meganathan, R; Bentley, R; Taber, H
1981-01-01
Menaquinone (vitamin K2)-deficient mutants of Bacillus subtilis, whose growth requirement is satisfied by 1,4-dihydroxy-2-naphthoic acid but not by o-succinylbenzoic acid (OSB), have been analyzed for enzymatic defects. Complementation analysis of cell-free extracts of the mutants revealed that there are two groups, as already indicated by genetic analysis. The missing enzyme in each group was identified by complementation of the cell-free extracts with o-succinylbenzoyl-coenzyme A (CoA) synthetase and dihydroxynaphthoate synthase extracted from Mycobacterium phlei. Mutants found to lack dihydroxynaphthoate synthase, and which therefore complement with dihydroxynaphthoate synthase of M. phlei, were designated as menB; those lacking o-succinylbenzoyl-CoA synthetase, and therefore complementing with o-succinylbenzoyl-CoA synthetase, were designated as menE. The menB mutants RB413 (men-325) and RB415 (men-329), when incubated with [2,3-14C2]OSB, produced only the spirodilactone form of OSB in a reaction that was CoA and adenosine 5'-triphosphate dependent. PMID:6780515
Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Eckweiler, Denitsa; Bielecka, Agata; Bueno, Emilio; Cava, Felipe; Abraham, Wolf-Rainer; Curtiss, Roy; Häussler, Susanne; Erhardt, Marc; Weiss, Siegfried
2016-01-01
ABSTRACT Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. PMID:27601574
Involvement of the TonB System in Tolerance to Solvents and Drugs in Pseudomonas putida DOT-T1E
Godoy, Patricia; Ramos-González, María Isabel; Ramos, Juan L.
2001-01-01
Pseudomonas putida DOT-T1E is able to grow with glucose as the carbon source in liquid medium with 1% (vol/vol) toluene or 17 g of (123 mM) p-hydroxybenzoate (4HBA) per liter. After random mini-Tn5′phoA-Km mutagenesis, we isolated the mutant DOT-T1E-PhoA5, which was more sensitive than the wild type to 4HBA (growth was prevented at 6 g/liter) and toluene (the mutant did not withstand sudden toluene shock). Susceptibility to toluene and 4HBA resulted from the reduced efflux of these compounds from the cell, as revealed by accumulation assays with 14C-labeled substrates. The mutant was also more susceptible to a number of antibiotics, and its growth in iron-deficient minimal medium was inhibited in the presence of ethylenediamine-di(o-hydroxyphenylacetic acid (EDDHA). Cloning the mutation in the PhoA5 strain and sequencing the region adjacent showed that the mini-Tn5 transposor interrupted the exbD gene, which forms part of the exbBD tonB operon. Complementation by the exbBD and tonB genes cloned in pJB3-Tc restored the wild-type characteristics to the PhoA5 strain. PMID:11514511
Involvement of the TonB system in tolerance to solvents and drugs in Pseudomonas putida DOT-T1E.
Godoy, P; Ramos-González, M I; Ramos, J L
2001-09-01
Pseudomonas putida DOT-T1E is able to grow with glucose as the carbon source in liquid medium with 1% (vol/vol) toluene or 17 g of (123 mM) p-hydroxybenzoate (4HBA) per liter. After random mini-Tn5'phoA-Km mutagenesis, we isolated the mutant DOT-T1E-PhoA5, which was more sensitive than the wild type to 4HBA (growth was prevented at 6 g/liter) and toluene (the mutant did not withstand sudden toluene shock). Susceptibility to toluene and 4HBA resulted from the reduced efflux of these compounds from the cell, as revealed by accumulation assays with (14)C-labeled substrates. The mutant was also more susceptible to a number of antibiotics, and its growth in iron-deficient minimal medium was inhibited in the presence of ethylenediamine-di(o-hydroxyphenylacetic acid (EDDHA). Cloning the mutation in the PhoA5 strain and sequencing the region adjacent showed that the mini-Tn5 transposor interrupted the exbD gene, which forms part of the exbBD tonB operon. Complementation by the exbBD and tonB genes cloned in pJB3-Tc restored the wild-type characteristics to the PhoA5 strain.
Marmiroli, M; Pagano, L; Pasquali, F; Zappettini, A; Tosato, V; Bruschi, C V; Marmiroli, N
2016-01-01
The use of cadmium sulphide quantum dots (CdS QDs) is increasing, particularly in the electronics industry. Their size (1-10 nm in diameter) is, however, such that they can be taken up by living cells. Here, a bakers' yeast (Saccharomyces cerevisiae) deletion mutant collection has been exploited to provide a high-throughput means of revealing the genetic basis for tolerance/susceptibility to CdS QD exposure. The deletion of 112 genes, some associated with the abiotic stress response, some with various metabolic processes, some with mitochondrial organization, some with transport and some with DNA repair, reduced the level of tolerance to CdS QDs. A gene ontology analysis highlighted the role of oxidative stress in determining the cellular response. The transformation of sensitive mutants with centromeric plasmids harbouring DNA from a wild type strain restored the wild type growth phenotype when the complemented genes encoded either HSC82, DSK2 or ALD3. The use of these simple eukaryote knock-out mutants for functional toxicogenomic analysis will inform studies focusing on higher organisms.
Paterson, Gavin K; Cone, Danielle B; Northen, Helen; Peters, Sarah E; Maskell, Duncan J
2009-05-01
The glycolytic enzyme triosephosphate isomerase (tpi) (EC 5.3.1.1) plays a key role in central carbon metabolism yet few studies have characterized isogenic bacterial mutants lacking this enzyme and none have examined its role in the in vivo fitness of a bacterial pathogen. Here we have deleted tpiA in Salmonella enterica serovar Typhimurium and found that the mutant had an altered morphology, displaying an elongated shape compared with the wild type. In a mouse model of typhoid fever the tpiA mutant was attenuated for growth as assessed by bacterial counts in the livers and spleens of infected mice. However, this attenuation was not deemed sufficient for consideration of a tpiA mutant as a live attenuated vaccine strain. These phenotypes were complemented by provision of tpiA on pBR322. We therefore provide the first demonstration that tpiA is required for full in vivo fitness of a bacterial pathogen, and that it has a discernable impact on cell morphology.
Walker, Jennifer N.; Crosby, Heidi A.; Spaulding, Adam R.; Salgado-Pabón, Wilmara; Malone, Cheryl L.; Rosenthal, Carolyn B.; Schlievert, Patrick M.; Boyd, Jeffrey M.; Horswill, Alexander R.
2013-01-01
Staphylococcus aureus is a prominent bacterial pathogen that is known to agglutinate in the presence of human plasma to form stable clumps. There is increasing evidence that agglutination aids S. aureus pathogenesis, but the mechanisms of this process remain to be fully elucidated. To better define this process, we developed both tube based and flow cytometry methods to monitor clumping in the presence of extracellular matrix proteins. We discovered that the ArlRS two-component system regulates the agglutination mechanism during exposure to human plasma or fibrinogen. Using divergent S. aureus strains, we demonstrated that arlRS mutants are unable to agglutinate, and this phenotype can be complemented. We found that the ebh gene, encoding the Giant Staphylococcal Surface Protein (GSSP), was up-regulated in an arlRS mutant. By introducing an ebh complete deletion into an arlRS mutant, agglutination was restored. To assess whether GSSP is the primary effector, a constitutive promoter was inserted upstream of the ebh gene on the chromosome in a wildtype strain, which prevented clump formation and demonstrated that GSSP has a negative impact on the agglutination mechanism. Due to the parallels of agglutination with infective endocarditis development, we assessed the phenotype of an arlRS mutant in a rabbit combined model of sepsis and endocarditis. In this model the arlRS mutant displayed a large defect in vegetation formation and pathogenesis, and this phenotype was partially restored by removing GSSP. Altogether, we have discovered that the ArlRS system controls a novel mechanism through which S. aureus regulates agglutination and pathogenesis. PMID:24367264
Karakkat, Brijesh B; Gold, Scott E; Covert, Sarah F
2013-12-01
Members of the fungal-specific velvet protein family regulate sexual and asexual spore production in the Ascomycota. We predicted, therefore, that velvet homologs in the basidiomycetous plant pathogen Ustilago maydis would regulate sexual spore development, which is also associated with plant disease progression in this fungus. To test this hypothesis, we studied the function of three U. maydis velvet genes, umv1, umv2 and umv3. Using a gene replacement strategy, deletion mutants were made in all three genes in compatible haploid strains, and additionally for umv1 and umv2 in the solopathogenic strain, SG200. None of the mutants showed novel morphological phenotypes during yeast-like, in vitro growth. However, the Δumv1 mutants failed to induce galls or teliospores in maize. Chlorazol black E staining of leaves infected with Δumv1 dikaryons revealed that the Δumv1 hyphae did not proliferate normally and were blocked developmentally before teliospore formation. The Δumv2 mutants were able to induce galls and teliospores in maize, but were slow to do so and thus reduced in virulence. The Δumv3 mutants were not affected in teliospore formation or disease progression. Complementation of the Δumv1 and Δumv2 mutations in the SG200 background produced disease indices similar to those of SG200. These results indicate that two U. maydis velvet family members, umv1 and umv2, are important for normal teliospore development and disease progression in maize seedlings. Copyright © 2013 Elsevier Inc. All rights reserved.
Isaza, Maria P.; Duncan, Matthew S.; Kaplan, Jeffrey B.; Kachlany, Scott C.
2008-01-01
Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans is a pathogen that causes localized aggressive periodontitis and extraoral infections including infective endocarditis. Recently, we reported that A. actinomycetemcomitans is beta-hemolytic on certain growth media due to the production of leukotoxin (LtxA). Based on this observation and our ability to generate random transposon insertions in A. actinomycetemcomitans, we developed and carried out a rapid screen for LtxA mutants. Using PCR, we mapped several of the mutations to genes that are known or predicted to be required for LtxA production, including ltxA, ltxB, ltxD, and tdeA. In addition, we identified an insertion in a gene previously not recognized to be involved in LtxA biosynthesis, ptsH. ptsH encodes the protein HPr, a phosphocarrier protein that is part of the sugar phosphotransferase system. HPr results in the phosphorylation of other proteins and ultimately in the activation of adenylate cyclase and cyclic AMP (cAMP) production. The ptsH mutant showed only partial hemolysis on blood agar and did not produce LtxA. The phenotype was complemented by supplying wild-type ptsH in trans, and real-time PCR analysis showed that the ptsH mutant produced approximately 10-fold less ltxA mRNA than the wild-type strain. The levels of cAMP in the ptsH mutant were significantly lower than in the wild-type strain, and LtxA production could be restored by adding exogenous cAMP to the culture. PMID:18541661
Sanz-Luque, Emanuel; Ocaña-Calahorro, Francisco; Galván, Aurora; Fernández, Emilio; de Montaigu, Amaury
2016-01-01
The ubiquitous signalling molecule Nitric Oxide (NO) is characterized not only by the variety of organisms in which it has been described, but also by the wealth of biological processes that it regulates. In contrast to the expanding repertoire of functions assigned to NO, however, the mechanisms of NO action usually remain unresolved, and genes that work within NO signalling cascades are seldom identified. A recent addition to the list of known NO functions is the regulation of the nitrogen assimilation pathway in the unicellular alga Chlamydomonas reinhardtii, a well-established model organism for genetic and molecular studies that offers new possibilities in the search for mediators of NO signalling. By further exploiting a collection of Chlamydomonas insertional mutant strains originally isolated for their insensitivity to the ammonium (NH4+) nitrogen source, we found a mutant which, in addition to its ammonium insensitive (AI) phenotype, was not capable of correctly sensing the NO signal. Similarly to what had previously been described in the AI strain cyg56, the expression of nitrogen assimilation genes in the mutant did not properly respond to treatments with various NO donors. Complementation experiments showed that NON1 (NO Nitrate 1), a gene that encodes a protein containing no known functional domain, was the gene underlying the mutant phenotype. Beyond the identification of NON1, our findings broadly demonstrate the potential for Chlamydomonas reinhardtii to be used as a model system in the search for novel components of gene networks that mediate physiological responses to NO. PMID:27149516
Allard, Kimberly A; Dao, Jenny; Sanjeevaiah, Prakash; McCoy-Simandle, Kessler; Chatfield, Christa H; Crumrine, David S; Castignetti, Domenic; Cianciotto, Nicholas P
2009-07-01
When cultured in a low-iron medium, Legionella pneumophila secretes a siderophore (legiobactin) that is both reactive in the chrome azurol S (CAS) assay and capable of stimulating the growth of iron-starved legionellae. Using anion-exchange high-pressure liquid chromatography (HPLC), we purified legiobactin from culture supernatants of a virulent strain of L. pneumophila. In the process, we detected the ferrated form of legiobactin as well as other CAS-reactive substances. Purified legiobactin had a yellow-gold color and absorbed primarily from 220 nm and below. In accordance, nuclear magnetic resonance spectroscopy revealed that legiobactin lacks aromatic carbons, and among the 13 aliphatics present, there were 3 carbonyls. When examined by HPLC, supernatants from L. pneumophila mutants inactivated for lbtA and lbtB completely lacked legiobactin, indicating that the LbtA and LbtB proteins are absolutely required for siderophore activity. Independently derived lbtA mutants, but not a complemented derivative, displayed a reduced ability to infect the lungs of A/J mice after intratracheal inoculation, indicating that legiobactin is required for optimal intrapulmonary survival by L. pneumophila. This defect, however, was not evident when the lbtA mutant and its parental strain were coinoculated into the lung, indicating that legiobactin secreted by the wild type can promote growth of the mutant in trans. Legiobactin mutants grew normally in murine lung macrophages and alveolar epithelial cells, suggesting that legiobactin promotes something other than intracellular infection of resident lung cells. Overall, these data represent the first documentation of a role for siderophore expression in the virulence of L. pneumophila.
Lee, Yunho; Song, Sooyeon; Sheng, Lili; Zhu, Lei; Kim, Jun-Seob; Wood, Thomas K.
2018-01-01
Filamentous phage impact biofilm development, stress tolerance, virulence, biofilm dispersal, and colony variants. Previously, we identified 137 Pseudomonas aeruginosa PA14 mutants with more than threefold enhanced and 88 mutants with more than 10-fold reduced biofilm formation by screening 5850 transposon mutants (PLoS Pathogens 5: e1000483, 2009). Here, we characterized the function of one of these 225 mutations, dppA1 (PA14_58350), in regard to biofilm formation. DppA1 is a substrate-binding protein (SBP) involved in peptide utilization via the DppBCDF ABC transporter system. We show that compared to the wild-type strain, inactivating dppA1 led to 68-fold less biofilm formation in a static model and abolished biofilm formation in flow cells. Moreover, the dppA1 mutant had a delay in swarming and produced 20-fold less small-colony variants, and both biofilm formation and swarming were complemented by producing DppA1. A whole-transcriptome analysis showed that only 10 bacteriophage Pf5 genes were significantly induced in the biofilm cells of the dppA1 mutant compared to the wild-type strain, and inactivation of dppA1 resulted in a 600-fold increase in Pf5 excision and a million-fold increase in phage production. As expected, inactivating Pf5 genes PA0720 and PA0723 increased biofilm formation substantially. Inactivation of DppA1 also reduced growth (due to cell lysis). Hence, DppA1 increases biofilm formation by repressing Pf5 prophage. PMID:29416528
Yin, Xihou; Chen, Ying; Zhang, Ling; Wang, Yang; Zabriskie, T. Mark
2010-01-01
Enduracidins (1, 2) and ramoplanin (3) are structurally and functionally closely related lipodepsipeptide antibiotics. They are active against multidrug resistant Gram-positive pathogens, including MRSA. Each peptide contains one chlorinated non-proteinogenic amino acid residue, Cl2-Hpg or Cl-Hpg. To investigate the timing of halogenation, the importance of chlorination on bioactivity and bioavailability of enduracidin, and to probe the substrate specificity and portability of the ramoplanin halogenase, we constructed the mutant strain SfΔ30 in which the enduracidin halogenase gene orf30 had been deleted and complemented it with the ramoplanin counterpart orf20. We also expressed orf20 in the enduracidin wild type producer. Metabolite analysis revealed SfΔ30 produced the novel analogues dideschloroenduracidins A (4) and B (5), while the recombinant strains SfΔ30R20 and SfR20 produced monodeschloroenduracidins A (6) and B (7), and a trichlorinated enduracidin (8), respectively. In addition, orf30 self-complementation yielded the strain SfΔ30E30 which is capable of producing six peptides including 6 and 7. MS/MS analysis positioned the single chlorine atom in 6 at Hpg13 and localized the third chlorine atom in 8 to Hpg11. Biological evaluation of these enduracidin analogues indicated that all retained activity against Staphylococcus aureus. Our findings lay the foundation for further utilization of enduracidin and ramoplanin halogenases in combinatorial biosynthesis. PMID:20353165
Vidal, Jorge E; Shak, Joshua R; Canizalez-Roman, Adrian
2015-06-01
Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Li, Jihong; Sayeed, Sameera; Robertson, Susan; Chen, Jianming; McClane, Bruce A
2011-12-01
Clostridium perfringens type B or D isolates, which cause enterotoxemias or enteritis in livestock, produce epsilon toxin (ETX). ETX is exceptionally potent, earning it a listing as a CDC class B select toxin. Most C. perfringens strains also express up to three different sialidases, although the possible contributions of those enzymes to type B or D pathogenesis remain unclear. Type D isolate CN3718 was found to carry two genes (nanI and nanJ) encoding secreted sialidases and one gene (nanH) encoding a cytoplasmic sialidase. Construction in CN3718 of single nanI, nanJ and nanH null mutants, as well as a nanI/nanJ double null mutant and a triple sialidase null mutant, identified NanI as the major secreted sialidase of this strain. Pretreating MDCK cells with NanI sialidase, or with culture supernatants of BMC206 (an isogenic CN3718 etx null mutant that still produces sialidases) enhanced the subsequent binding and cytotoxic effects of purified ETX. Complementation of BMC207 (an etx/nanH/nanI/nanJ null mutant) showed this effect is mainly attributable to NanI production. Contact between BMC206 and certain mammalian cells (e.g., enterocyte-like Caco-2 cells) resulted in more rapid sialidase production and this effect involved increased transcription of BMC206 nanI gene. BMC206 was shown to adhere to some (e.g. Caco-2 cells), but not all mammalian cells, and this effect was dependent upon sialidase, particularly NanI, expression. Finally, the sialidase activity of NanI (but not NanJ or NanH) could be enhanced by trypsin. Collectively these in vitro findings suggest that, during type D disease originating in the intestines, trypsin may activate NanI, which (in turn) could contribute to intestinal colonization by C. perfringens type D isolates and also increase ETX action.
Role of the Omp25/Omp31 Family in Outer Membrane Properties and Virulence of Brucella ovis▿
Caro-Hernández, Paola; Fernández-Lago, Luis; de Miguel, María-Jesús; Martín-Martín, Ana I.; Cloeckaert, Axel; Grilló, María-Jesús; Vizcaíno, Nieves
2007-01-01
The genes coding for the five outer membrane proteins (OMPs) of the Omp25/Omp31 family expected to be located in the outer membrane (OM) of rough virulent Brucella ovis PA were inactivated to evaluate their role in virulence and OM properties. The OM properties of the mutant strains and of the mutants complemented with the corresponding wild-type genes were analyzed, in comparison with the parental strain and rough B. abortus RB51, in several tests: (i) binding of anti-Omp25 and anti-Omp31 monoclonal antibodies, (ii) autoagglutination of bacterial suspensions, and (iii) assessment of susceptibility to polymyxin B, sodium deoxycholate, hydrogen peroxide, and nonimmune ram serum. A tight balance of the members of the Omp25/Omp31 family was seen to be essential for the stability of the B. ovis OM, and important differences between the OMs of B. ovis PA and B. abortus RB51 rough strains were observed. Regarding virulence, the absence of Omp25d and Omp22 from the OM of B. ovis PA led to a drastic reduction in spleen colonization in mice. While the greater susceptibility of the Δomp22 mutant to nonimmune serum and its difficulty in surviving in the stationary phase might be on the basis of its dramatic attenuation, no defects in the OM able to explain the attenuation of the Δomp25d mutant were found, especially considering that the fully virulent Δomp25c mutant displayed more important OM defects. Accordingly, Omp25d, and perhaps Omp22, could be directly involved in the penetration and/or survival of B. ovis inside host cells. This aspect, together with the role of Omp25d and Omp22 in the virulence both of B. ovis in rams and of other Brucella species, should be thoroughly evaluated in future studies. PMID:17562767
[In vitro function of outer membrane protease T of Escherichia coli K1 pathogenic strain].
Hui, Changye; Guo, Yan; Wu, Shuchi; Peng, Liang; Cao, Hong; Huang, Shenghe
2010-01-01
Plasminogen activation and antimicrobial peptide hydrolysis contribute to pathogens invasion and survival in vivo. To demonstrate the expression of outer membrane protease T in E. coli K1 pathogenic strain E44, its activity of plasminogen activator and protamine hydrolysis. After Benzamidine Sepharose Fast Flow and SOURCE 30Q chromatography, we got E44 outer membrane mixed fraction, and examined its activity of plasminogen activation with chromogenic substrate S-2251 method. An ompT deletion mutant of E44 was constructed by using the suicide vector pCVD442, termed as E44ompT. We examined 0.1 mg/mL cationic antimicrobial peptide protamine susceptibility of E44, ompT mutant strain E44ompT and E44ompT harboring pUCT, which was constructed by inserting complete ompT open reading frame into pUC13. We got about 37 kDa E44 membrane extract, which could activate plasminogen, and activation was membrane extract dose dependent. This confirmed the expression of outer membrane protease T in the outer membrane of E44. E44ompT was, more susceptible to 0.1 mg/mL protamine than E44, and E440mpT was partially complemented by pUCT. Outer membrane protease T is expressed in E. coli K1 pathogenic strain E44, and can activate plasminogen and hydrolyze protamine.
Piddington, C S; Kovacevich, B R; Rambosek, J
1995-01-01
Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascians, which normally is not able to desulfurize DBT. Expression of this fragment in E. coli also conferred the ability to desulfurize DBT. A molecular analysis of the cloned fragment revealed a single operon containing three open reading frames involved in the conversion of DBT to 2-HBP. The three genes were designated dszA, dszB, and dszC. Neither the nucleotide sequences nor the deduced amino acid sequences of the enzymes exhibited significant similarity to sequences obtained from the GenBank, EMBL, and Swiss-Prot databases, indicating that these enzymes are novel enzymes. Subclone analyses revealed that the gene product of dszC converts DBT directly to DBT-sulfone and that the gene products of dszA and dszB act in concert to convert DBT-sulfone to 2-HBP. PMID:7574582
Flahaut, Sigrid; Vinogradov, Evgeny; Kelley, Kathryn A.; Brennan, Shannon; Hiramatsu, Keiichi; Lee, Jean C.
2008-01-01
The DNA sequence of the genome of Staphylococcus haemolyticus JCSC1435 revealed a putative capsule operon composed of 13 genes in tandem. The first seven genes (capABCDEFGSh) showed ≥57% similarity with the Staphylococcus aureus cap5 or cap8 locus. However, the capHIJKLMSh genes are unique to S. haemolyticus and include genes encoding a putative flippase, an aminotransferase, two glycosyltransferases, and a transcriptional regulator. Capsule-like material was readily apparent by immunoelectron microscopy on bacteria harvested in the postexponential phase of growth. Electron micrographs of a JCSC1435 mutant with a deleted cap region lacked the capsule-like material. Both strains produced small amounts of surface-associated material that reacted with antibodies to polyglutamic acid. S. haemolyticus cap genes were amplified from four of seven clinical isolates of S. haemolyticus from humans, and three of these strains produced a serologically cross-reactive capsular polysaccharide. In vitro assays demonstrated that the acapsular mutant strain showed greater biofilm formation but was more susceptible to complement-mediated opsonophagocytic killing than the parent strain. Structural characterization of capsule purified from S. haemolyticus strain JCSC1435 showed a trisaccharide repeating unit: −3-α-l-FucNAc-3-(2-NAc-4-N-Asp-2,4,6-trideoxy-β-d-Glc)-4-α-d-GlcNAc-. This structure is unique among staphylococcal polysaccharides in that its composition includes a trideoxy sugar residue with aspartic acid as an N-acyl substituent. PMID:18165309
Flahaut, Sigrid; Vinogradov, Evgeny; Kelley, Kathryn A; Brennan, Shannon; Hiramatsu, Keiichi; Lee, Jean C
2008-03-01
The DNA sequence of the genome of Staphylococcus haemolyticus JCSC1435 revealed a putative capsule operon composed of 13 genes in tandem. The first seven genes (capABCDEFG(Sh)) showed > or = 57% similarity with the Staphylococcus aureus cap5 or cap8 locus. However, the capHIJKLM(Sh) genes are unique to S. haemolyticus and include genes encoding a putative flippase, an aminotransferase, two glycosyltransferases, and a transcriptional regulator. Capsule-like material was readily apparent by immunoelectron microscopy on bacteria harvested in the postexponential phase of growth. Electron micrographs of a JCSC1435 mutant with a deleted cap region lacked the capsule-like material. Both strains produced small amounts of surface-associated material that reacted with antibodies to polyglutamic acid. S. haemolyticus cap genes were amplified from four of seven clinical isolates of S. haemolyticus from humans, and three of these strains produced a serologically cross-reactive capsular polysaccharide. In vitro assays demonstrated that the acapsular mutant strain showed greater biofilm formation but was more susceptible to complement-mediated opsonophagocytic killing than the parent strain. Structural characterization of capsule purified from S. haemolyticus strain JCSC1435 showed a trisaccharide repeating unit: -3-alpha-L-FucNAc-3-(2-NAc-4-N-Asp-2,4,6-trideoxy-beta-D-Glc)-4-alpha-D-GlcNAc-. This structure is unique among staphylococcal polysaccharides in that its composition includes a trideoxy sugar residue with aspartic acid as an N-acyl substituent.
Luo, Shuhong; Scott, David A; Docampo, Roberto
2002-11-15
Previous studies in Trypanosoma cruzi have shown that intracellular pH homeostasis requires ATP and is affected by H(+)-ATPase inhibitors, indicating a major role for ATP-driven proton pumps in intracellular pH control. In the present study, we report the cloning and sequencing of a pair of genes linked in tandem (TcHA1 and TcHA2) in T. cruzi which encode proteins with homology to fungal and plant P-type proton-pumping ATPases. The genes are expressed at the mRNA level in different developmental stages of T. cruzi: TcHA1 is expressed maximally in epimastigotes, whereas TcHA2 is expressed predominantly in trypomastigotes. The proteins predicted from the nucleotide sequence of the genes have 875 and 917 amino acids and molecular masses of 96.3 and 101.2 kDa, respectively. Full-length TcHA1 and an N-terminal truncated version of TcHA2 complemented a Saccharomyces cerevisiae strain deficient in P-type H(+)-ATPase activity, the proteins localized to the yeast plasma membrane, and ATP-driven proton pumping could be detected in proteoliposomes reconstituted from plasma membrane purified from transfected yeast. The reconstituted proton transport activity was reduced by inhibitors of P-type H(+)-ATPases. C-terminal truncation did not affect complementation of mutant yeast, suggesting the lack of C-terminal autoinhibitory domains in these proteins. ATPase activity in plasma membrane from TcHA1- and (N-terminal truncated) TcHA2-transfected yeast was inhibited to different extents by vanadate, whereas the latter yeast strain was more resistant to extremes of pH, suggesting that the native proteins may serve different functions at different stages in the T. cruzi life cycle.
Batisson, Isabelle; Guimond, Marie-Pierre; Girard, Francis; An, Hongyan; Zhu, Chengru; Oswald, Eric; Fairbrother, John M.; Jacques, Mario; Harel, Josée
2003-01-01
Nonenterotoxigenic porcine Escherichia coli strains belonging to the serogroup O45 have been associated with postweaning diarrhea in swine and adhere to intestinal epithelial cells in a characteristic attaching and effacing (A/E) pattern. O45 porcine enteropathogenic E. coli (PEPEC) strain 86-1390 induces typical A/E lesions in a pig ileal explant model. Using TnphoA transposon insertion mutagenesis on strain 86-1390, we found a mutant that did not induce A/E lesions. The insertion was identified in a gene designated paa (porcine A/E-associated gene). Sequence analysis of paa revealed an open reading frame of 753 bp encoding a 27.6-kDa protein which displayed 100, 51.8, and 49% homology with Paa of enterohemorrhagic E. coli O157:H7 strains (EDL933 and Sakai), PEB3 of Campylobacter jejuni, and AcfC of Vibrio cholerae, respectively. Chromosomal localization studies indicated that the region containing paa was inserted between the yciD and yciE genes at about 28.3 min of the E. coli K-12 chromosome. The presence of paa and eae sequences in the porcine O45 strains is highly correlated with the A/E phenotype. However, the observation that three eae-positive but paa-negative PEPEC O45 strains were A/E negative provides further evidence for the importance of the paa gene in the A/E activity of O45 strains. As well, the complementation of the paa mutant restored the A/E activity of the 86-1390 strain, showing the involvement of Paa in PEPEC pathogenicity. These observations suggest that Paa contributes to the early stages of A/E E. coli virulence. PMID:12874331
Batisson, Isabelle; Guimond, Marie-Pierre; Girard, Francis; An, Hongyan; Zhu, Chengru; Oswald, Eric; Fairbrother, John M; Jacques, Mario; Harel, Josée
2003-08-01
Nonenterotoxigenic porcine Escherichia coli strains belonging to the serogroup O45 have been associated with postweaning diarrhea in swine and adhere to intestinal epithelial cells in a characteristic attaching and effacing (A/E) pattern. O45 porcine enteropathogenic E. coli (PEPEC) strain 86-1390 induces typical A/E lesions in a pig ileal explant model. Using TnphoA transposon insertion mutagenesis on strain 86-1390, we found a mutant that did not induce A/E lesions. The insertion was identified in a gene designated paa (porcine A/E-associated gene). Sequence analysis of paa revealed an open reading frame of 753 bp encoding a 27.6-kDa protein which displayed 100, 51.8, and 49% homology with Paa of enterohemorrhagic E. coli O157:H7 strains (EDL933 and Sakai), PEB3 of Campylobacter jejuni, and AcfC of Vibrio cholerae, respectively. Chromosomal localization studies indicated that the region containing paa was inserted between the yciD and yciE genes at about 28.3 min of the E. coli K-12 chromosome. The presence of paa and eae sequences in the porcine O45 strains is highly correlated with the A/E phenotype. However, the observation that three eae-positive but paa-negative PEPEC O45 strains were A/E negative provides further evidence for the importance of the paa gene in the A/E activity of O45 strains. As well, the complementation of the paa mutant restored the A/E activity of the 86-1390 strain, showing the involvement of Paa in PEPEC pathogenicity. These observations suggest that Paa contributes to the early stages of A/E E. coli virulence.
Regulation of Long-Chain N-Acyl-Homoserine Lactones in Agrobacterium vitis
Hao, Guixia; Burr, Thomas J.
2006-01-01
Homologs of quorum-sensing luxR and luxI regulatory genes, avsR and avsI, were identified in Agrobacterium vitis strain F2/5. Compared to other LuxI proteins from related species, the deduced AvsI shows the greatest identity to SinI (71%) from Sinorhizobium meliloti Rm1021. AvsR possesses characteristic autoinducer binding and helix-turn-helix DNA binding domains and shares a high level of identity with SinR (38%) from Rm1021. Site-directed mutagenesis of avsR and avsI was performed, and both genes are essential for hypersensitive-like response (HR) and necrosis. Two hypothetical proteins (ORF1 and ORF2) that are positioned downstream of avsR-avsI are also essential for the phenotypes. Profiles of N-acyl-homoserine lactones (AHLs) isolated from the wild type and mutants revealed that disruption of avsI, ORF1, or ORF2 abolished the production of long-chain AHLs. Disruption of avsR reduces long-chain AHLs. Expression of a cloned avsI gene in A. tumefaciens strain NT1 resulted in synthesis of long-chain AHLs. The necrosis and HR phenotypes of the avsI and avsR mutants were fully complemented with cloned avsI. The addition of synthetic AHLs (C16:1 and 3-O-C16:1) complemented grape necrosis in the avsR, avsI, ORF1, and ORF2 mutants. It was determined by reverse transcriptase PCR that the expression level of avsI is regulated by avsR but not by aviR or avhR, two other luxR homologs which were previously shown to be associated with induction of a tobacco hypersensitive response and grape necrosis. We further verified that avsR regulates avsI by measuring the expression of an avsI::lacZ fusion construct. PMID:16513747
Fontana, Célia; Lambert, Ambroise; Benaroudj, Nadia; Gasparini, David; Gorgette, Olivier; Cachet, Nathalie; Bomchil, Natalia; Picardeau, Mathieu
2016-01-01
Pathogenic Leptospira strains are responsible for leptospirosis, a worldwide emerging zoonotic disease. These spirochetes are unique amongst bacteria because of their corkscrew-like cell morphology and their periplasmic flagella. Motility is reported as an important virulence determinant, probably favoring entry and dissemination of pathogenic Leptospira in the host. However, proteins constituting the periplasmic flagella and their role in cell shape, motility and virulence remain poorly described. In this study, we characterized a spontaneous L. interrogans mutant strain lacking motility, correlated with the loss of the characteristic hook-shaped ends, and virulence in the animal model. Whole genome sequencing allowed the identification of one nucleotide deletion in the fliM gene resulting in a premature stop codon, thereby preventing the production of flagellar motor switch protein FliM. Genetic complementation restored cell morphology, motility and virulence comparable to those of wild type cells. Analyses of purified periplasmic flagella revealed a defect in flagella assembly, resulting in shortened flagella compared to the wild type strain. This also correlated with a lower amount of major filament proteins FlaA and FlaB. Altogether, these findings demonstrate that FliM is required for full and correct assembly of the flagella which is essential for motility and virulence.
Bernhards, Yasmine; Pöggeler, Stefanie
2011-04-01
Members of the striatin family and their highly conserved interacting protein phocein/Mob3 are key components in the regulation of cell differentiation in multicellular eukaryotes. The striatin homologue PRO11 of the filamentous ascomycete Sordaria macrospora has a crucial role in fruiting body development. Here, we functionally characterized the phocein/Mob3 orthologue SmMOB3 of S. macrospora. We isolated the gene and showed that both, pro11 and Smmob3 are expressed during early and late developmental stages. Deletion of Smmob3 resulted in a sexually sterile strain, similar to the previously characterized pro11 mutant. Fusion assays revealed that ∆Smmob3 was unable to undergo self-fusion and fusion with the pro11 strain. The essential function of the SmMOB3 N-terminus containing the conserved mob domain was demonstrated by complementation analysis of the sterile S. macrospora ∆Smmob3 strain. Downregulation of either pro11 in ∆Smmob3, or Smmob3 in pro11 mutants by means of RNA interference (RNAi) resulted in synthetic sexual defects, demonstrating for the first time the importance of a putative PRO11/SmMOB3 complex in fruiting body development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jing; Arentshorst, Mark; Nair, Deepa
Rapid acidification of the culture medium by the production of organic acids and the production of acid-induced proteases are key characteristics of the filamentous fungus Aspergillus niger. The D15 mutant of A. niger is non-acidifying mutant and used often for the expression of recombinant proteins in A. niger, because of its reduced production of extracellular proteases under non-acidic conditions. In this study, the D15 mutant is characterized in detail. Strongly reduced levels of citric and oxalic acid were observed in the D15 mutant both in shake flask cultures and in controlled batch cultivations. To identify the mutation in the D15more » mutant, we successfully combined high-throughput sequencing (Illumina) with bulk segregant analysis. Because of the lack of a sexual cycle for A. niger, the parasexual cycle was used to generate a pool of segregants. From the 52 single nucleotide polymorphisms (SNPs) between the parental strains, three SNPs were homozygous in the genomic DNA of pool of segregants. These three SNPs mapped to all the right arm of chromosome II, indicating that this region contains the genetic locus affecting the phenotype related to acid production. Of the three SNPs, one mutation resulted in a missense mutation in the gene encoding the A. niger homologue of the A. nidulans methyltransferase gene laeA. Complementation analysis of the original mutant with the laeA gene and targeted disruption of laeA further confirmed that LaeA is involved in citric acid production in A. niger lab (N402) and citric acid production strains (ATCC 11414). Analysis of the secondary metabolite (SM) profile of the laeA mutants indicate that LaeA is required for the production of several SMs (asperrubrol, atromentin and JBIR86), but deletion of laeA also resulted in the presence of SMs (aspernigrin A/B and BMS-192548) that were not detected in the wild-type strain. The levels of ten other SMs were not strongly affected as a result of laeA deletion indicating that only a limited number of SM gene clusters are controlled by LaeA activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Chi Ho; Levar, Caleb E.; Zacharoff, Lori
Metal reduction by members of the Geobacteraceae is encoded by multiple gene clusters, and the study of extracellular electron transfer often requires biofilm development on surfaces. Genetic tools that utilize polar antibiotic cassette insertions limit mutant construction and complementation. In addition, unstable plasmids create metabolic burdens that slow growth, and the presence of antibiotics such as kanamycin can interfere with the rate and extent of Geobacter biofilm growth. We report here genetic system improvements for the model anaerobic metal-reducing bacterium Geobacter sulfurreducens. A motile strain of G. sulfurreducens was constructed by precise removal of a transposon interrupting the fgrM flagellarmore » regulator gene using SacB/sucrose counterselection, and Fe(III) citrate reduction was eliminated by deletion of the gene encoding the inner membrane cytochrome imcH. We also show that RK2-based plasmids were maintained in G. sulfurreducens for over 15 generations in the absence of antibiotic selection in contrast to unstable pBBR1 plasmids. Therefore, we engineered a series of new RK2 vectors containing native constitutive Geobacter promoters, and modified one of these promoters for VanR-dependent induction by the small aromatic carboxylic acid vanillate. Inducible plasmids fully complemented Δ imcH mutants for Fe(III) reduction, Mn(IV) oxide reduction, and growth on poised electrodes. A real-time, high-throughput Fe(III) citrate reduction assay is described that can screen numerous G. sulfurreducens strain constructs simultaneously and shows the sensitivity of imcH expression by the vanillate system. Lastly, these tools will enable more sophisticated genetic studies in G. sulfurreducens without polar insertion effects or need for multiple antibiotics.« less
De Craene, Johan-Owen; Courte, Fanny; Rinaldi, Bruno; Fitterer, Chantal; Herranz, Mari Carmen; Schmitt-Keichinger, Corinne; Ritzenthaler, Christophe; Friant, Sylvie
2014-01-01
The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor) Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.
Transformation of Schwanniomyces occidentalis with an ADE2 gene cloned from S. occidentalis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, R.D.; Favreau, M.A.
1988-12-01
We have developed an efficient transformation system for the industrial yeast Schwanniomyces occidentalis (formerly Schwanniomyces castellii). The transformation system is based on ade2 mutants of S. occidentalis deficient for phosphoribosylaminoimidazole carboxylase that were generated by mutagenesis. As a selectable marker, we isolated and characterized the S. occidentalis ADE2 gene by complementation in an ade2 strain of Saccharomyces cerevisiae. S. occidentalis was transformed with the recombinant plasmid pADE, consisting of a 4.5-kilobase-pair (kbp) DNA fragment from S. occidentalis containing the ADE2 gene inserted into the S. cerevisiae expression vector pYcDE8 by a modification of the spheroplasting procedure of Beggs. Intact plasmidsmore » were recovered in Escherichia coli from whole-cell lysates of ADE+ transformants, indicating that plasmids were replicating autonomously. High-molecular-mass species of pADE2 were found by Southern hybridization analysis of intact genomic DNA preparations. The shift to higher molecular mass of these plasmids during electrophoresis in the presence ethidium bromide after exposure to shortwave UV suggests that they exist in a supercoiled form in the transformed host. Subclones of the 4.5-kbp insert indicated that ADE2-complementing activity and sequences conferring autonomous replication in S. occidentalis were located within a 2.7-kbp EcoRI-SphI fragment. Plasmids containing this region cloned into the bacterial vector pUC19 complemented ade2 mutants of S. occidentalis with efficiencies identical to those of the original plasmid pADE.« less
Stamm, Irmela; Lottspeich, Friedrich; Plaga, Wulf
2005-06-01
Myxospore formation of the myxobacterium Stigmatella aurantiaca can be uncoupled from the cooperative development i.e. fruiting body formation, by low concentrations of indole. Two putative indole receptor proteins were isolated by their capacity to bind indole and identified as pyruvate kinase (PK) and aldehyde dehydrogenase. The PK activity of Stigmatella crude extracts was stimulated by indole. Cloning of the PK gene (pykA) and the construction of a pykA disruption mutant strikingly revealed that PK is essential for multicellular development: Fruiting body formation was abolished in the mutant strain and indole-induced spore formation was delayed. The developmental defects could be complemented by insertion of the pykA gene at the mtaB locus of the Stigmatella genome excluding any polar effects of the pykA disruption.
Franco, A A; Kothary, M H; Gopinath, G; Jarvis, K G; Grim, C J; Hu, L; Datta, A R; McCardell, B A; Tall, B D
2011-04-01
Cronobacter spp. are emerging neonatal pathogens in humans, associated with outbreaks of meningitis and sepsis. To cause disease, they must survive in blood and invade the central nervous system by penetrating the blood-brain barrier. C. sakazakii BAA-894 possesses an ~131-kb plasmid (pESA3) that encodes an outer membrane protease (Cpa) that has significant identity to proteins that belong to the Pla subfamily of omptins. Members of this subfamily of proteins degrade a number of serum proteins, including circulating complement, providing protection from the complement-dependent serum killing. Moreover, proteins of the Pla subfamily can cause uncontrolled plasmin activity by converting plasminogen to plasmin and inactivating the plasmin inhibitor α2-antiplasmin (α2-AP). These reactions enhance the spread and invasion of bacteria in the host. In this study, we found that an isogenic cpa mutant showed reduced resistance to serum in comparison to its parent C. sakazakii BAA-894 strain. Overexpression of Cpa in C. sakazakii or Escherichia coli DH5α showed that Cpa proteolytically cleaved complement components C3, C3a, and C4b. Furthermore, a strain of C. sakazakii overexpressing Cpa caused a rapid activation of plasminogen and inactivation of α2-AP. These results strongly suggest that Cpa may be an important virulence factor involved in serum resistance, as well as in the spread and invasion of C. sakazakii.
Generation of a transgenic ORFeome library in Drosophila
Bischof, Johannes; Sheils, Emma M.; Björklund, Mikael; Basler, Konrad
2014-01-01
Overexpression screens can be used to explore gene function in Drosophila melanogaster, but to demonstrate their full potential comprehensive and systematic collections of fly strains are required. Here we provide a protocol for high-throughput cloning of Drosophila open reading frames (ORFs) regulated by Upstream Activation Sequences (UAS sites); the resulting Gal4-inducible UAS-ORF plasmid library is then used to generate Drosophila strains by ΦC31 integrase-mediated site-specific integration. We also provide details for FLP/FRT-mediated in vivo exchange of epitope tags (or regulatory regions) in the ORF library strains, which further extends their potential applications. These transgenic UAS-ORF strains are a useful resource to complement and validate genetic experiments performed with loss-of-function mutants and RNAi lines. The duration of the complete protocol strongly depends on the number of ORFs required, but the procedure of injection and establishing balanced fly stocks can be completed within approx. 6-7 weeks for a few genes. PMID:24922270
Neurospora crassa ASM-1 complements the conidiation defect in a stuA mutant of Aspergillus nidulans.
Chung, Dawoon; Upadhyay, Srijana; Bomer, Brigitte; Wilkinson, Heather H; Ebbole, Daniel J; Shaw, Brian D
2015-01-01
Aspergillus nidulans StuA and Neurospora crassa ASM-1 are orthologous APSES (ASM-1, PHD1, SOK2, Efg1, StuA) transcription factors conserved across a diverse group of fungi. StuA and ASM-1 have roles in asexual (conidiation) and sexual (ascospore formation) development in both organisms. To address the hypothesis that the last common ancestor of these diverse fungi regulated conidiation with similar genes, asm-1 was introduced into the stuA1 mutant of A. nidulans. Expression of asm-1 complemented defective conidiophore morphology and restored conidia production to wild type levels in stuA1. Expression of asm-1 in the stuA1 strain did not rescue the defect in sexual development. When the conidiation regulator AbaA was tagged at its C-terminus with GFP in A. nidulans, it localized to nuclei in phialides. When expressed in the stuA1 mutant, AbaA::GFP localized to nuclei in conidiophores but no longer was confined to phialides, suggesting that expression of AbaA in specific cell types of the conidiophore was conditioned by StuA. Our data suggest that the function in conidiation of StuA and ASM-1 is conserved and support the view that, despite the great morphological and ontogenic diversity of their condiphores, the last common ancestor of A. nidulans and N. crassa produced an ortholog of StuA that was involved in conidiophore development. © 2015 by The Mycological Society of America.
Olson, Daniel G.; Giannone, Richard J.; Hettich, Robert L.
2013-01-01
The CipA scaffoldin protein plays a key role in the Clostridium thermocellum cellulosome. Previous studies have revealed that mutants deficient in binding or solubilizing cellulose also exhibit reduced expression of CipA. To confirm that CipA is, in fact, necessary for rapid solubilization of crystalline cellulose, the gene was deleted from the chromosome using targeted gene deletion technologies. The CipA deletion mutant exhibited a 100-fold reduction in cellulose solubilization rate, although it was eventually able to solubilize 80% of the 5 g/liter cellulose initially present. The deletion mutant was complemented by a copy of cipA expressed from a replicating plasmid. In this strain, Avicelase activity was restored, although the rate was 2-fold lower than that in the wild type and the duration of the lag phase was increased. The cipA coding sequence is located at the beginning of a gene cluster containing several other genes thought to be responsible for the structural organization of the cellulosome, including olpB, orf2p, and olpA. Tandem mass spectrometry revealed a 10-fold reduction in the expression of olpB, which may explain the lower growth rate. This deletion experiment adds further evidence that CipA plays a key role in cellulose solubilization by C. thermocellum, and it raises interesting questions about the differential roles of the anchor scaffoldin proteins OlpB, Orf2p, and SdbA. PMID:23204466
Zhang, Kang; Yuan, Xuemei; Zang, Jinping; Wang, Min; Zhao, Fuxin; Li, Peifen; Cao, Hongzhe; Han, Jianmin; Xing, Jihong; Dong, Jingao
2018-01-01
A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea. A novel pathogenicity-related gene BcKMO, which encodes kynurenine 3-monooxygenase (KMO), was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO-complementing mutant (BCG183/BcKMO) were similar to those of the wild-type (WT) strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/BcKMO. Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H2O2, and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP) and mitogen-activated protein kinase (MAPK) signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1, Pka2, PkaR, Bcg2, Bcg3, bmp1, and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea. Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea. PMID:29867912
Zhang, Kang; Yuan, Xuemei; Zang, Jinping; Wang, Min; Zhao, Fuxin; Li, Peifen; Cao, Hongzhe; Han, Jianmin; Xing, Jihong; Dong, Jingao
2018-01-01
A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea . A novel pathogenicity-related gene BcKMO , which encodes kynurenine 3-monooxygenase (KMO), was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO -complementing mutant (BCG183/ BcKMO ) were similar to those of the wild-type (WT) strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/ BcKMO . Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H 2 O 2 , and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP) and mitogen-activated protein kinase (MAPK) signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1 , Pka2 , PkaR , Bcg2 , Bcg3 , bmp1 , and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea . Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea .
Effect of IAA on in vitro growth and colonization of Nostoc in plant roots
Hussain, Anwar; Shah, Syed T.; Rahman, Hazir; Irshad, Muhammad; Iqbal, Amjad
2015-01-01
Nostoc is widely known for its ability to fix atmospheric nitrogen and the establishment of symbiotic relationship with a wide range of plants from various taxonomic groups. Several strains of Nostoc produce phytohormones that promote growth of its plant partners. Nostoc OS-1 was therefore selected for study because of the presence of putative ipdC gene that encodes a key enzyme to produce Indole-3-acetic acid (IAA). The results indicated that both cellular and released IAA was found high with increasing incubation time and reached to a peak value (i.e., 21 pmol mg-1ch-a) on the third week as determined by UPLC-ESI-MS/MS. Also the Nostoc OS-1 strain efficiently colonized the roots and promoted the growth of rice as well as wheat under axenic conditions and induced ipdC gene that suggested the possible involvement of IAA in these phenotypes. To confirm the impact of IAA on root colonization efficiency and plant promoting phenotypes of Nostoc OS-1, an ipdC knockout mutant was generated by homologous recombinant method. The amount of releasing IAA, in vitro growth, root colonization, and plant promoting efficiency of the ipdC knockout mutant was observed significantly lower than wild type strain under axenic conditions. Importantly, these phenotypes were restored to wild-type levels when the ipdC knockout mutant was complemented with wild type ipdC gene. These results together suggested that ipdC and/or synthesized IAA of Nostoc OS-1 is required for its efficient root colonization and plant promoting activity. PMID:25699072
2013-01-01
Bovine necrohemorrhagic enteritis is a major cause of mortality in veal calves. Clostridium perfringens is considered as the causative agent, but there has been controversy on the toxins responsible for the disease. Recently, it has been demonstrated that a variety of C. perfringens type A strains can induce necrohemorrhagic lesions in a calf intestinal loop assay. These results put forward alpha toxin and perfringolysin as potential causative toxins, since both are produced by all C. perfringens type A strains. The importance of perfringolysin in the pathogenesis of bovine necrohemorrhagic enteritis has not been studied before. Therefore, the objective of the current study was to evaluate the role of perfringolysin in the development of necrohemorrhagic enteritis lesions in calves and its synergism with alpha toxin. A perfringolysin-deficient mutant, an alpha toxin-deficient mutant and a perfringolysin alpha toxin double mutant were less able to induce necrosis in a calf intestinal loop assay as compared to the wild-type strain. Only complementation with both toxins could restore the activity to that of the wild-type. In addition, perfringolysin and alpha toxin had a synergistic cytotoxic effect on bovine endothelial cells. This endothelial cell damage potentially explains why capillary hemorrhages are an initial step in the development of bovine necrohemorrhagic enteritis. Taken together, our results show that perfringolysin acts synergistically with alpha toxin in the development of necrohemorrhagic enteritis in a calf intestinal loop model and we hypothesize that both toxins act by targeting the endothelial cells. PMID:23782465
A Novel (S)-6-Hydroxynicotine Oxidase Gene from Shinella sp. Strain HZN7
Qiu, Jiguo; Wei, Yin; Ma, Yun; Wen, Rongti; Wen, Yuezhong
2014-01-01
Nicotine is an important environmental toxicant in tobacco waste. Shinella sp. strain HZN7 can metabolize nicotine into nontoxic compounds via variations of the pyridine and pyrrolidine pathways. However, the catabolic mechanism of this variant pathway at the gene or enzyme level is still unknown. In this study, two 6-hydroxynicotine degradation-deficient mutants, N7-M9 and N7-W3, were generated by transposon mutagenesis. The corresponding mutant genes, designated nctB and tnp2, were cloned and analyzed. The nctB gene encodes a novel flavin adenine dinucleotide-containing (S)-6-hydroxynicotine oxidase that converts (S)-6-hydroxynicotine into 6-hydroxy-N-methylmyosmine and then spontaneously hydrolyzes into 6-hydroxypseudooxynicotine. The deletion and complementation of the nctB gene showed that this enzyme is essential for nicotine or (S)-6-hydroxynicotine degradation. Purified NctB could also convert (S)-nicotine into N-methylmyosmine, which spontaneously hydrolyzed into pseudooxynicotine. The kinetic constants of NctB toward (S)-6-hydroxynicotine (Km = 0.019 mM, kcat = 7.3 s−1) and nicotine (Km = 2.03 mM, kcat = 0.396 s−1) indicated that (S)-6-hydroxynicotine is the preferred substrate in vivo. NctB showed no activities toward the R enantiomer of nicotine or 6-hydroxynicotine. Strain HZN7 could degrade (R)-nicotine into (R)-6-hydroxynicotine without any further degradation. The tnp2 gene from mutant N7-W3 encodes a putative transposase, and its deletion did not abolish the nicotine degradation activity. This study advances the understanding of the microbial diversity of nicotine biodegradation. PMID:25002425
Kirk, Joseph A.; Gebhart, Dana; Buckley, Anthony M.; Lok, Stephen; Scholl, Dean; Douce, Gillian R.; Govoni, Gregory R.; Fagan, Robert P.
2017-01-01
Avidocin-CDs are a new class of precision bactericidal agents that do not damage resident gut microbiota and are unlikely to promote the spread of antibiotic resistance. The precision killing properties result from the fusion of bacteriophage receptor binding proteins (RBPs) to a lethal contractile scaffold from an R-type bacteriocin. We recently described the prototypic Avidocin-CD, Av-CD291.2, that specifically kills C. difficile ribotype 027 strains and prevents colonization of mice. We have since selected two rare Av-CD291.2 resistant mutants of strain R20291 (RT027; S-layer cassette type-4, SCLT-4). These mutants have distinct point mutations in the slpA gene that result in an S-layer null phenotype. Reversion of the mutations to wild-type restored normal SLCT-4 S-layer formation and Av-CD291.2 sensitivity; however, complementation with other SCLT alleles did not restore Av-CD291.2 sensitivity despite restoring S-layer formation. Using newly identified phage RBPs, we constructed a panel of new Avidocin-CDs that kill C. difficile isolates in an SLCT-dependent manner, confirming the S-layer as the receptor in every case. In addition to bacteriophage adsorption, characterization of the S-layer null mutant also uncovered important roles for SlpA in sporulation, resistance to lysozyme and LL-37, and toxin production. Surprisingly, the S-layer-null mutant was found to persist in the hamster gut despite its completely attenuated virulence. Avidocin-CDs have significant therapeutic potential for the treatment and prevention of C. difficile Infection (CDI) given their exquisite specificity for the pathogen. Furthermore, the emergence of resistance forces mutants to trade virulence for continued viability and, therefore, greatly reduce their potential clinical impact. PMID:28878013
Wei, Wei; Zhu, Wenjun; Cheng, Jiasen; Xie, Jiatao; Li, Bo; Jiang, Daohong; Li, Guoqing; Yi, Xianhong
2013-01-01
Coniothyrium minitans is a sclerotial parasite of the plant-pathogenic fungus Sclerotinia sclerotiorum, and conidial production and parasitism are two important aspects for commercialization of this biological control agent. To understand the mechanism of conidiation and parasitism at the molecular level, we constructed a transfer DNA (tDNA) insertional library with the wild-type strain ZS-1. A conidiation-deficient mutant, ZS-1TN22803, was uncovered through screening of this library. This mutant could produce pycnidia on potato dextrose agar (PDA), but most were immature and did not bear conidia. Moreover, this mutant lost the ability to parasitize or rot the sclerotia of S. sclerotiorum. Analysis of the tDNA flanking sequences revealed that a peroxisome biogenesis factor 6 (PEX6) homolog of Saccharomyces cerevisiae, named CmPEX6, was disrupted by the tDNA insertion in this mutant. Targeted gene replacement and gene complementation tests confirmed that a null mutation of CmPEX6 was responsible for the phenotype of ZS-1TN22803. Further analysis showed that both ZS-1TN22803 and the targeted replacement mutants could not grow on PDA medium containing oleic acid, and they produced much less nitric oxide (NO) and hydrogen peroxide (H2O2) than wild-type strain ZS-1. The conidiation of ZS-1TN22803 was partially restored by adding acetyl-CoA or glyoxylic acid to the growth media. Our results suggest that fatty acid β-oxidation, reactive oxygen and nitrogen species, and possibly other unknown pathways in peroxisomes are involved in conidiation and parasitism by C. minitans. PMID:23563946
Johnson, James R; Clabots, Connie; Rosen, Henry
2006-01-01
To survive within the host urinary tract, Escherichia coli strains that cause urinary tract infection (UTI) presumably must overcome powerful oxidant stresses, including the oxygen-dependent killing mechanisms of neutrophils. Accordingly, we assessed the global oxygen stress regulator OxyR of Escherichia coli as a possible virulence factor in UTI by determining the impact of oxyR inactivation on experimental urovirulence in CBA/J and C57BL (both wild-type and p47(phox-/-)) mice. The oxyR and oxyS genes of wild-type E. coli strain Ec1a (O1:K1:H7) were replaced with a kanamycin resistance cassette to produce an oxyRS mutant. During in vitro growth in broth or human urine, the oxyRS mutant exhibited the same log-phase growth rate (broth) and plateau density (broth and urine) as Ec1a, despite its prolonged lag phase (broth) or initial decrease in concentration (urine). The mutant, and oxyRS mutants of other wild-type ExPEC strains, exhibited significantly increased in vitro susceptibility to inhibition by H(2)O(2), which, like the altered growth kinetics observed with oxyRS inactivation, were reversed by restoration of oxyR on a multiple-copy-number plasmid. In CBA/J mice, Ec1a significantly outcompeted its oxyRS mutant (by >1 log(10)) in urine, bladder, and kidney cultures harvested 48 h after perurethral inoculation of mice, whereas an oxyR-complemented mutant exhibited equal or greater colonizing ability than that of the parent. Although C57BL mice were less susceptible to experimental UTI than CBA/J mice, wild-type and p47(phox-/-) C57BL mice were similarly susceptible, and the oxyR mutant of Ec1a was similarly attenuated in C57BL mice, regardless of the p47(phox) genotype, as in CBA/J mice. Within the E. coli Reference collection, 94% of strains were positive for oxyR. These findings fulfill the second and third of Koch's molecular postulates for oxyR as a candidate virulence-facilitating factor in E. coli and indicate that oxyR is a broadly prevalent potential target for future preventive interventions against UTI due to E. coli. They also suggest that neutrophil phagocyte oxidase is not critical for defense against E. coli UTI and that the major oxidative stresses against which OxyR protects E. coli within the host milieu are not phagocyte derived.
Genetic Map of Bacteriophage α
Kejzlarovà, J.; Donini, P.; Eremenko-Volpe, T.; Graziosi, F.
1970-01-01
Temperature-sensitive mutants of phage α were obtained by means of various mutagens and assigned to 25 complementation groups. Temperature-sensitive mutants belonging to 21 complementation groups and a mutant giving turbid plaques were used to perform two- and three-factor crosses. Seventeen of the cistrons and the turbid mutant were shown to belong to the same linear linkage group, which showed no signs of circularity. The remaining four unlinked cistrons showed peculiarities in their recombination properties. Genes which are known to be expressed earlier apear to be grouped together in a terminal segment of the linkage group. PMID:4990532
Zinc Resistance Mechanisms of P1B-type ATPases in Sinorhizobium meliloti CCNWSX0020
Lu, Mingmei; Li, Zhefei; Liang, Jianqiang; Wei, Yibing; Rensing, Christopher; Wei, Gehong
2016-01-01
The Sinorhizobium meliloti (S. meliloti) strain CCNWSX0020 displayed tolerance to high levels exposures of multiple metals and growth promotion of legume plants grown in metal-contaminated soil. However, the mechanism of metal-resistant strain remains unknown. We used five P1B-ATPases deletions by designating as ∆copA1b, ∆fixI1, ∆copA3, ∆zntA and ∆nia, respectively to investigate the role of P1B-ATPases in heavy metal resistance of S. meliloti. The ∆copA1b and ∆zntA mutants were sensitive to zinc (Zn), cadmium (Cd) and lead (Pb) in different degree, whereas the other mutants had no significant influence on the metal resistance. Moreover, the expression of zntA was induced by Zn, Cd and Pb whereas copA1b was induced by copper (Cu) and silver (Ag). This two deletions could led to the increased intracellular concentrations of Zn, Pb and Cd, but not of Cu. Complementation of ∆copA1b and ∆zntA mutants showed a restoration of tolerance to Zn, Cd and Pb to a certain extent. Taken together, the results suggest an important role of copA1b and zntA in Zn homeostasis and Cd and Pb detoxification in S. meliloti CCNWSX0020. PMID:27378600
Xie, Xi; Meesapyodsuk, Dauenpen; Qiu, Xiao
2017-05-01
Thraustochytrium sp. strain ATCC 26185 accumulates a high level of docosahexaenoic acid (DHA), a nutritionally important ω-3 very-long-chain polyunsaturated fatty acid (VLCPUFA) synthesized primarily by polyunsaturated fatty acid (PUFA) synthase, a type I polyketide synthase-like megaenzyme. The PUFA synthase in this species comprises three large subunits, each with multiple catalytic domains. It was hypothesized that among these domains, ketoacylsynthase (KS) domains might be critical for catalyzing the condensation of specific unsaturated acyl-acyl carrier proteins (ACPs) with malonyl-ACP, thereby retaining double bonds in an extended acyl chain. To investigate the functions of these putative KS domains, two segment sequences from subunit A (KS-A) and subunit B (KS-B) of the PUFA synthase were dissected and then expressed as stand-alone enzymes in Escherichia coli The results showed that both KS-A and KS-B domains could complement the defective phenotypes of both E. coli fabB and fabF mutants. Overexpression of these domains in wild-type E. coli led to increases in total fatty acid production. KS-B produced a higher ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs), while KS-A could improve the overall production of fatty acids more effectively, particularly for the production of SFAs, implying that KS-A is more comparable to FabF, while KS-B is more similar to FabB in catalytic functions. Successful complementation and functional expression of the embedded KS domains in E. coli are the first step forward in studying the molecular mechanism of the PUFA synthase for the biosynthesis of VLCPUFAs in Thraustochytrium IMPORTANCE Very-long-chain polyunsaturated fatty acids (VLCPUFAs) are important for human health. They can be biosynthesized in either an aerobic pathway or an anaerobic pathway in nature. However, abundant VLCPUFAs in marine microorganisms are primarily synthesized by polyunsaturated fatty acid (PUFA) synthase, a megaenzyme with multiple subunits, each with multiple catalytic domains. Furthermore, the fundamental mechanism for this enzyme to synthesize these fatty acids still remains unknown. This report started with dissecting the embedded KS domains of the PUFA synthase from marine protist Thraustochytrium sp. strain ATCC 26185 and then expressing them in wild-type E. coli and mutants defective in condensation of acyl-ACP with malonyl-ACP. Successful complementation of the mutants and improved fatty acid production in the overexpression experiments indicate that these KS domains can effectively function as stand-alone enzymes in E. coli This result has paved the way for further studying of molecular mechanisms of the PUFA synthase for the biosynthesis of VLCPUFAs. Copyright © 2017 American Society for Microbiology.
Xie, Xi; Meesapyodsuk, Dauenpen
2017-01-01
ABSTRACT Thraustochytrium sp. strain ATCC 26185 accumulates a high level of docosahexaenoic acid (DHA), a nutritionally important ω-3 very-long-chain polyunsaturated fatty acid (VLCPUFA) synthesized primarily by polyunsaturated fatty acid (PUFA) synthase, a type I polyketide synthase-like megaenzyme. The PUFA synthase in this species comprises three large subunits, each with multiple catalytic domains. It was hypothesized that among these domains, ketoacylsynthase (KS) domains might be critical for catalyzing the condensation of specific unsaturated acyl-acyl carrier proteins (ACPs) with malonyl-ACP, thereby retaining double bonds in an extended acyl chain. To investigate the functions of these putative KS domains, two segment sequences from subunit A (KS-A) and subunit B (KS-B) of the PUFA synthase were dissected and then expressed as stand-alone enzymes in Escherichia coli. The results showed that both KS-A and KS-B domains could complement the defective phenotypes of both E. coli fabB and fabF mutants. Overexpression of these domains in wild-type E. coli led to increases in total fatty acid production. KS-B produced a higher ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs), while KS-A could improve the overall production of fatty acids more effectively, particularly for the production of SFAs, implying that KS-A is more comparable to FabF, while KS-B is more similar to FabB in catalytic functions. Successful complementation and functional expression of the embedded KS domains in E. coli are the first step forward in studying the molecular mechanism of the PUFA synthase for the biosynthesis of VLCPUFAs in Thraustochytrium. IMPORTANCE Very-long-chain polyunsaturated fatty acids (VLCPUFAs) are important for human health. They can be biosynthesized in either an aerobic pathway or an anaerobic pathway in nature. However, abundant VLCPUFAs in marine microorganisms are primarily synthesized by polyunsaturated fatty acid (PUFA) synthase, a megaenzyme with multiple subunits, each with multiple catalytic domains. Furthermore, the fundamental mechanism for this enzyme to synthesize these fatty acids still remains unknown. This report started with dissecting the embedded KS domains of the PUFA synthase from marine protist Thraustochytrium sp. strain ATCC 26185 and then expressing them in wild-type E. coli and mutants defective in condensation of acyl-ACP with malonyl-ACP. Successful complementation of the mutants and improved fatty acid production in the overexpression experiments indicate that these KS domains can effectively function as stand-alone enzymes in E. coli. This result has paved the way for further studying of molecular mechanisms of the PUFA synthase for the biosynthesis of VLCPUFAs. PMID:28213537
Bernardini, Alejandra; Corona, Fernando; Dias, Ricardo; Sánchez, Maria B; Martínez, Jose L
2015-01-01
Quinolone resistance is usually due to mutations in the genes encoding bacterial topoisomerases. However, different reports have shown that neither clinical quinolone resistant isolates nor in vitro obtained Stenotrophomonas maltophilia mutants present mutations in such genes. The mechanisms so far described consist on efflux pumps' overexpression. Our objective is to get information on novel mechanisms of S. maltophilia quinolone resistance. For this purpose, a transposon-insertion mutant library was obtained in S. maltophilia D457. One mutant presenting reduced susceptibility to nalidixic acid was selected. Inverse PCR showed that the inactivated gene encodes RNase G. Complementation of the mutant with wild-type RNase G allele restored the susceptibility to quinolones. Transcriptomic and real-time RT-PCR analyses showed that several genes encoding heat-shock response proteins were expressed at higher levels in the RNase defective mutant than in the wild-type strain. In agreement with this situation, heat-shock reduces the S. maltophilia susceptibility to quinolone. We can then conclude that the inactivation of the RNase G reduces the susceptibility of S. maltophilia to quinolones, most likely by regulating the expression of heat-shock response genes. Heat-shock induces a transient phenotype of quinolone resistance in S. maltophilia.
Rawat, Mamta; Uppal, Mandeep; Newton, Gerald; Steffek, Micah; Fahey, Robert C.; Av-Gay, Yossef
2004-01-01
Mycothiol (MSH), a functional analogue of glutathione (GSH) that is found exclusively in actinomycetes, reacts with electrophiles and toxins to form MSH-toxin conjugates. Mycothiol S-conjugate amidase (Mca) then catalyzes the hydrolysis of an amide bond in the S conjugates, producing a mercapturic acid of the toxin, which is excreted from the bacterium, and glucosaminyl inositol, which is recycled back to MSH. In this study, we have generated and characterized an allelic exchange mutant of the mca gene of Mycobacterium smegmatis. The mca mutant accumulates the S conjugates of the thiol-specific alkylating agent monobromobimane and the antibiotic rifamycin S. Introduction of M. tuberculosis mca epichromosomally or introduction of M. smegmatis mca integratively resulted in complementation of Mca activity and reduced levels of S conjugates. The mutation in mca renders the mutant strain more susceptible to electrophilic toxins, such as N-ethylmalemide, iodoacetamide, and chlorodinitrobenzene, and to several oxidants, such as menadione and plumbagin. Additionally we have shown that the mca mutant is also more susceptible to the antituberculous antibiotic streptomycin. Mutants disrupted in genes belonging to MSH biosynthesis are also more susceptible to streptomycin, providing further evidence that Mca detoxifies streptomycin in the mycobacterial cell in an MSH-dependent manner. PMID:15342574
Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis
NASA Technical Reports Server (NTRS)
MacCleery, S. A.; Kiss, J. Z.
1999-01-01
Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, L.N.; Hanson, R.S.
Four new cloning vectors have been constructed from the broad-host-range cloning vector pRK290. These vectors, pLA2901, pLA2905, pLA2910, and pLA2917, confer resistance to kanamycin and tetracycline. The latter two are cosmid derivatives of pLA2901. The new vectors can be mobilized into, and are stably maintained in, a variety of gram-negative bacteria. A Sau3A genomic bank of Methylobacterium organophilum strain xx DNA has been constructed in pLA2917, and complementation analysis, with a variety of mutants unable to grow on methanol, revealed at least five separate regions necessary for growth on methanol. Complementation analysis and Tn5 mutagenesis data suggest that at leastmore » three genes are responsible for expression of active methanol dehydrogenase.« less
Zaragoza, Oscar; Blazquez, Miguel A.; Gancedo, Carlos
1998-01-01
The TPS1 gene from Candida albicans, which encodes trehalose-6-phosphate synthase, has been cloned by functional complementation of a tps1 mutant from Saccharomyces cerevisiae. In contrast with the wild-type strain, the double tps1/tps1 disruptant did not accumulate trehalose at stationary phase or after heat shock. Growth of the tps1/tps1 disruptant at 30°C was indistinguishable from that of the wild type. However, at 42°C it did not grow on glucose or fructose but grew normally on galactose or glycerol. At 37°C, the yeast-hypha transition in the mutant in glucose-calf serum medium did not occur. During growth at 42°C, the mutant did not form hyphae in galactose or in glycerol. Some of the growth defects observed may be traced to an unbalanced sugar metabolism that reduces the cellular content of ATP. Mice inoculated with 106 CFU of the tps1/tps1 mutant did not show visible symptoms of infection 16 days after inoculation, while those similarly inoculated with wild-type cells were dead 12 days after inoculation. PMID:9683476
Zaragoza, O; Blazquez, M A; Gancedo, C
1998-08-01
The TPS1 gene from Candida albicans, which encodes trehalose-6-phosphate synthase, has been cloned by functional complementation of a tps1 mutant from Saccharomyces cerevisiae. In contrast with the wild-type strain, the double tps1/tps1 disruptant did not accumulate trehalose at stationary phase or after heat shock. Growth of the tps1/tps1 disruptant at 30 degreesC was indistinguishable from that of the wild type. However, at 42 degreesC it did not grow on glucose or fructose but grew normally on galactose or glycerol. At 37 degreesC, the yeast-hypha transition in the mutant in glucose-calf serum medium did not occur. During growth at 42 degreesC, the mutant did not form hyphae in galactose or in glycerol. Some of the growth defects observed may be traced to an unbalanced sugar metabolism that reduces the cellular content of ATP. Mice inoculated with 10(6) CFU of the tps1/tps1 mutant did not show visible symptoms of infection 16 days after inoculation, while those similarly inoculated with wild-type cells were dead 12 days after inoculation.
Avery, Simon V.; Malkapuram, Srividya; Mateus, Carolina; Babb, Kimberly S.
2000-01-01
Saccharomyces cerevisiae, along with other eukaryotes, is resistant to tetracyclines. We found that deletion of SOD1 (encoding Cu/Zn superoxide dismutase) rendered S. cerevisiae hypersensitive to oxytetracycline (OTC): a sod1Δ mutant exhibited a >95% reduction in colony-forming ability at an OTC concentration of 20 μg ml−1, whereas concentrations of up to 1,000 μg ml−1 had no effect on the growth of the wild type. OTC resistance was restored in the sod1Δ mutant by complementation with wild-type SOD1. The effect of OTC appeared to be cytotoxic and was not evident in a ctt1Δ (cytosolic catalase) mutant or in the presence of tetracycline. SOD1 transcription was not induced by OTC, suggesting that constitutive SOD1 expression is sufficient for wild-type OTC resistance. OTC uptake levels in wild-type and sod1Δ strains were similar. However, lipid peroxidation and protein oxidation were both enhanced during exposure of the sod1Δ mutant, but not the wild type, to OTC. We propose that Sod1p protects S. cerevisiae against a mode of OTC action that is dependent on oxidative damage. PMID:10613865
Martin, N C; Underbrink-Lyon, K
1981-01-01
We have used a cloned yeast mitochondrial tRNAUCNSer gene as a probe to detect RNA species that are transcripts from this gene in wild-type Saccharomyces cerevisiae and in petite deletion mutants. In RNA from wild-type cells, the tRNA is the most prominent transcript of the gene. In RNA from deletion mutants that retain this gene but have lost other regions of mtDNA, high molecular weight transcripts containing the tRNAUCNSer sequences accumulate but tRNAUCNSer is not made. tRNAUCNSer synthesis can be restored in these mutants when they are mated to other deletion mutants that retain a different portion of the mitochondrial genome. Protein synthesis is not necessary for the restoration, and the restoration is not due to a nuclear effect or to an effect of mating alone, because strains without mtDNA are not able to restore tRNA synthesis. These results definitively demonstrate the existence of a yeast mitochondrial locus that is necessary for tRNA synthesis and, because the restoration of tRNAUCNSer synthesis appears to result from intergenic complementation, not recombination, indicate that this locus acts in trans. Images PMID:6795621
Liu, Miao; Yang, Xiao-Ning; Zhu, Hui-Xia; Jia, Yuan-Yuan; Jia, Shi-Ru; Piergiovanni, Luciano
2014-01-01
A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955) using DEC (diethyl sulfate) and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct) concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA) cycle was obtained in mutant strain (57.0%) compared with parent strain (17.0%). It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP) and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH), which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53–6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain. PMID:24901455
Identification and Characterization of Mutations Affecting Sporulation in Saccharomyces Cerevisiae
Smith, L. M.; Robbins, L. G.; Kennedy, A.; Magee, P. T.
1988-01-01
Mutations affecting the synthesis of the sporulation amyloglucosidase were isolated in a homothallic strain of Saccharomyces cerevisiae, SCMS7-1. Two were found, both of which were deficient in sporulation at 34°. One, SL484, sporulated to 50% normal levels at 30° but less than 5% at 34° or 22°. The other, SL641, failed to sporulate at any temperature. Both mutants were blocked before premeiotic DNA synthesis, and both complemented spo1, spo3, and spo7. Genetic analysis of the mutation in SL484 indicated linkage to TRP5 and placed the gene 10 map units from TRP5 on chromosome VII. A plasmid containing an insert which complements the mutation in SL484 fails to complement SL641. We therefore conclude that these two mutations are in separate genes and we propose to call these genes SPO17 and SPO18. These two genes are (with SPO7, SPO8, and SPO9) among the earliest identified in the sporulation pathway and may interact directly with the positive and negative regulators RME and IME. PMID:3147221
Hilty, Jeremy; Smulian, A. George; Newman, Simon L.
2008-01-01
Summary Histoplasma capsulatum is a dimorphic fungal pathogen that survives and replicates within macrophages (Mϕ). To identify specific genes required for intracellular survival, we utilized Agrobacterium tumefaciens-mediated mutagenesis, and screened for H. capsulatum insertional mutants that were unable to survive in human Mϕ. One colony was identified that had an insertion within VMA1, the catalytic subunit A of the vacuolar ATPase (V-ATPase). The vma1 mutant (vma1::HPH) grew normally on iron replete medium, but not on iron deficient media. On iron deficient medium, the growth of the vma1 mutant was restored in the presence of wild type (WT) H. capsulatum yeasts, or the hydroxamate siderophore, rhodotorulic acid. However, the inability to replicate within Mϕ was only partially restored by the addition of exogenous iron. The vma1::HPH mutant also did not grow as a mold at 28°C. Complementation of the mutant (vma/VMA1) restored its ability to replicate in Mϕ, grow on iron poor medium, and grow as a mold at 28°C. The vma1::HPH mutant was avirulent in a mouse model of histoplasmosis, whereas the vma1/VMA1 strain was as pathogenic as WT yeasts. These studies demonstrate the importance of V-ATPase function in the pathogenicity of H. capsulatum, in iron homeostasis, and in fungal dimorphism. PMID:18699866
Wen, Yongping; Wen, Yiping; Wen, Xintian; Cao, Sanjie; Huang, Xiaobo; Wu, Rui; Zhao, Qin; Liu, Mafeng; Huang, Yong; Yan, Qigui; Han, Xinfeng; Ma, Xiaoping; Dai, Ke; Ding, Lingqiang; Liu, Sitong; Yang, Jian
2018-02-15
Haemophilus parasuis is an opportunistic pathogen and the causative agent of Glässer's disease in swine. This disease has high morbidity and mortality rates in swine populations, and is responsible for major economic losses worldwide. Survival of H. parasuis within the host requires mechanisms for coping with oxidative stress conditions. In many bacteria, OxyR is known to mediate protection against oxidative stress; however, little is known about the role of OxyR in H. parasuis. In the current study, an oxyR mutant strain was constructed in H. parasuis strain SC1401 and designated H. parasuis SC1401∆oxyR. The oxyR mutant strain had a slower growth rate and impaired biofilm formation compared to the wild type strain. Complementation restored the growth-associated phenotypes to wild type levels. Oxidative stress susceptibility testing, using a range of concentrations of H 2 O 2 , indicated that H. parasuis SC1401∆oxyR was more sensitive to oxidative stress than the wild type strain. RNA sequencing transcriptome analysis comparing H. parasuis SC1401 with H. parasuis SC1401∆oxyR identified 466 differentially expressed genes. These genes were involved in a wide range of biological processes, including: oxidative stress, transcriptional regulation, and DNA replication, recombination, and repair. These findings provide a foundation for future research to examine the role of OxyR as a global transcriptional regulator and to better define its role in oxidative stress resistance in H. parasuis. Copyright © 2017 Elsevier B.V. All rights reserved.
Pollock, Steve V; Colombo, Sergio L; Prout, Davey L; Godfrey, Ashley C; Moroney, James V
2003-12-01
This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii.
Ramos, Ana Raquel; Grein, Fabian; Oliveira, Gonçalo P; Venceslau, Sofia S; Keller, Kimberly L; Wall, Judy D; Pereira, Inês A C
2015-07-01
Flavin-based electron bifurcation (FBEB) is an important mechanism for the energy metabolism of anaerobes. A new family of NADH dehydrogenases, the flavin oxidoreductase (FlxABCD, previously called FloxABCD), was proposed to perform FBEB in sulphate-reducing organisms coupled with heterodisulfide reductase (HdrABC). We found that the hdrABC-flxABCD gene cluster is widespread among anaerobic bacteria, pointing to a general and important role in their bioenergetics. In this work, we studied FlxABCD of Desulfovibrio vulgaris Hildenborough. The hdr-flx genes are part of the same transcriptional unit and are increased in transcription during growth in ethanol-sulfate, and to a less extent during pyruvate fermentation. Two mutant strains were generated: one where expression of the hdr-flx genes was interrupted and another lacking the flxA gene. Both strains were unable to grow with ethanol-sulfate, whereas growth was restored in a flxA-complemented strain. The mutant strains also produced very reduced amounts of ethanol compared with the wild type during pyruvate fermentation. Our results show that in D. vulgaris, the FlxABCD-HdrABC proteins are essential for NADH oxidation during growth on ethanol, probably involving a FBEB mechanism that leads to reduction of ferredoxin and the small protein DsrC, while in fermentation they operate in reverse, reducing NAD(+) for ethanol production. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Yersinia pestis and host macrophages: immunodeficiency of mouse macrophages induced by YscW.
Bi, Yujing; Du, Zongmin; Han, Yanping; Guo, Zhaobiao; Tan, Yafang; Zhu, Ziwen; Yang, Ruifu
2009-09-01
The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system (T3SS) that transfers six Yersinia outer protein (Yop) effector proteins into the cytoplasm of eukaryotic cells, leading to disruption of host defence mechanisms. It is shown in this study that Yersinia pestis YscW, a protein of the T3SS injectisome, contributes to the induction of a deficiency in phagocytosis in host macrophages and a reduction in their antigen-presenting capacity. A Y. pestis strain lacking yscW had no effect on uptake by host macrophages. In mice infected with wild-type Y. pestis, the yscW mutant or a complement strain, immunodeficiency was observed in host macrophages compared with those from uninfected mice. However, the phagocytosis and antigen presenting capacities of macrophages infected by yscW mutant strain both in vivo and in vitro were significantly higher than those by wild type strain. Consistent with this finding, when YscW was expressed in the RAW264.7 macrophage cell line, phagocytosis and antigen-presenting capacities were significantly lower than those of the control groups. These results indicate that Y. pestis YscW may directly induce immunodeficiency in murine macrophages by crippling their phagocytosis and antigen-presenting capacities. These data provide evidences to Y. pestis pathogenesis that some proteins in T3SS injectisome, such as YscW protein, might play independent roles in disrupting host defense apart from their known functions.
Li, Jinyang; Pan, Yuanyuan; Liu, Gang
2013-12-01
AcareA, encoding a homologue of the fungal nitrogen regulatory GATA zinc-finger proteins, was cloned from Acremonium chrysogenum. Gene disruption and genetic complementation revealed that AcareA was required for nitrogen metabolism and cephalosporin production. Disruption of AcareA resulted in growth defect in the medium using nitrate, uric acid and low concentration of ammonium, glutamine or urea as sole nitrogen source. Transcriptional analysis showed that the transcription of niaD/niiA was increased drastically when induced with nitrate in the wild-type and AcareA complemented strains but not in AcareA disruption mutant. Consistent with the reduction of cephalosporin production, the transcription of pcbAB, cefD2, cefEF and cefG encoding the enzymes for cephalosporin production was reduced in AcareA disruption mutant. Band shift assays showed that AcAREA bound to the promoter regions of niaD, niiA and the bidirectional promoter region of pcbAB-pcbC. Sequence analysis showed that all the AcAREA binding sites contain the consensus GATA elements. These results indicated that AcAREA plays an important role both in the regulation of nitrogen metabolism and cephalosporin production in A. chrysogenum. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, T.W.; Chantler, S.E.; Kahn, M.L.
ADPglucose pyrophosphorylase (glucose-1-phosphate adenylytransferase; AD P:{alpha}-D-glucose-1-phosphate adenylyltransferase, EC 2.7.7.27) catalyzes a key regulatory step in {alpha}-glucan synthesis in bacteria and higher plants. We have previously shown that the expression of the cDNA sequences of the potato tuber large (LS) and small (SS) subunits yielded a functional heterotetrameric enzyme capable of complementing a mutation in the single AGP (glgC) structural gene of Escherichia coli. This heterologous complementation provides a powerful genetic approach to obtain biochemical information on the specific roles of LS and SS in enzyme function. By mutagenizing the LS cDNA with hydroxylamine and then coexpressing with wild-type SS inmore » an E. coli glgC{sup {minus}} strain, >350 mutant colonies were identified that were impaired in glycogen production. One mutant exhibited enzymatic and antigen levels comparable to the wild-type recombinant enzyme but required 45-fold greater levels of the activator 3-phosphoglycerate for maximum activity. Sequence analysis identified a single nucleotide change that resulted in the change of Pro-52 to Leu. This heterologous genetic system provides and efficient means to identify residues important for catalysis and allosteric functioning and should lead to novel approaches to increase plant productivity. 31 refs., 4 figs., 1 tab.« less
Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis.
Bland, David M; Eisele, Nicholas A; Keleher, Lauren L; Anderson, Paul E; Anderson, Deborah M
2011-03-02
Molecular studies of bacterial virulence are enhanced by expression of recombinant DNA during infection to allow complementation of mutants and expression of reporter proteins in vivo. For highly pathogenic bacteria, such as Yersinia pestis, these studies are currently limited because deliberate introduction of antibiotic resistance is restricted to those few which are not human treatment options. In this work, we report the development of alternatives to antibiotics as tools for host-pathogen research during Yersinia pestis infections focusing on the diaminopimelic acid (DAP) pathway, a requirement for cell wall synthesis in eubacteria. We generated a mutation in the dapA-nlpB(dapX) operon of Yersinia pestis KIM D27 and CO92 which eliminated the expression of both genes. The resulting strains were auxotrophic for diaminopimelic acid and this phenotype was complemented in trans by expressing dapA in single and multi-copy. In vivo, we found that plasmids derived from the p15a replicon were cured without selection, while selection for DAP enhanced stability without detectable loss of any of the three resident virulence plasmids. The dapAX mutation rendered Y. pestis avirulent in mouse models of bubonic and septicemic plague which could be complemented when dapAX was inserted in single or multi-copy, restoring development of disease that was indistinguishable from the wild type parent strain. We further identified a high level, constitutive promoter in Y. pestis that could be used to drive expression of fluorescent reporters in dapAX strains that had minimal impact to virulence in mouse models while enabling sensitive detection of bacteria during infection. Thus, diaminopimelic acid selection for single or multi-copy genetic systems in Yersinia pestis offers an improved alternative to antibiotics for in vivo studies that causes minimal disruption to virulence.
Edwards, Andrew M.; Bowden, Maria Gabriela; Brown, Eric L.; Laabei, Maisem; Massey, Ruth C.
2012-01-01
Staphylococcus aureus is a leading cause of bacteraemia, which frequently results in complications such as infective endocarditis, osteomyelitis and exit from the bloodstream to cause metastatic abscesses. Interaction with endothelial cells is critical to these complications and several bacterial proteins have been shown to be involved. The S. aureus extracellular adhesion protein (Eap) has many functions, it binds several host glyco-proteins and has both pro- and anti-inflammatory activity. Unfortunately its role in vivo has not been robustly tested to date, due to difficulties in complementing its activity in mutant strains. We previously found Eap to have pro-inflammatory activity, and here show that purified native Eap triggered TNFα release in whole human blood in a dose-dependent manner. This level of TNFα increased adhesion of S. aureus to endothelial cells 4-fold via a mechanism involving protein A on the bacterial surface and gC1qR/p33 on the endothelial cell surface. The contribution this and other Eap activities play in disease severity during bacteraemia was tested by constructing an isogenic set of strains in which the eap gene was inactivated and complemented by inserting an intact copy elsewhere on the bacterial chromosome. Using a murine bacteraemia model we found that Eap expressing strains cause a more severe infection, demonstrating its role in invasive disease. PMID:22905199
Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum
NASA Technical Reports Server (NTRS)
Yaoi, T.; Laksanalamai, P.; Jiemjit, A.; Kagawa, H. K.; Alton, T.; Trent, J. D.
2000-01-01
To characterize cytoskeletal components of archaea, the ftsZ gene from Thermoplasma acidophilum was cloned and sequenced. In T. acidophilum ftsZ, which is involved in cell division, was found to be in an operon with the pyrF gene, which encodes orotidine-5'-monophosphate decarboxylase (ODC), an essential enzyme in pyrimidine biosynthesis. Both ftsZ and pyrF from T. acidophilum were expressed in Escherichia coli and formed functional proteins. FtsZ expression in wild-type E. coli resulted in the filamentous phenotype characteristic of ftsZ mutants. T. acidophilum pyrF expression in an E. coli mutant lacking pyrF complemented the mutation and rescued the strain. Sequence alignments of ODCs from archaea, bacteria, and eukarya reveal five conserved regions, two of which have homology to 3-hexulose-6-phosphate synthase (HPS), suggesting a common substrate recognition and binding motif. Copyright 2000 Academic Press.
Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L.; Daaka, Yehia; Girón, Jorge A.
2014-01-01
Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract. PMID:25036370
Saldaña, Zeus; De la Cruz, Miguel A; Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L; Daaka, Yehia; Girón, Jorge A
2014-01-01
Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract.
Flärdh, K; Axberg, T; Albertson, N H; Kjelleberg, S
1994-01-01
In order to evaluate the role of the stringent response in starvation adaptations of the marine Vibrio sp. strain S14, we have cloned the relA gene and generated relaxed mutants of this organism. The Vibrio relA gene was selected from a chromosomal DNA library by complementation of an Escherichia coli delta relA strain. The nucleotide sequence contains a 743-codon open reading frame that encodes a polypeptide that is identical in length and highly homologous to the E. coli RelA protein. The amino acid sequences are 64% identical, and they share some completely conserved regions. A delta relA::kan allele was generated by replacing 53% of the open reading frame with a kanamycin resistance gene. The Vibrio relA mutants displayed a relaxed control of RNA synthesis and failed to accumulate ppGpp during amino acid limitation. During carbon and energy starvation, a relA-dependent burst of ppGpp synthesis concomitant with carbon source depletion and growth arrest was observed. Also, in the absence of the relA gene, there was an accumulation of ppGpp during carbon starvation, but this was slower and smaller than that which occurred in the stringent strains, and it was preceded by a marked decrease in the [ATP]/[ADP] ratio. In both the wild-type and the relaxed strains, carbon source depletion caused an immediate decrease in the size of the GTP pool and a block of net RNA accumulation. The relA mutation did not affect long-term survival or the development of resistance against heat, ethanol, and oxidative stress during carbon starvation of Vibrio sp. strain S14. PMID:7928955
Murphy, R C; Gasparich, G E; Bryant, D A; Porter, R D
1990-01-01
The nucleotide sequence and transcript initiation site of the Synechococcus sp. strain PCC 7002 recA gene have been determined. The deduced amino acid sequence of the RecA protein of this cyanobacterium is 56% identical and 73% similar to the Escherichia coli RecA protein. Northern (RNA) blot analysis indicates that the Synechococcus strain PCC 7002 recA gene is transcribed as a monocistronic transcript 1,200 bases in length. The 5' endpoint of the recA mRNA was mapped by primer extension by using synthetic oligonucleotides of 17 and 27 nucleotides as primers. The nucleotide sequence 5' to the mapped endpoint contained sequence motifs bearing a striking resemblance to the heat shock (sigma 32-specific) promoters of E. coli but did not contain sequences similar to the E. coli SOS operator recognized by the LexA repressor. An insertion mutation introduced into the recA locus of Synechococcus strain PCC 7002 via homologous recombination resulted in the formation of diploids carrying both mutant and wild-type recA alleles. A variety of growth regimens and transformation procedures failed to produce a recA Synechococcus strain PCC 7002 mutant. However, introduction into these diploid cells of the E. coli recA gene in trans on a biphasic shuttle vector resulted in segregation of the cyanobacterial recA alleles, indicating that the E. coli recA gene was able to provide a function required for growth of recA Synechococcus strain PCC 7002 cells. This interpretation is supported by the observation that the E. coli recA gene is maintained in these cells when antibiotic selection for the shuttle vector is removed. Images FIG. 3 FIG. 4 FIG. 6 PMID:2105307
Zanon, Laura; Falchi, Rachele; Hackel, Aleksandra; Kühn, Christina; Vizzotto, Giannina
2015-09-01
Sucrose is the major phloem-translocated component in a number of economically important plant species. The comprehension of the mechanisms involved in sucrose transport in peach fruit appears particularly relevant, since the accumulation of this sugar, during ripening, is crucial for the growth and quality of the fruit. Here, we report the functional characterisation and subcellular localisation of three sucrose transporters (PpSUT1, PpSUT2, PpSUT4) in peach, and we formulate novel hypotheses about their role in accumulation of sugar. We provide evidence, about the capability of both PpSUT1 and PpSUT4, expressed in mutant yeast strains to transport sucrose. The functionality of PpSUT1 at the plasma membrane, and of PpSUT4 at the tonoplast, has been demonstrated. On the other hand, the functionality of PpSUT2 was not confirmed: this protein is unable to complement two sucrose uptake-deficient mutant yeast strains. Our results corroborate the hypotheses that PpSUT1 partakes in phloem loading in leaves, and PpSUT4 sustains cell metabolism by regulating sucrose efflux from the vacuole. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Hartmann, Torsten; Baronian, Grégory; Nippe, Nadine; Voss, Meike; Schulthess, Bettina; Wolz, Christiane; Eisenbeis, Janina; Schmidt-Hohagen, Kerstin; Gaupp, Rosmarie; Sunderkötter, Cord; Beisswenger, Christoph; Bals, Robert; Somerville, Greg A.; Herrmann, Mathias; Molle, Virginie; Bischoff, Markus
2014-01-01
Carbon metabolism and virulence determinant production are often linked in pathogenic bacteria, and several regulatory elements have been reported to mediate this linkage in Staphylococcus aureus. Previously, we described a novel protein, catabolite control protein E (CcpE) that functions as a regulator of the tricarboxylic acid cycle. Here we demonstrate that CcpE also regulates virulence determinant biosynthesis and pathogenesis. Specifically, deletion of ccpE in S. aureus strain Newman revealed that CcpE affects transcription of virulence factors such as capA, the first gene in the capsule biosynthetic operon; hla, encoding α-toxin; and psmα, encoding the phenol-soluble modulin cluster α. Electrophoretic mobility shift assays demonstrated that CcpE binds to the hla promoter. Mice challenged with S. aureus strain Newman or its isogenic ΔccpE derivative revealed increased disease severity in the ΔccpE mutant using two animal models; an acute lung infection model and a skin infection model. Complementation of the mutant with the ccpE wild-type allele restored all phenotypes, demonstrating that CcpE is negative regulator of virulence in S. aureus. PMID:25193664
Uhmeyer, Andreas
2017-01-01
In photosynthetic eukaryotes, the metabolite exchange between chloroplast and mitochondria ensures efficient photosynthesis under saturating light conditions. The Chlamydomonas reinhardtii mutant stm6 is devoid of the mitochondrial transcription termination factor MOC1 and aberrantly expresses the mitochondrial genome, resulting in enhanced photosynthetic hydrogen production and diminished light tolerance. We analyzed the modulation of mitochondrial and chlororespiration during the acclimation of stm6 and the MOC1-complemented strain to excess light. Although light stress stimulated mitochondrial respiration via the energy-conserving cytochrome c pathway in both strains, the mutant was unable to fine-tune the expression and activity of oxidative phosphorylation complex I in excess light, which was accompanied by an increased mitochondrial respiration via the alternative oxidase pathway. Furthermore, stm6 failed to fully activate chlororespiration and cyclic electron flow due to a more oxidized state of the chloroplast stroma, which is caused by an increased mitochondrial electron sink capacity. Increased susceptibility to photoinhibition of PSII in stm6 demonstrates that the MOC1-dependent modulation of mitochondrial respiration helps control the stromal redox poise as a crucial part of high-light acclimation in C. reinhardtii. PMID:28500267
Na+/H+ antiport is essential for Yersinia pestis virulence.
Minato, Yusuke; Ghosh, Amit; Faulkner, Wyatt J; Lind, Erin J; Schesser Bartra, Sara; Plano, Gregory V; Jarrett, Clayton O; Hinnebusch, B Joseph; Winogrodzki, Judith; Dibrov, Pavel; Häse, Claudia C
2013-09-01
Na(+)/H(+) antiporters are ubiquitous membrane proteins that play a central role in the ion homeostasis of cells. In this study, we examined the possible role of Na(+)/H(+) antiport in Yersinia pestis virulence and found that Y. pestis strains lacking the major Na(+)/H(+) antiporters, NhaA and NhaB, are completely attenuated in an in vivo model of plague. The Y. pestis derivative strain lacking the nhaA and nhaB genes showed markedly decreased survival in blood and blood serum ex vivo. Complementation of either nhaA or nhaB in trans restored the survival of the Y. pestis nhaA nhaB double deletion mutant in blood. The nhaA nhaB double deletion mutant also showed inhibited growth in an artificial serum medium, Opti-MEM, and a rich LB-based medium with Na(+) levels and pH values similar to those for blood. Taken together, these data strongly suggest that intact Na(+)/H(+) antiport is indispensable for the survival of Y. pestis in the bloodstreams of infected animals and thus might be regarded as a promising noncanonical drug target for infections caused by Y. pestis and possibly for those caused by other blood-borne bacterial pathogens.
Choi, Eunsil; Kang, Nalae; Jeon, Young; Pai, Hyun-Sook
2016-01-01
ABSTRACT The unique Escherichia coli GTPase Der (double Era-like GTPase), which contains tandemly repeated GTP-binding domains, has been shown to play an essential role in 50S ribosomal subunit biogenesis. The depletion of Der results in the accumulation of precursors of 50S ribosomal subunits that are structurally unstable at low Mg2+ concentrations. Der homologs are ubiquitously found in eubacteria. Conversely, very few are conserved in eukaryotes, and none is conserved in archaea. In the present study, to verify their conserved role in bacterial 50S ribosomal subunit biogenesis, we cloned Der homologs from two gammaproteobacteria, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium; two pathogenic bacteria, Staphylococcus aureus and Neisseria gonorrhoeae; and the extremophile Deinococcus radiodurans and then evaluated whether they could functionally complement the E. coli der-null phenotype. Only K. pneumoniae and S. Typhimurium Der proteins enabled the E. coli der-null strain to grow under nonpermissive conditions. Sucrose density gradient experiments revealed that the expression of K. pneumoniae and S. Typhimurium Der proteins rescued the structural instability of 50S ribosomal subunits, which was caused by E. coli Der depletion. To determine what allows their complementation, we constructed Der chimeras. We found that only Der chimeras harboring both the linker and long C-terminal regions could reverse the growth defects of the der-null strain. Our findings suggest that ubiquitously conserved essential GTPase Der is involved in 50S ribosomal subunit biosynthesis in various bacteria and that the linker and C-terminal regions may participate in species-specific recognition or interaction with the 50S ribosomal subunit. IMPORTANCE In Escherichia coli, Der (double Era-like GTPase) is an essential GTPase that is important for the production of mature 50S ribosomal subunits. However, to date, its precise role in ribosome biogenesis has not been clarified. In this study, we used five Der homologs from gammaproteobacteria, pathogenic bacteria, and an extremophile to elucidate their conserved function in 50S ribosomal subunit biogenesis. Among them, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium Der homologs implicated the participation of Der in ribosome assembly in E. coli. Our results show that the linker and C-terminal regions of Der homologs are correlated with its functional complementation in E. coli der mutants, suggesting that they are involved in species-specific recognition or interaction with 50S ribosomal subunits. PMID:27297882
Serratia marcescens arn, a PhoP-regulated locus necessary for polymyxin B resistance.
Lin, Quei Yen; Tsai, Yi-Lin; Liu, Ming-Che; Lin, Wei-Cheng; Hsueh, Po-Ren; Liaw, Shwu-Jen
2014-09-01
Polymyxins, which are increasingly being used to treat infections caused by multidrug-resistant bacteria, perform poorly against Serratia marcescens. To investigate the underlying mechanisms, Tn5 mutagenesis was performed and two mutants exhibiting increased polymyxin B (PB) susceptibility were isolated. The mutants were found to have Tn5 inserted into the arnB and arnC genes. In other bacteria, arnB and arnC belong to the seven-gene arn operon, which is involved in lipopolysaccharide (LPS) modification. LPSs of arn mutants had greater PB-binding abilities than that of wild-type LPS. Further, we identified PhoP, a bacterial two-component response regulator, as a regulator of PB susceptibility in S. marcescens. By the reporter assay, we found PB- and low-Mg2+-induced expression of phoP and arn in the wild-type strain but not in the phoP mutant. Complementation of the phoP mutant with the full-length phoP gene restored the PB MIC and induction by PB and low Mg2+ levels, as in the wild type. An electrophoretic mobility shift assay (EMSA) further demonstrated that PhoP bound directly to the arn promoter. The PB challenge test confirmed that pretreatment with PB and low Mg2+ levels protected S. marcescens from a PB challenge in the wild-type strain but not in the phoP mutant. Real-time reverse transcriptase-PCR also indicated that PB serves as a signal to regulate expression of ugd, a gene required for LPS modification, in S. marcescens through a PhoP-dependent pathway. Finally, we found that PB-resistant clinical isolates displayed greater expression of arnA upon exposure to PB than did susceptible isolates. This is the first report to describe the role of S. marcescens arn in PB resistance and its modulation by PB and Mg2+ through the PhoP protein. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Serratia marcescens arn, a PhoP-Regulated Locus Necessary for Polymyxin B Resistance
Lin, Quei Yen; Tsai, Yi-Lin; Liu, Ming-Che; Lin, Wei-Cheng; Hsueh, Po-Ren
2014-01-01
Polymyxins, which are increasingly being used to treat infections caused by multidrug-resistant bacteria, perform poorly against Serratia marcescens. To investigate the underlying mechanisms, Tn5 mutagenesis was performed and two mutants exhibiting increased polymyxin B (PB) susceptibility were isolated. The mutants were found to have Tn5 inserted into the arnB and arnC genes. In other bacteria, arnB and arnC belong to the seven-gene arn operon, which is involved in lipopolysaccharide (LPS) modification. LPSs of arn mutants had greater PB-binding abilities than that of wild-type LPS. Further, we identified PhoP, a bacterial two-component response regulator, as a regulator of PB susceptibility in S. marcescens. By the reporter assay, we found PB- and low-Mg2+-induced expression of phoP and arn in the wild-type strain but not in the phoP mutant. Complementation of the phoP mutant with the full-length phoP gene restored the PB MIC and induction by PB and low Mg2+ levels, as in the wild type. An electrophoretic mobility shift assay (EMSA) further demonstrated that PhoP bound directly to the arn promoter. The PB challenge test confirmed that pretreatment with PB and low Mg2+ levels protected S. marcescens from a PB challenge in the wild-type strain but not in the phoP mutant. Real-time reverse transcriptase-PCR also indicated that PB serves as a signal to regulate expression of ugd, a gene required for LPS modification, in S. marcescens through a PhoP-dependent pathway. Finally, we found that PB-resistant clinical isolates displayed greater expression of arnA upon exposure to PB than did susceptible isolates. This is the first report to describe the role of S. marcescens arn in PB resistance and its modulation by PB and Mg2+ through the PhoP protein. PMID:24957827
Scarless genome editing and stable inducible expression vectors for Geobacter sulfurreducens
Chan, Chi Ho; Levar, Caleb E.; Zacharoff, Lori; ...
2015-08-07
Metal reduction by members of the Geobacteraceae is encoded by multiple gene clusters, and the study of extracellular electron transfer often requires biofilm development on surfaces. Genetic tools that utilize polar antibiotic cassette insertions limit mutant construction and complementation. In addition, unstable plasmids create metabolic burdens that slow growth, and the presence of antibiotics such as kanamycin can interfere with the rate and extent of Geobacter biofilm growth. We report here genetic system improvements for the model anaerobic metal-reducing bacterium Geobacter sulfurreducens. A motile strain of G. sulfurreducens was constructed by precise removal of a transposon interrupting the fgrM flagellarmore » regulator gene using SacB/sucrose counterselection, and Fe(III) citrate reduction was eliminated by deletion of the gene encoding the inner membrane cytochrome imcH. We also show that RK2-based plasmids were maintained in G. sulfurreducens for over 15 generations in the absence of antibiotic selection in contrast to unstable pBBR1 plasmids. Therefore, we engineered a series of new RK2 vectors containing native constitutive Geobacter promoters, and modified one of these promoters for VanR-dependent induction by the small aromatic carboxylic acid vanillate. Inducible plasmids fully complemented Δ imcH mutants for Fe(III) reduction, Mn(IV) oxide reduction, and growth on poised electrodes. A real-time, high-throughput Fe(III) citrate reduction assay is described that can screen numerous G. sulfurreducens strain constructs simultaneously and shows the sensitivity of imcH expression by the vanillate system. Lastly, these tools will enable more sophisticated genetic studies in G. sulfurreducens without polar insertion effects or need for multiple antibiotics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankar, P.; Lee, J.H.; Shanmugam, K.T.
1985-04-01
Escherichia coli has two unlinked genes that code for hydrogenase synthesis and activity. The DNA fragments containing the two genes (hydA and hydB) were cloned into a plasmid vector, pBR322. The plasmids containing the hyd genes (pSE-290 and pSE-111 carrying the hydA and hydB genes, respectively) were used to genetically map a total of 51 mutant strains with defects in hydrogenase activity. A total of 37 mutants carried a mutation in the hydB gene, whereas the remaining 14 hyd were hydA. This complementation analysis also established the presence of two new genes, so far unidentified, one coding for formate dehydrogenase-2more » (fdv) and another producing an electron transport protein (fhl) coupling formate dehydrogenase-2 to hydrogenase. Three of the four genes, hydB, fhl, and fdv, may constitute a single operon, and all three genes are carried by a 5.6-kilobase-pair chromosomal DNA insert in plasmid pSE-128. Plasmids carrying a part of this 5.6-kilobase-pair DNA (pSE-130) or fragments derived from this DNA in different orientations (pSE-126 and pSE-129) inhibited the production of active formate hydrogenlyase. This inhibition occurred even in a prototrophic E. coli, strain K-10, but only during an early induction period. These results, based on complementation analysis with cloned DNA fragments, show that both hydA and hydB genes are essential for the production of active hydrogenase. For the expression of active formate hydrogenlyase, two other gene products, fhl and fdv are also needed. All four genes map between 58 and 59 min in the E. coli chromosome.« less
Ma, Lay-Sun; Wang, Lei; Trippel, Christine; Mendoza-Mendoza, Artemio; Ullmann, Steffen; Moretti, Marino; Carsten, Alexander; Kahnt, Jörg; Reissmann, Stefanie; Zechmann, Bernd; Bange, Gert; Kahmann, Regine
2018-04-27
To cause disease in maize, the biotrophic fungus Ustilago maydis secretes a large arsenal of effector proteins. Here, we functionally characterize the repetitive effector Rsp3 (repetitive secreted protein 3), which shows length polymorphisms in field isolates and is highly expressed during biotrophic stages. Rsp3 is required for virulence and anthocyanin accumulation. During biotrophic growth, Rsp3 decorates the hyphal surface and interacts with at least two secreted maize DUF26-domain family proteins (designated AFP1 and AFP2). AFP1 binds mannose and displays antifungal activity against the rsp3 mutant but not against a strain constitutively expressing rsp3. Maize plants silenced for AFP1 and AFP2 partially rescue the virulence defect of rsp3 mutants, suggesting that blocking the antifungal activity of AFP1 and AFP2 by the Rsp3 effector is an important virulence function. Rsp3 orthologs are present in all sequenced smut fungi, and the ortholog from Sporisorium reilianum can complement the rsp3 mutant of U. maydis, suggesting a novel widespread fungal protection mechanism.
Elleuche, Skander; Pöggeler, Stefanie
2009-01-01
Carbon dioxide (CO(2)) is among the most important gases for all organisms. Its reversible interconversion to bicarbonate (HCO(3) (-)) reaches equilibrium spontaneously, but slowly, and can be accelerated by a ubiquitous group of enzymes called carbonic anhydrases (CAs). These enzymes are grouped by their distinct structural features into alpha-, beta-, gamma-, delta- and zeta-classes. While physiological functions of mammalian, prokaryotic, plant and algal CAs have been extensively studied over the past years, the role of beta-CAs in yeasts and the human pathogen Cryptococcus neoformans has been elucidated only recently, and the function of CAs in multicellular filamentous ascomycetes is mostly unknown. To assess the role of CAs in the development of filamentous ascomycetes, the function of three genes, cas1, cas2 and cas3 (carbonic anhydrase of Sordaria) encoding beta-class carbonic anhydrases was characterized in the filamentous ascomycetous fungus Sordaria macrospora. Fluorescence microscopy was used to determine the localization of GFP- and DsRED-tagged CAs. While CAS1 and CAS3 are cytoplasmic enzymes, CAS2 is localized to the mitochondria. To assess the function of the three isoenzymes, we generated knock-out strains for all three cas genes (Deltacas1, Deltacas2, and Deltacas3) as well as all combinations of double mutants. No effect on vegetative growth, fruiting-body and ascospore development was seen in the single mutant strains lacking cas1 or cas3, while single mutant Deltacas2 was affected in vegetative growth, fruiting-body development and ascospore germination, and the double mutant strain Deltacas1/2 was completely sterile. Defects caused by the lack of cas2 could be partially complemented by elevated CO(2) levels or overexpression of cas1, cas3, or a non-mitochondrial cas2 variant. The results suggest that CAs are required for sexual reproduction in filamentous ascomycetes and that the multiplicity of isoforms results in redundancy of specific and non-specific functions.
Voisard, Christophe; Keel, Christoph; Haas, Dieter; Dèfago, Geneviève
1989-01-01
Pseudomonas fluorescens CHA0 suppresses black root rot of tobacco, a disease caused by the fungus Thielaviopsis basicola. Strain CHA0 excretes several metabolites with antifungal properties. The importance of one such metabolite, hydrogen cyanide, was tested in a gnotobiotic system containing an artificial, iron-rich soil. A cyanidenegative (hcn) mutant, CHA5, constructed by a gene replacement technique, protected the tobacco plant less effectively than did the wild-type CHA0. Complementation of strain CHA5 by the cloned wild-type hcn+ genes restored the strain's ability to suppress disease. An artificial transposon carrying the hcn+ genes of strain CHA0 (Tnhcn) was constructed and inserted into the genome of another P.fluorescens strain, P3, which naturally does not produce cyanide and gives poor plant protection. The P3::Tnhcn derivative synthesized cyanide and exhibited an improved ability to suppress disease. All bacterial strains colonized the roots similarly and did not influence significantly the survival of T.basicola in soil. We conclude that bacterial cyanide is an important but not the only factor involved in suppression of black root rot. Images PMID:16453871
Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R; Schmid, Amy K
2015-01-01
Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.
Su, Jianmei; Zou, Xia; Huang, Liangbo; Bai, Tenglong; Liu, Shu; Yuan, Meng; Chou, Shan-Ho; He, Ya-Wen; Wang, Haihong; He, Jin
2016-01-01
Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice blight disease as well as a serious phytopathogen worldwide. It is also one of the model organisms for studying bacteria-plant interactions. Current progress in bacterial signal transduction pathways has identified cyclic di-GMP as a major second messenger molecule in controlling Xanthomonas pathogenicity. However, it still remains largely unclear how c-di-GMP regulates the secretion of bacterial virulence factors in Xoo. In this study, we focused on the important roles played by DgcA (XOO3988), one of our previously identified diguanylate cyclases in Xoo, through further investigating the phenotypes of several dgcA-related mutants, namely, the dgcA-knockout mutant ΔdgcA, the dgcA overexpression strain OdgcA, the dgcA complemented strain CdgcA and the wild-type strain. The results showed that dgcA negatively affected virulence, EPS production, bacterial autoaggregation and motility, but positively triggered biofilm formation via modulating the intracellular c-di-GMP levels. RNA-seq data further identified 349 differentially expressed genes controlled by DgcA, providing a foundation for a more solid understanding of the signal transduction pathways in Xoo. Collectively, the present study highlights DgcA as a major regulator of Xoo virulence, and can serve as a potential target for preventing rice blight diseases. PMID:27193392
Zhang, Xiaolan; Lu, Chunmei; Zhang, Fengmin; Song, Yingli; Cai, Minghui; Zhu, Hui
2017-09-29
Streptococcal heme binding protein (Shp) is involved in the process of heme acquisition in group A Streptococcus (GAS). However, no research thus far has examined the contribution of Shp to the virulence of GAS. To this end, we generated an isogenic strain lacking the shp gene (Δshp) and its complemented strain (Δshp-c) using the parent strain MGAS5005 (WT). Deletion of shp increased survival rates and neutrophil recruitment and reduced skin lesion sizes and GAS loads in the blood and the liver, lung, kidney and spleen in subcutaneous infections of mice. These results indicate that Shp significantly contributes to the skin and systemic invasion of GAS. The growth of the Δshp mutant was significantly slower than MGAS5005 and Δshp-c than in non-immune human blood and in incubation with isolated rat neutrophils. Microarray transcriptional analyses found no alteration in expression of virulence genes, indicating that the phenotype of the Δshp mutant was directly linked to the lack of Shp. The findings indicate that Shp significantly contributes to GAS skin invasion, systemic infection and virulence and that these contributions of Shp are mediated by the effects of Shp on systemic GAS growth and neutrophil responses. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Role of P27 -P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds
2011-01-01
Background The P27-P55 (lprG-Rv1410c) operon is crucial for the survival of Mycobacterium tuberculosis, the causative agent of human tuberculosis, during infection in mice. P55 encodes an efflux pump that has been shown to provide Mycobacterium smegmatis and Mycobacterium bovis BCG with resistance to several drugs, while P27 encodes a mannosylated glycoprotein previously described as an antigen that modulates the immune response against mycobacteria. The objective of this study was to determine the individual contribution of the proteins encoded in the P27-P55 operon to the resistance to toxic compounds and to the cell wall integrity of M. tuberculosis. Method In order to test the susceptibility of a mutant of M. tuberculosis H37Rv in the P27-P55 operon to malachite green, sodium dodecyl sulfate, ethidium bromide, and first-line antituberculosis drugs, this strain together with the wild type strain and a set of complemented strains were cultivated in the presence and in the absence of these drugs. In addition, the malachite green decolorization rate of each strain was obtained from decolorization curves of malachite green in PBS containing bacterial suspensions. Results The mutant strain decolorized malachite green faster than the wild type strain and was hypersensitive to both malachite green and ethidium bromide, and more susceptible to the first-line antituberculosis drugs: isoniazid and ethambutol. The pump inhibitor reserpine reversed M. tuberculosis resistance to ethidium bromide. These results suggest that P27-P55 functions through an efflux-pump like mechanism. In addition, deletion of the P27-P55 operon made M. tuberculosis susceptible to sodium dodecyl sulfate, suggesting that the lack of both proteins causes alterations in the cell wall permeability of the bacterium. Importantly, both P27 and P55 are required to restore the wild type phenotypes in the mutant. Conclusions The results clearly indicate that P27 and P55 are functionally connected in processes that involve the preservation of the cell wall and the transport of toxic compounds away from the cells. PMID:21762531
Tellurate enters Escherichia coli K-12 cells via the SulT-type sulfate transporter CysPUWA.
Goff, Jennifer; Yee, Nathan
2017-12-29
Soluble forms of tellurium are environmental contaminants that are toxic to microorganisms. While tellurite [Te(IV)] is a well-characterized antimicrobial agent, little is known about the interactions of tellurate [Te(VI)] with bacterial cells. In this study, we investigated the role of sulfate transporters in the uptake of tellurate in Escherichia coli K-12. Mutant strains carrying a deletion of the cysW gene in the CysPUWA sulfate transporter system accumulated less cellular tellurium and exhibited higher resistance to tellurate compared with the wild-type strain. Complementation of the mutation restored tellurate sensitivity and uptake. These results indicate that tellurate enters E. coli cells to cause toxic effects via the CysPUWA sulfate transporter. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chromosome-based genetic complementation system for Xylella fastidiosa.
Matsumoto, Ayumi; Young, Glenn M; Igo, Michele M
2009-03-01
Xylella fastidiosa is a xylem-limited, gram-negative bacterium that causes Pierce's disease of grapevine. Here, we describe the construction of four vectors that facilitate the insertion of genes into a neutral site (NS1) in the X. fastidiosa chromosome. These vectors carry a colE1-like (pMB1) replicon and DNA sequences from NS1 flanking a multiple-cloning site and a resistance marker for one of the following antibiotics: chloramphenicol, erythromycin, gentamicin, or kanamycin. In X. fastidiosa, vectors with colE1-like (pMB1) replicons have been found to result primarily in the recovery of double recombinants rather than single recombinants. Thus, the ease of obtaining double recombinants and the stability of the resulting insertions at NS1 in the absence of selective pressure are the major advantages of this system. Based on in vitro and in planta characterizations, strains carrying insertions within NS1 are indistinguishable from wild-type X. fastidiosa in terms of growth rate, biofilm formation, and pathogenicity. To illustrate the usefulness of this system for complementation analysis, we constructed a strain carrying a mutation in the X. fastidiosa cpeB gene, which is predicted to encode a catalase/peroxidase, and showed that the sensitivity of this mutant to hydrogen peroxide could be overcome by the introduction of a wild-type copy of cpeB at NS1. Thus, this chromosome-based complementation system provides a valuable genetic tool for investigating the role of specific genes in X. fastidiosa cell physiology and virulence.
Franco, A. A.; Kothary, M. H.; Gopinath, G.; Jarvis, K. G.; Grim, C. J.; Hu, L.; Datta, A. R.; McCardell, B. A.; Tall, B. D.
2011-01-01
Cronobacter spp. are emerging neonatal pathogens in humans, associated with outbreaks of meningitis and sepsis. To cause disease, they must survive in blood and invade the central nervous system by penetrating the blood-brain barrier. C. sakazakii BAA-894 possesses an ∼131-kb plasmid (pESA3) that encodes an outer membrane protease (Cpa) that has significant identity to proteins that belong to the Pla subfamily of omptins. Members of this subfamily of proteins degrade a number of serum proteins, including circulating complement, providing protection from the complement-dependent serum killing. Moreover, proteins of the Pla subfamily can cause uncontrolled plasmin activity by converting plasminogen to plasmin and inactivating the plasmin inhibitor α2-antiplasmin (α2-AP). These reactions enhance the spread and invasion of bacteria in the host. In this study, we found that an isogenic cpa mutant showed reduced resistance to serum in comparison to its parent C. sakazakii BAA-894 strain. Overexpression of Cpa in C. sakazakii or Escherichia coli DH5α showed that Cpa proteolytically cleaved complement components C3, C3a, and C4b. Furthermore, a strain of C. sakazakii overexpressing Cpa caused a rapid activation of plasminogen and inactivation of α2-AP. These results strongly suggest that Cpa may be an important virulence factor involved in serum resistance, as well as in the spread and invasion of C. sakazakii. PMID:21245266
Zhou, Q; Zhao, J; Hüsler, T; Sims, P J
1996-10-01
CD59 is a plasma membrane-anchored glycoprotein that serves to protect human cells from lysis by the C5b-9 complex of complement. The immunodominant epitopes of CD59 are known to be sensitive to disruption of native tertiary structure, complicating immunological measurement of expressed mutant constructs for structure function analysis. In order to quantify cell-surface expression of wild-type and mutant forms of this complement inhibitor, independent of CD59 antigen, an 11-residue peptide (TAG) recognized by monoclonal antibody (mAb) 9E10 was inserted before the N-terminal codon (L1) of mature CD59, in a pcDNA3 expression plasmid. SV-T2 cells were transfected with this plasmid, yielding cell lines expressing 0 to > 10(5) CD59/cell. The TAG-CD59 fusion protein was confirmed to be GPI-anchored, N-glycosylated and showed identical complement-inhibitory function to wild-type CD59, lacking the TAG peptide sequence. Using this construct, the contribution of each of four surface-localized aromatic residues (4Y, 47F, 61Y, and 62Y) to CD59's complement-inhibitory function was examined. These assays revealed normal surface expression with complete loss of complement-inhibitory function in the 4Y --> S, 47F --> G and 61Y --> S mutants. By contrast, 62Y --> S mutants retained approximately 40% of function of wild-type CD59. These studies confirmed the utility of the TAG-CD59 construct for quantifying CD59 surface expression and activity, and implicate surface aromatic residues 4Y, 47F, 61Y and 62Y as essential to maintenance of CD59's normal complement-regulatory function.
Pathogenesis of virulent and attenuated foot-and-mouth disease virus in cattle.
Arzt, Jonathan; Pacheco, Juan M; Stenfeldt, Carolina; Rodriguez, Luis L
2017-05-02
Understanding the mechanisms of attenuation and virulence of foot-and-mouth disease virus (FMDV) in the natural host species is critical for development of next-generation countermeasures such as live-attenuated vaccines. Functional genomics analyses of FMDV have identified few virulence factors of which the leader proteinase (L pro ) is the most thoroughly investigated. Previous work from our laboratory has characterized host factors in cattle inoculated with virulent FMDV and attenuated mutant strains with transposon insertions within L pro . In the current study, the characteristics defining virulence of FMDV in cattle were further investigated by comparing the pathogenesis of a mutant, attenuated strain (FMDV-Mut) to the parental, virulent virus from which the mutant was derived (FMDV-WT). The only difference between the two viruses was an insertion mutation in the inter-AUG region of the leader proteinase of FMDV-Mut. All cattle were infected by simulated-natural, aerosol inoculation. Both viruses were demonstrated to establish primary infection in the nasopharyngeal mucosa with subsequent dissemination to the lungs. Immunomicroscopic localization of FMDV antigens indicated that both viruses infected superficial epithelial cells of the nasopharynx and lungs. The critical differences between the two viruses were a more rapid establishment of infection by FMDV-WT and quantitatively greater virus loads in secretions and infected tissues compared to FMDV-Mut. The slower replicating FMDV-Mut established a subclinical infection that was limited to respiratory epithelial sites, whereas the faster replication of FMDV-WT facilitated establishment of viremia, systemic dissemination of infection, and clinical disease. The mutant FMDV was capable of achieving all the same early pathogenesis landmarks as FMDV-WT, but was unable to establish systemic infection. The precise mechanism of attenuation remains undetermined; but current data suggests that the impaired replication of the mutant is more responsible for attenuation than differences in host immunological factors. These results complement previous studies by providing data of high-granularity describing tissue-specific tropism of FMDV and by demonstrating microscopic localization of virulent and attenuated clones of the same field-strain FMDV.
Ongagna-Yhombi, Serge Y; McDonald, Nathan D; Boyd, E Fidelma
2015-01-01
Vibrio parahaemolyticus is a halophile that is the predominant cause of bacterial seafood-related gastroenteritis worldwide. To survive in the marine environment, V. parahaemolyticus must have adaptive strategies to cope with salinity changes. Six putative compatible solute (CS) transport systems were previously predicted from the genome sequence of V. parahaemolyticus RIMD2210633. In this study, we determined the role of the four putative betaine-carnitine-choline transporter (BCCT) homologues VP1456, VP1723, VP1905, and VPA0356 in the NaCl stress response. Expression analysis of the four BCCTs subjected to NaCl upshock showed that VP1456, VP1905, and VPA0356, but not VP1723, were induced. We constructed in-frame single-deletion mutant strains for all four BCCTs, all of which behaved similarly to the wild-type strain, demonstrating a redundancy of the systems. Growth analysis of a quadruple mutant and four BCCT triple mutants demonstrated the requirement for at least one BCCT for efficient CS uptake. We complemented Escherichia coli MHK13, a CS synthesis- and transporter-negative strain, with each BCCT and examined CS uptake by growth analysis and (1)H nuclear magnetic resonance (NMR) spectroscopy analyses. These data demonstrated that VP1456 had the most diverse substrate transport ability, taking up glycine betaine (GB), proline, choline, and ectoine. VP1456 was the sole ectoine transporter. In addition, the data demonstrated that VP1723 can transport GB, proline, and choline, whereas VP1905 and VPA0356 transported only GB. Overall, the data showed that the BCCTs are functional and that there is redundancy among them. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
A novel (S)-6-hydroxynicotine oxidase gene from Shinella sp. strain HZN7.
Qiu, Jiguo; Wei, Yin; Ma, Yun; Wen, Rongti; Wen, Yuezhong; Liu, Weiping
2014-09-01
Nicotine is an important environmental toxicant in tobacco waste. Shinella sp. strain HZN7 can metabolize nicotine into nontoxic compounds via variations of the pyridine and pyrrolidine pathways. However, the catabolic mechanism of this variant pathway at the gene or enzyme level is still unknown. In this study, two 6-hydroxynicotine degradation-deficient mutants, N7-M9 and N7-W3, were generated by transposon mutagenesis. The corresponding mutant genes, designated nctB and tnp2, were cloned and analyzed. The nctB gene encodes a novel flavin adenine dinucleotide-containing (S)-6-hydroxynicotine oxidase that converts (S)-6-hydroxynicotine into 6-hydroxy-N-methylmyosmine and then spontaneously hydrolyzes into 6-hydroxypseudooxynicotine. The deletion and complementation of the nctB gene showed that this enzyme is essential for nicotine or (S)-6-hydroxynicotine degradation. Purified NctB could also convert (S)-nicotine into N-methylmyosmine, which spontaneously hydrolyzed into pseudooxynicotine. The kinetic constants of NctB toward (S)-6-hydroxynicotine (Km = 0.019 mM, kcat = 7.3 s(-1)) and nicotine (Km = 2.03 mM, kcat = 0.396 s(-1)) indicated that (S)-6-hydroxynicotine is the preferred substrate in vivo. NctB showed no activities toward the R enantiomer of nicotine or 6-hydroxynicotine. Strain HZN7 could degrade (R)-nicotine into (R)-6-hydroxynicotine without any further degradation. The tnp2 gene from mutant N7-W3 encodes a putative transposase, and its deletion did not abolish the nicotine degradation activity. This study advances the understanding of the microbial diversity of nicotine biodegradation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Tajima, Satoshi; Itoh, Yoko; Sugimoto, Takashi; Kato, Tatsuya; Park, Enoch Y
2009-10-01
The production of riboflavin from vegetable oil was increased using a mutant strain of Ashbya gossypii. This mutant was generated by treating the wild-type strain with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Riboflavin production was 10-fold higher in the mutant compared to the wild-type strain. The specific intracellular catalase activity after 3 d of culture was 6-fold higher in the mutant than in the wild-type strain. For the mutant, riboflavin production in the presence of 40 mM hydrogen peroxide was 16% less than that in the absence of hydrogen peroxide, whereas it was 56% less for the wild-type strain. The isocitrate lyase (ICL) activity of the mutant was 0.26 mU/mg of protein during the active riboflavin production phase, which was 2.6-fold higher than the wild-type strain. These data indicate that the mutant utilizes the carbon flux from the TCA cycle to the glyoxylate cycle more efficiently than the wild-type strain, resulting in enhanced riboflavin production. This novel mutant has the potential to be of use for industrial-scale riboflavin production from waste-activated bleaching earth (ABE), thereby transforming a useless material into a valuable bioproduct.
Floriano, B; Herrero, A; Flores, E
1994-01-01
A cloned DNA fragment from Anabaena sp. strain PCC 7120 that complements an arginine auxotrophic mutant from the same organism was found to include an open reading frame encoding a 427-residue polypeptide that is homologous to N-acetylornithine aminotransferase from Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. The gene encoding N-acetylornithine aminotransferase in bacteria has been named argD. The expression of Anabaena sp. strain PCC 7120 argD, as well as of argC, was analyzed at the mRNA level. Both genes were transcribed as monocistronic mRNAs, and their expression was not affected by exogenously added arginine. Primer extension analysis identified transcription start points for both genes which were preceded by sequences similar to that of the E. coli RNA polymerase sigma 70 consensus promoter. A second transcription start point for the argD gene that is not preceded by a sigma 70 consensus promoter was detected in dinitrogen-grown cultures. Images PMID:7929012
A replicative plasmid vector allows efficient complementation of pathogenic Leptospira strains.
Pappas, Christopher J; Benaroudj, Nadia; Picardeau, Mathieu
2015-05-01
Leptospirosis, an emerging zoonotic disease, remains poorly understood because of a lack of genetic manipulation tools available for pathogenic leptospires. Current genetic manipulation techniques include insertion of DNA by random transposon mutagenesis and homologous recombination via suicide vectors. This study describes the construction of a shuttle vector, pMaORI, that replicates within saprophytic, intermediate, and pathogenic leptospires. The shuttle vector was constructed by the insertion of a 2.9-kb DNA segment including the parA, parB, and rep genes into pMAT, a plasmid that cannot replicate in Leptospira spp. and contains a backbone consisting of an aadA cassette, ori R6K, and oriT RK2/RP4. The inserted DNA segment was isolated from a 52-kb region within Leptospira mayottensis strain 200901116 that is not found in the closely related strain L. mayottensis 200901122. Because of the size of this region and the presence of bacteriophage-like proteins, it is possible that this region is a result of a phage-related genomic island. The stability of the pMaORI plasmid within pathogenic strains was tested by passaging cultures 10 times without selection and confirming the presence of pMaORI. Concordantly, we report the use of trans complementation in the pathogen Leptospira interrogans. Transformation of a pMaORI vector carrying a functional copy of the perR gene in a null mutant background restores the expression of PerR and susceptibility to hydrogen peroxide comparable to that of wild-type cells. In conclusion, we demonstrate the replication of a stable plasmid vector in a large panel of Leptospira strains, including pathogens. The shuttle vector described will expand our ability to perform genetic manipulation of Leptospira spp. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Goulter, Rebecca M; Taran, Elena; Gentle, Ian R; Gobius, Kari S; Dykes, Gary A
2014-07-01
The role of Escherichia coli H antigens in hydrophobicity and attachment to glass, Teflon and stainless steel (SS) surfaces was investigated through construction of fliC knockout mutants in E. coli O157:H7, O1:H7 and O157:H12. Loss of FliC(H12) in E. coli O157:H12 decreased attachment to glass, Teflon and stainless steel surfaces (p<0.05). Complementing E. coli O157:H12 ΔfliC(H12) with cloned wildtype (wt) fliC(H12) restored attachment to wt levels. The loss of FliCH7 in E. coli O157:H7 and O1:H7 did not always alter attachment (p>0.05), but complementation with cloned fliC(H12), as opposed to cloned fliCH7, significantly increased attachment for both strains compared with wt counterparts (p<0.05). Hydrophobicity determined using bacterial adherence to hydrocarbons and contact angle measurements differed with fliC expression but was not correlated to the attachment to materials included in this study. Purified FliC was used to functionalise silicone nitride atomic force microscopy probes, which were used to measure adhesion forces between FliC and substrates. Although no significant difference in adhesion force was observed between FliC(H12) and FliCH7 probes, differences in force curves suggest different mechanism of attachment for FliC(H12) compared with FliCH7. These results indicate that E. coli strains expressing flagellar H12 antigens have an increased ability to attach to certain abiotic surfaces compared with E. coli strains expressing H7 antigens. Copyright © 2014 Elsevier B.V. All rights reserved.
Hert, A P; Roberts, P D; Momol, M T; Minsavage, G V; Tudor-Nelson, S M; Jones, J B
2005-07-01
In a previous study, tomato race 3 (T3) strains of Xanthomonas perforans became predominant in fields containing both X. euvesicatoria and X. perforans races T1 and T3, respectively. This apparent ability to take over fields led to the discovery that there are three bacteriocin-like compounds associated with T3 strains. T3 strain 91-118 produces at least three different bacteriocin-like compounds (BCN-A, BCN-B, and BCN-C) antagonistic toward T1 strains. We determined the relative importance of the bacteriocin-like compounds by constructing the following mutant forms of a wild-type (WT) T3 strain to evaluate the antagonism to WT T1 strains: Mut-A (BCN-A-), Mut-B (BCN-B-), Mut-C (BCN-C-), Mut-AB, Mut-BC, and Mut-ABC. Although all mutant and WT T3 strains reduced the T1 populations in in planta growth room experiments, Mut-B and WT T3 were significantly more effective. Mutants expressing BCN-B and either BCN-A or BCN-C reduced T1 populations less than mutants expressing only BCN-A or BCN-C. The triple-knockout mutant Mut-ABC also had a significant competitive advantage over the T1 strain. In pairwise-inoculation field experiments where plants were coinoculated with an individual mutant or WT T3 strain and the T1 strain, the mutant strains and the WT T3 strain were reisolated from more than 70% of the lesions. WT T3 and Mut-B were the most frequently reisolated strains. In field experiments where plants were group inoculated with Mut-A, Mut-B, Mut-C, Mut-ABC, and WT T1 and T3 strains, Mut-B populations dominated all three seasons. In greenhouse and field experiments, the WT and mutant T3 strains had a selective advantage over T1 strains. Bacterial strains expressing both BCN-A and BCN-C appeared to have a competitive advantage over all other mutant and WT strains. Furthermore, BCN-B appeared to be a negative factor, with mutant T3 strains lacking BCN-B having a selective advantage in the field.
Bratic, Ana; Kauppila, Timo E. S.; Macao, Bertil; Grönke, Sebastian; Siibak, Triinu; Stewart, James B.; Baggio, Francesca; Dols, Jacqueline; Partridge, Linda; Falkenberg, Maria; Wredenberg, Anna; Larsson, Nils-Göran
2015-01-01
Replication errors are the main cause of mitochondrial DNA (mtDNA) mutations and a compelling approach to decrease mutation levels would therefore be to increase the fidelity of the catalytic subunit (POLγA) of the mtDNA polymerase. Here we genomically engineer the tamas locus, encoding fly POLγA, and introduce alleles expressing exonuclease- (exo−) and polymerase-deficient (pol−) POLγA versions. The exo− mutant leads to accumulation of point mutations and linear deletions of mtDNA, whereas pol− mutants cause mtDNA depletion. The mutant tamas alleles are developmentally lethal but can complement each other in trans resulting in viable flies with clonally expanded mtDNA mutations. Reconstitution of human mtDNA replication in vitro confirms that replication is a highly dynamic process where POLγA goes on and off the template to allow complementation during proofreading and elongation. The created fly models are valuable tools to study germ line transmission of mtDNA and the pathophysiology of POLγA mutation disease. PMID:26554610
Huedo, Pol; Yero, Daniel; Martínez-Servat, Sònia; Estibariz, Iratxe; Planell, Raquel; Martínez, Paula; Ruyra, Àngels; Roher, Nerea; Roca, Ignasi; Vila, Jordi
2014-01-01
The quorum-sensing (QS) system present in the emerging nosocomial pathogen Stenotrophomonas maltophilia is based on the signaling molecule diffusible signal factor (DSF). Production and detection of DSF are governed by the rpf cluster, which encodes the synthase RpfF and the sensor RpfC, among other components. Despite a well-studied system, little is known about its implication in virulence regulation in S. maltophilia. Here, we have analyzed the rpfF gene from 82 S. maltophilia clinical isolates. Although rpfF was found to be present in all of the strains, it showed substantial variation, with two populations (rpfF-1 and rpfF-2) clearly distinguishable by the N-terminal region of the protein. Analysis of rpfC in seven complete genome sequences revealed a corresponding variability in the N-terminal transmembrane domain of its product, suggesting that each RpfF variant has an associated RpfC variant. We show that only RpfC–RpfF-1 variant strains display detectable DSF production. Heterologous rpfF complementation of ΔrpfF mutants of a representative strain of each variant suggests that RpfF-2 is, however, functional and that the observed DSF-deficient phenotype of RpfC–RpfF-2 variant strains is due to permanent repression of RpfF-2 by RpfC-2. This is corroborated by the ΔrpfC mutant of the RpfC–RpfF-2 representative strain. In line with this observations, deletion of rpfF from the RpfC–RpfF-1 strain leads to an increase in biofilm formation, a decrease in swarming motility, and relative attenuation in the Caenorhabditis elegans and zebrafish infection models, whereas deletion of the same gene from the representative RpfC–RpfF-2 strain has no significant effect on these virulence-related phenotypes. PMID:24769700
Prieto, R; Yousibova, G L; Woloshuk, C P
1996-01-01
Aspergillus flavus mutant strain 649, which has a genomic DNA deletion of at least 120 kb covering the aflatoxin biosynthesis cluster, was transformed with a series of overlapping cosmids that contained DNA harboring the cluster of genes. The mutant phenotype of strain 649 was rescued by transformation with a combination of cosmid clones 5E6, 8B9, and 13B9, indicating that the cluster of genes involved in aflatoxin biosynthesis resides in the 90 kb of A. flavus genomic DNA carried by these clones. Transformants 5E6 and 20B11 and transformants 5E6 and 8B9 accumulated intermediate metabolites of the aflatoxin pathway, which were identified as averufanin and/or averufin, respectively.These data suggest that avf1, which is involved in the conversion of averufin to versiconal hemiacetal acetate, was present in the cosmid 13B9. Deletion analysis of 13B9 located the gene on a 7-kb DNA fragment of the cosmid. Transformants containing cosmid 8B9 converted exogenously supplied O-methylsterigmatocystin to aflatoxin, indicating that the oxidoreductase gene (ord1), which mediates the conversion of O-methylsterigmatocystin to aflatoxin, is carried by this cosmid. The analysis of transformants containing deletions of 8B9 led to the localization of ord1 on a 3.3-kb A. flavus genomic DNA fragment of the cosmid. PMID:8967772
2009-01-01
Background Saccharomyces cerevisiae BY4741 is an auxotrophic commonly used strain. In this work it has been used as host for the expression and secretion of human interleukin-1β (IL1β), using the cell wall protein Pir4 as fusion partner. To achieve high cell density and, consequently, high product yield, BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor, using a defined mineral medium supplemented with casamino acids as ACA (auxotrophy-complementing amino acid) source. Also the S. cerevisiae mutant BY4741 Δyca1 [PIR4-IL1β], carrying the deletion of the YCA1 gene coding for a caspase-like protein involved in the apoptotic response, was cultured in aerated fed-batch reactor and compared to the parental strain, to test the effect of this mutation on strain robustness. Viability of the producer strains was examined during the runs and a mathematical model, which took into consideration the viable biomass present in the reactor and the glucose consumption for both growth and maintenance, was developed to describe and explain the time-course evolution of the process for both, the BY4741 parental and the BY4741 Δyca1 mutant strain. Results Our results show that the concentrations of ACA in the feeding solution, corresponding to those routinely used in the literature, are limiting for the growth of S. cerevisiae BY4741 [PIR4-IL1β] in fed-batch reactor. Even in the presence of a proper ACA supplementation, S. cerevisiae BY4741 [PIR4-IL1β] did not achieve a high cell density. The Δyca1 deletion did not have a beneficial effect on the overall performance of the strain, but it had a clear effect on its viability, which was not impaired during fed-batch operations, as shown by the kd value (0.0045 h-1), negligible if compared to that of the parental strain (0.028 h-1). However, independently of their robustness, both the parental and the Δyca1 mutant ceased to grow early during fed-batch runs, both strains using most of the available carbon source for maintenance, rather than for further proliferation. The mathematical model used evidenced that the energy demand for maintenance was even higher in the case of the Δyca1 mutant, accounting for the growth arrest observed despite the fact that cell viability remained comparatively high. Conclusions The paper points out the relevance of a proper ACA formulation for the outcome of a fed-batch reactor growth carried out with S. cerevisiae BY4741 [PIR4-IL1β] strain and shows the sensitivity of this commonly used auxotrophic strain to aerated fed-batch operations. A Δyca1 disruption was able to reduce the loss of viability, but not to improve the overall performance of the process. A mathematical model has been developed that is able to describe the behaviour of both the parental and mutant producer strain during fed-batch runs, and evidence the role played by the energy demand for maintenance in the outcome of the process. PMID:20042083
Bozue, Joel; Cote, Christopher K; Webster, Wendy; Bassett, Anthony; Tobery, Steven; Little, Stephen; Swietnicki, Wieslaw
2012-07-01
Yersinia pestis is the causative agent responsible for bubonic and pneumonic plague. The bacterium uses the pLcr plasmid-encoded type III secretion system to deliver virulence factors into host cells. Delivery requires ATP hydrolysis by the YscN ATPase encoded by the yscN gene also on pLcr. A yscN mutant was constructed in the fully virulent CO92 strain containing a nonpolar, in-frame internal deletion within the gene. We demonstrate that CO92 with a yscN mutation was not able to secrete the LcrV protein (V-Antigen) and attenuated in a subcutaneous model of plague demonstrating that the YscN ATPase was essential for virulence. However, if the yscN mutant was complemented with a functional yscN gene in trans, virulence was restored. To evaluate the mutant as a live vaccine, Swiss-Webster mice were vaccinated twice with the ΔyscN mutant at varying doses and were protected against bubonic plague in a dose-dependent manner. Antibodies to F1 capsule but not to LcrV were detected in sera from the vaccinated mice. These preliminary results suggest a proof-of-concept for an attenuated, genetically engineered, live vaccine effective against bubonic plague. Published 2012. This article is a US Government work and is in the public domain in the USA.
Cooper, Lauren A.; Simmons, Lyle A.
2012-01-01
Type 1 fimbriae and flagella, two surface organelles critical for colonization of the urinary tract by uropathogenic Escherichia coli (UPEC), mediate opposing virulence objectives. Type 1 fimbriae facilitate adhesion to mucosal cells and promote bacterial persistence in the urinary tract, while flagella propel bacteria through urine and along mucous layers during ascension to the upper urinary tract. Using a transposon screen of the E. coli CFT073 fim locked-ON (L-ON) mutant, a construct that constitutively expresses type 1 fimbriae and represses motility, we identified six mutants that exhibited a partial restoration of motility. Among these six mutated genes was mutS, which encodes a component of the methyl-directed mismatch repair (MMR) system. When complemented with mutS in trans, motility was again repressed. To determine whether the MMR system, in general, is involved in this reciprocal control, we characterized the effects of gene deletions of other MMR components on UPEC motility. Isogenic deletions of mutS, mutH, and mutL were constructed in both wild-type CFT073 and fim L-ON backgrounds. All MMR mutants showed an increase in motility in the wild-type background, and ΔmutH and ΔmutS mutations increased motility in the fim L-ON background. Cochallenge of the wild-type strain with an MMR-defective strain showed a subtle but significant competitive advantage in the bladder and spleen for the MMR mutant using the murine model of ascending urinary tract infection after 48 h. Our findings demonstrate that the MMR system generally affects the reciprocal regulation of motility and adherence and thus could contribute to UPEC pathogenesis during urinary tract infections. PMID:22473602
Yu, Hao; Kim, Kwang Sik
2010-02-01
We previously showed that cytotoxic necrotizing factor 1 (CNF1) contributes to Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC) and interacts with the receptor on the surface of HBMEC. CNF1 is the cytoplasmic protein, and it remains incompletely understood how CNF1 is secreted across the inner and outer membranes in E. coli K1. In order to investigate the genetic determinants for secretion of CNF1 in E. coli K1, we performed Tn5 mutagenesis screening by applying beta-lactamase as a reporter to monitor secretion of CNF1. We identified a Tn5 mutant that exhibited no beta-lactamase activity in the culture supernatant and in which the mutated gene encodes a ferredoxin gene (fdx). In the fdx deletion mutant, there was no evidence of translocation of CNF1 into HBMEC. Western blot analysis of the fdx deletion mutant revealed that ferredoxin is involved in translocation of CNF1 across the cytoplasmic membrane. The fdx mutant exhibited significantly decreased invasion of HBMEC, similar to the decreased HBMEC invasion observed with the CNF1 mutant. The failures to secrete CNF1 and invade HBMEC of the fdx mutant were restored to the levels of the parent strain by complementation with fdx. These findings demonstrate for the first time that ferredoxin is involved in secretion of CNF1 across the inner membrane in meningitis-causing E. coli K1.
A mutational approach for the detection of genetic factors affecting seed size in maize.
Sangiorgio, Stefano; Carabelli, Laura; Gabotti, Damiano; Manzotti, Priscilla Sofia; Persico, Martina; Consonni, Gabriella; Gavazzi, Giuseppe
2016-12-01
Genes influencing seed size. The designation emp (empty pericarp) refers to a group of defective kernel mutants that exhibit a drastic reduction in endosperm tissue production. They allow the isolation of genes controlling seed development and affecting seed size. Nine independently isolated emp mutants have been analyzed in this study and in all cases longitudinal sections of mature seeds revealed the absence of morphogenesis in the embryo proper, an observation that correlates with their failure to germinate. Complementation tests with the nine emp mutants, crossed inter se in all pairwise combinations, identified complementing and non-complementing pairs in the F 1 progenies. Data were then validated in the F 2 /F 3 generations. Mutant chromosomal location was also established. Overall our study has identified two novel emp genes and a novel allele at the previously identified emp4 gene. The introgression of single emp mutants in a different genetic background revealed the existence of a cryptic genetic variation (CGV) recognizable as a variable increase in the endosperm tissue. The unmasking of CGV by introducing single mutants in different genetic backgrounds is the result of the interaction of the emp mutants with a suppressor that has no obvious phenotype of its own and is present in the genetic background of the inbred lines into which the emp mutants were transferred. On the basis of these results, emp mutants could be used as tools for the detection of genetic factors that enhance the amount of endosperm tissue in the maize kernel and which could thus become valuable targets to exploit in future breeding programs.
F4+ enterotoxigenic Escherichia coli (ETEC) adhesion mediated by the major fimbrial subunit FaeG.
Xia, Pengpeng; Song, Yujie; Zou, Yajie; Yang, Ying; Zhu, Guoqiang
2015-09-01
The FaeG subunit is the major constituent of F4(+) fimbriae, associated with glycoprotein and/or glycolipid receptor recognition and majorly contributes to the pathogen attachment to the host cells. To investigate the key factor involved in the fimbrial binding of F4(+) Escherichia coli, both the recombinant E. coli SE5000 strains carrying the fae operon gene clusters that express the different types of fimbriae in vitro, named as rF4ab, rF4ac, and rF4ad, respectively, corresponding to the fimbrial types F4ab, F4ac, and F4ad, and the three isogenic in-frame faeG gene deletion mutants were constructed. The adhesion assays and adhesion inhibition assays showed that ΔfaeG mutants had a significant reduction in the binding to porcine brush border as well as the intestinal epithelial cell lines, while the complemented strain ΔfaeG/pfaeG restored the adhesion function. The recombinant bacterial strains rF4ab, rF4ac, and rF4ad have the same binding property as wild-type F4(+) E. coli strains do and improvement in terms of binding to porcine brush border and the intestinal epithelial cells, and the adherence was blocked by the monoclonal antibody anti-F4 fimbriae. These data demonstrate that the fimbrial binding of F4(+) E. coli is directly mediated by the major FaeG subunit. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cheng, Xu; Etalo, Desalegn W; van de Mortel, Judith E; Dekkers, Ester; Nguyen, Linh; Medema, Marnix H; Raaijmakers, Jos M
2017-11-01
Pseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
The Rhizobium etli cyaC Product: Characterization of a Novel Adenylate Cyclase Class
Téllez-Sosa, Juan; Soberón, Nora; Vega-Segura, Alicia; Torres-Márquez, María E.; Cevallos, Miguel A.
2002-01-01
Adenylate cyclases (ACs) catalyze the formation of 3′,5′-cyclic AMP (cAMP) from ATP. A novel AC-encoding gene, cyaC, was isolated from Rhizobium etli by phenotypic complementation of an Escherichia coli cya mutant. The functionality of the cyaC gene was corroborated by its ability to restore cAMP accumulation in an E. coli cya mutant. Further, overexpression of a malE::cyaC fusion protein allowed the detection of significant AC activity levels in cell extracts of an E. coli cya mutant. CyaC is unrelated to any known AC or to any other protein exhibiting a currently known function. Thus, CyaC represents the first member of a novel class of ACs (class VI). Hypothetical genes of unknown function similar to cyaC have been identified in the genomes of the related bacterial species Mesorhizobium loti, Sinorhizobium meliloti, and Agrobacterium tumefaciens. The cyaC gene is cotranscribed with a gene similar to ohr of Xanthomonas campestris and is expressed only in the presence of organic hydroperoxides. The physiological performance of an R. etli cyaC mutant was indistinguishable from that of the wild-type parent strain both under free-living conditions and during symbiosis. PMID:12057950
Methods of producing protoporphyrin IX and bacterial mutants therefor
Zhou, Jizhong; Qiu, Dongru; He, Zhili; Xie, Ming
2016-03-01
The presently disclosed inventive concepts are directed in certain embodiments to a method of producing protoporphyrin IX by (1) cultivating a strain of Shewanella bacteria in a culture medium under conditions suitable for growth thereof, and (2) recovering the protoporphyrin IX from the culture medium. The strain of Shewanella bacteria comprises at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX. In certain embodiments of the method, the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or of shew_1140. In other embodiments, the presently disclosed inventive concepts are directed to mutant strains of Shewanella bacteria having at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX during cultivation of the bacteria. In certain embodiments the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or shew_1140.
Alves, Livia A; Harth-Chu, Erika N; Palma, Thais H; Stipp, Rafael N; Mariano, Flávia S; Höfling, José F; Abranches, Jacqueline; Mattos-Graner, Renata O
2017-10-01
Streptococcus mutans, a dental caries pathogen, can promote systemic infections upon reaching the bloodstream. The two-component system (TCS) VicRK Sm of S. mutans regulates the synthesis of and interaction with sucrose-derived exopolysaccharides (EPS), processes associated with oral and systemic virulence. In this study, we investigated the mechanisms by which VicRK Sm affects S. mutans susceptibility to blood-mediated immunity. Compared with parent strain UA159, the vicK Sm isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of complement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/IgG-mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-independent way (P<.05). Reverse transcriptase quantitative polymerase chain reaction analysis comparing gene expression in UA159 and UAvic revealed that genes encoding putative peptidases of the complement (pepO and smu.399) were upregulated in UAvic in the presence of serum, although genes encoding murein hydrolases (SmaA and Smu.2146c) or metabolic/surface proteins involved in bacterial interactions with host components (enolase, GAPDH) were mostly affected in a serum-independent way. Among vicK Sm -downstream genes (smaA, smu.2146c, lysM, atlA, pepO, smu.399), only pepO and smu.399 were associated with UAvic phenotypes; deletion of both genes in UA159 significantly enhanced levels of C3b deposition and opsonophagocytosis (P<.05). Moreover, consistent with the fibronectin-binding function of PepO orthologues, UAvic showed increased binding to fibronectin. Reduced susceptibility to opsonophagocytosis was insufficient to enhance ex vivo persistence of UAvic in blood, which was associated with growth defects of this mutant under limited nutrient conditions. Our findings revealed that S. mutans employs mechanisms of complement evasion through peptidases, which are controlled by VicRK Sm. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms.
Nilsson, Martin; Rybtke, Morten; Givskov, Michael; Høiby, Niels; Twetman, Svante; Tolker-Nielsen, Tim
2016-09-01
Microbial biofilms are tolerant to antibiotic treatment and therefore cause problematic infections. Knowledge about the molecular mechanisms underlying biofilm-associated antimicrobial tolerance will aid the development of antibiofilm drugs. Screening of a Streptococcus mutans transposon mutant library for genes that are important for biofilm-associated antimicrobial tolerance provided evidence that the dlt genes play a role in the tolerance of S. mutans biofilms towards gentamicin. The minimum bactericidal concentration for biofilm cells (MBC-B) for a dltA transposon mutant was eight-fold lower than that of the wild-type. The minimum bactericidal concentration for planktonic cells (MBC-P) was only slightly reduced, indicating that the mechanism involved in the observed antimicrobial tolerance has a predominant role specifically in biofilms. Experiments with a knockout dltA mutant and complemented strain confirmed that the dlt genes in S. mutans play a role in biofilm-associated tolerance to gentamicin. Confocal laser scanning microscopy analyses of biofilms grown on glass slides showed that the dltA mutant produced roughly the same amount of biofilm as the wild-type, indicating that the reduced antimicrobial tolerance of the dltA mutant is not due to a defect in biofilm formation. The products of the dlt genes have been shown to mediate alanylation of teichoic acids, and in accordance the dltA mutant showed a more negatively charged surface than the wild-type, which likely is an important factor in the reduced tolerance of the dltA mutant biofilms towards the positively charged gentamicin. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, A.I.; Keyomarsi, K.; Bryan, J.
1990-11-01
The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli {beta}-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; tsmore » mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses {beta}-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system.« less
Douillard, François P.; Ritari, Jarmo; Paulin, Lars; Järvinen, Hanna M.; Rasinkangas, Pia; Haapasalo, Karita; Meri, Seppo; Jarva, Hanna; de Vos, Willem M.
2017-01-01
Lactobacillus rhamnosus strains are ubiquitous in fermented foods, and in the human body where they are commensals naturally present in the normal microbiota composition of gut, vagina and skin. However, in some cases, Lactobacillus spp. have been implicated in bacteremia. The aim of the study was to examine the genomic and immunological properties of 16 clinical blood isolates of L. rhamnosus and to compare them to the well-studied L. rhamnosus probiotic strain GG. Blood cultures from bacteremic patients were collected at the Helsinki University Hospital laboratory in 2005–2011 and L. rhamnosus strains were isolated and characterized by genomic sequencing. The capacity of the L. rhamnosus strains to activate serum complement was studied using immunological assays for complement factor C3a and the terminal pathway complement complex (TCC). Binding of complement regulators factor H and C4bp was also determined using radioligand assays. Furthermore, the isolated strains were evaluated for their ability to aggregate platelets and to form biofilms in vitro. Genomic comparison between the clinical L. rhamnosus strains showed them to be clearly different from L. rhamnosus GG and to cluster in two distinct lineages. All L. rhamnosus strains activated complement in serum and none of them bound complement regulators. Four out of 16 clinical blood isolates induced platelet aggregation and/or formed more biofilms than L. rhamnosus GG, which did not display platelet aggregation activity nor showed strong biofilm formation. These findings suggest that clinical L. rhamnosus isolates show considerable heterogeneity but are clearly different from L. rhamnosus GG at the genomic level. All L. rhamnosus strains are still normally recognized by the human complement system. PMID:28493885
Use of the alr gene as a food-grade selection marker in lactic acid bacteria.
Bron, Peter A; Benchimol, Marcos G; Lambert, Jolanda; Palumbo, Emmanuelle; Deghorain, Marie; Delcour, Jean; De Vos, Willem M; Kleerebezem, Michiel; Hols, Pascal
2002-11-01
Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of D-alanine and L-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection markers in a heterologous complementation approach. Since isogenic mutants of both species carrying an alr deletion (Deltaalr) showed auxotrophy for D-alanine, plasmids carrying a heterologous alr were constructed and could be selected, since they complemented D-alanine auxotrophy in the L. plantarum Deltaalr and L. lactis Deltaalr strains. Selection was found to be highly stringent, and plasmids were stably maintained over 200 generations of culturing. Moreover, the plasmids carrying the heterologous alr genes could be stably maintained in wild-type strains of L. plantarum and L. lactis by selection for resistance to D-cycloserine, a competitive inhibitor of Alr (600 and 200 micro g/ml, respectively). In addition, a plasmid carrying the L. plantarum alr gene under control of the regulated nisA promoter was constructed to demonstrate that D-cycloserine resistance of L. lactis is linearly correlated to the alr expression level. Finally, the L. lactis alr gene controlled by the nisA promoter, together with the nisin-regulatory genes nisRK, were integrated into the chromosome of L. plantarum Deltaalr. The resulting strain could grow in the absence of D-alanine only when expression of the alr gene was induced with nisin.
Kumar, Jitendra; Yadav, Viveka Nand; Phulera, Swastik; Kamble, Ashish; Gautam, Avneesh Kumar; Panwar, Hemendra Singh
2017-01-01
ABSTRACT Poxviruses display species tropism—variola virus is a human-specific virus, while vaccinia virus causes repeated outbreaks in dairy cattle. Consistent with this, variola virus complement regulator SPICE (smallpox inhibitor of complement enzymes) exhibits selectivity in inhibiting the human alternative complement pathway and vaccinia virus complement regulator VCP (vaccinia virus complement control protein) displays selectivity in inhibiting the bovine alternative complement pathway. In the present study, we examined the species specificity of VCP and SPICE for the classical pathway (CP). We observed that VCP is ∼43-fold superior to SPICE in inhibiting bovine CP. Further, functional assays revealed that increased inhibitory activity of VCP for bovine CP is solely due to its enhanced cofactor activity, with no effect on decay of bovine CP C3-convertase. To probe the structural basis of this specificity, we utilized single- and multi-amino-acid substitution mutants wherein 1 or more of the 11 variant VCP residues were substituted in the SPICE template. Examination of these mutants for their ability to inhibit bovine CP revealed that E108, E120, and E144 are primarily responsible for imparting the specificity and contribute to the enhanced cofactor activity of VCP. Binding and functional assays suggested that these residues interact with bovine factor I but not with bovine C4(H2O) (a moiety conformationally similar to C4b). Mapping of these residues onto the modeled structure of bovine C4b-VCP-bovine factor I supported the mutagenesis data. Taken together, our data help explain why the vaccine strain of vaccinia virus was able to gain a foothold in domesticated animals. IMPORTANCE Vaccinia virus was used for smallpox vaccination. The vaccine-derived virus is now circulating and causing outbreaks in dairy cattle in India and Brazil. However, the reason for this tropism is unknown. It is well recognized that the virus is susceptible to neutralization by the complement classical pathway (CP). Because the virus encodes a soluble complement regulator, VCP, we examined whether this protein displays selectivity in targeting bovine CP. Our data show that it does exhibit selectivity in inhibiting the bovine CP and that this is primarily determined by its amino acids E108, E120, and E144, which interact with bovine serine protease factor I to inactivate bovine C4b—one of the two subunits of CP C3-convertase. Of note, the variola complement regulator SPICE contains positively charged residues at these positions. Thus, these variant residues in VCP help enhance its potency against the bovine CP and thereby the fitness of the virus in cattle. PMID:28724763
van Vuuren, A J; Appeldoorn, E; Odijk, H; Yasui, A; Jaspers, N G; Bootsma, D; Hoeijmakers, J H
1993-01-01
Nucleotide excision repair (NER), one of the major cellular DNA repair systems, removes a wide range of lesions in a multi-enzyme reaction. In man, a NER defect due to a mutation in one of at least 11 distinct genes, can give rise to the inherited repair disorders xeroderma pigmentosum (XP), Cockayne's syndrome or PIBIDS, a photosensitive form of the brittle hair disease trichothiodystrophy. Laboratory-induced NER-deficient mutants of cultured rodent cells have been classified into 11 complementation groups (CGs). Some of these have been shown to correspond with human disorders. In cell-free extracts prepared from rodent CGs 1-5 and 11, but not in a mutant from CG6, we find an impaired repair of damage induced in plasmids by UV light and N-acetoxy-acetylaminofluorene. Complementation analysis in vitro of rodent CGs is accomplished by pairwise mixing of mutant extracts. The results show that mutants from groups 2, 3, 5 and XP-A can complement all other CGs tested. However, selective non-complementation in vitro was observed in mutual mixtures of groups 1, 4, 11 and XP-F, suggesting that the complementing activities involved somehow affect each other. Depletion of wild-type human extracts from ERCC1 protein using specific anti-ERCC1 antibodies concomitantly removed the correcting activities for groups 4, 11 and XP-F, but not those for the other CGs. Furthermore, we find that 33 kDa ERCC1 protein sediments as a high mol. wt species of approximately 120 kDa in a native glycerol gradient.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8253091
Ren, Weichao; Liu, Na; Sang, Chengwei; Shi, Dongya; Zhou, Mingguo; Chen, Changjun; Qin, Qingming; Chen, Wenchan
2018-06-01
Autophagy is a conserved degradation process that maintains intracellular homeostasis to ensure normal cell differentiation and development in eukaryotes. ATG8 is one of the key molecular components of the autophagy pathway. In this study, we identified and characterized BcATG8 , a homologue of Saccharomyces cerevisiae (yeast) ATG8 in the necrotrophic plant pathogen Botrytis cinerea Yeast complementation experiments demonstrated that BcATG8 can functionally complement the defects of the yeast ATG8 null mutant. Direct physical interaction between BcAtg8 and BcAtg4 was detected in the yeast two-hybrid system. Subcellular localization assays showed that green fluorescent protein-tagged BcAtg8 (GFP-BcAtg8) localized in the cytoplasm as preautophagosomal structures (PAS) under general conditions but mainly accumulated in the lumen of vacuoles in the case of autophagy induction. Deletion of BcATG8 (Δ BcAtg8 mutant) blocked autophagy and significantly impaired mycelial growth, conidiation, sclerotial formation, and virulence. In addition, the conidia of the Δ BcAtg8 mutant contained fewer lipid droplets (LDs), and quantitative real-time PCR (qRT-PCR) assays revealed that the basal expression levels of the LD metabolism-related genes in the mutant were significantly different from those in the wild-type (WT) strain. All of these phenotypic defects were restored by gene complementation. These results indicate that BcATG8 is essential for autophagy to regulate fungal development, pathogenesis, and lipid metabolism in B. cinerea IMPORTANCE The gray mold fungus Botrytis cinerea is an economically important plant pathogen with a broad host range. Although there are fungicides for its control, many classes of fungicides have failed due to its genetic plasticity. Exploring the fundamental biology of B. cinerea can provide the theoretical basis for sustainable and long-term disease management. Autophagy is an intracellular process for degradation and recycling of cytosolic materials in eukaryotes and is now known to be vital for fungal life. Here, we report studies of the biological role of the autophagy gene BcATG8 in B. cinerea The results suggest that autophagy plays a crucial role in vegetative differentiation and virulence of B. cinerea . Copyright © 2018 American Society for Microbiology.
Addwebi, Tarek M; Call, Douglas R; Shah, Devendra H
2014-04-01
Salmonella enterica serovar Enteritidis is one of the most common serovars associated with poultry and poultry product contamination in the United States. We previously identified 14 mutant strains of Salmonella Enteritidis phage type 4 (PT4) with significantly reduced invasiveness in human intestinal epithelial cells (Caco-2), chicken macrophages (HD-11), and chicken hepatocellular epithelial cells (LMH). These included Salmonella Enteritidis mutants with transposon insertions in 6 newly identified Salmonella Enteritidis-specific genes (pegD and SEN1393), and genes or genomic islands common to most other Salmonella serovars (SEN0803, SEN0034, SEN2278, and SEN3503) along with 8 genes previously known to contribute to enteric infection (hilA, pipA, fliH, fljB, csgB, spvR, and rfbMN). We hypothesized that Salmonella Enteritidis employs both common Salmonella enterica colonization factors and Salmonella Enteritidis-specific traits to establish infection in chickens. Four Salmonella Enteritidis mutants (SEN0034::Tn5, fliH::Tn5, SEN1393::Tn5, and spvR::Tn5) were indistinguishable from the isogenic wild-type strain when orally inoculated in 1-d-old chickens, whereas 2 mutants (CsgB::Tn5 and PegD::Tn5) were defective for intestinal colonization (P < 0.05) and 8 mutants (hilA::Tn5, SEN3503::Tn5, SEN0803::Tn5, SEN2278::Tn5, fljB::Tn5, rfbM::Tn5, rfbN::Tn5, and pipA::Tn5) showed significant in vivo attenuation in more than one organ (P < 0.05). Complementation studies confirmed the role of rfbN and SEN3503 during infection. This study should contribute to a better understanding of the mechanisms involved in Salmonella Enteritidis pathogenesis, and the target genes identified here could potentially serve as targets for the development of live-attenuated or subunit vaccine.
Pirhonen, M; Flego, D; Heikinheimo, R; Palva, E T
1993-01-01
Virulence of the plant pathogen Erwinia carotovora subsp. carotovora is dependent on the production and secretion of a complex arsenal of plant cell wall-degrading enzymes. Production of these exoenzymes is controlled by a global regulatory mechanism. A virulent mutants in one of the regulatory loci, expI, show a pleiotropic defect in the growth phase-dependent transcriptional activation of exoenzyme gene expression. The expI gene encodes a 26 kDa polypeptide that is structurally and functionally related to the luxI gene product of Vibrio fischeri. Functional similarity of expI and luxI has been demonstrated by reciprocal genetic complementation experiments. LuxI controls bioluminescence in V.fischeri in a growth phase-dependent manner by directing the synthesis of the diffusible autoinducer, N-(3-oxohexanoyl) homoserine lactone. E.c. subsp. carotovora expI+ strains or Escherichia coli harboring the cloned expI gene excrete a small diffusible signal molecule that complements the expI mutation of Erwinia as well as a luxI mutation of V.fischeri. This extracellular complementation can also be achieved by E.coli harboring the luxI gene from V.fischeri or by adding the synthetic V.fischeri autoinducer. Both the production of the plant tissue-macerating exoenzymes and the ability of the bacteria to propagate in planta are restored in expI mutants by autoinducer addition. These data suggest that the same signal molecule is employed in control of such diverse processes as virulence in a plant pathogen and bioluminescence in a marine bacterium, and may represent a general mechanism by which bacteria modulate gene expression in response to changing environmental conditions. Images PMID:8508772
Pirhonen, M; Flego, D; Heikinheimo, R; Palva, E T
1993-06-01
Virulence of the plant pathogen Erwinia carotovora subsp. carotovora is dependent on the production and secretion of a complex arsenal of plant cell wall-degrading enzymes. Production of these exoenzymes is controlled by a global regulatory mechanism. A virulent mutants in one of the regulatory loci, expI, show a pleiotropic defect in the growth phase-dependent transcriptional activation of exoenzyme gene expression. The expI gene encodes a 26 kDa polypeptide that is structurally and functionally related to the luxI gene product of Vibrio fischeri. Functional similarity of expI and luxI has been demonstrated by reciprocal genetic complementation experiments. LuxI controls bioluminescence in V.fischeri in a growth phase-dependent manner by directing the synthesis of the diffusible autoinducer, N-(3-oxohexanoyl) homoserine lactone. E.c. subsp. carotovora expI+ strains or Escherichia coli harboring the cloned expI gene excrete a small diffusible signal molecule that complements the expI mutation of Erwinia as well as a luxI mutation of V.fischeri. This extracellular complementation can also be achieved by E.coli harboring the luxI gene from V.fischeri or by adding the synthetic V.fischeri autoinducer. Both the production of the plant tissue-macerating exoenzymes and the ability of the bacteria to propagate in planta are restored in expI mutants by autoinducer addition. These data suggest that the same signal molecule is employed in control of such diverse processes as virulence in a plant pathogen and bioluminescence in a marine bacterium, and may represent a general mechanism by which bacteria modulate gene expression in response to changing environmental conditions.
Intracistronic complementation in the simian virus 40 A gene.
Tornow, J; Cole, C N
1983-01-01
A set of eight simian virus 40 mutants was constructed with lesions in the A gene, which encodes the large tumor (T) antigen. These mutants have small deletions (3-20 base pairs) at either 0.497, 0.288, or 0.243 map units. Mutants having both in-phase and frameshift mutations at each site were isolated. Neither plaque formation nor replication of the mutant DNAs could be detected after transfection of monkey kidney cells. Another nonviable mutant, dlA2459, had a 14-base-pair deletion at 0.193 map unit and was positive for viral DNA replication. Each of the eight mutants were tested for ability to form plaques after cotransfection with dlA2459 DNA. The four mutants that had in-phase deletions were able to complement dlA2459. The other four, which had frameshift deletions, did not. No plaques were formed after cotransfection of cells with any other pair of group A mutants. This suggests that the defect in dlA2459 defines a distinct functional domain of simian virus 40 T antigen. Images PMID:6312452
Genetic metabolic complementation establishes a requirement for GDP-fucose in Leishmania.
Guo, Hongjie; Novozhilova, Natalia M; Bandini, Giulia; Turco, Salvatore J; Ferguson, Michael A J; Beverley, Stephen M
2017-06-23
To survive in its sand fly vector, the trypanosomatid protozoan parasite Leishmania first attaches to the midgut to avoid excretion, but eventually it must detach for transmission by the next bite. In Leishmania major strain Friedlin, this is controlled by modifications of the stage-specific adhesin lipophosphoglycan (LPG). During differentiation to infective metacyclics, d-arabinopyranose (d-Ara p ) caps the LPG side-chain galactose residues, blocking interaction with the midgut lectin PpGalec, thereby leading to parasite detachment and transmission. Previously, we characterized two closely related L. major genes ( FKP40 and AFKP80 ) encoding bifunctional proteins with kinase/pyrophosphorylase activities required for salvage and conversion of l-fucose and/or d-Ara p into the nucleotide-sugar substrates required by glycosyltransferases. Whereas only AFKP80 yielded GDP-d-Ara p from exogenous d-Ara p , both proteins were able to salvage l-fucose to GDP-fucose. We now show that Δ afkp80 - null mutants ablated d-Ara p modifications of LPG as predicted, whereas Δ fkp40 - null mutants resembled wild type (WT). Fucoconjugates had not been reported previously in L. major , but unexpectedly, we were unable to generate fkp40 - / afkp80 - double mutants, unless one of the A/FKPs was expressed ectopically. To test whether GDP-fucose itself was essential for Leishmania viability, we employed "genetic metabolite complementation." First, the trypanosome de novo pathway enzymes GDP-mannose dehydratase (GMD) and GDP-fucose synthetase (GMER) were expressed ectopically; from these cells, the Δ fkp40 - /Δ afkp80 - double mutant was now readily obtained. As expected, the Δ fkp40 - /Δ afkp80 - /+ TbGMD-GMER line lacked the capacity to generate GDP-Ara p , while synthesizing abundant GDP-fucose. These results establish a requirement for GDP-fucose for L. major viability and predict the existence of an essential fucoconjugate(s). © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Studies on the CPA cysteine peptidase in the Leishmania infantum genome strain JPCM5.
Denise, Hubert; Poot, Jacqueline; Jiménez, Maribel; Ambit, Audrey; Herrmann, Daland C; Vermeulen, Arno N; Coombs, Graham H; Mottram, Jeremy C
2006-11-13
Visceral leishmaniasis caused by members of the Leishmania donovani complex is often fatal in the absence of treatment. Research has been hampered by the lack of good laboratory models and tools for genetic manipulation. In this study, we have characterised a L. infantum line (JPCM5) that was isolated from a naturally infected dog and then cloned. We found that JPCM5 has attributes that make it an excellent laboratory model; different stages of the parasite life cycle can be studied in vitro, it is accessible to genetic manipulation and it has retained its virulence. Furthermore, the L. infantum JPCM5 genome has now been fully sequenced. We have further focused our studies on LiCPA, the L. infantum homologue to L. mexicana cysteine peptidase CPA. LiCPA was found to share a high percentage of amino acid identity with CPA proteins of other Leishmania species. Two independent LiCPA-deficient promastigote clones (DeltaLicpa) were generated and their phenotype characterised. In contrast to L. mexicana CPA-deficient mutants, both clones of DeltaLicpa were found to have significantly reduced virulence in vitro and in vivo. Re-expression of just one LiCPA allele (giving DeltaLicpa::CPA) was sufficient to complement the reduced infectivity of both DeltaLicpa mutants for human macrophages, which confirms the importance of LiCPA for L. infantum virulence. In contrast, in vivo experiments did not show any virulence recovery of the re-expressor clone DeltaLicpaC1::CPA compared with the CPA-deficient mutant DeltaLicpaC1. The data suggest that CPA is not essential for replication of L. infantum promastigotes, but is important for the host-parasite interaction. Further studies will be necessary to elucidate the precise roles that LiCPA plays and why the re-expression of LiCPA in the DeltaLicpa mutants complemented the gene deletion phenotype only in in vitro and not in in vivo infection of hamsters.
Genetic metabolic complementation establishes a requirement for GDP-fucose in Leishmania
Novozhilova, Natalia M.; Turco, Salvatore J.
2017-01-01
To survive in its sand fly vector, the trypanosomatid protozoan parasite Leishmania first attaches to the midgut to avoid excretion, but eventually it must detach for transmission by the next bite. In Leishmania major strain Friedlin, this is controlled by modifications of the stage-specific adhesin lipophosphoglycan (LPG). During differentiation to infective metacyclics, d-arabinopyranose (d-Arap) caps the LPG side-chain galactose residues, blocking interaction with the midgut lectin PpGalec, thereby leading to parasite detachment and transmission. Previously, we characterized two closely related L. major genes (FKP40 and AFKP80) encoding bifunctional proteins with kinase/pyrophosphorylase activities required for salvage and conversion of l-fucose and/or d-Arap into the nucleotide-sugar substrates required by glycosyltransferases. Whereas only AFKP80 yielded GDP-d-Arap from exogenous d-Arap, both proteins were able to salvage l-fucose to GDP-fucose. We now show that Δafkp80− null mutants ablated d-Arap modifications of LPG as predicted, whereas Δfkp40− null mutants resembled wild type (WT). Fucoconjugates had not been reported previously in L. major, but unexpectedly, we were unable to generate fkp40−/afkp80− double mutants, unless one of the A/FKPs was expressed ectopically. To test whether GDP-fucose itself was essential for Leishmania viability, we employed “genetic metabolite complementation.” First, the trypanosome de novo pathway enzymes GDP-mannose dehydratase (GMD) and GDP-fucose synthetase (GMER) were expressed ectopically; from these cells, the Δfkp40−/Δafkp80− double mutant was now readily obtained. As expected, the Δfkp40−/Δafkp80−/+TbGMD-GMER line lacked the capacity to generate GDP-Arap, while synthesizing abundant GDP-fucose. These results establish a requirement for GDP-fucose for L. major viability and predict the existence of an essential fucoconjugate(s). PMID:28465349
Nardo, Giovanni; Iennaco, Raffaele; Fusi, Nicolò; Heath, Paul R; Marino, Marianna; Trolese, Maria C; Ferraiuolo, Laura; Lawrence, Neil; Shaw, Pamela J; Bendotti, Caterina
2013-11-01
Amyotrophic lateral sclerosis is heterogeneous with high variability in the speed of progression even in cases with a defined genetic cause such as superoxide dismutase 1 (SOD1) mutations. We reported that SOD1(G93A) mice on distinct genetic backgrounds (C57 and 129Sv) show consistent phenotypic differences in speed of disease progression and life-span that are not explained by differences in human SOD1 transgene copy number or the burden of mutant SOD1 protein within the nervous system. We aimed to compare the gene expression profiles of motor neurons from these two SOD1(G93A) mouse strains to discover the molecular mechanisms contributing to the distinct phenotypes and to identify factors underlying fast and slow disease progression. Lumbar spinal motor neurons from the two SOD1(G93A) mouse strains were isolated by laser capture microdissection and transcriptome analysis was conducted at four stages of disease. We identified marked differences in the motor neuron transcriptome between the two mice strains at disease onset, with a dramatic reduction of gene expression in the rapidly progressive (129Sv-SOD1(G93A)) compared with the slowly progressing mutant SOD1 mice (C57-SOD1(G93A)) (1276 versus 346; Q-value ≤ 0.01). Gene ontology pathway analysis of the transcriptional profile from 129Sv-SOD1(G93A) mice showed marked downregulation of specific pathways involved in mitochondrial function, as well as predicted deficiencies in protein degradation and axonal transport mechanisms. In contrast, the transcriptional profile from C57-SOD1(G93A) mice with the more benign disease course, revealed strong gene enrichment relating to immune system processes compared with 129Sv-SOD1(G93A) mice. Motor neurons from the more benign mutant strain demonstrated striking complement activation, over-expressing genes normally involved in immune cell function. We validated through immunohistochemistry increased expression of the C3 complement subunit and major histocompatibility complex I within motor neurons. In addition, we demonstrated that motor neurons from the slowly progressing mice activate a series of genes with neuroprotective properties such as angiogenin and the nuclear factor (erythroid-derived 2)-like 2 transcriptional regulator. In contrast, the faster progressing mice show dramatically reduced expression at disease onset of cell pathways involved in neuroprotection. This study highlights a set of key gene and molecular pathway indices of fast or slow disease progression which may prove useful in identifying potential disease modifiers responsible for the heterogeneity of human amyotrophic lateral sclerosis and which may represent valid therapeutic targets for ameliorating the disease course in humans.
Gorman, Donald S.; Levine, R. P.
1966-01-01
A mutant strain of Chlamydomonas reinhardi, ac-206, lacks cytochrome 553, at least in an active and detectable form. Chloroplast fragments of this mutant strain are inactive in the photoreduction of NADP when the source of electrons is water, but they are active when the electron source is 2,6-dichlorophenolindophenol and ascorbate. The addition of either cytochrome 553 or plastocyanin, obtained from the wild-type strain, has no effect upon the photosynthetic activities of the mutant strain. Cells of the mutant strain lack both the soluble and insoluble forms of cytochrome 553, but they possess the mitochondrial type cytochrome c. Thus, the loss of cytochrome 553 appears to be specific. Another mutant strain, ac-208, lacks plastocyanin, or possesses it in an inactive and undetectable form. Chloroplast fragments of ac-208 are inactive in the photoreduction of NADP with either water or 2,6-dichlorophenolindophenol and ascorbate as electron donors. However, these reactions are restored upon the addition of plastocyanin. The addition of cytochrome 553 has no effect. The measurement of light-induced absorbance changes with ac-208 reveal that, in the absence of plastocyanin, light fails to sensitize the oxidation of cytochrome 553, but it will sensitize its reduction. However, the addition of plastocyanin restores the light-induced cytochrome oxidation. A third mutant strain, ac-208 (sup.) carries a suppressor mutation that partially restores the wild phenotype. This mutant strain appears to possess a plastocyanin that is less stable than that of the wild-type strain. The observations with the mutant strains are discussed in terms of the sequence of electron transport System II → cytochrome 553 → plastocyanin → System I. PMID:16656453
Hussain, Muzaffar; Steinbacher, Tim; Peters, Georg; Heilmann, Christine; Becker, Karsten
2015-01-01
Although it belongs to the group of coagulase-negative staphylococci, Staphylococcus lugdunensis has been known to cause aggressive courses of native and prosthetic valve infective endocarditis with high mortality similar to Staphylococcus aureus. In contrast to S. aureus, only little is known about the equipment of S. lugdunensis with virulence factors including adhesins and their role in mediating attachment to extracellular matrix and plasma proteins and host cells. In this study, we show that the multifunctional autolysin/adhesin AtlL of S. lugdunensis binds to the extracellular matrix and plasma proteins fibronectin, fibrinogen, and vitronectin as well as to human EA.hy926 endothelial cells. Furthermore, we demonstrate that AtlL also plays an important role in the internalization of S. lugdunensis by eukaryotic cells: The atlL-deficient mutant Mut17 adheres to and becomes internalized by eukaryotic cells to a lesser extent than the isogenic wild-type strain Sl253 and the complemented mutant Mut17 (pCUatlL) shows an increased internalization level in comparison to Mut17. Thus, surface localized AtlL that exhibits a broad binding spectrum also mediates the internalization of S. lugdunensis by eukaryotic cells. We therefore propose an internalization pathway for S. lugdunensis, in which AtlL plays a major role. Investigating the role of AtlL in biofilm formation of S. lugdunensis, Mut17 shows a significantly reduced ability for biofilm formation, which is restored in the complemented mutant. Thus, our data provide evidence for a significant role for AtlL in adherence and internalization processes as well as in biofilm formation of S. lugdunensis. Copyright © 2014 Elsevier GmbH. All rights reserved.
The effects of micronutrient deficiencies on bacterial species from the human gut microbiota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hibberd, Matthew C.; Wu, Meng; Rodionov, Dmitry A.
Micronutrient deficiencies afflict two billion people. And while the impact of these imbalances on host biology has been studied extensively, much less is known about their effects on the developing or adult gut microbiota. Thus, we established a community of 44 cultured, sequenced human gut-derived bacterial species in gnotobiotic mice and fed the animals a defined, micronutrient-sufficient diet, followed by a derivative diet devoid of vitamin A, folate, iron or zinc, followed by return to the sufficient diet. Acute vitamin A deficiency had the largest effect on community structure and meta-transcriptome, with Bacteroides vulgatus, a prominent responder, increasing its abundancemore » in the absence of vitamin A, and manifesting transcriptional changes involving various metabolic pathways. Applying retinol selection to a library of 30,300 B. vulgatus transposon mutants revealed that disruption of acrR abrogated retinol sensitivity. Genetic complementation studies, microbial RNA-Seq, and transcription factor binding assays disclosed that AcrR functions as a repressor of an adjacent AcrAB-TolC efflux system plus other members of its regulon. Retinol efflux measurements in wild-type, acrR-mutant, and complemented acrR mutant strains, plus treatment with a pharmacologic inhibitor of the efflux system, revealed that AcrAB-TolC is a determinant of retinol and bile acid sensitivity. We associated acute vitamin A deficiency with altered bile acid metabolism in vivo, raising the possibility that retinol, bile acid metabolites, and AcrAB-TolC interact to influence the fitness of B. vulgatus and perhaps other microbiota members. This type of preclinical model can help develop mechanistic insights about and more effective treatment strategies for micronutrient deficiencies.« less
Shima, Jun; Hino, Akihiro; Yamada-Iyo, Chie; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Mori, Katsumi; Takano, Hiroyuki
1999-01-01
Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Δnth1), acid trehalase mutants (Δath1), and double mutants (Δnth1 ath1) by using commercial baker’s yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The Δnth1 and Δath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the Δnth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough. PMID:10388673
Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.
2016-01-01
Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287
PBP5, PBP6 and DacD play different roles in intrinsic β-lactam resistance of Escherichia coli.
Sarkar, Sujoy Kumar; Dutta, Mouparna; Chowdhury, Chiranjit; Kumar, Akash; Ghosh, Anindya S
2011-09-01
Escherichia coli PBP5, PBP6 and DacD, encoded by dacA, dacC and dacD, respectively, share substantial amino acid identity and together constitute ~50 % of the total penicillin-binding proteins of E. coli. PBP5 helps maintain intrinsic β-lactam resistance within the cell. To test if PBP6 and DacD play simlar roles, we deleted dacC and dacD individually, and dacC in combination with dacA, from E. coli 2443 and compared β-lactam sensitivity of the mutants and the parent strain. β-Lactam resistance was complemented by wild-type, but not dd-carboxypeptidase-deficient PBP5, confirming that enzymic activity of PBP5 is essential for β-lactam resistance. Deletion of dacC and expression of PBP6 during exponential or stationary phase did not alter β-lactam resistance of a dacA mutant. Expression of DacD during mid-exponential phase partially restored β-lactam resistance of the dacA mutant. Therefore, PBP5 dd-carboxypeptidase activity is essential for intrinsic β-lactam resistance of E. coli and DacD can partially compensate for PBP5 in this capacity, whereas PBP6 cannot.
Isolation of temperature-sensitive mutations in murC of Staphylococcus aureus.
Ishibashi, Mihoko; Kurokawa, Kenji; Nishida, Satoshi; Ueno, Kohji; Matsuo, Miki; Sekimizu, Kazuhisa
2007-09-01
Enzymes in the bacterial peptidoglycan biosynthesis pathway are important targets for novel antibiotics. Of 750 temperature-sensitive (TS) mutants of Gram-positive Staphylococcus aureus, six were complemented by the murC gene, which encodes the UDP-N-acetylmuramic acid:l-alanine ligase. Each mutation resulted in a single amino acid substitution and, in all cases, the TS phenotype was suppressed by high osmotic stress. In mutant strains with the G222E substitution, a decrease in the viable cell number immediately after shift to the restrictive temperature was observed. These results suggest that S. aureus MurC protein is essential for cell growth. The MurC H343Y mutation is located in the putative alanine recognition pocket. Consistent with this, allele-specific suppression was observed of the H343Y mutation by multiple copies of the aapA gene, which encodes an alanine transporter. The results suggest an in vivo role for the H343 residue of S. aureus MurC protein in high-affinity binding to L-alanine.
A toolkit for GFP-mediated tissue-specific protein degradation in C. elegans.
Wang, Shaohe; Tang, Ngang Heok; Lara-Gonzalez, Pablo; Zhao, Zhiling; Cheerambathur, Dhanya K; Prevo, Bram; Chisholm, Andrew D; Desai, Arshad; Oegema, Karen
2017-07-15
Proteins that are essential for embryo production, cell division and early embryonic events are frequently reused later in embryogenesis, during organismal development or in the adult. Examining protein function across these different biological contexts requires tissue-specific perturbation. Here, we describe a method that uses expression of a fusion between a GFP-targeting nanobody and a SOCS-box containing ubiquitin ligase adaptor to target GFP-tagged proteins for degradation. When combined with endogenous locus GFP tagging by CRISPR-Cas9 or with rescue of a null mutant with a GFP fusion, this approach enables routine and efficient tissue-specific protein ablation. We show that this approach works in multiple tissues - the epidermis, intestine, body wall muscle, ciliated sensory neurons and touch receptor neurons - where it recapitulates expected loss-of-function mutant phenotypes. The transgene toolkit and the strain set described here will complement existing approaches to enable routine analysis of the tissue-specific roles of C. elegans proteins. © 2017. Published by The Company of Biologists Ltd.
Selection of antigenically advanced variants of seasonal influenza viruses.
Li, Chengjun; Hatta, Masato; Burke, David F; Ping, Jihui; Zhang, Ying; Ozawa, Makoto; Taft, Andrew S; Das, Subash C; Hanson, Anthony P; Song, Jiasheng; Imai, Masaki; Wilker, Peter R; Watanabe, Tokiko; Watanabe, Shinji; Ito, Mutsumi; Iwatsuki-Horimoto, Kiyoko; Russell, Colin A; James, Sarah L; Skepner, Eugene; Maher, Eileen A; Neumann, Gabriele; Klimov, Alexander I; Kelso, Anne; McCauley, John; Wang, Dayan; Shu, Yuelong; Odagiri, Takato; Tashiro, Masato; Xu, Xiyan; Wentworth, David E; Katz, Jacqueline M; Cox, Nancy J; Smith, Derek J; Kawaoka, Yoshihiro
2016-05-23
Influenza viruses mutate frequently, necessitating constant updates of vaccine viruses. To establish experimental approaches that may complement the current vaccine strain selection process, we selected antigenic variants from human H1N1 and H3N2 influenza virus libraries possessing random mutations in the globular head of the haemagglutinin protein (which includes the antigenic sites) by incubating them with human and/or ferret convalescent sera to human H1N1 and H3N2 viruses. We also selected antigenic escape variants from human viruses treated with convalescent sera and from mice that had been previously immunized against human influenza viruses. Our pilot studies with past influenza viruses identified escape mutants that were antigenically similar to variants that emerged in nature, establishing the feasibility of our approach. Our studies with contemporary human influenza viruses identified escape mutants before they caused an epidemic in 2014-2015. This approach may aid in the prediction of potential antigenic escape variants and the selection of future vaccine candidates before they become widespread in nature.
1992-01-01
We have isolated mutants that inhibit membrane protein insertion into the ER membrane of Saccharomyces cerevisiae. The mutants were contained in three complementation groups, which we have named SEC70, SEC71, and SEC72. The mutants also inhibited the translocation of soluble proteins into the lumen of the ER, indicating that they pleiotropically affect protein transport across and insertion into the ER membrane. Surprisingly, the mutants inhibited the translocation and insertion of different proteins to drastically different degrees. We have also shown that mutations in SEC61 and SEC63, which were previously isolated as mutants inhibiting the translocation of soluble proteins, also affect the insertion of membrane proteins into the ER. Taken together our data indicate that the process of protein translocation across the ER membrane involves a much larger number of gene products than previously appreciated. Moreover, different translocation substrates appear to have different requirements for components of the cellular targeting and translocation apparatus. PMID:1730771
Cheng, Hui; Yang, Zhijie; Estabrook, Michele M.; John, Constance M.; Jarvis, Gary A.; McLaughlin, Stephanie; Griffiss, J. McLeod
2011-01-01
Antibodies that initiate complement-mediated killing of Neisseria meningitidis as they enter the bloodstream from the oropharynx protect against disseminated disease. Human IgGs that bind the neisserial L7 lipooligosaccharide (LOS) are bactericidal for L3,7 and L2,4 meningococci in the presence of human complement. These strains share a lacto-N-neotetraose (nLc4) LOS α chain. We used a set of mutants that have successive saccharide deletions from the nLc4 α chain to characterize further the binding and bactericidal activity of nLc4 LOS IgG. We found that the nLc4 α chain conforms at least four different antigens. We separately purified IgG that required the nLc4 (non-reducing) terminal galactose (Gal) for binding and IgG that bound the truncated nLc3 α chain that lacks this Gal residue. IgG that bound the internal nLc3 α chain killed both L3,7 and L2,4 strains, whereas IgG that required the nLc4 terminal Gal residue for binding killed L2,4 stains but not L3,7 strains. These results show that the diversity of LOS antibodies in human serum is as much a function of the conformation of multiple antigens by a single glycoform as of the production of multiple glycoforms. Differences in sensitivity to killing by human nLc4 LOS IgG may account for the fact that fully two-thirds of endemic group B meningococcal disease in infants and children is caused by L3,7 strains, but only 20% is caused by L2,4 stains. PMID:22027827
2011-01-01
Background The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. Results Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. Conclusions Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions. PMID:21880152
Goldová, Jana; Ulrych, Aleš; Hercík, Kamil; Branny, Pavel
2011-08-31
The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions.
Kück, Ulrich
2005-10-01
Developmental mutants with defects in fruiting body formation are excellent resources for the identification of genetic components that control cellular differentiation processes in filamentous fungi. The mutant pro4 of the ascomycete Sordaria macrospora is characterized by a developmental arrest during the sexual life cycle. This mutant generates only pre-fruiting bodies (protoperithecia), and is unable to form ascospores. Besides being sterile, pro4 is auxotrophic for leucine. Ascospore analysis revealed that the two phenotypes are genetically linked. After isolation of the wild-type leu1 gene from S. macrospora, complementation experiments demonstrated that the gene was able to restore both prototrophy and fertility in pro4. To investigate the control of leu1 expression, other genes involved in leucine biosynthesis specifically and in the general control of amino acid biosynthesis ("cross-pathway control") have been analysed using Northern hybridization and quantitative RT-PCR. These analyses demonstrated that genes of leucine biosynthesis are transcribed at higher levels under conditions of amino acid starvation. In addition, the expression data for the cpc1 and cpc2 genes indicate that cross-pathway control is superimposed on leucine-specific regulation of fruiting body development in the leu1 mutant. This was further substantiated by growth experiments in which the wild-type strain was found to show a sterile phenotype when grown on a medium containing the amino acid analogue 5-methyl-tryptophan. Taken together, these data show that pro4 represents a novel mutant type in S. macrospora, in which amino acid starvation acts as a signal that interrupts the development of the fruiting body.
Mutational analysis of GlnB residues critical for NifA activation in Azospirillum brasilense.
Inaba, Juliana; Thornton, Jeremy; Huergo, Luciano Fernandes; Monteiro, Rose Adele; Klassen, Giseli; Pedrosa, Fábio de Oliveira; Merrick, Mike; de Souza, Emanuel Maltempi
2015-02-01
PII proteins are signal transduction that sense cellular nitrogen status and relay this signals to other targets. Azospirillum brasilense is a nitrogen fixing bacterium, which associates with grasses and cereals promoting beneficial effects on plant growth and crop yields. A. brasilense contains two PII encoding genes, named glnB and glnZ. In this paper, glnB was mutagenised in order to identify amino acid residues involved in GlnB signaling. Two variants were obtained by random mutagenesis, GlnBL13P and GlnBV100A and a site directed mutant, GlnBY51F, was obtained. Their ability to complement nitrogenase activity of glnB mutant strains of A. brasilense were determined. The variant proteins were also overexpressed in Escherichia coli, purified and characterized biochemically. None of the GlnB variant forms was able to restore nitrogenase activity in glnB mutant strains of A. brasilense LFH3 and 7628. The purified GlnBY51F and GlnBL13P proteins could not be uridylylated by GlnD, whereas GlnBV100A was uridylylated but at only 20% of the rate for wild type GlnB. Biochemical and computational analyses suggest that residue Leu13, located in the α helix 1 of GlnB, is important to maintain GlnB trimeric structure and function. The substitution V100A led to a lower affinity for ATP binding. Together the results suggest that NifA activation requires uridylylated GlnB bound to ATP. Copyright © 2014 Elsevier GmbH. All rights reserved.
A monoacylglycerol lipase from Mycobacterium smegmatis Involved in bacterial cell interaction.
Dhouib, Rabeb; Laval, Françoise; Carrière, Frédéric; Daffé, Mamadou; Canaan, Stéphane
2010-09-01
MSMEG_0220 from Mycobacterium smegmatis, the ortholog of the Rv0183 gene from M. tuberculosis, recently identified and characterized as encoding a monoacylglycerol lipase, was cloned and expressed in Escherichia coli. The recombinant protein (rMSMEG_0220), which exhibits 68% amino acid sequence identity with Rv0183, showed the same substrate specificity and similar patterns of pH-dependent activity and stability as the M. tuberculosis enzyme. rMSMEG_0220 was found to hydrolyze long-chain monoacylglycerol with a specific activity of 143 +/- 6 U mg(-1). Like Rv0183 in M. tuberculosis, MSMEG_0220 was found to be located in the cell wall. To assess the in vivo role of the homologous proteins, an MSMEG_0220 disrupted mutant of M. smegmatis (MsDelta0220) was produced. An intriguing change in the colony morphology and in the cell interaction, which were partly restored in the complemented mutant containing either an active (ComMsDelta0220) or an inactive (ComMsDelta0220S111A) enzyme, was observed. Growth studies performed in media supplemented with monoolein showed that the ability of both MsDelta0220 and ComMsDelta0220S111A to grow in the presence of this lipid was impaired. Moreover, studies of the antimicrobial susceptibility of the MsDelta0220 strain showed that this mutant is more sensitive to rifampin and more resistant to isoniazid than the wild-type strain, pointing to a critical structural role of this enzyme in mycobacterial physiology, in addition to its function in the hydrolysis of exogenous lipids.
A Monoacylglycerol Lipase from Mycobacterium smegmatis Involved in Bacterial Cell Interaction▿ †
Dhouib, Rabeb; Laval, Françoise; Carrière, Frédéric; Daffé, Mamadou; Canaan, Stéphane
2010-01-01
MSMEG_0220 from Mycobacterium smegmatis, the ortholog of the Rv0183 gene from M. tuberculosis, recently identified and characterized as encoding a monoacylglycerol lipase, was cloned and expressed in Escherichia coli. The recombinant protein (rMSMEG_0220), which exhibits 68% amino acid sequence identity with Rv0183, showed the same substrate specificity and similar patterns of pH-dependent activity and stability as the M. tuberculosis enzyme. rMSMEG_0220 was found to hydrolyze long-chain monoacylglycerol with a specific activity of 143 ± 6 U mg−1. Like Rv0183 in M. tuberculosis, MSMEG_0220 was found to be located in the cell wall. To assess the in vivo role of the homologous proteins, an MSMEG_0220 disrupted mutant of M. smegmatis (MsΔ0220) was produced. An intriguing change in the colony morphology and in the cell interaction, which were partly restored in the complemented mutant containing either an active (ComMsΔ0220) or an inactive (ComMsΔ0220S111A) enzyme, was observed. Growth studies performed in media supplemented with monoolein showed that the ability of both MsΔ0220 and ComMsΔ0220S111A to grow in the presence of this lipid was impaired. Moreover, studies of the antimicrobial susceptibility of the MsΔ0220 strain showed that this mutant is more sensitive to rifampin and more resistant to isoniazid than the wild-type strain, pointing to a critical structural role of this enzyme in mycobacterial physiology, in addition to its function in the hydrolysis of exogenous lipids. PMID:20601476
Comprehensive identification of Vibrio vulnificus genes required for growth in human serum.
Carda-Diéguez, M; Silva-Hernández, F X; Hubbard, T P; Chao, M C; Waldor, M K; Amaro, C
2018-12-31
Vibrio vulnificus can be a highly invasive pathogen capable of spreading from an infection site to the bloodstream, causing sepsis and death. To survive and proliferate in blood, the pathogen requires mechanisms to overcome the innate immune defenses and metabolic limitations of this host niche. We created a high-density transposon mutant library in YJ016, a strain representative of the most virulent V. vulnificus lineage (or phylogroup) and used transposon insertion sequencing (TIS) screens to identify loci that enable the pathogen to survive and proliferate in human serum. Initially, genes underrepresented for insertions were used to estimate the V. vulnificus essential gene set; comparisons of these genes with similar TIS-based classification of underrepresented genes in other vibrios enabled the compilation of a common Vibrio essential gene set. Analysis of the relative abundance of insertion mutants in the library after exposure to serum suggested that genes involved in capsule biogenesis are critical for YJ016 complement resistance. Notably, homologues of two genes required for YJ016 serum-resistance and capsule biogenesis were not previously linked to capsule biogenesis and are largely absent from other V. vulnificus strains. The relative abundance of mutants after exposure to heat inactivated serum was compared with the findings from the serum screen. These comparisons suggest that in both conditions the pathogen relies on its Na + transporting NADH-ubiquinone reductase (NQR) complex and type II secretion system to survive/proliferate within the metabolic constraints of serum. Collectively, our findings reveal the potency of comparative TIS screens to provide knowledge of how a pathogen overcomes the diverse limitations to growth imposed by serum.
Millikan, Deborah S.; Ruby, Edward G.
2003-01-01
Flagellum-mediated motility of Vibrio fischeri is an essential factor in the bacterium's ability to colonize its host, the Hawaiian squid Euprymna scolopes. To begin characterizing the nature of the flagellar regulon, we have cloned a gene, designated flrA, from V. fischeri that encodes a putative σ54-dependent transcriptional activator. Genetic arrangement of the flrA locus in V. fischeri is similar to motility master-regulator operons of Vibrio cholerae and Vibrio parahaemolyticus. In addition, examination of regulatory regions of a number of flagellar operons in V. fischeri revealed apparent σ54 recognition motifs, suggesting that the flagellar regulatory hierarchy is controlled by a similar mechanism to that described in V. cholerae. However, in contrast to its closest known relatives, flrA mutant strains of V. fischeri ES114 were completely abolished in swimming capability. Although flrA provided in trans restored motility to the flrA mutant, the complemented strain was unable to reach wild-type levels of symbiotic colonization in juvenile squid, suggesting a possible role for the proper expression of FlrA in regulating symbiotic colonization factors in addition to those required for motility. Comparative RNA arbitrarily primed PCR analysis of the flrA mutant and its wild-type parent revealed several differentially expressed transcripts. These results define a regulon that includes both flagellar structural genes and other genes apparently not involved in flagellum elaboration or function. Thus, the transcriptional activator FlrA plays an essential role in regulating motility, and apparently in modulating other symbiotic functions, in V. fischeri. PMID:12775692
Fan, Lili; Fu, Kehe; Yu, Chuanjin; Li, Yingying; Li, Yaqian; Chen, Jie
2015-05-01
Mutant T66 was isolated from 450 mutants (constructed with Agrobacterium tumefaciens-mediated transformation method) of Trichoderma harzianum. Maize seeds coated with T66 were more susceptible to Curvularia lunata when compared with those coated with wild-type (WT) strain. The disease index of maize treated with T66 and WT were 62.5 and 42.1%, respectively. Further research showed T-DNA has inserted into the ORF of one gene, which resulted in the functional difference between WT and T66. The gene was cloned and named Thc6, which encodes a novel 327 amino acid protein. To investigate its function, we obtained knockout, complementation, and overexpression mutants of Thc6. Challenge inoculation studies suggested that the Thc6 overexpression mutant can reduce the disease index of maize inbred line Huangzao 4 against the leaf spot pathogen (C. lunata). Meanwhile, The Thc6 mutants were found to affect the resistance of maize inbred line Huangzao 4 against C. lunata by enhancing the activation of jasmonate-responsive genes expression. Liquid chromatography-mass spectrometry (LC-MS) data further confirmed that the concentration of jasmonate in the induced maize exhibits a parallel change tendency with the expression level of defense-related genes. Hence, the Thc6 gene could be participated in the induced resistance of maize inbred line Huangzao 4 against C. lunata infection through a jasmonic acid-dependent pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Jihong; Freedman, John C; McClane, Bruce A
2015-10-01
Clostridium perfringens type D strains are usually associated with diseases of livestock, and their virulence requires the production of epsilon toxin (ETX). We previously showed (J. Li, S. Sayeed, S. Robertson, J. Chen, and B. A. McClane, PLoS Pathog 7:e1002429, 2011, http://dx.doi.org/10.1371/journal.ppat.1002429) that BMC202, a nanI null mutant of type D strain CN3718, produces less ETX than wild-type CN3718 does. The current study proved that the lower ETX production by strain BMC202 is due to nanI gene disruption, since both genetic and physical (NanI or sialic acid) complementation increased ETX production by BMC202. Furthermore, a sialidase inhibitor that interfered with NanI activity also reduced ETX production by wild-type CN3718. The NanI effect on ETX production was shown to involve reductions in codY and ccpA gene transcription levels in BMC202 versus wild-type CN3718. Similar to CodY, CcpA was found to positively control ETX production. A double codY ccpA null mutant produced even less ETX than a codY or ccpA single null mutant. CcpA bound directly to sequences upstream of the etx or codY start codon, and bioinformatics identified putative CcpA-binding cre sites immediately upstream of both the codY and etx start codons, suggesting possible direct CcpA regulatory effects. A ccpA mutation also decreased codY transcription, suggesting that CcpA effects on ETX production can be both direct and indirect, including effects on codY transcription. Collectively, these results suggest that NanI, CcpA, and CodY work together to regulate ETX production, with NanI-generated sialic acid from the intestines possibly signaling type D strains to upregulate their ETX production and induce disease. Clostridium perfringens NanI was previously shown to increase ETX binding to, and cytotoxicity for, MDCK host cells. The current study demonstrates that NanI also regulates ETX production via increased transcription of genes encoding the CodY and CcpA global regulators. Results obtained using single ccpA or codY null mutants and a ccpA codY double null mutant showed that codY and ccpA regulate ETX production independently of one another but that ccpA also affects codY transcription. Electrophoretic mobility shift assays and bioinformatic analyses suggest that both CodY and CcpA may directly regulate etx transcription. Collectively, results of this study suggest that sialic acid generated by NanI from intestinal sources signals ETX-producing C. perfringens strains, via CcpA and CodY, to upregulate ETX production and cause disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Mahant, Aakash; Saubi, Narcís; Eto, Yoshiki; Guitart, Núria; Gatell, Josep Ma; Hanke, Tomáš; Joseph, Joan
2017-08-03
One of the critical issues that should be addressed in the development of a BCG-based HIV vaccine is genetic plasmid stability. Therefore, to address this issue we have considered using integrative vectors and the auxotrophic mutant of BCG complemented with a plasmid carrying a wild-type complementing gene. In this study, we have constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HIVA int , expressing the HIV-1 clade A immunogen HIVA. This shuttle vector uses an antibiotic resistance-free mechanism for plasmid selection and maintenance. It was first transformed into a glycine auxotrophic E. coli strain and subsequently transformed into a lysine auxotrophic Mycobacterium bovis BCG strain to generate the vaccine BCG.HIVA 2auxo.int . Presence of the HIVA gene sequence and protein expression was confirmed. We demonstrated that the in vitro stability of the integrative plasmid p2auxo.HIVA int was increased 4-fold, as compared with the BCG strain harboring the episomal plasmid, and was genetically and phenotypically characterized. The BCG.HIVA 2auxo.int vaccine in combination with modified vaccinia virus Ankara (MVA).HIVA was found to be safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. We have engineered a more stable and immunogenic BCG-vectored vaccine using the prototype immunogen HIVA. Thus, the use of integrative expression vectors and the antibiotic-free plasmid selection system based on "double" auxotrophic complementation are likely to improve the mycobacterial vaccine stability in vivo and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Sumby, Paul; Barbian, Kent D; Gardner, Donald J; Whitney, Adeline R; Welty, Diane M; Long, R Daniel; Bailey, John R; Parnell, Michael J; Hoe, Nancy P; Adams, Gerald G; Deleo, Frank R; Musser, James M
2005-02-01
Many pathogenic bacteria produce extracellular DNase, but the benefit of this enzymatic activity is not understood. For example, all strains of the human bacterial pathogen group A Streptococcus (GAS) produce at least one extracellular DNase, and most strains make several distinct enzymes. Despite six decades of study, it is not known whether production of DNase by GAS enhances virulence. To test the hypothesis that extracellular DNase is required for normal progression of GAS infection, we generated seven isogenic mutant strains in which the three chromosomal- and prophage-encoded DNases made by a contemporary serotype M1 GAS strain were inactivated. Compared to the wild-type parental strain, the isogenic triple-mutant strain was significantly less virulent in two mouse models of invasive infection. The triple-mutant strain was cleared from the skin injection site significantly faster than the wild-type strain. Preferential clearance of the mutant strain was related to the differential extracellular killing of the mutant and wild-type strains, possibly through degradation of neutrophil extracellular traps, innate immune structures composed of chromatin and granule proteins. The triple-mutant strain was also significantly compromised in its ability to cause experimental pharyngeal disease in cynomolgus macaques. Comparative analysis of the seven DNase mutant strains strongly suggested that the prophage-encoded SdaD2 enzyme is the major DNase that contributes to virulence in this clone. We conclude that extracellular DNase activity made by GAS contributes to disease progression, thereby resolving a long-standing question in bacterial pathogenesis research.
Participation of Candida albicans Transcription Factor RLM1 in Cell Wall Biogenesis and Virulence
Delgado-Silva, Yolanda; Vaz, Catarina; Carvalho-Pereira, Joana; Carneiro, Catarina; Nogueira, Eugénia; Correia, Alexandra; Carreto, Laura; Silva, Sónia; Faustino, Augusto; Pais, Célia; Oliveira, Rui; Sampaio, Paula
2014-01-01
Candida albicans cell wall is important for growth and interaction with the environment. RLM1 is one of the putative transcription factors involved in the cell wall integrity pathway, which plays an important role in the maintenance of the cell wall integrity. In this work we investigated the involvement of RLM1 in the cell wall biogenesis and in virulence. Newly constructed C. albicans Δ/Δrlm1 mutants showed typical cell wall weakening phenotypes, such as hypersensitivity to Congo Red, Calcofluor White, and caspofungin (phenotype reverted in the presence of sorbitol), confirming the involvement of RLM1 in the cell wall integrity. Additionally, the cell wall of C. albicans Δ/Δrlm1 showed a significant increase in chitin (213%) and reduction in mannans (60%), in comparison with the wild-type, results that are consistent with cell wall remodelling. Microarray analysis in the absence of any stress showed that deletion of RLM1 in C. albicans significantly down-regulated genes involved in carbohydrate catabolism such as DAK2, GLK4, NHT1 and TPS1, up-regulated genes involved in the utilization of alternative carbon sources, like AGP2, SOU1, SAP6, CIT1 or GAL4, and genes involved in cell adhesion like ECE1, ALS1, ALS3, HWP1 or RBT1. In agreement with the microarray results adhesion assays showed an increased amount of adhering cells and total biomass in the mutant strain, in comparison with the wild-type. C. albicans mutant Δ/Δrlm1 strain was also found to be less virulent than the wild-type and complemented strains in the murine model of disseminated candidiasis. Overall, we showed that in the absence of RLM1 the modifications in the cell wall composition alter yeast interaction with the environment, with consequences in adhesion ability and virulence. The gene expression findings suggest that this gene participates in the cell wall biogenesis, with the mutant rearranging its metabolic pathways to allow the use of alternative carbon sources. PMID:24466000
Elleuche, Skander; Pöggeler, Stefanie
2009-01-01
Carbon dioxide (CO2) is among the most important gases for all organisms. Its reversible interconversion to bicarbonate (HCO3 −) reaches equilibrium spontaneously, but slowly, and can be accelerated by a ubiquitous group of enzymes called carbonic anhydrases (CAs). These enzymes are grouped by their distinct structural features into α-, β-, γ-, δ- and ζ-classes. While physiological functions of mammalian, prokaryotic, plant and algal CAs have been extensively studied over the past years, the role of β-CAs in yeasts and the human pathogen Cryptococcus neoformans has been elucidated only recently, and the function of CAs in multicellular filamentous ascomycetes is mostly unknown. To assess the role of CAs in the development of filamentous ascomycetes, the function of three genes, cas1, cas2 and cas3 (carbonic anhydrase of Sordaria) encoding β-class carbonic anhydrases was characterized in the filamentous ascomycetous fungus Sordaria macrospora. Fluorescence microscopy was used to determine the localization of GFP- and DsRED-tagged CAs. While CAS1 and CAS3 are cytoplasmic enzymes, CAS2 is localized to the mitochondria. To assess the function of the three isoenzymes, we generated knock-out strains for all three cas genes (Δcas1, Δcas2, and Δcas3) as well as all combinations of double mutants. No effect on vegetative growth, fruiting-body and ascospore development was seen in the single mutant strains lacking cas1 or cas3, while single mutant Δcas2 was affected in vegetative growth, fruiting-body development and ascospore germination, and the double mutant strain Δcas1/2 was completely sterile. Defects caused by the lack of cas2 could be partially complemented by elevated CO2 levels or overexpression of cas1, cas3, or a non-mitochondrial cas2 variant. The results suggest that CAs are required for sexual reproduction in filamentous ascomycetes and that the multiplicity of isoforms results in redundancy of specific and non-specific functions. PMID:19365544
Kim, Ju-Sim; Holmes, Randall K.
2012-01-01
Corynebacterium diphtheriae and Corynebacterium glutamicum each have one gene (cat) encoding catalase. In-frame Δcat mutants of C. diphtheriae and C. glutamicum were hyper-sensitive to growth inhibition and killing by H2O2. In C. diphtheriae C7(β), both catalase activity and cat transcription decreased ∼2-fold during transition from exponential growth to early stationary phase. Prototypic OxyR in Escherichia coli senses oxidative stress and it activates katG transcription and catalase production in response to H2O2. In contrast, exposure of C. diphtheriae C7(β) to H2O2 did not stimulate transcription of cat. OxyR from C. diphtheriae and C. glutamicum have 52% similarity with E. coli OxyR and contain homologs of the two cysteine residues involved in H2O2 sensing by E. coli OxyR. In-frame ΔoxyR deletion mutants of C. diphtheriae C7(β), C. diphtheriae NCTC13129, and C. glutamicum were much more resistant than their parental wild type strains to growth inhibition by H2O2. In the C. diphtheriae C7(β) ΔoxyR mutant, cat transcripts were about 8-fold more abundant and catalase activity was about 20-fold greater than in the C7(β) wild type strain. The oxyR gene from C. diphtheriae or C. glutamicum, but not from E. coli, complemented the defect in ΔoxyR mutants of C. diphtheriae and C. glutamicum and decreased their H2O2 resistance to the level of their parental strains. Gel-mobility shift, DNaseI footprint, and primer extension assays showed that purified OxyR from C. diphtheriae C7(β) bound, in the presence or absence of DTT, to a sequence in the cat promoter region that extends from nucleotide position −55 to −10 with respect to the +1 nucleotide in the cat ORF. These results demonstrate that OxyR from C. diphtheriae or C. glutamicum functions as a transcriptional repressor of the cat gene by a mechanism that is independent of oxidative stress induced by H2O2. PMID:22438866
Nomura, Kazuki; Kuwabara, Yuki; Kuwabara, Wataru; Takahashi, Hiroyuki; Nakajima, Kanako; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru
2017-12-01
We previously obtained a pressure-tolerant (piezotolerant) and a pressure sensitive (piezosensitive) mutant strain, under ambient temperature, from Saccharomyces cerevisiae strain KA31a. The inactivation kinetics of these mutants were analyzed at 150 to 250MPa with 4 to 40°C. By a multiple regression analysis, the pressure and temperature dependency of the inactivation rate constants k values of both mutants, as well as the parent strain KA31a, were well approximated with high correlation coefficients (0.92 to 0.95). For both mutants, as well as strain KA31a, the lowest k value was shown at a low pressure levels with around ambient temperature. The k value approximately increased with increase in pressure level, and with increase and decrease in temperature. The piezosensitive mutant strain a924E1 showed piezosensitivity at all pressure and temperature levels, compared with the parent strain KA31a. In contrast, the piezotolerant mutant strain a2568D8 showed piezotolerance at 4 to 20°C, but did not show significant piezotolerance at 40°C. These results of the variable influence of temperature on pressure inactivation of these strains would be important for better understanding of piezosensitive and piezotolerant mechanisms, as well as the pressure inactivation mechanism of S. cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Jinjing; Shen, Nan; Yin, Hua; Liu, Chunfeng; Li, Yongxian; Li, Qi
2013-02-01
Higher acetaldehyde concentration in beer is one of the main concerns of current beer industry in China. Acetaldehyde is always synthesized during beer brewing by the metabolism of yeast. Here, using ethanol as the sole carbon source and 4-methylpyrazole as the selection marker, we constructed a new mutant strain with lower acetaldehyde production and improved ethanol tolerance via traditional mutagenesis strategy. European Brewery Convention tube fermentation tests comparing the fermentation broths of mutant strain and industrial brewing strain showed that the acetaldehyde concentration of mutant strain was 81.67 % lower, whereas its resistant staling value was 1.0-fold higher. Owing to the mutation, the alcohol dehydrogenase activity of the mutant strain decreased to about 30 % of the wild-type strain. In the meantime, the fermentation performance of the newly screened strain has little difference compared with the wild-type strain, and there are no safety problems regarding the industrial usage of the mutant strain. Therefore, we suggest that the newly screened strain could be directly applied to brewing industry.
Almagro-Moreno, Salvador; Boyd, E. Fidelma
2009-01-01
Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae ΔnanA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment. PMID:19564383
Almagro-Moreno, Salvador; Boyd, E Fidelma
2009-09-01
Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae DeltananA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.
Chen, Qiang; Fischer, Joshua R; Benoit, Vivian M; Dufour, Nicholas P; Youderian, Philip; Leong, John M
2008-12-01
Borrelia burgdorferi is the causative agent of Lyme disease, the most common vector-borne illness in the Northern hemisphere. Low-passage-number infectious strains of B. burgdorferi exhibit extremely low transformation efficiencies-so low, in fact, as to hinder the genetic study of putative virulence factors. Two putative restriction-modification (R-M) systems, BBE02 contained on linear plasmid 25 (lp25) and BBQ67 contained on lp56, have been postulated to contribute to this poor transformability. Restriction barriers posed by other bacteria have been overcome by the in vitro methylation of DNA prior to transformation. To test whether a methylation-sensitive restriction system contributes to poor B. burgdorferi transformability, shuttle plasmids were treated with the CpG methylase M.SssI prior to the electroporation of a variety of strains harboring different putative R-M systems. We found that for B. burgdorferi strains that harbor lp56, in vitro methylation increased transformation by at least 1 order of magnitude. These results suggest that in vitro CpG methylation protects exogenous DNA from degradation by an lp56-contained R-M system, presumably BBQ67. The utility of in vitro methylation for the genetic manipulation of B. burgdorferi was exemplified by the ease of plasmid complementation of a B. burgdorferi B31 A3 BBK32 kanamycin-resistant (B31 A3 BBK32::Kan(r)) mutant, deficient in the expression of the fibronectin- and glycosaminoglycan (GAG)-binding adhesin BBK32. Consistent with the observation that several surface proteins may promote GAG binding, the B. burgdorferi B31 A3 BBK32::Kan(r) mutant demonstrated no defect in the ability to bind purified GAGs or GAGs expressed on the surfaces of cultured cells.
Seib, K L; Serruto, D; Oriente, F; Delany, I; Adu-Bobie, J; Veggi, D; Aricò, B; Rappuoli, R; Pizza, M
2009-01-01
Factor H-binding protein (fHBP; GNA1870) is one of the antigens of the recombinant vaccine against serogroup B Neisseria meningitidis, which has been developed using reverse vaccinology and is the basis of a meningococcal B vaccine entering phase III clinical trials. Binding of factor H (fH), an inhibitor of the complement alternative pathway, to fHBP enables N. meningitidis to evade killing by the innate immune system. All fHBP null mutant strains analyzed were sensitive to killing in ex vivo human whole blood and serum models of meningococcal bacteremia with respect to the isogenic wild-type strains. The fHBP mutant strains of MC58 and BZ83 (high fHBP expressors) survived in human blood and serum for less than 60 min (decrease of >2 log(10) CFU), while NZ98/254 (intermediate fHBP expressor) and 67/00 (low fHBP expressor) showed decreases of >1 log(10) CFU after 60 to 120 min of incubation. In addition, fHBP is important for survival in the presence of the antimicrobial peptide LL-37 (decrease of >3 log(10) CFU after 2 h of incubation), most likely due to electrostatic interactions between fHBP and the cationic LL-37 molecule. Hence, the expression of fHBP by N. meningitidis strains is important for survival in human blood and human serum and in the presence of LL-37, even at low levels. The functional significance of fHBP in mediating resistance to the human immune response, in addition to its widespread distribution and its ability to induce bactericidal antibodies, indicates that it is an important component of the serogroup B meningococcal vaccine.
Mutation and virulence assessment of chromosomal genes of Rhodococcus equi 103
Pei, Yanlong; Parreira, Valeria; Nicholson, Vivian M.; Prescott, John F.
2007-01-01
Rhodococcus equi can cause severe or fatal pneumonia in foals as well as in immunocompromised animals and humans. Its ability to persist in macrophages is fundamental to how it causes disease, but the basis of this is poorly understood. To examine further the general application of a recently developed system of targeted gene mutation and to assess the importance of different genes in resistance to innate immune defenses, we disrupted the genes encoding high-temperature requirement A (htrA), nitrate reductase (narG), peptidase D (pepD), phosphoribosylaminoimidazole-succinocarboxamide synthase (purC), and superoxide dismutase (sodC) in strain 103 of R. equi using a double-crossover homologous recombination approach. Virulence testing by clearance after intravenous injection in mice showed that the htrA and narG mutants were fully attenuated, the purC and sodC mutants were unchanged, and the pepD mutant was slightly attenuated. Complementation with the pREM shuttle plasmid restored the virulence of the htrA and pepD mutants but not that of the narG mutant. A single-crossover mutation approach was simpler and faster than the double-crossover homologous recombination technique and was used to obtain mutations in 6 other genes potentially involved in virulence (clpB, fadD8, fbpB, glnA1, regX3, and sigF). These mutants were not attenuated in the mouse clearance assay. We were not able to obtain mutants for genes furA, galE, and sigE using the single-crossover mutation approach. In summary, the targeted-mutation system had general applicability but was not always completely successful, perhaps because some genes are essential under the growth conditions used or because the success of mutation depends on the target genes. PMID:17193875
Mutation and virulence assessment of chromosomal genes of Rhodococcus equi 103.
Pei, Yanlong; Parreira, Valeria; Nicholson, Vivian M; Prescott, John F
2007-01-01
Rhodococcus equi can cause severe or fatal pneumonia in foals as well as in immunocompromised animals and humans. Its ability to persist in macrophages is fundamental to how it causes disease, but the basis of this is poorly understood. To examine further the general application of a recently developed system of targeted gene mutation and to assess the importance of different genes in resistance to innate immune defenses, we disrupted the genes encoding high-temperature requirement A (htrA), nitrate reductase (narG), peptidase D (pepD), phosphoribosylaminoimidazole-succinocarboxamide synthase (purC), and superoxide dismutase (sodC) in strain 103 of R. equi using a double-crossover homologous recombination approach. Virulence testing by clearance after intravenous injection in mice showed that the htrA and narG mutants were fully attenuated, the purC and sodC mutants were unchanged, and the pepD mutant was slightly attenuated. Complementation with the pREM shuttle plasmid restored the virulence of the htrA and pepD mutants but not that of the narG mutant. A single-crossover mutation approach was simpler and faster than the double-crossover homologous recombination technique and was used to obtain mutations in 6 other genes potentially involved in virulence (clpB, fadD8, fbpB, glnA1, regX3, and sigF). These mutants were not attenuated in the mouse clearance assay. We were not able to obtain mutants for genesfurA, galE, and sigE using the single-crossover mutation approach. In summary, the targeted-mutation system had general applicability but was not always completely successful, perhaps because some genes are essential under the growth conditions used or because the success of mutation depends on the target genes.
USDA-ARS?s Scientific Manuscript database
The soybean (Glycine max (L.) Merr.) chlorophyll deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a non-synonymous nucleotide substitution in the third exon of a Mg-chelat...
Briones, Gabriel; Iñón de Iannino, Nora; Roset, Mara; Vigliocco, Ana; Paulo, Patricia Silva; Ugalde, Rodolfo A.
2001-01-01
Null cyclic β-1,2-glucan synthetase mutants (cgs mutants) were obtained from Brucella abortus virulent strain 2308 and from B. abortus attenuated vaccinal strain S19. Both mutants show greater sensitivity to surfactants like deoxycholic acid, sodium dodecyl sulfate, and Zwittergent than the parental strains, suggesting cell surface alterations. Although not to the same extent, both mutants display reduced virulence in mice and defective intracellular multiplication in HeLa cells. The B. abortus S19 cgs mutant was completely cleared from the spleens of mice after 4 weeks, while the 2308 mutant showed a 1.5-log reduction of the number of brucellae isolated from the spleens after 12 weeks. These results suggest that cyclic β-1,2-glucan plays an important role in the residual virulence of the attenuated B. abortus S19 strain. Although the cgs mutant was cleared from the spleens earlier than the wild-type parental strain (B. abortus S19) and produced less inflammatory response, its ability to confer protection against the virulent strain B. abortus 2308 was fully retained. Equivalent levels of induction of spleen gamma interferon mRNA and anti-lipopolysaccharide (LPS) of immunoglobulin G2a (IgG2a) subtype antibodies were observed in mice injected with B. abortus S19 or the cgs mutant. However, the titer of anti-LPS antibodies of the IgG1 subtype induced by the cgs mutant was lower than that observed with the parental S19 strain, thus suggesting that the cgs mutant induces a relatively exclusive Th1 response. PMID:11401996
Simkovsky, Ryan; Daniels, Emy F; Tang, Karen; Huynh, Stacey C; Golden, Susan S; Brahamsha, Bianca
2012-10-09
The grazing activity of predators on photosynthetic organisms is a major mechanism of mortality and population restructuring in natural environments. Grazing is also one of the primary difficulties in growing cyanobacteria and other microalgae in large, open ponds for the production of biofuels, as contaminants destroy valuable biomass and prevent stable, continuous production of biofuel crops. To address this problem, we have isolated a heterolobosean amoeba, HGG1, that grazes upon unicellular and filamentous freshwater cyanobacterial species. We have established a model predator-prey system using this amoeba and Synechococcus elongatus PCC 7942. Application of amoebae to a library of mutants of S. elongatus led to the identification of a grazer-resistant knockout mutant of the wzm ABC O-antigen transporter gene, SynPCC7942_1126. Mutations in three other genes involved in O-antigen synthesis and transport also prevented the expression of O-antigen and conferred resistance to HGG1. Complementation of these rough mutants returned O-antigen expression and susceptibility to amoebae. Rough mutants are easily identifiable by appearance, are capable of autoflocculation, and do not display growth defects under standard laboratory growth conditions, all of which are desired traits for a biofuel production strain. Thus, preventing the production of O-antigen is a pathway for producing resistance to grazing by certain amoebae.
Erect panicle2 encodes a novel protein that regulates panicle erectness in indica rice.
Zhu, Keming; Tang, Ding; Yan, Changjie; Chi, Zhengchang; Yu, Hengxiu; Chen, Jianmin; Liang, Jiansheng; Gu, Minghong; Cheng, Zhukuan
2010-02-01
Rice (Oryza sativa L.) inflorescence (panicle) architecture is an important agronomic trait for rice breeding. A number of high-yielding japonica rice strains, characterized by an erect panicle (EP) of their architecture, have been released as commercial varieties in China. But no EP-type indica varieties are released so far. Here, we identified two allelic erect-panicle mutants in indica rice, erect panicle2-1 (ep2-1) and erect panicle2-2 (ep2-2), exhibiting the characteristic erect panicle phenotype. Both mutants were derived from spontaneous mutation. We cloned the EP2 gene by way of a map-based cloning strategy, and a transgenic complementation test rescued the phenotype of ep2-1. Anatomical investigations revealed that the ep2 mutants have more vascular bundles and a thicker stem than that of wild-type plants, explaining the panicle erectness phenotype in ep2 mutants. It was shown that EP2 was specifically expressed in the vascular bundles of internodes by GUS staining and RT-PCR. EP2 encodes a novel plant-specific protein, which localizes to the endoplasmic reticulum with unknown biochemical function. In addition, EP2 also regulates other panicle characteristics, such as panicle length and grain size, but grain number per panicle shows little change, indicating that the mutation of the ep2 gene could be applied in EP-type indica rice breeding.
Gunderson, Felizza F.; Cianciotto, Nicholas P.
2013-01-01
ABSTRACT Recent studies have shown that the clustered regularly interspaced palindromic repeats (CRISPR) array and its associated (cas) genes can play a key role in bacterial immunity against phage and plasmids. Upon analysis of the Legionella pneumophila strain 130b chromosome, we detected a subtype II-B CRISPR-Cas locus that contains cas9, cas1, cas2, cas4, and an array with 60 repeats and 58 unique spacers. Reverse transcription (RT)-PCR analysis demonstrated that the entire CRISPR-Cas locus is expressed during 130b extracellular growth in both rich and minimal media as well as during intracellular infection of macrophages and aquatic amoebae. Quantitative reverse transcription-PCR (RT-PCR) further showed that the levels of cas transcripts, especially those of cas1 and cas2, are elevated during intracellular growth relative to exponential-phase growth in broth. Mutants lacking components of the CRISPR-Cas locus were made and found to grow normally in broth and on agar media. cas9, cas1, cas4, and CRISPR array mutants also grew normally in macrophages and amoebae. However, cas2 mutants, although they grew typically in macrophages, were significantly impaired for infection of both Hartmannella and Acanthamoeba species. A complemented cas2 mutant infected the amoebae at wild-type levels, confirming that cas2 is required for intracellular infection of these host cells. PMID:23481601
Simkovsky, Ryan; Daniels, Emy F.; Tang, Karen; Huynh, Stacey C.; Golden, Susan S.; Brahamsha, Bianca
2012-01-01
The grazing activity of predators on photosynthetic organisms is a major mechanism of mortality and population restructuring in natural environments. Grazing is also one of the primary difficulties in growing cyanobacteria and other microalgae in large, open ponds for the production of biofuels, as contaminants destroy valuable biomass and prevent stable, continuous production of biofuel crops. To address this problem, we have isolated a heterolobosean amoeba, HGG1, that grazes upon unicellular and filamentous freshwater cyanobacterial species. We have established a model predator–prey system using this amoeba and Synechococcus elongatus PCC 7942. Application of amoebae to a library of mutants of S. elongatus led to the identification of a grazer-resistant knockout mutant of the wzm ABC O-antigen transporter gene, SynPCC7942_1126. Mutations in three other genes involved in O-antigen synthesis and transport also prevented the expression of O-antigen and conferred resistance to HGG1. Complementation of these rough mutants returned O-antigen expression and susceptibility to amoebae. Rough mutants are easily identifiable by appearance, are capable of autoflocculation, and do not display growth defects under standard laboratory growth conditions, all of which are desired traits for a biofuel production strain. Thus, preventing the production of O-antigen is a pathway for producing resistance to grazing by certain amoebae. PMID:23012457
Carhan, A; Allen, F; Armstrong, J D; Hortsch, M; Goodwin, S F; O'Dell, K M C
2005-11-01
Relatively little is known about the genes and brain structures that enable virgin female Drosophila to make the decision to mate or not. Classical genetic approaches have identified several mutant females that have a reluctance-to-mate phenotype, but most of these have additional behavioral defects. However, the icebox (ibx) mutation was previously reported to lower the sexual receptivity of females, without apparently affecting any other aspect of female behavior. We have shown that the ibx mutation maps to the 7F region of the Drosophila X chromosome to form a complex complementation group with both lethal and viable alleles of neuroglian (nrg). The L1-type cell adhesion molecule encoded by nrg consists of six immunoglobulin-like domains, five fibronectin-like domains, one transmembrane domain and one alternatively spliced intracellular domain. The ibx strain has a missense mutation causing a glycine-to-arginine change at amino acid 92 in the first immunoglobulin domain of nrg. Defects in the central brain of ibx mutants are similar to those observed in another nrg mutant, central brain deranged(1) (ceb(1)). However, both ceb(1) homozygous and ceb(1)/ibx heterozygous females are receptive. The expression of a transgene containing the non-neural isoform of nrg rescues both the receptivity and the brain structure phenotypes of ibx females.
Hoh Kam, Jaimie; Lenassi, Eva; Malik, Talat H; Pickering, Matthew C; Jeffery, Glen
2013-08-01
Complement component C3 is the central complement component and a key inflammatory protein activated in age-related macular degeneration (AMD). AMD is associated with genetic variation in complement proteins that results in enhanced activation of C3 through the complement alternative pathway. These include complement factor H (CFH), a negative regulator of C3 activation. Both C3 inhibition and/or CFH augmentation are potential therapeutic strategies in AMD. Herein, we examined retinal integrity in aged (12 months) mice deficient in both factors H and C3 (CFH(-/-).C3(-/-)), CFH alone (CFH(-/-)), or C3 alone (C3(-/-)), and wild-type mice (C57BL/6). Retinal function was assessed by electroretinography, and retinal morphological features were analyzed at light and electron microscope levels. Retinas were also stained for amyloid β (Aβ) deposition, inflammation, and macrophage accumulation. Contrary to expectation, electroretinograms of CFH(-/-).C3(-/-) mice displayed more severely reduced responses than those of other mice. All mutant strains showed significant photoreceptor loss and thickening of Bruch's membrane compared with wild-type C57BL/6, but these changes were greater in CFH(-/-).C3(-/-) mice. CFH(-/-).C3(-/-) mice had significantly more Aβ on Bruch's membrane, fewer macrophages, and high levels of retinal inflammation than the other groups. Our data show that both uncontrolled C3 activation (CFH(-/-)) and complete absence of C3 (CFH(-/-).C3(-/-) and C3(-/-)) negatively affect aged retinas. These findings suggest that strategies that inhibit C3 in AMD may be deleterious. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Markoglou, Anastasios N; Doukas, Eleftherios G; Malandrakis, Anastasios A
2011-03-30
Mutants of Aspergillus parasiticus resistant to the anilinopyrimidine fungicides were isolated at a high mutation frequency after UV-mutagenesis and selection on media containing cyprodinil. In vitro fungitoxicity tests resulted in the identification of two predominant resistant phenotypes that were highly (R(1)-phenotype) and moderately (R(2)-phenotype) resistant to the anilinopyrimidines cyprodinil, pyrimethanil and mepanipyrim. Cross-resistance studies with fungicides from other chemical groups showed that the highly resistance mutation(s) did not affect the sensitivity of R(1)-mutant strains to fungicides affecting other cellular pathways. Contrary to that, a reduction in the sensitivity to the triazoles epoxiconazole and flusilazole, the benzimidazole carbendazim, the phenylpyrrole fludioxonil, the dicarboximide iprodione and to the strobilurin-type fungicide pyraclostrobin was observed in R(2)-mutant strains. Study of fitness parameters of anilinopyrimidine-resistant strains of both phenotypic classes showed that all R(1) mutant strains had mycelial growth rate, sporulation and conidial germination similar to or even higher than the wild-type parent strain, while these fitness parameters were negatively affected in R(2) mutant strains. Analysis of the aflatoxin production showed that most R(1) mutant strains produced aflatoxins at concentrations markedly higher than the wild-type parent strain. A considerable reduction in the aflatoxin production was observed on cultured medium and on wheat grains by all R(2) mutant strains, indicating a possible correlation between fitness penalties and aflatoxigenic ability of A. parasiticus. The potential risk of increased aflatoxin contamination of agricultural products and their byproducts by the appearance and predominance of highly aflatoxigenic mutant strains of A. parasiticus resistant to the anilinopyrimidines is discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Isolation and characterization of acid-sensitive mutants of Pediococcus acidilactici.
Kurdi, Peter; Smitinont, Thitapha; Valyasevi, Ruud
2009-02-01
Acid-sensitive mutants of Pediococcus acidilactici BCC 9545, a starter culture of the Thai fermented pork sausage nham, were isolated as spontaneous neomycin resistant mutants. The mutants generally produced less acid and acidified the culture media less than the parent strain in a 72 h culturing period. Interestingly, the ATPase activities of the mutants did not differ considerably from that of the parent strain in acidic conditions. It was also found that the internal pH values of the mutant strains were somewhat lower in neutral environment, while at pH 5.0 their internal pHs were significantly lower compared to the parent's. Inhibiting the H(+)-ATPase activities in energized cells by N,N'-dicyclohexyl carbodiimide also revealed that protons were leaking from the mutants at neutral pH, which increased under acidic conditions. In contrast, the parent strain exhibited a smaller proton leak and only under acidic conditions. The membrane fatty acid analysis of the mutants indicated that under acidic conditions the mutants had a significantly smaller major unsaturated/saturated fatty acids ratio ((C(18:1)+C(18:3n6))/(C(16:0)+C(18:0))) compared to the parent strain's membrane. Taken together, these observations suggest there is a reasonable possibility that the membrane fatty acid profile differences in the mutants resulted in their acid-sensitivity.
Salmonella Extracellular Matrix Components Influence Biofilm Formation and Gallbladder Colonization.
Adcox, Haley E; Vasicek, Erin M; Dwivedi, Varun; Hoang, Ky V; Turner, Joanne; Gunn, John S
2016-11-01
Salmonella enterica serovar Typhi, the causative agent of typhoid fever in humans, forms biofilms encapsulated by an extracellular matrix (ECM). Biofilms facilitate colonization and persistent infection in gallbladders of humans and mouse models of chronic carriage. Individual roles of matrix components have not been completely elucidated in vitro or in vivo To examine individual functions, strains of Salmonella enterica serovar Typhimurium, the murine model of S Typhi, in which various ECM genes were deleted or added, were created to examine biofilm formation, colonization, and persistence in the gallbladder. Studies show that curli contributes most significantly to biofilm formation. Expression of Vi antigen decreased biofilm formation in vitro and virulence and bacterial survival in vivo without altering the examined gallbladder pro- or anti-inflammatory cytokines. Oppositely, loss of all ECM components (ΔwcaM ΔcsgA ΔyihO ΔbcsE) increased virulence and bacterial survival in vivo and reduced gallbladder interleukin-10 (IL-10) levels. Colanic acid and curli mutants had the largest defects in biofilm-forming ability and contributed most significantly to the virulence increase of the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant strain. While the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant was not altered in resistance to complement or growth in macrophages, it attached and invaded macrophages better than the wild-type (WT) strain. These data suggest that ECM components have various levels of importance in biofilm formation and gallbladder colonization and that the ECM diminishes disseminated disease in our model, perhaps by reducing cell attachment/invasion and dampening inflammation by maintaining/inducing IL-10 production. Understanding how ECM components aid acute disease and persistence could lead to improvements in therapeutic treatment of typhoid fever patients. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Chemotaxis-defective mutants of the nematode Caenorhabditis elegans.
Dusenbery, D B; Sheridan, R E; Russell, R L
1975-06-01
The technique of countercurrent separation has been used to isolate 17 independent chemotaxis-defective mutants of the nematode Caenorhabditis elegans. The mutants, selected to be relatively insensitive to the normally attractive salt NaCl, show varying degrees of residual sensitivity; some are actually weakly repelled by NaCl. The mutants are due to single gene defects, are autosomal and recessive, and identify at least five complementation groups.
Herrero-Fresno, Ana; Espinel, Irene Cartas; Spiegelhauer, Malene Roed; Guerra, Priscila Regina; Andersen, Karsten Wiber; Olsen, John Elmerdahl
2018-01-01
In a previous study, a novel virulence gene, bstA , identified in a Salmonella enterica serovar Typhimurium sequence type 313 (ST313) strain was found to be conserved in all published Salmonella enterica serovar Dublin genomes. In order to analyze the role of this gene in the host-pathogen interaction in S Dublin, a mutant where this gene was deleted ( S Dublin Δ bstA ) and a mutant which was further genetically complemented with bstA ( S Dublin 3246-C) were constructed and tested in models of in vitro and in vivo infection as well as during growth competition assays in M9 medium, Luria-Bertani broth, and cattle blood. In contrast to the results obtained for a strain of S Typhimurium ST313, the lack of bstA was found to be associated with increased virulence in S Dublin. Thus, S Dublin Δ bstA showed higher levels of uptake than the wild-type strain during infection of mouse and cattle macrophages and higher net replication within human THP-1 cells. Furthermore, during mouse infections, S Dublin Δ bstA was more virulent than the wild type following a single intraperitoneal infection and showed an increased competitive index during competitive infection assays. Deletion of bstA did not affect either the amount of cytokines released by THP-1 macrophages or the cytotoxicity toward these cells. The histology of the livers and spleens of mice infected with the wild-type strain and the S Dublin Δ bstA mutant revealed similar levels of inflammation between the two groups. The gene was not important for adherence to or invasion of human epithelial cells and did not influence bacterial growth in rich medium, minimal medium, or cattle blood. In conclusion, a lack of bstA affects the pathogenicity of S Dublin by decreasing its virulence. Therefore, it might be regarded as an antivirulence gene in this serovar. Copyright © 2017 American Society for Microbiology.
Eriksson, A R; Andersson, R A; Pirhonen, M; Palva, E T
1998-08-01
Production of extracellular, plant cell wall degrading enzymes, the main virulence determinants of the plant pathogen Erwinia carotovora subsp. carotovora, is coordinately controlled by a complex regulatory network. Insertion mutants in the exp (extracellular enzyme production) loci exhibit pleiotropic defects in virulence and the growth-phase-dependent transcriptional activation of genes encoding extracellular enzymes. Two new exp mutations, designated expA and expS, were characterized. Introduction of the corresponding wild-type alleles to the mutants complemented both the lack of virulence and the impaired production of plant cell wall degrading enzymes. The expA gene was shown to encode a 24-kDa polypeptide that is structurally and functionally related to the uvrY gene product of Escherichia coli and the GacA response regulator of Pseudomonas fluorescens. Functional similarity of expA and uvrY was demonstrated by genetic complementation. The expA gene is organized in an operon together with a uvrC-like gene, identical to the organization of uvrY and uvrC in E. coli. The unlinked expS gene encodes a putative sensor kinase that shows 92% identity to the recently described rpfA gene product from another E. carotovora subsp. carotovora strain. Our data suggest that ExpS and ExpA are members of two-component sensor kinase and response regulator families, respectively. These two proteins might interact in controlling virulence gene expression in E. carotovora subsp. carotovora.
Neidhardt, F C; VanBogelen, R A; Lau, E T
1983-01-01
The high-temperature production (HTP) regulon of Escherichia coli consists of a set of operons that are induced coordinately by a shift to a high temperature under the control of a single chromosomal gene called htpR or hin. To identify more components of this regulon, the rates of synthesis of many polypeptides resolved on two-dimensional polyacrylamide gels were measured in various strains by pulse-labeling after a temperature shift-up. A total of 13 polypeptides were found to be heat inducible only in cells bearing a normal htpR gene on the chromosome or on a plasmid; on this basis these polypeptides were designated products of the HTP regulon. Several hybrid plasmids that contain segments of the E. coli chromosome in the 75-min region were found to carry the htpR gene. A restriction map of this region was constructed, and selected fragments were subcloned and tested for the ability to complement an htpR mutant. The polypeptides encoded by these fragments were detected by permitting expression in maxicells, minicells, and chloramphenicol-treated cells. Complementation was accompanied by production of a polypeptide having a molecular weight of approximately 33,000. This polypeptide, designated F33.4, was markedly reduced in amount in an htpR mutant expected to contain very little htpR gene product. Polypeptide F33.4 is postulated to be the product of htpR and to be an effector that controls heat induction of the HTP regulon. Images PMID:6337122
Ban, Jun-Gyu; Woo, Min-Woo; Lee, Bo-Ram; Lee, Mi-Jin; Choi, Si-Sun; Kim, Eung-Soo
2014-05-01
The regio-specific hydroxylation at the 4th N-methyl leucine of the immunosuppressive agent cyclosporin A (CsA) was previously proposed to be mediated by a unique cytochrome P450 hydroxylase (CYP), CYP-sb21 from the rare actinomycetes Sebekia benihana. Interestingly, a different rare actinomycetes species, Pseudonocardia autotrophica, was found to possess a different regio-selectivity, the preferential hydroxylation at the 9th N-methyl leucine of CsA. Through an in silico analysis of the whole genome of P. autotrophica, we describe here the classification of 31 total CYPs in P. autotrophica. Three putative CsA CYP genes, showing the highest sequence homologies with CYPsb21, were successfully inactivated using PCR-targeted gene disruption. Only one knock-out mutant, ΔCYP-pa1, failed to convert CsA to its hydroxylated forms. The hydroxylation activity of CsA by CYP-pa1 was confirmed by CYP-pa1 gene complementation as well as heterologous expression in the CsA non-hydroxylating Streptomyces coelicolor. Moreover, the cyclosporine regio-selectivity of CYP-pa1 expressed in the ΔCYP-sb21 S. benihana mutant strain was also confirmed unchanged through cross complementation. These results show that preferential regio-specific hydroxylation at the 9th N-methyl leucine of CsA is carried out by a specific P450 hydroxylase gene in P. autotrophica, CYP-pa1, setting the stage for the biotechnological application of CsA regioselective hydroxylation.
Ren, Fei; Chen, Long; Tong, Qunyi
2017-01-01
Atmospheric and room temperature plasma (ARTP) was first employed to generate mutants of Actinomyces JN537 for improving acarbose production. To obtain higher acarbose producing strains, the method of screening the strains for susceptibility to penicillin was used after treatment with ARTP. The rationale for the strategy was that mutants showing penicillin susceptibility were likely to be high acarbose producers, as their ability to synthesize cell walls was weak which might enhance metabolic flux to the pathway of acarbose biosynthesis. Acarbose yield of the mutant strain M37 increased by 62.5 % than that of the original strain. The contents of monosaccharides and amino acids of the cell wall of M37 were lower than that of the original strain. The acarbose production ability in mutant strain remained relatively stable after 10 generations. This work provides a promising strategy for obtaining high acarbose-yield strains by combination of ARTP mutation method and efficient screening technique.
Juni, E; Heym, G A; Maurer, M J; Miller, M L
1987-01-01
A combined genetic transformation and nutritional assay is described that permits definitive identification of clinically isolated strains of Moraxella nonliquefaciens. Crude DNA preparations of strains of various Moraxella species were used to transform nutritional mutants of a stably competent strain of M. nonliquefaciens for ability to grow on a defined medium (Mn-B). DNA samples from 24 independently isolated strains of M. nonliquefaciens all resulted in massive (4+) transformation of each of two mutant assay strains. DNA samples from strains of M. bovis and M. lacunata frequently gave weak (1+) transformation of one of the mutant assay strains (Mn64) but almost always failed to transform another assay strain (Mn136). DNA samples from eight other Moraxella species failed completely to transform either of the mutant assay strains. When streaked on the defined medium used for the transformation assay (Mn-B), 23 of the 24 strains of M. nonliquefaciens grew well, but all strains of M. bovis and M. lacunata failed to grow on this medium. Images PMID:3654942
Strain improvement of Aspergillus niger for enhanced lipase production.
Sandana Mala, John Geraldine; Kamini, Numbi R.; Puvanakrishnan, Rengarajulu
2001-08-01
The enhancement of lipase production from Aspergillus niger was attempted by ultraviolet (UV) and nitrous acid mutagenesis, and the mutants were selected on media containing bile salts. Nitrous acid mutants exhibited increased efficiency for lipase production when compared with UV mutants in submerged fermentation. The hyperproducing UV and nitrous acid mutants were further subjected to a second step of mutagenesis to devise an economical and ecofriendly technique for lipase production by the effective use of hydrocarbons. One percent kerosene was found to be optimal for lipase production, and one of the mutant strains NAII exhibited 2.53 times more increased lipase activity than the parental strain did. This investigation indicates a possible role for the A. niger mutant strains in the biodegradation of oil-polluted environments for the development of ecofriendly technologies.
Genetic transformation assays for identification of strains of Moraxella urethralis.
Juni, E
1977-01-01
Studies of 31 strains of Moraxella urethralis have shown that 20 of them are competent for genetic transformation. This finding has led to the development of transformation assays for identification of newly isolated strains of this organism. Crude deoxyribonucleic acid (DNA) samples from all strains of M. urethralis readily transform auxotrophic mutants of competent strains to prototrophy, whereas DNA samples from unrelated bacteria such as Acinetobacter, Moraxella, and Neisseria species uniformly fail to elicit positive transformation of mutant tester strains. One of the competent strains of M. urethralis investigated is a naturally occurring mutant defective in its ability to utilize citrate as a carbon and energy source. DNA samples from 29 of the 30 remaining strains of utilization; the one nonreacting strain is citrate negative and probably possesses the same genetic lesion as the citrate-negative mutant. Three organisms originally identified as strains of M. urethralis, because of their phenotypic properties, are probably incorrectly designated, since DNA samples from these strains failed to transform any of the tester mutant strains used in the present study. The transformation assay for M. urethralis is very simple and can be performed readily in a clinical laboratory. The entire procedure can be carried out in less than 24 h. Images PMID:845247
Schallmey, Marcus; Ly, Anh; Wang, Chunxia; Meglei, Gabriela; Voget, Sonja; Streit, Wolfgang R; Driscoll, Brian T; Charles, Trevor C
2011-08-01
We previously reported the construction of metagenomic libraries in the IncP cosmid vector pRK7813, enabling heterologous expression of these broad-host-range libraries in multiple bacterial hosts. Expressing these libraries in Sinorhizobium meliloti, we have successfully complemented associated phenotypes of polyhydroxyalkanoate synthesis mutants. DNA sequence analysis of three clones indicates that the complementing genes are homologous to, but substantially different from, known polyhydroxyalkanaote synthase-encoding genes. Thus we have demonstrated the ability to isolate diverse genes for polyhydroxyalkanaote synthesis by functional complementation of defined mutants. Such genes might be of use in the engineering of more efficient systems for the industrial production of bioplastics. The use of functional complementation will also provide a vehicle to probe the genetics of polyhydroxyalkanaote metabolism and its relation to carbon availability in complex microbial assemblages. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Rensch, Ulrike; Klein, Guenter; Kehrenberg, Corinna
2013-01-01
The biocide triclosan (TRC) is used in a wide range of household, personal care, veterinary, industrial and medical products to control microbial growth. This extended use raises concerns about a possible association between the application of triclosan and the development of antibiotic resistance. In the present study we determined triclosan mutant prevention concentrations (MPC) for Salmonella enterica isolates of eight serovars and investigated selected mutants for their mechanisms mediating decreased susceptibility to triclosan. MPCTRC values were 8 - 64-fold higher than MIC values and ranged between 1 - 16 µg/ml. The frequencies at which mutants were selected varied between 1.3 x 10-10 - 9.9 x 10-11. Even if MIC values of mutants decreased by 3-7 dilution steps in the presence of the efflux pump inhibitor Phe-Arg-β-naphtylamide, only minor changes were observed in the expression of genes encoding efflux components or regulators, indicating that neither the major multidrug efflux pump AcrAB-TolC nor AcrEF are up-regulated in triclosan-selected mutants. Nucleotide sequence comparisons confirmed the absence of alterations in the regulatory regions acrRA, soxRS, marORAB, acrSE and ramRA of selected mutants. Single bp and deduced Gly93→Val amino acid exchanges were present in fabI, the target gene of triclosan, starting from a concentration of 1 µg/ml TRC used for MPC determinations. The fabI genes were up to 12.4-fold up-regulated. Complementation experiments confirmed the contribution of Gly93→Val exchanges and fabI overexpression to decreased triclosan susceptibility. MIC values of mutants compared to parent strains were even equal or resulted in a more susceptible phenotype (1-2 dilution steps) for the aminoglycoside antibiotics kanamycin and gentamicin as well as for the biocide chlorhexidine. Growth rates of selected mutants were significantly lower and hence, might partly explain the rare occurrence of Salmonella field isolates exhibiting decreased susceptibility to triclosan. PMID:24205194
Guo, Haiyong; Hall, Jeffrey W.; Yang, Junshu; Ji, Yinduo
2017-01-01
The SaeRS two-component system plays important roles in regulation of key virulence factors and pathogenicity. In this study, however, we found that the deletion mutation of saeRS enhanced bacterial survival in human blood, whereas complementation of the mutant with SaeRS returned survival to wild-type levels. Moreover, these phenomena were observed in different MRSA genetic background isolates, including HA-MRSA WCUH29, CA-MRSA 923, and MW2. To elucidate which gene(s) regulated by SaeRS contribute to the effect, we conducted a series of complementation studies with selected known SaeRS target genes in trans. We found coagulase complementation abolished the enhanced survival of the SaeRS mutant in human blood. The coa and saeRS deletion mutants exhibited a similar survival phenotype in blood. Intriguingly, heterologous expression of coagulase decreased survival of S. epidermidis in human blood. Further, the addition of recombinant coagulase to blood significantly decreased the survival of S. aureus. Further, analysis revealed staphylococcal resistance to killing by hydrogen peroxide was partially dependent on the presence or absence of coagulase. Furthermore, complementation with coagulase, but not SaeRS, returned saeRS/coa double mutant survival in blood to wild-type levels. These data indicate SaeRS modulates bacterial survival in blood in coagulase-dependent manner. Our results provide new insights into the role of staphylococcal SaeRS and coagulase on bacterial survival in human blood. PMID:28611950
Kanagaratnam, Rashmi; Sheikh, Rida; Alharbi, Fahad; Kwon, Dong H
2017-12-01
Pseudomonas aeruginosa is a notorious multidrug resistant nosocomial pathogen. An efflux pump (MexAB-OprM) is the main contributor to the multidrug resistance in clinical isolates of P. aeruginosa. Epigallocatechin-3-gallate (EGCG), a polyphenolic compound extracted from green tea, exhibits antibacterial activity. It is unclear that molecular details of the antibacterial activity of EGCG, EGCG-effect on antibiotic susceptibility, and clinical relevance of EGCG in bacteria. This study aimed to determine the roles of the efflux pump and an efflux pump inhibitor (phenylalanine-arginine β-naphthylamide; PAβN) in the antibacterial activity of EGCG and the EGCG-effect on antibiotic susceptibility. Twenty-two multidrug resistant clinical isolates of P. aeruginosa and a wild type P. aeruginosa PAO1 were used to determine antibacterial activity of EGCG and EGCG-effect on antibiotic susceptibility. An efflux pump (MexAB-OPrM) mutant strain, its complemented strain carrying an intact mexAB-oprM, and their parental strain were used to determine roles of MexAB-OprM in the antibacterial activity of EGCG and EGCG-mediated antibiotic susceptibility. PAβN was also used to evaluate EGCG as a possible efflux pump inhibitor. EGCG inhibited cellular growth and killed 100% of cells at 64-512 µg/ml and at 256-1024 µg/ml, respectively, in all tested 22 clinical isolates including the wild type strain. A subinhibitory concentration of EGCG significantly enhanced susceptibility to antibiotics, unexceptionally to chloramphenicol and tetracyclines (≥4-fold) of the clinical isolates. Both the antibacterial activity of EGCG and the EGCG-mediated antibiotic susceptibility were enhanced more in the efflux pump mutant strain (mexB::Gm) than the parental strain, suggesting additionally accumulated-EGCG produced the more antibacterial activity in the mutant strain. EGCG was synergistically interacted with PAβN with enhancing susceptibility to all tested antibiotics (up to >500-fold) at higher levels than either EGCG alone or PAβN alone, suggesting EGCG may also inhibit the efflux pump with additional accumulation of the antibiotics. The results demonstrate that EGCG exhibits antibacterial activity and enhances antibiotic effects against clinical isolates of P. aeruginosa. EGCG may inhibit the efflux pump (MexAB-OprM) through which are associated with the antibacterial activity of EGCG and the EGCG-mediated antibiotic susceptibility in P. aeruginosa. Copyright © 2017 Elsevier GmbH. All rights reserved.
Liu, Jing-Jing; Zhang, Guo-Chang; Kong, In Iok; Yun, Eun Ju; Zheng, Jia-Qi; Kweon, Dae-Hyuk; Jin, Yong-Su
2018-05-15
The probiotic yeast Saccharomyces boulardii has been extensively studied for the prevention and treatment of diarrheal diseases, and it is now commercially available in some countries. S. boulardii displays notable phenotypic characteristics, such as a high optimal growth temperature, high tolerance against acidic conditions, and the inability to form ascospores, which differentiate S. boulardii from Saccharomyces cerevisiae The majority of prior studies stated that S. boulardii exhibits sluggish or halted galactose utilization. Nonetheless, the molecular mechanisms underlying inefficient galactose uptake have yet to be elucidated. When the galactose utilization of a widely used S. boulardii strain, ATCC MYA-796, was examined under various culture conditions, the S. boulardii strain could consume galactose, but at a much lower rate than that of S. cerevisiae While all GAL genes were present in the S. boulardii genome, according to analysis of genomic sequencing data in a previous study, a point mutation (G1278A) in PGM2 , which codes for phosphoglucomutase, was identified in the genome of the S. boulardii strain. As the point mutation resulted in the truncation of the Pgm2 protein, which is known to play a pivotal role in galactose utilization, we hypothesized that the truncated Pgm2 might be associated with inefficient galactose metabolism. Indeed, complementation of S. cerevisiae PGM2 in S. boulardii restored galactose utilization. After reverting the point mutation to a full-length PGM2 in S. boulardii by Cas9-based genome editing, the growth rates of wild-type (with a truncated PGM2 gene) and mutant (with a full-length PGM2 ) strains with glucose or galactose as the carbon source were examined. As expected, the mutant (with a full-length PGM2 ) was able to ferment galactose faster than the wild-type strain. Interestingly, the mutant showed a lower growth rate than that of the wild-type strain on glucose at 37°C. Also, the wild-type strain was enriched in the mixed culture of wild-type and mutant strains on glucose at 37°C, suggesting that the truncated PGM2 might offer better growth on glucose at a higher temperature in return for inefficient galactose utilization. Our results suggest that the point mutation in PGM2 might be involved in multiple phenotypes with different effects. IMPORTANCE Saccharomyces boulardii is a probiotic yeast strain capable of preventing and treating diarrheal diseases. However, the genetics and metabolism of this yeast are largely unexplored. In particular, molecular mechanisms underlying the inefficient galactose metabolism of S. boulardii remain unknown. Our study reports that a point mutation in PGM2 , which codes for phosphoglucomutase, is responsible for inferior galactose utilization by S. boulardii After correction of the mutated PGM2 via genome editing, the resulting strain was able to use galactose faster than a parental strain. While the PGM2 mutation made the yeast use galactose slowly, investigation of the genomic sequencing data of other S. boulardii strains revealed that the PGM2 mutation is evolutionarily conserved. Interestingly, the PGM2 mutation was beneficial for growth at a higher temperature on glucose. We speculate that the PGM2 mutation was enriched due to selection of S. boulardii in the natural habitat (sugar-rich fruits in tropical areas). Copyright © 2018 American Society for Microbiology.
Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism.
Cologgi, Dena L; Lampa-Pastirk, Sanela; Speers, Allison M; Kelly, Shelly D; Reguera, Gemma
2011-09-13
The in situ stimulation of Fe(III) oxide reduction by Geobacter bacteria leads to the concomitant precipitation of hexavalent uranium [U(VI)] from groundwater. Despite its promise for the bioremediation of uranium contaminants, the biological mechanism behind this reaction remains elusive. Because Fe(III) oxide reduction requires the expression of Geobacter's conductive pili, we evaluated their contribution to uranium reduction in Geobacter sulfurreducens grown under pili-inducing or noninducing conditions. A pilin-deficient mutant and a genetically complemented strain with reduced outer membrane c-cytochrome content were used as controls. Pili expression significantly enhanced the rate and extent of uranium immobilization per cell and prevented periplasmic mineralization. As a result, pili expression also preserved the vital respiratory activities of the cell envelope and the cell's viability. Uranium preferentially precipitated along the pili and, to a lesser extent, on outer membrane redox-active foci. In contrast, the pilus-defective strains had different degrees of periplasmic mineralization matching well with their outer membrane c-cytochrome content. X-ray absorption spectroscopy analyses demonstrated the extracellular reduction of U(VI) by the pili to mononuclear tetravalent uranium U(IV) complexed by carbon-containing ligands, consistent with a biological reduction. In contrast, the U(IV) in the pilin-deficient mutant cells also required an additional phosphorous ligand, in agreement with the predominantly periplasmic mineralization of uranium observed in this strain. These findings demonstrate a previously unrecognized role for Geobacter conductive pili in the extracellular reduction of uranium, and highlight its essential function as a catalytic and protective cellular mechanism that is of interest for the bioremediation of uranium-contaminated groundwater.
Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry
2015-01-01
Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.
Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry
2015-01-01
Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics. PMID:26581109
Development of genetic tools for in vivo virulence analysis of Streptococcus sanguinis.
Turner, Lauren Senty; Das, Sankar; Kanamoto, Taisei; Munro, Cindy L; Kitten, Todd
2009-08-01
Completion of the genome sequence of Streptococcus sanguinis SK36 necessitates tools for further characterization of this species. It is often desirable to insert antibiotic resistance markers and other exogenous genes into the chromosome; therefore, we sought to identify a chromosomal site for ectopic expression of foreign genes, and to verify that insertion into this site did not affect important cellular phenotypes. We designed three plasmid constructs for insertion of erm, aad9 or tetM resistance determinants into a genomic region encoding only a small (65 aa) hypothetical protein. To determine whether this insertion affected important cellular properties, SK36 and its erythromycin-resistant derivative, JFP36, were compared for: (i) growth in vitro, (ii) genetic competence, (iii) biofilm formation and (iv) virulence for endocarditis in the rabbit model of infective endocarditis (IE). The spectinomycin-resistant strain, JFP56, and tetracycline-resistant strain, JFP76, were also tested for virulence in vivo. Insertion of erm did not affect growth, competence or biofilm development of JFP36. Recovery of bacteria from heart valves of co-inoculated rabbits was similar to wild-type for JFP36, JFP56 and JFP76, indicating that IE virulence was not significantly affected. The capacity for mutant complementation in vivo was explored in an avirulent ssaB mutant background. Expression of ssaB from its predicted promoter in the target region restored IE virulence. Thus, the chromosomal site utilized is a good candidate for further manipulations of S. sanguinis. In addition, the resistant strains developed may be further applied as controls to facilitate screening for virulence factors in vivo.
Development of genetic tools for in vivo virulence analysis of Streptococcus sanguinis
Senty Turner, Lauren; Das, Sankar; Kanamoto, Taisei; Munro, Cindy L.; Kitten, Todd
2009-01-01
Completion of the genome sequence of Streptococcus sanguinis SK36 necessitates tools for further characterization of this species. It is often desirable to insert antibiotic resistance markers and other exogenous genes into the chromosome; therefore, we sought to identify a chromosomal site for ectopic expression of foreign genes, and to verify that insertion into this site did not affect important cellular phenotypes. We designed three plasmid constructs for insertion of erm, aad9 or tetM resistance determinants into a genomic region encoding only a small (65 aa) hypothetical protein. To determine whether this insertion affected important cellular properties, SK36 and its erythromycin-resistant derivative, JFP36, were compared for: (i) growth in vitro, (ii) genetic competence, (iii) biofilm formation and (iv) virulence for endocarditis in the rabbit model of infective endocarditis (IE). The spectinomycin-resistant strain, JFP56, and tetracycline-resistant strain, JFP76, were also tested for virulence in vivo. Insertion of erm did not affect growth, competence or biofilm development of JFP36. Recovery of bacteria from heart valves of co-inoculated rabbits was similar to wild-type for JFP36, JFP56 and JFP76, indicating that IE virulence was not significantly affected. The capacity for mutant complementation in vivo was explored in an avirulent ssaB mutant background. Expression of ssaB from its predicted promoter in the target region restored IE virulence. Thus, the chromosomal site utilized is a good candidate for further manipulations of S. sanguinis. In addition, the resistant strains developed may be further applied as controls to facilitate screening for virulence factors in vivo. PMID:19423626
Benomyl-resistant mutant strain of Trichoderma sp. with increased mycoparasitic activity.
Olejníková, P; Ondrusová, Z; Krystofová, S; Hudecová, D
2010-01-01
Application of UV radiation to the strain Trichoderma sp. T-bt (isolated from lignite) resulted in the T-brm mutant which was resistant to the systemic fungicide benomyl. The tub2 gene sequence in the T-brm mutant differed from the parent as well as the collection strain (replacing tyrosine with histidine in the TUB2 protein). Under in vitro conditions this mutant exhibited a higher mycoparasitic activity toward phytopathogenic fungi.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nissen, Silke; Liu, Xiaoxin; Chourey, Karuna
2012-01-01
The genomes of Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C encode 40 and 69 putative c-type cytochrome genes, respectively. Deletion mutant and biochemical studies have assigned specific functions to a few c-type cytochromes involved in electron transfer to oxidised metals in Shewanella oneidensis strain MR-1. Although promising, the genetic approach is limited to gene deletions that produce a distinct phenotype, and organism for which a genetic system is available. To more comprehensively investigate and compare c-type cytochrome expression in Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C, proteomic measurements were used to characterise lysates of cells grownmore » with soluble Fe(III) (as ferric citrate) and insoluble Mn(IV) (as MnO2) as electron acceptors. Strain MR-1 expressed 19 and 20, and strain 2CP-C expressed 27 and 25 c-type cytochromes when grown with Fe(III) and Mn(IV), respectively. The majority of c-type cytochromes (77% for strain MR-1 and 63% for strain 2CP-C) were expressed under both growth conditions; however, the analysis also revealed unique c-type cytochromes that were specifically expressed in cells grown with soluble Fe(III) or insoluble Mn(IV). Proteomic characterisation proved to be a promising approach for determining the c-type cytochrome complement expressed under different growth conditions, and will help elucidating the specific functions of more c-type cytochromes that are the basis for Shewanella and Anaeromyxobacter respiratory versatility.« less
Akbar, Sabika; Prasuna, R Gyana; Khanam, Rasheeda
2014-04-01
Aspergillus flavipes, a slow growing pectinase producing ascomycete, was isolated from soil identified and characterised in the previously done preliminary studies. Optimisation studies revealed that Citrus peel--groundnut oil cake [CG] production media is the best media for production of high levels of pectinase up to 39 U/ml using wild strain of A. flavipes. Strain improvement of this isolated strain for enhancement of pectinase production using multistep mutagenesis procedure is the endeavour of this project. For this, the wild strain of A. flavipes was treated with both physical (UV irradiation) and chemical [Colchicine, Ethidium bromide, H2O2] mutagens to obtain Ist generation mutants. The obtained mutants were assayed and differentiated basing on pectinase productivity. The better pectinase producing strains were further subjected to multistep mutagenesis to attain stability in mutants. The goal of this project was achieved by obtaining the best pectinase secreting mutant, UV80 of 45 U/ml compared to wild strain and sister mutants. This fact was confirmed by quantitatively analysing 3rd generation mutants obtained after multistep mutagenesis.
Complementation and Genetic Recombination in Candida lipolytica
Bassel, John; Warfei, Jean; Mortimer, Robert
1971-01-01
Nutritional requirements were introduced into wild-type, heterothallic strains of Candida lipolytica by exposing the cells to X rays. Complementing hybrids were recovered from mixtures of the auxotrophic strains, and genetic recombination was observed in individually isolated ascospores from the hybrid strains. PMID:5122814
Cellulose Synthesis in Agrobacterium tumefaciens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan R. White; Ann G. Matthysse
2004-07-31
We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants includingmore » CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one preliminary experiment of this type and have successfully complemented an A. tumefaciens CelC mutant with the homologous gene (yhjM) from E. coli.« less
Fischer, Sonia; Godino, Agustina; Quesada, José Miguel; Cordero, Paula; Jofré, Edgardo; Mori, Gladys; Espinosa-Urgel, Manuel
2012-06-01
R-type and F-type pyocins are high-molecular-mass bacteriocins produced by Pseudomonas aeruginosa that resemble bacteriophage tails. They contain no head structures and no DNA, and are used as defence systems. In this report, we show that Pseudomonas fluorescens SF4c, a strain isolated from the wheat rhizosphere, produces a high-molecular-mass bacteriocin which inhibits the growth of closely related bacteria. A mutant deficient in production of this antimicrobial compound was obtained by transposon mutagenesis. Sequence analysis revealed that the transposon had disrupted a gene that we have named ptm, since it is homologous to that encoding phage tape-measure protein in P. fluorescens Pf0-1, a gene belonging to a prophage similar to phage-like pyocin from P. aeruginosa PAO1. In addition, we have identified genes from the SF4c pyocin cluster that encode a lytic system and regulatory genes. We constructed a non-polar ptm mutant of P. fluorescens SF4c. Heterologous complementation of this mutation restored the production of bacteriocin. Real-time PCR was used to analyse the expression of pyocin under different stress conditions. Bacteriocin was upregulated by mitomycin C, UV light and hydrogen peroxide, and was downregulated by saline stress. This report constitutes, to our knowledge, the first genetic characterization of a phage tail-like bacteriocin in a rhizosphere Pseudomonas strain.
Cui, Yanhua; Liu, Wei; Qu, Xiaojun; Chen, Zhangting; Zhang, Xu; Liu, Tong; Zhang, Lanwei
2012-05-20
The Gram-positive bacterium Lactobacillus delbrueckii subsp. bulgaricus is of vital importance to the food industry, especially to the dairy industry. Two component systems (TCSs) are one of the most important mechanisms for environmental sensing and signal transduction in the majority of Gram-positive and Gram-negative bacteria. A typical TCS consists of a histidine protein kinase (HPK) and a cytoplasmic response regulator (RR). To investigate the functions of TCSs during acid adaptation in L. bulgaricus, we used quantitative PCR to reveal how TCSs expression changes during acid adaptation. Two TCSs (JN675228/JN675229 and JN675230/JN675231) and two HPKs (JN675236 and JN675240) were induced during acid adaptation. These TCSs were speculated to be related with the acid adaptation ability of L. bulgaricus. The mutants of JN675228/JN675229 were constructed in order to investigate the functions of JN675228/JN675229. The mutants showed reduced acid adaptation compared to that of wild type, and the complemented strains were similar to the wild-type strain. These observations suggested that JN675228 and JN675229 were involved in acid adaptation in L. bulgaricus. The interaction between JN675228 and JN675229 was identified by means of yeast two-hybrid system. The results indicated there is interaction between JN675228 and JN675229. Crown Copyright © 2011. Published by Elsevier GmbH. All rights reserved.
Meyers, Gena Lee; Jung, Kwang-Woo; Bang, Soohyun; Kim, Jungyeon; Kim, Sooah; Hong, Joohyeon; Cheong, Eunji; Kim, Kyoung Heon; Bahn, Yong-Sun
2017-06-01
In this study, an aquaporin protein, Aqp1, in Cryptococcus neoformans, which can lead either saprobic or parasitic lifestyles and causes life-threatening fungal meningitis was identified and characterized. AQP1 expression was rapidly induced (via the HOG pathway) by osmotic or oxidative stress. In spite of such transcriptional regulation, Aqp1 was found to be largely unnecessary for adaptation to diverse environmental stressors, regardless of the presence of the polysaccharide capsule. The latter is shown here to be a key environmental-stress protectant for C. neoformans. Furthermore, Aqp1 was not required for the development and virulence of C. neoformans. Deletion of AQP1 increased hydrophobicity of the cell surface. The comparative metabolic profiling analysis of the aqp1Δ mutant and AQP1-overexpressing strains revealed that deletion of AQP1 significantly increased cellular accumulation of primary and secondary metabolites, whereas overexpression of AQP1 depleted such metabolites, suggesting that this water channel protein performs a critical function in metabolic homeostasis. In line with this result, it was found that the aqp1Δ mutant (which is enriched with diverse metabolites) survived better than the wild type and a complemented strain, indicating that Aqp1 is likely to be involved in competitive fitness of this fungal pathogen. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Enhancing the Production of D-Mannitol by an Artificial Mutant of Penicillium sp. T2-M10.
Duan, Rongting; Li, Hongtao; Li, Hongyu; Tang, Linhuan; Zhou, Hao; Yang, Xueqiong; Yang, Yabin; Ding, Zhongtao
2018-05-26
D-Mannitol belongs to a linear polyol with six-carbon and has indispensable usage in medicine and industry. In order to obtain more efficient D-mannitol producer, this study has screened out a stable mutant Penicillium sp. T2-M10 that was isolated from the initial D-mannitol-produced strain Penicillium sp.T2-8 via UV irradiation as well as nitrosoguanidine (NTG) induction. The mutant had a considerable enhancement in yield of D-mannitol based on optimizing fermentation. The production condition was optimized as the PDB medium with 24 g/L glucose for 9 days. The results showed that the production of D-mannitol from the mutant strain T2-M10 increased 125% in contrast with the parental strain. Meanwhile, the fact that D-mannitol is the main product in the mutant simplified the process of purification. Our finding revealed the potential value of the mutant strain Penicillium sp. T2-M10 to be a D-mannitol-producing strain.
Rawat, Mamta; Newton, Gerald L.; Ko, Mary; Martinez, Gladys J.; Fahey, Robert C.; Av-Gay, Yossef
2002-01-01
Mycothiol (MSH; 1d-myo-inosityl 2-[N-acetyl-l-cysteinyl]amido-2-deoxy-α-d-glucopyranoside) is the major low-molecular-weight thiol produced by mycobacteria. Mutants of Mycobacterium smegmatis mc2155 deficient in MSH production were produced by chemical mutagenesis as well as by transposon mutagenesis. One chemical mutant (mutant I64) and two transposon mutants (mutants Tn1 and Tn2) stably deficient in MSH production were isolated by screening for reduced levels of MSH content. The MSH contents of transposon mutants Tn1 and Tn2 were found to be less than 0.1% that of the parent strain, and the MSH content of I64 was found to be 1 to 5% that of the parent strain. All three strains accumulated 1d-myo-inosityl 2-deoxy-α-d-glucopyranoside to levels 20- to 25-fold the level found in the parent strain. The cysteine:1d-myo-inosityl 2-amino-2-deoxy-α-d-glucopyranoside ligase (MshC) activities of the three mutant strains were ≤2% that of the parent strain. Phenotypic analysis revealed that these MSH-deficient mutants possess increased susceptibilities to free radicals and alkylating agents and to a wide range of antibiotics including erythromycin, azithromycin, vancomycin, penicillin G, rifamycin, and rifampin. Conversely, the mutants possess at least 200-fold higher levels of resistance to isoniazid than the wild type. We mapped the mutation in the chemical mutant by sequencing the mshC gene and showed that a single amino acid substitution (L205P) is responsible for reduced MSH production and its associated phenotype. Our results demonstrate that there is a direct correlation between MSH depletion and enhanced sensitivity to toxins and antibiotics. PMID:12384335
Zhang, Zhongge; Pierson, Leland S.
2001-01-01
The root-associated biological control bacterium Pseudomonas aureofaciens 30-84 produces a range of exoproducts, including protease and phenazines. Phenazine antibiotic biosynthesis by phzXYFABCD is regulated in part by the PhzR-PhzI quorum-sensing system. Mutants defective in phzR or phzI produce very low levels of phenazines but wild-type levels of exoprotease. In the present study, a second genomic region of strain 30-84 was identified that, when present in trans, increased β-galactosidase activity in a genomic phzB::lacZ reporter and partially restored phenazine production to a phzR mutant. Sequence analysis identified two adjacent genes, csaR and csaI, that encode members of the LuxR-LuxI family of regulatory proteins. No putative promoter region is present upstream of the csaI start codon and no lux box-like element was found in either the csaR promoter or the 30-bp intergenic region between csaR and csaI. Both the PhzR-PhzI and CsaR-CsaI systems are regulated by the GacS-GacA two-component regulatory system. In contrast to the multicopy effects of csaR and csaI in trans, a genomic csaR mutant (30-84R2) and a csaI mutant (30-84I2) did not exhibit altered phenazine production in vitro or in situ, indicating that the CsaR-CsaI system is not involved in phenazine regulation in strain 30-84. Both mutants also produced wild-type levels of protease. However, disruption of both csaI and phzI or both csaR and phzR eliminated both phenazine and protease production completely. Thus, the two quorum-sensing systems do not interact for phenazine regulation but do interact for protease regulation. Additionally, the CsaI N-acylhomoserine lactone (AHL) signal was not recognized by the phenazine AHL reporter 30-84I/Z but was recognized by the AHL reporters Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136(pCF240). Inactivation of csaR resulted in a smooth mucoid colony phenotype and formation of cell aggregates in broth, suggesting that CsaR is involved in regulating biosynthesis of cell surface components. Strain 30-84I/I2 exhibited mucoid colony and clumping phenotypes similar to those of 30-84R2. Both phenotypes were reversed by complementation with csaR-csaI or by the addition of the CsaI AHL signal. Both quorum-sensing systems play a role in colonization by strain 30-84. Whereas loss of PhzR resulted in a 6.6-fold decrease in colonization by strain 30-84 on wheat roots in natural soil, a phzR csaR double mutant resulted in a 47-fold decrease. These data suggest that gene(s) regulated by the CsaR-CsaI system also plays a role in the rhizosphere competence of P. aureofaciens 30-84. PMID:11526037
2012-01-01
Background Monoterpenes present a large and versatile group of unsaturated hydrocarbons of plant origin with widespread use in the fragrance as well as food industry. The anaerobic β-myrcene degradation pathway in Castellaniella defragrans strain 65Phen differs from well known aerobic, monooxygenase-containing pathways. The initial enzyme linalool dehydratase-isomerase ldi/LDI catalyzes the hydration of β-myrcene to (S)-(+)-linalool and its isomerization to geraniol. A high-affinity geraniol dehydrogenase geoA/GeDH and a geranial dehydrogenase geoB/GaDH contribute to the formation of geranic acid. A genetic system was for the first time applied for the betaproteobacterium to prove in vivo the relevance of the linalool dehydratase-isomerase and the geraniol dehydrogenase. In-frame deletion cassettes were introduced by conjugation and two homologous recombination events. Results Polar effects were absent in the in-frame deletion mutants C. defragrans Δldi and C. defragrans ΔgeoA. The physiological characterization of the strains demonstrated a requirement of the linalool dehydratase-isomerase for growth on acyclic monoterpenes, but not on cyclic monoterpenes. The deletion of geoA resulted in a phenotype with hampered growth rate on monoterpenes as sole carbon and energy source as well as reduced biomass yields. Enzyme assays revealed the presence of a second geraniol dehydrogenase. The deletion mutants were in trans complemented with the broad-host range expression vector pBBR1MCS-4ldi and pBBR1MCS-2geoA, restoring in both cases the wild type phenotype. Conclusions In-frame deletion mutants of genes in the anaerobic β-myrcene degradation revealed novel insights in the in vivo function. The deletion of a high-affinity geraniol dehydrogenase hampered, but did not preclude growth on monoterpenes. A second geraniol dehydrogenase activity was present that contributes to the β-myrcene degradation pathway. Growth on cyclic monoterpenes independent of the initial enzyme LDI suggests the presence of a second enzyme system activating unsaturated hydrocarbons. PMID:22947208
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intine, R.V.; Rainbow, A.J.
1990-01-01
A wild-type strain of herpes simplex virus type 1 (HSV-1:KOS) encoding a functional thymidine kinase (tk+) and a tk- mutant strain (HSV-1:PTK3B) were used to study the role of the viral tk in the repair of UV-irradiated HSV-1 in human cells. UV survival of HSV-1:PTK3B was substantially reduced compared with that of HSV-1:KOS when infecting normal human cells. In contrast, the UV survival of HSV-1:PTK3B was similar to that of HSV-1:KOS when infecting excision repair-deficient cells from a xeroderma pigmentosum patient from complementation group A. These results suggest that the repair of UV-irradiated HSV-1 in human cells depends, in partmore » at least, on expression of the viral tk and that the repair process influenced by tk activity is excision repair or a process dependent on excision repair.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, R.K.; Otte, C.A.
Saccharomyces cerevisiae MATa cells carrying mutations in either sst1 or sst2 are supersensitive to the G1 arrest induced by ..cap alpha.. factor pheromone. When sst1 mutants were mixed with normal SST/sup +/ cells, the entire population recovered together from ..cap alpha.. factor arrest, suggesting that SST/sup +/ cells helped sst1 mutants to recover. Complementation tests and linkage analysis showed that sst1 and bar1, a mutation which eliminates the ability of MATa cells to act as a ''barrier'' to the diffusion of ..cap alpha.. factor, were lesions in the same genes. These findings suggest that sst1 mutants are defective in recoverymore » from ..cap alpha.. factor arrest because they are unable to degrade the pheromone. In contrast, recovery of sst2 mutants was not potentiated by the presence of SST/sup +/ cells in mixing experiments. When either normal MATa cells or mutant cells carrying defects in sst1 or sst2 were exposed to ..cap alpha.. factor for 1 h and then washed free of the pheromone, the sst2 cells subsequently remained arrested in the absence of ..cap alpha.. factor for a much longer time than SST/sup +/ or sst1 cells. These observations suggest that the defect in sst2 mutants is intrinsic to the cell and is involved in the mechanism of ..cap alpha.. factor action at some step after the initial interaction of the pheromone with the cell. The presence of an sst2 mutation appears to cause a growth debility, since repeated serial subculture of haploid sst2-1 strains led to the accumulation of faster-growing revertants that were pheromone resistant and were mating defective (''sterile'').« less
Silva, Cecilia A.; Blondel, Carlos J.; Quezada, Carolina P.; Porwollik, Steffen; Andrews-Polymenis, Helene L.; Toro, Cecilia S.; Zaldívar, Mercedes; Contreras, Inés
2012-01-01
Salmonella enterica serovar Enteritidis causes a systemic, typhoid-like infection in newly hatched poultry and mice. In the present study, a library of 54,000 transposon mutants of S. Enteritidis phage type 4 (PT4) strain P125109 was screened for mutants deficient in the in vivo colonization of the BALB/c mouse model using a microarray-based negative-selection screening. Mutants in genes known to contribute to systemic infection (e.g., Salmonella pathogenicity island 2 [SPI-2], aro, rfa, rfb, phoP, and phoQ) and enteric infection (e.g., SPI-1 and SPI-5) in this and other Salmonella serovars displayed colonization defects in our assay. In addition, a strong attenuation was observed for mutants in genes and genomic islands that are not present in S. Typhimurium or in most other Salmonella serovars. These genes include a type I restriction/modification system (SEN4290 to SEN4292), the peg fimbrial operon (SEN2144A to SEN2145B), a putative pathogenicity island (SEN1970 to SEN1999), and a type VI secretion system remnant SEN1001, encoding a hypothetical protein containing a lysin motif (LysM) domain associated with peptidoglycan binding. Proliferation defects for mutants in these individual genes and in exemplar genes for each of these clusters were confirmed in competitive infections with wild-type S. Enteritidis. A ΔSEN1001 mutant was defective for survival within RAW264.7 murine macrophages in vitro. Complementation assays directly linked the SEN1001 gene to phenotypes observed in vivo and in vitro. The genes identified here may perform novel virulence functions not characterized in previous Salmonella models. PMID:22083712
Sineokiĭ, S P; Pogosov, V Z; Iankovskiĭ, N K; Krylov, V N
1976-01-01
123 Amber mutants of lambdoid bacteriophage phi81 are isolated and distributed into 19 complementation groups. Deletion mapping made possible to locate 5 gene groups on the genetic map of bacteriophage phi81 and to determine a region of possible location of mm' sticky ends on the prophage genetic map. A gene of phage phi81 is localized, which controls the adsorption specificity, and which functional similarity to a respective gene of phage phi80 is demonstrated.
Saliola, Michele; Bartoccioni, Paola Chiara; De Maria, Ilaria; Lodi, Tiziana; Falcone, Claudio
2004-01-01
We have isolated a Kluyveromyces lactis mutant unable to grow on all respiratory carbon sources with the exception of lactate. Functional complementation of this mutant led to the isolation of KlSDH1, the gene encoding the flavoprotein subunit of the succinate dehydrogenase (SDH) complex, which is essential for the aerobic utilization of carbon sources. Despite the high sequence conservation of the SDH genes in Saccharomyces cerevisiae and K. lactis, they do not have the same relevance in the metabolism of the two yeasts. In fact, unlike SDH1, KlSDH1 was highly expressed under both fermentative and nonfermentative conditions. In addition to this, but in contrast with S. cerevisiae, K. lactis strains lacking KlSDH1 were still able to grow in the presence of lactate. In these mutants, oxygen consumption was one-eighth that of the wild type in the presence of lactate and was normal with glucose and ethanol, indicating that the respiratory chain was fully functional. Northern analysis suggested that alternative pathway(s), which involves pyruvate decarboxylase and the glyoxylate cycle, could overcome the absence of SDH and allow (i) lactate utilization and (ii) the accumulation of succinate instead of ethanol during growth on glucose. PMID:15189981
Roles of H2 uptake hydrogenases in Shigella flexneri acid tolerance
McNorton, Mykeshia M.
2012-01-01
Hydrogenases play many roles in bacterial physiology, and use of H2 by the uptake-type enzymes of animal pathogens is of particular interest. Hydrogenases have never been studied in the pathogen Shigella, so targeted mutant strains were individually generated in the two Shigella flexneri H2-uptake enzymes (Hya and Hyb) and in the H2-evolving enzyme (Hyc) to address their roles. Under anaerobic fermentative conditions, a Hya mutant strain (hya) was unable to oxidize H2, while a Hyb mutant strain oxidized H2 like the wild-type. A hyc strain oxidized more exogenously added hydrogen than the parent. Fluorescence ratio imaging with dye JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide) showed that the parent strain generated a membrane potential 15 times greater than hya. The hya mutant was also by far the most acid-sensitive strain, being even more acid-sensitive than a mutant strain in the known acid-combating glutamate-dependent acid-resistance pathway (GDAR pathway). In severe acid-challenge experiments, the addition of glutamate to hya restored survivability, and this ability was attributed in part to the GDAR system (removes intracellular protons) by mutant strain (e.g. hya/gadBC double mutant) analyses. However, mutant strain phenotypes indicated that a larger portion of the glutamate-rescued acid tolerance was independent of GadBC. The acid tolerance of the hya strains was aided by adding chloride ions to the growth medium. The whole-cell Hya enzyme became more active upon acid exposure (20 min), based on assays of hyc. Indeed, the very high rates of Shigella H2 oxidation by Hya in acid can supply each cell with 2.4×108 protons min−1. Electrons generated from Hya-mediated H2 oxidation at the inner membrane likely counteract cytoplasmic positive charge stress, while abundant proton pools deposited periplasmically likely repel proton influx during severe acid stress. PMID:22628482
Maltz, Michele; Graf, Joerg
2011-01-01
Hemolysin and the type II secretion system (T2SS) have been shown to be important for virulence in many pathogens, but very few studies have shown their importance in beneficial microbes. Here, we investigated the importance of the type II secretion pathway in the beneficial digestive-tract association of Aeromonas veronii and the medicinal leech Hirudo verbana and revealed a critical role for the hemolysis of erythrocytes. A mutant with a miniTn5 insertion in exeM, which is involved in forming the inner membrane platform in the T2SS, was isolated by screening mutants for loss of hemolysis on blood agar plates. A hemolysis assay was used to quantify the mutant's deficiency in lysing sheep erythrocytes and revealed a 99.9% decrease compared to the parent strain. The importance of the T2SS in the colonization of the symbiotic host was assessed. Colonization assays revealed that the T2SS is critical for initial colonization of the leech gut. The defect was tied to the loss of hemolysin production by performing a colonization assay with blood containing lysed erythrocytes. This restored the colonization defect in the mutant. Complementation of the mutant using the promoter region and exeMN revealed that the T2SS is responsible for secreting hemolysin into the extracellular space and that both the T2SS and hemolysin export by the T2SS are critical for initial establishment of A. veronii in the leech gut.
White-Cooper, H; Carmena, M; Gonzalez, C; Glover, D M
1996-11-01
We have simultaneously screened for new alleles and second site mutations that fail to complement five cell cycle mutations of Drosphila carried on a single third chromosome (gnu, polo, mgr, asp, stg). Females that are either transheterozygous for scott of the antartic (scant) and polo, or homozygous for scant produce embryos that show mitotic defects. A maternal effect upon embryonic mitoses is also seen in embryos derived from females transheterozygous with helter skelter (hsk) and either mgr or asp. cleopatra (cleo), fails to complement asp but is not uncovered by a deficiency for asp. The mitotic phenotype of larvae heterozygous for cleo and the multiple mutant chromosome is similar to weak alleles of asp, but there are no defects in male meiosis. Mutations that failed to complement stg fell into two complementation groups corresponding to stg and a new gene noose. Three of the new stg alleles are early zygotic lethals, whereas the fourth is a pharate adult lethal allele that affects both mitosis and meiosis. Mutations in noose fully complement a small deficiency that removes stg, but when placed in trans to certain stg alleles, result in late lethality and mitotic abnormalities in larval brains.
Curic, Mirjana; Stuer-Lauridsen, Birgitte; Renault, Pierre; Nilsson, Dan
1999-01-01
The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the α-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains. PMID:10049884
Luo, Yihui; Liu, Yan; Sun, Dexter; Ojcius, David M; Zhao, Jinfang; Lin, Xuai; Wu, Dong; Zhang, Rongguang; Chen, Ming; Li, Lanjuan; Yan, Jie
2011-10-21
Leptospirosis caused by pathogenic species of the genus Leptospira is a re-emerging zoonotic disease, which affects a wide variety of host species and is transmitted by contaminated water. The genomes of several pathogenic Leptospira species contain a gene named invA, which contains a Nudix domain. However, the function of this gene has never been characterized. Here, we demonstrated that the invA gene was highly conserved in protein sequence and present in all tested pathogenic Leptospira species. The recombinant InvA protein of pathogenic L. interrogans strain Lai hydrolyzed several specific dinucleoside oligophosphate substrates, reflecting the enzymatic activity of Nudix in Leptospira species. Pathogenic leptospires did not express this protein in media but temporarily expressed it at early stages (within 60 min) of infection of macrophages and nephric epithelial cells. Comparing with the wild type, the invA-deficient mutant displayed much lower infectivity and a significantly reduced survival rate in macrophages and nephric epithelial cells. Moreover, the invA-deficient leptospires presented an attenuated virulence in hamsters, caused mild histopathological damage, and were transmitted in lower numbers in the urine, compared with the wild-type strain. The invA revertant, made by complementing the invA-deficient mutant with the invA gene, reacquired virulence similar to the wild type in vitro and in vivo. The LD(50) in hamsters was 1000-fold higher for the invA-deficient mutant than for the invA revertant and wild type. These results demonstrate that the InvA protein is a Nudix hydrolase, and the invA gene is essential for virulence in pathogenic Leptospira species.
Functional analysis of an feoB mutant in Clostridium perfringens strain 13.
Awad, Milena M; Cheung, Jackie K; Tan, Joanne E; McEwan, Alastair G; Lyras, Dena; Rood, Julian I
2016-10-01
Bacterial pathogens have adopted numerous mechanisms for acquiring iron from host proteins during an infection, including the direct acquisition of ferric iron from heme-associated proteins or from iron-scavenging siderophores. Ferric iron then is transported into the cytosol, where it can be utilized by the bacterial pathogen. Under anaerobic conditions bacteria can also transport ferrous iron using the transmembrane complex FeoAB, but little is known about iron transport systems in anaerobic bacteria such as the pathogenic clostridia. In this study we sought to characterize the iron acquisition process in Clostridium perfringens. Bioinformatic analysis of the Clostridium perfringens strain 13 genome sequence revealed that it has seven potential iron acquisition systems: three siderophore-mediated systems, one ferric citrate uptake system, two heme-associated acquisition systems and one ferrous iron uptake system (FeoAB). The relative level of expression of these systems was determined using quantitative real-time RT-PCR assays that were specific for one gene from each system. Each of these genes was expressed, with the feoAB genes generating the most abundant iron-uptake related transcripts. To further examine the role of this system in the growth of C. perfringens, insertional inactivation was used to isolate a chromosomal feoB mutant. Growth of this mutant in the presence and absence of iron revealed that it had altered growth properties and a markedly reduced total iron and manganese content compared to the wild type; effects that were reversed upon complementation with the wild-type feoB gene. These studies suggest that under anaerobic conditions FeoB is the major protein required for the uptake of iron into the cell and that it may play an important role in the pathogenesis of C. perfringens infections. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pohl, Mary Ann; Kienesberger, Sabine; Blaser, Martin J
2012-04-01
Lewis (Le) antigens are fucosylated oligosaccharides present in the Helicobacter pylori lipopolysaccharide. Expression of these antigens is believed to be important for H. pylori colonization, since Le antigens also are expressed on the gastric epithelia in humans. A galactosyltransferase encoded by β-(1,3)galT is essential for production of type 1 (Le(a) and Le(b)) antigens. The upstream gene jhp0562, which is present in many but not all H. pylori strains, is homologous to β-(1,3)galT but is of unknown function. Because H. pylori demonstrates extensive intragenomic recombination, we hypothesized that these two genes could undergo DNA rearrangement. A PCR screen and subsequent sequence analyses revealed that the two genes can recombine at both the 5' and 3' ends. Chimeric β-(1,3)galT-like alleles can restore function in a β-(1,3)galT null mutant, but neither native nor recombinant jhp0562 can. Mutagenesis of jhp0562 revealed that it is essential for synthesis of both type 1 and type 2 Le antigens. Transcriptional analyses of both loci showed β-(1,3)galT expression in all wild-type (WT) and mutant strains tested, whereas jhp0562 was not expressed in jhp0562 null mutants, as expected. Since jhp0562 unexpectedly displayed functions in both type 1 and type 2 Le synthesis, we asked whether galT, part of the type 2 synthesis pathway, had analogous functions in type 1 synthesis. Mutagenesis and complementation analysis confirmed that galT is essential for Le(b) production. In total, these results demonstrate that galT and jhp0562 have functions that cross the expected Le synthesis pathways and that jhp0562 provides a substrate for intragenomic recombination to generate diverse Le synthesis enzymes.
Kienesberger, Sabine; Blaser, Martin J.
2012-01-01
Lewis (Le) antigens are fucosylated oligosaccharides present in the Helicobacter pylori lipopolysaccharide. Expression of these antigens is believed to be important for H. pylori colonization, since Le antigens also are expressed on the gastric epithelia in humans. A galactosyltransferase encoded by β-(1,3)galT is essential for production of type 1 (Lea and Leb) antigens. The upstream gene jhp0562, which is present in many but not all H. pylori strains, is homologous to β-(1,3)galT but is of unknown function. Because H. pylori demonstrates extensive intragenomic recombination, we hypothesized that these two genes could undergo DNA rearrangement. A PCR screen and subsequent sequence analyses revealed that the two genes can recombine at both the 5′ and 3′ ends. Chimeric β-(1,3)galT-like alleles can restore function in a β-(1,3)galT null mutant, but neither native nor recombinant jhp0562 can. Mutagenesis of jhp0562 revealed that it is essential for synthesis of both type 1 and type 2 Le antigens. Transcriptional analyses of both loci showed β-(1,3)galT expression in all wild-type (WT) and mutant strains tested, whereas jhp0562 was not expressed in jhp0562 null mutants, as expected. Since jhp0562 unexpectedly displayed functions in both type 1 and type 2 Le synthesis, we asked whether galT, part of the type 2 synthesis pathway, had analogous functions in type 1 synthesis. Mutagenesis and complementation analysis confirmed that galT is essential for Leb production. In total, these results demonstrate that galT and jhp0562 have functions that cross the expected Le synthesis pathways and that jhp0562 provides a substrate for intragenomic recombination to generate diverse Le synthesis enzymes. PMID:22290141
Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Chen, Chen; Jin, Xiao-Fen; Yao, Quan-Hong
2012-01-01
The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroAR.aquatilis, was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroAE.coli), while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroAR.aquatilis were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroAE.coli. To probe the sites contributing to increased tolerance to glyphosate, mutant R.aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys) substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R.aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). The effect of the residues on subdomain 5 on glyphosate resistance was more obvious. PMID:22870190
Kirst, Henning; Garcia-Cerdan, Jose Gines; Zurbriggen, Andreas; Ruehle, Thilo; Melis, Anastasios
2012-01-01
The truncated light-harvesting antenna size3 (tla3) DNA insertional transformant of Chlamydomonas reinhardtii is a chlorophyll-deficient mutant with a lighter green phenotype, a lower chlorophyll (Chl) per cell content, and higher Chl a/b ratio than corresponding wild-type strains. Functional analyses revealed a higher intensity for the saturation of photosynthesis and greater light-saturated photosynthetic activity in the tla3 mutant than in the wild type and a Chl antenna size of the photosystems that was only about 40% of that in the wild type. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western-blot analyses showed that the tla3 strain was deficient in the Chl a/b light-harvesting complex. Molecular and genetic analyses revealed a single plasmid insertion in chromosome 4 of the tla3 nuclear genome, causing deletion of predicted gene g5047 and plasmid insertion within the fourth intron of downstream-predicted gene g5046. Complementation studies defined that gene g5047 alone was necessary and sufficient to rescue the tla3 mutation. Gene g5047 encodes a C. reinhardtii homolog of the chloroplast-localized SRP43 signal recognition particle, whose occurrence and function in green microalgae has not hitherto been investigated. Biochemical analysis showed that the nucleus-encoded and chloroplast-localized CrCpSRP43 protein specifically operates in the assembly of the peripheral components of the Chl a/b light-harvesting antenna. This work demonstrates that cpsrp43 deletion in green microalgae can be employed to generate tla mutants with a substantially diminished Chl antenna size. The latter exhibit improved solar energy conversion efficiency and photosynthetic productivity under mass culture and bright sunlight conditions. PMID:23043081
Osanai-Futahashi, M; Tatematsu, K-i; Futahashi, R; Narukawa, J; Takasu, Y; Kayukawa, T; Shinoda, T; Ishige, T; Yajima, S; Tamura, T; Yamamoto, K; Sezutsu, H
2016-01-01
Ommochromes are major insect pigments involved in coloration of compound eyes, eggs, epidermis and wings. In the silkworm Bombyx mori, adult compound eyes and eggs contain a mixture of the ommochrome pigments such as ommin and xanthommatin. Here, we identified the gene involved in ommochrome biosynthesis by positional cloning of B. mori egg and eye color mutant pink-eyed white egg (pe). The recessive homozygote of pe has bright red eyes and white or pale pink eggs instead of a normal dark coloration due to the decrease of dark ommochrome pigments. By genetic linkage analysis, we narrowed down the pe-linked region to ~258 kb, containing 17 predicted genes. RNA sequencing analyses showed that the expression of one candidate gene, the ortholog of Drosophila haem peroxidase cardinal, coincided with egg pigmentation timing, similar to other ommochrome-related genes such as Bm-scarlet and Bm-re. In two pe strains, a common missense mutation was found within a conserved motif of B. mori cardinal homolog (Bm-cardinal). RNA interference-mediated knockdown and transcription activator-like effector nuclease (TALEN)-mediated knockout of the Bm-cardinal gene produced the same phenotype as pe in terms of egg, adult eye and larval epidermis coloration. A complementation test of the pe mutant with the TALEN-mediated Bm-cardinal-deficient strain showed that the mutant phenotype could not be rescued, indicating that Bm-cardinal is responsible for pe. Moreover, knockdown of the cardinal homolog in Tribolium castaneum also induced red compound eyes. Our results indicate that cardinal plays a major role in ommochrome synthesis of holometabolous insects. PMID:26328757
Osanai-Futahashi, M; Tatematsu, K-I; Futahashi, R; Narukawa, J; Takasu, Y; Kayukawa, T; Shinoda, T; Ishige, T; Yajima, S; Tamura, T; Yamamoto, K; Sezutsu, H
2016-02-01
Ommochromes are major insect pigments involved in coloration of compound eyes, eggs, epidermis and wings. In the silkworm Bombyx mori, adult compound eyes and eggs contain a mixture of the ommochrome pigments such as ommin and xanthommatin. Here, we identified the gene involved in ommochrome biosynthesis by positional cloning of B. mori egg and eye color mutant pink-eyed white egg (pe). The recessive homozygote of pe has bright red eyes and white or pale pink eggs instead of a normal dark coloration due to the decrease of dark ommochrome pigments. By genetic linkage analysis, we narrowed down the pe-linked region to ~258 kb, containing 17 predicted genes. RNA sequencing analyses showed that the expression of one candidate gene, the ortholog of Drosophila haem peroxidase cardinal, coincided with egg pigmentation timing, similar to other ommochrome-related genes such as Bm-scarlet and Bm-re. In two pe strains, a common missense mutation was found within a conserved motif of B. mori cardinal homolog (Bm-cardinal). RNA interference-mediated knockdown and transcription activator-like effector nuclease (TALEN)-mediated knockout of the Bm-cardinal gene produced the same phenotype as pe in terms of egg, adult eye and larval epidermis coloration. A complementation test of the pe mutant with the TALEN-mediated Bm-cardinal-deficient strain showed that the mutant phenotype could not be rescued, indicating that Bm-cardinal is responsible for pe. Moreover, knockdown of the cardinal homolog in Tribolium castaneum also induced red compound eyes. Our results indicate that cardinal plays a major role in ommochrome synthesis of holometabolous insects.
Binks, Michael; Sriprakash, K. S.
2004-01-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity. PMID:15213143
Binks, Michael; Sriprakash, K S
2004-07-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity.
Sharma, Shukriti; Tivendale, Kelly A.; Markham, Philip F.
2015-01-01
ABSTRACT Although the complete genome sequences of three strains of Mycoplasma bovis are available, few studies have examined gene function in this important pathogen. Mycoplasmas lack the biosynthetic machinery for the de novo synthesis of nucleic acid precursors, so nucleases are likely to be essential for them to acquire nucleotide precursors. Three putative membrane nucleases have been annotated in the genome of M. bovis strain PG45, MBOVPG45_0089 and MBOVPG45_0310, both of which have the thermonuclease (TNASE_3) functional domain, and MBOVPG45_0215 (mnuA), which has an exonuclease/endonuclease/phosphatase domain. While previous studies have demonstrated the function of TNASE_3 domain nucleases in several mycoplasmas, quantitative comparisons of the contributions of different nucleases to cellular nuclease activity have been lacking. Mapping of a library of 319 transposon mutants of M. bovis PG45 by direct genome sequencing identified mutants with insertions in MBOVPG45_0310 (the Δ0310 mutant) and MBOVPG45_0215 (the Δ0215 mutant). In this study, the detection of the product of MBOVPG45_0215 in the Triton X-114 fraction of M. bovis cell lysates, its cell surface exposure, and its predicted signal peptide suggested that it is a surface-exposed lipoprotein nuclease. Comparison of a ΔmnuA mutant with wild-type M. bovis on native and denatured DNA gels and in digestion assays using double-stranded phage λ DNA and closed circular plasmid DNA demonstrated that inactivation of this gene abolishes most of the cellular exonuclease and endonuclease activity of M. bovis. This activity could be fully restored by complementation with the wild-type mnuA gene, demonstrating that MnuA is the major cellular nuclease of M. bovis. IMPORTANCE Nucleases are thought to be important contributors to virulence and crucial for the maintenance of a nutritional supply of nucleotides in mycoplasmas that are pathogenic in animals. This study demonstrates for the first time that of the three annotated cell surface nuclease genes in an important pathogenic mycoplasma, the homologue of the thermostable nuclease identified in Gram-positive bacteria is responsible for the majority of the nuclease activity detectable in vitro. PMID:25691526
Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano
2017-01-01
ABSTRACT Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia, previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia, present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli, including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. PMID:28893912
Bondì, Roslen; Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano
2017-12-01
Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia , previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia , present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli , including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. Copyright © 2017 American Society for Microbiology.
Yeh, Kuo-Ming; Chiu, Sheng-Kung; Lin, Chii-Lan; Huang, Li-Yueh; Tsai, Yu-Kuo; Chang, Jen-Chang; Lin, Jung-Chung; Chang, Feng-Yee; Siu, Leung-Kei
2016-01-01
The virulence role of surface antigens in a single serotype of Klebsiella pneumoniae strain have been studied, but little is known about whether their contribution will vary with serotype. To investigate the role of K and O antigen in hyper-virulent strains, we constructed O and K antigen deficient mutants from serotype K1 STL43 and K2 TSGH strains from patients with liver abscess, and characterized their virulence in according to the abscess formation and resistance to neutrophil phagocytosis, serum, and bacterial clearance in liver. Both of K1 and K2-antigen mutants lost their wildtype resistance to neutrophil phagocytosis and hepatic clearance, and failed to cause abscess formation. K2-antigen mutant became serum susceptible while K1-antigen mutant maintained its resistance to serum killing. The amount of glucuronic acid, indicating the amount of capsular polysaccharide (CPS, K antigen), was inversed proportional to the rate of phagocytosis. O-antigen mutant of serotype K1 strains had significantly more amount of CPS, and more resistant to neutrophil phagocytosis than its wildtype counterpart. O-antigen mutants of serotype K1 and K2 strains lost their wildtype serum resistance, and kept resistant to neutrophil phagocytosis. While both mutants lacked the same O1 antigen, O-antigen mutant of serotype K1 became susceptible to liver clearance and cause mild abscess formation, but its serotype K2 counterpart maintained these wildtype virulence. We conclude that the contribution of surface antigens to virulence of K. pneumoniae strains varies with serotypes.
NASA Astrophysics Data System (ADS)
Ye, Hui; Ma, Jingming; Feng, Chun; Cheng, Ying; Zhu, Suwen; Cheng, Beijiu
2009-02-01
In the process of the fermentation of steroid C11α-hydroxylgenation strain Aspergillus flavus AF-ANo208, a red pigment is derived, which will affect the isolation and purification of the target product. Low energy ion beam implantation is a new tool for breeding excellent mutant strains. In this study, the ion beam implantation experiments were performed by infusing two different ions: argon ion (Ar+) and nitrogen ion (N+). The results showed that the optimal ion implantation was N+ with an optimum dose of 2.08 × 1015 ions/cm2, with which the mutant strain AF-ANm16 that produced no red pigment was obtained. The strain had high genetic stability and kept the strong capacity of C11α-hydroxylgenation, which could be utilized in industrial fermentation. The differences between the original strain and the mutant strain at a molecular level were analyzed by randomly amplified polymorphic DNA (RAPD). The results indicated that the frequency of variation was 7.00%, which would establish the basis of application investigation into the breeding of pigment mutant strains by low energy ion implantation.
Structure and regulation of KGD1, the structural gene for yeast alpha-ketoglutarate dehydrogenase.
Repetto, B; Tzagoloff, A
1989-06-01
Nuclear respiratory-defective mutants of Saccharomyces cerevisiae have been screened for lesions in the mitochondrial alpha-ketoglutarate dehydrogenase complex. Strains assigned to complementation group G70 were ascertained to be deficient in enzyme activity due to mutations in the KGD1 gene coding for the alpha-ketoglutarate dehydrogenase component of the complex. The KGD1 gene has been cloned by transformation of a representative kgd1 mutant, C225/U1, with a recombinant plasmid library of wild-type yeast nuclear DNA. Transformants containing the gene on a multicopy plasmid had three- to four-times-higher alpha-ketoglutarate dehydrogenase activity than did wild-type S. cerevisiae. Substitution of the chromosomal copy of KGD1 with a disrupted allele (kgd1::URA3) induced a deficiency in alpha-ketoglutarate dehydrogenase. The sequence of the cloned region of DNA which complements kgd1 mutants was found to have an open reading frame of 3,042 nucleotides capable of coding for a protein of Mw 114,470. The encoded protein had 38% identical residues with the reported sequence of alpha-ketoglutarate dehydrogenase from Escherichia coli. Two lines of evidence indicated that transcription of KGD1 is catabolite repressed. Higher steady-state levels of KGD1 mRNA were detected in wild-type yeast grown on the nonrepressible sugar galactose than in yeast grown on high glucose. Regulation of KGD1 was also studied by fusing different 5'-flanking regions of KGD1 to the lacZ gene of E. coli and measuring the expression of beta-galactosidase in yeast. Transformants harboring a fusion of 693 nucleotides of the 5'-flanking sequence expressed 10 times more beta-galactosidase activity when grown under derepressed conditions. The response to the carbon source was reduced dramatically when the same lacZ fusion was present in a hap2 or hap3 mutant. The promoter element(s) responsible for the regulated expression of KGD1 has been mapped to the -354 to -143 region. This region contained several putative activation sites with sequences matching the core element proposed to be essential for binding of the HAP2 and HAP3 regulatory proteins.
Mark, Linda; Spiller, O Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A; Wong, Scott W; Damania, Blossom; Blom, Anna M; Blackbourn, David J
2007-04-01
The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model.
Mark, Linda; Spiller, O. Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A.; Wong, Scott W.; Damania, Blossom; Blom, Anna M.; Blackbourn, David J.
2007-01-01
The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model. PMID:17287274
Selection of antigenically advanced variants of seasonal influenza viruses
Ozawa, Makoto; Taft, Andrew S.; Das, Subash C.; Hanson, Anthony P.; Song, Jiasheng; Imai, Masaki; Wilker, Peter R.; Watanabe, Tokiko; Watanabe, Shinji; Ito, Mutsumi; Iwatsuki-Horimoto, Kiyoko; Russell, Colin A.; James, Sarah L.; Skepner, Eugene; Maher, Eileen A.; Neumann, Gabriele; Kelso, Anne; McCauley, John; Wang, Dayan; Shu, Yuelong; Odagiri, Takato; Tashiro, Masato; Xu, Xiyan; Wentworth, David E.; Katz, Jacqueline M.; Cox, Nancy J.; Smith, Derek J.; Kawaoka, Yoshihiro
2016-01-01
Influenza viruses mutate frequently, necessitating constant updates of vaccine viruses. To establish experimental approaches that may complement the current vaccine strain selection process, we selected antigenic variants from human H1N1 and H3N2 influenza virus libraries possessing random mutations in the globular head of the haemagglutinin protein (which includes the antigenic sites) by incubating them with human and/or ferret convalescent sera to human H1N1 and H3N2 viruses. Further, we selected antigenic escape variants from human viruses treated with convalescent sera and from mice that had been previously immunized against human influenza viruses. Our pilot studies with past influenza viruses identified escape mutants that were antigenically similar to variants that emerged in nature, establishing the feasibility of our approach. Our studies with contemporary human influenza viruses identified escape mutants before they caused an epidemic in 2014–2015. This approach may aid in the prediction of potential antigenic escape variants and the selection of future vaccine candidates before they become widespread in nature. PMID:27572841
The two-component system GrvRS (EtaRS) regulates ace expression in Enterococcus faecalis OG1RF.
Roh, Jung Hyeob; Singh, Kavindra V; La Rosa, Sabina Leanti; Cohen, Ana Luisa V; Murray, Barbara E
2015-01-01
Expression of ace (adhesin to collagen of Enterococcus faecalis), encoding a virulence factor in endocarditis and urinary tract infection models, has been shown to increase under certain conditions, such as in the presence of serum, bile salts, urine, and collagen and at 46 °C. However, the mechanism of ace/Ace regulation under different conditions is still unknown. In this study, we identified a two-component regulatory system GrvRS as the main regulator of ace expression under these stress conditions. Using Northern hybridization and β-galactosidase assays of an ace promoter-lacZ fusion, we found transcription of ace to be virtually absent in a grvR deletion mutant under the conditions that increase ace expression in wild-type OG1RF and in the complemented strain. Moreover, a grvR mutant revealed decreased collagen binding and biofilm formation as well as attenuation in a murine urinary tract infection model. Here we show that GrvR plays a major role in control of ace expression and E. faecalis virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Wan, Lei; Guo, Yan; Hui, Chang-Ye; Liu, Xiao-Lu; Zhang, Wen-Bing; Cao, Hong; Cao, Hong
2014-05-01
Escherichia coli (E. coli) K1 is the most common bacteria that cause meningitis in the neonatal period. But it's not entirely clear about how E. coli crosses the blood-brain barrier. The features of the ompT deletion in meningitic E. coli infection were texted in vitro. In comparison with the parent strain, the isogenic ompT deletion mutant was significantly less adhesive to human brain microvascular endothelial cells (HBMEC). The adhesion-deficient phenotype of the mutant was restored to the level of the wild-type by complementing with low-level OmpT expression plasmid. Interestingly, the adhesion was enhanced by point mutation at the OmpT proposed catalytic residue D85. Compared with the poor adhesive activity of bovine serum albumin-coated fluorescent beads, recombinant OmpT or catalytically inactive variant of OmpT-coated beads bound to HBMEC monolayer effectively. Our study suggests that OmpT is important for bacterial adhesion while entering into central nervous system, and the adhesion does not involve in the proteolytic activity of OmpT.
HtrA Is Important for Stress Resistance and Virulence in Haemophilus parasuis
Zhang, Luhua; Li, Ying; Wen, Yiping; Lau, Gee W.; Huang, Xiaobo; Wu, Rui; Yan, Qigui; Huang, Yong; Zhao, Qin; Ma, Xiaoping
2016-01-01
Haemophilus parasuis is an opportunistic pathogen that causes Glässer's disease in swine, with polyserositis, meningitis, and arthritis. The high-temperature requirement A (HtrA)-like protease, which is involved in protein quality control, has been reported to be a virulence factor in many pathogens. In this study, we showed that HtrA of H. parasuis (HpHtrA) exhibited both chaperone and protease activities. Finally, nickel import ATP-binding protein (NikE), periplasmic dipeptide transport protein (DppA), and outer membrane protein A (OmpA) were identified as proteolytic substrates for HpHtrA. The protease activity reached its maximum at 40°C in a time-dependent manner. Disruption of the htrA gene from strain SC1401 affected tolerance to temperature stress and resistance to complement-mediated killing. Furthermore, increased autoagglutination and biofilm formation were detected in the htrA mutant. In addition, the htrA mutant was significantly attenuated in virulence in the murine model of infection. Together, these data demonstrate that HpHtrA plays an important role in the virulence of H. parasuis. PMID:27217419
HtrA Is Important for Stress Resistance and Virulence in Haemophilus parasuis.
Zhang, Luhua; Li, Ying; Wen, Yiping; Lau, Gee W; Huang, Xiaobo; Wu, Rui; Yan, Qigui; Huang, Yong; Zhao, Qin; Ma, Xiaoping; Wen, Xintian; Cao, Sanjie
2016-08-01
Haemophilus parasuis is an opportunistic pathogen that causes Glässer's disease in swine, with polyserositis, meningitis, and arthritis. The high-temperature requirement A (HtrA)-like protease, which is involved in protein quality control, has been reported to be a virulence factor in many pathogens. In this study, we showed that HtrA of H. parasuis (HpHtrA) exhibited both chaperone and protease activities. Finally, nickel import ATP-binding protein (NikE), periplasmic dipeptide transport protein (DppA), and outer membrane protein A (OmpA) were identified as proteolytic substrates for HpHtrA. The protease activity reached its maximum at 40°C in a time-dependent manner. Disruption of the htrA gene from strain SC1401 affected tolerance to temperature stress and resistance to complement-mediated killing. Furthermore, increased autoagglutination and biofilm formation were detected in the htrA mutant. In addition, the htrA mutant was significantly attenuated in virulence in the murine model of infection. Together, these data demonstrate that HpHtrA plays an important role in the virulence of H. parasuis. Copyright © 2016 Zhang et al.
Inoue, K; Yano, K; Amano, T
1974-12-01
When an antibody-sensitized, phospholipase A-deficient mutant of Escherichia coli B/SM was treated with complement in the absence of lysozyme, bacterial phosphatidylethanolamine (PE) was liberated into the lipid fraction of the surrounding medium, but only traces of its degradation products were found in this fraction. Therefore, most of the degradation of bacterial PE to FFA and LPE observed in the usual immune bactericidal reaction (Inoue et al., 1974) must be the result of the action of bacterial phospholipase A which is activated or becomes accessible to its substrate on formation of lesions by complement. The mechanism of complement-mediated formation of membrane lesions is discussed on the basis of these results.
Buczynski, Kimberly A; Kim, Seong K; O'Callaghan, Dennis J
2005-10-01
The sole immediate-early (IE) gene of equine herpesvirus 1 (EHV-1) encodes a major regulatory protein of 1487 amino acids (aa) capable of modulating gene expression from both early and late promoters and also of trans-repressing its own promoter. Using a specially designed recombination system and a library of IE linker-insertion, deletion, point, and nonsense mutant constructs that encode forms of the IE protein (IEP) harboring mutations within all five regions, 17 mutant viruses were generated and characterized. Ribonuclease protection analyses revealed that all 17 mutants synthesize the IE mRNA in RK-13 cells, whereas those that failed to replicate on non-complementing RK-13 cells displayed a defect in the transcription of either an important early gene (EICP0) and/or an essential late gene (glycoprotein D). Western blot analyses showed that the IEP was synthesized and detectable in cells infected with each mutant virus, including those mutants that failed to replicate on non-complementing RK-13 cells. Eleven of the 17 mutants were capable of growth on non-complementing RK-13 cells, whereas mutant viruses with deletions within the serine-rich tract (SRT), nucleus localization signal (NLS), or DNA-binding domain (DBD) were capable of growth only on the IEP-producing cell line (IE13.1). Lastly, temperature shift experiments revealed that mutant viruses containing deletions within the C-terminus (KyAn1029 and KyAn1411) or within the SRT (KyADeltaSRT2) of the IEP exhibited a temperature-sensitive phenotype in that these viruses, in contrast to the parent KyA, failed to replicate at 39 degrees C. Overall, these results indicate that the C-terminus of the IEP is not essential for IEP function in cell culture, but this region contains elements that enhance the function(s) of the IEP. The initial characterization of these 17 EHV-1 mutants has shown that sequences totaling at least 43% of the IEP are not essential for virus replication in cell culture.
Wanas, E; Efler, S; Ghosh, K; Ghosh, H P
1999-12-01
Glycoprotein gB is the most highly conserved glycoprotein in the herpesvirus family and plays a critical role in virus entry and fusion. Glycoprotein gB of herpes simplex virus type 1 contains a hydrophobic stretch of 69 aa near the carboxy terminus that is essential for its biological activity. To determine the role(s) of specific amino acids in the carboxy-terminal hydrophobic region, a number of amino acids were mutagenized that are highly conserved in this region within the gB homologues of the family HERPESVIRIDAE: Three conserved residues in the membrane anchor domain, namely A786, A790 and A791, as well as amino acids G743, G746, G766, G770 and P774, that are non-variant in Herpesviridae, were mutagenized. The ability of the mutant proteins to rescue the infectivity of the gB-null virus, K082, in trans was measured by a complementation assay. All of the mutant proteins formed dimers and were incorporated in virion particles produced in the complementation assay. Mutants G746N, G766N, F770S and P774L showed negligible complementation of K082, whereas mutant G743R showed a reduced activity. Virion particles containing these four mutant glycoproteins also showed a markedly reduced rate of entry compared to the wild-type. The results suggest that non-variant residues in the carboxy-terminal hydrophobic region of the gB protein may be important in virus infectivity.
Effect of the luxS gene on biofilm formation and antibiotic resistance by Salmonella serovar Dublin.
Ju, Xiangyu; Li, Junjie; Zhu, Mengjiao; Lu, Zhaoxin; Lv, Fengxia; Zhu, Xiaoyu; Bie, Xiaomei
2018-05-01
Biofilms are communities of bacterial cells that serve to protect them from external adverse influences and enhance bacterial resistance to antibiotics and sanitizers. Here, we studied the regulatory effects of glucose and sodium chloride on biofilm formation in Salmonella serovar Dublin (S. Dublin). To analyze expression levels of the quorum sensing gene luxS, we created a luxS knockout mutant. Also, antimicrobial resistance, hydrophobicity and autoinducer-2 (AI-2) activity of both the wild-type (WT) and the mutant strain were investigated. Our results revealed that glucose was not essential for S. Dublin biofilm formation but had an inhibitory effect on biofilm formation when the concentration was over 0.1%. NaCl was found to be indispensable in forming biofilm, and it also exerted an inhibitory effect at high concentrations (>1.0%). Both the WT and the mutant strains displayed significant MIC growth after biofilm formation. An increase of up to 32,768 times in the resistance of S. Dublin in biofilm phonotype against antibiotic (ampicillin) compared to its planktonic phonotype was observed. However, S. Dublin luxS knockout mutant only showed slight differences compared to the WT strain in the antimicrobial tests although it displayed better biofilm-forming capacity than the WT strain. The mutant strain also exhibited higher hydrophobicity than the WT strain, which was a feature related to biofilm formation. The production of the quorum sensing autoinducer-2 (AI-2) was significantly lower in the mutant strain than in the WT strain since the LuxS enzyme, encoded by the luxS gene, plays an essential role in AI-2 synthesis. However, the limited biofilm-forming ability in the WT strain indicated AI-2 was not directly related to S. Dublin biofilm formation. Furthermore, gene expression analysis of the WT and mutant strains revealed upregulation of genes related to biofilm stress response and enhanced resistance in the luxS mutant strain, which may provide evidence for the regulatory role of the luxS gene in biofilm formation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Divon, Hege Hvattum; Ziv, Carmit; Davydov, Olga; Yarden, Oded; Fluhr, Robert
2006-11-01
SUMMARY Fusarium oxysporum is a soil-borne pathogen that infects plants through the roots and uses the vascular system for host ingress. Specialized for this route of infection, F. oxysporum is able to adapt to the scarce nutrient environment in the xylem vessels. Here we report the cloning of the F. oxysporum global nitrogen regulator, Fnr1, and show that it is one of the determinants for fungal fitness during in planta growth. The Fnr1 gene has a single conserved GATA-type zinc finger domain and is 96% and 48% identical to AREA-GF from Gibberella fujikuroi, and NIT2 from Neurospora crassa, respectively. Fnr1 cDNA, expressed under a constitutive promoter, was able to complement functionally an N. crassa nit-2(RIP) mutant, restoring the ability of the mutant to utilize nitrate. Fnr1 disruption mutants showed high tolerance to chlorate and reduced ability to utilize several secondary nitrogen sources such as amino acids, hypoxanthine and uric acid, whereas growth on favourable nitrogen sources was not affected. Fnr1 disruption also abolished in vitro expression of nutrition genes, normally induced during the early phase of infection. In an infection assay on tomato seedlings, infection rate of disruption mutants was significantly delayed in comparison with the parental strain. Our results indicate that FNR1 mediates adaptation to nitrogen-poor conditions in planta through the regulation of secondary nitrogen acquisition, and as such acts as a determinant for fungal fitness during infection.
R Factor-Controlled Restriction and Modification of Deoxyribonucleic Acid: Restriction Mutants
Yoshimori, Robert; Roulland-Dussoix, Daisy; Boyer, Herbert W.
1972-01-01
Restriction mutants of two different R factor-controlled host specificities (RI and RII) were isolated. All of the restriction mutants examined had a normal modification phenotype. No complementation was observed between the RI and RII host specificities. It is concluded that for each host specificity no protein subunit is shared by the restriction endonuclease and modification methylase. PMID:4565538
Schwartz, Justin T.; Barker, Jason H.; Long, Matthew E.; Kaufman, Justin; McCracken, Jenna; Allen, Lee-Ann H.
2012-01-01
A fundamental step in the life cycle of F. tularensis is bacterial entry into host cells. F. tularensis activates complement, and recent data suggest that the classical pathway is required for complement factor C3 deposition on the bacterial surface. Nevertheless, C3 deposition is inefficient and neither the specific serum components necessary for classical pathway activation by F. tularensis in nonimmune human serum, nor the receptors that mediate infection of neutrophils has been defined. Herein human neutrophil uptake of GFP-expressing F. tularensis strains LVS and Schu S4 was quantified with high efficiency by flow cytometry. Using depleted sera and purified complement components we demonstrated first that C1q and C3 were essential for F. tularensis phagocytosis whereas C5 was not. Second, we used purification and immuno-depletion approaches to identify a critical role for natural IgM in this process, and then used a wbtA2 mutant to identify LPS O-antigen and capsule as prominent targets of these antibodies on the bacterial surface. Finally, we demonstrate using receptor-blocking antibodies that CR1 (CD35) and CR3 (CD11b/CD18) acted in concert for phagocytosis of opsonized F. tularensis by human neutrophils, whereas CR3 and CR4 (CD11c/CD18) mediated infection of human monocyte-derived macrophages. Altogether, our data provide fundamental insight into mechanisms of F. tularensis phagocytosis and support a model whereby natural IgM binds to surface capsular and O-antigen polysaccharides of F. tularensis and initiates the classical complement cascade via C1q to promote C3-opsonization of the bacterium and phagocytosis via CR3 and either CR1 or CR4 in a phagocyte-specific manner. PMID:22888138
Shreeram, Devesh D; Panmanee, Warunya; McDaniel, Cameron T; Daniel, Susan; Schaefer, Dale W; Hassett, Daniel J
2018-02-01
Pseudomonas aeruginosa is a metabolically voracious bacterium that is easily manipulated genetically. We have previously shown that the organism is also highly electrogenic in microbial fuel cells (MFCs). Polarization studies were performed in MFCs with wild-type strain PAO1 and three mutant strains (pilT, bdlA and pilT bdlA). The pilT mutant was hyperpiliated, while the bdlA mutant was suppressed in biofilm dispersion chemotaxis. The double pilT bdlA mutant was expected to have properties of both mutations. Polarization data indicate that the pilT mutant showed 5.0- and 3.2-fold increases in peak power compared to the wild type and the pilT bdlA mutant, respectively. The performance of the bdlA mutant was surprisingly the lowest, while the pilT bdlA electrogenic performance fell between the pilT mutant and wild-type bacteria. Measurements of biofilm thickness and bacterial viability showed equal viability among the different strains. The thickness of the bdlA mutant, however, was twice that of wild-type strain PAO1. This observation implicates the presence of dead or dormant bacteria in the bdlA mutant MFCs, which increases biofilm internal resistance as confirmed by electrochemical measurements.
Polarity-defective mutants of Aspergillus nidulans.
Osherov, N; Mathew, J; May, G S
2000-12-01
We have identified two polarity-defective (pod) mutants in Aspergillus nidulans from a collection of heat-sensitive lethal mutants. At restrictive temperature, these mutants are capable of nuclear division but are unable to establish polar hyphal growth. We cloned the two pod genes by complementation of their heat-sensitive lethal phenotypes. The libraries used to clone the pod genes are under the control of the bidirectional niaD and niiA promoters. Complementation of the pod mutants is dependent on growth on inducing medium. We show that rescue of the heat-sensitive phenotype on inducing media is independent of the orientation of the gene relative to the niaD or niiA promoters, demonstrating that the intergenic region between the niaD and the niiA genes functions as an orientation-independent enhancer and repressor that is capable of functioning over long distances. The products of the podG and the podH genes were identified as homologues of the alpha subunit of yeast mitochondrial phenylalanyl--tRNA synthetase and transcription factor IIF interacting component of the CTD phosphatase. Neither of these gene products would have been predicted to produce a pod mutant phenotype based on studies of cellular polarity mutants in other organisms. The implications of these results are discussed. Copyright 2000 Academic Press.
NASA Technical Reports Server (NTRS)
Vogel, J. P.; Schuerman, P.; Woeste, K.; Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)
1998-01-01
Cytokinins elevate ethylene biosynthesis in etiolated Arabidopsis seedlings via a post-transcriptional modification of one isoform of the key biosynthetic enzyme ACC synthase. In order to begin to dissect the signaling events leading from cytokinin perception to this modification, we have isolated a series of mutants that lack the ethylene-mediated triple response in the presence of cytokinin due to their failure to increase ethylene biosynthesis. Analysis of genetic complementation and mapping revealed that these Cin mutants (cytokinin-insensitive) represent four distinct complementation groups, one of which, cin4, is allelic to the constitutive photomorphogenic mutant fus9/cop10. The Cin mutants have subtle effects on the morphology of adult plants. We further characterized the Cin mutants by analyzing ethylene biosynthesis in response to various other inducers and in adult tissues, as well as by assaying additional cytokinin responses. The cin3 mutant did not disrupt ethylene biosynthesis under any other conditions, nor did it disrupt any other cytokinin responses. Only cin2 disrupted ethylene biosynthesis in multiple circumstances. cin1 and cin2 made less anthocyanin in response to cytokinin. cin1 also displayed reduced shoot initiation in tissue culture in response to cytokinin, suggesting that it affects a cytokinin signaling element.
Escudero, Leticia; Mariscal, Vicente; Flores, Enrique
2015-08-01
In the diazotrophic filaments of heterocyst-forming cyanobacteria, two different cell types, the CO2-fixing vegetative cells and the N2-fixing heterocysts, exchange nutrients, including some amino acids. In the model organism Anabaena sp. strain PCC 7120, the SepJ protein, composed of periplasmic and integral membrane (permease) sections, is located at the intercellular septa joining adjacent cells in the filament. The unicellular cyanobacterium Synechococcus elongatus strain PCC 7942 bears a gene, Synpcc7942_1024 (here designated dmeA), encoding a permease homologous to the SepJ permease domain. Synechococcus strains lacking dmeA or lacking dmeA and expressing Anabaena sepJ were constructed. The Synechococcus dmeA mutant showed a significant 22 to 32% decrease in the uptake of aspartate, glutamate, and glutamine, a phenotype that could be partially complemented by Anabaena sepJ. Synechococcus mutants of an ATP-binding-cassette (ABC)-type transporter for polar amino acids showed >98% decreased uptake of glutamate irrespective of the presence of dmeA or Anabaena sepJ in the same strain. Thus, Synechococcus DmeA or Anabaena SepJ is needed to observe full (or close to full) activity of the ABC transporter. An Anabaena sepJ deletion mutant was significantly impaired in glutamate and aspartate uptake, which also in this cyanobacterium requires the activity of an ABC-type transporter for polar amino acids. SepJ appears therefore to generally stimulate the activity of cyanobacterial ABC-type transporters for polar amino acids. Conversely, an Anabaena mutant of three ABC-type transporters for amino acids was impaired in the intercellular transfer of 5-carboxyfluorescein, a SepJ-related property. Our results unravel possible functional interactions in transport elements important for diazotrophic growth. Membrane transporters are essential for many aspects of cellular life, from uptake and export of substances in unicellular organisms to intercellular molecular exchange in multicellular organisms. Heterocyst-forming cyanobacteria such as Anabaena represent a unique case of multicellularity, in which two cell types exchange nutrients and regulators. The SepJ protein located at the intercellular septa in the filaments of Anabaena contains a permease domain of the drug/metabolite transporter (DMT) superfamily that somehow contributes to intercellular molecular transfer. In this work, we have found that SepJ stimulates the activity of a polar amino acid uptake transporter of the ATP-binding-cassette (ABC) superfamily, which could itself affect an intercellular transfer activity related to SepJ, thus unraveling possible functional interactions between these different transporters. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.
In this study, the genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This studymore » demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticurn. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. turnefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation.« less
Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.; ...
2016-05-24
In this study, the genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This studymore » demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticurn. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. turnefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation.« less
Snini, Selma P; Tannous, Joanna; Heuillard, Pauline; Bailly, Sylviane; Lippi, Yannick; Zehraoui, Enric; Barreau, Christian; Oswald, Isabelle P; Puel, Olivier
2016-08-01
The blue mould decay of apples is caused by Penicillium expansum and is associated with contamination by patulin, a worldwide regulated mycotoxin. Recently, a cluster of 15 genes (patA-patO) involved in patulin biosynthesis was identified in P. expansum. blast analysis revealed that patL encodes a Cys6 zinc finger regulatory factor. The deletion of patL caused a drastic decrease in the expression of all pat genes, leading to an absence of patulin production. Pathogenicity studies performed on 13 apple varieties indicated that the PeΔpatL strain could still infect apples, but the intensity of symptoms was weaker compared with the wild-type strain. A lower growth rate was observed in the PeΔpatL strain when this strain was grown on nine of the 13 apple varieties tested. In the complemented PeΔpatL:patL strain, the ability to grow normally in apple and the production of patulin were restored. Our results clearly demonstrate that patulin is not indispensable in the initiation of the disease, but acts as a cultivar-dependent aggressiveness factor for P. expansum. This conclusion was strengthened by the fact that the addition of patulin to apple infected by the PeΔpatL mutant restored the normal fungal colonization in apple. © 2015 BSPP AND JOHN WILEY & SONS LTD.
Deplanche, Martine; Alekseeva, Ludmila; Semenovskaya, Ksenia; Fu, Chih-Lung; Dessauge, Frederic; Finot, Laurence; Petzl, Wolfram; Zerbe, Holm; Le Loir, Yves; Rainard, Pascal; Smith, David G. E.; Germon, Pierre; Otto, Michael
2016-01-01
The role of the recently described interleukin-32 (IL-32) in Staphylococcus aureus-induced mastitis, an inflammation of the mammary gland, is unclear. We determined expression of IL-32, IL-6, and IL-8 in S. aureus- and Escherichia coli-infected bovine mammary gland epithelial cells. Using live bacteria, we found that in S. aureus-infected cells, induction of IL-6 and IL-8 expression was less pronounced than in E. coli-infected cells. Notably, IL-32 expression was decreased in S. aureus-infected cells, while it was increased in E. coli-infected cells. We identified the staphylococcal phenol-soluble modulin (PSM) peptides as key contributors to these effects, as IL-32, IL-6, and IL-8 expression by epithelial cells exposed to psm mutant strains was significantly increased compared to that in cells exposed to the isogenic S. aureus wild-type strain, indicating that PSMs inhibit the production of these interleukins. The use of genetically complemented strains confirmed this observation. Inasmuch as the decreased expression of IL-32, which is involved in dendritic cell maturation, impairs immune responses, our results support a PSM-dependent mechanism that allows for the development of chronic S. aureus-related mastitis. PMID:27001539
Mechanisms of Cross-protection by Influenza Virus M2-based Vaccines.
Lee, Yu-Na; Kim, Min-Chul; Lee, Young-Tae; Kim, Yu-Jin; Kang, Sang-Moo
2015-10-01
Current influenza virus vaccines are based on strain-specific surface glycoprotein hemagglutinin (HA) antigens and effective only when the predicted vaccine strains and circulating viruses are well-matched. The current strategy of influenza vaccination does not prevent the pandemic outbreaks and protection efficacy is reduced or ineffective if mutant strains emerge. It is of high priority to develop effective vaccines and vaccination strategies conferring a broad range of cross protection. The extracellular domain of M2 (M2e) is highly conserved among human influenza A viruses and has been utilized to develop new vaccines inducing cross protection against different subtypes of influenza A virus. However, immune mechanisms of cross protection by M2e-based vaccines still remain to be fully elucidated. Here, we review immune correlates and mechanisms conferring cross protection by M2e-based vaccines. Molecular and cellular immune components that are known to be involved in M2 immune-mediated protection include antibodies, B cells, T cells, alveolar macrophages, Fc receptors, complements, and natural killer cells. Better understanding of protective mechanisms by immune responses induced by M2e vaccination will help facilitate development of broadly cross protective vaccines against influenza A virus.
Koh, Eun-Ik; Hung, Chia S.
2016-01-01
The Yersinia high-pathogenicity island (HPI) is common to multiple virulence strategies used by Escherichia coli strains associated with urinary tract infection (UTI). Among the genes in this island are ybtP and ybtQ, encoding distinctive ATP binding cassette (ABC) proteins associated with iron(III)-yersiniabactin import in Yersinia pestis. In this study, we compared the impact of ybtPQ on a model E. coli cystitis strain during in vitro culture and experimental murine infections. A ybtPQ-null mutant exhibited no growth defect under standard culture conditions, consistent with nonessentiality in this background. A growth defect phenotype was observed and genetically complemented in vitro during iron(III)-yersiniabactin-dependent growth. Following inoculation into the bladders of C3H/HEN and C3H/HeOuJ mice, this strain exhibited a profound, 106-fold competitive infection defect in the subgroup of mice that progressed to high-titer bladder infections. These results identify a virulence role for YbtPQ in the highly inflammatory microenvironment characteristic of high-titer cystitis. The profound competitive defect may relate to the apparent selection of Yersinia HPI-positive E. coli in uncomplicated clinical UTIs. PMID:26883590
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flejter, W.L.; McDaniel, L.D.; Johns, D.
1992-01-01
Cultured cells from individuals afflicted with the genetically heterogeneous autosomal recessive disorder xeroderma pigmentosum (XP) exhibit sensitivity to UV radiation and defective nucleotide excision repair. Complementation of these mutant phenotypes after the introduction of single human chromosomes from repair-proficient cells into XP cells has provided a means of mapping the genes involved in this disease. The authors now report the phenotypic correction of XP cells from genetic complementation group D (XP-D) by a single human chromosome designated Tneo. Detailed molecular characterization of Tneo revealed a rearranged structure involving human chromosomes 16 and 19, including the excision repair cross-complementing 2 (ERCC2)more » gene from the previously described human DNA repair gene cluster at 19q13.2-q13.3. Direct transfer of a cosmid bearing the ERCC2 gene conferred UV resistance to XP-D cells.« less
Tsuda, H; Yamashita, Y; Toyoshima, K; Yamaguchi, N; Oho, T; Nakano, Y; Nagata, K; Koga, T
2000-02-01
To clarify the role of cell surface components of Streptococcus mutans in resistance to phagocytosis by human polymorphonuclear leukocytes (PMNs), several isogenic mutants of S. mutans defective in cell surface components were studied with a luminol-enhanced chemiluminescence (CL) assay, a killing assay, and a transmission electron microscope. The CL responses of human PMNs to mutant Xc11 defective in a major cell surface antigen, PAc, and mutant Xc16 defective in two surface glucosyltransferases (GTF-I and GTF-SI) were the same as the response to the wild-type strain, Xc. In contrast, mutant Xc24R, which was defective in serotype c-specific polysaccharide, induced a markedly higher CL response than the other strains. The killing assay showed that human PMNs killed more Xc24R than the parent strain and the other mutants. The transmission electron microscopic observation indicated that Xc24R cells were more internalized by human PMNs than the parental strain Xc. These results may be reflected by the fact that strain Xc24R was more phagocytosed than strain Xc. The CL response of human PMNs to a mutant defective in polysaccharide serotype e or f was similar to the response to Xc24R. Furthermore, mutants defective in serotype-specific polysaccharide were markedly more hydrophobic than the wild-type strains and the other mutants, suggesting that the hydrophilic nature of polysaccharides may protect the bacterium from phagocytosis. We conclude that the serotype-specific polysaccharide, but not the cell surface proteins on the cell surface of S. mutans, may play an important role in the resistance to phagocytosis.
Tsuda, Hiromasa; Yamashita, Yoshihisa; Toyoshima, Kuniaki; Yamaguchi, Noboru; Oho, Takahiko; Nakano, Yoshio; Nagata, Kengo; Koga, Toshihiko
2000-01-01
To clarify the role of cell surface components of Streptococcus mutans in resistance to phagocytosis by human polymorphonuclear leukocytes (PMNs), several isogenic mutants of S. mutans defective in cell surface components were studied with a luminol-enhanced chemiluminescence (CL) assay, a killing assay, and a transmission electron microscope. The CL responses of human PMNs to mutant Xc11 defective in a major cell surface antigen, PAc, and mutant Xc16 defective in two surface glucosyltransferases (GTF-I and GTF-SI) were the same as the response to the wild-type strain, Xc. In contrast, mutant Xc24R, which was defective in serotype c-specific polysaccharide, induced a markedly higher CL response than the other strains. The killing assay showed that human PMNs killed more Xc24R than the parent strain and the other mutants. The transmission electron microscopic observation indicated that Xc24R cells were more internalized by human PMNs than the parental strain Xc. These results may be reflected by the fact that strain Xc24R was more phagocytosed than strain Xc. The CL response of human PMNs to a mutant defective in polysaccharide serotype e or f was similar to the response to Xc24R. Furthermore, mutants defective in serotype-specific polysaccharide were markedly more hydrophobic than the wild-type strains and the other mutants, suggesting that the hydrophilic nature of polysaccharides may protect the bacterium from phagocytosis. We conclude that the serotype-specific polysaccharide, but not the cell surface proteins on the cell surface of S. mutans, may play an important role in the resistance to phagocytosis. PMID:10639428
Mukherjee, P K; Sherkhane, P D; Murthy, N B
1999-07-01
Trichoderma pseudokoningii MTCC 3011 is a very useful strain for biological control of the plant pathogen Sclerotium rolfsii under post-harvest conditions. In the present investigation, several benomyl-tolerant phenotypic mutants of this strain have been generated using a two step mutagenesis-chemical followed by gamma irradiation. The mutants differed from the wild type strain in antibiotic and disease control potential. Some of the mutants are superior to the wild type in biocontrol potential on S. rolfsii.
Park, Joohae; Tefsen, Boris; Arentshorst, Mark; Lagendijk, Ellen; van den Hondel, Cees Amjj; van Die, Irma; Ram, Arthur Fj
2014-01-01
Galactofuranose (Gal f )-containing glycoconjugates are important to secure the integrity of the cell wall of filamentous fungi. Mutations that prevent the biosynthesis of Gal f -containing molecules compromise cell wall integrity. In response to cell wall weakening, the cell wall integrity (CWI)-pathway is activated to reinforce the strength of the cell wall. Activation of CWI-pathway in Aspergillus niger is characterized by the specific induction of the agsA gene, which encodes a cell wall α-glucan synthase. In this study, we screened a collection of cell wall mutants with an induced expression of agsA for defects in Gal f biosynthesis using a with anti-Gal f antibody (L10). From this collection of mutants, we previously identified mutants in the UDP-galactopyranose mutase encoding gene ( ugmA ). Here, we have identified six additional UDP-galactopyranose mutase ( ugmA ) mutants and one mutant (named mutant #41) in an additional complementation group that displayed strongly reduced Gal f -levels in the cell wall. By using a whole genome sequencing approach, 21 SNPs in coding regions were identified between mutant #41 and its parental strain which changed the amino acid sequence of the encoded proteins. One of these mutations was in gene An14g03820, which codes for a putative UDP-glucose-4-epimerase (UgeA). The A to G mutation in this gene causes an amino acid change of Asn to Asp at position 191 in the UgeA protein. Targeted deletion of ugeA resulted in an even more severe reduction of Gal f in N-linked glucans, indicating that the UgeA protein in mutant #41 is partially active. The ugeA gene is also required for growth on galactose despite the presence of two UgeA homologs in the A. niger genome. By using a classical mutant screen and whole genome sequencing of a new Gal f -deficient mutant, the UDP-glucose-4-epimerase gene ( ugeA ) has been identified. UgeA is required for the biosynthesis of Gal f as well as for galactose metabolism in Aspergillus niger .
Chauhan, Priyanka
2018-01-01
ABSTRACT Previously we had developed a triple gene mutant of Mycobacterium tuberculosis (MtbΔmms) harboring disruption in three genes, namely mptpA, mptpB and sapM. Though vaccination with MtbΔmms strain induced protection in the lungs of guinea pigs, the mutant strain failed to control the hematogenous spread of the challenge strain to the spleen. Additionally, inoculation with MtbΔmms resulted in some pathological damage to the spleens in the early phase of infection. In order to generate a strain that overcomes the pathology caused by MtbΔmms in spleen of guinea pigs and controls dissemination of the challenge strain, MtbΔmms was genetically modified by disrupting bioA gene to generate MtbΔmmsb strain. Further, in vivo attenuation of MtbΔmmsb was evaluated and its protective efficacy was assessed against virulent M. tuberculosis challenge in guinea pigs. MtbΔmmsb mutant strain was highly attenuated for growth and virulence in guinea pigs. Vaccination with MtbΔmmsb mutant generated significant protection in comparison to sham-immunized animals at 4 and 12 weeks post-infection in lungs and spleen of infected animals. However, the protection imparted by MtbΔmmsb was significantly less in comparison to BCG immunized animals. This study indicates the importance of attenuated multiple gene deletion mutants of M. tuberculosis for generating protection against tuberculosis. PMID:29242198
Jiménez-Ortigosa, Cristina; Aimanianda, Vishukumar; Muszkieta, Laetitia; Mouyna, Isabelle; Alsteens, David; Pire, Stéphane; Beau, Remi; Krappmann, Sven; Beauvais, Anne; Dufrêne, Yves F.
2012-01-01
Aspergillus fumigatus has two chitin synthases (CSMA and CSMB) with a myosin motor-like domain (MMD) arranged in a head-to-head configuration. To understand the function of these chitin synthases, single and double csm mutant strains were constructed and analyzed. Although there was a slight reduction in mycelial growth of the mutants, the total chitin synthase activity and the cell wall chitin content were similar in the mycelium of all of the mutants and the parental strain. In the conidia, chitin content in the ΔcsmA strain cell wall was less than half the amount found in the parental strain. In contrast, the ΔcsmB mutant strain and, unexpectedly, the ΔcsmA/ΔcsmB mutant strain did not show any modification of chitin content in their conidial cell walls. In contrast to the hydrophobic conidia of the parental strain, conidia of all of the csm mutants were hydrophilic due to the presence of an amorphous material covering the hydrophobic surface-rodlet layer. The deletion of CSM genes also resulted in an increased susceptibility of resting and germinating conidia to echinocandins. These results show that the deletion of the CSMA and CSMB genes induced a significant disorganization of the cell wall structure, even though they contribute only weakly to the overall cell wall chitin synthesis. PMID:22964252
Ma, Zheng; Luo, Shuai; Xu, Xianhao; Bechthold, Andreas; Yu, Xiaoping
2016-04-01
Modification of enzymes involved in transcription- or translation-processes is an interesting way to increase secondary metabolite production in Streptomycetes. However, application of such methods has not been widely described for strains which produce nucleoside antibiotics. The nucleoside antibiotic toyocamycin (TM) is produced by Streptomyces diastatochromogenes 1628. For improving TM production in S. diastatochromogenes 1628, the strain was spread on rifamycin-resistant (Rif(r)) medium. Several spontaneous mutants were obtained with mutations in the rpoB gene which encodes a RNA polymerase β-subunit. The mutants which showed increased TM production were detected at a frequency of 7.5 % among the total Rif(r) mutants. Mutant 1628-T15 harboring amino acid substitution His437Arg was the best TM producer with a 4.5-fold increase in comparison to that of the wild-type strain. The worst producer was mutant 1628-T62 which also showed a poor sporulation behavior. RT-PCR was performed to study the transcription levels of the TM biosynthetic gene toyG in the parental strain as well as in mutants 1628-T15 and 1628-T62. The transcriptional level of toyG was higher in mutant 1628-T15 than that in parental strain 1628, while much lower in mutant 1628-T62. In mutant strain 1628-T62 the expression of adpA sd gene, which is required for morphological differentiation, was also much lower. Our studies also indicate that the introduction of mutations into rpoB is an effective strategy to improve the production of TM which is an important nucleoside antibiotic.
Arshad, Rubina; Farooq, Shafqat; Ali, Syed Shahid
2007-11-01
The present study was conducted to see the difference in production of 6-APA I) between wild strains of E. coli collected from local environment and their acridine orange (AO) induced mutants and ii) between mutants and E. coli strains (ATCC 11105 and ATCC 9637) of American Type Culture Collection (ATCC) used commercially for enzymatic production of 6-APA. The optimum conditions for bioconversion were standardized and 6-APA was obtained in crystalline form. Relative PGA activity of local and foreign E. coli strains varied significantly with the highest being 12.7 in mutant strain (BDCS-N-M36) and the lowest 4.3 mg 6-APA h(-1) mg(-1) wet cells in foreign strain (ATCC 11105). The enzyme activity exhibited by mutant strain (BDCS-N-M36) was also two folds higher compared to that in wild parent BDCS-N-W50 (6.3 mg 6-APA h(-1) mg(-1) wet cells). The overall production of 6-APA and conversion ratios ranged between 0.25-0.41 g of 6-APA per 0.5 g of penicillin G and 51-83%, respectively. Maximum conversion ratio (83%) was achieved by using crude cells of mutant strain (BDCS-N-M36) which is the highest value ever reported by crude cells on a shake-flask scale whereas reported 6-APA production by immobilized cells is 60-90% in batch and continuous systems. Results are being discussed with reference to importance of local bacterial strains and their significance for industrially important enzymes.
Sass, Andrea; Everaert, Annelien; Van Acker, Heleen; Van den Driessche, Freija; Coenye, Tom
2018-05-01
The nonmevalonate pathway is the sole pathway for isoprenoid biosynthesis in Burkholderia cenocepacia and is possibly a novel target for the development of antibacterial chemotherapy. The goals of the present study were to evaluate the essentiality of dxr , the second gene of the nonmevalonate pathway, in B. cenocepacia and to determine whether interfering with the nonmevalonate pathway increases susceptibility toward antibiotics. To this end, a rhamnose-inducible conditional dxr knockdown mutant of B. cenocepacia strain K56-2 ( B. cenocepacia K56-2 dxr ) was constructed, using a plasmid which enables the delivery of a rhamnose-inducible promoter in the chromosome. Expression of dxr is essential for bacterial growth; the growth defect observed in the dxr mutant could be complemented by expressing dxr in trans under the control of a constitutive promoter, but not by providing 2- C -methyl-d-erythritol-4-phosphate, the reaction product of DXR (1-deoxy-d-xylulose 5-phosphate reductoisomerase). B. cenocepacia K56-2 dxr showed markedly increased susceptibility to the β-lactam antibiotics aztreonam, ceftazidime, and cefotaxime, while susceptibility to other antibiotics was not (or was much less) affected; this increased susceptibility could also be complemented by in trans expression of dxr A similarly increased susceptibility was observed when antibiotics were combined with FR900098, a known DXR inhibitor. Our data confirm that the nonmevalonate pathway is essential in B. cenocepacia and suggest that combining potent DXR inhibitors with selected β-lactam antibiotics is a useful strategy to combat B. cenocepacia infections. Copyright © 2018 American Society for Microbiology.
Le Guillou-Guillemette, Hélène; Pivert, Adeline; Bouthry, Elise; Henquell, Cécile; Petsaris, Odile; Ducancelle, Alexandra; Veillon, Pascal; Vallet, Sophie; Alain, Sophie; Thibault, Vincent; Abravanel, Florence; Rosenberg, Arielle A; André-Garnier, Elisabeth; Bour, Jean-Baptiste; Baazia, Yazid; Trimoulet, Pascale; André, Patrice; Gaudy-Graffin, Catherine; Bettinger, Dominique; Larrat, Sylvie; Signori-Schmuck, Anne; Saoudin, Hénia; Pozzetto, Bruno; Lagathu, Gisèle; Minjolle-Cha, Sophie; Stoll-Keller, Françoise; Pawlotsky, Jean-Michel; Izopet, Jacques; Payan, Christopher; Lunel-Fabiani, Françoise; Lemaire, Christophe
2017-01-01
The emergence of new strains in RNA viruses is mainly due to mutations or intra and inter-genotype homologous recombination. Non-homologous recombinations may be deleterious and are rarely detected. In previous studies, we identified HCV-1b strains bearing two tandemly repeated V3 regions in the NS5A gene without ORF disruption. This polymorphism may be associated with an unfavorable course of liver disease and possibly involved in liver carcinogenesis. Here we aimed at characterizing the origin of these mutant strains and identifying the evolutionary mechanism on which the V3 duplication relies. Direct sequencing of the entire NS5A and E1 genes was performed on 27 mutant strains. Quasispecies analyses in consecutive samples were also performed by cloning and sequencing the NS5A gene for all mutant and wild strains. We analyzed the mutant and wild-type sequence polymorphisms using Bayesian methods to infer the evolutionary history of and the molecular mechanism leading to the duplication-like event. Quasispecies were entirely composed of exclusively mutant or wild-type strains respectively. Mutant quasispecies were found to have been present since contamination and had persisted for at least 10 years. This V3 duplication-like event appears to have resulted from non-homologous recombination between HCV-1b wild-type strains around 100 years ago. The association between increased liver disease severity and these HCV-1b mutants may explain their persistence in chronically infected patients. These results emphasize the possible consequences of non-homologous recombination in the emergence and severity of new viral diseases.
Tiaden, André; Spirig, Thomas; Sahr, Tobias; Wälti, Martin A; Boucke, Karin; Buchrieser, Carmen; Hilbi, Hubert
2010-05-01
The amoebae-resistant opportunistic pathogen Legionella pneumophila employs a biphasic life cycle to replicate in host cells and spread to new niches. Upon entering the stationary growth phase, the bacteria switch to a transmissive (virulent) state, which involves a complex regulatory network including the lqs gene cluster (lqsA-lqsR-hdeD-lqsS). LqsR is a putative response regulator that promotes host-pathogen interactions and represses replication. The autoinducer synthase LqsA catalyses the production of the diffusible signalling molecule 3-hydroxypentadecan-4-one (LAI-1) that is presumably recognized by the sensor kinase LqsS. Here, we analysed L. pneumophila strains lacking lqsA or lqsS. Compared with wild-type L. pneumophila, the DeltalqsS strain was more salt-resistant and impaired for the Icm/Dot type IV secretion system-dependent uptake by phagocytes. Legionella pneumophila strains lacking lqsS, lqsR or the alternative sigma factor rpoS sedimented more slowly and produced extracellular filaments. Deletion of lqsA moderately reduced the uptake of L. pneumophila by phagocytes, and the defect was complemented by expressing lqsA in trans. Unexpectedly, the overexpression of lqsA also restored the virulence defect and reduced filament production of L. pneumophila mutant strains lacking lqsS or lqsR, but not the phenotypes of strains lacking rpoS or icmT. These results suggest that LqsA products also signal through sensors not encoded by the lqs gene cluster. A transcriptome analysis of the DeltalqsA and DeltalqsS mutant strains revealed that under the conditions tested, lqsA regulated only few genes, whereas lqsS upregulated the expression of 93 genes at least twofold. These include 52 genes clustered in a 133 kb high plasticity genomic island, which is flanked by putative DNA-mobilizing genes and encodes multiple metal ion efflux pumps. Upon overexpression of lqsA, a cluster of 19 genes in the genomic island was also upregulated, suggesting that LqsA and LqsS participate in the same regulatory circuit.
Ancona, Veronica; Chatnaparat, Tiyakhon; Zhao, Youfu
2015-08-01
In Erwinia amylovora, the Rcs phosphorelay system is essential for amylovoran production and virulence. To further understand the role of conserved aspartate residue (D56) in the phosphor receiver (PR) domain and lysine (K180) residue in the function domain of RcsB, amino acid substitutions of RcsB mutant alleles were generated by site-directed mutagenesis and complementation of various rcs mutants were performed. A D56E substitution of RcsB, which mimics the phosphorylation state of RcsB, complemented the rcsB mutant, resulting in increased amylovoran production and gene expression, reduced swarming motility, and restored pathogenicity. In contrast, D56N and K180A or K180Q substitutions of RcsB did not complement the rcsB mutant. Electrophoresis mobility shift assays showed that D56E, but not D56N, K180Q and K180A substitutions of RcsB bound to promoters of amsG and flhD, indicating that both D56 and K180 are required for DNA binding. Interestingly, the RcsBD56E allele could also complement rcsAB, rcsBC and rcsABCD mutants with restored virulence and increased amylovoran production, indicating that RcsB phosphorylation is essential for virulence of E. amylovora. In addition, mutations of T904 and A905, but not phosphorylation mimic mutation of D876 in the PR domain of RcsC, constitutively activate the Rcs system, suggesting that phosphor transfer is required for activating the Rcs system and indicating both A905 and T904 are required for the phosphatase activity of RcsC. Our results demonstrated that RcsB phosphorylation and dephosphorylation, phosphor transfer from RcsC are essential for the function of the Rcs system, and also suggested that constitutive activation of the Rcs system could reduce the fitness of E. amylovora.
Sharma, Vijay K; Bearson, Shawn M D; Bearson, Bradley L
2010-05-01
Quorum-sensing (QS) signalling pathways are important regulatory networks for controlling the expression of genes promoting adherence of enterohaemorrhagic Escherichia coli (EHEC) O157 : H7 to epithelial cells. A recent study has shown that EHEC O157 : H7 encodes a luxR homologue, called sdiA, which upon overexpression reduces the expression of genes encoding flagellar and locus of enterocyte effacement (LEE) proteins, thus negatively impacting on the motility and intimate adherence phenotypes, respectively. Here, we show that the deletion of sdiA from EHEC O157 : H7 strain 86-24, and from a hha (a negative regulator of ler) mutant of this strain, enhanced bacterial adherence to HEp-2 epithelial cells of the sdiA mutant strains relative to the strains containing a wild-type copy of sdiA. Quantitative reverse transcription PCR showed that the expression of LEE-encoded genes ler, espA and eae in strains with the sdiA deletions was not significantly different from that of the strains wild-type for sdiA. Similarly, no additional increases in the expression of LEE genes were observed in a sdiA hha double mutant strain relative to that observed in the hha deletion mutant. While the expression of fliC, which encodes flagellin, was enhanced in the sdiA mutant strain, the expression of fliC was reduced by several fold in the hha mutant strain, irrespective of the presence or absence of sdiA, indicating that the genes sdiA and hha exert opposing effects on the expression of fliC. The strains with deletions in sdiA or hha showed enhanced expression of csgA, encoding curlin of the curli fimbriae, with the expression of csgA highest in the sdiA hha double mutant, suggesting an additive effect of these two gene deletions on the expression of csgA. No significant differences were observed in the expression of the genes lpfA and fimA of the operons encoding long polar and type 1 fimbriae in the sdiA mutant strain. These data indicate that SdiA has no significant effect on the expression of LEE genes, but that it appears to act as a strong repressor of genes encoding flagella and curli fimbriae, and the alleviation of the SdiA-mediated repression of these genes in an EHEC O157 : H7 sdiA mutant strain contributes to enhanced bacterial motility and increased adherence to HEp-2 epithelial cells.
In vitro selection of resistance in haemophilus influenzae by 4 quinolones and 5 beta-lactams.
Clark, Catherine; Kosowska, Klaudia; Bozdogan, Bülent; Credito, Kim; Dewasse, Bonifacio; McGhee, Pamela; Jacobs, Michael R; Appelbaum, Peter C
2004-05-01
We tested abilities of ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, amoxicillin, amoxicillin/clavulanate, cefixime, cefpodoxime, and cefdinir to select resistant mutants in 5 beta-lactamase positive and 5 beta-lactamase negative Haemophilus influenzae strains by single and multistep methodology. In multistep tests, amoxicillin, amoxicillin/clavulanate and cefpodoxime exposure did not cause >4-fold minimum inhibitory concentration (MIC) increase after 50 days. One mutant selected by cefdinir had one amino acid substitution (Gly490Glu) in PBP3 and became resistant to cefdinir. Cefixime exposure caused 8-fold MIC-increase in 1 strain with TEM but the mutant remained cefixime susceptible and had no alteration in PBP3 or TEM. Among 10 strains tested, ciprofloxacin, moxifloxacin, gatifloxacin, levofloxacin caused >4-fold MIC increase in 6, 6, 5, and 2 strain, respectively. Despite the increases in quinolone MICs, none of the mutants became resistant to quinolones by established criteria. Quinolone selected mutants had quindone resistance-determining region (QRDR) alterations in GyrA, GyrB, ParC, ParE. Four quinolone mutants had no QRDR alterations. Among beta-lactams cefdinir and cefixime selected one mutant each with higher MICs however amoxicillin, amoxicillin/clavulanate, and cefpodoxime exposure did not select resistant mutants.
Tu, I-Fan; Liao, Jiahn-Haur; Yang, Feng-Ling; Lin, Nien-Tsung; Chan, Hong-Lin; Wu, Shih-Hsiung
2014-10-01
The lon gene of Helicobacter pylori strains is constitutively expressed during growth. However, virtually nothing is understood concerning the role of Lon in H. pylori. This study examined the function and physiological role of Lon in H. pylori (HpLon) using a trapping approach to identify putative Lon binding partners in the bacterium. Protease-deficient Lon was expressed and served as the bait in trapping approach to capture the interacting partners in H. pylori. The antibiotic susceptibility of wild-type and lon derivative mutants was determined by the E test trips and the disc diffusion assay. The effect of HpLon on RdxA activity was detected the change in NADPH oxidation and metronidazole reduction by spectrophotometer. Lon in Helicobacter pylori (HpLon) interacting partners are mostly associated with metronidazole activation. lon mutant presents more susceptible to metronidazole than that of the wild type, and this phenotype is recovered by complementation of the wild-type Lon. We found that the ATPases associated with a variety of cellular activities (AAA(+) ) module of HpLon causes a decrease in both NADPH oxidase and Mtz reductase activity in RdxA, a major Mtz-activating enzyme in H. pylori. Metronidazole resistance of H. pylori causes the serious medical problem worldwide. In this study, HpLon is involved in metronidazole susceptibility among H. pylori strains. We provide the evidence that HpLon alters RdxA activity in vitro. The decrease in metronidazole activation caused by HpLon is possibly prior to accumulate mutation in rdxA gene before the metronidazole-resistant strains to be occurred. © 2014 John Wiley & Sons Ltd.
New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates.
Udompijitkul, Pathima; Alnoman, Maryam; Banawas, Saeed; Paredes-Sabja, Daniel; Sarker, Mahfuzur R
2014-12-01
Clostridium perfringens spore germination plays a critical role in the pathogenesis of C. perfringens-associated food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases. Germination is initiated when bacterial spores sense specific nutrient germinants (such as amino acids) through germinant receptors (GRs). In this study, we aimed to identify and characterize amino acid germinants for spores of enterotoxigenic C. perfringens type A. The polar, uncharged amino acids at pH 6.0 efficiently induced germination of C. perfringens spores; L-asparagine, L-cysteine, L-serine, and L-threonine triggered germination of spores of most FP and NFB isolates; whereas, L-glutamine was a unique germinant for FP spores. For cysteine- or glutamine-induced germination, gerKC spores (spores of a gerKC mutant derivative of FP strain SM101) germinated to a significantly lower extent and released less DPA than wild type spores; however, a less defective germination phenotype was observed in gerAA or gerKB spores. The germination defects in gerKC spores were partially restored by complementing the gerKC mutant with a recombinant plasmid carrying wild-type gerKA-KC, indicating that GerKC is an essential GR protein. The gerKA, gerKC, and gerKB spores germinated significantly slower with L-serine and L-threonine than their parental strain, suggesting the requirement for these GR proteins for normal germination of C. perfringens spores. In summary, these results indicate that the polar, uncharged amino acids at pH 6.0 are effective germinants for spores of C. perfringens type A and that GerKC is the main GR protein for germination of spores of FP strain SM101 with L-cysteine, L-glutamine, and L-asparagine. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Bacillus subtilis Gene Induced by Cold Shock Encodes a Membrane Phospholipid Desaturase
Aguilar, Pablo S.; Cronan, John E.; de Mendoza, Diego
1998-01-01
Bacillus subtilis grown at 37°C synthesizes saturated fatty acids with only traces of unsaturated fatty acids (UFAs). However, when cultures growing at 37°C are transferred to 20°C, UFA synthesis is induced. We report the identification and characterization of the gene encoding the fatty acid desaturase of B. subtilis. This gene, called des, was isolated by complementation of Escherichia coli strains with mutations in either of two different genes of UFA synthesis. The des gene encodes a polypeptide of 352 amino acid residues containing the three conserved histidine cluster motifs and two putative membrane-spanning domains characteristic of the membrane-bound desaturases of plants and cyanobacteria. Expression of the des gene in E. coli resulted in desaturation of palmitic acid moieties of the membrane phospholipids to give the novel mono-UFA cis-5-hexadecenoic acid, indicating that the B. subtilis des gene product is a Δ5 acyl-lipid desaturase. The des gene was disrupted, and the resulting null mutant strains were unable to synthesize UFAs upon a shift to low growth temperatures. The des null mutant strain grew as well as its congenic parent at 20 or 37°C but showed severely reduced survival during stationary phase. Analysis of operon fusions in which the des promoter directed the synthesis of a lacZ reporter gene showed that des expression is repressed at 37°C, but a shift of cultures from 37 to 20°C resulted in a 10- to 15-fold increase in transcription. This is the first report of a membrane phospholipid desaturase in a nonphotosynthetic organism and the first direct evidence for cold induction of a desaturase. PMID:9555904
Dou, Yafeng; Wang, Xiaolan; Yu, Guijing; Wang, Shaohui; Tian, Mingxing; Qi, Jingjing; Li, Tao; Ding, Chan; Yu, Shengqing
2017-02-06
Riemerella anatipestifer is an important pathogen that causes septicemia anserum exsudativa in ducks. Lipopolysaccharide (LPS) is considered to be a major virulence factor of R. anatipestifer. To identify genes involved in LPS biosynthesis, we screened a library of random Tn4351 transposon mutants using a monoclonal antibody against R. anatipestifer serotype 1 LPS (anti-LPS MAb). A mutant strain RA1067 which lost the reactivity in an indirect ELISA was obtained. Southern blot and sequencing analyses indicated a single Tn4351 was inserted at 116 bp in the M949_RS01915 gene in the RA1067 chromosomal DNA. Silver staining and Western blot analyses indicated that the RA1067 LPS was defected compared to the wild-type strain CH3 LPS. The RA1067 displayed a significant decreased growth rate at the late stage of growth in TSB in comparison with CH3. In addition, RA1067 showed higher susceptibility to complement-dependent killing, more than 360-fold attenuated virulence based on the median lethal dose determination, increased bacterial adhesion and invasion capacities to Vero cells and significantly decreased blood bacterial loads in RA1067 infected ducks, when compared to the CH3. An animal experiment indicated that inactivated RA1067 cells was effective in cross-protecting of the ducks from challenging with R. anatipestifer strains WJ4 (serotype 1), Yb2 (serotype 2) and HXb2 (serotype 10), further confirming the alteration of the RA1067 antigenicity. Moreover, RNA-Seq analysis and real-time PCR verified two up-regulated and three down-regulated genes in RA1067. Our findings demonstrate that the M949_RS01915 gene is associated to bacterial antigenicity, pathogenicity and gene regulation of R. anatipestifer.
Inducamides A–C, Chlorinated Alkaloids from an RNA Polymerase Mutant Strain of Streptomyces sp.
2015-01-01
Inducamides A–C (1–3), three new chlorinated alkaloids featuring an amide skeleton generated by a tryptophan fragment and a 6-methylsalicylic acid unit, were isolated from a chemically induced mutant strain of Streptomyces sp. with the inducamides only being produced in the mutant strain. Their structures, including stereochemistry, were determined by spectroscopic analysis, Marfey’s method, and CD spectroscopy. PMID:25338006
Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao
2015-03-01
Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation.
Granoff, Dan M.; Costa, Isabella; Konar, Monica; Giuntini, Serena; Van Rompay, Koen K. A.; Beernink, Peter T.
2015-01-01
Background. The meningococcal vaccine antigen, factor H (FH)–binding protein (FHbp), binds human complement FH. In human FH transgenic mice, binding decreased protective antibody responses. Methods. To investigate the effect of primate FH binding, we immunized rhesus macaques with a 4-component serogroup B vaccine (4CMenB). Serum FH in 6 animals bound strongly to FHbp (FHbp-FHhigh) and, in 6 animals, bound weakly to FHbp (FHbp-FHlow). Results. There were no significant differences between the respective serum bactericidal responses of the 2 groups against meningococcal strains susceptible to antibody to the NadA or PorA vaccine antigens. In contrast, anti-FHbp bactericidal titers were 2-fold lower in FHbp-FHhigh macaques against a strain with an exact FHbp match to the vaccine (P = .08) and were ≥4-fold lower against 4 mutants with other FHbp sequence variants (P ≤ .005, compared with FHbp-FHlow macaques). Unexpectedly, postimmunization sera from all 12 macaques enhanced FH binding to meningococci. In contrast, serum anti-FHbp antibodies elicited by 4CMenB in mice whose mouse FH did not bind to the vaccine antigen inhibited FH binding. Conclusions. Binding of FH to FHbp decreases protective anti-FHbp antibody responses of macaques to 4CMenB. Even low levels of FH binding skew the antibody repertoire to FHbp epitopes outside of the FH-binding site, which enhance FH binding. PMID:25676468
Baccari, Clelia; Killiny, Nabil; Ionescu, Michael; Almeida, Rodrigo P P; Lindow, Steven E
2014-01-01
The hypothesis that a wild-type strain of Xylella fastidiosa would restore the ability of rpfF mutants blocked in diffusible signal factor production to be transmitted to new grape plants by the sharpshooter vector Graphocephala atropunctata was tested. While the rpfF mutant was very poorly transmitted by vectors irrespective of whether they had also fed on plants infected with the wild-type strain, wild-type strains were not efficiently transmitted if vectors had fed on plants infected with the rpfF mutant. About 100-fewer cells of a wild-type strain attached to wings of a vector when suspended in xylem sap from plants infected with an rpfF mutant than in sap from uninfected grapes. The frequency of transmission of cells suspended in sap from plants that were infected by the rpfF mutant was also reduced over threefold. Wild-type cells suspended in a culture supernatant of an rpfF mutant also exhibited 10-fold less adherence to wings than when suspended in uninoculated culture media. A factor released into the xylem by rpfF mutants, and to a lesser extent by the wild-type strain, thus inhibits their attachment to, and thus transmission by, sharpshooter vectors and may also enable them to move more readily through host plants.
Microbial strain improvement for enhanced polygalacturonase production by Aspergillus sojae.
Heerd, Doreen; Tari, Canan; Fernández-Lahore, Marcelo
2014-09-01
Strain improvement is a powerful tool in commercial development of microbial fermentation processes. Strains of Aspergillus sojae which were previously identified as polygalacturonase producers were subjected to the cost-effective mutagenesis and selection method, the so-called random screening. Physical (ultraviolet irradiation at 254 nm) and chemical mutagens (N-methyl-N'-nitro-N-nitrosoguanidine) were used in the development and implementation of a classical mutation and selection strategy for the improved production of pectic acid-degrading enzymes. Three mutation cycles of both mutagenic treatments and also the combination of them were performed to generate mutants descending from A. sojae ATCC 20235 and mutants of A. sojae CBS 100928. Pectinolytic enzyme production of the mutants was compared to their wild types in submerged and solid-state fermentation. Comparing both strains, higher pectinase activity was obtained by A. sojae ATCC 20235 and mutants thereof. The highest polygalacturonase activity (1,087.2 ± 151.9 U/g) in solid-state culture was obtained by mutant M3, which was 1.7 times increased in comparison to the wild strain, A. sojae ATCC 20235. Additional, further mutation of mutant M3 for two more cycles of treatment by UV irradiation generated mutant DH56 with the highest polygalacturonase activity (98.8 ± 8.7 U/mL) in submerged culture. This corresponded to 2.4-fold enhanced polygalacturonase production in comparison to the wild strain. The results of this study indicated the development of a classical mutation and selection strategy as a promising tool to improve pectinolytic enzyme production by both fungal strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alic, M.; Kornegay, J.R.; Pribnow, D.
1989-02-01
Swollen basiodiospores of an adenine auxotroph of Phanerochaete chrysosporium were protoplasted with Novozyme 234 and transformed to prototrophy by using a plasmid containing the gene for an adenine biosynthetic enzyme from Schizophyllum commune. Transformation frequencies of 100 transformants per {mu}g of DNA were obtained. Southern blot analysis of DNA extracted from transformants demonstrated that plasmid DNA was integrated into the chromosomal DNA in multiple tandem copies. Analysis of conidia and basiodiospores from transformants demonstrated that the transforming character was mitotically and meiotically stable on both selective and nonselective media. Genetic crosses between double mutants transformed for adenine prototrophy and othermore » auxotrophic strains yielded Ade{sup {minus}} progeny, which indicated that integration occurred at a site(s) other than the resident adenine biosynthetic gene.« less
Alic, Margaret; Kornegay, Janet R.; Pribnow, David; Gold, Michael H.
1989-01-01
Swollen basidiospores of an adenine auxotroph of Phanerochaete chrysosporium were protoplasted with Novozyme 234 and transformed to prototrophy by using a plasmid containing the gene for an adenine biosynthetic enzyme from Schizophyllum commune. Transformation frequencies of 100 transformants per μg of DNA were obtained. Southern blot analysis of DNA extracted from transformants demonstrated that plasmid DNA was integrated into the chromosomal DNA in multiple tandem copies. Analysis of conidia and basidiospores from transformants demonstrated that the transforming character was mitotically and meiotically stable on both selective and nonselective media. Genetic crosses between double mutants transformed for adenine prototrophy and other auxotrophic strains yielded Ade− progeny, which indicated that integration occurred at a site(s) other than the resident adenine biosynthetic gene. Images PMID:16347848
Wang, Won-Bo; Yuan, Yu-Han; Hsueh, Po-Ren; Liaw, Shwu-Jen
2012-01-01
In this study, we demonstrated that 10′(Z), 13′(E)-heptadecadienylhydroquinone (HQ17-2), isolated from the lacquer tree, could decrease swarming motility and hemolysin activity but increase polymyxin B (PB) susceptibilityof Proteus mirabilis which is intrinsically highly-resistant to PB. The increased PB susceptibility induced by HQ17-2 was also observed in clinical isolates and biofilm-grown cells. HQ17-2 could inhibit swarming in the wild-type and rppA mutant but not in the rcsB mutant, indicating that HQ17-2 inhibits swarming through the RcsB-dependent pathway, a two-component signaling pathway negatively regulating swarming and virulence factor expression. The inhibition of hemolysin activity by HQ17-2 is also mediated through the RcsB-dependent pathway, because HQ17-2 could not inhibit hemolysin activity in the rcsB mutant. Moreover, the finding that HQ17-2 inhibits the expression of flhDC gene in the wild-type and rcsB-complemented strain but not in the rcsB mutant supports the notion. By contrast, HQ17-2 could increase PB susceptibility in the wild-type and rcsB mutant but not in the rppA mutant, indicating that HQ17-2 increases PB susceptibility through the RppA-dependent pathway, a signaling pathway positively regulating PB resistance. In addition, HQ17-2 could inhibit the promoter activities of rppA and pmrI, a gene positively regulated by RppA and involved in PB resistance, in the wild-type but not in the rppA mutant. The inhibition of rppA and pmrI expression caused lipopolysaccharide purified from HQ17-2-treated cells to have higher affinity for PB. Altogether, this study uncovers new biological effects of HQ17-2 and provides evidence for the potential of HQ17-2 in clinical applications. PMID:23029100
NASA Technical Reports Server (NTRS)
Asato, Y.
1972-01-01
Three independently isolated ultraviolet light sensitive (uvs) mutants of Anacystis nidulans were characterized. Strain uvs-1 showed the highest sensitivity to UV by its greatly reduced photoreactivation capacity following irradiation. Pretreatment with caffeine suppressed the dark-survival curve of strain uvs-1, thus indicating the presence of excision enzymes involved in dark repair. Under 'black' and 'white' illumination, strain uvs-1 shows photorecovery properties comparable with wild-type cultures. Results indicate that strains uvs-1, uvs-35, and uvs-88 are probably genetically distinct UV-sensitive mutants.
Vidal, Rebeca
2017-04-01
The protein AdhA from the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) has been previously reported to show alcohol dehydrogenase activity towards ethanol and both NAD and NADP. This protein is currently being used in genetically modified strains of Synechocystis capable of synthesizing ethanol showing the highest ethanol productivities. In the present work, mutant strains of Synechocystis lacking AdhA have been constructed and tested for tolerance to ethanol. The lack of AdhA in the wild-type strain reduces survival to externally added ethanol at lethal concentration of 4% (v/v). On the other hand, the lack of AdhA in an ethanologenic strain diminishes tolerance of cells to internally produced ethanol. It is also shown that light-activated heterotrophic growth (LAHG) of the wild-type strain is impaired in the mutant strain lacking AdhA (∆adhA strain). Photoautotrophic, mixotrophic, and photoheterotrophic growth are not affected in the mutant strain. Based on phenotypic characterization of ∆adhA mutants, the possible physiological function of AdhA in Synechocystis is discussed.