Sample records for complementing high-error interactomes

  1. Columbia University: Computational Human High-grade Glioblastoma Multiforme Interactome - miRNA (Post-transcriptional) Layer | Office of Cancer Genomics

    Cancer.gov

    The Human High-Grade Glioma Interactome (HGi) contains a genome-wide complement of molecular interactions that are Glioblastoma Multiforme (GBM)-specific. HGi v3 contains the post-transcriptional layer of the HGi, which includes the miRNA-target (RNA-RNA) layer of the interactome. Read the Abstract

  2. Domain-based prediction of the human isoform interactome provides insights into the functional impact of alternative splicing.

    PubMed

    Ghadie, Mohamed Ali; Lambourne, Luke; Vidal, Marc; Xia, Yu

    2017-08-01

    Alternative splicing is known to remodel protein-protein interaction networks ("interactomes"), yet large-scale determination of isoform-specific interactions remains challenging. We present a domain-based method to predict the isoform interactome from the reference interactome. First, we construct the domain-resolved reference interactome by mapping known domain-domain interactions onto experimentally-determined interactions between reference proteins. Then, we construct the isoform interactome by predicting that an isoform loses an interaction if it loses the domain mediating the interaction. Our prediction framework is of high-quality when assessed by experimental data. The predicted human isoform interactome reveals extensive network remodeling by alternative splicing. Protein pairs interacting with different isoforms of the same gene tend to be more divergent in biological function, tissue expression, and disease phenotype than protein pairs interacting with the same isoforms. Our prediction method complements experimental efforts, and demonstrates that integrating structural domain information with interactomes provides insights into the functional impact of alternative splicing.

  3. Domain-based prediction of the human isoform interactome provides insights into the functional impact of alternative splicing

    PubMed Central

    Lambourne, Luke; Vidal, Marc

    2017-01-01

    Alternative splicing is known to remodel protein-protein interaction networks (“interactomes”), yet large-scale determination of isoform-specific interactions remains challenging. We present a domain-based method to predict the isoform interactome from the reference interactome. First, we construct the domain-resolved reference interactome by mapping known domain-domain interactions onto experimentally-determined interactions between reference proteins. Then, we construct the isoform interactome by predicting that an isoform loses an interaction if it loses the domain mediating the interaction. Our prediction framework is of high-quality when assessed by experimental data. The predicted human isoform interactome reveals extensive network remodeling by alternative splicing. Protein pairs interacting with different isoforms of the same gene tend to be more divergent in biological function, tissue expression, and disease phenotype than protein pairs interacting with the same isoforms. Our prediction method complements experimental efforts, and demonstrates that integrating structural domain information with interactomes provides insights into the functional impact of alternative splicing. PMID:28846689

  4. Triangle network motifs predict complexes by complementing high-error interactomes with structural information.

    PubMed

    Andreopoulos, Bill; Winter, Christof; Labudde, Dirk; Schroeder, Michael

    2009-06-27

    A lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that relatively little structural information would be sufficient for finding complexes involving most of the proteins and interactions in a typical PPIN.

  5. Triangle network motifs predict complexes by complementing high-error interactomes with structural information

    PubMed Central

    Andreopoulos, Bill; Winter, Christof; Labudde, Dirk; Schroeder, Michael

    2009-01-01

    Background A lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. Results We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Conclusion Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that relatively little structural information would be sufficient for finding complexes involving most of the proteins and interactions in a typical PPIN. PMID:19558694

  6. Serum Amyloid P Component (SAP) Interactome in Human Plasma Containing Physiological Calcium Levels.

    PubMed

    Poulsen, Ebbe Toftgaard; Pedersen, Kata Wolff; Marzeda, Anna Maria; Enghild, Jan J

    2017-02-14

    The pentraxin serum amyloid P component (SAP) is secreted by the liver and found in plasma at a concentration of approximately 30 mg/L. SAP is a 25 kDa homopentamer known to bind both protein and nonprotein ligands, all in a calcium-dependent manner. The function of SAP is unclear but likely involves the humoral innate immune system spanning the complement system, inflammation, and coagulation. Also, SAP is known to bind to the generic structure of amyloid deposits and possibly to protect them against proteolysis. In this study, we have characterized the SAP interactome in human plasma containing the physiological Ca 2+ concentration using SAP affinity pull-down and co-immunoprecipitation experiments followed by mass spectrometry analyses. The analyses resulted in the identification of 33 proteins, of which 24 were direct or indirect interaction partners not previously reported. The SAP interactome can be divided into categories that include apolipoproteins, the complement system, coagulation, and proteolytic regulation.

  7. The Protein Interactome of Mycobacteriophage Giles Predicts Functions for Unknown Proteins.

    PubMed

    Mehla, Jitender; Dedrick, Rebekah M; Caufield, J Harry; Siefring, Rachel; Mair, Megan; Johnson, Allison; Hatfull, Graham F; Uetz, Peter

    2015-08-01

    Mycobacteriophages are viruses that infect mycobacterial hosts and are prevalent in the environment. Nearly 700 mycobacteriophage genomes have been completely sequenced, revealing considerable diversity and genetic novelty. Here, we have determined the protein complement of mycobacteriophage Giles by mass spectrometry and mapped its genome-wide protein interactome to help elucidate the roles of its 77 predicted proteins, 50% of which have no known function. About 22,000 individual yeast two-hybrid (Y2H) tests with four different Y2H vectors, followed by filtering and retest screens, resulted in 324 reproducible protein-protein interactions, including 171 (136 nonredundant) high-confidence interactions. The complete set of high-confidence interactions among Giles proteins reveals new mechanistic details and predicts functions for unknown proteins. The Giles interactome is the first for any mycobacteriophage and one of just five known phage interactomes so far. Our results will help in understanding mycobacteriophage biology and aid in development of new genetic and therapeutic tools to understand Mycobacterium tuberculosis. Mycobacterium tuberculosis causes over 9 million new cases of tuberculosis each year. Mycobacteriophages, viruses of mycobacterial hosts, hold considerable potential to understand phage diversity, evolution, and mycobacterial biology, aiding in the development of therapeutic tools to control mycobacterial infections. The mycobacteriophage Giles protein-protein interaction network allows us to predict functions for unknown proteins and shed light on major biological processes in phage biology. For example, Giles gp76, a protein of unknown function, is found to associate with phage packaging and maturation. The functions of mycobacteriophage-derived proteins may suggest novel therapeutic approaches for tuberculosis. Our ORFeome clone set of Giles proteins and the interactome data will be useful resources for phage interactomics. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Mapping transcription factor interactome networks using HaloTag protein arrays.

    PubMed

    Yazaki, Junshi; Galli, Mary; Kim, Alice Y; Nito, Kazumasa; Aleman, Fernando; Chang, Katherine N; Carvunis, Anne-Ruxandra; Quan, Rosa; Nguyen, Hien; Song, Liang; Alvarez, José M; Huang, Shao-Shan Carol; Chen, Huaming; Ramachandran, Niroshan; Altmann, Stefan; Gutiérrez, Rodrigo A; Hill, David E; Schroeder, Julian I; Chory, Joanne; LaBaer, Joshua; Vidal, Marc; Braun, Pascal; Ecker, Joseph R

    2016-07-19

    Protein microarrays enable investigation of diverse biochemical properties for thousands of proteins in a single experiment, an unparalleled capacity. Using a high-density system called HaloTag nucleic acid programmable protein array (HaloTag-NAPPA), we created high-density protein arrays comprising 12,000 Arabidopsis ORFs. We used these arrays to query protein-protein interactions for a set of 38 transcription factors and transcriptional regulators (TFs) that function in diverse plant hormone regulatory pathways. The resulting transcription factor interactome network, TF-NAPPA, contains thousands of novel interactions. Validation in a benchmarked in vitro pull-down assay revealed that a random subset of TF-NAPPA validated at the same rate of 64% as a positive reference set of literature-curated interactions. Moreover, using a bimolecular fluorescence complementation (BiFC) assay, we confirmed in planta several interactions of biological interest and determined the interaction localizations for seven pairs. The application of HaloTag-NAPPA technology to plant hormone signaling pathways allowed the identification of many novel transcription factor-protein interactions and led to the development of a proteome-wide plant hormone TF interactome network.

  9. Inborn errors of metabolism and the human interactome: a systems medicine approach.

    PubMed

    Woidy, Mathias; Muntau, Ania C; Gersting, Søren W

    2018-02-05

    The group of inborn errors of metabolism (IEM) displays a marked heterogeneity and IEM can affect virtually all functions and organs of the human organism; however, IEM share that their associated proteins function in metabolism. Most proteins carry out cellular functions by interacting with other proteins, and thus are organized in biological networks. Therefore, diseases are rarely the consequence of single gene mutations but of the perturbations caused in the related cellular network. Systematic approaches that integrate multi-omics and database information into biological networks have successfully expanded our knowledge of complex disorders but network-based strategies have been rarely applied to study IEM. We analyzed IEM on a proteome scale and found that IEM-associated proteins are organized as a network of linked modules within the human interactome of protein interactions, the IEM interactome. Certain IEM disease groups formed self-contained disease modules, which were highly interlinked. On the other hand, we observed disease modules consisting of proteins from many different disease groups in the IEM interactome. Moreover, we explored the overlap between IEM and non-IEM disease genes and applied network medicine approaches to investigate shared biological pathways, clinical signs and symptoms, and links to drug targets. The provided resources may help to elucidate the molecular mechanisms underlying new IEM, to uncover the significance of disease-associated mutations, to identify new biomarkers, and to develop novel therapeutic strategies.

  10. A human XPC protein interactome--a resource.

    PubMed

    Lubin, Abigail; Zhang, Ling; Chen, Hua; White, Victoria M; Gong, Feng

    2013-12-23

    Global genome nucleotide excision repair (GG-NER) is responsible for identifying and removing bulky adducts from non-transcribed DNA that result from damaging agents such as UV radiation and cisplatin. Xeroderma pigmentosum complementation group C (XPC) is one of the essential damage recognition proteins of the GG-NER pathway and its dysfunction results in xeroderma pigmentosum (XP), a disorder involving photosensitivity and a predisposition to cancer. To better understand the identification of DNA damage by XPC in the context of chromatin and the role of XPC in the pathogenesis of XP, we characterized the interactome of XPC using a high throughput yeast two-hybrid screening. Our screening showed 49 novel interactors of XPC involved in DNA repair and replication, proteolysis and post-translational modifications, transcription regulation, signal transduction, and metabolism. Importantly, we validated the XPC-OTUD4 interaction by co-IP and provided evidence that OTUD4 knockdown in human cells indeed affects the levels of ubiquitinated XPC, supporting a hypothesis that the OTUD4 deubiquitinase is involved in XPC recycling by cleaving the ubiquitin moiety. This high-throughput characterization of the XPC interactome provides a resource for future exploration and suggests that XPC may have many uncharacterized cellular functions.

  11. A Rich-Club Organization in Brain Ischemia Protein Interaction Network

    PubMed Central

    Alawieh, Ali; Sabra, Zahraa; Sabra, Mohammed; Tomlinson, Stephen; Zaraket, Fadi A.

    2015-01-01

    Ischemic stroke involves multiple pathophysiological mechanisms with complex interactions. Efforts to decipher those mechanisms and understand the evolution of cerebral injury is key for developing successful interventions. In an innovative approach, we use literature mining, natural language processing and systems biology tools to construct, annotate and curate a brain ischemia interactome. The curated interactome includes proteins that are deregulated after cerebral ischemia in human and experimental stroke. Network analysis of the interactome revealed a rich-club organization indicating the presence of a densely interconnected hub structure of prominent contributors to disease pathogenesis. Functional annotation of the interactome uncovered prominent pathways and highlighted the critical role of the complement and coagulation cascade in the initiation and amplification of injury starting by activation of the rich-club. We performed an in-silico screen for putative interventions that have pleiotropic effects on rich-club components and we identified estrogen as a prominent candidate. Our findings show that complex network analysis of disease related interactomes may lead to a better understanding of pathogenic mechanisms and provide cost-effective and mechanism-based discovery of candidate therapeutics. PMID:26310627

  12. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klopffleisch, Karsten; Phan, Nguyen; Chen, Jay

    2011-01-01

    The heterotrimeric G-protein complex is minimally composed of G{alpha}, G{beta}, and G{gamma} subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, wemore » detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.« less

  13. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis.

    PubMed

    Klopffleisch, Karsten; Phan, Nguyen; Augustin, Kelsey; Bayne, Robert S; Booker, Katherine S; Botella, Jose R; Carpita, Nicholas C; Carr, Tyrell; Chen, Jin-Gui; Cooke, Thomas Ryan; Frick-Cheng, Arwen; Friedman, Erin J; Fulk, Brandon; Hahn, Michael G; Jiang, Kun; Jorda, Lucia; Kruppe, Lydia; Liu, Chenggang; Lorek, Justine; McCann, Maureen C; Molina, Antonio; Moriyama, Etsuko N; Mukhtar, M Shahid; Mudgil, Yashwanti; Pattathil, Sivakumar; Schwarz, John; Seta, Steven; Tan, Matthew; Temp, Ulrike; Trusov, Yuri; Urano, Daisuke; Welter, Bastian; Yang, Jing; Panstruga, Ralph; Uhrig, Joachim F; Jones, Alan M

    2011-09-27

    The heterotrimeric G-protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.

  14. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis

    PubMed Central

    Klopffleisch, Karsten; Phan, Nguyen; Augustin, Kelsey; Bayne, Robert S; Booker, Katherine S; Botella, Jose R; Carpita, Nicholas C; Carr, Tyrell; Chen, Jin-Gui; Cooke, Thomas Ryan; Frick-Cheng, Arwen; Friedman, Erin J; Fulk, Brandon; Hahn, Michael G; Jiang, Kun; Jorda, Lucia; Kruppe, Lydia; Liu, Chenggang; Lorek, Justine; McCann, Maureen C; Molina, Antonio; Moriyama, Etsuko N; Mukhtar, M Shahid; Mudgil, Yashwanti; Pattathil, Sivakumar; Schwarz, John; Seta, Steven; Tan, Matthew; Temp, Ulrike; Trusov, Yuri; Urano, Daisuke; Welter, Bastian; Yang, Jing; Panstruga, Ralph; Uhrig, Joachim F; Jones, Alan M

    2011-01-01

    The heterotrimeric G-protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification. PMID:21952135

  15. SPRINT: ultrafast protein-protein interaction prediction of the entire human interactome.

    PubMed

    Li, Yiwei; Ilie, Lucian

    2017-11-15

    Proteins perform their functions usually by interacting with other proteins. Predicting which proteins interact is a fundamental problem. Experimental methods are slow, expensive, and have a high rate of error. Many computational methods have been proposed among which sequence-based ones are very promising. However, so far no such method is able to predict effectively the entire human interactome: they require too much time or memory. We present SPRINT (Scoring PRotein INTeractions), a new sequence-based algorithm and tool for predicting protein-protein interactions. We comprehensively compare SPRINT with state-of-the-art programs on seven most reliable human PPI datasets and show that it is more accurate while running orders of magnitude faster and using very little memory. SPRINT is the only sequence-based program that can effectively predict the entire human interactome: it requires between 15 and 100 min, depending on the dataset. Our goal is to transform the very challenging problem of predicting the entire human interactome into a routine task. The source code of SPRINT is freely available from https://github.com/lucian-ilie/SPRINT/ and the datasets and predicted PPIs from www.csd.uwo.ca/faculty/ilie/SPRINT/ .

  16. The functional interactome of GSTP: A regulatory biomolecular network at the interface with the Nrf2 adaption response to oxidative stress.

    PubMed

    Bartolini, Desirée; Galli, Francesco

    2016-04-15

    Glutathione S-transferase P (GSTP), and possibly other members of the subfamily of cytosolic GSTs, are increasingly proposed to have roles far beyond the classical GSH-dependent enzymatic detoxification of electrophilic metabolites and xenobiotics. Emerging evidence suggests that these are essential components of the redox sensing and signaling platform of cells. GSTP monomers physically interact with cellular proteins, such as other cytosolic GSTs, signaling kinases and the membrane peroxidase peroxiredoxin 6. Other interactions reported in literature include that with regulatory proteins such as Fanconi anemia complementation group C protein, transglutaminase 2 and several members of the keratin family of genes. Transcription factors downstream of inflammatory and oxidative stress pathways, namely STAT3 and Nrf2, were recently identified to be further components of this interactome. Together these pieces of evidence suggest the existence of a regulatory biomolecular network in which GSTP represents a node of functional convergence and coordination of signaling and transcription proteins, namely the "GSTP interactome", associated with key cellular processes such as cell cycle regulation and the stress response. These aspects and the methodological approach to explore the cellular interactome(s) are discussed in this review paper. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format

    PubMed Central

    2014-01-01

    Background The rice interactome, in which a network of protein-protein interactions has been elucidated in rice, is a useful resource to identify functional modules of rice signal transduction pathways. Protein-protein interactions occur in cells in two ways, constitutive and regulative. While a yeast-based high-throughput method has been widely used to identify the constitutive interactions, a method to detect the regulated interactions is rarely developed for a large-scale analysis. Results A split luciferase complementation assay was applied to detect the regulated interactions in rice. A transformation method of rice protoplasts in a 96-well plate was first established for a large-scale analysis. In addition, an antibody that specifically recognizes a carboxyl-terminal fragment of Renilla luciferase was newly developed. A pair of antibodies that recognize amino- and carboxyl- terminal fragments of Renilla luciferase, respectively, was then used to monitor quality and quantity of interacting recombinant-proteins accumulated in the cells. For a proof-of-concept, the method was applied to detect the gibberellin-dependent interaction between GIBBERELLIN INSENSITIVE DWARF1 and SLENDER RICE 1. Conclusions A method to detect regulated protein-protein interactions was developed towards establishment of the rice interactome. PMID:24987490

  18. The distinctive cell division interactome of Neisseria gonorrhoeae.

    PubMed

    Zou, Yinan; Li, Yan; Dillon, Jo-Anne R

    2017-12-12

    Bacterial cell division is an essential process driven by the formation of a Z-ring structure, as a cytoskeletal scaffold at the mid-cell, followed by the recruitment of various proteins which form the divisome. The cell division interactome reflects the complement of different interactions between all divisome proteins. To date, only two cell division interactomes have been characterized, in Escherichia coli and in Streptococcus pneumoniae. The cell divison proteins encoded by Neisseria gonorrhoeae include FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsI, FtsW, and FtsN. The purpose of the present study was to characterize the cell division interactome of N. gonorrhoeae using several different methods to identify protein-protein interactions. We also characterized the specific subdomains of FtsA implicated in interactions with FtsZ, FtsQ, FtsN and FtsW. Using a combination of bacterial two-hybrid (B2H), glutathione S-transferase (GST) pull-down assays, and surface plasmon resonance (SPR), nine interactions were observed among the eight gonococcal cell division proteins tested. ZipA did not interact with any other cell division proteins. Comparisons of the N. gonorrhoeae cell division interactome with the published interactomes from E. coli and S. pneumoniae indicated that FtsA-FtsZ and FtsZ-FtsK interactions were common to all three species. FtsA-FtsW and FtsK-FtsN interactions were only present in N. gonorrhoeae. The 2A and 2B subdomains of FtsA Ng were involved in interactions with FtsQ, FtsZ, and FtsN, and the 2A subdomain was involved in interaction with FtsW. Results from this research indicate that N. gonorrhoeae has a distinctive cell division interactome as compared with other microorganisms.

  19. Experimental Methods for Protein Interaction Identification and Characterization

    NASA Astrophysics Data System (ADS)

    Uetz, Peter; Titz, Björn; Cagney, Gerard

    There are dozens of methods for the detection of protein-protein interactions but they fall into a few broad categories. Fragment complementation assays such as the yeast two-hybrid (Y2H) system are based on split proteins that are functionally reconstituted by fusions of interacting proteins. Biophysical methods include structure determination and mass spectrometric (MS) identification of proteins in complexes. Biochemical methods include methods such as far western blotting and peptide arrays. Only the Y2H and protein complex purification combined with MS have been used on a larger scale. Due to the lack of data it is still difficult to compare these methods with respect to their efficiency and error rates. Current data does not favor any particular method and thus multiple experimental approaches are necessary to maximally cover the interactome of any target cell or organism.

  20. A scalable double-barcode sequencing platform for characterization of dynamic protein-protein interactions.

    PubMed

    Schlecht, Ulrich; Liu, Zhimin; Blundell, Jamie R; St Onge, Robert P; Levy, Sasha F

    2017-05-25

    Several large-scale efforts have systematically catalogued protein-protein interactions (PPIs) of a cell in a single environment. However, little is known about how the protein interactome changes across environmental perturbations. Current technologies, which assay one PPI at a time, are too low throughput to make it practical to study protein interactome dynamics. Here, we develop a highly parallel protein-protein interaction sequencing (PPiSeq) platform that uses a novel double barcoding system in conjunction with the dihydrofolate reductase protein-fragment complementation assay in Saccharomyces cerevisiae. PPiSeq detects PPIs at a rate that is on par with current assays and, in contrast with current methods, quantitatively scores PPIs with enough accuracy and sensitivity to detect changes across environments. Both PPI scoring and the bulk of strain construction can be performed with cell pools, making the assay scalable and easily reproduced across environments. PPiSeq is therefore a powerful new tool for large-scale investigations of dynamic PPIs.

  1. Protein interactome analysis of 12 mitogen-activated protein kinase kinase kinase in rice using a yeast two-hybrid system.

    PubMed

    Singh, Raksha; Lee, Jae-Eun; Dangol, Sarmina; Choi, Jihyun; Yoo, Ran Hee; Moon, Jae Sun; Shim, Jae-Kyung; Rakwal, Randeep; Agrawal, Ganesh Kumar; Jwa, Nam-Soo

    2014-01-01

    The mitogen-activated protein kinase (MAPK) cascade is composed at least of MAP3K (for MAPK kinase kinase), MAP2K, and MAPK family modules. These components together play a central role in mediating extracellular signals to the cell and vice versa by interacting with their partner proteins. However, the MAP3K-interacting proteins remain poorly investigated in plants. Here, we utilized a yeast two-hybrid system and bimolecular fluorescence complementation in the model crop rice (Oryza sativa) to map MAP3K-interacting proteins. We identified 12 novel nonredundant interacting protein pairs (IPPs) representing 11 nonredundant interactors using 12 rice MAP3Ks (available as full-length cDNA in the rice KOME (http://cdna01.dna.affrc.go.jp/cDNA/) at the time of experimental design and execution) as bait and a rice seedling cDNA library as prey. Of the 12 MAP3Ks, only six had interacting protein partners. The established MAP3K interactome consisted of two kinases, three proteases, two forkhead-associated domain-containing proteins, two expressed proteins, one E3 ligase, one regulatory protein, and one retrotransposon protein. Notably, no MAP3K showed physical interaction with either MAP2K or MAPK. Seven IPPs (58.3%) were confirmed in vivo by bimolecular fluorescence complementation. Subcellular localization of 14 interactors, together involved in nine IPPs (75%) further provide prerequisite for biological significance of the IPPs. Furthermore, GO of identified interactors predicted their involvement in diverse physiological responses, which were supported by a literature survey. These findings increase our knowledge of the MAP3K-interacting proteins, help in proposing a model of MAPK modules, provide a valuable resource for developing a complete map of the rice MAPK interactome, and allow discussion for translating the interactome knowledge to rice crop improvement against environmental factors. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. BIPS: BIANA Interolog Prediction Server. A tool for protein-protein interaction inference.

    PubMed

    Garcia-Garcia, Javier; Schleker, Sylvia; Klein-Seetharaman, Judith; Oliva, Baldo

    2012-07-01

    Protein-protein interactions (PPIs) play a crucial role in biology, and high-throughput experiments have greatly increased the coverage of known interactions. Still, identification of complete inter- and intraspecies interactomes is far from being complete. Experimental data can be complemented by the prediction of PPIs within an organism or between two organisms based on the known interactions of the orthologous genes of other organisms (interologs). Here, we present the BIANA (Biologic Interactions and Network Analysis) Interolog Prediction Server (BIPS), which offers a web-based interface to facilitate PPI predictions based on interolog information. BIPS benefits from the capabilities of the framework BIANA to integrate the several PPI-related databases. Additional metadata can be used to improve the reliability of the predicted interactions. Sensitivity and specificity of the server have been calculated using known PPIs from different interactomes using a leave-one-out approach. The specificity is between 72 and 98%, whereas sensitivity varies between 1 and 59%, depending on the sequence identity cut-off used to calculate similarities between sequences. BIPS is freely accessible at http://sbi.imim.es/BIPS.php.

  3. Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia.

    PubMed

    Teng, S; Thomson, P A; McCarthy, S; Kramer, M; Muller, S; Lihm, J; Morris, S; Soares, D C; Hennah, W; Harris, S; Camargo, L M; Malkov, V; McIntosh, A M; Millar, J K; Blackwood, D H; Evans, K L; Deary, I J; Porteous, D J; McCombie, W R

    2018-05-01

    Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neuroticism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWER across ), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWER across P=0.0339). The burden of singleton disruptive variants in the DISC1 Interactome was associated with low cognitive ability at age 11 (FWER across P=0.0043). These results identify altered regulation of schizophrenia candidate genes by DISC1 and its core Interactome as an alternate pathway for schizophrenia risk, consistent with the emerging effects of rare copy number variants associated with intellectual disability.

  4. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize

    USDA-ARS?s Scientific Manuscript database

    An interactome is the genome-wide roadmap of protein-protein interactions that occur within an organism. Interactomes for humans, the fruit fly, and now plants such as Arabidopsis thaliana and Oryza sativa have been generated using high throughput experimental methods. It is possible to use these ...

  5. Characterization of a Protein Interactome by Co-Immunoprecipitation and Shotgun Mass Spectrometry.

    PubMed

    Maccarrone, Giuseppina; Bonfiglio, Juan Jose; Silberstein, Susana; Turck, Christoph W; Martins-de-Souza, Daniel

    2017-01-01

    Identifying the partners of a given protein (the interactome) may provide leads about the protein's function and the molecular mechanisms in which it is involved. One of the alternative strategies used to characterize protein interactomes consists of co-immunoprecipitation (co-IP) followed by shotgun mass spectrometry. This enables the isolation and identification of a protein target in its native state and its interactome from cells or tissue lysates under physiological conditions. In this chapter, we describe a co-IP protocol for interactome studies that uses an antibody against a protein of interest bound to protein A/G plus agarose beads to isolate a protein complex. The interacting proteins may be further fractionated by SDS-PAGE, followed by in-gel tryptic digestion and nano liquid chromatography high-resolution tandem mass spectrometry (nLC ESI-MS/MS) for identification purposes. The computational tools, strategy for protein identification, and use of interactome databases also will be described.

  6. A highly efficient approach to protein interactome mapping based on collaborative filtering framework.

    PubMed

    Luo, Xin; You, Zhuhong; Zhou, Mengchu; Li, Shuai; Leung, Hareton; Xia, Yunni; Zhu, Qingsheng

    2015-01-09

    The comprehensive mapping of protein-protein interactions (PPIs) is highly desired for one to gain deep insights into both fundamental cell biology processes and the pathology of diseases. Finely-set small-scale experiments are not only very expensive but also inefficient to identify numerous interactomes despite their high accuracy. High-throughput screening techniques enable efficient identification of PPIs; yet the desire to further extract useful knowledge from these data leads to the problem of binary interactome mapping. Network topology-based approaches prove to be highly efficient in addressing this problem; however, their performance deteriorates significantly on sparse putative PPI networks. Motivated by the success of collaborative filtering (CF)-based approaches to the problem of personalized-recommendation on large, sparse rating matrices, this work aims at implementing a highly efficient CF-based approach to binary interactome mapping. To achieve this, we first propose a CF framework for it. Under this framework, we model the given data into an interactome weight matrix, where the feature-vectors of involved proteins are extracted. With them, we design the rescaled cosine coefficient to model the inter-neighborhood similarity among involved proteins, for taking the mapping process. Experimental results on three large, sparse datasets demonstrate that the proposed approach outperforms several sophisticated topology-based approaches significantly.

  7. A Highly Efficient Approach to Protein Interactome Mapping Based on Collaborative Filtering Framework

    PubMed Central

    Luo, Xin; You, Zhuhong; Zhou, Mengchu; Li, Shuai; Leung, Hareton; Xia, Yunni; Zhu, Qingsheng

    2015-01-01

    The comprehensive mapping of protein-protein interactions (PPIs) is highly desired for one to gain deep insights into both fundamental cell biology processes and the pathology of diseases. Finely-set small-scale experiments are not only very expensive but also inefficient to identify numerous interactomes despite their high accuracy. High-throughput screening techniques enable efficient identification of PPIs; yet the desire to further extract useful knowledge from these data leads to the problem of binary interactome mapping. Network topology-based approaches prove to be highly efficient in addressing this problem; however, their performance deteriorates significantly on sparse putative PPI networks. Motivated by the success of collaborative filtering (CF)-based approaches to the problem of personalized-recommendation on large, sparse rating matrices, this work aims at implementing a highly efficient CF-based approach to binary interactome mapping. To achieve this, we first propose a CF framework for it. Under this framework, we model the given data into an interactome weight matrix, where the feature-vectors of involved proteins are extracted. With them, we design the rescaled cosine coefficient to model the inter-neighborhood similarity among involved proteins, for taking the mapping process. Experimental results on three large, sparse datasets demonstrate that the proposed approach outperforms several sophisticated topology-based approaches significantly. PMID:25572661

  8. A Highly Efficient Approach to Protein Interactome Mapping Based on Collaborative Filtering Framework

    NASA Astrophysics Data System (ADS)

    Luo, Xin; You, Zhuhong; Zhou, Mengchu; Li, Shuai; Leung, Hareton; Xia, Yunni; Zhu, Qingsheng

    2015-01-01

    The comprehensive mapping of protein-protein interactions (PPIs) is highly desired for one to gain deep insights into both fundamental cell biology processes and the pathology of diseases. Finely-set small-scale experiments are not only very expensive but also inefficient to identify numerous interactomes despite their high accuracy. High-throughput screening techniques enable efficient identification of PPIs; yet the desire to further extract useful knowledge from these data leads to the problem of binary interactome mapping. Network topology-based approaches prove to be highly efficient in addressing this problem; however, their performance deteriorates significantly on sparse putative PPI networks. Motivated by the success of collaborative filtering (CF)-based approaches to the problem of personalized-recommendation on large, sparse rating matrices, this work aims at implementing a highly efficient CF-based approach to binary interactome mapping. To achieve this, we first propose a CF framework for it. Under this framework, we model the given data into an interactome weight matrix, where the feature-vectors of involved proteins are extracted. With them, we design the rescaled cosine coefficient to model the inter-neighborhood similarity among involved proteins, for taking the mapping process. Experimental results on three large, sparse datasets demonstrate that the proposed approach outperforms several sophisticated topology-based approaches significantly.

  9. A proteome-scale map of the human interactome network

    PubMed Central

    Rolland, Thomas; Taşan, Murat; Charloteaux, Benoit; Pevzner, Samuel J.; Zhong, Quan; Sahni, Nidhi; Yi, Song; Lemmens, Irma; Fontanillo, Celia; Mosca, Roberto; Kamburov, Atanas; Ghiassian, Susan D.; Yang, Xinping; Ghamsari, Lila; Balcha, Dawit; Begg, Bridget E.; Braun, Pascal; Brehme, Marc; Broly, Martin P.; Carvunis, Anne-Ruxandra; Convery-Zupan, Dan; Corominas, Roser; Coulombe-Huntington, Jasmin; Dann, Elizabeth; Dreze, Matija; Dricot, Amélie; Fan, Changyu; Franzosa, Eric; Gebreab, Fana; Gutierrez, Bryan J.; Hardy, Madeleine F.; Jin, Mike; Kang, Shuli; Kiros, Ruth; Lin, Guan Ning; Luck, Katja; MacWilliams, Andrew; Menche, Jörg; Murray, Ryan R.; Palagi, Alexandre; Poulin, Matthew M.; Rambout, Xavier; Rasla, John; Reichert, Patrick; Romero, Viviana; Ruyssinck, Elien; Sahalie, Julie M.; Scholz, Annemarie; Shah, Akash A.; Sharma, Amitabh; Shen, Yun; Spirohn, Kerstin; Tam, Stanley; Tejeda, Alexander O.; Trigg, Shelly A.; Twizere, Jean-Claude; Vega, Kerwin; Walsh, Jennifer; Cusick, Michael E.; Xia, Yu; Barabási, Albert-László; Iakoucheva, Lilia M.; Aloy, Patrick; De Las Rivas, Javier; Tavernier, Jan; Calderwood, Michael A.; Hill, David E.; Hao, Tong; Roth, Frederick P.; Vidal, Marc

    2014-01-01

    SUMMARY Just as reference genome sequences revolutionized human genetics, reference maps of interactome networks will be critical to fully understand genotype-phenotype relationships. Here, we describe a systematic map of ~14,000 high-quality human binary protein-protein interactions. At equal quality, this map is ~30% larger than what is available from small-scale studies published in the literature in the last few decades. While currently available information is highly biased and only covers a relatively small portion of the proteome, our systematic map appears strikingly more homogeneous, revealing a “broader” human interactome network than currently appreciated. The map also uncovers significant inter-connectivity between known and candidate cancer gene products, providing unbiased evidence for an expanded functional cancer landscape, while demonstrating how high quality interactome models will help “connect the dots” of the genomic revolution. PMID:25416956

  10. System-wide identification of RNA-binding proteins by interactome capture.

    PubMed

    Castello, Alfredo; Horos, Rastislav; Strein, Claudia; Fischer, Bernd; Eichelbaum, Katrin; Steinmetz, Lars M; Krijgsveld, Jeroen; Hentze, Matthias W

    2013-03-01

    Owing to their preeminent biological functions, the repertoire of expressed RNA-binding proteins (RBPs) and their activity states are highly informative about cellular systems. We have developed a novel and unbiased technique, called interactome capture, for identifying the active RBPs of cultured cells. By making use of in vivo UV cross-linking of RBPs to polyadenylated RNAs, covalently bound proteins are captured with oligo(dT) magnetic beads. After stringent washes, the mRNA interactome is determined by quantitative mass spectrometry (MS). The protocol takes 3 working days for analysis of single proteins by western blotting, and about 2 weeks for the determination of complete cellular mRNA interactomes by MS. The most important advantage of interactome capture over other in vitro and in silico approaches is that only RBPs bound to RNA in a physiological environment are identified. When applied to HeLa cells, interactome capture revealed hundreds of novel RBPs. Interactome capture can also be broadly used to compare different biological states, including metabolic stress, cell cycle, differentiation, development or the response to drugs.

  11. Network biology discovers pathogen contact points in host protein-protein interactomes.

    PubMed

    Ahmed, Hadia; Howton, T C; Sun, Yali; Weinberger, Natascha; Belkhadir, Youssef; Mukhtar, M Shahid

    2018-06-13

    In all organisms, major biological processes are controlled by complex protein-protein interactions networks (interactomes), yet their structural complexity presents major analytical challenges. Here, we integrate a compendium of over 4300 phenotypes with Arabidopsis interactome (AI-1 MAIN ). We show that nodes with high connectivity and betweenness are enriched and depleted in conditional and essential phenotypes, respectively. Such nodes are located in the innermost layers of AI-1 MAIN and are preferential targets of pathogen effectors. We extend these network-centric analyses to Cell Surface Interactome (CSI LRR ) and predict its 35 most influential nodes. To determine their biological relevance, we show that these proteins physically interact with pathogen effectors and modulate plant immunity. Overall, our findings contrast with centrality-lethality rule, discover fast information spreading nodes, and highlight the structural properties of pathogen targets in two different interactomes. Finally, this theoretical framework could possibly be applicable to other inter-species interactomes to reveal pathogen contact points.

  12. New insights into protein-protein interaction data lead to increased estimates of the S. cerevisiae interactome size.

    PubMed

    Sambourg, Laure; Thierry-Mieg, Nicolas

    2010-12-21

    As protein interactions mediate most cellular mechanisms, protein-protein interaction networks are essential in the study of cellular processes. Consequently, several large-scale interactome mapping projects have been undertaken, and protein-protein interactions are being distilled into databases through literature curation; yet protein-protein interaction data are still far from comprehensive, even in the model organism Saccharomyces cerevisiae. Estimating the interactome size is important for evaluating the completeness of current datasets, in order to measure the remaining efforts that are required. We examined the yeast interactome from a new perspective, by taking into account how thoroughly proteins have been studied. We discovered that the set of literature-curated protein-protein interactions is qualitatively different when restricted to proteins that have received extensive attention from the scientific community. In particular, these interactions are less often supported by yeast two-hybrid, and more often by more complex experiments such as biochemical activity assays. Our analysis showed that high-throughput and literature-curated interactome datasets are more correlated than commonly assumed, but that this bias can be corrected for by focusing on well-studied proteins. We thus propose a simple and reliable method to estimate the size of an interactome, combining literature-curated data involving well-studied proteins with high-throughput data. It yields an estimate of at least 37, 600 direct physical protein-protein interactions in S. cerevisiae. Our method leads to higher and more accurate estimates of the interactome size, as it accounts for interactions that are genuine yet difficult to detect with commonly-used experimental assays. This shows that we are even further from completing the yeast interactome map than previously expected.

  13. Next-Generation Technologies for Multiomics Approaches Including Interactome Sequencing

    PubMed Central

    Ohashi, Hiroyuki; Miyamoto-Sato, Etsuko

    2015-01-01

    The development of high-speed analytical techniques such as next-generation sequencing and microarrays allows high-throughput analysis of biological information at a low cost. These techniques contribute to medical and bioscience advancements and provide new avenues for scientific research. Here, we outline a variety of new innovative techniques and discuss their use in omics research (e.g., genomics, transcriptomics, metabolomics, proteomics, and interactomics). We also discuss the possible applications of these methods, including an interactome sequencing technology that we developed, in future medical and life science research. PMID:25649523

  14. Next-generation sequencing coupled with a cell-free display technology for high-throughput production of reliable interactome data

    PubMed Central

    Fujimori, Shigeo; Hirai, Naoya; Ohashi, Hiroyuki; Masuoka, Kazuyo; Nishikimi, Akihiko; Fukui, Yoshinori; Washio, Takanori; Oshikubo, Tomohiro; Yamashita, Tatsuhiro; Miyamoto-Sato, Etsuko

    2012-01-01

    Next-generation sequencing (NGS) has been applied to various kinds of omics studies, resulting in many biological and medical discoveries. However, high-throughput protein-protein interactome datasets derived from detection by sequencing are scarce, because protein-protein interaction analysis requires many cell manipulations to examine the interactions. The low reliability of the high-throughput data is also a problem. Here, we describe a cell-free display technology combined with NGS that can improve both the coverage and reliability of interactome datasets. The completely cell-free method gives a high-throughput and a large detection space, testing the interactions without using clones. The quantitative information provided by NGS reduces the number of false positives. The method is suitable for the in vitro detection of proteins that interact not only with the bait protein, but also with DNA, RNA and chemical compounds. Thus, it could become a universal approach for exploring the large space of protein sequences and interactome networks. PMID:23056904

  15. Receptor Tyrosine Kinase MET Interactome and Neurodevelopmental Disorder Partners at the Developing Synapse

    PubMed Central

    Xie, Zhihui; Li, Jing; Baker, Jonathan; Eagleson, Kathie L.; Coba, Marcelo P.; Levitt, Pat

    2016-01-01

    Background Atypical synapse development and plasticity are implicated in many neurodevelopmental disorders (NDDs). NDD-associated, high confidence risk genes have been identified, yet little is known about functional relationships at the level of protein-protein interactions, which are the dominant molecular bases responsible for mediating circuit development. Methods Proteomics in three independent developing neocortical synaptosomal preparations identified putative interacting proteins of the ligand-activated MET receptor tyrosine kinase, an autism risk gene that mediates synapse development. The candidates were translated into interactome networks and analyzed bioinformatically. Additionally, three independent quantitative proximity ligation assays (PLA) in cultured neurons and four independent immunoprecipitation analyses of synaptosomes validated protein interactions. Results Approximately 11% (8/72) of MET-interacting proteins, including SHANK3, SYNGAP1 and GRIN2B, are associated with NDDs. Proteins in the MET interactome were translated into a novel MET interactome network based on human protein-protein interaction databases. High confidence genes from different NDD datasets that encode synaptosomal proteins were analyzed for being enriched in MET interactome proteins. This was found for autism, but not schizophrenia, bipolar disorder, major depressive disorder or attentional deficit hyperactivity disorder. There is correlated gene expression between MET and its interactive partners in developing human temporal and visual neocortices, but not with highly expressed genes that are not in the interactome. PLA and biochemical analyses demonstrate that MET-protein partner interactions are dynamically regulated by receptor activation. Conclusions The results provide a novel molecular framework for deciphering the functional relations of key regulators of synaptogenesis that contribute to both typical cortical development and to NDDs. PMID:27086544

  16. Comparative analysis of protein-protein interactions in the defense response of rice and wheat.

    PubMed

    Cantu, Dario; Yang, Baoju; Ruan, Randy; Li, Kun; Menzo, Virginia; Fu, Daolin; Chern, Mawsheng; Ronald, Pamela C; Dubcovsky, Jorge

    2013-03-12

    Despite the importance of wheat as a major staple crop and the negative impact of diseases on its production worldwide, the genetic mechanisms and gene interactions involved in the resistance response in wheat are still poorly understood. The complete sequence of the rice genome has provided an extremely useful parallel road map for genetic and genomics studies in wheat. The recent construction of a defense response interactome in rice has the potential to further enhance the translation of advances in rice to wheat and other grasses. The objective of this study was to determine the degree of conservation in the protein-protein interactions in the rice and wheat defense response interactomes. As entry points we selected proteins that serve as key regulators of the rice defense response: the RAR1/SGT1/HSP90 protein complex, NPR1, XA21, and XB12 (XA21 interacting protein 12). Using available wheat sequence databases and phylogenetic analyses we identified and cloned the wheat orthologs of these four rice proteins, including recently duplicated paralogs, and their known direct interactors and tested 86 binary protein interactions using yeast-two-hybrid (Y2H) assays. All interactions between wheat proteins were further tested using in planta bimolecular fluorescence complementation (BiFC). Eighty three percent of the known rice interactions were confirmed when wheat proteins were tested with rice interactors and 76% were confirmed using wheat protein pairs. All interactions in the RAR1/SGT1/ HSP90, NPR1 and XB12 nodes were confirmed for the identified orthologous wheat proteins, whereas only forty four percent of the interactions were confirmed in the interactome node centered on XA21. We hypothesize that this reduction may be associated with a different sub-functionalization history of the multiple duplications that occurred in this gene family after the divergence of the wheat and rice lineages. The observed high conservation of interactions between proteins that serve as key regulators of the rice defense response suggests that the existing rice interactome can be used to predict interactions in wheat. Such predictions are less reliable for nodes that have undergone a different history of duplications and sub-functionalization in the two lineages.

  17. Receptor Tyrosine Kinase MET Interactome and Neurodevelopmental Disorder Partners at the Developing Synapse.

    PubMed

    Xie, Zhihui; Li, Jing; Baker, Jonathan; Eagleson, Kathie L; Coba, Marcelo P; Levitt, Pat

    2016-12-15

    Atypical synapse development and plasticity are implicated in many neurodevelopmental disorders (NDDs). NDD-associated, high-confidence risk genes have been identified, yet little is known about functional relationships at the level of protein-protein interactions, which are the dominant molecular bases responsible for mediating circuit development. Proteomics in three independent developing neocortical synaptosomal preparations identified putative interacting proteins of the ligand-activated MET receptor tyrosine kinase, an autism risk gene that mediates synapse development. The candidates were translated into interactome networks and analyzed bioinformatically. Additionally, three independent quantitative proximity ligation assays in cultured neurons and four independent immunoprecipitation analyses of synaptosomes validated protein interactions. Approximately 11% (8/72) of MET-interacting proteins, including SHANK3, SYNGAP1, and GRIN2B, are associated with NDDs. Proteins in the MET interactome were translated into a novel MET interactome network based on human protein-protein interaction databases. High-confidence genes from different NDD datasets that encode synaptosomal proteins were analyzed for being enriched in MET interactome proteins. This was found for autism but not schizophrenia, bipolar disorder, major depressive disorder, or attention-deficit/hyperactivity disorder. There is correlated gene expression between MET and its interactive partners in developing human temporal and visual neocortices but not with highly expressed genes that are not in the interactome. Proximity ligation assays and biochemical analyses demonstrate that MET-protein partner interactions are dynamically regulated by receptor activation. The results provide a novel molecular framework for deciphering the functional relations of key regulators of synaptogenesis that contribute to both typical cortical development and to NDDs. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Rounding Technique for High-Speed Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Wechsler, E. R.

    1983-01-01

    Arithmetic technique facilitates high-speed rounding of 2's complement binary data. Conventional rounding of 2's complement numbers presents problems in high-speed digital circuits. Proposed technique consists of truncating K + 1 bits then attaching bit in least significant position. Mean output error is zero, eliminating introducing voltage offset at input.

  19. Functional proteomic and interactome analysis of proteins associated with beef tenderness in angus cattle

    USDA-ARS?s Scientific Manuscript database

    Beef is a source of high quality protein for the human population, and beef tenderness has significant influence on beef palatability, consumer expectation and industry profitability. To further elucidate the factors affecting beef tenderness, functional proteomics and bioinformatics interactome ana...

  20. High-Confidence Interactome for RNF41 Built on Multiple Orthogonal Assays.

    PubMed

    Masschaele, Delphine; Wauman, Joris; Vandemoortele, Giel; De Sutter, Delphine; De Ceuninck, Leentje; Eyckerman, Sven; Tavernier, Jan

    2018-04-06

    Ring finger protein 41 (RNF41) is an E3 ubiquitin ligase involved in the ubiquitination and degradation of many proteins including ErbB3 receptors, BIRC6, and parkin. Next to this, RNF41 regulates the intracellular trafficking of certain JAK2-associated cytokine receptors by ubiquitinating and suppressing USP8, which, in turn, destabilizes the ESCRT-0 complex. To further elucidate the function of RNF41 we used different orthogonal approaches to reveal the RNF41 protein complex: affinity purification-mass spectrometry, BioID, and Virotrap. We combined these results with known data sets for RNF41 obtained with microarray MAPPIT and Y2H screens. This way, we establish a comprehensive high-resolution interactome network comprising 175 candidate protein partners. To remove potential methodological artifacts from this network, we distilled the data into a high-confidence interactome map by retaining a total of 19 protein hits identified in two or more of the orthogonal methods. AP2S1, a novel RNF41 interaction partner, was selected from this high-confidence interactome for further functional validation. We reveal a role for AP2S1 in leptin and LIF receptor signaling and show that RNF41 stabilizes and relocates AP2S1.

  1. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions

    DOE PAGES

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan; ...

    2016-04-20

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification ofmore » endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.« less

  2. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification ofmore » endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.« less

  3. Towards Personalized Medicine Mediated by in Vitro Virus-Based Interactome Approaches

    PubMed Central

    Ohashi, Hiroyuki; Miyamoto-Sato, Etsuko

    2014-01-01

    We have developed a simple in vitro virus (IVV) selection system based on cell-free co-translation, using a highly stable and efficient mRNA display method. The IVV system is applicable to the high-throughput and comprehensive analysis of proteins and protein–ligand interactions. Huge amounts of genomic sequence data have been generated over the last decade. The accumulated genetic alterations and the interactome networks identified within cells represent a universal feature of a disease, and knowledge of these aspects can help to determine the optimal therapy for the disease. The concept of the “integrome” has been developed as a means of integrating large amounts of data. We have developed an interactome analysis method aimed at providing individually-targeted health care. We also consider future prospects for this system. PMID:24756093

  4. Bacterial Interactomes: Interacting Protein Partners Share Similar Function and Are Validated in Independent Assays More Frequently Than Previously Reported*

    PubMed Central

    Shatsky, Maxim; Allen, Simon; Gold, Barbara L.; Liu, Nancy L.; Juba, Thomas R.; Reveco, Sonia A.; Elias, Dwayne A.; Prathapam, Ramadevi; He, Jennifer; Yang, Wenhong; Szakal, Evelin D.; Liu, Haichuan; Singer, Mary E.; Geller, Jil T.; Lam, Bonita R.; Saini, Avneesh; Trotter, Valentine V.; Hall, Steven C.; Fisher, Susan J.; Brenner, Steven E.; Chhabra, Swapnil R.; Hazen, Terry C.; Wall, Judy D.; Witkowska, H. Ewa; Biggin, Mark D.; Chandonia, John-Marc; Butland, Gareth

    2016-01-01

    Numerous affinity purification-mass spectrometry (AP-MS) and yeast two-hybrid screens have each defined thousands of pairwise protein-protein interactions (PPIs), most of which are between functionally unrelated proteins. The accuracy of these networks, however, is under debate. Here, we present an AP-MS survey of the bacterium Desulfovibrio vulgaris together with a critical reanalysis of nine published bacterial yeast two-hybrid and AP-MS screens. We have identified 459 high confidence PPIs from D. vulgaris and 391 from Escherichia coli. Compared with the nine published interactomes, our two networks are smaller, are much less highly connected, and have significantly lower false discovery rates. In addition, our interactomes are much more enriched in protein pairs that are encoded in the same operon, have similar functions, and are reproducibly detected in other physical interaction assays than the pairs reported in prior studies. Our work establishes more stringent benchmarks for the properties of protein interactomes and suggests that bona fide PPIs much more frequently involve protein partners that are annotated with similar functions or that can be validated in independent assays than earlier studies suggested. PMID:26873250

  5. Proteome-scale human interactomics

    PubMed Central

    Luck, Katja; Sheynkman, Gloria M.; Zhang, Ivy; Vidal, Marc

    2017-01-01

    Cellular functions are mediated by complex interactome networks of physical, biochemical, and functional interactions between DNA sequences, RNA molecules, proteins, lipids, and small metabolites. A thorough understanding of cellular organization requires accurate and relatively complete models of interactome networks at proteome-scale. The recent publication of four human protein-protein interaction (PPI) maps represents a technological breakthrough and an unprecedented resource for the scientific community, heralding a new era of proteome-scale human interactomics. Our knowledge gained from these and complementary studies provides fresh insights into the opportunities and challenges when analyzing systematically generated interactome data, defines a clear roadmap towards the generation of a first reference interactome, and reveals new perspectives on the organization of cellular life. PMID:28284537

  6. Interactome disassembly during apoptosis occurs independent of caspase cleavage.

    PubMed

    Scott, Nichollas E; Rogers, Lindsay D; Prudova, Anna; Brown, Nat F; Fortelny, Nikolaus; Overall, Christopher M; Foster, Leonard J

    2017-01-12

    Protein-protein interaction networks (interactomes) define the functionality of all biological systems. In apoptosis, proteolysis by caspases is thought to initiate disassembly of protein complexes and cell death. Here we used a quantitative proteomics approach, protein correlation profiling (PCP), to explore changes in cytoplasmic and mitochondrial interactomes in response to apoptosis initiation as a function of caspase activity. We measured the response to initiation of Fas-mediated apoptosis in 17,991 interactions among 2,779 proteins, comprising the largest dynamic interactome to date. The majority of interactions were unaffected early in apoptosis, but multiple complexes containing known caspase targets were disassembled. Nonetheless, proteome-wide analysis of proteolytic processing by terminal amine isotopic labeling of substrates (TAILS) revealed little correlation between proteolytic and interactome changes. Our findings show that, in apoptosis, significant interactome alterations occur before and independently of caspase activity. Thus, apoptosis initiation includes a tight program of interactome rearrangement, leading to disassembly of relatively few, select complexes. These early interactome alterations occur independently of cleavage of these protein by caspases. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Functional integrative levels in the human interactome recapitulate organ organization.

    PubMed

    Souiai, Ouissem; Becker, Emmanuelle; Prieto, Carlos; Benkahla, Alia; De las Rivas, Javier; Brun, Christine

    2011-01-01

    Interactome networks represent sets of possible physical interactions between proteins. They lack spatio-temporal information by construction. However, the specialized functions of the differentiated cell types which are assembled into tissues or organs depend on the combinatorial arrangements of proteins and their physical interactions. Is tissue-specificity, therefore, encoded within the interactome? In order to address this question, we combined protein-protein interactions, expression data, functional annotations and interactome topology. We first identified a subnetwork formed exclusively of proteins whose interactions were observed in all tested tissues. These are mainly involved in housekeeping functions and are located at the topological center of the interactome. This 'Largest Common Interactome Network' represents a 'functional interactome core'. Interestingly, two types of tissue-specific interactions are distinguished when considering function and network topology: tissue-specific interactions involved in regulatory and developmental functions are central whereas tissue-specific interactions involved in organ physiological functions are peripheral. Overall, the functional organization of the human interactome reflects several integrative levels of functions with housekeeping and regulatory tissue-specific functions at the center and physiological tissue-specific functions at the periphery. This gradient of functions recapitulates the organization of organs, from cells to organs. Given that several gradients have already been identified across interactomes, we propose that gradients may represent a general principle of protein-protein interaction network organization.

  8. Computational genomic analysis of PARK7 interactome reveals high BBS1 gene expression as a prognostic factor favoring survival in malignant pleural mesothelioma.

    PubMed

    Vavougios, Georgios D; Solenov, Evgeniy I; Hatzoglou, Chrissi; Baturina, Galina S; Katkova, Liubov E; Molyvdas, Paschalis Adam; Gourgoulianis, Konstantinos I; Zarogiannis, Sotirios G

    2015-10-01

    The aim of our study was to assess the differential gene expression of Parkinson protein 7 (PARK7) interactome in malignant pleural mesothelioma (MPM) using data mining techniques to identify novel candidate genes that may play a role in the pathogenicity of MPM. We constructed the PARK7 interactome using the ConsensusPathDB database. We then interrogated the Oncomine Cancer Microarray database using the Gordon Mesothelioma Study, for differential gene expression of the PARK7 interactome. In ConsensusPathDB, 38 protein interactors of PARK7 were identified. In the Gordon Mesothelioma Study, 34 of them were assessed out of which SUMO1, UBC3, KIAA0101, HDAC2, DAXX, RBBP4, BBS1, NONO, RBBP7, HTRA2, and STUB1 were significantly overexpressed whereas TRAF6 and MTA2 were significantly underexpressed in MPM patients (network 2). Furthermore, Kaplan-Meier analysis revealed that MPM patients with high BBS1 expression had a median overall survival of 16.5 vs. 8.7 mo of those that had low expression. For validation purposes, we performed a meta-analysis in Oncomine database in five sarcoma datasets. Eight network 2 genes (KIAA0101, HDAC2, SUMO1, RBBP4, NONO, RBBP7, HTRA2, and MTA2) were significantly differentially expressed in an array of 18 different sarcoma types. Finally, Gene Ontology annotation enrichment analysis revealed significant roles of the PARK7 interactome in NuRD, CHD, and SWI/SNF protein complexes. In conclusion, we identified 13 novel genes differentially expressed in MPM, never reported before. Among them, BBS1 emerged as a novel predictor of overall survival in MPM. Finally, we identified that PARK7 interactome is involved in novel pathways pertinent in MPM disease. Copyright © 2015 the American Physiological Society.

  9. Physical descriptions of the bacterial nucleoid at large scales, and their biological implications

    NASA Astrophysics Data System (ADS)

    Benza, Vincenzo G.; Bassetti, Bruno; Dorfman, Kevin D.; Scolari, Vittore F.; Bromek, Krystyna; Cicuta, Pietro; Cosentino Lagomarsino, Marco

    2012-07-01

    Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.

  10. mRNA interactome capture in mammalian cells.

    PubMed

    Kastelic, Nicolai; Landthaler, Markus

    2017-08-15

    Throughout their entire life cycle, mRNAs are associated with RNA-binding proteins (RBPs), forming ribonucleoprotein (RNP) complexes with highly dynamic compositions. Their interplay is one key to control gene regulatory mechanisms from mRNA synthesis to decay. To assay the global scope of RNA-protein interactions, we and others have published a method combining crosslinking with highly stringent oligo(dT) affinity purification to enrich proteins associated with polyadenylated RNA (poly(A)+ RNA). Identification of the poly(A)+ RNA-bound proteome (also: mRNA interactome capture) has by now been applied to a diversity of cell lines and model organisms, uncovering comprehensive repertoires of RBPs and hundreds of novel RBP candidates. In addition to determining the RBP catalog in a given biological system, mRNA interactome capture allows the examination of changes in protein-mRNA interactions in response to internal and external stimuli, altered cellular programs and disease. Copyright © 2017. Published by Elsevier Inc.

  11. Serial interactome capture of the human cell nucleus.

    PubMed

    Conrad, Thomas; Albrecht, Anne-Susann; de Melo Costa, Veronica Rodrigues; Sauer, Sascha; Meierhofer, David; Ørom, Ulf Andersson

    2016-04-04

    Novel RNA-guided cellular functions are paralleled by an increasing number of RNA-binding proteins (RBPs). Here we present 'serial RNA interactome capture' (serIC), a multiple purification procedure of ultraviolet-crosslinked poly(A)-RNA-protein complexes that enables global RBP detection with high specificity. We apply serIC to the nuclei of proliferating K562 cells to obtain the first human nuclear RNA interactome. The domain composition of the 382 identified nuclear RBPs markedly differs from previous IC experiments, including few factors without known RNA-binding domains that are in good agreement with computationally predicted RNA binding. serIC extends the number of DNA-RNA-binding proteins (DRBPs), and reveals a network of RBPs involved in p53 signalling and double-strand break repair. serIC is an effective tool to couple global RBP capture with additional selection or labelling steps for specific detection of highly purified RBPs.

  12. Proteome-Scale Human Interactomics.

    PubMed

    Luck, Katja; Sheynkman, Gloria M; Zhang, Ivy; Vidal, Marc

    2017-05-01

    Cellular functions are mediated by complex interactome networks of physical, biochemical, and functional interactions between DNA sequences, RNA molecules, proteins, lipids, and small metabolites. A thorough understanding of cellular organization requires accurate and relatively complete models of interactome networks at proteome scale. The recent publication of four human protein-protein interaction (PPI) maps represents a technological breakthrough and an unprecedented resource for the scientific community, heralding a new era of proteome-scale human interactomics. Our knowledge gained from these and complementary studies provides fresh insights into the opportunities and challenges when analyzing systematically generated interactome data, defines a clear roadmap towards the generation of a first reference interactome, and reveals new perspectives on the organization of cellular life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Functional Integrative Levels in the Human Interactome Recapitulate Organ Organization

    PubMed Central

    Prieto, Carlos; Benkahla, Alia; De Las Rivas, Javier; Brun, Christine

    2011-01-01

    Interactome networks represent sets of possible physical interactions between proteins. They lack spatio-temporal information by construction. However, the specialized functions of the differentiated cell types which are assembled into tissues or organs depend on the combinatorial arrangements of proteins and their physical interactions. Is tissue-specificity, therefore, encoded within the interactome? In order to address this question, we combined protein-protein interactions, expression data, functional annotations and interactome topology. We first identified a subnetwork formed exclusively of proteins whose interactions were observed in all tested tissues. These are mainly involved in housekeeping functions and are located at the topological center of the interactome. This ‘Largest Common Interactome Network’ represents a ‘functional interactome core’. Interestingly, two types of tissue-specific interactions are distinguished when considering function and network topology: tissue-specific interactions involved in regulatory and developmental functions are central whereas tissue-specific interactions involved in organ physiological functions are peripheral. Overall, the functional organization of the human interactome reflects several integrative levels of functions with housekeeping and regulatory tissue-specific functions at the center and physiological tissue-specific functions at the periphery. This gradient of functions recapitulates the organization of organs, from cells to organs. Given that several gradients have already been identified across interactomes, we propose that gradients may represent a general principle of protein-protein interaction network organization. PMID:21799769

  14. Making connections for life: an in vivo map of the yeast interactome.

    PubMed

    Kast, Juergen

    2008-10-01

    Proteins are the true workhorses of any cell. To carry out specific tasks, they frequently bind other molecules in their surroundings. Due to their structural complexity and flexibility, the most diverse array of interactions is seen with other proteins. The different geometries and affinities available for such interactions typically bestow specific functions on proteins. Having available a map of protein-protein interactions is therefore of enormous importance for any researcher interested in gaining insight into biological systems at the level of cells and organisms. In a recent report, a novel approach has been employed that relies on the spontaneous folding of complementary enzyme fragments fused to two different proteins to test whether these interact in their actual cellular context [Tarassov et al., Science 320, 1465-1470 (2008)]. Genome-wide application of this protein-fragment complementation assay has resulted in the first map of the in vivo interactome of Saccharomyces cerevisiae. The current data show striking similarities but also significant differences to those obtained using other large-scale approaches for the same task. This warrants a general discussion of the current state of affairs of protein-protein interaction studies and foreseeable future trends, highlighting their significance for a variety of applications and their potential to revolutionize our understanding of the architecture and dynamics of biological systems.

  15. Making connections for life: an in vivo map of the yeast interactome

    PubMed Central

    Kast, Juergen

    2008-01-01

    Proteins are the true workhorses of any cell. To carry out specific tasks, they frequently bind other molecules in their surroundings. Due to their structural complexity and flexibility, the most diverse array of interactions is seen with other proteins. The different geometries and affinities available for such interactions typically bestow specific functions on proteins. Having available a map of protein–protein interactions is therefore of enormous importance for any researcher interested in gaining insight into biological systems at the level of cells and organisms. In a recent report, a novel approach has been employed that relies on the spontaneous folding of complementary enzyme fragments fused to two different proteins to test whether these interact in their actual cellular context [Tarassov et al., Science 320, 1465–1470 (2008)]. Genome-wide application of this protein-fragment complementation assay has resulted in the first map of the in vivo interactome of Saccharomyces cerevisiae. The current data show striking similarities but also significant differences to those obtained using other large-scale approaches for the same task. This warrants a general discussion of the current state of affairs of protein–protein interaction studies and foreseeable future trends, highlighting their significance for a variety of applications and their potential to revolutionize our understanding of the architecture and dynamics of biological systems. PMID:19404434

  16. Integrative Analysis of Brain Region-specific Shank3 Interactomes for Understanding the Heterogeneity of Neuronal Pathophysiology Related to SHANK3 Mutations

    PubMed Central

    Lee, Yeunkum; Kang, Hyojin; Lee, Bokyoung; Zhang, Yinhua; Kim, Yoonhee; Kim, Shinhyun; Kim, Won-Ki; Han, Kihoon

    2017-01-01

    Recent molecular genetic studies have identified 100s of risk genes for various neurodevelopmental and neuropsychiatric disorders. As the number of risk genes increases, it is becoming clear that different mutations of a single gene could cause different types of disorders. One of the best examples of such a gene is SHANK3, which encodes a core scaffold protein of the neuronal excitatory post-synapse. Deletions, duplications, and point mutations of SHANK3 are associated with autism spectrum disorders, intellectual disability, schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. Nevertheless, how the different mutations of SHANK3 can lead to such phenotypic diversity remains largely unknown. In this study, we investigated whether Shank3 could form protein complexes in a brain region-specific manner, which might contribute to the heterogeneity of neuronal pathophysiology caused by SHANK3 mutations. To test this, we generated a medial prefrontal cortex (mPFC) Shank3 in vivo interactome consisting of 211 proteins, and compared this protein list with a Shank3 interactome previously generated from mixed hippocampal and striatal (HP+STR) tissues. Unexpectedly, we found that only 47 proteins (about 20%) were common between the two interactomes, while 164 and 208 proteins were specifically identified in the mPFC and HP+STR interactomes, respectively. Each of the mPFC- and HP+STR-specific Shank3 interactomes represents a highly interconnected network. Upon comparing the brain region-enriched proteomes, we found that the large difference between the mPFC and HP+STR Shank3 interactomes could not be explained by differential protein expression profiles among the brain regions. Importantly, bioinformatic pathway analysis revealed that the representative biological functions of the mPFC- and HP+STR-specific Shank3 interactomes were different, suggesting that these interactors could mediate the brain region-specific functions of Shank3. Meanwhile, the same analysis on the common Shank3 interactors, including Homer and GKAP/SAPAP proteins, suggested that they could mainly function as scaffolding proteins at the post-synaptic density. Lastly, we found that the mPFC- and HP+STR-specific Shank3 interactomes contained a significant number of proteins associated with neurodevelopmental and neuropsychiatric disorders. These results suggest that Shank3 can form protein complexes in a brain region-specific manner, which might contribute to the pathophysiological and phenotypic diversity of disorders related to SHANK3 mutations. PMID:28469556

  17. Comprehensive Identification of RNA-Binding Proteins by RNA Interactome Capture.

    PubMed

    Castello, Alfredo; Horos, Rastislav; Strein, Claudia; Fischer, Bernd; Eichelbaum, Katrin; Steinmetz, Lars M; Krijgsveld, Jeroen; Hentze, Matthias W

    2016-01-01

    RNA associates with RNA-binding proteins (RBPs) from synthesis to decay, forming dynamic ribonucleoproteins (RNPs). In spite of the preeminent role of RBPs regulating RNA fate, the scope of cellular RBPs has remained largely unknown. We have recently developed a novel and comprehensive method to identify the repertoire of active RBPs of cultured cells, called RNA interactome capture. Using in vivo UV cross-linking on cultured cells, proteins are covalently bound to RNA if the contact between the two is direct ("zero distance"). Protein-RNA complexes are purified by poly(A) tail-dependent oligo(dT) capture and analyzed by quantitative mass spectrometry. Because UV irradiation is applied to living cells and purification is performed using highly stringent washes, RNA interactome capture identifies physiologic and direct protein-RNA interactions. Applied to HeLa cells, this protocol revealed the near-complete repertoire of RBPs, including hundreds of novel RNA binders. Apart from its RBP discovery capacity, quantitative and comparative RNA interactome capture can also be used to study the responses of the RBP repertoire to different physiological cues and processes, including metabolic stress, differentiation, development, or the response to drugs.

  18. ∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis.

    PubMed

    Pankow, Sandra; Bamberger, Casimir; Calzolari, Diego; Martínez-Bartolomé, Salvador; Lavallée-Adam, Mathieu; Balch, William E; Yates, John R

    2015-12-24

    Deletion of phenylalanine 508 of the cystic fibrosis transmembrane conductance regulator (∆F508 CFTR) is the major cause of cystic fibrosis, one of the most common inherited childhood diseases. The mutated CFTR anion channel is not fully glycosylated and shows minimal activity in bronchial epithelial cells of patients with cystic fibrosis. Low temperature or inhibition of histone deacetylases can partly rescue ∆F508 CFTR cellular processing defects and function. A favourable change of ∆F508 CFTR protein-protein interactions was proposed as a mechanism of rescue; however, CFTR interactome dynamics during temperature shift and inhibition of histone deacetylases are unknown. Here we report the first comprehensive analysis of the CFTR and ∆F508 CFTR interactome and its dynamics during temperature shift and inhibition of histone deacetylases. By using a novel deep proteomic analysis method, we identify 638 individual high-confidence CFTR interactors and discover a ∆F508 deletion-specific interactome, which is extensively remodelled upon rescue. Detailed analysis of the interactome remodelling identifies key novel interactors, whose loss promote ∆F508 CFTR channel function in primary cystic fibrosis epithelia or which are critical for CFTR biogenesis. Our results demonstrate that global remodelling of ∆F508 CFTR interactions is crucial for rescue, and provide comprehensive insight into the molecular disease mechanisms of cystic fibrosis caused by deletion of F508.

  19. Determination of Protein Interactome of Transcription Factor Sox2 in Embryonic Stem Cells Engineered for Inducible Expression of Four Reprogramming Factors*

    PubMed Central

    Gao, Zhiguang; Cox, Jesse L.; Gilmore, Joshua M.; Ormsbee, Briana D.; Mallanna, Sunil K.; Washburn, Michael P.; Rizzino, Angie

    2012-01-01

    Unbiased proteomic screens provide a powerful tool for defining protein-protein interaction networks. Previous studies employed multidimensional protein identification technology to identify the Sox2-interactome in embryonic stem cells (ESC) undergoing differentiation in response to a small increase in the expression of epitope-tagged Sox2. Thus far the Sox2-interactome in ESC has not been determined. To identify the Sox2-interactome in ESC, we engineered ESC for inducible expression of different combinations of epitope-tagged Sox2 along with Oct4, Klf4, and c-Myc. Epitope-tagged Sox2 was used to circumvent the lack of suitable Sox2 antibodies needed to perform an unbiased proteomic screen of Sox2-associated proteins. Although i-OS-ESC differentiate when both Oct4 and Sox2 are elevated, i-OSKM-ESC do not differentiate even when the levels of the four transcription factors are coordinately elevated ∼2–3-fold. Our findings with i-OS-ESC and i-OSKM-ESC provide new insights into the reasons why ESC undergo differentiation when Sox2 and Oct4 are elevated in ESC. Importantly, the use of i-OSKM-ESC enabled us to identify the Sox2-interactome in undifferentiated ESC. Using multidimensional protein identification technology, we identified >70 proteins that associate with Sox2 in ESC. We extended these findings by testing the function of the Sox2-assoicated protein Smarcd1 and demonstrate that knockdown of Smarcd1 disrupts the self-renewal of ESC and induces their differentiation. Together, our work provides the first description of the Sox2-interactome in ESC and indicates that Sox2 along with other master regulators is part of a highly integrated protein-protein interaction landscape in ESC. PMID:22334693

  20. Sequential Elution Interactome Analysis of the Mind Bomb 1 Ubiquitin Ligase Reveals a Novel Role in Dendritic Spine Outgrowth*

    PubMed Central

    Mertz, Joseph; Tan, Haiyan; Pagala, Vishwajeeth; Bai, Bing; Chen, Ping-Chung; Li, Yuxin; Cho, Ji-Hoon; Shaw, Timothy; Wang, Xusheng; Peng, Junmin

    2015-01-01

    The mind bomb 1 (Mib1) ubiquitin ligase is essential for controlling metazoan development by Notch signaling and possibly the Wnt pathway. It is also expressed in postmitotic neurons and regulates neuronal morphogenesis and synaptic activity by mechanisms that are largely unknown. We sought to comprehensively characterize the Mib1 interactome and study its potential function in neuron development utilizing a novel sequential elution strategy for affinity purification, in which Mib1 binding proteins were eluted under different stringency and then quantified by the isobaric labeling method. The strategy identified the Mib1 interactome with both deep coverage and the ability to distinguish high-affinity partners from low-affinity partners. A total of 817 proteins were identified during the Mib1 affinity purification, including 56 high-affinity partners and 335 low-affinity partners, whereas the remaining 426 proteins are likely copurified contaminants or extremely weak binding proteins. The analysis detected all previously known Mib1-interacting proteins and revealed a large number of novel components involved in Notch and Wnt pathways, endocytosis and vesicle transport, the ubiquitin-proteasome system, cellular morphogenesis, and synaptic activities. Immunofluorescence studies further showed colocalization of Mib1 with five selected proteins: the Usp9x (FAM) deubiquitinating enzyme, alpha-, beta-, and delta-catenins, and CDKL5. Mutations of CDKL5 are associated with early infantile epileptic encephalopathy-2 (EIEE2), a severe form of mental retardation. We found that the expression of Mib1 down-regulated the protein level of CDKL5 by ubiquitination, and antagonized CDKL5 function during the formation of dendritic spines. Thus, the sequential elution strategy enables biochemical characterization of protein interactomes; and Mib1 analysis provides a comprehensive interactome for investigating its role in signaling networks and neuronal development. PMID:25931508

  1. SH3 interactome conserves general function over specific form

    PubMed Central

    Xin, Xiaofeng; Gfeller, David; Cheng, Jackie; Tonikian, Raffi; Sun, Lin; Guo, Ailan; Lopez, Lianet; Pavlenco, Alevtina; Akintobi, Adenrele; Zhang, Yingnan; Rual, Jean-François; Currell, Bridget; Seshagiri, Somasekar; Hao, Tong; Yang, Xinping; Shen, Yun A; Salehi-Ashtiani, Kourosh; Li, Jingjing; Cheng, Aaron T; Bouamalay, Dryden; Lugari, Adrien; Hill, David E; Grimes, Mark L; Drubin, David G; Grant, Barth D; Vidal, Marc; Boone, Charles; Sidhu, Sachdev S; Bader, Gary D

    2013-01-01

    Src homology 3 (SH3) domains bind peptides to mediate protein–protein interactions that assemble and regulate dynamic biological processes. We surveyed the repertoire of SH3 binding specificity using peptide phage display in a metazoan, the worm Caenorhabditis elegans, and discovered that it structurally mirrors that of the budding yeast Saccharomyces cerevisiae. We then mapped the worm SH3 interactome using stringent yeast two-hybrid and compared it with the equivalent map for yeast. We found that the worm SH3 interactome resembles the analogous yeast network because it is significantly enriched for proteins with roles in endocytosis. Nevertheless, orthologous SH3 domain-mediated interactions are highly rewired. Our results suggest a model of network evolution where general function of the SH3 domain network is conserved over its specific form. PMID:23549480

  2. Shifted Transversal Design smart-pooling for high coverage interactome mapping

    PubMed Central

    Xin, Xiaofeng; Rual, Jean-François; Hirozane-Kishikawa, Tomoko; Hill, David E.; Vidal, Marc; Boone, Charles; Thierry-Mieg, Nicolas

    2009-01-01

    “Smart-pooling,” in which test reagents are multiplexed in a highly redundant manner, is a promising strategy for achieving high efficiency, sensitivity, and specificity in systems-level projects. However, previous applications relied on low redundancy designs that do not leverage the full potential of smart-pooling, and more powerful theoretical constructions, such as the Shifted Transversal Design (STD), lack experimental validation. Here we evaluate STD smart-pooling in yeast two-hybrid (Y2H) interactome mapping. We employed two STD designs and two established methods to perform ORFeome-wide Y2H screens with 12 baits. We found that STD pooling achieves similar levels of sensitivity and specificity as one-on-one array-based Y2H, while the costs and workloads are divided by three. The screening-sequencing approach is the most cost- and labor-efficient, yet STD identifies about twofold more interactions. Screening-sequencing remains an appropriate method for quickly producing low-coverage interactomes, while STD pooling appears as the method of choice for obtaining maps with higher coverage. PMID:19447967

  3. A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).

    PubMed

    Stacey, R Greg; Skinnider, Michael A; Scott, Nichollas E; Foster, Leonard J

    2017-10-23

    An organism's protein interactome, or complete network of protein-protein interactions, defines the protein complexes that drive cellular processes. Techniques for studying protein complexes have traditionally applied targeted strategies such as yeast two-hybrid or affinity purification-mass spectrometry to assess protein interactions. However, given the vast number of protein complexes, more scalable methods are necessary to accelerate interaction discovery and to construct whole interactomes. We recently developed a complementary technique based on the use of protein correlation profiling (PCP) and stable isotope labeling in amino acids in cell culture (SILAC) to assess chromatographic co-elution as evidence of interacting proteins. Importantly, PCP-SILAC is also capable of measuring protein interactions simultaneously under multiple biological conditions, allowing the detection of treatment-specific changes to an interactome. Given the uniqueness and high dimensionality of co-elution data, new tools are needed to compare protein elution profiles, control false discovery rates, and construct an accurate interactome. Here we describe a freely available bioinformatics pipeline, PrInCE, for the analysis of co-elution data. PrInCE is a modular, open-source library that is computationally inexpensive, able to use label and label-free data, and capable of detecting tens of thousands of protein-protein interactions. Using a machine learning approach, PrInCE offers greatly reduced run time, more predicted interactions at the same stringency, prediction of protein complexes, and greater ease of use over previous bioinformatics tools for co-elution data. PrInCE is implemented in Matlab (version R2017a). Source code and standalone executable programs for Windows and Mac OSX are available at https://github.com/fosterlab/PrInCE , where usage instructions can be found. An example dataset and output are also provided for testing purposes. PrInCE is the first fast and easy-to-use data analysis pipeline that predicts interactomes and protein complexes from co-elution data. PrInCE allows researchers without bioinformatics expertise to analyze high-throughput co-elution datasets.

  4. Interactome Networks and Human Disease

    PubMed Central

    Vidal, Marc; Cusick, Michael E.; Barabási, Albert-László

    2011-01-01

    Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease. PMID:21414488

  5. The interactome of CCT complex - A computational analysis.

    PubMed

    Narayanan, Aswathy; Pullepu, Dileep; Kabir, M Anaul

    2016-10-01

    The eukaryotic chaperonin, CCT (Chaperonin Containing TCP1 or TriC-TCP-1 Ring Complex) has been subjected to physical and genetic analyses in S. cerevisiae which can be extrapolated to human CCT (hCCT), owing to its structural and functional similarities with yeast CCT (yCCT). Studies on hCCT and its interactome acquire an additional dimension, as it has been implicated in several disease conditions like neurodegeneration and cancer. We attempt to study its stress response role in general, which will be reflected in the aspects of human diseases and yeast physiology, through computational analysis of the interactome. Towards consolidating and analysing the interactome data, we prepared and compared the unique CCT-interacting protein lists for S. cerevisiae and H. sapiens, performed GO term classification and enrichment studies which provide information on the diversity in CCT interactome, in terms of protein classes in the data set. Enrichment with disease-associated proteins and pathways highlight the medical importance of CCT. Different analyses converge, suggesting the significance of WD-repeat proteins, protein kinases and cytoskeletal proteins in the interactome. The prevalence of proteasomal subunits and ribosomal proteins suggest a possible cross-talk between protein-synthesis, folding and degradation machinery. A network of chaperones and chaperonins that function in combination can also be envisaged from the CCT interactome-Hsp70 interactome analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Rearrangement of the Protein Phosphatase 1 Interactome During Heart Failure Progression.

    PubMed

    Chiang, David Y; Alsina, Katherina M; Corradini, Eleonora; Fitzpatrick, Martin; Ni, Li; Lahiri, Satadru K; Reynolds, Julia; Pan, Xiaolu; Scott, Larry; Heck, Albert J R; Wehrens, Xander H

    2018-04-18

    Background -Heart failure (HF) is a complex disease with a rising prevalence despite advances in treatment. Protein phosphatase 1 (PP1) has long been implicated in HF pathogenesis but its exact role is both unclear and controversial. Most previous studies measured only the PP1 catalytic subunit (PP1c) without investigating its diverse set of interactors, which confer localization and substrate specificity to the holoenzyme. In this study we define the PP1 interactome in cardiac tissue and test the hypothesis that this interactome becomes rearranged during HF progression at the level of specific PP1c interactors. Methods -Mice were subjected to transverse aortic constriction and grouped based on ejection fraction (EF) into sham, hypertrophy, moderate HF (EF 30-40%), and severe HF (EF<30%). Cardiac lysates were subjected to affinity-purification using anti-PP1c antibodies followed by high-resolution mass spectrometry. Ppp1r7 was knocked down in mouse cardiomyocytes and HeLa cells using adeno-associated virus serotype 9 (AAV9) and siRNA, respectively. Calcium imaging was performed on isolated ventricular myocytes. Results -Seventy-one and 98 PP1c interactors were quantified from mouse cardiac and HeLa lysates, respectively, including many novel interactors and protein complexes. This represents the largest reproducible PP1 interactome dataset ever captured from any tissue, including both primary and secondary/tertiary interactors. Nine PP1c interactors with changes in their binding to PP1c were strongly associated with HF progression including two known (Ppp1r7, Ppp1r18) and 7 novel interactors. Within the entire cardiac PP1 interactome, Ppp1r7 had the highest binding to PP1c. Cardiac-specific knockdown in mice led to cardiac dysfunction and disruption of calcium release from the sarcoplasmic reticulum. Conclusions -PP1 is best studied at the level of its interactome, which undergoes significant rearrangement during HF progression. The nine key interactors that are associated with HF progression may represent potential targets in HF therapy. In particular, Ppp1r7 may play a central role in regulating the PP1 interactome by acting as a competitive molecular "sponge" of PP1c.

  7. Deriving Heterospecific Self-Assembling Protein-Protein Interactions Using a Computational Interactome Screen.

    PubMed

    Crooks, Richard O; Baxter, Daniel; Panek, Anna S; Lubben, Anneke T; Mason, Jody M

    2016-01-29

    Interactions between naturally occurring proteins are highly specific, with protein-network imbalances associated with numerous diseases. For designed protein-protein interactions (PPIs), required specificity can be notoriously difficult to engineer. To accelerate this process, we have derived peptides that form heterospecific PPIs when combined. This is achieved using software that generates large virtual libraries of peptide sequences and searches within the resulting interactome for preferentially interacting peptides. To demonstrate feasibility, we have (i) generated 1536 peptide sequences based on the parallel dimeric coiled-coil motif and varied residues known to be important for stability and specificity, (ii) screened the 1,180,416 member interactome for predicted Tm values and (iii) used predicted Tm cutoff points to isolate eight peptides that form four heterospecific PPIs when combined. This required that all 32 hypothetical off-target interactions within the eight-peptide interactome be disfavoured and that the four desired interactions pair correctly. Lastly, we have verified the approach by characterising all 36 pairs within the interactome. In analysing the output, we hypothesised that several sequences are capable of adopting antiparallel orientations. We subsequently improved the software by removing sequences where doing so led to fully complementary electrostatic pairings. Our approach can be used to derive increasingly large and therefore complex sets of heterospecific PPIs with a wide range of potential downstream applications from disease modulation to the design of biomaterials and peptides in synthetic biology. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. AIM: A comprehensive Arabidopsis Interactome Module database and related interologs in plants

    USDA-ARS?s Scientific Manuscript database

    Systems biology analysis of protein modules is important for understanding the functional relationships between proteins in the interactome. Here, we present a comprehensive database named AIM for Arabidopsis (Arabidopsis thaliana) interactome modules. The database contains almost 250,000 modules th...

  9. Virtual Interactomics of Proteins from Biochemical Standpoint

    PubMed Central

    Kubrycht, Jaroslav; Sigler, Karel; Souček, Pavel

    2012-01-01

    Virtual interactomics represents a rapidly developing scientific area on the boundary line of bioinformatics and interactomics. Protein-related virtual interactomics then comprises instrumental tools for prediction, simulation, and networking of the majority of interactions important for structural and individual reproduction, differentiation, recognition, signaling, regulation, and metabolic pathways of cells and organisms. Here, we describe the main areas of virtual protein interactomics, that is, structurally based comparative analysis and prediction of functionally important interacting sites, mimotope-assisted and combined epitope prediction, molecular (protein) docking studies, and investigation of protein interaction networks. Detailed information about some interesting methodological approaches and online accessible programs or databases is displayed in our tables. Considerable part of the text deals with the searches for common conserved or functionally convergent protein regions and subgraphs of conserved interaction networks, new outstanding trends and clinically interesting results. In agreement with the presented data and relationships, virtual interactomic tools improve our scientific knowledge, help us to formulate working hypotheses, and they frequently also mediate variously important in silico simulations. PMID:22928109

  10. Interactome INSIDER: a structural interactome browser for genomic studies.

    PubMed

    Meyer, Michael J; Beltrán, Juan Felipe; Liang, Siqi; Fragoza, Robert; Rumack, Aaron; Liang, Jin; Wei, Xiaomu; Yu, Haiyuan

    2018-01-01

    We present Interactome INSIDER, a tool to link genomic variant information with structural protein-protein interactomes. Underlying this tool is the application of machine learning to predict protein interaction interfaces for 185,957 protein interactions with previously unresolved interfaces in human and seven model organisms, including the entire experimentally determined human binary interactome. Predicted interfaces exhibit functional properties similar to those of known interfaces, including enrichment for disease mutations and recurrent cancer mutations. Through 2,164 de novo mutagenesis experiments, we show that mutations of predicted and known interface residues disrupt interactions at a similar rate and much more frequently than mutations outside of predicted interfaces. To spur functional genomic studies, Interactome INSIDER (http://interactomeinsider.yulab.org) enables users to identify whether variants or disease mutations are enriched in known and predicted interaction interfaces at various resolutions. Users may explore known population variants, disease mutations, and somatic cancer mutations, or they may upload their own set of mutations for this purpose.

  11. A TRPV2 interactome-based signature for prognosis in glioblastoma patients.

    PubMed

    Doñate-Macián, Pau; Gómez, Antonio; Dégano, Irene R; Perálvarez-Marín, Alex

    2018-04-06

    Proteomics aids to the discovery and expansion of protein-protein interaction networks, which are key to understand molecular mechanisms in physiology and physiopathology, but also to infer protein function in a guilt-by-association fashion. In this study we use a systematic protein-protein interaction membrane yeast two-hybrid method to expand the interactome of TRPV2, a cation channel related to nervous system development. After validation of the interactome in silico , we define a TRPV2-interactome signature combining proteomics with the available physio-pathological data in Disgenet to find interactome-disease associations, highlighting nervous system disorders and neoplasms. The TRPV2-interactome signature against available experimental data is capable of discriminating overall risk in glioblastoma multiforme prognosis, progression, recurrence, and chemotherapy resistance. Beyond the impact on glioblastoma physiopathology, this study shows that combining systematic proteomics with in silico methods and available experimental data is key to open new perspectives to define novel biomarkers for diagnosis, prognosis and therapeutics in disease.

  12. A TRPV2 interactome-based signature for prognosis in glioblastoma patients

    PubMed Central

    Dégano, Irene R.; Perálvarez-Marín, Alex

    2018-01-01

    Proteomics aids to the discovery and expansion of protein-protein interaction networks, which are key to understand molecular mechanisms in physiology and physiopathology, but also to infer protein function in a guilt-by-association fashion. In this study we use a systematic protein-protein interaction membrane yeast two-hybrid method to expand the interactome of TRPV2, a cation channel related to nervous system development. After validation of the interactome in silico, we define a TRPV2-interactome signature combining proteomics with the available physio-pathological data in Disgenet to find interactome-disease associations, highlighting nervous system disorders and neoplasms. The TRPV2-interactome signature against available experimental data is capable of discriminating overall risk in glioblastoma multiforme prognosis, progression, recurrence, and chemotherapy resistance. Beyond the impact on glioblastoma physiopathology, this study shows that combining systematic proteomics with in silico methods and available experimental data is key to open new perspectives to define novel biomarkers for diagnosis, prognosis and therapeutics in disease. PMID:29719613

  13. Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations.

    PubMed

    Perez-Lopez, Áron R; Szalay, Kristóf Z; Türei, Dénes; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter

    2015-05-11

    Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates.

  14. Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations

    NASA Astrophysics Data System (ADS)

    Perez-Lopez, Áron R.; Szalay, Kristóf Z.; Türei, Dénes; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter

    2015-05-01

    Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates.

  15. Vascular Endothelial Growth Factor (VEGF) Promotes Assembly of the p130Cas Interactome to Drive Endothelial Chemotactic Signaling and Angiogenesis.

    PubMed

    Evans, Ian M; Kennedy, Susan A; Paliashvili, Ketevan; Santra, Tapesh; Yamaji, Maiko; Lovering, Ruth C; Britton, Gary; Frankel, Paul; Kolch, Walter; Zachary, Ian C

    2017-02-01

    p130Cas is a polyvalent adapter protein essential for cardiovascular development, and with a key role in cell movement. In order to identify the pathways by which p130Cas exerts its biological functions in endothelial cells we mapped the p130Cas interactome and its dynamic changes in response to VEGF using high-resolution mass spectrometry and reconstruction of protein interaction (PPI) networks with the aid of multiple PPI databases. VEGF enriched the p130Cas interactome in proteins involved in actin cytoskeletal dynamics and cell movement, including actin-binding proteins, small GTPases and regulators or binders of GTPases. Detailed studies showed that p130Cas association of the GTPase-binding scaffold protein, IQGAP1, plays a key role in VEGF chemotactic signaling, endothelial polarization, VEGF-induced cell migration, and endothelial tube formation. These findings indicate a cardinal role for assembly of the p130Cas interactome in mediating the cell migratory response to VEGF in angiogenesis, and provide a basis for further studies of p130Cas in cell movement. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Systematic analyses of the ultraviolet radiation resistance-associated gene product (UVRAG) protein interactome by tandem affinity purification.

    PubMed

    Son, Ji-Hye; Hwang, Eurim C; Kim, Joungmok

    2016-03-01

    Ultraviolet radiation resistance-associated gene product (UVRAG) was originally identified as a protein involved in cellular responses to UV irradiation. Subsequent studies have demonstrated that UVRAG plays as an important role in autophagy, a lysosome-dependent catabolic program, as a part of a pro-autophagy PIK3C3/VPS34 lipid kinase complex. Several recent studies have shown that UVRAG is also involved in autophagy-independent cellular functions, such as DNA repair/stability and vesicular trafficking/fusion. Here, we examined the UVRAG protein interactome to obtain information about its functional network. To this end, we screened UVRAG-interacting proteins using a tandem affinity purification method coupled with MALDI-TOF/MS analysis. Our results demonstrate that UVRAG interacts with various proteins involved in a wide spectrum of cellular functions, including genome stability, protein translational elongation, protein localization (trafficking), vacuole organization, transmembrane transport as well as autophagy. Notably, the interactome list of high-confidence UVRAG-interacting proteins is enriched for proteins involved in the regulation of genome stability. Our systematic UVRAG interactome analysis should provide important clues for understanding a variety of UVRAG functions.

  17. Network Approach to Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    Sharma, Amitabh; Bashan, Amir; Barabasi, Alber-Laszlo

    2014-03-01

    Human diseases could be viewed as perturbations of the underlying biological system. A thorough understanding of the topological and dynamical properties of the biological system is crucial to explain the mechanisms of many complex diseases. Recently network-based approaches have provided a framework for integrating multi-dimensional biological data that results in a better understanding of the pathophysiological state of complex diseases. Here we provide a network-based framework to improve the diagnosis of complex diseases. This framework is based on the integration of transcriptomics and the interactome. We analyze the overlap between the differentially expressed (DE) genes and disease genes (DGs) based on their locations in the molecular interaction network (''interactome''). Disease genes and their protein products tend to be much more highly connected than random, hence defining a disease sub-graph (called disease module) in the interactome. DE genes, even though different from the known set of DGs, may be significantly associated with the disease when considering their closeness to the disease module in the interactome. This new network approach holds the promise to improve the diagnosis of patients who cannot be diagnosed using conventional tools. Support was provided by HL066289 and HL105339 grants from the U.S. National Institutes of Health.

  18. Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations

    PubMed Central

    Perez-Lopez, Áron R.; Szalay, Kristóf Z.; Türei, Dénes; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter

    2015-01-01

    Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates. PMID:25960144

  19. Mining protein interactomes to improve their reliability and support the advancement of network medicine.

    PubMed

    Alanis-Lobato, Gregorio

    2015-01-01

    High-throughput detection of protein interactions has had a major impact in our understanding of the intricate molecular machinery underlying the living cell, and has permitted the construction of very large protein interactomes. The protein networks that are currently available are incomplete and a significant percentage of their interactions are false positives. Fortunately, the structural properties observed in good quality social or technological networks are also present in biological systems. This has encouraged the development of tools, to improve the reliability of protein networks and predict new interactions based merely on the topological characteristics of their components. Since diseases are rarely caused by the malfunction of a single protein, having a more complete and reliable interactome is crucial in order to identify groups of inter-related proteins involved in disease etiology. These system components can then be targeted with minimal collateral damage. In this article, an important number of network mining tools is reviewed, together with resources from which reliable protein interactomes can be constructed. In addition to the review, a few representative examples of how molecular and clinical data can be integrated to deepen our understanding of pathogenesis are discussed.

  20. Comprehensive Identification of mRNA-Binding Proteins of Leishmania donovani by Interactome Capture.

    PubMed

    Nandan, Devki; Thomas, Sneha A; Nguyen, Anne; Moon, Kyung-Mee; Foster, Leonard J; Reiner, Neil E

    2017-01-01

    Leishmania are unicellular eukaryotes responsible for leishmaniasis in humans. Like other trypanosomatids, leishmania regulate protein coding gene expression almost exclusively at the post-transcriptional level with the help of RNA binding proteins (RBPs). Due to the presence of polycystronic transcription units, leishmania do not regulate RNA polymerase II-dependent transcription initiation. Recent evidence suggests that the main control points in gene expression are mRNA degradation and translation. Protein-RNA interactions are involved in every aspect of RNA biology, such as mRNA splicing, polyadenylation, localization, degradation, and translation. A detailed picture of these interactions would likely prove to be highly informative in understanding leishmania biology and virulence. We developed a strategy involving covalent UV cross-linking of RBPs to mRNA in vivo, followed by interactome capture using oligo(dT) magnetic beads to define comprehensively the mRNA interactome of growing L. donovani amastigotes. The protein mass spectrometry analysis of captured proteins identified 79 mRNA interacting proteins which withstood very stringent washing conditions. Strikingly, we found that 49 of these mRNA interacting proteins had no orthologs or homologs in the human genome. Consequently, these may represent high quality candidates for selective drug targeting leading to novel therapeutics. These results show that this unbiased, systematic strategy has the promise to be applicable to study the mRNA interactome during various biological settings such as metabolic changes, stress (low pH environment, oxidative stress and nutrient deprivation) or drug treatment.

  1. The role of the interactome in the maintenance of deleterious variability in human populations

    PubMed Central

    Garcia-Alonso, Luz; Jiménez-Almazán, Jorge; Carbonell-Caballero, Jose; Vela-Boza, Alicia; Santoyo-López, Javier; Antiñolo, Guillermo; Dopazo, Joaquin

    2014-01-01

    Recent genomic projects have revealed the existence of an unexpectedly large amount of deleterious variability in the human genome. Several hypotheses have been proposed to explain such an apparently high mutational load. However, the mechanisms by which deleterious mutations in some genes cause a pathological effect but are apparently innocuous in other genes remain largely unknown. This study searched for deleterious variants in the 1,000 genomes populations, as well as in a newly sequenced population of 252 healthy Spanish individuals. In addition, variants causative of monogenic diseases and somatic variants from 41 chronic lymphocytic leukaemia patients were analysed. The deleterious variants found were analysed in the context of the interactome to understand the role of network topology in the maintenance of the observed mutational load. Our results suggest that one of the mechanisms whereby the effect of these deleterious variants on the phenotype is suppressed could be related to the configuration of the protein interaction network. Most of the deleterious variants observed in healthy individuals are concentrated in peripheral regions of the interactome, in combinations that preserve their connectivity, and have a marginal effect on interactome integrity. On the contrary, likely pathogenic cancer somatic deleterious variants tend to occur in internal regions of the interactome, often with associated structural consequences. Finally, variants causative of monogenic diseases seem to occupy an intermediate position. Our observations suggest that the real pathological potential of a variant might be more a systems property rather than an intrinsic property of individual proteins. PMID:25261458

  2. The role of the interactome in the maintenance of deleterious variability in human populations.

    PubMed

    Garcia-Alonso, Luz; Jiménez-Almazán, Jorge; Carbonell-Caballero, Jose; Vela-Boza, Alicia; Santoyo-López, Javier; Antiñolo, Guillermo; Dopazo, Joaquin

    2014-09-26

    Recent genomic projects have revealed the existence of an unexpectedly large amount of deleterious variability in the human genome. Several hypotheses have been proposed to explain such an apparently high mutational load. However, the mechanisms by which deleterious mutations in some genes cause a pathological effect but are apparently innocuous in other genes remain largely unknown. This study searched for deleterious variants in the 1,000 genomes populations, as well as in a newly sequenced population of 252 healthy Spanish individuals. In addition, variants causative of monogenic diseases and somatic variants from 41 chronic lymphocytic leukaemia patients were analysed. The deleterious variants found were analysed in the context of the interactome to understand the role of network topology in the maintenance of the observed mutational load. Our results suggest that one of the mechanisms whereby the effect of these deleterious variants on the phenotype is suppressed could be related to the configuration of the protein interaction network. Most of the deleterious variants observed in healthy individuals are concentrated in peripheral regions of the interactome, in combinations that preserve their connectivity, and have a marginal effect on interactome integrity. On the contrary, likely pathogenic cancer somatic deleterious variants tend to occur in internal regions of the interactome, often with associated structural consequences. Finally, variants causative of monogenic diseases seem to occupy an intermediate position. Our observations suggest that the real pathological potential of a variant might be more a systems property rather than an intrinsic property of individual proteins. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Next Generation Protein Interactomes for Plant Systems Biology and Biomass Feedstock Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecker, Joseph Robert; Trigg, Shelly; Garza, Renee

    Biofuel crop cultivation is a necessary step in heading towards a sustainable future, making their genomic studies a priority. While technology platforms that currently exist for studying non-model crop species, like switch-grass or sorghum, have yielded large quantities of genomic and expression data, still a large gap exists between molecular mechanism and phenotype. The aspect of molecular activity at the level of protein-protein interactions has recently begun to bridge this gap, providing a more global perspective. Interactome analysis has defined more specific functional roles of proteins based on their interaction partners, neighborhoods, and other network features, making it possible tomore » distinguish unique modules of immune response to different plant pathogens(Jiang, Dong, and Zhang 2016). As we work towards cultivating heartier biofuel crops, interactome data will lead to uncovering crop-specific defense and development networks. However, the collection of protein interaction data has been limited to expensive, time-consuming, hard-to-scale assays that mostly require cloned ORF collections. For these reasons, we have successfully developed a highly scalable, economical, and sensitive yeast two-hybrid assay, ProCREate, that can be universally applied to generate proteome-wide primary interactome data. ProCREate enables en masse pooling and massively paralleled sequencing for the identification of interacting proteins by exploiting Cre-lox recombination. ProCREate can be used to screen ORF/cDNA libraries from feedstock plant tissues. The interactome data generated will yield deeper insight into many molecular processes and pathways that can be used to guide improvement of feedstock productivity and sustainability.« less

  4. Bacterial interactomes: Interacting protein partners share similar function and are validated in independent assays more frequently than previously reported.

    DOE PAGES

    Shatsky, Maxim; Allen, Simon; Gold, Barbara; ...

    2016-05-01

    Numerous affinity purification – mass-spectrometry (AP-MS) and yeast two hybrid (Y2H) screens have each defined thousands of pairwise protein-protein interactions (PPIs), most between functionally unrelated proteins. The accuracy of these networks, however, is under debate. Here we present an AP-MS survey of the bacterium Desulfovibrio vulgaris together with a critical reanalysis of nine published bacterial Y2H and AP-MS screens. We have identified 459 high confidence PPIs from D. vulgaris and 391 from Escherichia coli. Compared to the nine published interactomes, our two networks are smaller; are much less highly connected; have significantly lower false discovery rates; and are much moremore » enriched in protein pairs that are encoded in the same operon, have similar functions, and are reproducibly detected in other physical interaction assays. Lastly, our work establishes more stringent benchmarks for the properties of protein interactomes and suggests that bona fide PPIs much more frequently involve protein partners that are annotated with similar functions or that can be validated in independent assays than earlier studies suggested.« less

  5. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection.

    PubMed

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-16

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.

  6. Emerging role of the Jun N-terminal kinase interactome in human health.

    PubMed

    Guo, Xiao-Xi; An, Su; Yang, Yang; Liu, Ying; Hao, Qian; Tang, Tao; Xu, Tian-Rui

    2018-02-08

    The c-Jun N-terminal kinases (JNKs) are located downstream of Ras-mitogen activated protein kinase signaling cascades. More than 20 years of study has shown that JNKs control cell fate and many cellular functions. JNKs and their interacting proteins form a complicated network with diverse biological functions and physiological effects. Members of the JNK interactome include Jun, amyloid precursor protein, and insulin receptor substrate. Recent studies have shown that the JNK interactome is involved in tumorigenesis, neuron development, and insulin resistance. In this review, we summarize the features of the JNK interactome and classify its members into three groups: upstream regulators, downstream effectors, and scaffold partners. We also highlight the unique cellular signaling mechanisms of JNKs and provide more insights into the roles of the JNK interactome in human diseases. © 2018 International Federation for Cell Biology.

  7. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection

    NASA Astrophysics Data System (ADS)

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-01

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.

  8. Heat Shock Partially Dissociates the Overlapping Modules of the Yeast Protein-Protein Interaction Network: A Systems Level Model of Adaptation

    PubMed Central

    Mihalik, Ágoston; Csermely, Peter

    2011-01-01

    Network analysis became a powerful tool giving new insights to the understanding of cellular behavior. Heat shock, the archetype of stress responses, is a well-characterized and simple model of cellular dynamics. S. cerevisiae is an appropriate model organism, since both its protein-protein interaction network (interactome) and stress response at the gene expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of modules after heat shock. The observed changes resemble to a ‘stratus-cumulus’ type transition of the interactome structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds, whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general, system-level adaptation mechanism to environmental changes. PMID:22022244

  9. In silico prediction of protein-protein interactions in human macrophages

    PubMed Central

    2014-01-01

    Background Protein-protein interaction (PPI) network analyses are highly valuable in deciphering and understanding the intricate organisation of cellular functions. Nevertheless, the majority of available protein-protein interaction networks are context-less, i.e. without any reference to the spatial, temporal or physiological conditions in which the interactions may occur. In this work, we are proposing a protocol to infer the most likely protein-protein interaction (PPI) network in human macrophages. Results We integrated the PPI dataset from the Agile Protein Interaction DataAnalyzer (APID) with different meta-data to infer a contextualized macrophage-specific interactome using a combination of statistical methods. The obtained interactome is enriched in experimentally verified interactions and in proteins involved in macrophage-related biological processes (i.e. immune response activation, regulation of apoptosis). As a case study, we used the contextualized interactome to highlight the cellular processes induced upon Mycobacterium tuberculosis infection. Conclusion Our work confirms that contextualizing interactomes improves the biological significance of bioinformatic analyses. More specifically, studying such inferred network rather than focusing at the gene expression level only, is informative on the processes involved in the host response. Indeed, important immune features such as apoptosis are solely highlighted when the spotlight is on the protein interaction level. PMID:24636261

  10. The Topology of the Growing Human Interactome Data.

    PubMed

    Janjić, Vuk; Pržulj, Nataša

    2014-06-01

    We have long moved past the one-gene-one-function concept originally proposed by Beadle and Tatum back in 1941; but the full understanding of genotype-phenotype relations still largely relies on the analysis of static, snapshot-like, interaction data sets. Here, we look at what global patterns can be uncovered if we simply trace back the human interactome network over the last decade of protein-protein interaction (PPI) screening. We take a purely topological approach and find that as the human interactome is getting denser, it is not only gaining in structure (in terms of now being better fit by structured network models than before), but also there are patterns in the way in which it is growing: (a) newly added proteins tend to get linked to existing proteins in the interactome that are not know to interact; and (b) new proteins tend to link to already well connected proteins. Moreover, the alignment between human and yeast interactomes spanning over 40% of yeast's proteins - that are involved in regulation of transcription, RNA splicing and other cellcycle- related processes-suggests the existence of a part of the interactome which remains topologically and functionally unaffected through evolution. Furthermore, we find a small sub-network, specific to the "core" of the human interactome and involved in regulation of transcription and cancer development, whose wiring has not changed within the human interactome over the last 10 years of interacome data acquisition. Finally, we introduce a generalisation of the clustering coefficient of a network as a new measure called the cycle coefficient, and use it to show that PPI networks of human and model organisms are wired in a tight way which forbids the occurrence large cycles.

  11. The topology of the growing human interactome data.

    PubMed

    Janjić, Vuk; Pržulj, Nataša

    2014-06-23

    We have long moved past the one-gene–one-function concept originally proposed by Beadle and Tatum back in 1941; but the full understanding of genotype–phenotype relations still largely relies on the analysis of static, snapshot-like, interaction data sets. Here, we look at what global patterns can be uncovered if we simply trace back the human interactome network over the last decade of protein- protein interaction (PPI) screening. We take a purely topological approach and find that as the human interactome is getting denser, it is not only gaining in structure (in terms of now being better fit by structured network models than before), but also there are patterns in the way in which it is growing: (a) newly added proteins tend to get linked to existing proteins in the interactome that are not know to interact; and (b) new proteins tend to link to already well connected proteins. Moreover, the alignment between human and yeast interactomes spanning over 40% of yeast’s proteins — that are involved in regulation of transcription, RNA splicing and other cellcycle-related processes—suggests the existence of a part of the interactome which remains topologically and functionally unaffected through evolution. Furthermore, we find a small sub-network, specific to the “core” of the human interactome and involved in regulation of transcription and cancer development, whose wiring has not changed within the human interactome over the last 10 years of interacome data acquisition. Finally, we introduce a generalisation of the clustering coefficient of a network as a new measure called the cycle coefficient, and use it to show that PPI networks of human and model organisms are wired in a tight way which forbids the occurrence large cycles.

  12. Interactomes to Biological Phase Space: a call to begin thinking at a new level in computational biology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, George S.; Brown, William Michael

    2007-09-01

    Techniques for high throughput determinations of interactomes, together with high resolution protein collocalizations maps within organelles and through membranes will soon create a vast resource. With these data, biological descriptions, akin to the high dimensional phase spaces familiar to physicists, will become possible. These descriptions will capture sufficient information to make possible realistic, system-level models of cells. The descriptions and the computational models they enable will require powerful computing techniques. This report is offered as a call to the computational biology community to begin thinking at this scale and as a challenge to develop the required algorithms and codes tomore » make use of the new data.3« less

  13. CASTIN: a system for comprehensive analysis of cancer-stromal interactome.

    PubMed

    Komura, Daisuke; Isagawa, Takayuki; Kishi, Kazuki; Suzuki, Ryohei; Sato, Reiko; Tanaka, Mariko; Katoh, Hiroto; Yamamoto, Shogo; Tatsuno, Kenji; Fukayama, Masashi; Aburatani, Hiroyuki; Ishikawa, Shumpei

    2016-11-09

    Cancer microenvironment plays a vital role in cancer development and progression, and cancer-stromal interactions have been recognized as important targets for cancer therapy. However, identifying relevant and druggable cancer-stromal interactions is challenging due to the lack of quantitative methods to analyze whole cancer-stromal interactome. We present CASTIN (CAncer-STromal INteractome analysis), a novel framework for the evaluation of cancer-stromal interactome from RNA-Seq data using cancer xenograft models. For each ligand-receptor interaction which is derived from curated protein-protein interaction database, CASTIN summarizes gene expression profiles of cancer and stroma into three evaluation indices. These indices provide quantitative evaluation and comprehensive visualization of interactome, and thus enable to identify critical cancer-microenvironment interactions, which would be potential drug targets. We applied CASTIN to the dataset of pancreas ductal adenocarcinoma, and successfully characterized the individual cancer in terms of cancer-stromal relationships, and identified both well-known and less-characterized druggable interactions. CASTIN provides comprehensive view of cancer-stromal interactome and is useful to identify critical interactions which may serve as potential drug targets in cancer-microenvironment. CASTIN is available at: http://github.com/tmd-gpat/CASTIN .

  14. The Protein Interactome of Streptococcus pneumoniae and Bacterial Meta-interactomes Improve Function Predictions.

    PubMed

    Wuchty, S; Rajagopala, S V; Blazie, S M; Parrish, J R; Khuri, S; Finley, R L; Uetz, P

    2017-01-01

    The functions of roughly a third of all proteins in Streptococcus pneumoniae , a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein's function, allowing us to provide functional predictions for 299 S. pneumoniae proteins with previously unknown functions. IMPORTANCE Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen S. pneumoniae . We used an experimental approach to identify over 2,000 new protein interactions for S. pneumoniae , the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins.

  15. RASopathies: Presentation at the Genome, Interactome, and Phenome Levels.

    PubMed

    Pevec, Urska; Rozman, Neva; Gorsek, Blaz; Kunej, Tanja

    2016-05-01

    Clinical symptoms often reflect molecular correlations between mutated proteins. Alignment between interactome and phenome levels reveals new disease genes and connections between previously unrelated diseases. Despite a great potential for novel discoveries, this approach is still rarely used in genomics. In the present study, we analyzed the data of 6 syndromes belonging to the RASopathy class of disorders (RASopathies) and presented them as a model to study associations between genome, interactome, and phenome levels. Causative genes and clinical symptoms were collected from OMIM and NCBI GeneReviews databases for 6 syndromes: Noonan, Noonan syndrome with multiple lentigines, neurofibromatosis type 1, cardiofaciocutaneous, and Legius and Costello syndrome. The STRING tool was used for the identification of protein interactions. Six RASopathy syndromes were found to be associated with 12 causative genes. We constructed an interactome of RASopathy proteins and their neighbors and developed a database of 328 clinical symptoms. The collected data was presented at genome, interactome, and phenome levels and as an integrated network of all 3 data types. The present study provides a baseline for future studies of associations between interactome and phenome in RASopathies and could serve as a novel approach to analyze phenotypically and genetically related diseases.

  16. "Fuzziness" in the celular interactome: a historical perspective.

    PubMed

    Welch, G Rickey

    2012-01-01

    Some historical background is given for appreciating the impact of the empirical construct known as the cellular protein-protein interactome, which is a seemingly de novo entity that has arisen of late within the context of postgenomic systems biology. The approach here builds on a generalized principle of "fuzziness" in protein behavior, proposed by Tompa and Fuxreiter.(1) Recent controversies in the analysis and interpretation of the interactome studies are rationalized historically under the auspices of this concept. There is an extensive literature on protein-protein interactions, dating to the mid-1900s, which may help clarify the "fuzziness" in the interactome picture and, also, provide a basis for understanding the physiological importance of protein-protein interactions in vivo.

  17. A Proteome-wide Fission Yeast Interactome Reveals Network Evolution Principles from Yeasts to Human.

    PubMed

    Vo, Tommy V; Das, Jishnu; Meyer, Michael J; Cordero, Nicolas A; Akturk, Nurten; Wei, Xiaomu; Fair, Benjamin J; Degatano, Andrew G; Fragoza, Robert; Liu, Lisa G; Matsuyama, Akihisa; Trickey, Michelle; Horibata, Sachi; Grimson, Andrew; Yamano, Hiroyuki; Yoshida, Minoru; Roth, Frederick P; Pleiss, Jeffrey A; Xia, Yu; Yu, Haiyuan

    2016-01-14

    Here, we present FissionNet, a proteome-wide binary protein interactome for S. pombe, comprising 2,278 high-quality interactions, of which ∼ 50% were previously not reported in any species. FissionNet unravels previously unreported interactions implicated in processes such as gene silencing and pre-mRNA splicing. We developed a rigorous network comparison framework that accounts for assay sensitivity and specificity, revealing extensive species-specific network rewiring between fission yeast, budding yeast, and human. Surprisingly, although genes are better conserved between the yeasts, S. pombe interactions are significantly better conserved in human than in S. cerevisiae. Our framework also reveals that different modes of gene duplication influence the extent to which paralogous proteins are functionally repurposed. Finally, cross-species interactome mapping demonstrates that coevolution of interacting proteins is remarkably prevalent, a result with important implications for studying human disease in model organisms. Overall, FissionNet is a valuable resource for understanding protein functions and their evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Global De Novo Protein-Protein Interactome Elucidates Interactions of Drought-Responsive Proteins in Horse Gram (Macrotyloma uniflorum).

    PubMed

    Bhardwaj, Jyoti; Gangwar, Indu; Panzade, Ganesh; Shankar, Ravi; Yadav, Sudesh Kumar

    2016-06-03

    Inspired by the availability of de novo transcriptome of horse gram (Macrotyloma uniflorum) and recent developments in systems biology studies, the first ever global protein-protein interactome (PPI) map was constructed for this highly drought-tolerant legume. Large-scale studies of PPIs and the constructed database would provide rationale behind the interplay at cascading translational levels for drought stress-adaptive mechanisms in horse gram. Using a bidirectional approach (interolog and domain-based), a high-confidence interactome map and database for horse gram was constructed. Available transcriptomic information for shoot and root tissues of a sensitive (M-191; genotype 1) and a drought-tolerant (M-249; genotype 2) genotype of horse gram was utilized to draw comparative PPI subnetworks under drought stress. High-confidence 6804 interactions were predicted among 1812 proteins covering about one-fourth of the horse gram proteome. The highest number of interactions (33.86%) in horse gram interactome matched with Arabidopsis PPI data. The top five hub nodes mostly included ubiquitin and heat-shock-related proteins. Higher numbers of PPIs were found to be responsive in shoot tissue (416) and root tissue (2228) of genotype 2 compared with shoot tissue (136) and root tissue (579) of genotype 1. Characterization of PPIs using gene ontology analysis revealed that kinase and transferase activities involved in signal transduction, cellular processes, nucleocytoplasmic transport, protein ubiquitination, and localization of molecules were most responsive to drought stress. Hence, these could be framed in stress adaptive mechanisms of horse gram. Being the first legume global PPI map, it would provide new insights into gene and protein regulatory networks for drought stress tolerance mechanisms in horse gram. Information compiled in the form of database (MauPIR) will provide the much needed high-confidence systems biology information for horse gram genes, proteins, and involved processes. This information would ease the effort and increase the efficacy for similar studies on other legumes. Public access is available at http://14.139.59.221/MauPIR/ .

  19. Towards Establishment of a Rice Stress Response Interactome

    PubMed Central

    Seo, Young-Su; Chern, Mawsheng; Bartley, Laura E.; Han, Muho; Jung, Ki-Hong; Lee, Insuk; Walia, Harkamal; Richter, Todd; Xu, Xia; Cao, Peijian; Bai, Wei; Ramanan, Rajeshwari; Amonpant, Fawn; Arul, Loganathan; Canlas, Patrick E.; Ruan, Randy; Park, Chang-Jin; Chen, Xuewei; Hwang, Sohyun; Jeon, Jong-Seong; Ronald, Pamela C.

    2011-01-01

    Rice (Oryza sativa) is a staple food for more than half the world and a model for studies of monocotyledonous species, which include cereal crops and candidate bioenergy grasses. A major limitation of crop production is imposed by a suite of abiotic and biotic stresses resulting in 30%–60% yield losses globally each year. To elucidate stress response signaling networks, we constructed an interactome of 100 proteins by yeast two-hybrid (Y2H) assays around key regulators of the rice biotic and abiotic stress responses. We validated the interactome using protein–protein interaction (PPI) assays, co-expression of transcripts, and phenotypic analyses. Using this interactome-guided prediction and phenotype validation, we identified ten novel regulators of stress tolerance, including two from protein classes not previously known to function in stress responses. Several lines of evidence support cross-talk between biotic and abiotic stress responses. The combination of focused interactome and systems analyses described here represents significant progress toward elucidating the molecular basis of traits of agronomic importance. PMID:21533176

  20. Interactome of E. piscicida and grouper liver proteins reveals strategies of bacterial infection and host immune response.

    PubMed

    Li, Hui; Zhu, Qing-Feng; Peng, Xuan-Xian; Peng, Bo

    2017-01-03

    The occurrence of infectious diseases is related to heterogeneous protein interactions between a host and a microbe. Therefore, elucidating the host-pathogen interplay is essential. We previously revealed the protein interactome between Edwardsiella piscicida and fish gill cells, and the present study identified the protein interactome between E. piscicida and E. drummondhayi liver cells. E. drummondhayi liver cells and bacterial pull-down approaches were used to identify E. piscicida outer membrane proteins that bind to liver cells and fish liver cell proteins that interact with bacterial cells, respectively. Eight bacterial proteins and 11 fish proteins were characterized. Heterogeneous protein-protein interactions between these bacterial cells and fish liver cells were investigated through far-Western blotting and co-immunoprecipitation. A network was constructed based on 42 heterogeneous protein-protein interactions between seven bacterial proteins and 10 fish proteins. A comparison of the new interactome with the previously reported interactome showed that four bacterial proteins overlapped, whereas all of the identified fish proteins were new, suggesting a difference between bacterial tricks for evading host immunity and the host strategy for combating bacterial infection. Furthermore, these bacterial proteins were found to regulate the expression of host innate immune-related proteins. These findings indicate that the interactome contributes to bacterial infection and host immunity.

  1. The Protein Interactome of Streptococcus pneumoniae and Bacterial Meta-interactomes Improve Function Predictions

    PubMed Central

    Rajagopala, S. V.; Blazie, S. M.; Parrish, J. R.; Khuri, S.; Finley, R. L.

    2017-01-01

    ABSTRACT The functions of roughly a third of all proteins in Streptococcus pneumoniae, a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein’s function, allowing us to provide functional predictions for 299 S. pneumoniae proteins with previously unknown functions. IMPORTANCE Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen S. pneumoniae. We used an experimental approach to identify over 2,000 new protein interactions for S. pneumoniae, the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins. PMID:28744484

  2. APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks

    PubMed Central

    Alonso-López, Diego; Gutiérrez, Miguel A.; Lopes, Katia P.; Prieto, Carlos; Santamaría, Rodrigo; De Las Rivas, Javier

    2016-01-01

    APID (Agile Protein Interactomes DataServer) is an interactive web server that provides unified generation and delivery of protein interactomes mapped to their respective proteomes. This resource is a new, fully redesigned server that includes a comprehensive collection of protein interactomes for more than 400 organisms (25 of which include more than 500 interactions) produced by the integration of only experimentally validated protein–protein physical interactions. For each protein–protein interaction (PPI) the server includes currently reported information about its experimental validation to allow selection and filtering at different quality levels. As a whole, it provides easy access to the interactomes from specific species and includes a global uniform compendium of 90,379 distinct proteins and 678,441 singular interactions. APID integrates and unifies PPIs from major primary databases of molecular interactions, from other specific repositories and also from experimentally resolved 3D structures of protein complexes where more than two proteins were identified. For this purpose, a collection of 8,388 structures were analyzed to identify specific PPIs. APID also includes a new graph tool (based on Cytoscape.js) for visualization and interactive analyses of PPI networks. The server does not require registration and it is freely available for use at http://apid.dep.usal.es. PMID:27131791

  3. Proteomics profiling of interactome dynamics by colocalisation analysis (COLA).

    PubMed

    Mardakheh, Faraz K; Sailem, Heba Z; Kümper, Sandra; Tape, Christopher J; McCully, Ryan R; Paul, Angela; Anjomani-Virmouni, Sara; Jørgensen, Claus; Poulogiannis, George; Marshall, Christopher J; Bakal, Chris

    2016-12-20

    Localisation and protein function are intimately linked in eukaryotes, as proteins are localised to specific compartments where they come into proximity of other functionally relevant proteins. Significant co-localisation of two proteins can therefore be indicative of their functional association. We here present COLA, a proteomics based strategy coupled with a bioinformatics framework to detect protein-protein co-localisations on a global scale. COLA reveals functional interactions by matching proteins with significant similarity in their subcellular localisation signatures. The rapid nature of COLA allows mapping of interactome dynamics across different conditions or treatments with high precision.

  4. Schizophrenia interactome with 504 novel protein–protein interactions

    PubMed Central

    Ganapathiraju, Madhavi K; Thahir, Mohamed; Handen, Adam; Sarkar, Saumendra N; Sweet, Robert A; Nimgaonkar, Vishwajit L; Loscher, Christine E; Bauer, Eileen M; Chaparala, Srilakshmi

    2016-01-01

    Genome-wide association studies of schizophrenia (GWAS) have revealed the role of rare and common genetic variants, but the functional effects of the risk variants remain to be understood. Protein interactome-based studies can facilitate the study of molecular mechanisms by which the risk genes relate to schizophrenia (SZ) genesis, but protein–protein interactions (PPIs) are unknown for many of the liability genes. We developed a computational model to discover PPIs, which is found to be highly accurate according to computational evaluations and experimental validations of selected PPIs. We present here, 365 novel PPIs of liability genes identified by the SZ Working Group of the Psychiatric Genomics Consortium (PGC). Seventeen genes that had no previously known interactions have 57 novel interactions by our method. Among the new interactors are 19 drug targets that are targeted by 130 drugs. In addition, we computed 147 novel PPIs of 25 candidate genes investigated in the pre-GWAS era. While there is little overlap between the GWAS genes and the pre-GWAS genes, the interactomes reveal that they largely belong to the same pathways, thus reconciling the apparent disparities between the GWAS and prior gene association studies. The interactome including 504 novel PPIs overall, could motivate other systems biology studies and trials with repurposed drugs. The PPIs are made available on a webserver, called Schizo-Pi at http://severus.dbmi.pitt.edu/schizo-pi with advanced search capabilities. PMID:27336055

  5. Elucidation of the 14-3-3ζ interactome reveals critical roles of RNA-splicing factors during adipogenesis.

    PubMed

    Mugabo, Yves; Sadeghi, Mina; Fang, Nancy N; Mayor, Thibault; Lim, Gareth E

    2018-05-04

    Adipogenesis involves a complex signaling network requiring strict temporal and spatial organization of effector molecules. Molecular scaffolds, such as 14-3-3 proteins, facilitate such organization, and we have previously identified 14-3-3ζ as an essential scaffold in adipocyte differentiation. The interactome of 14-3-3ζ is large and diverse, and it is possible that novel adipogenic factors may be present within it, but this possibility has not yet been tested. Herein, we generated mouse embryonic fibroblasts from mice overexpressing a tandem affinity purification (TAP) epitope-tagged 14-3-3ζ molecule. After inducing adipogenesis, TAP-14-3-3ζ complexes were purified, followed by MS analysis to determine the 14-3-3ζ interactome. We observed more than 100 proteins that were unique to adipocyte differentiation, 56 of which were novel interacting partners. Among these, we were able to identify previously established regulators of adipogenesis ( i.e. Ptrf/Cavin1) within the 14-3-3ζ interactome, confirming the utility of this approach to detect adipogenic factors. We found that proteins related to RNA metabolism, processing, and splicing were enriched in the interactome. Analysis of transcriptomic data revealed that 14-3-3ζ depletion in 3T3-L1 cells affected alternative splicing of mRNA during adipocyte differentiation. siRNA-mediated depletion of RNA-splicing factors within the 14-3-3ζ interactome, that is, of Hnrpf, Hnrpk, Ddx6, and Sfpq, revealed that they have essential roles in adipogenesis and in the alternative splicing of Pparg and the adipogenesis-associated gene Lpin1 In summary, we have identified novel adipogenic factors within the 14-3-3ζ interactome. Further characterization of additional proteins within the 14-3-3ζ interactome may help identify novel targets to block obesity-associated expansion of adipose tissues. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. A protein domain-based interactome network for C. elegans early embryogenesis

    PubMed Central

    Boxem, Mike; Maliga, Zoltan; Klitgord, Niels; Li, Na; Lemmens, Irma; Mana, Miyeko; de Lichtervelde, Lorenzo; Mul, Joram D.; van de Peut, Diederik; Devos, Maxime; Simonis, Nicolas; Yildirim, Muhammed A.; Cokol, Murat; Kao, Huey-Ling; de Smet, Anne-Sophie; Wang, Haidong; Schlaitz, Anne-Lore; Hao, Tong; Milstein, Stuart; Fan, Changyu; Tipsword, Mike; Drew, Kevin; Galli, Matilde; Rhrissorrakrai, Kahn; Drechsel, David; Koller, Daphne; Roth, Frederick P.; Iakoucheva, Lilia M.; Dunker, A. Keith; Bonneau, Richard; Gunsalus, Kristin C.; Hill, David E.; Piano, Fabio; Tavernier, Jan; van den Heuvel, Sander; Hyman, Anthony A.; Vidal, Marc

    2008-01-01

    Summary Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or “interactome” networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed new insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms. PMID:18692475

  7. Photocrosslinking approaches to interactome mapping

    PubMed Central

    Pham, Nam D.; Parker, Randy B.; Kohler, Jennifer J.

    2012-01-01

    Photocrosslinking approaches can be used to map interactome networks within the context of living cells. Photocrosslinking methods rely on use of metabolic engineering or genetic code expansion to incorporate photocrosslinking analogs of amino acids or sugars into cellular biomolecules. Immunological and mass spectrometry techniques are used to analyze crosslinked complexes, thereby defining specific interactomes. Because photocrosslinking can be conducted in native, cellular settings, it can be used to define context-dependent interactions. Photocrosslinking methods are also ideally suited for determining interactome dynamics, mapping interaction interfaces, and identifying transient interactions in which intrinsically disordered proteins and glycoproteins engage. Here we discuss the application of cell-based photocrosslinking to the study of specific problems in immune cell signaling, transcription, membrane protein dynamics, nucleocytoplasmic transport, and chaperone-assisted protein folding. PMID:23149092

  8. A convex optimization approach for identification of human tissue-specific interactomes.

    PubMed

    Mohammadi, Shahin; Grama, Ananth

    2016-06-15

    Analysis of organism-specific interactomes has yielded novel insights into cellular function and coordination, understanding of pathology, and identification of markers and drug targets. Genes, however, can exhibit varying levels of cell type specificity in their expression, and their coordinated expression manifests in tissue-specific function and pathology. Tissue-specific/tissue-selective interaction mechanisms have significant applications in drug discovery, as they are more likely to reveal drug targets. Furthermore, tissue-specific transcription factors (tsTFs) are significantly implicated in human disease, including cancers. Finally, disease genes and protein complexes have the tendency to be differentially expressed in tissues in which defects cause pathology. These observations motivate the construction of refined tissue-specific interactomes from organism-specific interactomes. We present a novel technique for constructing human tissue-specific interactomes. Using a variety of validation tests (Edge Set Enrichment Analysis, Gene Ontology Enrichment, Disease-Gene Subnetwork Compactness), we show that our proposed approach significantly outperforms state-of-the-art techniques. Finally, using case studies of Alzheimer's and Parkinson's diseases, we show that tissue-specific interactomes derived from our study can be used to construct pathways implicated in pathology and demonstrate the use of these pathways in identifying novel targets. http://www.cs.purdue.edu/homes/mohammas/projects/ActPro.html mohammadi@purdue.edu. © The Author 2016. Published by Oxford University Press.

  9. Insar Unwrapping Error Correction Based on Quasi-Accurate Detection of Gross Errors (quad)

    NASA Astrophysics Data System (ADS)

    Kang, Y.; Zhao, C. Y.; Zhang, Q.; Yang, C. S.

    2018-04-01

    Unwrapping error is a common error in the InSAR processing, which will seriously degrade the accuracy of the monitoring results. Based on a gross error correction method, Quasi-accurate detection (QUAD), the method for unwrapping errors automatic correction is established in this paper. This method identifies and corrects the unwrapping errors by establishing a functional model between the true errors and interferograms. The basic principle and processing steps are presented. Then this method is compared with the L1-norm method with simulated data. Results show that both methods can effectively suppress the unwrapping error when the ratio of the unwrapping errors is low, and the two methods can complement each other when the ratio of the unwrapping errors is relatively high. At last the real SAR data is tested for the phase unwrapping error correction. Results show that this new method can correct the phase unwrapping errors successfully in the practical application.

  10. RNA-Binding Proteins Revisited - The Emerging Arabidopsis mRNA Interactome.

    PubMed

    Köster, Tino; Marondedze, Claudius; Meyer, Katja; Staiger, Dorothee

    2017-06-01

    RNA-protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture - where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Photoreactive Stapled BH3 Peptides to Dissect the BCL-2 Family Interactome

    PubMed Central

    Braun, Craig R.; Mintseris, Julian; Gavathiotis, Evripidis; Bird, Gregory H.; Gygi, Steven P.; Walensky, Loren D.

    2010-01-01

    SUMMARY Defining protein interactions forms the basis for discovery of biological pathways, disease mechanisms, and opportunities for therapeutic intervention. To harness the robust binding affinity and selectivity of structured peptides for interactome discovery, we engineered photoreactive stapled BH3 peptide helices that covalently capture their physiologic BCL-2 family targets. The crosslinking α-helices covalently trap both static and dynamic protein interactors, and enable rapid identification of interaction sites, providing a critical link between interactome discovery and targeted drug design. PMID:21168768

  12. Computational Methods to Predict Protein Interaction Partners

    NASA Astrophysics Data System (ADS)

    Valencia, Alfonso; Pazos, Florencio

    In the new paradigm for studying biological phenomena represented by Systems Biology, cellular components are not considered in isolation but as forming complex networks of relationships. Protein interaction networks are among the first objects studied from this new point of view. Deciphering the interactome (the whole network of interactions for a given proteome) has been shown to be a very complex task. Computational techniques for detecting protein interactions have become standard tools for dealing with this problem, helping and complementing their experimental counterparts. Most of these techniques use genomic or sequence features intuitively related with protein interactions and are based on "first principles" in the sense that they do not involve training with examples. There are also other computational techniques that use other sources of information (i.e. structural information or even experimental data) or are based on training with examples.

  13. ImmunemiR - A Database of Prioritized Immune miRNA Disease Associations and its Interactome.

    PubMed

    Prabahar, Archana; Natarajan, Jeyakumar

    2017-01-01

    MicroRNAs are the key regulators of gene expression and their abnormal expression in the immune system may be associated with several human diseases such as inflammation, cancer and autoimmune diseases. Elucidation of miRNA disease association through the interactome will deepen the understanding of its disease mechanisms. A specialized database for immune miRNAs is highly desirable to demonstrate the immune miRNA disease associations in the interactome. miRNAs specific to immune related diseases were retrieved from curated databases such as HMDD, miR2disease and PubMed literature based on MeSH classification of immune system diseases. The additional data such as miRNA target genes, genes coding protein-protein interaction information were compiled from related resources. Further, miRNAs were prioritized to specific immune diseases using random walk ranking algorithm. In total 245 immune miRNAs associated with 92 OMIM disease categories were identified from external databases. The resultant data were compiled as ImmunemiR, a database of prioritized immune miRNA disease associations. This database provides both text based annotation information and network visualization of its interactome. To our knowledge, ImmunemiR is the first available database to provide a comprehensive repository of human immune disease associated miRNAs with network visualization options of its target genes, protein-protein interactions (PPI) and its disease associations. It is freely available at http://www.biominingbu.org/immunemir/. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Large-scale De Novo Prediction of Physical Protein-Protein Association*

    PubMed Central

    Elefsinioti, Antigoni; Saraç, Ömer Sinan; Hegele, Anna; Plake, Conrad; Hubner, Nina C.; Poser, Ina; Sarov, Mihail; Hyman, Anthony; Mann, Matthias; Schroeder, Michael; Stelzl, Ulrich; Beyer, Andreas

    2011-01-01

    Information about the physical association of proteins is extensively used for studying cellular processes and disease mechanisms. However, complete experimental mapping of the human interactome will remain prohibitively difficult in the near future. Here we present a map of predicted human protein interactions that distinguishes functional association from physical binding. Our network classifies more than 5 million protein pairs predicting 94,009 new interactions with high confidence. We experimentally tested a subset of these predictions using yeast two-hybrid analysis and affinity purification followed by quantitative mass spectrometry. Thus we identified 462 new protein-protein interactions and confirmed the predictive power of the network. These independent experiments address potential issues of circular reasoning and are a distinctive feature of this work. Analysis of the physical interactome unravels subnetworks mediating between different functional and physical subunits of the cell. Finally, we demonstrate the utility of the network for the analysis of molecular mechanisms of complex diseases by applying it to genome-wide association studies of neurodegenerative diseases. This analysis provides new evidence implying TOMM40 as a factor involved in Alzheimer's disease. The network provides a high-quality resource for the analysis of genomic data sets and genetic association studies in particular. Our interactome is available via the hPRINT web server at: www.print-db.org. PMID:21836163

  15. SteinerNet: a web server for integrating ‘omic’ data to discover hidden components of response pathways

    PubMed Central

    Tuncbag, Nurcan; McCallum, Scott; Huang, Shao-shan Carol; Fraenkel, Ernest

    2012-01-01

    High-throughput technologies including transcriptional profiling, proteomics and reverse genetics screens provide detailed molecular descriptions of cellular responses to perturbations. However, it is difficult to integrate these diverse data to reconstruct biologically meaningful signaling networks. Previously, we have established a framework for integrating transcriptional, proteomic and interactome data by searching for the solution to the prize-collecting Steiner tree problem. Here, we present a web server, SteinerNet, to make this method available in a user-friendly format for a broad range of users with data from any species. At a minimum, a user only needs to provide a set of experimentally detected proteins and/or genes and the server will search for connections among these data from the provided interactomes for yeast, human, mouse, Drosophila melanogaster and Caenorhabditis elegans. More advanced users can upload their own interactome data as well. The server provides interactive visualization of the resulting optimal network and downloadable files detailing the analysis and results. We believe that SteinerNet will be useful for researchers who would like to integrate their high-throughput data for a specific condition or cellular response and to find biologically meaningful pathways. SteinerNet is accessible at http://fraenkel.mit.edu/steinernet. PMID:22638579

  16. Demonstration of protein-fragment complementation assay using purified firefly luciferase fragments

    PubMed Central

    2013-01-01

    Background Human interactome is predicted to contain 150,000 to 300,000 protein-protein interactions, (PPIs). Protein-fragment complementation assay (PCA) is one of the most widely used methods to detect PPI, as well as Förster resonance energy transfer (FRET). To date, successful applications of firefly luciferase (Fluc)-based PCA have been reported in vivo, in cultured cells and in cell-free lysate, owing to its high sensitivity, high signal-to-background (S/B) ratio, and reversible response. Here we show the assay also works with purified proteins with unexpectedly rapid kinetics. Results Split Fluc fragments both fused with a rapamycin-dependently interacting protein pair were made and expressed in E. coli system, and purified to homogeneity. When the proteins were used for PCA to detect rapamycin-dependent PPI, they enabled a rapid detection (~1 s) of PPI with high S/B ratio. When Fn7-8 domains (7 nm in length) that was shown to abrogate GFP mutant-based FRET was inserted between split Fluc and FKBP12 as a rigid linker, it still showed some response, suggesting less limitation in interacting partner’s size. Finally, the stability of the probe was investigated. Preincubation of the probes at 37 degreeC up to 1 h showed marked decrease of the luminescent signal to 1.5%, showing the limited stability of this system. Conclusion Fluc PCA using purified components will enable a rapid and handy detection of PPIs with high S/B ratio, avoiding the effects of concomitant components. Although the system might not be suitable for large-scale screening due to its limited stability, it can detect an interaction over larger distance than by FRET. This would be the first demonstration of Fluc PCA in vitro, which has a distinct advantage over other PPI assays. Our system enables detection of direct PPIs without risk of perturbation by PPI mediators in the complex cellular milieu. PMID:23536995

  17. Native KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition.

    PubMed

    Mahadevan, Vivek; Khademullah, C Sahara; Dargaei, Zahra; Chevrier, Jonah; Uvarov, Pavel; Kwan, Julian; Bagshaw, Richard D; Pawson, Tony; Emili, Andrew; De Koninck, Yves; Anggono, Victor; Airaksinen, Matti; Woodin, Melanie A

    2017-10-13

    KCC2 is a neuron-specific K + -Cl - cotransporter essential for establishing the Cl - gradient required for hyperpolarizing inhibition in the central nervous system (CNS). KCC2 is highly localized to excitatory synapses where it regulates spine morphogenesis and AMPA receptor confinement. Aberrant KCC2 function contributes to human neurological disorders including epilepsy and neuropathic pain. Using functional proteomics, we identified the KCC2-interactome in the mouse brain to determine KCC2-protein interactions that regulate KCC2 function. Our analysis revealed that KCC2 interacts with diverse proteins, and its most predominant interactors play important roles in postsynaptic receptor recycling. The most abundant KCC2 interactor is a neuronal endocytic regulatory protein termed PACSIN1 (SYNDAPIN1). We verified the PACSIN1-KCC2 interaction biochemically and demonstrated that shRNA knockdown of PACSIN1 in hippocampal neurons increases KCC2 expression and hyperpolarizes the reversal potential for Cl - . Overall, our global native-KCC2 interactome and subsequent characterization revealed PACSIN1 as a novel and potent negative regulator of KCC2.

  18. Native KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition

    PubMed Central

    Mahadevan, Vivek; Chevrier, Jonah; Uvarov, Pavel; Kwan, Julian; Bagshaw, Richard D; Pawson, Tony; Emili, Andrew; De Koninck, Yves; Anggono, Victor; Airaksinen, Matti

    2017-01-01

    KCC2 is a neuron-specific K+-Cl– cotransporter essential for establishing the Cl- gradient required for hyperpolarizing inhibition in the central nervous system (CNS). KCC2 is highly localized to excitatory synapses where it regulates spine morphogenesis and AMPA receptor confinement. Aberrant KCC2 function contributes to human neurological disorders including epilepsy and neuropathic pain. Using functional proteomics, we identified the KCC2-interactome in the mouse brain to determine KCC2-protein interactions that regulate KCC2 function. Our analysis revealed that KCC2 interacts with diverse proteins, and its most predominant interactors play important roles in postsynaptic receptor recycling. The most abundant KCC2 interactor is a neuronal endocytic regulatory protein termed PACSIN1 (SYNDAPIN1). We verified the PACSIN1-KCC2 interaction biochemically and demonstrated that shRNA knockdown of PACSIN1 in hippocampal neurons increases KCC2 expression and hyperpolarizes the reversal potential for Cl-. Overall, our global native-KCC2 interactome and subsequent characterization revealed PACSIN1 as a novel and potent negative regulator of KCC2. PMID:29028184

  19. The MYO6 interactome reveals adaptor complexes coordinating early endosome and cytoskeletal dynamics.

    PubMed

    O'Loughlin, Thomas; Masters, Thomas A; Buss, Folma

    2018-04-01

    The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine-tune motor activity in time and space. These motor-adaptor-cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling-based proteomics strategy to map the interactome of the unique minus end-directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6-adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG-Induced F-actin for Tethering) complex that controls endosome positioning and motility through RHO-driven actin polymerisation; and the DISP (DOCK7-Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the first in vivo interactome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  20. A new pooling strategy for high-throughput screening: the Shifted Transversal Design

    PubMed Central

    Thierry-Mieg, Nicolas

    2006-01-01

    Background In binary high-throughput screening projects where the goal is the identification of low-frequency events, beyond the obvious issue of efficiency, false positives and false negatives are a major concern. Pooling constitutes a natural solution: it reduces the number of tests, while providing critical duplication of the individual experiments, thereby correcting for experimental noise. The main difficulty consists in designing the pools in a manner that is both efficient and robust: few pools should be necessary to correct the errors and identify the positives, yet the experiment should not be too vulnerable to biological shakiness. For example, some information should still be obtained even if there are slightly more positives or errors than expected. This is known as the group testing problem, or pooling problem. Results In this paper, we present a new non-adaptive combinatorial pooling design: the "shifted transversal design" (STD). It relies on arithmetics, and rests on two intuitive ideas: minimizing the co-occurrence of objects, and constructing pools of constant-sized intersections. We prove that it allows unambiguous decoding of noisy experimental observations. This design is highly flexible, and can be tailored to function robustly in a wide range of experimental settings (i.e., numbers of objects, fractions of positives, and expected error-rates). Furthermore, we show that our design compares favorably, in terms of efficiency, to the previously described non-adaptive combinatorial pooling designs. Conclusion This method is currently being validated by field-testing in the context of yeast-two-hybrid interactome mapping, in collaboration with Marc Vidal's lab at the Dana Farber Cancer Institute. Many similar projects could benefit from using the Shifted Transversal Design. PMID:16423300

  1. Disease networks. Uncovering disease-disease relationships through the incomplete interactome.

    PubMed

    Menche, Jörg; Sharma, Amitabh; Kitsak, Maksim; Ghiassian, Susan Dina; Vidal, Marc; Loscalzo, Joseph; Barabási, Albert-László

    2015-02-20

    According to the disease module hypothesis, the cellular components associated with a disease segregate in the same neighborhood of the human interactome, the map of biologically relevant molecular interactions. Yet, given the incompleteness of the interactome and the limited knowledge of disease-associated genes, it is not obvious if the available data have sufficient coverage to map out modules associated with each disease. Here we derive mathematical conditions for the identifiability of disease modules and show that the network-based location of each disease module determines its pathobiological relationship to other diseases. For example, diseases with overlapping network modules show significant coexpression patterns, symptom similarity, and comorbidity, whereas diseases residing in separated network neighborhoods are phenotypically distinct. These tools represent an interactome-based platform to predict molecular commonalities between phenotypically related diseases, even if they do not share primary disease genes. Copyright © 2015, American Association for the Advancement of Science.

  2. Recent Progress in CFTR Interactome Mapping and Its Importance for Cystic Fibrosis.

    PubMed

    Lim, Sang Hyun; Legere, Elizabeth-Ann; Snider, Jamie; Stagljar, Igor

    2017-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride channel found in secretory epithelia with a plethora of known interacting proteins. Mutations in the CFTR gene cause cystic fibrosis (CF), a disease that leads to progressive respiratory illness and other complications of phenotypic variance resulting from perturbations of this protein interaction network. Studying the collection of CFTR interacting proteins and the differences between the interactomes of mutant and wild type CFTR provides insight into the molecular machinery of the disease and highlights possible therapeutic targets. This mini review focuses on functional genomics and proteomics approaches used for systematic, high-throughput identification of CFTR-interacting proteins to provide comprehensive insight into CFTR regulation and function.

  3. A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis.

    PubMed

    Mechelli, Rosella; Umeton, Renato; Policano, Claudia; Annibali, Viviana; Coarelli, Giulia; Ricigliano, Vito A G; Vittori, Danila; Fornasiero, Arianna; Buscarinu, Maria Chiara; Romano, Silvia; Salvetti, Marco; Ristori, Giovanni

    2013-01-01

    Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms.

  4. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry.

    PubMed

    Ejsing, Christer S; Sampaio, Julio L; Surendranath, Vineeth; Duchoslav, Eva; Ekroos, Kim; Klemm, Robin W; Simons, Kai; Shevchenko, Andrej

    2009-02-17

    Although the transcriptome, proteome, and interactome of several eukaryotic model organisms have been described in detail, lipidomes remain relatively uncharacterized. Using Saccharomyces cerevisiae as an example, we demonstrate that automated shotgun lipidomics analysis enabled lipidome-wide absolute quantification of individual molecular lipid species by streamlined processing of a single sample of only 2 million yeast cells. By comparative lipidomics, we achieved the absolute quantification of 250 molecular lipid species covering 21 major lipid classes. This analysis provided approximately 95% coverage of the yeast lipidome achieved with 125-fold improvement in sensitivity compared with previous approaches. Comparative lipidomics demonstrated that growth temperature and defects in lipid biosynthesis induce ripple effects throughout the molecular composition of the yeast lipidome. This work serves as a resource for molecular characterization of eukaryotic lipidomes, and establishes shotgun lipidomics as a powerful platform for complementing biochemical studies and other systems-level approaches.

  5. Diversity in Genetic In Vivo Methods for Protein-Protein Interaction Studies: from the Yeast Two-Hybrid System to the Mammalian Split-Luciferase System

    PubMed Central

    Stynen, Bram; Tournu, Hélène; Tavernier, Jan

    2012-01-01

    Summary: The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays. PMID:22688816

  6. Identification of the PAK4 interactome reveals PAK4 phosphorylation of N-WASP and promotion of Arp2/3-dependent actin polymerization.

    PubMed

    Zhao, Miao; Spiess, Matthias; Johansson, Henrik J; Olofsson, Helene; Hu, Jianjiang; Lehtiö, Janne; Strömblad, Staffan

    2017-09-29

    p21-activated kinase 4 (PAK4) regulates cell proliferation, apoptosis, cell motility and F-actin remodeling, but the PAK4 interactome has not been systematically analyzed. Here, we comprehensively characterized the human PAK4 interactome by iTRAQ quantitative mass spectrometry of PAK4-immunoprecipitations. Consistent with its multiple reported functions, the PAK4 interactome was enriched in diverse protein networks, including the 14-3-3, proteasome, replication fork, CCT and Arp2/3 complexes. Because PAK4 co-immunoprecipitated most subunits of the Arp2/3 complex, we hypothesized that PAK4 may play a role in Arp2/3 dependent actin regulation. Indeed, we found that PAK4 interacts with and phosphorylates the nucleation promoting factor N-WASP at Ser484/Ser485 and promotes Arp2/3-dependent actin polymerization in vitro. Also, PAK4 ablation in vivo reduced N-WASP Ser484/Ser485 phosphorylation and altered the cellular balance between G- and F-actin as well as the actin organization. By presenting the PAK4 interactome, we here provide a powerful resource for further investigations and as proof of principle, we also indicate a novel mechanism by which PAK4 regulates actin cytoskeleton remodeling.

  7. Developing and applying a gene functional association network for anti-angiogenic kinase inhibitor activity assessment in an angiogenesis co-culture model

    PubMed Central

    Chen, Yuefeng; Wei, Tao; Yan, Lei; Lawrence, Frank; Qian, Hui-Rong; Burkholder, Timothy P; Starling, James J; Yingling, Jonathan M; Shou, Jianyong

    2008-01-01

    Background Tumor angiogenesis is a highly regulated process involving intercellular communication as well as the interactions of multiple downstream signal transduction pathways. Disrupting one or even a few angiogenesis pathways is often insufficient to achieve sustained therapeutic benefits due to the complexity of angiogenesis. Targeting multiple angiogenic pathways has been increasingly recognized as a viable strategy. However, translation of the polypharmacology of a given compound to its antiangiogenic efficacy remains a major technical challenge. Developing a global functional association network among angiogenesis-related genes is much needed to facilitate holistic understanding of angiogenesis and to aid the development of more effective anti-angiogenesis therapeutics. Results We constructed a comprehensive gene functional association network or interactome by transcript profiling an in vitro angiogenesis model, in which human umbilical vein endothelial cells (HUVECs) formed capillary structures when co-cultured with normal human dermal fibroblasts (NHDFs). HUVEC competence and NHDF supportiveness of cord formation were found to be highly cell-passage dependent. An enrichment test of Biological Processes (BP) of differentially expressed genes (DEG) revealed that angiogenesis related BP categories significantly changed with cell passages. Built upon 2012 DEGs identified from two microarray studies, the resulting interactome captured 17226 functional gene associations and displayed characteristics of a scale-free network. The interactome includes the involvement of oncogenes and tumor suppressor genes in angiogenesis. We developed a network walking algorithm to extract connectivity information from the interactome and applied it to simulate the level of network perturbation by three multi-targeted anti-angiogenic kinase inhibitors. Simulated network perturbation correlated with observed anti-angiogenesis activity in a cord formation bioassay. Conclusion We established a comprehensive gene functional association network to model in vitro angiogenesis regulation. The present study provided a proof-of-concept pilot of applying network perturbation analysis to drug phenotypic activity assessment. PMID:18518970

  8. Analysis of the interactome of the Ser/Thr Protein Phosphatase type 1 in Plasmodium falciparum.

    PubMed

    Hollin, Thomas; De Witte, Caroline; Lenne, Astrid; Pierrot, Christine; Khalife, Jamal

    2016-03-17

    Protein Phosphatase 1 (PP1) is an enzyme essential to cell viability in the malaria parasite Plasmodium falciparum (Pf). The activity of PP1 is regulated by the binding of regulatory subunits, of which there are up to 200 in humans, but only 3 have been so far reported for the parasite. To better understand the P. falciparum PP1 (PfPP1) regulatory network, we here report the use of three strategies to characterize the PfPP1 interactome: co-affinity purified proteins identified by mass spectrometry, yeast two-hybrid (Y2H) screening and in silico analysis of the P. falciparum predicted proteome. Co-affinity purification followed by MS analysis identified 6 PfPP1 interacting proteins (Pips) of which 3 contained the RVxF consensus binding, 2 with a Fxx[RK]x[RK] motif, also shown to be a PP1 binding motif and one with both binding motifs. The Y2H screens identified 134 proteins of which 30 present the RVxF binding motif and 20 have the Fxx[RK]x[RK] binding motif. The in silico screen of the Pf predicted proteome using a consensus RVxF motif as template revealed the presence of 55 potential Pips. As further demonstration, 35 candidate proteins were validated as PfPP1 interacting proteins in an ELISA-based assay. To the best of our knowledge, this is the first study on PfPP1 interactome. The data reports several conserved PP1 interacting proteins as well as a high number of specific interactors to PfPP1. Their analysis indicates a high diversity of biological functions for PP1 in Plasmodium. Based on the present data and on an earlier study of the Pf interactome, a potential implication of Pips in protein folding/proteolysis, transcription and pathogenicity networks is proposed. The present work provides a starting point for further studies on the structural basis of these interactions and their functions in P. falciparum.

  9. High-throughput proteomics : optical approaches.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, George S.

    2008-09-01

    Realistic cell models could greatly accelerate our ability to engineer biochemical pathways and the production of valuable organic products, which would be of great use in the development of biofuels, pharmaceuticals, and the crops for the next green revolution. However, this level of engineering will require a great deal more knowledge about the mechanisms of life than is currently available. In particular, we need to understand the interactome (which proteins interact) as it is situated in the three dimensional geometry of the cell (i.e., a situated interactome), and the regulation/dynamics of these interactions. Methods for optical proteomics have become availablemore » that allow the monitoring and even disruption/control of interacting proteins in living cells. Here, a range of these methods is reviewed with respect to their role in elucidating the interactome and the relevant spatial localizations. Development of these technologies and their integration into the core competencies of research organizations can position whole institutions and teams of researchers to lead in both the fundamental science and the engineering applications of cellular biology. That leadership could be particularly important with respect to problems of national urgency centered around security, biofuels, and healthcare.« less

  10. Physical and in silico approaches identify DNA-PK in a Tax DNA-damage response interactome

    PubMed Central

    Ramadan, Emad; Ward, Michael; Guo, Xin; Durkin, Sarah S; Sawyer, Adam; Vilela, Marcelo; Osgood, Christopher; Pothen, Alex; Semmes, Oliver J

    2008-01-01

    Background We have initiated an effort to exhaustively map interactions between HTLV-1 Tax and host cellular proteins. The resulting Tax interactome will have significant utility toward defining new and understanding known activities of this important viral protein. In addition, the completion of a full Tax interactome will also help shed light upon the functional consequences of these myriad Tax activities. The physical mapping process involved the affinity isolation of Tax complexes followed by sequence identification using tandem mass spectrometry. To date we have mapped 250 cellular components within this interactome. Here we present our approach to prioritizing these interactions via an in silico culling process. Results We first constructed an in silico Tax interactome comprised of 46 literature-confirmed protein-protein interactions. This number was then reduced to four Tax-interactions suspected to play a role in DNA damage response (Rad51, TOP1, Chk2, 53BP1). The first-neighbor and second-neighbor interactions of these four proteins were assembled from available human protein interaction databases. Through an analysis of betweenness and closeness centrality measures, and numbers of interactions, we ranked proteins in the first neighborhood. When this rank list was compared to the list of physical Tax-binding proteins, DNA-PK was the highest ranked protein common to both lists. An overlapping clustering of the Tax-specific second-neighborhood protein network showed DNA-PK to be one of three bridge proteins that link multiple clusters in the DNA damage response network. Conclusion The interaction of Tax with DNA-PK represents an important biological paradigm as suggested via consensus findings in vivo and in silico. We present this methodology as an approach to discovery and as a means of validating components of a consensus Tax interactome. PMID:18922151

  11. Grouping annotations on the subcellular layered interactome demonstrates enhanced autophagy activity in a recurrent experimental autoimmune uveitis T cell line.

    PubMed

    Jia, Xiuzhi; Li, Jingbo; Shi, Dejing; Zhao, Yu; Dong, Yucui; Ju, Huanyu; Yang, Jinfeng; Sun, Jianhua; Li, Xia; Ren, Huan

    2014-01-01

    Human uveitis is a type of T cell-mediated autoimmune disease that often shows relapse-remitting courses affecting multiple biological processes. As a cytoplasmic process, autophagy has been seen as an adaptive response to cell death and survival, yet the link between autophagy and T cell-mediated autoimmunity is not certain. In this study, based on the differentially expressed genes (GSE19652) between the recurrent versus monophasic T cell lines, whose adoptive transfer to susceptible animals may result in respective recurrent or monophasic uveitis, we proposed grouping annotations on a subcellular layered interactome framework to analyze the specific bioprocesses that are linked to the recurrence of T cell autoimmunity. That is, the subcellular layered interactome was established by the Cytoscape and Cerebral plugin based on differential expression, global interactome, and subcellular localization information. Then, the layered interactomes were grouping annotated by the ClueGO plugin based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. The analysis showed that significant bioprocesses with autophagy were orchestrated in the cytoplasmic layered interactome and that mTOR may have a regulatory role in it. Furthermore, by setting up recurrent and monophasic uveitis in Lewis rats, we confirmed by transmission electron microscopy that, in comparison to the monophasic disease, recurrent uveitis in vivo showed significantly increased autophagy activity and extended lymphocyte infiltration to the affected retina. In summary, our framework methodology is a useful tool to disclose specific bioprocesses and molecular targets that can be attributed to a certain disease. Our results indicated that targeted inhibition of autophagy pathways may perturb the recurrence of uveitis.

  12. Interactome of the hepatitis C virus: Literature mining with ANDSystem.

    PubMed

    Saik, Olga V; Ivanisenko, Timofey V; Demenkov, Pavel S; Ivanisenko, Vladimir A

    2016-06-15

    A study of the molecular genetics mechanisms of host-pathogen interactions is of paramount importance in developing drugs against viral diseases. Currently, the literature contains a huge amount of information that describes interactions between HCV and human proteins. In addition, there are many factual databases that contain experimentally verified data on HCV-host interactions. The sources of such data are the original data along with the data manually extracted from the literature. However, the manual analysis of scientific publications is time consuming and, because of this, databases created with such an approach often do not have complete information. One of the most promising methods to provide actualisation and completeness of information is text mining. Here, with the use of a previously developed method by the authors using ANDSystem, an automated extraction of information on the interactions between HCV and human proteins was conducted. As a data source for the text mining approach, PubMed abstracts and full text articles were used. Additionally, external factual databases were analyzed. On the basis of this analysis, a special version of ANDSystem, extended with the HCV interactome, was created. The HCV interactome contains information about the interactions between 969 human and 11 HCV proteins. Among the 969 proteins, 153 'new' proteins were found not previously referred to in any external databases of protein-protein interactions for HCV-host interactions. Thus, the extended ANDSystem possesses a more comprehensive detailing of HCV-host interactions versus other existing databases. It was interesting that HCV proteins more preferably interact with human proteins that were already involved in a large number of protein-protein interactions as well as those associated with many diseases. Among human proteins of the HCV interactome, there were a large number of proteins regulated by microRNAs. It turned out that the results obtained for protein-protein interactions and microRNA-regulation did not depend on how well the proteins were studied, while protein-disease interactions appeared to be dependent on the level of study. In particular, the mean number of diseases linked to well-studied proteins (proteins were considered well-studied if they were mentioned in 50 or more PubMed publications) from the HCV interactome was 20.8, significantly exceeding the mean number of associations with diseases (10.1) for the total set of well-studied human proteins present in ANDSystem. For proteins not highly poorly-studied investigated, proteins from the HCV interactome (each protein was referred to in less than 50 publications) distribution of the number of diseases associated with them had no statistically significant differences from the distribution of the number of diseases associated with poorly-studied proteins based on the total set of human proteins stored in ANDSystem. With this, the average number of associations with diseases for the HCV interactome and the total set of human proteins were 0.3 and 0.2, respectively. Thus, ANDSystem, extended with the HCV interactome, can be helpful in a wide range of issues related to analyzing HCV-host interactions in the search for anti-HCV drug targets. The demo version of the extended ANDSystem covered here containing only interactions between human proteins, genes, metabolites, diseases, miRNAs and molecular-genetic pathways, as well as interactions between human proteins/genes and HCV proteins, is freely available at the following web address: http://www-bionet.sscc.ru/psd/andhcv/. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Proteomics profiling of interactome dynamics by colocalisation analysis (COLA)† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6mb00701e Click here for additional data file. Click here for additional data file.

    PubMed Central

    Sailem, Heba Z.; Kümper, Sandra; Tape, Christopher J.; McCully, Ryan R.; Paul, Angela; Anjomani-Virmouni, Sara; Jørgensen, Claus; Poulogiannis, George; Marshall, Christopher J.

    2017-01-01

    Localisation and protein function are intimately linked in eukaryotes, as proteins are localised to specific compartments where they come into proximity of other functionally relevant proteins. Significant co-localisation of two proteins can therefore be indicative of their functional association. We here present COLA, a proteomics based strategy coupled with a bioinformatics framework to detect protein–protein co-localisations on a global scale. COLA reveals functional interactions by matching proteins with significant similarity in their subcellular localisation signatures. The rapid nature of COLA allows mapping of interactome dynamics across different conditions or treatments with high precision. PMID:27824369

  14. A Systems Biology Methodology Combining Transcriptome and Interactome Datasets to Assess the Implications of Cytokinin Signaling for Plant Immune Networks.

    PubMed

    Kunz, Meik; Dandekar, Thomas; Naseem, Muhammad

    2017-01-01

    Cytokinins (CKs) play an important role in plant growth and development. Also, several studies highlight the modulatory implications of CKs for plant-pathogen interaction. However, the underlying mechanisms of CK mediating immune networks in plants are still not fully understood. A detailed analysis of high-throughput transcriptome (RNA-Seq and microarrays) datasets under modulated conditions of plant CKs and its mergence with cellular interactome (large-scale protein-protein interaction data) has the potential to unlock the contribution of CKs to plant defense. Here, we specifically describe a detailed systems biology methodology pertinent to the acquisition and analysis of various omics datasets that delineate the role of plant CKs in impacting immune pathways in Arabidopsis.

  15. Reconstruction of the experimentally supported human protein interactome: what can we learn?

    PubMed

    Klapa, Maria I; Tsafou, Kalliopi; Theodoridis, Evangelos; Tsakalidis, Athanasios; Moschonas, Nicholas K

    2013-10-02

    Understanding the topology and dynamics of the human protein-protein interaction (PPI) network will significantly contribute to biomedical research, therefore its systematic reconstruction is required. Several meta-databases integrate source PPI datasets, but the protein node sets of their networks vary depending on the PPI data combined. Due to this inherent heterogeneity, the way in which the human PPI network expands via multiple dataset integration has not been comprehensively analyzed. We aim at assembling the human interactome in a global structured way and exploring it to gain insights of biological relevance. First, we defined the UniProtKB manually reviewed human "complete" proteome as the reference protein-node set and then we mined five major source PPI datasets for direct PPIs exclusively between the reference proteins. We updated the protein and publication identifiers and normalized all PPIs to the UniProt identifier level. The reconstructed interactome covers approximately 60% of the human proteome and has a scale-free structure. No apparent differentiating gene functional classification characteristics were identified for the unrepresented proteins. The source dataset integration augments the network mainly in PPIs. Polyubiquitin emerged as the highest-degree node, but the inclusion of most of its identified PPIs may be reconsidered. The high number (>300) of connections of the subsequent fifteen proteins correlates well with their essential biological role. According to the power-law network structure, the unrepresented proteins should mainly have up to four connections with equally poorly-connected interactors. Reconstructing the human interactome based on the a priori definition of the protein nodes enabled us to identify the currently included part of the human "complete" proteome, and discuss the role of the proteins within the network topology with respect to their function. As the network expansion has to comply with the scale-free theory, we suggest that the core of the human interactome has essentially emerged. Thus, it could be employed in systems biology and biomedical research, despite the considerable number of currently unrepresented proteins. The latter are probably involved in specialized physiological conditions, justifying the scarcity of related PPI information, and their identification can assist in designing relevant functional experiments and targeted text mining algorithms.

  16. Quantitative interactome reveals that porcine reproductive and respiratory syndrome virus nonstructural protein 2 forms a complex with viral nucleocapsid protein and cellular vimentin.

    PubMed

    Song, Tao; Fang, Liurong; Wang, Dang; Zhang, Ruoxi; Zeng, Songlin; An, Kang; Chen, Huanchun; Xiao, Shaobo

    2016-06-16

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has heavily impacted the global swine industry. The PRRSV nonstructural protein 2 (nsp2) plays crucial roles in viral replication and host immune regulation, most likely by interacting with viral or cellular proteins that have not yet been identified. In this study, a quantitative interactome approach based on immunoprecipitation and stable isotope labeling with amino acids in cell culture (SILAC) was performed to identify nsp2-interacting proteins in PRRSV-infected cells with an nsp2-specific monoclonal antibody. Nine viral proteins and 62 cellular proteins were identified as potential nsp2-interacting partners. Our data demonstrate that the PRRSV nsp1α, nsp1β, and nucleocapsid proteins all interact directly with nsp2. Nsp2-interacting cellular proteins were classified into different functional groups and an interactome network of nsp2 was generated. Interestingly, cellular vimentin, a known receptor for PRRSV, forms a complex with nsp2 by using viral nucleocapsid protein as an intermediate. Taken together, the nsp2 interactome under the condition of virus infection clarifies a role of nsp2 in PRRSV replication and immune evasion. Viral proteins must interact with other virus-encoded proteins and/or host cellular proteins to function, and interactome analysis is an ideal approach for identifying such interacting proteins. In this study, we used the quantitative interactome methodology to identify the viral and cellular proteins that potentially interact with the nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) under virus infection conditions, thus providing a rich source of potential viral and cellular interaction partners for PRRSV nsp2. Based on the interactome data, we further demonstrated that PRRSV nsp2 and nucleocapsid protein together with cellular vimentin, form a complex that may be essential for viral attachment and replication, which partly explains the role of nsp2 in PRRSV replication and immune evasion. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Evidence for network evolution in an arabidopsis interactome map

    USDA-ARS?s Scientific Manuscript database

    Plants have unique features that evolved in response to their environments and ecosystems. A full account of the complex cellular networks that underlie plant-specific functions is still missing. We describe a proteome-wide binary protein-protein interaction map for the interactome network of the pl...

  18. Comprehensive interactome of Otx2 in the adult mouse neural retina.

    PubMed

    Fant, Bruno; Samuel, Alexander; Audebert, Stéphane; Couzon, Agnès; El Nagar, Salsabiel; Billon, Nathalie; Lamonerie, Thomas

    2015-11-01

    The Otx2 homeodomain transcription factor exerts multiple functions in specific developmental contexts, probably through the regulation of different sets of genes. Protein partners of Otx2 have been shown to modulate its activity. Therefore, the Otx2 interactome may play a key role in selecting a precise target-gene repertoire, hence determining its function in a specific tissue. To address the nature of Otx2 interactome, we generated a new recombinant Otx2(CTAP-tag) mouse line, designed for protein complexes purification. We validated this mouse line by establishing the Otx2 interactome in the adult neural retina. In this tissue, Otx2 is thought to have overlapping function with its paralog Crx. Our analysis revealed that, in contrary to Crx, Otx2 did not develop interactions with proteins that are known to regulate phototransduction genes but showed specific partnership with factors associated with retinal development. The relationship between Otx2 and Crx in the neural retina should therefore be considered as complementarity rather than redundancy. Furthermore, study of the Otx2 interactome revealed strong associations with RNA processing and translation machineries, suggesting unexpected roles for Otx2 in the regulation of selected target genes all along the transcription/translation pathway. The Otx2(CTAP-tag) line, therefore, appears suitable for a systematic approach to Otx2 protein-protein interactions. genesis 53:685-694, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Transcriptomic Analysis of the Claudin Interactome in Malignant Pleural Mesothelioma: Evaluation of the Effect of Disease Phenotype, Asbestos Exposure, and CDKN2A Deletion Status

    PubMed Central

    Rouka, Erasmia; Vavougios, Georgios D.; Solenov, Evgeniy I.; Gourgoulianis, Konstantinos I.; Hatzoglou, Chrissi; Zarogiannis, Sotirios G.

    2017-01-01

    Malignant pleural mesothelioma (MPM) is a highly aggressive tumor primarily associated with asbestos exposure. Early detection of MPM is restricted by the long latency period until clinical presentation, the ineffectiveness of imaging techniques in early stage detection and the lack of non-invasive biomarkers with high sensitivity and specificity. In this study we used transcriptome data mining in order to determine which CLAUDIN (CLDN) genes are differentially expressed in MPM as compared to controls. Using the same approach we identified the interactome of the differentially expressed CLDN genes and assessed their expression profile. Subsequently, we evaluated the effect of tumor histology, asbestos exposure, CDKN2A deletion status, and gender on the gene expression level of the claudin interactome. We found that 5 out of 15 studied CLDNs (4, 5, 8, 10, 15) and 4 out of 27 available interactors (S100B, SHBG, CDH5, CXCL8) were differentially expressed in MPM specimens vs. healthy tissues. The genes encoding the CLDN-15 and S100B proteins present differences in their expression profile between the three histological subtypes of MPM. Moreover, CLDN-15 is significantly under-expressed in the cohort of patients with previous history of asbestos exposure. CLDN-15 was also found significantly underexpressed in patients lacking the CDKN2A gene. These results warrant the detailed in vitro investigation of the role of CDLN-15 in the pathobiology of MPM. PMID:28377727

  20. Transcriptomic Analysis of the Claudin Interactome in Malignant Pleural Mesothelioma: Evaluation of the Effect of Disease Phenotype, Asbestos Exposure, and CDKN2A Deletion Status.

    PubMed

    Rouka, Erasmia; Vavougios, Georgios D; Solenov, Evgeniy I; Gourgoulianis, Konstantinos I; Hatzoglou, Chrissi; Zarogiannis, Sotirios G

    2017-01-01

    Malignant pleural mesothelioma (MPM) is a highly aggressive tumor primarily associated with asbestos exposure. Early detection of MPM is restricted by the long latency period until clinical presentation, the ineffectiveness of imaging techniques in early stage detection and the lack of non-invasive biomarkers with high sensitivity and specificity. In this study we used transcriptome data mining in order to determine which CLAUDIN (CLDN) genes are differentially expressed in MPM as compared to controls. Using the same approach we identified the interactome of the differentially expressed CLDN genes and assessed their expression profile. Subsequently, we evaluated the effect of tumor histology, asbestos exposure, CDKN2A deletion status, and gender on the gene expression level of the claudin interactome. We found that 5 out of 15 studied CLDNs ( 4, 5, 8, 10, 15 ) and 4 out of 27 available interactors ( S100B, SHBG, CDH5, CXCL8 ) were differentially expressed in MPM specimens vs. healthy tissues. The genes encoding the CLDN-15 and S100B proteins present differences in their expression profile between the three histological subtypes of MPM. Moreover, CLDN-15 is significantly under-expressed in the cohort of patients with previous history of asbestos exposure. CLDN-15 was also found significantly underexpressed in patients lacking the CDKN2A gene. These results warrant the detailed in vitro investigation of the role of CDLN-15 in the pathobiology of MPM.

  1. Interactome of Obesity: Obesidome : Genetic Obesity, Stress Induced Obesity, Pathogenic Obesity Interaction.

    PubMed

    Geronikolou, Styliani A; Pavlopoulou, Athanasia; Cokkinos, Dennis; Chrousos, George

    2017-01-01

    Obesity is a chronic disease of increasing prevalence reaching epidemic proportions. Genetic defects as well as epigenetic effects contribute to the obesity phenotype. Investigating gene (e.g. MC4R defects)-environment (behavior, infectious agents, stress) interactions is a relative new field of great research interest. In this study, we have made an effort to create an interactome (henceforth referred to as "obesidome"), where extrinsic stressors response, intrinsic predisposition, immunity response to inflammation and autonomous nervous system implications are integrated. These pathways are presented in one interactome network for the first time. In our study, obesity-related genes/gene products were found to form a complex interactions network.

  2. Identification and functional analysis of the BIM interactome; new clues on its possible involvement in Epstein-Barr Virus-associated diseases.

    PubMed

    Rouka, Erasmia; Kyriakou, Despoina

    2015-12-01

    Epigenetic deregulation is a common feature in the pathogenesis of Epstein-Barr Virus (EBV)-related lymphomas and carcinomas. Previous studies have demonstrated a strong association between EBV latency in B-cells and epigenetic silencing of the tumor suppressor gene BIM. This study aimed to the construction and functional analysis of the BIM interactome in order to identify novel host genes that may be targeted by EBV. Fifty-nine unique interactors were found to compose the BIM gene network. Ontological analysis at the pathway level highlighted infectious diseases along with neuropathologies. These results underline the possible interplay between the BIM interactome and EBV-associated disorders.

  3. Rapid, Optimized Interactomic Screening

    PubMed Central

    Hakhverdyan, Zhanna; Domanski, Michal; Hough, Loren; Oroskar, Asha A.; Oroskar, Anil R.; Keegan, Sarah; Dilworth, David J.; Molloy, Kelly R.; Sherman, Vadim; Aitchison, John D.; Fenyö, David; Chait, Brian T.; Jensen, Torben Heick; Rout, Michael P.; LaCava, John

    2015-01-01

    We must reliably map the interactomes of cellular macromolecular complexes in order to fully explore and understand biological systems. However, there are no methods to accurately predict how to capture a given macromolecular complex with its physiological binding partners. Here, we present a screen that comprehensively explores the parameters affecting the stability of interactions in affinity-captured complexes, enabling the discovery of physiological binding partners and the elucidation of their functional interactions in unparalleled detail. We have implemented this screen on several macromolecular complexes from a variety of organisms, revealing novel profiles even for well-studied proteins. Our approach is robust, economical and automatable, providing an inroad to the rigorous, systematic dissection of cellular interactomes. PMID:25938370

  4. Serum proteome profiling in canine idiopathic dilated cardiomyopathy using TMT-based quantitative proteomics approach.

    PubMed

    Bilić, Petra; Guillemin, Nicolas; Kovačević, Alan; Beer Ljubić, Blanka; Jović, Ines; Galan, Asier; Eckersall, Peter David; Burchmore, Richard; Mrljak, Vladimir

    2018-05-15

    Idiopathic dilated cardiomyopathy (iDCM) is a primary myocardial disorder with an unknown aetiology, characterized by reduced contractility and ventricular dilation of the left or both ventricles. Naturally occurring canine iDCM was used herein to identify serum proteomic signature of the disease compared to the healthy state, providing an insight into underlying mechanisms and revealing proteins with biomarker potential. To achieve this, we used high-throughput label-based quantitative LC-MS/MS proteomics approach and bioinformatics analysis of the in silico inferred interactome protein network created from the initial list of differential proteins. To complement the proteomic analysis, serum biochemical parameters and levels of know biomarkers of cardiac function were measured. Several proteins with biomarker potential were identified, such as inter-alpha-trypsin inhibitor heavy chain H4, microfibril-associated glycoprotein 4 and apolipoprotein A-IV, which were validated using an independent method (Western blotting) and showed high specificity and sensitivity according to the receiver operating characteristic curve analysis. Bioinformatics analysis revealed involvement of different pathways in iDCM, such as complement cascade activation, lipoprotein particles dynamics, elastic fibre formation, GPCR signalling and respiratory electron transport chain. Idiopathic dilated cardiomyopathy is a severe primary myocardial disease of unknown cause, affecting both humans and dogs. This study is a contribution to the canine heart disease research by means of proteomic and bioinformatic state of the art analyses, following similar approach in human iDCM research. Importantly, we used serum as non-invasive and easily accessible biological source of information and contributed to the scarce data on biofluid proteome research on this topic. Bioinformatics analysis revealed biological pathways modulated in canine iDCM with potential of further targeted research. Also, several proteins with biomarker potential have been identified and successfully validated. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A Luciferase-fragment Complementation Assay to Detect Lipid Droplet-associated Protein-Protein Interactions*

    PubMed Central

    Kolkhof, Petra; Werthebach, Michael; van de Venn, Anna; Poschmann, Gereon; Chen, Lili; Welte, Michael; Stühler, Kai; Beller, Mathias

    2017-01-01

    A critical challenge for all organisms is to carefully control the amount of lipids they store. An important node for this regulation is the protein coat present at the surface of lipid droplets (LDs), the intracellular organelles dedicated to lipid storage. Only limited aspects of this regulation are understood so far. For the probably best characterized case, the regulation of lipolysis in mammals, some of the major protein players have been identified, and it has been established that this process crucially depends on an orchestrated set of protein-protein interactions. Proteomic analysis has revealed that LDs are associated with dozens, if not hundreds, of different proteins, most of them poorly characterized, with even fewer data regarding which of them might physically interact. To comprehensively understand the mechanism of lipid storage regulation, it will likely be essential to define the interactome of LD-associated proteins. Previous studies of such interactions were hampered by technical limitations. Therefore, we have developed a split-luciferase based protein-protein interaction assay and test for interactions among 47 proteins from Drosophila and from mouse. We confirmed previously described interactions and identified many new ones. In 1561 complementation tests, we assayed for interactions among 487 protein pairs of which 92 (19%) resulted in a successful luciferase complementation. These results suggest that a prominent fraction of the LD-associated proteome participates in protein-protein interactions. In targeted experiments, we analyzed the two proteins Jabba and CG9186 in greater detail. Jabba mediates the sequestration of histones to LDs. We successfully applied our split luciferase complementation assay to learn more about this function as we were e.g. able to map the interaction between Jabba and histones. For CG9186, expression levels affect the positioning of LDs. Here, we reveal the ubiquitination of CG9186, and link this posttranslational modification to LD cluster induction. PMID:27956707

  6. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders.

    PubMed

    Carter, C J

    2013-01-01

    Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (P  from  8.01E - 05  (ADHD)  to  1.22E - 71) (multiple sclerosis), and autism (P = 0.013), but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD) to 33% (MS) of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively) to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity) and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as) to the disease itself.

  7. HIV–host interactome revealed directly from infected cells

    PubMed Central

    Luo, Yang; Jacobs, Erica Y.; Greco, Todd M.; Mohammed, Kevin D.; Tong, Tommy; Keegan, Sarah; Binley, James M.; Cristea, Ileana M.; Fenyö, David; Rout, Michael P.; Chait, Brian T.; Muesing, Mark A.

    2016-01-01

    Although genetically compact, HIV-1 commandeers vast arrays of cellular machinery to sustain and protect it during cycles of viral outgrowth. Transposon-mediated saturation linker scanning mutagenesis was used to isolate fully replication-competent viruses harbouring a potent foreign epitope tag. Using these viral isolates, we performed differential isotopic labelling and affinity-capture mass spectrometric analyses on samples obtained from cultures of human lymphocytes to classify the vicinal interactomes of the viral Env and Vif proteins as they occur during natural infection. Importantly, interacting proteins were recovered without bias, regardless of their potential for positive, negative or neutral impact on viral replication. We identified specific host associations made with trimerized Env during its biosynthesis, at virological synapses, with innate immune effectors (such as HLA-E) and with certain cellular signalling pathways (for example, Notch1). We also defined Vif associations with host proteins involved in the control of nuclear transcription and nucleoside biosynthesis as well as those interacting stably or transiently with the cytoplasmic protein degradation apparatus. Our approach is broadly applicable to elucidating pathogen–host interactomes, providing high-certainty identification of interactors by their direct access during cycling infection. Understanding the pathophysiological consequences of these associations is likely to provide strategic targets for antiviral intervention. PMID:27375898

  8. The Endogenous GRP78 Interactome in Human Head and Neck Cancers: A Deterministic Role of Cell Surface GRP78 in Cancer Stemness.

    PubMed

    Chen, Hsin-Ying; Chang, Joseph Tung-Chieh; Chien, Kun-Yi; Lee, Yun-Shien; You, Guo-Rung; Cheng, Ann-Joy

    2018-01-11

    Cell surface glucose regulated protein 78 (GRP78), an endoplasmic reticulum (ER) chaperone, was suggested to be a cancer stem cell marker, but the influence of this molecule on cancer stemness is poorly characterized. In this study, we developed a mass spectrometry platform to detect the endogenous interactome of GRP78 and investigated its role in cancer stemness. The interactome results showed that cell surface GRP78 associates with multiple molecules. The influence of cell population heterogeneity of head and neck cancer cell lines (OECM1, FaDu, and BM2) according to the cell surface expression levels of GRP78 and the GRP78 interactome protein, Progranulin, was investigated. The four sorted cell groups exhibited distinct cell cycle distributions, asymmetric/symmetric cell divisions, and different relative expression levels of stemness markers. Our results demonstrate that cell surface GRP78 promotes cancer stemness, whereas drives cells toward a non-stemlike phenotype when it chaperones Progranulin. We conclude that cell surface GRP78 is a chaperone exerting a deterministic influence on cancer stemness.

  9. RNA/DNA Hybrid Interactome Identifies DXH9 as a Molecular Player in Transcriptional Termination and R-Loop-Associated DNA Damage.

    PubMed

    Cristini, Agnese; Groh, Matthias; Kristiansen, Maiken S; Gromak, Natalia

    2018-05-08

    R-loops comprise an RNA/DNA hybrid and displaced single-stranded DNA. They play important biological roles and are implicated in pathology. Even so, proteins recognizing these structures are largely undefined. Using affinity purification with the S9.6 antibody coupled to mass spectrometry, we defined the RNA/DNA hybrid interactome in HeLa cells. This consists of known R-loop-associated factors SRSF1, FACT, and Top1, and yet uncharacterized interactors, including helicases, RNA processing, DNA repair, and chromatin factors. We validate specific examples of these interactors and characterize their involvement in R-loop biology. A top candidate DHX9 helicase promotes R-loop suppression and transcriptional termination. DHX9 interacts with PARP1, and both proteins prevent R-loop-associated DNA damage. DHX9 and other interactome helicases are overexpressed in cancer, linking R-loop-mediated DNA damage and disease. Our RNA/DNA hybrid interactome provides a powerful resource to study R-loop biology in health and disease. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Simultaneously measuring multiple protein interactions and their correlations in a cell by Protein-interactome Footprinting

    PubMed Central

    Luo, Si-Wei; Liang, Zhi; Wu, Jia-Rui

    2017-01-01

    Quantitatively detecting correlations of multiple protein-protein interactions (PPIs) in vivo is a big challenge. Here we introduce a novel method, termed Protein-interactome Footprinting (PiF), to simultaneously measure multiple PPIs in one cell. The principle of PiF is that each target physical PPI in the interactome is simultaneously transcoded into a specific DNA sequence based on dimerization of the target proteins fused with DNA-binding domains. The interaction intensity of each target protein is quantified as the copy number of the specific DNA sequences bound by each fusion protein dimers. Using PiF, we quantitatively reveal dynamic patterns of PPIs and their correlation network in E. coli two-component systems. PMID:28338015

  11. Reconstruction of the experimentally supported human protein interactome: what can we learn?

    PubMed Central

    2013-01-01

    Background Understanding the topology and dynamics of the human protein-protein interaction (PPI) network will significantly contribute to biomedical research, therefore its systematic reconstruction is required. Several meta-databases integrate source PPI datasets, but the protein node sets of their networks vary depending on the PPI data combined. Due to this inherent heterogeneity, the way in which the human PPI network expands via multiple dataset integration has not been comprehensively analyzed. We aim at assembling the human interactome in a global structured way and exploring it to gain insights of biological relevance. Results First, we defined the UniProtKB manually reviewed human “complete” proteome as the reference protein-node set and then we mined five major source PPI datasets for direct PPIs exclusively between the reference proteins. We updated the protein and publication identifiers and normalized all PPIs to the UniProt identifier level. The reconstructed interactome covers approximately 60% of the human proteome and has a scale-free structure. No apparent differentiating gene functional classification characteristics were identified for the unrepresented proteins. The source dataset integration augments the network mainly in PPIs. Polyubiquitin emerged as the highest-degree node, but the inclusion of most of its identified PPIs may be reconsidered. The high number (>300) of connections of the subsequent fifteen proteins correlates well with their essential biological role. According to the power-law network structure, the unrepresented proteins should mainly have up to four connections with equally poorly-connected interactors. Conclusions Reconstructing the human interactome based on the a priori definition of the protein nodes enabled us to identify the currently included part of the human “complete” proteome, and discuss the role of the proteins within the network topology with respect to their function. As the network expansion has to comply with the scale-free theory, we suggest that the core of the human interactome has essentially emerged. Thus, it could be employed in systems biology and biomedical research, despite the considerable number of currently unrepresented proteins. The latter are probably involved in specialized physiological conditions, justifying the scarcity of related PPI information, and their identification can assist in designing relevant functional experiments and targeted text mining algorithms. PMID:24088582

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shatsky, Maxim; Allen, Simon; Gold, Barbara

    Numerous affinity purification – mass-spectrometry (AP-MS) and yeast two hybrid (Y2H) screens have each defined thousands of pairwise protein-protein interactions (PPIs), most between functionally unrelated proteins. The accuracy of these networks, however, is under debate. Here we present an AP-MS survey of the bacterium Desulfovibrio vulgaris together with a critical reanalysis of nine published bacterial Y2H and AP-MS screens. We have identified 459 high confidence PPIs from D. vulgaris and 391 from Escherichia coli. Compared to the nine published interactomes, our two networks are smaller; are much less highly connected; have significantly lower false discovery rates; and are much moremore » enriched in protein pairs that are encoded in the same operon, have similar functions, and are reproducibly detected in other physical interaction assays. Lastly, our work establishes more stringent benchmarks for the properties of protein interactomes and suggests that bona fide PPIs much more frequently involve protein partners that are annotated with similar functions or that can be validated in independent assays than earlier studies suggested.« less

  13. Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila

    PubMed Central

    Sysoev, Vasiliy O.; Fischer, Bernd; Frese, Christian K.; Gupta, Ishaan; Krijgsveld, Jeroen; Hentze, Matthias W.; Castello, Alfredo; Ephrussi, Anne

    2016-01-01

    The maternal-to-zygotic transition (MZT) is a process that occurs in animal embryos at the earliest developmental stages, during which maternally deposited mRNAs and other molecules are degraded and replaced by products of the zygotic genome. The zygotic genome is not activated immediately upon fertilization, and in the pre-MZT embryo post-transcriptional control by RNA-binding proteins (RBPs) orchestrates the first steps of development. To identify relevant Drosophila RBPs organism-wide, we refined the RNA interactome capture method for comparative analysis of the pre- and post-MZT embryos. We determine 523 proteins as high-confidence RBPs, half of which were not previously reported to bind RNA. Comparison of the RNA interactomes of pre- and post-MZT embryos reveals high dynamicity of the RNA-bound proteome during early development, and suggests active regulation of RNA binding of some RBPs. This resource provides unprecedented insight into the system of RBPs that govern the earliest steps of Drosophila development. PMID:27378189

  14. Ovarian Cancer Differential Interactome and Network Entropy Analysis Reveal New Candidate Biomarkers.

    PubMed

    Ayyildiz, Dilara; Gov, Esra; Sinha, Raghu; Arga, Kazim Yalcin

    2017-05-01

    Ovarian cancer is one of the most common cancers and has a high mortality rate due to insidious symptoms and lack of robust diagnostics. A hitherto understudied concept in cancer pathogenesis may offer new avenues for innovation in ovarian cancer biomarker development. Cancer cells are characterized by an increase in network entropy, and several studies have exploited this concept to identify disease-associated gene and protein modules. We report in this study the changes in protein-protein interactions (PPIs) in ovarian cancer within a differential network (interactome) analysis framework utilizing the entropy concept and gene expression data. A compendium of six transcriptome datasets that included 140 samples from laser microdissected epithelial cells of ovarian cancer patients and 51 samples from healthy population was obtained from Gene Expression Omnibus, and the high confidence human protein interactome (31,465 interactions among 10,681 proteins) was used. The uncertainties of the up- or downregulation of PPIs in ovarian cancer were estimated through an entropy formulation utilizing combined expression levels of genes, and the interacting protein pairs with minimum uncertainty were identified. We identified 105 proteins with differential PPI patterns scattered in 11 modules, each indicating significantly affected biological pathways in ovarian cancer such as DNA repair, cell proliferation-related mechanisms, nucleoplasmic translocation of estrogen receptor, extracellular matrix degradation, and inflammation response. In conclusion, we suggest several PPIs as biomarker candidates for ovarian cancer and discuss their future biological implications as potential molecular targets for pharmaceutical development as well. In addition, network entropy analysis is a concept that deserves greater research attention for diagnostic innovation in oncology and tumor pathogenesis.

  15. Systematic Differences in Signal Emitting and Receiving Revealed by PageRank Analysis of a Human Protein Interactome

    PubMed Central

    Li, Xiu-Qing

    2012-01-01

    Most protein PageRank studies do not use signal flow direction information in protein interactions because this information was not readily available in large protein databases until recently. Therefore, four questions have yet to be answered: A) What is the general difference between signal emitting and receiving in a protein interactome? B) Which proteins are among the top ranked in directional ranking? C) Are high ranked proteins more evolutionarily conserved than low ranked ones? D) Do proteins with similar ranking tend to have similar subcellular locations? In this study, we address these questions using the forward, reverse, and non-directional PageRank approaches to rank an information-directional network of human proteins and study their evolutionary conservation. The forward ranking gives credit to information receivers, reverse ranking to information emitters, and non-directional ranking mainly to the number of interactions. The protein lists generated by the forward and non-directional rankings are highly correlated, but those by the reverse and non-directional rankings are not. The results suggest that the signal emitting/receiving system is characterized by key-emittings and relatively even receivings in the human protein interactome. Signaling pathway proteins are frequent in top ranked ones. Eight proteins are both informational top emitters and top receivers. Top ranked proteins, except a few species-related novel-function ones, are evolutionarily well conserved. Protein-subunit ranking position reflects subunit function. These results demonstrate the usefulness of different PageRank approaches in characterizing protein networks and provide insights to protein interaction in the cell. PMID:23028653

  16. Concurrent error detecting codes for arithmetic processors

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1979-01-01

    A method of concurrent error detection for arithmetic processors is described. Low-cost residue codes with check-length l and checkbase m = 2 to the l power - 1 are described for checking arithmetic operations of addition, subtraction, multiplication, division complement, shift, and rotate. Of the three number representations, the signed-magnitude representation is preferred for residue checking. Two methods of residue generation are described: the standard method of using modulo m adders and the method of using a self-testing residue tree. A simple single-bit parity-check code is described for checking the logical operations of XOR, OR, and AND, and also the arithmetic operations of complement, shift, and rotate. For checking complement, shift, and rotate, the single-bit parity-check code is simpler to implement than the residue codes.

  17. HTS-Net: An integrated regulome-interactome approach for establishing network regulation models in high-throughput screenings

    PubMed Central

    Rioualen, Claire; Da Costa, Quentin; Chetrit, Bernard; Charafe-Jauffret, Emmanuelle; Ginestier, Christophe

    2017-01-01

    High-throughput RNAi screenings (HTS) allow quantifying the impact of the deletion of each gene in any particular function, from virus-host interactions to cell differentiation. However, there has been less development for functional analysis tools dedicated to RNAi analyses. HTS-Net, a network-based analysis program, was developed to identify gene regulatory modules impacted in high-throughput screenings, by integrating transcription factors-target genes interaction data (regulome) and protein-protein interaction networks (interactome) on top of screening z-scores. HTS-Net produces exhaustive HTML reports for results navigation and exploration. HTS-Net is a new pipeline for RNA interference screening analyses that proves better performance than simple gene rankings by z-scores, by re-prioritizing genes and replacing them in their biological context, as shown by the three studies that we reanalyzed. Formatted input data for the three studied datasets, source code and web site for testing the system are available from the companion web site at http://htsnet.marseille.inserm.fr/. We also compared our program with existing algorithms (CARD and hotnet2). PMID:28949986

  18. Expanding the Interactome of TES by Exploiting TES Modules with Different Subcellular Localizations.

    PubMed

    Sala, Stefano; Van Troys, Marleen; Medves, Sandrine; Catillon, Marie; Timmerman, Evy; Staes, An; Schaffner-Reckinger, Elisabeth; Gevaert, Kris; Ampe, Christophe

    2017-05-05

    The multimodular nature of many eukaryotic proteins underlies their temporal or spatial engagement in a range of protein cocomplexes. Using the multimodule protein testin (TES), we here report a proteomics approach to increase insight in cocomplex diversity. The LIM-domain containing and tumor suppressor protein TES is present at different actin cytoskeleton adhesion structures in cells and influences cell migration, adhesion and spreading. TES module accessibility has been proposed to vary due to conformational switching and variants of TES lacking specific domains target to different subcellular locations. By applying iMixPro AP-MS ("intelligent Mixing of Proteomes"-affinity purification-mass spectrometry) to a set of tagged-TES modular variants, we identified proteins residing in module-specific cocomplexes. The obtained distinct module-specific interactomes combine to a global TES interactome that becomes more extensive and richer in information. Applying pathway analysis to the module interactomes revealed expected actin-related canonical pathways and also less expected pathways. We validated two new TES cocomplex partners: TGFB1I1 and a short form of the glucocorticoid receptor. TES and TGFB1I1 are shown to oppositely affect cell spreading providing biological validity for their copresence in complexes since they act in similar processes.

  19. The interactome of the copper transporter ATP7A belongs to a network of neurodevelopmental and neurodegeneration factors

    PubMed Central

    Comstra, Heather S; McArthy, Jacob; Rudin-Rush, Samantha; Hartwig, Cortnie; Gokhale, Avanti; Zlatic, Stephanie A; Blackburn, Jessica B; Werner, Erica; Petris, Michael; D’Souza, Priya; Panuwet, Parinya; Barr, Dana Boyd; Lupashin, Vladimir; Vrailas-Mortimer, Alysia; Faundez, Victor

    2017-01-01

    Genetic and environmental factors, such as metals, interact to determine neurological traits. We reasoned that interactomes of molecules handling metals in neurons should include novel metal homeostasis pathways. We focused on copper and its transporter ATP7A because ATP7A null mutations cause neurodegeneration. We performed ATP7A immunoaffinity chromatography and identified 541 proteins co-isolating with ATP7A. The ATP7A interactome concentrated gene products implicated in neurodegeneration and neurodevelopmental disorders, including subunits of the Golgi-localized conserved oligomeric Golgi (COG) complex. COG null cells possess altered content and subcellular localization of ATP7A and CTR1 (SLC31A1), the transporter required for copper uptake, as well as decreased total cellular copper, and impaired copper-dependent metabolic responses. Changes in the expression of ATP7A and COG subunits in Drosophila neurons altered synapse development in larvae and copper-induced mortality of adult flies. We conclude that the ATP7A interactome encompasses a novel COG-dependent mechanism to specify neuronal development and survival. DOI: http://dx.doi.org/10.7554/eLife.24722.001 PMID:28355134

  20. Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture

    PubMed Central

    2013-01-01

    Background The packaging of long chromatin fibers in the nucleus poses a major challenge, as it must fulfill both physical and functional requirements. Until recently, insights into the chromosomal architecture of plants were mainly provided by cytogenetic studies. Complementary to these analyses, chromosome conformation capture technologies promise to refine and improve our view on chromosomal architecture and to provide a more generalized description of nuclear organization. Results Employing circular chromosome conformation capture, this study describes chromosomal architecture in Arabidopsis nuclei from a genome-wide perspective. Surprisingly, the linear organization of chromosomes is reflected in the genome-wide interactome. In addition, we study the interplay of the interactome and epigenetic marks and report that the heterochromatic knob on the short arm of chromosome 4 maintains a pericentromere-like interaction profile and interactome despite its euchromatic surrounding. Conclusion Despite the extreme condensation that is necessary to pack the chromosomes into the nucleus, the Arabidopsis genome appears to be packed in a predictive manner, according to the following criteria: heterochromatin and euchromatin represent two distinct interactomes; interactions between chromosomes correlate with the linear position on the chromosome arm; and distal chromosome regions have a higher potential to interact with other chromosomes. PMID:24267747

  1. Mapping the Small Molecule Interactome by Mass Spectrometry.

    PubMed

    Flaxman, Hope A; Woo, Christina M

    2018-01-16

    Mapping small molecule interactions throughout the proteome provides the critical structural basis for functional analysis of their impact on biochemistry. However, translation of mass spectrometry-based proteomics methods to directly profile the interaction between a small molecule and the whole proteome is challenging because of the substoichiometric nature of many interactions, the diversity of covalent and noncovalent interactions involved, and the subsequent computational complexity associated with their spectral assignment. Recent advances in chemical proteomics have begun fill this gap to provide a structural basis for the breadth of small molecule-protein interactions in the whole proteome. Innovations enabling direct characterization of the small molecule interactome include faster, more sensitive instrumentation coupled to chemical conjugation, enrichment, and labeling methods that facilitate detection and assignment. These methods have started to measure molecular interaction hotspots due to inherent differences in local amino acid reactivity and binding affinity throughout the proteome. Measurement of the small molecule interactome is producing structural insights and methods for probing and engineering protein biochemistry. Direct structural characterization of the small molecule interactome is a rapidly emerging area pushing new frontiers in biochemistry at the interface of small molecules and the proteome.

  2. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy.

    PubMed

    de Souza, Heitor S P; Fiocchi, Claudio; Iliopoulos, Dimitrios

    2017-12-01

    Crohn's disease and ulcerative colitis are prototypical complex diseases characterized by chronic and heterogeneous manifestations, induced by interacting environmental, genomic, microbial and immunological factors. These interactions result in an overwhelming complexity that cannot be tackled by studying the totality of each pathological component (an '-ome') in isolation without consideration of the interaction among all relevant -omes that yield an overall 'network effect'. The outcome of this effect is the 'IBD interactome', defined as a disease network in which dysregulation of individual -omes causes intestinal inflammation mediated by dysfunctional molecular modules. To define the IBD interactome, new concepts and tools are needed to implement a systems approach; an unbiased data-driven integration strategy that reveals key players of the system, pinpoints the central drivers of inflammation and enables development of targeted therapies. Powerful bioinformatics tools able to query and integrate multiple -omes are available, enabling the integration of genomic, epigenomic, transcriptomic, proteomic, metabolomic and microbiome information to build a comprehensive molecular map of IBD. This approach will enable identification of IBD molecular subtypes, correlations with clinical phenotypes and elucidation of the central hubs of the IBD interactome that will aid discovery of compounds that can specifically target the hubs that control the disease.

  3. Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms.

    PubMed

    Li, Jiannong; Bennett, Keiryn; Stukalov, Alexey; Fang, Bin; Zhang, Guolin; Yoshida, Takeshi; Okamoto, Isamu; Kim, Jae-Young; Song, Lanxi; Bai, Yun; Qian, Xiaoning; Rawal, Bhupendra; Schell, Michael; Grebien, Florian; Winter, Georg; Rix, Uwe; Eschrich, Steven; Colinge, Jacques; Koomen, John; Superti-Furga, Giulio; Haura, Eric B

    2013-11-05

    We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein-protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems-level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14-protein core network critical to the viability of multiple EGFR-mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR-mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.

  4. AIM: a comprehensive Arabidopsis interactome module database and related interologs in plants.

    PubMed

    Wang, Yi; Thilmony, Roger; Zhao, Yunjun; Chen, Guoping; Gu, Yong Q

    2014-01-01

    Systems biology analysis of protein modules is important for understanding the functional relationships between proteins in the interactome. Here, we present a comprehensive database named AIM for Arabidopsis (Arabidopsis thaliana) interactome modules. The database contains almost 250,000 modules that were generated using multiple analysis methods and integration of microarray expression data. All the modules in AIM are well annotated using multiple gene function knowledge databases. AIM provides a user-friendly interface for different types of searches and offers a powerful graphical viewer for displaying module networks linked to the enrichment annotation terms. Both interactive Venn diagram and power graph viewer are integrated into the database for easy comparison of modules. In addition, predicted interologs from other plant species (homologous proteins from different species that share a conserved interaction module) are available for each Arabidopsis module. AIM is a powerful systems biology platform for obtaining valuable insights into the function of proteins in Arabidopsis and other plants using the modules of the Arabidopsis interactome. Database URL:http://probes.pw.usda.gov/AIM Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.

  5. Comparative Metabolite Fingerprinting of the Rumen System during Colonisation of Three Forage Grass (Lolium perenne L.) Varieties

    PubMed Central

    Kingston-Smith, Alison H.; Davies, Teri E.; Rees Stevens, Pauline; Mur, Luis A. J.

    2013-01-01

    The rumen microbiota enable ruminants to degrade complex ligno-cellulosic compounds to produce high quality protein for human consumption. However, enteric fermentation by domestic ruminants generates negative by-products: greenhouse gases (methane) and environmental nitrogen pollution. The current lack of cultured isolates representative of the totality of rumen microbial species creates an information gap about the in vivo function of the rumen microbiota and limits our ability to apply predictive biology for improvement of feed for ruminants. In this work we took a whole ecosystem approach to understanding how the metabolism of the microbial population responds to introduction of its substrate. Fourier Transform Infra Red (FTIR) spectroscopy-based metabolite fingerprinting was used to discriminate differences in the plant-microbial interactome of the rumen when using three forage grass varieties (Lolium perenne L. cv AberDart, AberMagic and Premium) as substrates for microbial colonisation and fermentation. Specific examination of spectral regions associated with fatty acids, amides, sugars and alkanes indicated that although the three forages were apparently similar by traditional nutritional analysis, patterns of metabolite flux within the plant-microbial interactome were distinct and plant genotype dependent. Thus, the utilisation pattern of forage nutrients by the rumen microbiota can be influenced by subtleties determined by forage genotypes. These data suggest that our interactomic approach represents an important means to improve forages and ultimately the livestock environment. PMID:24312434

  6. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders

    PubMed Central

    Carter, C. J.

    2013-01-01

    Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (P  from  8.01E − 05  (ADHD)  to  1.22E − 71) (multiple sclerosis), and autism (P = 0.013), but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD) to 33% (MS) of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively) to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity) and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as) to the disease itself. PMID:23533776

  7. Prediction of GCRV virus-host protein interactome based on structural motif-domain interactions.

    PubMed

    Zhang, Aidi; He, Libo; Wang, Yaping

    2017-03-02

    Grass carp hemorrhagic disease, caused by grass carp reovirus (GCRV), is the most fatal causative agent in grass carp aquaculture. Protein-protein interactions between virus and host are one avenue through which GCRV can trigger infection and induce disease. Experimental approaches for the detection of host-virus interactome have many inherent limitations, and studies on protein-protein interactions between GCRV and its host remain rare. In this study, based on known motif-domain interaction information, we systematically predicted the GCRV virus-host protein interactome by using motif-domain interaction pair searching strategy. These proteins derived from different domain families and were predicted to interact with different motif patterns in GCRV. JAM-A protein was successfully predicted to interact with motifs of GCRV Sigma1-like protein, and shared the similar binding mode compared with orthoreovirus. Differentially expressed genes during GCRV infection process were extracted and mapped to our predicted interactome, the overlapped genes displayed different tissue expression distributions on the whole, the overall expression level in intestinal is higher than that of other three tissues, which may suggest that the functions of these genes are more active in intestinal. Function annotation and pathway enrichment analysis revealed that the host targets were largely involved in signaling pathway and immune pathway, such as interferon-gamma signaling pathway, VEGF signaling pathway, EGF receptor signaling pathway, B cell activation, and T cell activation. Although the predicted PPIs may contain some false positives due to limited data resource and poor research background in non-model species, the computational method still provide reasonable amount of interactions, which can be further validated by high throughput experiments. The findings of this work will contribute to the development of system biology for GCRV infectious diseases, and help guide the identification of novel receptors of GCRV in its host.

  8. Protein Inference from the Integration of Tandem MS Data and Interactome Networks.

    PubMed

    Zhong, Jiancheng; Wang, Jianxing; Ding, Xiaojun; Zhang, Zhen; Li, Min; Wu, Fang-Xiang; Pan, Yi

    2017-01-01

    Since proteins are digested into a mixture of peptides in the preprocessing step of tandem mass spectrometry (MS), it is difficult to determine which specific protein a shared peptide belongs to. In recent studies, besides tandem MS data and peptide identification information, some other information is exploited to infer proteins. Different from the methods which first use only tandem MS data to infer proteins and then use network information to refine them, this study proposes a protein inference method named TMSIN, which uses interactome networks directly. As two interacting proteins should co-exist, it is reasonable to assume that if one of the interacting proteins is confidently inferred in a sample, its interacting partners should have a high probability in the same sample, too. Therefore, we can use the neighborhood information of a protein in an interactome network to adjust the probability that the shared peptide belongs to the protein. In TMSIN, a multi-weighted graph is constructed by incorporating the bipartite graph with interactome network information, where the bipartite graph is built with the peptide identification information. Based on multi-weighted graphs, TMSIN adopts an iterative workflow to infer proteins. At each iterative step, the probability that a shared peptide belongs to a specific protein is calculated by using the Bayes' law based on the neighbor protein support scores of each protein which are mapped by the shared peptides. We carried out experiments on yeast data and human data to evaluate the performance of TMSIN in terms of ROC, q-value, and accuracy. The experimental results show that AUC scores yielded by TMSIN are 0.742 and 0.874 in yeast dataset and human dataset, respectively, and TMSIN yields the maximum number of true positives when q-value less than or equal to 0.05. The overlap analysis shows that TMSIN is an effective complementary approach for protein inference.

  9. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells.

    PubMed

    Whisenant, Thomas C; Peralta, Eigen R; Aarreberg, Lauren D; Gao, Nina J; Head, Steven R; Ordoukhanian, Phillip; Williamson, Jamie R; Salomon, Daniel R

    2015-01-01

    Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as "central" interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, "peripheral" interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly of RNA splicing interactomes that is important for understanding T cell activation.

  10. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells

    PubMed Central

    Aarreberg, Lauren D.; Gao, Nina J.; Head, Steven R.; Ordoukhanian, Phillip; Williamson, Jamie R.; Salomon, Daniel R.

    2015-01-01

    Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as “central” interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, “peripheral” interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly of RNA splicing interactomes that is important for understanding T cell activation. PMID:26641092

  11. Insights into the polerovirus-plant interactome revealed by co-immunoprecipitation and mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The identification of host proteins that interact with virus proteins is a major challenge for the field of virology. Phloem-limited viruses pose extraordinary challenges for in vivo protein interaction experiments because these viruses are localized in very few and highly specialized host cells. ...

  12. Are Charitable Giving and Religious Attendance Complements or Substitutes? The Role of Measurement Error

    ERIC Educational Resources Information Center

    Kim, Matthew

    2013-01-01

    Government policies sometimes cause unintended consequences for other potentially desirable behaviors. One such policy is the charitable tax deduction, which encourages charitable giving by allowing individuals to deduct giving from taxable income. Whether charitable giving and other desirable behaviors are complements or substitutes affect the…

  13. Re-evaluation of low-resolution crystal structures via interactive molecular-dynamics flexible fitting (iMDFF): a case study in complement C4.

    PubMed

    Croll, Tristan Ian; Andersen, Gregers Rom

    2016-09-01

    While the rapid proliferation of high-resolution structures in the Protein Data Bank provides a rich set of templates for starting models, it remains the case that a great many structures both past and present are built at least in part by hand-threading through low-resolution and/or weak electron density. With current model-building tools this task can be challenging, and the de facto standard for acceptable error rates (in the form of atomic clashes and unfavourable backbone and side-chain conformations) in structures based on data with dmax not exceeding 3.5 Å reflects this. When combined with other factors such as model bias, these residual errors can conspire to make more serious errors in the protein fold difficult or impossible to detect. The three recently published 3.6-4.2 Å resolution structures of complement C4 (PDB entries 4fxg, 4fxk and 4xam) rank in the top quartile of structures of comparable resolution both in terms of Rfree and MolProbity score, yet, as shown here, contain register errors in six β-strands. By applying a molecular-dynamics force field that explicitly models interatomic forces and hence excludes most physically impossible conformations, the recently developed interactive molecular-dynamics flexible fitting (iMDFF) approach significantly reduces the complexity of the conformational space to be searched during manual rebuilding. This substantially improves the rate of detection and correction of register errors, and allows user-guided model building in maps with a resolution lower than 3.5 Å to converge to solutions with a stereochemical quality comparable to atomic resolution structures. Here, iMDFF has been used to individually correct and re-refine these three structures to MolProbity scores of <1.7, and strategies for working with such challenging data sets are suggested. Notably, the improved model allowed the resolution for complement C4b to be extended from 4.2 to 3.5 Å as demonstrated by paired refinement.

  14. Expression of DISC1-interactome members correlates with cognitive phenotypes related to schizophrenia.

    PubMed

    Rampino, Antonio; Walker, Rosie May; Torrance, Helen Scott; Anderson, Susan Maguire; Fazio, Leonardo; Di Giorgio, Annabella; Taurisano, Paolo; Gelao, Barbara; Romano, Raffaella; Masellis, Rita; Ursini, Gianluca; Caforio, Grazia; Blasi, Giuseppe; Millar, J Kirsty; Porteous, David John; Thomson, Pippa Ann; Bertolino, Alessandro; Evans, Kathryn Louise

    2014-01-01

    Cognitive dysfunction is central to the schizophrenia phenotype. Genetic and functional studies have implicated Disrupted-in-Schizophrenia 1 (DISC1), a leading candidate gene for schizophrenia and related psychiatric conditions, in cognitive function. Altered expression of DISC1 and DISC1-interactors has been identified in schizophrenia. Dysregulated expression of DISC1-interactome genes might, therefore, contribute to schizophrenia susceptibility via disruption of molecular systems required for normal cognitive function. Here, the blood RNA expression levels of DISC1 and DISC1-interacting proteins were measured in 63 control subjects. Cognitive function was assessed using neuropsychiatric tests and functional magnetic resonance imaging was used to assess the activity of prefrontal cortical regions during the N-back working memory task, which is abnormal in schizophrenia. Pairwise correlations between gene expression levels and the relationship between gene expression levels and cognitive function and N-back-elicited brain activity were assessed. Finally, the expression levels of DISC1, AKAP9, FEZ1, NDEL1 and PCM1 were compared between 63 controls and 69 schizophrenic subjects. We found that DISC1-interactome genes showed correlated expression in the blood of healthy individuals. The expression levels of several interactome members were correlated with cognitive performance and N-back-elicited activity in the prefrontal cortex. In addition, DISC1 and NDEL1 showed decreased expression in schizophrenic subjects compared to healthy controls. Our findings highlight the importance of the coordinated expression of DISC1-interactome genes for normal cognitive function and suggest that dysregulated DISC1 and NDEL1 expression might, in part, contribute to susceptibility for schizophrenia via disruption of prefrontal cortex-dependent cognitive functions.

  15. Expression of DISC1-Interactome Members Correlates with Cognitive Phenotypes Related to Schizophrenia

    PubMed Central

    Rampino, Antonio; Walker, Rosie May; Torrance, Helen Scott; Anderson, Susan Maguire; Fazio, Leonardo; Di Giorgio, Annabella; Taurisano, Paolo; Gelao, Barbara; Romano, Raffaella; Masellis, Rita; Ursini, Gianluca; Caforio, Grazia; Blasi, Giuseppe; Millar, J. Kirsty; Porteous, David John; Thomson, Pippa Ann; Bertolino, Alessandro; Evans, Kathryn Louise

    2014-01-01

    Cognitive dysfunction is central to the schizophrenia phenotype. Genetic and functional studies have implicated Disrupted-in-Schizophrenia 1 (DISC1), a leading candidate gene for schizophrenia and related psychiatric conditions, in cognitive function. Altered expression of DISC1 and DISC1-interactors has been identified in schizophrenia. Dysregulated expression of DISC1-interactome genes might, therefore, contribute to schizophrenia susceptibility via disruption of molecular systems required for normal cognitive function. Here, the blood RNA expression levels of DISC1 and DISC1-interacting proteins were measured in 63 control subjects. Cognitive function was assessed using neuropsychiatric tests and functional magnetic resonance imaging was used to assess the activity of prefrontal cortical regions during the N-back working memory task, which is abnormal in schizophrenia. Pairwise correlations between gene expression levels and the relationship between gene expression levels and cognitive function and N-back-elicited brain activity were assessed. Finally, the expression levels of DISC1, AKAP9, FEZ1, NDEL1 and PCM1 were compared between 63 controls and 69 schizophrenic subjects. We found that DISC1-interactome genes showed correlated expression in the blood of healthy individuals. The expression levels of several interactome members were correlated with cognitive performance and N-back-elicited activity in the prefrontal cortex. In addition, DISC1 and NDEL1 showed decreased expression in schizophrenic subjects compared to healthy controls. Our findings highlight the importance of the coordinated expression of DISC1-interactome genes for normal cognitive function and suggest that dysregulated DISC1 and NDEL1 expression might, in part, contribute to susceptibility for schizophrenia via disruption of prefrontal cortex-dependent cognitive functions. PMID:24940743

  16. Rewiring of the inferred protein interactome during blood development studied with the tool PPICompare.

    PubMed

    Will, Thorsten; Helms, Volkhard

    2017-04-04

    Differential analysis of cellular conditions is a key approach towards understanding the consequences and driving causes behind biological processes such as developmental transitions or diseases. The progress of whole-genome expression profiling enabled to conveniently capture the state of a cell's transcriptome and to detect the characteristic features that distinguish cells in specific conditions. In contrast, mapping the physical protein interactome for many samples is experimentally infeasible at the moment. For the understanding of the whole system, however, it is equally important how the interactions of proteins are rewired between cellular states. To overcome this deficiency, we recently showed how condition-specific protein interaction networks that even consider alternative splicing can be inferred from transcript expression data. Here, we present the differential network analysis tool PPICompare that was specifically designed for isoform-sensitive protein interaction networks. Besides detecting significant rewiring events between the interactomes of grouped samples, PPICompare infers which alterations to the transcriptome caused each rewiring event and what is the minimal set of alterations necessary to explain all between-group changes. When applied to the development of blood cells, we verified that a reasonable amount of rewiring events were reported by the tool and found that differential gene expression was the major determinant of cellular adjustments to the interactome. Alternative splicing events were consistently necessary in each developmental step to explain all significant alterations and were especially important for rewiring in the context of transcriptional control. Applying PPICompare enabled us to investigate the dynamics of the human protein interactome during developmental transitions. A platform-independent implementation of the tool PPICompare is available at https://sourceforge.net/projects/ppicompare/ .

  17. Preparation of Gap Junctions in Membrane Microdomains for Immunoprecipitation and Mass Spectrometry Interactome Analysis.

    PubMed

    Fowler, Stephanie; Akins, Mark; Bennett, Steffany A L

    2016-01-01

    Protein interaction networks at gap junction plaques are increasingly implicated in a variety of intracellular signaling cascades. Identifying protein interactions of integral membrane proteins is a valuable tool for determining channel function. However, several technical challenges exist. Subcellular fractionation of the bait protein matrix is usually required to identify less abundant proteins in complex homogenates. Sufficient solvation of the lipid environment without perturbation of the protein interactome must also be achieved. The present chapter describes the flotation of light and heavy liver tissue membrane microdomains to facilitate the identification and analysis of endogenous gap junction proteins and includes technical notes for translation to other integral membrane proteins, tissues, or cell culture models. These procedures are valuable tools for the enrichment of gap junction membrane compartments and for the identification of gap junction signaling interactomes.

  18. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.

    PubMed

    Li, Yongsheng; Sahni, Nidhi; Yi, Song

    2016-11-29

    Comprehensive understanding of human cancer mechanisms requires the identification of a thorough list of cancer-associated genes, which could serve as biomarkers for diagnoses and therapies in various types of cancer. Although substantial progress has been made in functional studies to uncover genes involved in cancer, these efforts are often time-consuming and costly. Therefore, it remains challenging to comprehensively identify cancer candidate genes. Network-based methods have accelerated this process through the analysis of complex molecular interactions in the cell. However, the extent to which various interactome networks can contribute to prediction of candidate genes responsible for cancer is still enigmatic. In this study, we evaluated different human protein-protein interactome networks and compared their application to cancer gene prioritization. Our results indicate that network analyses can increase the power to identify novel cancer genes. In particular, such predictive power can be enhanced with the use of unbiased systematic protein interaction maps for cancer gene prioritization. Functional analysis reveals that the top ranked genes from network predictions co-occur often with cancer-related terms in literature, and further, these candidate genes are indeed frequently mutated across cancers. Finally, our study suggests that integrating interactome networks with other omics datasets could provide novel insights into cancer-associated genes and underlying molecular mechanisms.

  19. Inferring the Brassica rapa Interactome Using Protein–Protein Interaction Data from Arabidopsis thaliana

    PubMed Central

    Yang, Jianhua; Osman, Kim; Iqbal, Mudassar; Stekel, Dov J.; Luo, Zewei; Armstrong, Susan J.; Franklin, F. Chris H.

    2013-01-01

    Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein–protein interaction (PPI) data are available from the major PPI databases (DBs). It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B. rapa interactome that is based on the A. thaliana PPI data from two resources: (i) A. thaliana PPI data from three major DBs, BioGRID, IntAct, and TAIR. (ii) ortholog-based A. thaliana PPI predictions. Linking between B. rapa and A. thaliana was accomplished in three complementary ways: (i) ortholog predictions, (ii) identification of gene duplication based on synteny and collinearity, and (iii) BLAST sequence similarity search. A complementary approach was also applied, which used known/predicted domain–domain interaction data. Specifically, since the two species are closely related, we used PPI data from A. thaliana to predict interacting domains that might be conserved between the two species. The predicted interactome was investigated for the component that contains known A. thaliana meiotic proteins to demonstrate its usability. PMID:23293649

  20. A Viral-Human Interactome Based on Structural Motif-Domain Interactions Captures the Human Infectome

    PubMed Central

    Guo, Xianwu; Rodríguez-Pérez, Mario A.

    2013-01-01

    Protein interactions between a pathogen and its host are fundamental in the establishment of the pathogen and underline the infection mechanism. In the present work, we developed a single predictive model for building a host-viral interactome based on the identification of structural descriptors from motif-domain interactions of protein complexes deposited in the Protein Data Bank (PDB). The structural descriptors were used for searching, in a database of protein sequences of human and five clinically important viruses; therefore, viral and human proteins sharing a descriptor were predicted as interacting proteins. The analysis of the host-viral interactome allowed to identify a set of new interactions that further explain molecular mechanism associated with viral infections and showed that it was able to capture human proteins already associated to viral infections (human infectome) and non-infectious diseases (human diseasome). The analysis of human proteins targeted by viral proteins in the context of a human interactome showed that their neighbors are enriched in proteins reported with differential expression under infection and disease conditions. It is expected that the findings of this work will contribute to the development of systems biology for infectious diseases, and help guide the rational identification and prioritization of novel drug targets. PMID:23951184

  1. Oncoprotein AEG-1 is an endoplasmic reticulum RNA-binding protein whose interactome is enriched in organelle resident protein-encoding mRNAs.

    PubMed

    Hsu, Jack C-C; Reid, David W; Hoffman, Alyson M; Sarkar, Devanand; Nicchitta, Christopher V

    2018-05-01

    Astrocyte elevated gene-1 (AEG-1), an oncogene whose overexpression promotes tumor cell proliferation, angiogenesis, invasion, and enhanced chemoresistance, is thought to function primarily as a scaffolding protein, regulating PI3K/Akt and Wnt/β-catenin signaling pathways. Here we report that AEG-1 is an endoplasmic reticulum (ER) resident integral membrane RNA-binding protein (RBP). Examination of the AEG-1 RNA interactome by HITS-CLIP and PAR-CLIP methodologies revealed a high enrichment for endomembrane organelle-encoding transcripts, most prominently those encoding ER resident proteins, and within this cohort, for integral membrane protein-encoding RNAs. Cluster mapping of the AEG-1/RNA interaction sites demonstrated a normalized rank order interaction of coding sequence >5' untranslated region, with 3' untranslated region interactions only weakly represented. Intriguingly, AEG-1/membrane protein mRNA interaction sites clustered downstream from encoded transmembrane domains, suggestive of a role in membrane protein biogenesis. Secretory and cytosolic protein-encoding mRNAs were also represented in the AEG-1 RNA interactome, with the latter category notably enriched in genes functioning in mRNA localization, translational regulation, and RNA quality control. Bioinformatic analyses of RNA-binding motifs and predicted secondary structure characteristics indicate that AEG-1 lacks established RNA-binding sites though shares the property of high intrinsic disorder commonly seen in RBPs. These data implicate AEG-1 in the localization and regulation of secretory and membrane protein-encoding mRNAs and provide a framework for understanding AEG-1 function in health and disease. © 2018 Hsu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Solving the electron and electron-nuclear Schroedinger equations for the excited states of helium atom with the free iterative-complement-interaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Hiroyuki; Hijikata, Yuh; Nakatsuji, Hiroshi

    2008-04-21

    Very accurate variational calculations with the free iterative-complement-interaction (ICI) method for solving the Schroedinger equation were performed for the 1sNs singlet and triplet excited states of helium atom up to N=24. This is the first extensive applications of the free ICI method to the calculations of excited states to very high levels. We performed the calculations with the fixed-nucleus Hamiltonian and moving-nucleus Hamiltonian. The latter case is the Schroedinger equation for the electron-nuclear Hamiltonian and includes the quantum effect of nuclear motion. This solution corresponds to the nonrelativistic limit and reproduced the experimental values up to five decimal figures. Themore » small differences from the experimental values are not at all the theoretical errors but represent the physical effects that are not included in the present calculations, such as relativistic effect, quantum electrodynamic effect, and even the experimental errors. The present calculations constitute a small step toward the accurately predictive quantum chemistry.« less

  3. Analysis of the STAT3 interactome using in-situ biotinylation and SILAC.

    PubMed

    Blumert, Conny; Kalkhof, Stefan; Brocke-Heidrich, Katja; Kohajda, Tibor; von Bergen, Martin; Horn, Friedemann

    2013-12-06

    Signal transducer and activator of transcription 3 (STAT3) is activated by a variety of cytokines and growth factors. To generate a comprehensive data set of proteins interacting specifically with STAT3, we applied stable isotope labeling with amino acids in cell culture (SILAC). For high-affinity pull-down using streptavidin, we fused STAT3 with a short peptide tag allowing biotinylation in situ (bio-tag), which did not affect STAT3 functions. By this approach, 3642 coprecipitated proteins were detected in human embryonic kidney-293 cells. Filtering using statistical and functional criteria finally extracted 136 proteins as putative interaction partners of STAT3. Both, a physical interaction network analysis and the enrichment of known and predicted interaction partners suggested that our filtering criteria successfully enriched true STAT3 interactors. Our approach identified numerous novel interactors, including ones previously predicted to associate with STAT3. By reciprocal coprecipitation, we were able to verify the physical association between STAT3 and selected interactors, including the novel interaction with TOX4, a member of the TOX high mobility group box family. Applying the same method, we next investigated the activation-dependency of the STAT3 interactome. Again, we identified both known and novel interactions. Thus, our approach allows to study protein-protein interaction effectively and comprehensively. The location, activity, function, degradation, and synthesis of proteins are significantly regulated by interactions of proteins with other proteins, biopolymers and small molecules. Thus, the comprehensive characterization of interactions of proteins in a given proteome is the next milestone on the path to understanding the biochemistry of the cell. In order to generate a comprehensive interactome dataset of proteins specifically interacting with a selected bait protein, we fused our bait protein STAT3 with a short peptide tag allowing biotinylation in situ (bio-tag). This bio-tag allows an affinity pull-down using streptavidin but affected neither the activation of STAT3 by tyrosine phosphorylation nor its transactivating potential. We combined SILAC for accurate relative protein quantification, subcellular fractionation to increase the coverage of interacting proteins, high-affinity pull-down and a stringent filtering method to successfully analyze the interactome of STAT3. With our approach we confirmed several already known and identified numerous novel STAT3 interactors. The approach applied provides a rapid and effective method, which is broadly applicable for studying protein-protein interactions and their dependency on post-translational modifications. © 2013. Published by Elsevier B.V. All rights reserved.

  4. An in vivo proteomic analysis of the Me31B interactome in Drosophila germ granules.

    PubMed

    DeHaan, Hunter; McCambridge, Aidan; Armstrong, Brittany; Cruse, Carlie; Solanki, Dhruv; Trinidad, Jonathan C; Arkov, Alexey L; Gao, Ming

    2017-11-01

    Drosophila Me31B is a conserved protein of germ granules, ribonucleoprotein complexes essential for germ cell development. Me31B post-transcriptionally regulates mRNAs by interacting with other germ granule proteins. However, a Me31B interactome is lacking. Here, we use an in vivo proteomics approach to show that the Me31B interactome contains polypeptides from four functional groups: RNA regulatory proteins, glycolytic enzymes, cytoskeleton/motor proteins, and germ plasm components. We further show that Me31B likely colocalizes with the germ plasm components Tudor (Tud), Vasa, and Aubergine in the nuage and germ plasm and provide evidence that Me31B may directly bind to Tud in a symmetrically dimethylated arginine-dependent manner. Our study supports the role of Me31B in RNA regulation and suggests its novel roles in germ granule assembly and function. © 2017 Federation of European Biochemical Societies.

  5. A survey of the interactome of Kaposi's sarcoma-associated herpesvirus ORF45 revealed its binding to viral ORF33 and cellular USP7, resulting in stabilization of ORF33 that is required for production of progeny viruses.

    PubMed

    Gillen, Joseph; Li, Wenwei; Liang, Qiming; Avey, Denis; Wu, Jianjun; Wu, Fayi; Myoung, JinJong; Zhu, Fanxiu

    2015-05-01

    The ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus-specific immediate-early tegument protein. Our previous studies have revealed its crucial roles in both early and late stages of KSHV infection. In this study, we surveyed the interactome of ORF45 using a panel of monoclonal antibodies. In addition to the previously identified extracellular regulated kinase (ERK) and p90 ribosomal S6 kinase (RSK) proteins, we found several other copurified proteins, including prominent ones of ∼38 kDa and ∼130 kDa. Mass spectrometry revealed that the 38-kDa protein is viral ORF33 and the 130-kDa protein is cellular USP7 (ubiquitin-specific protease 7). We mapped the ORF33-binding domain to the highly conserved carboxyl-terminal 19 amino acids (aa) of ORF45 and the USP7-binding domain to the reported consensus motif in the central region of ORF45. Using immunofluorescence staining, we observed colocalization of ORF45 with ORF33 or USP7 both under transfected conditions and in KSHV-infected cells. Moreover, we noticed ORF45-dependent relocalization of a portion of ORF33/USP7 from the nucleus to the cytoplasm. We found that ORF45 caused an increase in ORF33 protein accumulation that was abolished if either the ORF33- or USP7-binding domain in ORF45 was deleted. Furthermore, deletion of the conserved carboxyl terminus of ORF45 in the KSHV genome drastically reduced the level of ORF33 protein in KSHV-infected cells and abolished production of progeny virions. Collectively, our results not only reveal new components of the ORF45 interactome, but also demonstrate that the interactions among these proteins are crucial for KSHV lytic replication. Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several human cancers. KSHV ORF45 is a multifunctional protein that is required for KSHV lytic replication, but the exact mechanisms by which ORF45 performs its critical functions are unclear. Our previous studies revealed that all ORF45 protein in cells exists in high-molecular-weight complexes. We therefore sought to characterize the interactome of ORF45 to provide insights into its roles during lytic replication. Using a panel of monoclonal antibodies, we surveyed the ORF45 interactome in KSHV-infected cells. We identified two new binding partners of ORF45: the viral protein ORF33 and cellular ubiquitin-specific protease 7 (USP7). We further demonstrate that the interaction between ORF45 and ORF33 is crucial for the efficient production of KSHV viral particles, suggesting that the targeted interference with this interaction may represent a novel strategy to inhibit KSHV lytic replication. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Predicted Arabidopsis Interactome Resource and Gene Set Linkage Analysis: A Transcriptomic Analysis Resource.

    PubMed

    Yao, Heng; Wang, Xiaoxuan; Chen, Pengcheng; Hai, Ling; Jin, Kang; Yao, Lixia; Mao, Chuanzao; Chen, Xin

    2018-05-01

    An advanced functional understanding of omics data is important for elucidating the design logic of physiological processes in plants and effectively controlling desired traits in plants. We present the latest versions of the Predicted Arabidopsis Interactome Resource (PAIR) and of the gene set linkage analysis (GSLA) tool, which enable the interpretation of an observed transcriptomic change (differentially expressed genes [DEGs]) in Arabidopsis ( Arabidopsis thaliana ) with respect to its functional impact for biological processes. PAIR version 5.0 integrates functional association data between genes in multiple forms and infers 335,301 putative functional interactions. GSLA relies on this high-confidence inferred functional association network to expand our perception of the functional impacts of an observed transcriptomic change. GSLA then interprets the biological significance of the observed DEGs using established biological concepts (annotation terms), describing not only the DEGs themselves but also their potential functional impacts. This unique analytical capability can help researchers gain deeper insights into their experimental results and highlight prospective directions for further investigation. We demonstrate the utility of GSLA with two case studies in which GSLA uncovered how molecular events may have caused physiological changes through their collective functional influence on biological processes. Furthermore, we showed that typical annotation-enrichment tools were unable to produce similar insights to PAIR/GSLA. The PAIR version 5.0-inferred interactome and GSLA Web tool both can be accessed at http://public.synergylab.cn/pair/. © 2018 American Society of Plant Biologists. All Rights Reserved.

  7. Hypothesis: NDL proteins function in stress responses by regulating microtubule organization

    PubMed Central

    Khatri, Nisha; Mudgil, Yashwanti

    2015-01-01

    N-MYC DOWNREGULATED-LIKE proteins (NDL), members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart N-MYC DOWNREGULATED GENE (NDRG) suggests similar functions in animals and plants. It is well established that stress responses leads to the microtubule depolymerization and reorganization which is crucial for stress tolerance. NDRG is a microtubule-associated protein which mediates the microtubule organization in animals by causing acetylation and increases the stability of α-tubulin. As NDL1 is highly homologous to NDRG, involvement of NDL1 in the microtubule organization during plant stress can also be expected. Discovery of interaction of NDL with protein kinesin light chain- related 1, enodomembrane family protein 70, syntaxin-23, tubulin alpha-2 chain, as a part of G protein interactome initiative encourages us to postulate microtubule stabilizing functions for NDL family in plants. Our search for NDL interactors in G protein interactome also predicts the role of NDL proteins in abiotic stress tolerance management. Based on published report in animals and predicted interacting partners for NDL in G protein interactome lead us to hypothesize involvement of NDL in the microtubule organization during abiotic stress management in plants. PMID:26583023

  8. Hypothesis: NDL proteins function in stress responses by regulating microtubule organization.

    PubMed

    Khatri, Nisha; Mudgil, Yashwanti

    2015-01-01

    N-MYC DOWNREGULATED-LIKE proteins (NDL), members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart N-MYC DOWNREGULATED GENE (NDRG) suggests similar functions in animals and plants. It is well established that stress responses leads to the microtubule depolymerization and reorganization which is crucial for stress tolerance. NDRG is a microtubule-associated protein which mediates the microtubule organization in animals by causing acetylation and increases the stability of α-tubulin. As NDL1 is highly homologous to NDRG, involvement of NDL1 in the microtubule organization during plant stress can also be expected. Discovery of interaction of NDL with protein kinesin light chain- related 1, enodomembrane family protein 70, syntaxin-23, tubulin alpha-2 chain, as a part of G protein interactome initiative encourages us to postulate microtubule stabilizing functions for NDL family in plants. Our search for NDL interactors in G protein interactome also predicts the role of NDL proteins in abiotic stress tolerance management. Based on published report in animals and predicted interacting partners for NDL in G protein interactome lead us to hypothesize involvement of NDL in the microtubule organization during abiotic stress management in plants.

  9. Identification of host cellular proteins that interact with the M protein of a highly pathogenic porcine reproductive and respiratory syndrome virus vaccine strain.

    PubMed

    Wang, Qian; Li, Yanwei; Dong, Hong; Wang, Li; Peng, Jinmei; An, Tongqing; Yang, Xufu; Tian, Zhijun; Cai, Xuehui

    2017-02-22

    The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) continues to pose one of the greatest threats to the swine industry. M protein is the most conserved and important structural protein of PRRSV. However, information about the host cellular proteins that interact with M protein remains limited. Host cellular proteins that interact with the M protein of HP-PRRSV were immunoprecipitated from MARC-145 cells infected with PRRSV HuN4-F112 using the M monoclonal antibody (mAb). The differentially expressed proteins were identified by LC-MS/MS. The screened proteins were used for bioinformatics analysis including Gene Ontology, the interaction network, and the enriched KEGG pathways. Some interested cellular proteins were validated to interact with M protein by CO-IP. The PRRSV HuN4-F112 infection group had 10 bands compared with the control group. The bands included 219 non-redundant cellular proteins that interact with M protein, which were identified by LC-MS/MS with high confidence. The gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway bioinformatic analyses indicated that the identified proteins could be assigned to several different subcellular locations and functional classes. Functional analysis of the interactome profile highlighted cellular pathways associated with protein translation, infectious disease, and signal transduction. Two interested cellular proteins-nuclear factor of activated T cells 45 kDa (NF45) and proliferating cell nuclear antigen (PCNA)-that could interact with M protein were validated by Co-IP and confocal analyses. The interactome data between PRRSV M protein and cellular proteins were identified and contribute to the understanding of the roles of M protein in the replication and pathogenesis of PRRSV. The interactome of M protein will aid studies of virus/host interactions and provide means to decrease the threat of PRRSV to the swine industry in the future.

  10. Experimental test of dense wavelength-division multiplexing using novel, periodic-group-delay-complemented dispersion compensation and dispersion-managed solitons

    NASA Astrophysics Data System (ADS)

    Mollenauer, Linn F.; Grant, Andrew; Liu, Xiang; Wei, Xing; Xie, Chongjin; Kang, Inuk

    2003-11-01

    In an all-Raman amplified, recirculating loop containing 100-km spans, we have tested dense wavelength-division multiplexing at 10 Gbits/s per channel, using dispersion-managed solitons and a novel, periodic-group-delay-complemented dispersion-compensation scheme that greatly reduces the timing jitter from interchannel collisions. The achieved working distances are ~9000 and ~20,000 km for uncorrected bit error rates of <10-8 and <10-3, respectively, the latter corresponding to the use of ``enhanced'' forward error correction; significantly, these distances are very close to those achievable in single-channel transmission in the same system.

  11. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies

    PubMed Central

    Bratic, Ana; Kauppila, Timo E. S.; Macao, Bertil; Grönke, Sebastian; Siibak, Triinu; Stewart, James B.; Baggio, Francesca; Dols, Jacqueline; Partridge, Linda; Falkenberg, Maria; Wredenberg, Anna; Larsson, Nils-Göran

    2015-01-01

    Replication errors are the main cause of mitochondrial DNA (mtDNA) mutations and a compelling approach to decrease mutation levels would therefore be to increase the fidelity of the catalytic subunit (POLγA) of the mtDNA polymerase. Here we genomically engineer the tamas locus, encoding fly POLγA, and introduce alleles expressing exonuclease- (exo−) and polymerase-deficient (pol−) POLγA versions. The exo− mutant leads to accumulation of point mutations and linear deletions of mtDNA, whereas pol− mutants cause mtDNA depletion. The mutant tamas alleles are developmentally lethal but can complement each other in trans resulting in viable flies with clonally expanded mtDNA mutations. Reconstitution of human mtDNA replication in vitro confirms that replication is a highly dynamic process where POLγA goes on and off the template to allow complementation during proofreading and elongation. The created fly models are valuable tools to study germ line transmission of mtDNA and the pathophysiology of POLγA mutation disease. PMID:26554610

  12. Quantitative assessment of protein activity in orphan tissues and single cells using the metaVIPER algorithm. | Office of Cancer Genomics

    Cancer.gov

    We and others have shown that transition and maintenance of biological states is controlled by master regulator proteins, which can be inferred by interrogating tissue-specific regulatory models (interactomes) with transcriptional signatures, using the VIPER algorithm. Yet, some tissues may lack molecular profiles necessary for interactome inference (orphan tissues), or, as for single cells isolated from heterogeneous samples, their tissue context may be undetermined.

  13. APP is cleaved by Bace1 in pre-synaptic vesicles and establishes a pre-synaptic interactome, via its intracellular domain, with molecular complexes that regulate pre-synaptic vesicles functions.

    PubMed

    Del Prete, Dolores; Lombino, Franco; Liu, Xinran; D'Adamio, Luciano

    2014-01-01

    Amyloid Precursor Protein (APP) is a type I membrane protein that undergoes extensive processing by secretases, including BACE1. Although mutations in APP and genes that regulate processing of APP, such as PSENs and BRI2/ITM2B, cause dementias, the normal function of APP in synaptic transmission, synaptic plasticity and memory formation is poorly understood. To grasp the biochemical mechanisms underlying the function of APP in the central nervous system, it is important to first define the sub-cellular localization of APP in synapses and the synaptic interactome of APP. Using biochemical and electron microscopy approaches, we have found that APP is localized in pre-synaptic vesicles, where it is processed by Bace1. By means of a proteomic approach, we have characterized the synaptic interactome of the APP intracellular domain. We focused on this region of APP because in vivo data underline the central functional and pathological role of the intracellular domain of APP. Consistent with the expression of APP in pre-synaptic vesicles, the synaptic APP intracellular domain interactome is predominantly constituted by pre-synaptic, rather than post-synaptic, proteins. This pre-synaptic interactome of the APP intracellular domain includes proteins expressed on pre-synaptic vesicles such as the vesicular SNARE Vamp2/Vamp1 and the Ca2+ sensors Synaptotagmin-1/Synaptotagmin-2, and non-vesicular pre-synaptic proteins that regulate exocytosis, endocytosis and recycling of pre-synaptic vesicles, such as target-membrane-SNAREs (Syntaxin-1b, Syntaxin-1a, Snap25 and Snap47), Munc-18, Nsf, α/β/γ-Snaps and complexin. These data are consistent with a functional role for APP, via its carboxyl-terminal domain, in exocytosis, endocytosis and/or recycling of pre-synaptic vesicles.

  14. System-level insights into the cellular interactome of a non-model organism: inferring, modelling and analysing functional gene network of soybean (Glycine max).

    PubMed

    Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang

    2014-01-01

    Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN.

  15. System-Level Insights into the Cellular Interactome of a Non-Model Organism: Inferring, Modelling and Analysing Functional Gene Network of Soybean (Glycine max)

    PubMed Central

    Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang

    2014-01-01

    Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN. PMID:25423109

  16. Network-based study reveals potential infection pathways of hepatitis-C leading to various diseases.

    PubMed

    Mukhopadhyay, Anirban; Maulik, Ujjwal

    2014-01-01

    Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement.

  17. Network-Based Study Reveals Potential Infection Pathways of Hepatitis-C Leading to Various Diseases

    PubMed Central

    Mukhopadhyay, Anirban; Maulik, Ujjwal

    2014-01-01

    Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement. PMID:24743187

  18. The RNA-binding protein repertoire of embryonic stem cells.

    PubMed

    Kwon, S Chul; Yi, Hyerim; Eichelbaum, Katrin; Föhr, Sophia; Fischer, Bernd; You, Kwon Tae; Castello, Alfredo; Krijgsveld, Jeroen; Hentze, Matthias W; Kim, V Narry

    2013-09-01

    RNA-binding proteins (RBPs) have essential roles in RNA-mediated gene regulation, and yet annotation of RBPs is limited mainly to those with known RNA-binding domains. To systematically identify the RBPs of embryonic stem cells (ESCs), we here employ interactome capture, which combines UV cross-linking of RBP to RNA in living cells, oligo(dT) capture and MS. From mouse ESCs (mESCs), we have defined 555 proteins constituting the mESC mRNA interactome, including 283 proteins not previously annotated as RBPs. Of these, 68 new RBP candidates are highly expressed in ESCs compared to differentiated cells, implicating a role in stem-cell physiology. Two well-known E3 ubiquitin ligases, Trim25 (also called Efp) and Trim71 (also called Lin41), are validated as RBPs, revealing a potential link between RNA biology and protein-modification pathways. Our study confirms and expands the atlas of RBPs, providing a useful resource for the study of the RNA-RBP network in stem cells.

  19. Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters.

    PubMed

    Javierre, Biola M; Burren, Oliver S; Wilder, Steven P; Kreuzhuber, Roman; Hill, Steven M; Sewitz, Sven; Cairns, Jonathan; Wingett, Steven W; Várnai, Csilla; Thiecke, Michiel J; Burden, Frances; Farrow, Samantha; Cutler, Antony J; Rehnström, Karola; Downes, Kate; Grassi, Luigi; Kostadima, Myrto; Freire-Pritchett, Paula; Wang, Fan; Stunnenberg, Hendrik G; Todd, John A; Zerbino, Daniel R; Stegle, Oliver; Ouwehand, Willem H; Frontini, Mattia; Wallace, Chris; Spivakov, Mikhail; Fraser, Peter

    2016-11-17

    Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae.

    PubMed

    Uthe, Henriette; Vanselow, Jens T; Schlosser, Andreas

    2017-02-27

    Here we present the most comprehensive analysis of the yeast Mediator complex interactome to date. Particularly gentle cell lysis and co-immunopurification conditions allowed us to preserve even transient protein-protein interactions and to comprehensively probe the molecular environment of the Mediator complex in the cell. Metabolic 15 N-labeling thereby enabled stringent discrimination between bona fide interaction partners and nonspecifically captured proteins. Our data indicates a functional role for Mediator beyond transcription initiation. We identified a large number of Mediator-interacting proteins and protein complexes, such as RNA polymerase II, general transcription factors, a large number of transcriptional activators, the SAGA complex, chromatin remodeling complexes, histone chaperones, highly acetylated histones, as well as proteins playing a role in co-transcriptional processes, such as splicing, mRNA decapping and mRNA decay. Moreover, our data provides clear evidence, that the Mediator complex interacts not only with RNA polymerase II, but also with RNA polymerases I and III, and indicates a functional role of the Mediator complex in rRNA processing and ribosome biogenesis.

  1. The mRNA-bound proteome of the early fly embryo

    PubMed Central

    Wessels, Hans-Hermann; Imami, Koshi; Baltz, Alexander G.; Kolinski, Marcin; Beldovskaya, Anastasia; Selbach, Matthias; Small, Stephen; Ohler, Uwe; Landthaler, Markus

    2016-01-01

    Early embryogenesis is characterized by the maternal to zygotic transition (MZT), in which maternally deposited messenger RNAs are degraded while zygotic transcription begins. Before the MZT, post-transcriptional gene regulation by RNA-binding proteins (RBPs) is the dominant force in embryo patterning. We used two mRNA interactome capture methods to identify RBPs bound to polyadenylated transcripts within the first 2 h of Drosophila melanogaster embryogenesis. We identified a high-confidence set of 476 putative RBPs and confirmed RNA-binding activities for most of 24 tested candidates. Most proteins in the interactome are known RBPs or harbor canonical RBP features, but 99 exhibited previously uncharacterized RNA-binding activity. mRNA-bound RBPs and TFs exhibit distinct expression dynamics, in which the newly identified RBPs dominate the first 2 h of embryonic development. Integrating our resource with in situ hybridization data from existing databases showed that mRNAs encoding RBPs are enriched in posterior regions of the early embryo, suggesting their general importance in posterior patterning and germ cell maturation. PMID:27197210

  2. The human cytoplasmic dynein interactome reveals novel activators of motility

    PubMed Central

    Redwine, William B; DeSantis, Morgan E; Hollyer, Ian; Htet, Zaw Min; Tran, Phuoc Tien; Swanson, Selene K; Florens, Laurence; Washburn, Michael P; Reck-Peterson, Samara L

    2017-01-01

    In human cells, cytoplasmic dynein-1 is essential for long-distance transport of many cargos, including organelles, RNAs, proteins, and viruses, towards microtubule minus ends. To understand how a single motor achieves cargo specificity, we identified the human dynein interactome by attaching a promiscuous biotin ligase (‘BioID’) to seven components of the dynein machinery, including a subunit of the essential cofactor dynactin. This method reported spatial information about the large cytosolic dynein/dynactin complex in living cells. To achieve maximal motile activity and to bind its cargos, human dynein/dynactin requires ‘activators’, of which only five have been described. We developed methods to identify new activators in our BioID data, and discovered that ninein and ninein-like are a new family of dynein activators. Analysis of the protein interactomes for six activators, including ninein and ninein-like, suggests that each dynein activator has multiple cargos. DOI: http://dx.doi.org/10.7554/eLife.28257.001 PMID:28718761

  3. Identification of the Interactome of a Palmitoylated Membrane Protein, Phosphatidylinositol 4-Kinase Type II Alpha.

    PubMed

    Gokhale, Avanti; Ryder, Pearl V; Zlatic, Stephanie A; Faundez, Victor

    2016-01-01

    Phosphatidylinositol 4-kinases (PI4K) are enzymes responsible for the production of phosphatidylinositol 4-phosphates, important intermediates in several cell signaling pathways. PI4KIIα is the most abundant membrane-associated kinase in mammalian cells and is involved in a variety of essential cellular functions. However, the precise role(s) of PI4KIIα in the cell is not yet completely deciphered. Here we present an experimental protocol that uses a chemical cross-linker, DSP, combined with immunoprecipitation and immunoaffinity purification to identify novel PI4KIIα interactors. As predicted, PI4KIIα participates in transient, low-affinity interactions that are stabilized by the use of DSP. Using this optimized protocol we have successfully identified actin cytoskeleton regulators-the WASH complex and RhoGEF1, as major novel interactors of PI4KIIα. While this chapter focuses on the PI4KIIα interactome, this protocol can and has been used to generate other membrane interactome networks.

  4. ZikaBase: An integrated ZIKV- Human Interactome Map database.

    PubMed

    Gurumayum, Sanathoi; Brahma, Rahul; Naorem, Leimarembi Devi; Muthaiyan, Mathavan; Gopal, Jeyakodi; Venkatesan, Amouda

    2018-01-15

    Re-emergence of ZIKV has caused infections in more than 1.5 million people. The molecular mechanism and pathogenesis of ZIKV is not well explored due to unavailability of adequate model and lack of publically accessible resources to provide information of ZIKV-Human protein interactome map till today. This study made an attempt to curate the ZIKV-Human interaction proteins from published literatures and RNA-Seq data. 11 direct interaction, 12 associated genes are retrieved from literatures and 3742 Differentially Expressed Genes (DEGs) are obtained from RNA-Seq analysis. The genes have been analyzed to construct the ZIKV-Human Interactome Map. The importance of the study has been illustrated by the enrichment analysis and observed that direct interaction and associated genes are enriched in viral entry into host cell. Also, ZIKV infection modulates 32% signal and 27% immune system pathways. The integrated database, ZikaBase has been developed to help the virology research community and accessible at https://test5.bicpu.edu.in. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The protein interactome of collapsin response mediator protein-2 (CRMP2/DPYSL2) reveals novel partner proteins in brain tissue.

    PubMed

    Martins-de-Souza, Daniel; Cassoli, Juliana S; Nascimento, Juliana M; Hensley, Kenneth; Guest, Paul C; Pinzon-Velasco, Andres M; Turck, Christoph W

    2015-10-01

    Collapsin response mediator protein-2 (CRMP2) is a CNS protein involved in neuronal development, axonal and neuronal growth, cell migration, and protein trafficking. Recent studies have linked perturbations in CRMP2 function to neurodegenerative disorders such as Alzheimer's disease, neuropathic pain, and Batten disease, and to psychiatric disorders such as schizophrenia. Like most proteins, CRMP2 functions though interactions with a molecular network of proteins and other molecules. Here, we have attempted to identify additional proteins of the CRMP2 interactome to provide further leads about its roles in neurological functions. We used a combined co-immunoprecipitation and shotgun proteomic approach in order to identify CRMP2 protein partners. We identified 78 CRMP2 protein partners not previously reported in public protein interaction databases. These were involved in seven biological processes, which included cell signaling, growth, metabolism, trafficking, and immune function, according to Gene Ontology classifications. Furthermore, 32 different molecular functions were found to be associated with these proteins, such as RNA binding, ribosomal functions, transporter activity, receptor activity, serine/threonine phosphatase activity, cell adhesion, cytoskeletal protein binding and catalytic activity. In silico pathway interactome construction revealed a highly connected network with the most overrepresented functions corresponding to semaphorin interactions, along with axon guidance and WNT5A signaling. Taken together, these findings suggest that the CRMP2 pathway is critical for regulating neuronal and synaptic architecture. Further studies along these lines might uncover novel biomarkers and drug targets for use in drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism

    PubMed Central

    Eagleson, Kathie L.; Xie, Zhihui; Levitt, Pat

    2016-01-01

    People with autism spectrum disorder (ASD) and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy - the influence of one gene on distinct phenotypes - raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multi-functional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain, and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with ASD, reduces transcription and disrupts socially-relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways, and has a complex protein interactome that is enriched in ASD and other NDD candidates. The interactome is co-regulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, impacting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms. PMID:27837921

  7. The dynamics of error processing in the human brain as reflected by high-gamma activity in noninvasive and intracranial EEG.

    PubMed

    Völker, Martin; Fiederer, Lukas D J; Berberich, Sofie; Hammer, Jiří; Behncke, Joos; Kršek, Pavel; Tomášek, Martin; Marusič, Petr; Reinacher, Peter C; Coenen, Volker A; Helias, Moritz; Schulze-Bonhage, Andreas; Burgard, Wolfram; Ball, Tonio

    2018-06-01

    Error detection in motor behavior is a fundamental cognitive function heavily relying on local cortical information processing. Neural activity in the high-gamma frequency band (HGB) closely reflects such local cortical processing, but little is known about its role in error processing, particularly in the healthy human brain. Here we characterize the error-related response of the human brain based on data obtained with noninvasive EEG optimized for HGB mapping in 31 healthy subjects (15 females, 16 males), and additional intracranial EEG data from 9 epilepsy patients (4 females, 5 males). Our findings reveal a multiscale picture of the global and local dynamics of error-related HGB activity in the human brain. On the global level as reflected in the noninvasive EEG, the error-related response started with an early component dominated by anterior brain regions, followed by a shift to parietal regions, and a subsequent phase characterized by sustained parietal HGB activity. This phase lasted for more than 1 s after the error onset. On the local level reflected in the intracranial EEG, a cascade of both transient and sustained error-related responses involved an even more extended network, spanning beyond frontal and parietal regions to the insula and the hippocampus. HGB mapping appeared especially well suited to investigate late, sustained components of the error response, possibly linked to downstream functional stages such as error-related learning and behavioral adaptation. Our findings establish the basic spatio-temporal properties of HGB activity as a neural correlate of error processing, complementing traditional error-related potential studies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Using neighborhood cohesiveness to infer interactions between protein domains.

    PubMed

    Segura, Joan; Sorzano, C O S; Cuenca-Alba, Jesus; Aloy, Patrick; Carazo, J M

    2015-08-01

    In recent years, large-scale studies have been undertaken to describe, at least partially, protein-protein interaction maps, or interactomes, for a number of relevant organisms, including human. However, current interactomes provide a somehow limited picture of the molecular details involving protein interactions, mostly because essential experimental information, especially structural data, is lacking. Indeed, the gap between structural and interactomics information is enlarging and thus, for most interactions, key experimental information is missing. We elaborate on the observation that many interactions between proteins involve a pair of their constituent domains and, thus, the knowledge of how protein domains interact adds very significant information to any interactomic analysis. In this work, we describe a novel use of the neighborhood cohesiveness property to infer interactions between protein domains given a protein interaction network. We have shown that some clustering coefficients can be extended to measure a degree of cohesiveness between two sets of nodes within a network. Specifically, we used the meet/min coefficient to measure the proportion of interacting nodes between two sets of nodes and the fraction of common neighbors. This approach extends previous works where homolog coefficients were first defined around network nodes and later around edges. The proposed approach substantially increases both the number of predicted domain-domain interactions as well as its accuracy as compared with current methods. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Interactome analysis of transcriptional coactivator multiprotein bridging factor 1 unveils a yeast AP-1-like transcription factor involved in oxidation tolerance of mycopathogen Beauveria bassiana.

    PubMed

    Chu, Xin-Ling; Dong, Wei-Xia; Ding, Jin-Li; Feng, Ming-Guang; Ying, Sheng-Hua

    2018-02-01

    Oxidation tolerance is an important determinant to predict the virulence and biocontrol potential of Beauveria bassiana, a well-known entomopathogenic fungus. As a transcriptional coactivator, multiprotein bridging factor 1 mediates the activity of transcription factor in diverse physiological processes, and its homolog in B. bassiana (BbMBF1) contributes to fungal oxidation tolerance. In this study, the BbMBF1-interactomes under oxidative stress and normal growth condition were deciphered by mass spectrometry integrated with the immunoprecipitation. BbMBF1p factor has a broad interaction with proteins that are involved in various cellular processes, and this interaction is dynamically regulated by oxidative stress. Importantly, a B. bassiana homolog of yeast AP-1-like transcription factor (BbAP-1) was specifically associated with the BbMBF1-interactome under oxidation and significantly contributed to fungal oxidation tolerance. In addition, qPCR analysis revealed that several antioxidant genes are jointly controlled by BbAP-1 and BbMBF1. Conclusively, it is proposed that BbMBF1p protein mediates BbAP-1p factor to transcribe the downstream antioxidant genes in B. bassiana under oxidative stress. This study demonstrates for the first time a proteomic view of the MBF1-interactome in fungi, and presents an initial framework to probe the transcriptional mechanism involved in fungal response to oxidation, which will provide a new strategy to improve the biocontrol efficacy of B. bassiana.

  10. A meta-analysis to evaluate the cellular processes regulated by the interactome of endogenous and over-expressed estrogen receptor alpha.

    PubMed

    Simões, Joana; Amado, Francisco M; Vitorino, Rui; Helguero, Luisa A

    2015-01-01

    The nature of the proteins complexes that regulate ERα subcellular localization and activity is still an open question in breast cancer biology. Identification of such complexes will help understand development of endocrine resistance in ER+ breast cancer. Mass spectrometry (MS) has allowed comprehensive analysis of the ERα interactome. We have compared six published works analyzing the ERα interactome of MCF-7 and HeLa cells in order to identify a shared or different pathway-related fingerprint. Overall, 806 ERα interacting proteins were identified. The cellular processes were differentially represented according to the ERα purification methodology, indicating that the methodologies used are complementary. While in MCF-7 cells, the interactome of endogenous and over-expressed ERα essentially represents the same biological processes and cellular components, the proteins identified were not over-lapping; thus, suggesting that the biological response may differ as the regulatory/participating proteins in these complexes are different. Interestingly, biological processes uniquely associated to ERα over-expressed in HeLa cell line included L-serine biosynthetic process, cellular amino acid biosynthetic process and cell redox homeostasis. In summary, all the approaches analyzed in this meta-analysis are valid and complementary; in particular, for those cases where the processes occur at low frequency with normal ERα levels, and can be identified when the receptor is over-expressed. However special effort should be put into validating these findings in cells expressing physiological ERα levels.

  11. Impact of ITRS 2014 realizations on altimeter satellite precise orbit determination

    NASA Astrophysics Data System (ADS)

    Zelensky, Nikita P.; Lemoine, Frank G.; Beckley, Brian D.; Chinn, Douglas S.; Pavlis, Despina E.

    2018-01-01

    This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l'Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1-2 mm RMS radial difference between 1992-2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3-4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual radial signal of 0.4 mm amplitude with the CM model. The unmodeled CM signals show roughly a 1.8 mm peak-to-peak annual variation in the orbit radial component. We find the TRF network stability pertinent to POD can be defined only by examination of the orbit-specific tracking network time series. Drift stability between the ITRF2008 and the other TRF2014-based orbits is very high, the relative mean radial drift error over water is no larger than 0.04 mm/year over 1993-2015. Analyses also show TRF induced orbit error meets current altimeter rate accuracy goals for global and regional sea level estimation.

  12. Hub Protein Controversy: Taking a Closer Look at Plant Stress Response Hubs

    PubMed Central

    Vandereyken, Katy; Van Leene, Jelle; De Coninck, Barbara; Cammue, Bruno P. A.

    2018-01-01

    Plant stress responses involve numerous changes at the molecular and cellular level and are regulated by highly complex signaling pathways. Studying protein-protein interactions (PPIs) and the resulting networks is therefore becoming increasingly important in understanding these responses. Crucial in PPI networks are the so-called hubs or hub proteins, commonly defined as the most highly connected central proteins in scale-free PPI networks. However, despite their importance, a growing amount of confusion and controversy seems to exist regarding hub protein identification, characterization and classification. In order to highlight these inconsistencies and stimulate further clarification, this review critically analyses the current knowledge on hub proteins in the plant interactome field. We focus on current hub protein definitions, including the properties generally seen as hub-defining, and the challenges and approaches associated with hub protein identification. Furthermore, we give an overview of the most important large-scale plant PPI studies of the last decade that identified hub proteins, pointing out the lack of overlap between different studies. As such, it appears that although major advances are being made in the plant interactome field, defining hub proteins is still heavily dependent on the quality, origin and interpretation of the acquired PPI data. Nevertheless, many hub proteins seem to have a reported role in the plant stress response, including transcription factors, protein kinases and phosphatases, ubiquitin proteasome system related proteins, (co-)chaperones and redox signaling proteins. A significant number of identified plant stress hubs are however still functionally uncharacterized, making them interesting targets for future research. This review clearly shows the ongoing improvements in the plant interactome field but also calls attention to the need for a more comprehensive and precise identification of hub proteins, allowing a more efficient systems biology driven unraveling of complex processes, including those involved in stress responses. PMID:29922309

  13. Local and global evaluation for remote sensing image segmentation

    NASA Astrophysics Data System (ADS)

    Su, Tengfei; Zhang, Shengwei

    2017-08-01

    In object-based image analysis, how to produce accurate segmentation is usually a very important issue that needs to be solved before image classification or target recognition. The study for segmentation evaluation method is key to solving this issue. Almost all of the existent evaluation strategies only focus on the global performance assessment. However, these methods are ineffective for the situation that two segmentation results with very similar overall performance have very different local error distributions. To overcome this problem, this paper presents an approach that can both locally and globally quantify segmentation incorrectness. In doing so, region-overlapping metrics are utilized to quantify each reference geo-object's over and under-segmentation error. These quantified error values are used to produce segmentation error maps which have effective illustrative power to delineate local segmentation error patterns. The error values for all of the reference geo-objects are aggregated through using area-weighted summation, so that global indicators can be derived. An experiment using two scenes of very different high resolution images showed that the global evaluation part of the proposed approach was almost as effective as other two global evaluation methods, and the local part was a useful complement to comparing different segmentation results.

  14. Characterization of the Cardiac Overexpression of HSPB2 Reveals Mitochondrial and Myogenic Roles Supported by a Cardiac HspB2 Interactome.

    PubMed

    Grose, Julianne H; Langston, Kelsey; Wang, Xiaohui; Squires, Shayne; Mustafi, Soumyajit Banerjee; Hayes, Whitney; Neubert, Jonathan; Fischer, Susan K; Fasano, Matthew; Saunders, Gina Moore; Dai, Qiang; Christians, Elisabeth; Lewandowski, E Douglas; Ping, Peipei; Benjamin, Ivor J

    2015-01-01

    Small Heat Shock Proteins (sHSPs) are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2), which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait) and a human cardiac library (prey) coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 "cardiac interactome" to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID). A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is tempting to speculate that small molecule activators of HspB2 might be deployed to mitigate mitochondrial related diseases such as cardiomyopathy and neurodegenerative disease.

  15. Error compensation of single-antenna attitude determination using GNSS for Low-dynamic applications

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Yu, Chao; Cai, Miaomiao

    2017-04-01

    GNSS-based single-antenna pseudo-attitude determination method has attracted more and more attention from the field of high-dynamic navigation due to its low cost, low system complexity, and no temporal accumulated errors. Related researches indicate that this method can be an important complement or even an alternative to the traditional sensors for general accuracy requirement (such as small UAV navigation). The application of single-antenna attitude determining method to low-dynamic carrier has just started. Different from the traditional multi-antenna attitude measurement technique, the pseudo-attitude attitude determination method calculates the rotation angle of the carrier trajectory relative to the earth. Thus it inevitably contains some deviations comparing with the real attitude angle. In low-dynamic application, these deviations are particularly noticeable, which may not be ignored. The causes of the deviations can be roughly classified into three categories, including the measurement error, the offset error, and the lateral error. Empirical correction strategies for the formal two errors have been promoted in previous study, but lack of theoretical support. In this paper, we will provide quantitative description of the three type of errors and discuss the related error compensation methods. Vehicle and shipborne experiments were carried out to verify the feasibility of the proposed correction methods. Keywords: Error compensation; Single-antenna; GNSS; Attitude determination; Low-dynamic

  16. The cell-cycle interactome: a source of growth regulators?

    PubMed

    Blomme, Jonas; Inzé, Dirk; Gonzalez, Nathalie

    2014-06-01

    When plants develop, cell proliferation and cell expansion are tightly controlled in order to generate organs with a determinate final size such as leaves. Several studies have demonstrated the importance of the cell proliferation phase for leaf growth, illustrating that cell-cycle regulation is crucial for correct leaf development. A large and complex set of interacting proteins that constitute the cell-cycle interactome controls the transition from one cell-cycle phase to another. Here, we review the current knowledge on cell-cycle regulators from this interactome affecting final leaf size when their expression is altered, mainly in Arabidopsis. In addition to the description of mutants of CYCLIN-DEPENDENT KINASES (CDKs), CYCLINS (CYCs), and their transcriptional and post-translational regulators, a phenotypic analysis of gain- and loss-of-function mutants for 27 genes encoding proteins that interact with cell-cycle proteins is presented. This compilation of information shows that when cell-cycle-related genes are mis-expressed, leaf growth is often altered and that, seemingly, three main trends appear to be crucial in the regulation of final organ size by cell-cycle-related genes: (i) cellular compensation; (ii) gene dosage; and (iii) correct transition through the G2/M phase by ANAPHASE PROMOTING COMPLEX/CYCLOSOME (APC/C) activation. In conclusion, this meta-analysis shows that the cell-cycle interactome is enriched in leaf growth regulators, and illustrates the potential to identify new leaf growth regulators among putative new cell-cycle regulators. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases

    PubMed Central

    Carter, Chris J.; France, James; Crean, StJohn; Singhrao, Sim K.

    2017-01-01

    Periodontal disease is of established etiology in which polymicrobial synergistic ecology has become dysbiotic under the influence of Porphyromonas gingivalis. Following breakdown of the host's protective oral tissue barriers, P. gingivalis migrates to developing inflammatory pathologies that associate with Alzheimer's disease (AD). Periodontal disease is a risk factor for cardiovascular disorders (CVD), type II diabetes mellitus (T2DM), AD and other chronic diseases, whilst T2DM exacerbates periodontitis. This study analyzed the relationship between the P. gingivalis/host interactome and the genes identified in genome-wide association studies (GWAS) for the aforementioned conditions using data from GWASdb (P < 1E-03) and, in some cases, from the NCBI/EBI GWAS database (P < 1E-05). Gene expression data from periodontitis or P. gingivalis microarray was compared to microarray datasets from the AD hippocampus and/or from carotid artery plaques. The results demonstrated that the host genes of the P. gingivalis interactome were significantly enriched in genes deposited in GWASdb genes related to cognitive disorders, AD and dementia, and its co-morbid conditions T2DM, obesity, and CVD. The P. gingivalis/host interactome was also enriched in GWAS genes from the more stringent NCBI-EBI database for AD, atherosclerosis and T2DM. The misregulated genes in periodontitis tissue or P. gingivalis infected macrophages also matched those in the AD hippocampus or atherosclerotic plaques. Together, these data suggest important gene/environment interactions between P. gingivalis and susceptibility genes or gene expression changes in conditions where periodontal disease is a contributory factor. PMID:29311898

  18. The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases.

    PubMed

    Carter, Chris J; France, James; Crean, StJohn; Singhrao, Sim K

    2017-01-01

    Periodontal disease is of established etiology in which polymicrobial synergistic ecology has become dysbiotic under the influence of Porphyromonas gingivalis . Following breakdown of the host's protective oral tissue barriers, P. gingivalis migrates to developing inflammatory pathologies that associate with Alzheimer's disease (AD). Periodontal disease is a risk factor for cardiovascular disorders (CVD), type II diabetes mellitus (T2DM), AD and other chronic diseases, whilst T2DM exacerbates periodontitis. This study analyzed the relationship between the P. gingivalis /host interactome and the genes identified in genome-wide association studies (GWAS) for the aforementioned conditions using data from GWASdb ( P < 1E-03) and, in some cases, from the NCBI/EBI GWAS database ( P < 1E-05). Gene expression data from periodontitis or P. gingivalis microarray was compared to microarray datasets from the AD hippocampus and/or from carotid artery plaques. The results demonstrated that the host genes of the P. gingivalis interactome were significantly enriched in genes deposited in GWASdb genes related to cognitive disorders, AD and dementia, and its co-morbid conditions T2DM, obesity, and CVD. The P. gingivalis /host interactome was also enriched in GWAS genes from the more stringent NCBI-EBI database for AD, atherosclerosis and T2DM. The misregulated genes in periodontitis tissue or P. gingivalis infected macrophages also matched those in the AD hippocampus or atherosclerotic plaques. Together, these data suggest important gene/environment interactions between P. gingivalis and susceptibility genes or gene expression changes in conditions where periodontal disease is a contributory factor.

  19. A “Candidate-Interactome” Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis

    PubMed Central

    Policano, Claudia; Annibali, Viviana; Coarelli, Giulia; Ricigliano, Vito A. G.; Vittori, Danila; Fornasiero, Arianna; Buscarinu, Maria Chiara; Romano, Silvia; Salvetti, Marco; Ristori, Giovanni

    2013-01-01

    Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a “candidate interactome” (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms. PMID:23696811

  20. Bcl2-associated Athanogene 3 Interactome Analysis Reveals a New Role in Modulating Proteasome Activity*

    PubMed Central

    Chen, Ying; Yang, Li-Na; Cheng, Li; Tu, Shun; Guo, Shu-Juan; Le, Huang-Ying; Xiong, Qian; Mo, Ran; Li, Chong-Yang; Jeong, Jun-Seop; Jiang, Lizhi; Blackshaw, Seth; Bi, Li-Jun; Zhu, Heng; Tao, Sheng-Ce; Ge, Feng

    2013-01-01

    Bcl2-associated athanogene 3 (BAG3), a member of the BAG family of co-chaperones, plays a critical role in regulating apoptosis, development, cell motility, autophagy, and tumor metastasis and in mediating cell adaptive responses to stressful stimuli. BAG3 carries a BAG domain, a WW domain, and a proline-rich repeat (PXXP), all of which mediate binding to different partners. To elucidate BAG3's interaction network at the molecular level, we employed quantitative immunoprecipitation combined with knockdown and human proteome microarrays to comprehensively profile the BAG3 interactome in humans. We identified a total of 382 BAG3-interacting proteins with diverse functions, including transferase activity, nucleic acid binding, transcription factors, proteases, and chaperones, suggesting that BAG3 is a critical regulator of diverse cellular functions. In addition, we characterized interactions between BAG3 and some of its newly identified partners in greater detail. In particular, bioinformatic analysis revealed that the BAG3 interactome is strongly enriched in proteins functioning within the proteasome-ubiquitination process and that compose the proteasome complex itself, suggesting that a critical biological function of BAG3 is associated with the proteasome. Functional studies demonstrated that BAG3 indeed interacts with the proteasome and modulates its activity, sustaining cell survival and underlying resistance to therapy through the down-modulation of apoptosis. Taken as a whole, this study expands our knowledge of the BAG3 interactome, provides a valuable resource for understanding how BAG3 affects different cellular functions, and demonstrates that biologically relevant data can be harvested using this kind of integrated approach. PMID:23824909

  1. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    PubMed

    Cheng, Feixiong; Murray, James L; Zhao, Junfei; Sheng, Jinsong; Zhao, Zhongming; Rubin, Donald H

    2016-09-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  2. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize

    PubMed Central

    Musungu, Bryan; Bhatnagar, Deepak; Brown, Robert L.; Fakhoury, Ahmad M.; Geisler, Matt

    2015-01-01

    Interactomes are genome-wide roadmaps of protein-protein interactions. They have been produced for humans, yeast, the fruit fly, and Arabidopsis thaliana and have become invaluable tools for generating and testing hypotheses. A predicted interactome for Zea mays (PiZeaM) is presented here as an aid to the research community for this valuable crop species. PiZeaM was built using a proven method of interologs (interacting orthologs) that were identified using both one-to-one and many-to-many orthology between genomes of maize and reference species. Where both maize orthologs occurred for an experimentally determined interaction in the reference species, we predicted a likely interaction in maize. A total of 49,026 unique interactions for 6004 maize proteins were predicted. These interactions are enriched for processes that are evolutionarily conserved, but include many otherwise poorly annotated proteins in maize. The predicted maize interactions were further analyzed by comparing annotation of interacting proteins, including different layers of ontology. A map of pairwise gene co-expression was also generated and compared to predicted interactions. Two global subnetworks were constructed for highly conserved interactions. These subnetworks showed clear clustering of proteins by function. Another subnetwork was created for disease response using a bait and prey strategy to capture interacting partners for proteins that respond to other organisms. Closer examination of this subnetwork revealed the connectivity between biotic and abiotic hormone stress pathways. We believe PiZeaM will provide a useful tool for the prediction of protein function and analysis of pathways for Z. mays researchers and is presented in this paper as a reference tool for the exploration of protein interactions in maize. PMID:26089837

  3. Interactome analysis reveals ZNF804A, a schizophrenia risk gene, as a novel component of protein translational machinery critical for embryonic neurodevelopment

    PubMed Central

    Zhou, Y; Dong, F; Lanz, T A; Reinhart, V; Li, M; Liu, L; Zou, J; Xi, H S; Mao, Y

    2018-01-01

    Recent genome-wide association studies identified over 100 genetic loci that significantly associate with schizophrenia (SZ). A top candidate gene, ZNF804A, was robustly replicated in different populations. However, its neural functions are largely unknown. Here we show in mouse that ZFP804A, the homolog of ZNF804A, is required for normal progenitor proliferation and neuronal migration. Using a yeast two-hybrid genome-wide screen, we identified novel interacting proteins of ZNF804A. Rather than transcriptional factors, genes involved in mRNA translation are highly represented in our interactome result. ZNF804A co-fractionates with translational machinery and modulates the translational efficiency as well as the mTOR pathway. The ribosomal protein RPSA interacts with ZNF804A and rescues the migration and translational defects caused by ZNF804A knockdown. RNA immunoprecipitation–RNAseq (RIP-Seq) identified transcripts bound to ZFP804A. Consistently, ZFP804A associates with many short transcripts involved in translational and mitochondrial regulation. Moreover, among the transcripts associated with ZFP804A, a SZ risk gene, neurogranin (NRGN), is one of ZFP804A targets. Interestingly, downregulation of ZFP804A decreases NRGN expression and overexpression of NRGN can ameliorate ZFP804A-mediated migration defect. To verify the downstream targets of ZNF804A, a Duolink in situ interaction assay confirmed genes from our RIP-Seq data as the ZNF804A targets. Thus, our work uncovered a novel mechanistic link of a SZ risk gene to neurodevelopment and translational control. The interactome-driven approach here is an effective way for translating genome-wide association findings into novel biological insights of human diseases. PMID:28924186

  4. The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism.

    PubMed

    Eagleson, Kathie L; Xie, Zhihui; Levitt, Pat

    2017-03-01

    People with autism spectrum disorder and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy-the influence of one gene on distinct phenotypes-raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multifunctional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with autism spectrum disorder, reduces transcription and disrupts socially relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways and has a complex protein interactome that is enriched in autism spectrum disorder and other NDD candidates. The interactome is coregulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, affecting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Dawn of the in vivo RNA structurome and interactome.

    PubMed

    Kwok, Chun Kit

    2016-10-15

    RNA is one of the most fascinating biomolecules in living systems given its structural versatility to fold into elaborate architectures for important biological functions such as gene regulation, catalysis, and information storage. Knowledge of RNA structures and interactions can provide deep insights into their functional roles in vivo For decades, RNA structural studies have been conducted on a transcript-by-transcript basis. The advent of next-generation sequencing (NGS) has enabled the development of transcriptome-wide structural probing methods to profile the global landscape of RNA structures and interactions, also known as the RNA structurome and interactome, which transformed our understanding of the RNA structure-function relationship on a transcriptomic scale. In this review, molecular tools and NGS methods used for RNA structure probing are presented, novel insights uncovered by RNA structurome and interactome studies are highlighted, and perspectives on current challenges and potential future directions are discussed. A more complete understanding of the RNA structures and interactions in vivo will help illuminate the novel roles of RNA in gene regulation, development, and diseases. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  6. Exploring the interactome: microfluidic isolation of proteins and interacting partners for quantitative analysis by electron microscopy.

    PubMed

    Giss, Dominic; Kemmerling, Simon; Dandey, Venkata; Stahlberg, Henning; Braun, Thomas

    2014-05-20

    Multimolecular protein complexes are important for many cellular processes. However, the stochastic nature of the cellular interactome makes the experimental detection of complex protein assemblies difficult and quantitative analysis at the single molecule level essential. Here, we present a fast and simple microfluidic method for (i) the quantitative isolation of endogenous levels of untagged protein complexes from minute volumes of cell lysates under close to physiological conditions and (ii) the labeling of specific components constituting these complexes. The method presented uses specific antibodies that are conjugated via a photocleavable linker to magnetic beads that are trapped in microcapillaries to immobilize the target proteins. Proteins are released by photocleavage, eluted, and subsequently analyzed by quantitative transmission electron microscopy at the single molecule level. Additionally, before photocleavage, immunogold can be employed to label proteins that interact with the primary target protein. Thus, the presented method provides a new way to study the interactome and, in combination with single molecule transmission electron microscopy, to structurally characterize the large, dynamic, heterogeneous multimolecular protein complexes formed.

  7. Utilising the EGFR interactome to identify mechanisms of drug resistance in non-small cell lung cancer - Proof of concept towards a systems pharmacology approach.

    PubMed

    Saafan, Hisham; Foerster, Sarah; Parra-Guillen, Zinnia P; Hammer, Elke; Michaelis, Martin; Cinatl, Jindrich; Völker, Uwe; Fröhlich, Holger; Kloft, Charlotte; Ritter, Christoph A

    2016-10-30

    Drug treatment of epidermal growth factor receptor (EGFR) positive non-small cell lung cancer has improved substantially by targeting activating mutations within the receptor tyrosine kinase domain. However, the development of drug resistance still limits this approach. As root causes, large heterogeneity between tumour entities but also within tumour cells have been suggested. Therefore, approaches to identify these multitude and complex mechanisms are urgently required. Affinity purification coupled with high resolution mass spectrometry was applied to isolate and characterise the EGFR interactome from HCC4006 non-small cell lung cancer cells and their variant HCC4006 r ERLO 0.5 adapted to grow in the presence of therapeutically relevant concentrations of erlotinib. Bioinformatics analyses were carried out to identify proteins and their related molecular functions that interact differentially with EGFR in the untreated state or when incubated with erlotinib prior to EGFR activation. Across all experimental conditions 375 proteins were detected to participate in the EGFR interactome, 90% of which constituted a complex protein interaction network that was bioinformatically reconstructed from literature data. Treatment of HCC4006 r ERLO 0.5 cells carrying a resistance phenotype to erlotinib was associated with an increase of protein levels of members of the clathrin-associated adaptor protein family AP2 (AP2A1, AP2A2, AP2B1), structural proteins of cytoskeleton rearrangement as well as signalling molecules such as Shc. Validation experiments confirmed activation of the Ras-Raf-Mek-Erk (MAPK)-pathway, of which Shc is an initiating adaptor molecule, in HCC4006 r ERLO 0.5 cells. Taken together, differential proteins in the EGFR interactome of HCC4006 r ERLO 0.5 cells were identified that could be related to multiple resistance mechanisms including alterations in growth factor receptor expression, cellular remodelling processes suggesting epithelial-to-mesenchymal transition as well as alterations in downstream signalling. Knowledge of these mechanisms is a pivotal step to build an integrative model of drug resistance in a systems pharmacology manner and to be able to investigate the interplay of these mechanisms and ultimately recommend combinatorial treatment strategies to overcome drug resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. On an algorithmic definition for the components of the minimal cell.

    PubMed

    Martínez, Octavio; Reyes-Valdés, M Humberto

    2018-01-01

    Living cells are highly complex systems comprising a multitude of elements that are engaged in the many convoluted processes observed during the cell cycle. However, not all elements and processes are essential for cell survival and reproduction under steady-state environmental conditions. To distinguish between essential from expendable cell components and thus define the 'minimal cell' and the corresponding 'minimal genome', we postulate that the synthesis of all cell elements can be represented as a finite set of binary operators, and within this framework we show that cell elements that depend on their previous existence to be synthesized are those that are essential for cell survival. An algorithm to distinguish essential cell elements is presented and demonstrated within an interactome. Data and functions implementing the algorithm are given as supporting information. We expect that this algorithmic approach will lead to the determination of the complete interactome of the minimal cell, which could then be experimentally validated. The assumptions behind this hypothesis as well as its consequences for experimental and theoretical biology are discussed.

  9. Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α.

    PubMed

    Sepulveda, Denisse; Rojas-Rivera, Diego; Rodríguez, Diego A; Groenendyk, Jody; Köhler, Andres; Lebeaupin, Cynthia; Ito, Shinya; Urra, Hery; Carreras-Sureda, Amado; Hazari, Younis; Vasseur-Cognet, Mireille; Ali, Maruf M U; Chevet, Eric; Campos, Gisela; Godoy, Patricio; Vaisar, Tomas; Bailly-Maitre, Béatrice; Nagata, Kazuhiro; Michalak, Marek; Sierralta, Jimena; Hetz, Claudio

    2018-01-18

    Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Characterization of hampin/MSL1 as a node in the nuclear interactome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmitriev, Ruslan I.; Korneenko, Tatyana V.; Department of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences, University of Toledo College of Medicine, Toledo, OH 43614

    2007-04-20

    Hampin, homolog of Drosophila MSL1, is a partner of histone acetyltransferase MYST1/MOF. Functions of these proteins remain poorly understood beyond their participation in chromatin remodeling complex MSL. In order to identify new proteins interacting with hampin, we screened a mouse cDNA library in yeast two-hybrid system with mouse hampin as bait and found five high-confidence interactors: MYST1, TPR proteins TTC4 and KIAA0103, NOP17 (homolog of a yeast nucleolar protein), and transcription factor GC BP. Subsequently, all these proteins were used as baits in library screenings and more new interactions were found: tumor suppressor RASSF1C and spliceosome component PRP3 for KIAA0103,more » ring finger RNF10 for RASSF1C, and RNA polymerase II regulator NELF-C for MYST1. The majority of the observed interactions was confirmed in vitro by pull-down of bacterially expressed proteins. Reconstruction of a fragment of mammalian interactome suggests that hampin may be linked to diverse regulatory processes in the nucleus.« less

  11. Interactome Analysis of Microtubule-targeting Agents Reveals Cytotoxicity Bases in Normal Cells.

    PubMed

    Gutiérrez-Escobar, Andrés Julián; Méndez-Callejas, Gina

    2017-12-01

    Cancer causes millions of deaths annually and microtubule-targeting agents (MTAs) are the most commonly-used anti-cancer drugs. However, the high toxicity of MTAs on normal cells raises great concern. Due to the non-selectivity of MTA targets, we analyzed the interaction network in a non-cancerous human cell. Subnetworks of fourteen MTAs were reconstructed and the merged network was compared against a randomized network to evaluate the functional richness. We found that 71.4% of the MTA interactome nodes are shared, which affects cellular processes such as apoptosis, cell differentiation, cell cycle control, stress response, and regulation of energy metabolism. Additionally, possible secondary targets were identified as client proteins of interphase microtubules. MTAs affect apoptosis signaling pathways by interacting with client proteins of interphase microtubules, suggesting that their primary targets are non-tumor cells. The paclitaxel and doxorubicin networks share essential topological axes, suggesting synergistic effects. This may explain the exacerbated toxicity observed when paclitaxel and doxorubicin are used in combination for cancer treatment. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  12. Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae

    PubMed Central

    Uthe, Henriette; Vanselow, Jens T.; Schlosser, Andreas

    2017-01-01

    Here we present the most comprehensive analysis of the yeast Mediator complex interactome to date. Particularly gentle cell lysis and co-immunopurification conditions allowed us to preserve even transient protein-protein interactions and to comprehensively probe the molecular environment of the Mediator complex in the cell. Metabolic 15N-labeling thereby enabled stringent discrimination between bona fide interaction partners and nonspecifically captured proteins. Our data indicates a functional role for Mediator beyond transcription initiation. We identified a large number of Mediator-interacting proteins and protein complexes, such as RNA polymerase II, general transcription factors, a large number of transcriptional activators, the SAGA complex, chromatin remodeling complexes, histone chaperones, highly acetylated histones, as well as proteins playing a role in co-transcriptional processes, such as splicing, mRNA decapping and mRNA decay. Moreover, our data provides clear evidence, that the Mediator complex interacts not only with RNA polymerase II, but also with RNA polymerases I and III, and indicates a functional role of the Mediator complex in rRNA processing and ribosome biogenesis. PMID:28240253

  13. Phase ambiguity resolution for offset QPSK modulation systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M. (Inventor)

    1991-01-01

    A demodulator for Offset Quaternary Phase Shift Keyed (OQPSK) signals modulated with two words resolves eight possible combinations of phase ambiguity which may produce data error by first processing received I(sub R) and Q(sub R) data in an integrated carrier loop/symbol synchronizer using a digital Costas loop with matched filters for correcting four of eight possible phase lock errors, and then the remaining four using a phase ambiguity resolver which detects the words to not only reverse the received I(sub R) and Q(sub R) data channels, but to also invert (complement) the I(sub R) and/or Q(sub R) data, or to at least complement the I(sub R) and Q(sub R) data for systems using nontransparent codes that do not have rotation direction ambiguity.

  14. Network topological analysis reveals the functional cohesiveness for the newly discovered links by Yeast 2 Hybrid approach

    NASA Astrophysics Data System (ADS)

    Ghiassian, Susan; Pevzner, Sam; Rolland, Thomas; Tassan, Murat; Barabasi, Albert Laszlo; Vidal, Mark; CCNR, Northeastern University Collaboration; Dana Farber Cancer Institute Collaboration

    2014-03-01

    Protein-protein interaction maps and interactomes are the blueprint of Network Medicine and systems biology and are being experimentally studied by different groups. Despite the wide usage of Literature Curated Interactome (LCI), these sources are biased towards different parameters such as highly studied proteins. Yeast two hybrid method is a high throughput experimental setup which screens proteins in an unbiased fashion. Current knowledge of protein interactions is far from complete. In fact the previous offered data from Y2H method (2005), is estimated to offer only 5% of all potential protein interactions. Currently this coverage has increased to 20% of what is known as reference HI In this work we study the topological properties of Y2H protein-protein interactions network with LCI and show although they both agree on some properties, LCI shows a clear unbiased nature of interaction selections. Most importantly, we assess the properties of PPI as it evolves with increasing the coverage. We show that, the newly discovered interactions tend to connect proteins that have been closer than average in the previous PPI release. reinforcing the modular structure of PPI. Furthermore, we show, some unseen effects on PPI (as opposed to LCI) can be explained by its incompleteness.

  15. The SSU processome interactome in Saccharomyces cerevisiae reveals novel protein subcomplexes.

    PubMed

    Vincent, Nicholas G; Charette, J Michael; Baserga, Susan J

    2018-01-01

    Ribosome assembly is an evolutionarily conserved and energy intensive process required for cellular growth, proliferation, and maintenance. In yeast, assembly of the small ribosomal subunit (SSU) requires approximately 75 assembly factors that act in coordination to form the SSU processome, a 6 MDa ribonucleoprotein complex. The SSU processome is required for processing, modifying, and folding the preribosomal RNA (rRNA) to prepare it for incorporation into the mature SSU. Although the protein composition of the SSU processome has been known for some time, the interaction network of the proteins required for its assembly has remained poorly defined. Here, we have used a semi-high-throughput yeast two-hybrid (Y2H) assay and coimmunoprecipitation validation method to produce a high-confidence interactome of SSU processome assembly factors (SPAFs), providing essential insight into SSU assembly and ribosome biogenesis. Further, we used glycerol density-gradient sedimentation to reveal the presence of protein subcomplexes that have not previously been observed. Our work not only provides essential insight into SSU assembly and ribosome biogenesis, but also serves as an important resource for future investigations into how defects in biogenesis and assembly cause congenital disorders of ribosomes known as ribosomopathies. © 2018 Vincent et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Exosomes and Homeostatic Synaptic Plasticity Are Linked to Each other and to Huntington's, Parkinson's, and Other Neurodegenerative Diseases by Database-Enabled Analyses of Comprehensively Curated Datasets

    PubMed Central

    Wang, James K. T.; Langfelder, Peter; Horvath, Steve; Palazzolo, Michael J.

    2017-01-01

    Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene (HTT), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases. PMID:28611571

  17. Exosomes and Homeostatic Synaptic Plasticity Are Linked to Each other and to Huntington's, Parkinson's, and Other Neurodegenerative Diseases by Database-Enabled Analyses of Comprehensively Curated Datasets.

    PubMed

    Wang, James K T; Langfelder, Peter; Horvath, Steve; Palazzolo, Michael J

    2017-01-01

    Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene ( HTT ), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases.

  18. Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs.

    PubMed

    Gao, Jinxu; Mfuh, Adelphe; Amako, Yuka; Woo, Christina M

    2018-03-28

    Many therapeutics elicit cell-type specific polypharmacology that is executed by a network of molecular recognition events between a small molecule and the whole proteome. However, measurement of the structures that underpin the molecular associations between the proteome and even common therapeutics, such as the nonsteroidal anti-inflammatory drugs (NSAIDs), is limited by the inability to map the small molecule interactome. To address this gap, we developed a platform termed small molecule interactome mapping by photoaffinity labeling (SIM-PAL) and applied it to the in cellulo direct characterization of specific NSAID binding sites. SIM-PAL uses (1) photochemical conjugation of NSAID derivatives in the whole proteome and (2) enrichment and isotope-recoding of the conjugated peptides for (3) targeted mass spectrometry-based assignment. Using SIM-PAL, we identified the NSAID interactome consisting of over 1000 significantly enriched proteins and directly characterized nearly 200 conjugated peptides representing direct binding sites of the photo-NSAIDs with proteins from Jurkat and K562 cells. The enriched proteins were often identified as parts of complexes, including known targets of NSAID activity (e.g., NF-κB) and novel interactions (e.g., AP-2, proteasome). The conjugated peptides revealed direct NSAID binding sites from the cell surface to the nucleus and a specific binding site hotspot for the three photo-NSAIDs on histones H2A and H2B. NSAID binding stabilized COX-2 and histone H2A by cellular thermal shift assay. Since small molecule stabilization of protein complexes is a gain of function regulatory mechanism, it is conceivable that NSAIDs affect biological processes through these broader proteomic interactions. SIM-PAL enabled characterization of NSAID binding site hotspots and is amenable to map global binding sites for virtually any molecule of interest.

  19. Lubricin: A Principal Modulator of the Psychoneuroendocrine - Osteoimmune Interactome - Implications for Novel Treatments of Osteoarthritic Pathologies.

    PubMed

    Khakshooy, Allen; Balenton, Nicole; Chiappelli, Francesco

    2017-01-01

    Lubricin is a synovial glycoprotein that contributes to joint lubrication. We propose the hypothesis that lubricin is a key modulator of the psychoneuroendocrine-osteoimmune interactome, with important clinical relevance for osteoarthritic pathologies. We consider a variety of neuroendocrine-immune factors, including inflammatory cytokines and chemokines that may contribute to the modulation of lubricin in rheumatic complications. Based on our preliminary immunocytochemistry and fractal analysis data, and in the context of translational research of modern healthcare, we propose that molecular lubricin gene expression modification by means of the novel CRISPR/Cas system be considered for osteoarthritic therapies.

  20. PodNet, a protein-protein interaction network of the podocyte.

    PubMed

    Warsow, Gregor; Endlich, Nicole; Schordan, Eric; Schordan, Sandra; Chilukoti, Ravi K; Homuth, Georg; Moeller, Marcus J; Fuellen, Georg; Endlich, Karlhans

    2013-07-01

    Interactions between proteins crucially determine cellular structure and function. Differential analysis of the interactome may help elucidate molecular mechanisms during disease development; however, this analysis necessitates mapping of expression data on protein-protein interaction networks. These networks do not exist for the podocyte; therefore, we built PodNet, a literature-based mouse podocyte network in Cytoscape format. Using database protein-protein interactions, we expanded PodNet to XPodNet with enhanced connectivity. In order to test the performance of XPodNet in differential interactome analysis, we examined podocyte developmental differentiation and the effect of cell culture. Transcriptomes of podocytes in 10 different states were mapped on XPodNet and analyzed with the Cytoscape plugin ExprEssence, based on the law of mass action. Interactions between slit diaphragm proteins are most significantly upregulated during podocyte development and most significantly downregulated in culture. On the other hand, our analysis revealed that interactions lost during podocyte differentiation are not regained in culture, suggesting a loss rather than a reversal of differentiation for podocytes in culture. Thus, we have developed PodNet as a valuable tool for differential interactome analysis in podocytes, and we have identified established and unexplored regulated interactions in developing and cultured podocytes.

  1. Interactomic approach for evaluating nucleophosmin-binding proteins as biomarkers for Ewing's sarcoma.

    PubMed

    Haga, Ayako; Ogawara, Yoko; Kubota, Daisuke; Kitabayashi, Issay; Murakami, Yasufumi; Kondo, Tadashi

    2013-06-01

    Nucleophosmin (NPM) is a novel prognostic biomarker for Ewing's sarcoma. To evaluate the prognostic utility of NPM, we conducted an interactomic approach to characterize the NPM protein complex in Ewing's sarcoma cells. A gene suppression assay revealed that NPM promoted cell proliferation and the invasive properties of Ewing's sarcoma cells. FLAG-tag-based affinity purification coupled with liquid chromatography-tandem mass spectrometry identified 106 proteins in the NPM protein complex. The functional classification suggested that the NPM complex participates in critical biological events, including ribosome biogenesis, regulation of transcription and translation, and protein folding, that are mediated by these proteins. In addition to JAK1, a candidate prognostic biomarker for Ewing's sarcoma, the NPM complex, includes 11 proteins known as prognostic biomarkers for other malignancies. Meta-analysis of gene expression profiles of 32 patients with Ewing's sarcoma revealed that 6 of 106 were significantly and independently associated with survival period. These observations suggest a functional role as well as prognostic value of these NPM complex proteins in Ewing's sarcoma. Further, our study suggests the potential applications of interactomics in conjunction with meta-analysis for biomarker discovery. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The extraction of drug-disease correlations based on module distance in incomplete human interactome.

    PubMed

    Yu, Liang; Wang, Bingbo; Ma, Xiaoke; Gao, Lin

    2016-12-23

    Extracting drug-disease correlations is crucial in unveiling disease mechanisms, as well as discovering new indications of available drugs, or drug repositioning. Both the interactome and the knowledge of disease-associated and drug-associated genes remain incomplete. We present a new method to predict the associations between drugs and diseases. Our method is based on a module distance, which is originally proposed to calculate distances between modules in incomplete human interactome. We first map all the disease genes and drug genes to a combined protein interaction network. Then based on the module distance, we calculate the distances between drug gene sets and disease gene sets, and take the distances as the relationships of drug-disease pairs. We also filter possible false positive drug-disease correlations by p-value. Finally, we validate the top-100 drug-disease associations related to six drugs in the predicted results. The overlapping between our predicted correlations with those reported in Comparative Toxicogenomics Database (CTD) and literatures, and their enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways demonstrate our approach can not only effectively identify new drug indications, but also provide new insight into drug-disease discovery.

  3. Functional Proteomics Identifies Acinus L as a Direct Insulin- and Amino Acid-Dependent Mammalian Target of Rapamycin Complex 1 (mTORC1) Substrate*

    PubMed Central

    Schwarz, Jennifer Jasmin; Wiese, Heike; Tölle, Regine Charlotte; Zarei, Mostafa; Dengjel, Jörn; Warscheid, Bettina; Thedieck, Kathrin

    2015-01-01

    The serine/threonine kinase mammalian target of rapamycin (mTOR) governs growth, metabolism, and aging in response to insulin and amino acids (aa), and is often activated in metabolic disorders and cancer. Much is known about the regulatory signaling network that encompasses mTOR, but surprisingly few direct mTOR substrates have been established to date. To tackle this gap in our knowledge, we took advantage of a combined quantitative phosphoproteomic and interactomic strategy. We analyzed the insulin- and aa-responsive phosphoproteome upon inhibition of the mTOR complex 1 (mTORC1) component raptor, and investigated in parallel the interactome of endogenous mTOR. By overlaying these two datasets, we identified acinus L as a potential novel mTORC1 target. We confirmed acinus L as a direct mTORC1 substrate by co-immunoprecipitation and MS-enhanced kinase assays. Our study delineates a triple proteomics strategy of combined phosphoproteomics, interactomics, and MS-enhanced kinase assays for the de novo-identification of mTOR network components, and provides a rich source of potential novel mTOR interactors and targets for future investigation. PMID:25907765

  4. Epigenetic Drug Repositioning for Alzheimer's Disease Based on Epigenetic Targets in Human Interactome.

    PubMed

    Chatterjee, Paulami; Roy, Debjani; Rathi, Nitin

    2018-01-01

    Epigenetics has emerged as an important field in drug discovery. Alzheimer's disease (AD), the leading neurodegenerative disorder throughout the world, is shown to have an epigenetic basis. Currently, there are very few effective epigenetic drugs available for AD. In this work, for the first time we have proposed 14 AD repositioning epigenetic drugs and identified their targets from extensive human interactome. Interacting partners of the AD epigenetic proteins were identified from the extensive human interactome to construct Epigenetic Protein-Protein Interaction Network (EP-PPIN). Epigenetic Drug-Target Network (EP-DTN) was constructed with the drugs associated with the proteins of EP-PPIN. Regulation of non-coding RNAs associated with the target proteins of these drugs was also studied. AD related target proteins, epigenetic targets, enriched pathways, and functional categories of the proposed repositioning drugs were also studied. The proposed 14 AD epigenetic repositioning drugs have overlapping targets and miRs with known AD epigenetic targets and miRs. Furthermore, several shared functional categories and enriched pathways were obtained for these drugs with FDA approved epigenetic drugs and known AD drugs. The findings of our work might provide insight into future AD epigenetic-therapeutics.

  5. Mass Spectrometry-Based Screening Platform Reveals Orco Interactome in Drosophila melanogaster.

    PubMed

    Yu, Kate E; Kim, Do-Hyoung; Kim, Yong-In; Jones, Walton D; Lee, J Eugene

    2018-02-28

    Animals use their odorant receptors to receive chemical information from the environment. Insect odorant receptors differ from the G protein-coupled odorant receptors in vertebrates and nematodes, and very little is known about their protein-protein interactions. Here, we introduce a mass spectrometric platform designed for the large-scale analysis of insect odorant receptor protein-protein interactions. Using this platform, we obtained the first Orco interactome from Drosophila melanogaster . From a total of 1,186 identified proteins, we narrowed the interaction candidates to 226, of which only two-thirds have been named. These candidates include the known olfactory proteins Or92a and Obp51a. Around 90% of the proteins having published names likely function inside the cell, and nearly half of these intracellular proteins are associated with the endomembrane system. In a basic loss-of-function electrophysiological screen, we found that the disruption of eight (i.e., Rab5, CG32795, Mpcp, Tom70, Vir-1, CG30427, Eaat1, and CG2781) of 28 randomly selected candidates affects olfactory responses in vivo . Thus, because this Orco interactome includes physiologically meaningful candidates, we anticipate that our platform will help guide further research on the molecular mechanisms of the insect odorant receptor family.

  6. Interactomes, manufacturomes and relational biology: analogies between systems biology and manufacturing systems

    PubMed Central

    2011-01-01

    Background We review and extend the work of Rosen and Casti who discuss category theory with regards to systems biology and manufacturing systems, respectively. Results We describe anticipatory systems, or long-range feed-forward chemical reaction chains, and compare them to open-loop manufacturing processes. We then close the loop by discussing metabolism-repair systems and describe the rationality of the self-referential equation f = f (f). This relationship is derived from some boundary conditions that, in molecular systems biology, can be stated as the cardinality of the following molecular sets must be about equal: metabolome, genome, proteome. We show that this conjecture is not likely correct so the problem of self-referential mappings for describing the boundary between living and nonliving systems remains an open question. We calculate a lower and upper bound for the number of edges in the molecular interaction network (the interactome) for two cellular organisms and for two manufacturomes for CMOS integrated circuit manufacturing. Conclusions We show that the relevant mapping relations may not be Abelian, and that these problems cannot yet be resolved because the interactomes and manufacturomes are incomplete. PMID:21689427

  7. How perfect can protein interactomes be?

    PubMed

    Levy, Emmanuel D; Landry, Christian R; Michnick, Stephen W

    2009-03-03

    Any engineered device should certainly not contain nonfunctional components, for this would be a waste of energy and money. In contrast, evolutionary theory tells us that biological systems need not be optimized and may very well accumulate nonfunctional elements. Mutational and demographic processes contribute to the cluttering of eukaryotic genomes and transcriptional networks with "junk" DNA and spurious DNA binding sites. Here, we question whether such a notion should be applied to protein interactomes-that is, whether these protein interactomes are expected to contain a fraction of nonselected, nonfunctional protein-protein interactions (PPIs), which we term "noisy." We propose a simple relationship between the fraction of noisy interactions expected in a given organism and three parameters: (i) the number of mutations needed to create and destroy interactions, (ii) the size of the proteome, and (iii) the fitness cost of noisy interactions. All three parameters suggest that noisy PPIs are expected to exist. Their existence could help to explain why PPIs determined from large-scale studies often lack functional relationships between interacting proteins, why PPIs are poorly conserved across organisms, and why the PPI space appears to be immensely large. Finally, we propose experimental strategies to estimate the fraction of evolutionary noise in PPI networks.

  8. Interactome Mapping Guided by Tissue-Specific Phosphorylation in Age-Related Macular Degeneration

    PubMed Central

    Sripathi, Srinivas R.; He, Weilue; Prigge, Cameron L.; Sylvester, O’Donnell; Um, Ji-Yeon; Powell, Folami L.; Neksumi, Musa; Bernstein, Paul S.; Choo, Dong-Won; Bartoli, Manuela; Gutsaeva, Diana R.; Jahng, Wan Jin

    2017-01-01

    The current study aims to determine the molecular mechanisms of age-related macular degeneration (AMD) using the phosphorylation network. Specifically, we examined novel biomarkers for oxidative stress by protein interaction mapping using in vitro and in vivo models that mimic the complex and progressive characteristics of AMD. We hypothesized that the early apoptotic reactions could be initiated by protein phosphorylation in region-dependent (peripheral retina vs. macular) and tissue-dependent (retinal pigment epithelium vs. retina) manner under chronic oxidative stress. The analysis of protein interactome and oxidative biomarkers showed the presence of tissue- and region-specific post-translational mechanisms that contribute to AMD progression and suggested new therapeutic targets that include ubiquitin, erythropoietin, vitronectin, MMP2, crystalline, nitric oxide, and prohibitin. Phosphorylation of specific target proteins in RPE cells is a central regulatory mechanism as a survival tool under chronic oxidative imbalance. The current interactome map demonstrates a positive correlation between oxidative stress-mediated phosphorylation and AMD progression and provides a basis for understanding oxidative stress-induced cytoskeletal changes and the mechanism of aggregate formation induced by protein phosphorylation. This information could provide an effective therapeutic approach to treat age-related neurodegeneration. PMID:28580316

  9. Interactome Mapping Guided by Tissue-Specific Phosphorylation in Age-Related Macular Degeneration.

    PubMed

    Sripathi, Srinivas R; He, Weilue; Prigge, Cameron L; Sylvester, O'Donnell; Um, Ji-Yeon; Powell, Folami L; Neksumi, Musa; Bernstein, Paul S; Choo, Dong-Won; Bartoli, Manuela; Gutsaeva, Diana R; Jahng, Wan Jin

    2017-02-01

    The current study aims to determine the molecular mechanisms of age-related macular degeneration (AMD) using the phosphorylation network. Specifically, we examined novel biomarkers for oxidative stress by protein interaction mapping using in vitro and in vivo models that mimic the complex and progressive characteristics of AMD. We hypothesized that the early apoptotic reactions could be initiated by protein phosphorylation in region-dependent (peripheral retina vs. macular) and tissue-dependent (retinal pigment epithelium vs. retina) manner under chronic oxidative stress. The analysis of protein interactome and oxidative biomarkers showed the presence of tissue- and region-specific post-translational mechanisms that contribute to AMD progression and suggested new therapeutic targets that include ubiquitin, erythropoietin, vitronectin, MMP2, crystalline, nitric oxide, and prohibitin. Phosphorylation of specific target proteins in RPE cells is a central regulatory mechanism as a survival tool under chronic oxidative imbalance. The current interactome map demonstrates a positive correlation between oxidative stress-mediated phosphorylation and AMD progression and provides a basis for understanding oxidative stress-induced cytoskeletal changes and the mechanism of aggregate formation induced by protein phosphorylation. This information could provide an effective therapeutic approach to treat age-related neurodegeneration.

  10. A New Coarsening Operator for the Optimal Preconditioning of the Dual and Primal Domain Decomposition Methods: Application to Problems with Severe Coefficient Jumps

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel; Rixen, Daniel

    1996-01-01

    We present an optimal preconditioning algorithm that is equally applicable to the dual (FETI) and primal (Balancing) Schur complement domain decomposition methods, and which successfully addresses the problems of subdomain heterogeneities including the effects of large jumps of coefficients. The proposed preconditioner is derived from energy principles and embeds a new coarsening operator that propagates the error globally and accelerates convergence. The resulting iterative solver is illustrated with the solution of highly heterogeneous elasticity problems.

  11. Prediction of scaffold proteins based on protein interaction and domain architectures.

    PubMed

    Oh, Kimin; Yi, Gwan-Su

    2016-07-28

    Scaffold proteins are known for being crucial regulators of various cellular functions by assembling multiple proteins involved in signaling and metabolic pathways. Identification of scaffold proteins and the study of their molecular mechanisms can open a new aspect of cellular systemic regulation and the results can be applied in the field of medicine and engineering. Despite being highlighted as the regulatory roles of dozens of scaffold proteins, there was only one known computational approach carried out so far to find scaffold proteins from interactomes. However, there were limitations in finding diverse types of scaffold proteins because their criteria were restricted to the classical scaffold proteins. In this paper, we will suggest a systematic approach to predict massive scaffold proteins from interactomes and to characterize the roles of scaffold proteins comprehensively. From a total of 10,419 basic scaffold protein candidates in protein interactomes, we classified them into three classes according to the structural evidences for scaffolding, such as domain architectures, domain interactions and protein complexes. Finally, we could define 2716 highly reliable scaffold protein candidates and their characterized functional features. To assess the accuracy of our prediction, the gold standard positive and negative data sets were constructed. We prepared 158 gold standard positive data and 844 gold standard negative data based on the functional information from Gene Ontology consortium. The precision, sensitivity and specificity of our testing was 80.3, 51.0, and 98.5 % respectively. Through the function enrichment analysis of highly reliable scaffold proteins, we could confirm the significantly enriched functions that are related to scaffold protein binding. We also identified functional association between scaffold proteins and their recruited proteins. Furthermore, we checked that the disease association of scaffold proteins is higher than kinases. In conclusion, we could predict larger volume of scaffold proteins and analyzed their functional characteristics. Deeper understandings about the roles of scaffold proteins from this study will provide a higher opportunity to find therapeutic or engineering applications of scaffold proteins using their functional characteristics.

  12. Sequence- and Interactome-Based Prediction of Viral Protein Hotspots Targeting Host Proteins: A Case Study for HIV Nef

    PubMed Central

    Sarmady, Mahdi; Dampier, William; Tozeren, Aydin

    2011-01-01

    Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk. PMID:21738584

  13. TrypsNetDB: An integrated framework for the functional characterization of trypanosomatid proteins

    PubMed Central

    Gazestani, Vahid H.; Yip, Chun Wai; Nikpour, Najmeh; Berghuis, Natasha

    2017-01-01

    Trypanosomatid parasites cause serious infections in humans and production losses in livestock. Due to the high divergence from other eukaryotes, such as humans and model organisms, the functional roles of many trypanosomatid proteins cannot be predicted by homology-based methods, rendering a significant portion of their proteins as uncharacterized. Recent technological advances have led to the availability of multiple systematic and genome-wide datasets on trypanosomatid parasites that are informative regarding the biological role(s) of their proteins. Here, we report TrypsNetDB (http://trypsNetDB.org), a web-based resource for the functional annotation of 16 different species/strains of trypanosomatid parasites. The database not only visualizes the network context of the queried protein(s) in an intuitive way but also examines the response of the represented network in more than 50 different biological contexts and its enrichment for various biological terms and pathways, protein sequence signatures, and potential RNA regulatory elements. The interactome core of the database, as of Jan 23, 2017, contains 101,187 interactions among 13,395 trypanosomatid proteins inferred from 97 genome-wide and focused studies on the interactome of these organisms. PMID:28158179

  14. An HDAC3-PROX1 corepressor module acts on HNF4α to control hepatic triglycerides.

    PubMed

    Armour, Sean M; Remsberg, Jarrett R; Damle, Manashree; Sidoli, Simone; Ho, Wesley Y; Li, Zhenghui; Garcia, Benjamin A; Lazar, Mitchell A

    2017-09-15

    The histone deacetylase HDAC3 is a critical mediator of hepatic lipid metabolism, and liver-specific deletion of HDAC3 leads to fatty liver. To elucidate the underlying mechanism, here we report a method of cross-linking followed by mass spectrometry to define a high-confidence HDAC3 interactome in vivo that includes the canonical NCoR-HDAC3 complex as well as Prospero-related homeobox 1 protein (PROX1). HDAC3 and PROX1 co-localize extensively on the mouse liver genome, and are co-recruited by hepatocyte nuclear factor 4α (HNF4α). The HDAC3-PROX1 module controls the expression of a gene program regulating lipid homeostasis, and hepatic-specific ablation of either component increases triglyceride content in liver. These findings underscore the importance of specific combinations of transcription factors and coregulators in the fine tuning of organismal metabolism.HDAC3 is a critical mediator of hepatic lipid metabolism and its loss leads to fatty liver. Here, the authors characterize the liver HDAC3 interactome in vivo, provide evidence that HDAC3 interacts with PROX1, and show that HDAC3 and PROX1 control expression of genes regulating lipid homeostasis.

  15. Do cancer proteins really interact strongly in the human protein-protein interaction network?

    PubMed

    Xia, Junfeng; Sun, Jingchun; Jia, Peilin; Zhao, Zhongming

    2011-06-01

    Protein-protein interaction (PPI) network analysis has been widely applied in the investigation of the mechanisms of diseases, especially cancer. Recent studies revealed that cancer proteins tend to interact more strongly than other categories of proteins, even essential proteins, in the human interactome. However, it remains unclear whether this observation was introduced by the bias towards more cancer studies in humans. Here, we examined this important issue by uniquely comparing network characteristics of cancer proteins with three other sets of proteins in four organisms, three of which (fly, worm, and yeast) whose interactomes are essentially not biased towards cancer or other diseases. We confirmed that cancer proteins had stronger connectivity, shorter distance, and larger betweenness centrality than non-cancer disease proteins, essential proteins, and control proteins. Our statistical evaluation indicated that such observations were overall unlikely attributed to random events. Considering the large size and high quality of the PPI data in the four organisms, the conclusion that cancer proteins interact strongly in the PPI networks is reliable and robust. This conclusion suggests that perturbation of cancer proteins might cause major changes of cellular systems and result in abnormal cell function leading to cancer. © 2011 Elsevier Ltd. All rights reserved.

  16. Do cancer proteins really interact strongly in the human protein-protein interaction network?

    PubMed Central

    Xia, Junfeng; Sun, Jingchun; Jia, Peilin; Zhao, Zhongming

    2011-01-01

    Protein-protein interaction (PPI) network analysis has been widely applied in the investigation of the mechanisms of diseases, especially cancer. Recent studies revealed that cancer proteins tend to interact more strongly than other categories of proteins, even essential proteins, in the human interactome. However, it remains unclear whether this observation was introduced by the bias towards more cancer studies in humans. Here, we examined this important issue by uniquely comparing network characteristics of cancer proteins with three other sets of proteins in four organisms, three of which (fly, worm, and yeast) whose interactomes are essentially not biased towards cancer or other diseases. We confirmed that cancer proteins had stronger connectivity, shorter distance, and larger betweenness centrality than non-cancer disease proteins, essential proteins, and control proteins. Our statistical evaluation indicated that such observations were overall unlikely attributed to random events. Considering the large size and high quality of the PPI data in the four organisms, the conclusion that cancer proteins interact strongly in the PPI networks is reliable and robust. This conclusion suggests that perturbation of cancer proteins might cause major changes of cellular systems and result in abnormal cell function leading to cancer. PMID:21666777

  17. Towards Inferring Protein Interactions: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Zha, Hongyuan; Chu, Chao-Hsien; Ji, Xiang

    2006-12-01

    Discovering interacting proteins has been an essential part of functional genomics. However, existing experimental techniques only uncover a small portion of any interactome. Furthermore, these data often have a very high false rate. By conceptualizing the interactions at domain level, we provide a more abstract representation of interactome, which also facilitates the discovery of unobserved protein-protein interactions. Although several domain-based approaches have been proposed to predict protein-protein interactions, they usually assume that domain interactions are independent on each other for the convenience of computational modeling. A new framework to predict protein interactions is proposed in this paper, where no assumption is made about domain interactions. Protein interactions may be the result of multiple domain interactions which are dependent on each other. A conjunctive norm form representation is used to capture the relationships between protein interactions and domain interactions. The problem of interaction inference is then modeled as a constraint satisfiability problem and solved via linear programing. Experimental results on a combined yeast data set have demonstrated the robustness and the accuracy of the proposed algorithm. Moreover, we also map some predicted interacting domains to three-dimensional structures of protein complexes to show the validity of our predictions.

  18. Transcriptional atlas of cardiogenesis maps congenital heart disease interactome.

    PubMed

    Li, Xing; Martinez-Fernandez, Almudena; Hartjes, Katherine A; Kocher, Jean-Pierre A; Olson, Timothy M; Terzic, Andre; Nelson, Timothy J

    2014-07-01

    Mammalian heart development is built on highly conserved molecular mechanisms with polygenetic perturbations resulting in a spectrum of congenital heart diseases (CHD). However, knowledge of cardiogenic ontogeny that regulates proper cardiogenesis remains largely based on candidate-gene approaches. Mapping the dynamic transcriptional landscape of cardiogenesis from a genomic perspective is essential to integrate the knowledge of heart development into translational applications that accelerate disease discovery efforts toward mechanistic-based treatment strategies. Herein, we designed a time-course transcriptome analysis to investigate the genome-wide dynamic expression landscape of innate murine cardiogenesis ranging from embryonic stem cells to adult cardiac structures. This comprehensive analysis generated temporal and spatial expression profiles, revealed stage-specific gene functions, and mapped the dynamic transcriptome of cardiogenesis to curated pathways. Reconciling known genetic underpinnings of CHD, we deconstructed a disease-centric dynamic interactome encoded within this cardiogenic atlas to identify stage-specific developmental disturbances clustered on regulation of epithelial-to-mesenchymal transition (EMT), BMP signaling, NF-AT signaling, TGFb-dependent EMT, and Notch signaling. Collectively, this cardiogenic transcriptional landscape defines the time-dependent expression of cardiac ontogeny and prioritizes regulatory networks at the interface between health and disease. Copyright © 2014 the American Physiological Society.

  19. RNA interactome capture in yeast.

    PubMed

    Beckmann, Benedikt M

    2017-04-15

    RNA-binding proteins (RBPs) are key players in post-transcriptional regulation of gene expression in eukaryotic cells. To be able to unbiasedly identify RBPs in Saccharomyces cerevisiae, we developed a yeast RNA interactome capture protocol which employs RNA labeling, covalent UV crosslinking of RNA and proteins at 365nm wavelength (photoactivatable-ribonucleoside-enhanced crosslinking, PAR-CL) and finally purification of the protein-bound mRNA. The method can be easily implemented in common workflows and takes about 3days to complete. Next to a comprehensive explanation of the method, we focus on our findings about the choice of crosslinking in yeast and discuss the rationale of individual steps in the protocol. Copyright © 2016. Published by Elsevier Inc.

  20. Spacecraft attitude determination accuracy from mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, D.; Hashmall, J.

    1994-01-01

    This paper summarizes a compilation of attitude determination accuracies attained by a number of satellites supported by the Goddard Space Flight Center Flight Dynamics Facility. The compilation is designed to assist future mission planners in choosing and placing attitude hardware and selecting the attitude determination algorithms needed to achieve given accuracy requirements. The major goal of the compilation is to indicate realistic accuracies achievable using a given sensor complement based on mission experience. It is expected that the use of actual spacecraft experience will make the study especially useful for mission design. A general description of factors influencing spacecraft attitude accuracy is presented. These factors include determination algorithms, inertial reference unit characteristics, and error sources that can affect measurement accuracy. Possible techniques for mitigating errors are also included. Brief mission descriptions are presented with the attitude accuracies attained, grouped by the sensor pairs used in attitude determination. The accuracies for inactive missions represent a compendium of missions report results, and those for active missions represent measurements of attitude residuals. Both three-axis and spin stabilized missions are included. Special emphasis is given to high-accuracy sensor pairs, such as two fixed-head star trackers (FHST's) and fine Sun sensor plus FHST. Brief descriptions of sensor design and mode of operation are included. Also included are brief mission descriptions and plots summarizing the attitude accuracy attained using various sensor complements.

  1. Error-correction coding

    NASA Technical Reports Server (NTRS)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  2. Different adaptation strategies of two citrus scion/rootstock combinations in response to drought stress

    PubMed Central

    Coelho Filho, Mauricio Antônio; Morillon, Raphaël; Bonatto, Diego; da Silva Gesteira, Abelmon

    2017-01-01

    Scion/rootstock interaction is important for plant development and for breeding programs. In this context, polyploid rootstocks presented several advantages, mainly in relation to biotic and abiotic stresses. Here we analyzed the response to drought of two different scion/rootstock combinations presenting different polyploidy: the diploid (2x) and autotetraploid (4x) Rangpur lime (Citrus limonia, Osbeck) rootstocks grafted with 2x Valencia Delta sweet orange (Citrus sinensis) scions, named V/2xRL and V/4xRL, respectively. Based on previous gene expression data, we developed an interactomic approach to identify proteins involved in V/2xRL and V/4xRL response to drought. A main interactomic network containing 3,830 nodes and 97,652 edges was built from V/2xRL and V/4xRL data. Exclusive proteins of the V/2xRL and V/4xRL networks (2,056 and 1,001, respectively), as well as common to both networks (773) were identified. Functional clusters were obtained and two models of drought stress response for the V/2xRL and V/4xRL genotypes were designed. Even if the V/2xRL plant implement some tolerance mechanisms, the global plant response to drought was rapid and quickly exhaustive resulting in a general tendency to dehydration avoidance, which presented some advantage in short and strong drought stress conditions, but which, in long terms, does not allow the plant survival. At the contrary, the V/4xRL plants presented a response which strong impacts on development but that present some advantages in case of prolonged drought. Finally, some specific proteins, which presented high centrality on interactomic analysis were identified as good candidates for subsequent functional analysis of citrus genes related to drought response, as well as be good markers of one or another physiological mechanism implemented by the plants. PMID:28545114

  3. Interactome Analyses of Mature γ-Secretase Complexes Reveal Distinct Molecular Environments of Presenilin (PS) Paralogs and Preferential Binding of Signal Peptide Peptidase to PS2*

    PubMed Central

    Jeon, Amy Hye Won; Böhm, Christopher; Chen, Fusheng; Huo, Hairu; Ruan, Xueying; Ren, Carl He; Ho, Keith; Qamar, Seema; Mathews, Paul M.; Fraser, Paul E.; Mount, Howard T. J.; St George-Hyslop, Peter; Schmitt-Ulms, Gerold

    2013-01-01

    γ-Secretase plays a pivotal role in the production of neurotoxic amyloid β-peptides (Aβ) in Alzheimer disease (AD) and consists of a heterotetrameric core complex that includes the aspartyl intramembrane protease presenilin (PS). The human genome codes for two presenilin paralogs. To understand the causes for distinct phenotypes of PS paralog-deficient mice and elucidate whether PS mutations associated with early-onset AD affect the molecular environment of mature γ-secretase complexes, quantitative interactome comparisons were undertaken. Brains of mice engineered to express wild-type or mutant PS1, or HEK293 cells stably expressing PS paralogs with N-terminal tandem-affinity purification tags served as biological source materials. The analyses revealed novel interactions of the γ-secretase core complex with a molecular machinery that targets and fuses synaptic vesicles to cellular membranes and with the H+-transporting lysosomal ATPase macrocomplex but uncovered no differences in the interactomes of wild-type and mutant PS1. The catenin/cadherin network was almost exclusively found associated with PS1. Another intramembrane protease, signal peptide peptidase, predominantly co-purified with PS2-containing γ-secretase complexes and was observed to influence Aβ production. PMID:23589300

  4. The Sharpin interactome reveals a role for Sharpin in lamellipodium formation via the Arp2/3 complex.

    PubMed

    Khan, Meraj H; Salomaa, Siiri I; Jacquemet, Guillaume; Butt, Umar; Miihkinen, Mitro; Deguchi, Takahiro; Kremneva, Elena; Lappalainen, Pekka; Humphries, Martin J; Pouwels, Jeroen

    2017-09-15

    Sharpin, a multifunctional adaptor protein, regulates several signalling pathways. For example, Sharpin enhances signal-induced NF-κB signalling as part of the linear ubiquitin assembly complex (LUBAC) and inhibits integrins, the T cell receptor, caspase 1 and PTEN. However, despite recent insights into Sharpin and LUBAC function, a systematic approach to identify the signalling pathways regulated by Sharpin has not been reported. Here, we present the first 'Sharpin interactome', which identifies a large number of novel potential Sharpin interactors in addition to several known ones. These data suggest that Sharpin and LUBAC might regulate a larger number of biological processes than previously identified, such as endosomal trafficking, RNA processing, metabolism and cytoskeleton regulation. Importantly, using the Sharpin interactome, we have identified a novel role for Sharpin in lamellipodium formation. We demonstrate that Sharpin interacts with Arp2/3, a protein complex that catalyses actin filament branching. We have identified the Arp2/3-binding site in Sharpin and demonstrate using a specific Arp2/3-binding deficient mutant that the Sharpin-Arp2/3 interaction promotes lamellipodium formation in a LUBAC-independent fashion.This article has an associated First Person interview with the first author of the paper. © 2017. Published by The Company of Biologists Ltd.

  5. Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives.

    PubMed

    Romero-Durán, Francisco J; Alonso, Nerea; Yañez, Matilde; Caamaño, Olga; García-Mera, Xerardo; González-Díaz, Humberto

    2016-04-01

    The use of Cheminformatics tools is gaining importance in the field of translational research from Medicinal Chemistry to Neuropharmacology. In particular, we need it for the analysis of chemical information on large datasets of bioactive compounds. These compounds form large multi-target complex networks (drug-target interactome network) resulting in a very challenging data analysis problem. Artificial Neural Network (ANN) algorithms may help us predict the interactions of drugs and targets in CNS interactome. In this work, we trained different ANN models able to predict a large number of drug-target interactions. These models predict a dataset of thousands of interactions of central nervous system (CNS) drugs characterized by > 30 different experimental measures in >400 different experimental protocols for >150 molecular and cellular targets present in 11 different organisms (including human). The model was able to classify cases of non-interacting vs. interacting drug-target pairs with satisfactory performance. A second aim focus on two main directions: the synthesis and assay of new derivatives of TVP1022 (S-analogues of rasagiline) and the comparison with other rasagiline derivatives recently reported. Finally, we used the best of our models to predict drug-target interactions for the best new synthesized compound against a large number of CNS protein targets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Characterization of the zinc-induced Shank3 interactome of mouse synaptosome.

    PubMed

    Lee, Yeunkum; Ryu, Jae Ryun; Kang, Hyojin; Kim, Yoonhee; Kim, Shinhyun; Zhang, Yinhua; Jin, Chunmei; Cho, Hyo Min; Kim, Won-Ki; Sun, Woong; Han, Kihoon

    2017-12-16

    Variants of the SHANK3 gene, which encodes a core scaffold protein of the postsynaptic density of excitatory synapses, have been causally associated with numerous brain disorders. Shank3 proteins directly bind zinc ions through their C-terminal sterile α motif domain, which enhances the multimerization and synaptic localization of Shank3, to regulate excitatory synaptic strength. However, no studies have explored whether zinc affects the protein interactions of Shank3, which might contribute to the synaptic changes observed after zinc application. To examine this, we first purified Shank3 protein complexes from mouse brain synaptosomal lysates that were incubated with different concentrations of ZnCl 2 , and analyzed them with mass spectrometry. We used strict criteria to identify 71 proteins that specifically interacted with Shank3 when extra ZnCl 2 was added to the lysate. To characterize the zinc-induced Shank3 interactome, we performed various bioinformatic analyses that revealed significant associations of the interactome with subcellular compartments, including mitochondria, and brain disorders, such as bipolar disorder and schizophrenia. Together, our results showing that zinc affected the Shank3 protein interactions of in vitro mouse synaptosomes provided an additional link between zinc and core synaptic proteins that have been implicated in multiple brain disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Crowd Sourcing a New Paradigm for Interactome Driven Drug Target Identification in Mycobacterium tuberculosis

    PubMed Central

    Rohira, Harsha; Bhat, Ashwini G.; Passi, Anurag; Mukherjee, Keya; Choudhary, Kumari Sonal; Kumar, Vikas; Arora, Anshula; Munusamy, Prabhakaran; Subramanian, Ahalyaa; Venkatachalam, Aparna; S, Gayathri; Raj, Sweety; Chitra, Vijaya; Verma, Kaveri; Zaheer, Salman; J, Balaganesh; Gurusamy, Malarvizhi; Razeeth, Mohammed; Raja, Ilamathi; Thandapani, Madhumohan; Mevada, Vishal; Soni, Raviraj; Rana, Shruti; Ramanna, Girish Muthagadhalli; Raghavan, Swetha; Subramanya, Sunil N.; Kholia, Trupti; Patel, Rajesh; Bhavnani, Varsha; Chiranjeevi, Lakavath; Sengupta, Soumi; Singh, Pankaj Kumar; Atray, Naresh; Gandhi, Swati; Avasthi, Tiruvayipati Suma; Nisthar, Shefin; Anurag, Meenakshi; Sharma, Pratibha; Hasija, Yasha; Dash, Debasis; Sharma, Arun; Scaria, Vinod; Thomas, Zakir; Chandra, Nagasuma; Brahmachari, Samir K.; Bhardwaj, Anshu

    2012-01-01

    A decade since the availability of Mycobacterium tuberculosis (Mtb) genome sequence, no promising drug has seen the light of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we synergized crowd sourcing and social networking methods through an initiative ‘Connect to Decode’ (C2D) to generate the first and largest manually curated interactome of Mtb termed ‘interactome pathway’ (IPW), encompassing a total of 1434 proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction, metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins, which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to our unique approach. PMID:22808064

  8. A side-effect free method for identifying cancer drug targets.

    PubMed

    Ashraf, Md Izhar; Ong, Seng-Kai; Mujawar, Shama; Pawar, Shrikant; More, Pallavi; Paul, Somnath; Lahiri, Chandrajit

    2018-04-27

    Identifying effective drug targets, with little or no side effects, remains an ever challenging task. A potential pitfall of failing to uncover the correct drug targets, due to side effect of pleiotropic genes, might lead the potential drugs to be illicit and withdrawn. Simplifying disease complexity, for the investigation of the mechanistic aspects and identification of effective drug targets, have been done through several approaches of protein interactome analysis. Of these, centrality measures have always gained importance in identifying candidate drug targets. Here, we put forward an integrated method of analysing a complex network of cancer and depict the importance of k-core, functional connectivity and centrality (KFC) for identifying effective drug targets. Essentially, we have extracted the proteins involved in the pathways leading to cancer from the pathway databases which enlist real experimental datasets. The interactions between these proteins were mapped to build an interactome. Integrative analyses of the interactome enabled us to unearth plausible reasons for drugs being rendered withdrawn, thereby giving future scope to pharmaceutical industries to potentially avoid them (e.g. ESR1, HDAC2, F2, PLG, PPARA, RXRA, etc). Based upon our KFC criteria, we have shortlisted ten proteins (GRB2, FYN, PIK3R1, CBL, JAK2, LCK, LYN, SYK, JAK1 and SOCS3) as effective candidates for drug development.

  9. TranscriptomeBrowser 3.0: introducing a new compendium of molecular interactions and a new visualization tool for the study of gene regulatory networks.

    PubMed

    Lepoivre, Cyrille; Bergon, Aurélie; Lopez, Fabrice; Perumal, Narayanan B; Nguyen, Catherine; Imbert, Jean; Puthier, Denis

    2012-01-31

    Deciphering gene regulatory networks by in silico approaches is a crucial step in the study of the molecular perturbations that occur in diseases. The development of regulatory maps is a tedious process requiring the comprehensive integration of various evidences scattered over biological databases. Thus, the research community would greatly benefit from having a unified database storing known and predicted molecular interactions. Furthermore, given the intrinsic complexity of the data, the development of new tools offering integrated and meaningful visualizations of molecular interactions is necessary to help users drawing new hypotheses without being overwhelmed by the density of the subsequent graph. We extend the previously developed TranscriptomeBrowser database with a set of tables containing 1,594,978 human and mouse molecular interactions. The database includes: (i) predicted regulatory interactions (computed by scanning vertebrate alignments with a set of 1,213 position weight matrices), (ii) potential regulatory interactions inferred from systematic analysis of ChIP-seq experiments, (iii) regulatory interactions curated from the literature, (iv) predicted post-transcriptional regulation by micro-RNA, (v) protein kinase-substrate interactions and (vi) physical protein-protein interactions. In order to easily retrieve and efficiently analyze these interactions, we developed In-teractomeBrowser, a graph-based knowledge browser that comes as a plug-in for Transcriptome-Browser. The first objective of InteractomeBrowser is to provide a user-friendly tool to get new insight into any gene list by providing a context-specific display of putative regulatory and physical interactions. To achieve this, InteractomeBrowser relies on a "cell compartments-based layout" that makes use of a subset of the Gene Ontology to map gene products onto relevant cell compartments. This layout is particularly powerful for visual integration of heterogeneous biological information and is a productive avenue in generating new hypotheses. The second objective of InteractomeBrowser is to fill the gap between interaction databases and dynamic modeling. It is thus compatible with the network analysis software Cytoscape and with the Gene Interaction Network simulation software (GINsim). We provide examples underlying the benefits of this visualization tool for large gene set analysis related to thymocyte differentiation. The InteractomeBrowser plugin is a powerful tool to get quick access to a knowledge database that includes both predicted and validated molecular interactions. InteractomeBrowser is available through the TranscriptomeBrowser framework and can be found at: http://tagc.univ-mrs.fr/tbrowser/. Our database is updated on a regular basis.

  10. Latent human error analysis and efficient improvement strategies by fuzzy TOPSIS in aviation maintenance tasks.

    PubMed

    Chiu, Ming-Chuan; Hsieh, Min-Chih

    2016-05-01

    The purposes of this study were to develop a latent human error analysis process, to explore the factors of latent human error in aviation maintenance tasks, and to provide an efficient improvement strategy for addressing those errors. First, we used HFACS and RCA to define the error factors related to aviation maintenance tasks. Fuzzy TOPSIS with four criteria was applied to evaluate the error factors. Results show that 1) adverse physiological states, 2) physical/mental limitations, and 3) coordination, communication, and planning are the factors related to airline maintenance tasks that could be addressed easily and efficiently. This research establishes a new analytic process for investigating latent human error and provides a strategy for analyzing human error using fuzzy TOPSIS. Our analysis process complements shortages in existing methodologies by incorporating improvement efficiency, and it enhances the depth and broadness of human error analysis methodology. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. DSP-based adaptive backstepping using the tracking errors for high-performance sensorless speed control of induction motor drive.

    PubMed

    Zaafouri, Abderrahmen; Regaya, Chiheb Ben; Azza, Hechmi Ben; Châari, Abdelkader

    2016-01-01

    This paper presents a modified structure of the backstepping nonlinear control of the induction motor (IM) fitted with an adaptive backstepping speed observer. The control design is based on the backstepping technique complemented by the introduction of integral tracking errors action to improve its robustness. Unlike other research performed on backstepping control with integral action, the control law developed in this paper does not propose the increase of the number of system state so as not increase the complexity of differential equations resolution. The digital simulation and experimental results show the effectiveness of the proposed control compared to the conventional PI control. The results analysis shows the characteristic robustness of the adaptive control to disturbances of the load, the speed variation and low speed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A Novel Way to Relate Ontology Classes

    PubMed Central

    Choksi, Ami T.; Jinwala, Devesh C.

    2015-01-01

    The existing ontologies in the semantic web typically have anonymous union and intersection classes. The anonymous classes are limited in scope and may not be part of the whole inference process. The tools, namely, the pellet, the jena, and the protégé, interpret collection classes as (a) equivalent/subclasses of union class and (b) superclasses of intersection class. As a result, there is a possibility that the tools will produce error prone inference results for relations, namely, sub-, union, intersection, equivalent relations, and those dependent on these relations, namely, complement. To verify whether a class is complement of other involves utilization of sub- and equivalent relations. Motivated by the same, we (i) refine the test data set of the conference ontology by adding named, union, and intersection classes and (ii) propose a match algorithm to (a) calculate corrected subclasses list, (b) correctly relate intersection and union classes with their collection classes, and (c) match union, intersection, sub-, complement, and equivalent classes in a proper sequence, to avoid error prone match results. We compare the results of our algorithms with those of a candidate reasoner, namely, the pellet reasoner. To the best of our knowledge, ours is a unique attempt in establishing a novel way to relate ontology classes. PMID:25984560

  13. Extra Large G-Protein Interactome Reveals Multiple Stress Response Function and Partner-Dependent XLG Subcellular Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Ying; Gao, Yajun; Jones, Alan M.

    The three-member family of Arabidopsis extra-large G proteins (XLG1-3) defines the prototype of an atypical Ga subunit in the heterotrimeric G protein complex. Some recent evidence indicate that XLG subunits operate along with its Gbg dimer in root morphology, stress responsiveness, and cytokinin induced development, however downstream targets of activated XLG proteins in the stress pathways are rarely known. In order to assemble a set of candidate XLG-targeted proteins, a yeast two-hybrid complementation-based screen was performed using XLG protein baits to query interactions between XLG and partner protein found in glucose-treated seedlings, roots, and Arabidopsis cells in culture. Seventy twomore » interactors were identified and >60% of a test set displayed in vivo interaction with XLG proteins. Gene co-expression analysis shows that >70% of the interactors are positively correlated with the corresponding XLG partners. Gene Ontology enrichment for all the candidates indicates stress responses and posits a molecular mechanism involving a specific set of transcription factor partners to XLG. Genes encoding two of these transcription factors, SZF1 and 2, require XLG proteins for full NaCl-induced expression. Furthermore, the subcellular localization of the XLG proteins in the nucleus, endosome, and plasma membrane is dependent on the specific interacting partner.« less

  14. Extra Large G-Protein Interactome Reveals Multiple Stress Response Function and Partner-Dependent XLG Subcellular Localization

    DOE PAGES

    Liang, Ying; Gao, Yajun; Jones, Alan M.

    2017-06-13

    The three-member family of Arabidopsis extra-large G proteins (XLG1-3) defines the prototype of an atypical Ga subunit in the heterotrimeric G protein complex. Some recent evidence indicate that XLG subunits operate along with its Gbg dimer in root morphology, stress responsiveness, and cytokinin induced development, however downstream targets of activated XLG proteins in the stress pathways are rarely known. In order to assemble a set of candidate XLG-targeted proteins, a yeast two-hybrid complementation-based screen was performed using XLG protein baits to query interactions between XLG and partner protein found in glucose-treated seedlings, roots, and Arabidopsis cells in culture. Seventy twomore » interactors were identified and >60% of a test set displayed in vivo interaction with XLG proteins. Gene co-expression analysis shows that >70% of the interactors are positively correlated with the corresponding XLG partners. Gene Ontology enrichment for all the candidates indicates stress responses and posits a molecular mechanism involving a specific set of transcription factor partners to XLG. Genes encoding two of these transcription factors, SZF1 and 2, require XLG proteins for full NaCl-induced expression. Furthermore, the subcellular localization of the XLG proteins in the nucleus, endosome, and plasma membrane is dependent on the specific interacting partner.« less

  15. Ocean plankton. Determinants of community structure in the global plankton interactome.

    PubMed

    Lima-Mendez, Gipsi; Faust, Karoline; Henry, Nicolas; Decelle, Johan; Colin, Sébastien; Carcillo, Fabrizio; Chaffron, Samuel; Ignacio-Espinosa, J Cesar; Roux, Simon; Vincent, Flora; Bittner, Lucie; Darzi, Youssef; Wang, Jun; Audic, Stéphane; Berline, Léo; Bontempi, Gianluca; Cabello, Ana M; Coppola, Laurent; Cornejo-Castillo, Francisco M; d'Ovidio, Francesco; De Meester, Luc; Ferrera, Isabel; Garet-Delmas, Marie-José; Guidi, Lionel; Lara, Elena; Pesant, Stéphane; Royo-Llonch, Marta; Salazar, Guillem; Sánchez, Pablo; Sebastian, Marta; Souffreau, Caroline; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Gorsky, Gabriel; Not, Fabrice; Ogata, Hiroyuki; Speich, Sabrina; Stemmann, Lars; Weissenbach, Jean; Wincker, Patrick; Acinas, Silvia G; Sunagawa, Shinichi; Bork, Peer; Sullivan, Matthew B; Karsenti, Eric; Bowler, Chris; de Vargas, Colomban; Raes, Jeroen

    2015-05-22

    Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated network-generated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models. Copyright © 2015, American Association for the Advancement of Science.

  16. An "on-matrix" digestion procedure for AP-MS experiments dissects the interplay between complex-conserved and serotype-specific reactivities in Dengue virus-human plasma interactome.

    PubMed

    Ramos, Yassel; Huerta, Vivian; Martín, Dayron; Palomares, Sucel; Yero, Alexis; Pupo, Dianne; Gallien, Sebastien; Martín, Alejandro M; Pérez-Riverol, Yasset; Sarría, Mónica; Guirola, Osmany; Chinea, Glay; Domon, Bruno; González, Luis Javier

    2017-07-13

    The interactions between the four Dengue virus (DENV) serotypes and plasma proteins are crucial in the initial steps of viral infection to humans. Affinity purification combined with quantitative mass spectrometry analysis, has become one of the most powerful tools for the investigation on novel protein-protein interactions. Using this approach, we report here that a significant number of bait-interacting proteins do not dissociate under standard elution conditions, i.e. acid pH and chaotropic agents, and that this problem can be circumvented by using the "on-matrix" digestion procedure described here. This procedure enabled the identification of 16 human plasma proteins interacting with domain III from the envelope protein of DENV serotypes 1, 3 and 4 that would have not been detected otherwise and increased the known DIIIE interactors in human plasma to 59 proteins. Selected Reaction Monitoring analysis evidenced DENV interactome in human plasma is rather conserved although significant differences on the reactivity of viral serotypes with specific proteins do exist. A comparison between the serotype-dependent profile of reactivity and the conservation pattern of amino acid residues suggests an evolutionary selection of highly conserved interactions with the host and other interactions mediated for surface regions of higher variability. False negative results on the identification of interacting proteins in pull-down experiments compromise the subsequent interpretation of results and the formulation of a working hypothesis for the derived future work. In this study we demonstrate the presence of bait-interacting proteins reluctant to dissociate under elution conditions of acid pH and presence of chaotropics. We propose the direct proteolytic digestion of proteins while still bound to the affinity matrix ("on-matrix" digestion) and evaluate the impact of this methodology in the comparative study of the interactome of the four serotypes of Dengue virus mediated by the domain III of the viral envelope glycoprotein. Fifty nine proteins were identified as putative interaction partners of Dengue virus (IPs) either due to direct binding or by co-isolation with interacting proteins. Collectively the IPs identified from the pull-down with the recombinant domain III proteins representing the four viral serotypes, 29% were identified only after "on-matrix" digestion which demonstrate the usefulness of this method of recovering bait-bound proteins. Results highlight a particular importance of "on-matrix" digestion procedure for comparative studies where a stronger interaction with one of the interest baits could prevent a bound protein to elute under standard conditions thus leading to misinterpretation as absent in the interactome of this particular bait. The analysis of the Interaction Network indicates that Dengue virus interactome mediated by the domain III of the envelope protein is rather conserved in the viral complex suggesting a key role of these interactions for viral infection thus making candidates to explore for potential biomarkers of clinical outcome in DENV-caused disease. Interestingly, some particular IPs exhibit significant differences in the strength of the interaction with the viral serotypes representing interactions that involve more variable regions in the surface of the domain III. Since such variable regions are the consequence of the interaction with antibodies generated by human immune response; this result relates the interaction with proteins from human plasma with the interplay of the virus and the human immune system. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Wind power error estimation in resource assessments.

    PubMed

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  18. Wind Power Error Estimation in Resource Assessments

    PubMed Central

    Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  19. Large Covariance Estimation by Thresholding Principal Orthogonal Complements

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2012-01-01

    This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented. PMID:24348088

  20. Large Covariance Estimation by Thresholding Principal Orthogonal Complements.

    PubMed

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2013-09-01

    This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented.

  1. Implementation of a Parameterized Interacting Multiple Model Filter on an FPGA for Satellite Communications

    NASA Technical Reports Server (NTRS)

    Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.

    2016-01-01

    In a communications channel, the space environment between a spacecraft and an Earth ground station can potentially cause the loss of a data link or at least degrade its performance due to atmospheric effects, shadowing, multipath, or other impairments. In adaptive and coded modulation, the signal power level at the receiver can be used in order to choose a modulation-coding technique that maximizes throughput while meeting bit error rate (BER) and other performance requirements. It is the goal of this research to implement a generalized interacting multiple model (IMM) filter based on Kalman filters for improved received power estimation on software-dened radio (SDR) technology for satellite communications applications. The IMM filter has been implemented in Verilog consisting of a customizable bank of Kalman filters for choosing between performance and resource utilization. Each Kalman filter can be implemented using either solely a Schur complement module (for high area efficiency) or with Schur complement, matrix multiplication, and matrix addition modules (for high performance). These modules were simulated and synthesized for the Virtex II platform on the JPL Radio Experimenter Development System (EDS) at NASA Glenn Research Center. The results for simulation, synthesis, and hardware testing are presented.

  2. Using the Abstraction Network in Complement to Description Logics for Quality Assurance in Biomedical Terminologies - A Case Study in SNOMED CT

    PubMed Central

    Wei, Duo; Bodenreider, Olivier

    2015-01-01

    Objectives To investigate errors identified in SNOMED CT by human reviewers with help from the Abstraction Network methodology and examine why they had escaped detection by the Description Logic (DL) classifier. Case study; Two examples of errors are presented in detail (one missing IS-A relation and one duplicate concept). After correction, SNOMED CT is reclassified to ensure that no new inconsistency was introduced. Conclusions DL-based auditing techniques built in terminology development environments ensure the logical consistency of the terminology. However, complementary approaches are needed for identifying and addressing other types of errors. PMID:20841848

  3. Using the abstraction network in complement to description logics for quality assurance in biomedical terminologies - a case study in SNOMED CT.

    PubMed

    Wei, Duo; Bodenreider, Olivier

    2010-01-01

    To investigate errors identified in SNOMED CT by human reviewers with help from the Abstraction Network methodology and examine why they had escaped detection by the Description Logic (DL) classifier. Case study; Two examples of errors are presented in detail (one missing IS-A relation and one duplicate concept). After correction, SNOMED CT is reclassified to ensure that no new inconsistency was introduced. DL-based auditing techniques built in terminology development environments ensure the logical consistency of the terminology. However, complementary approaches are needed for identifying and addressing other types of errors.

  4. Systems-level analysis of risk genes reveals the modular nature of schizophrenia.

    PubMed

    Liu, Jiewei; Li, Ming; Luo, Xiong-Jian; Su, Bing

    2018-05-19

    Schizophrenia (SCZ) is a complex mental disorder with high heritability. Genetic studies (especially recent genome-wide association studies) have identified many risk genes for schizophrenia. However, the physical interactions among the proteins encoded by schizophrenia risk genes remain elusive and it is not known whether the identified risk genes converge on common molecular networks or pathways. Here we systematically investigated the network characteristics of schizophrenia risk genes using the high-confidence protein-protein interactions (PPI) from the human interactome. We found that schizophrenia risk genes encode a densely interconnected PPI network (P = 4.15 × 10 -31 ). Compared with the background genes, the schizophrenia risk genes in the interactome have significantly higher degree (P = 5.39 × 10 -11 ), closeness centrality (P = 7.56 × 10 -11 ), betweeness centrality (P = 1.29 × 10 -11 ), clustering coefficient (P = 2.22 × 10 -2 ), and shorter average shortest path length (P = 7.56 × 10 -11 ). Based on the densely interconnected PPI network, we identified 48 hub genes and 4 modules formed by highly interconnected schizophrenia genes. We showed that the proteins encoded by schizophrenia hub genes have significantly more direct physical interactions. Gene ontology (GO) analysis revealed that cell adhesion, cell cycle, immune system response, and GABR-receptor complex categories were enriched in the modules formed by highly interconnected schizophrenia risk genes. Our study reveals that schizophrenia risk genes encode a densely interconnected molecular network and demonstrates the modular nature of schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Comprehensively Characterizing the Thioredoxin Interactome In Vivo Highlights the Central Role Played by This Ubiquitous Oxidoreductase in Redox Control*

    PubMed Central

    Arts, Isabelle S.; Vertommen, Didier; Baldin, Francesca; Laloux, Géraldine; Collet, Jean-François

    2016-01-01

    Thioredoxin (Trx) is a ubiquitous oxidoreductase maintaining protein-bound cysteine residues in the reduced thiol state. Here, we combined a well-established method to trap Trx substrates with the power of bacterial genetics to comprehensively characterize the in vivo Trx redox interactome in the model bacterium Escherichia coli. Using strains engineered to optimize trapping, we report the identification of a total 268 Trx substrates, including 201 that had never been reported to depend on Trx for reduction. The newly identified Trx substrates are involved in a variety of cellular processes, ranging from energy metabolism to amino acid synthesis and transcription. The interaction between Trx and two of its newly identified substrates, a protein required for the import of most carbohydrates, PtsI, and the bacterial actin homolog MreB was studied in detail. We provide direct evidence that PtsI and MreB contain cysteine residues that are susceptible to oxidation and that participate in the formation of an intermolecular disulfide with Trx. By considerably expanding the number of Trx targets, our work highlights the role played by this major oxidoreductase in a variety of cellular processes. Moreover, as the dependence on Trx for reduction is often conserved across species, it also provides insightful information on the interactome of Trx in organisms other than E. coli. PMID:27081212

  6. The cyclin D1-CDK4 oncogenic interactome enables identification of potential novel oncogenes and clinical prognosis

    PubMed Central

    Jirawatnotai, Siwanon; Sharma, Samanta; Michowski, Wojciech; Suktitipat, Bhoom; Geng, Yan; Quackenbush, John; Elias, Joshua E; Gygi, Steven P; Wang, Yaoyu E; Sicinski, Piotr

    2014-01-01

    Overexpression of cyclin D1 and its catalytic partner, CDK4, is frequently seen in human cancers. We constructed cyclin D1 and CDK4 protein interaction network in a human breast cancer cell line MCF7, and identified novel CDK4 protein partners. Among CDK4 interactors we observed several proteins functioning in protein folding and in complex assembly. One of the novel partners of CDK4 is FKBP5, which we found to be required to maintain CDK4 levels in cancer cells. An integrative analysis of the extended cyclin D1 cancer interactome and somatic copy number alterations in human cancers identified BAIAPL21 as a potential novel human oncogene. We observed that in several human tumor types BAIAPL21 is expressed at higher levels as compared to normal tissue. Forced overexpression of BAIAPL21 augmented anchorage independent growth, increased colony formation by cancer cells and strongly enhanced the ability of cells to form tumors in vivo. Lastly, we derived an Aggregate Expression Score (AES), which quantifies the expression of all cyclin D1 interactors in a given tumor. We observed that AES has a prognostic value among patients with ER-positive breast cancers. These studies illustrate the utility of analyzing the interactomes of proteins involved in cancer to uncover potential oncogenes, or to allow better cancer prognosis. PMID:25486477

  7. Interactome-transcriptome analysis discovers signatures complementary to GWAS Loci of Type 2 Diabetes

    PubMed Central

    Li, Jing-Woei; Lee, Heung-Man; Wang, Ying; Tong, Amy Hin-Yan; Yip, Kevin Y.; Tsui, Stephen Kwok-Wing; Lok, Si; Ozaki, Risa; Luk, Andrea O; Kong, Alice P. S.; So, Wing-Yee; Ma, Ronald C. W.; Chan, Juliana C. N.; Chan, Ting-Fung

    2016-01-01

    Protein interactions play significant roles in complex diseases. We analyzed peripheral blood mononuclear cells (PBMC) transcriptome using a multi-method strategy. We constructed a tissue-specific interactome (T2Di) and identified 420 molecular signatures associated with T2D-related comorbidity and symptoms, mainly implicated in inflammation, adipogenesis, protein phosphorylation and hormonal secretion. Apart from explaining the residual associations within the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) study, the T2Di signatures were enriched in pathogenic cell type-specific regulatory elements related to fetal development, immunity and expression quantitative trait loci (eQTL). The T2Di revealed a novel locus near a well-established GWAS loci AChE, in which SRRT interacts with JAZF1, a T2D-GWAS gene implicated in pancreatic function. The T2Di also included known anti-diabetic drug targets (e.g. PPARD, MAOB) and identified possible druggable targets (e.g. NCOR2, PDGFR). These T2Di signatures were validated by an independent computational method, and by expression data of pancreatic islet, muscle and liver with some of the signatures (CEBPB, SREBF1, MLST8, SRF, SRRT and SLC12A9) confirmed in PBMC from an independent cohort of 66 T2D and 66 control subjects. By combining prior knowledge and transcriptome analysis, we have constructed an interactome to explain the multi-layered regulatory pathways in T2D. PMID:27752041

  8. Caspofungin exposure alters the core septin AspB interactome of Aspergillus fumigatus.

    PubMed

    Vargas-Muñiz, José M; Renshaw, Hilary; Waitt, Greg; Soderblom, Erik J; Moseley, M Arthur; Palmer, Jonathan M; Juvvadi, Praveen R; Keller, Nancy P; Steinbach, William J

    2017-04-01

    Aspergillus fumigatus, the main etiological agent of invasive aspergillosis, is a leading cause of death in immunocompromised patients. Septins, a conserved family of GTP-binding proteins, serve as scaffolding proteins to recruit enzymes and key regulators to different cellular compartments. Deletion of the A. fumigatus septin aspB increases susceptibility to the echinocandin antifungal caspofungin. However, how AspB mediates this response to caspofungin is unknown. Here, we characterized the AspB interactome under basal conditions and after exposure to a clinically relevant concentration of caspofungin. While A. fumigatus AspB interacted with 334 proteins, including kinases, cell cycle regulators, and cell wall synthesis-related proteins under basal growth conditions, caspofungin exposure altered AspB interactions. A total of 69 of the basal interactants did not interact with AspB after exposure to caspofungin, and 54 new interactants were identified following caspofungin exposure. We generated A. fumigatus deletion strains for 3 proteins (ArpB, Cyp4, and PpoA) that only interacted with AspB following exposure to caspofungin that were previously annotated as induced after exposure to antifungal agents, yet only PpoA was implicated in the response to caspofungin. Taken together, we defined how the septin AspB interactome is altered in the presence of a clinically relevant antifungal. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation.

    PubMed

    von Hundelshausen, Philipp; Agten, Stijn M; Eckardt, Veit; Blanchet, Xavier; Schmitt, Martin M; Ippel, Hans; Neideck, Carlos; Bidzhekov, Kiril; Leberzammer, Julian; Wichapong, Kanin; Faussner, Alexander; Drechsler, Maik; Grommes, Jochen; van Geffen, Johanna P; Li, He; Ortega-Gomez, Almudena; Megens, Remco T A; Naumann, Ronald; Dijkgraaf, Ingrid; Nicolaes, Gerry A F; Döring, Yvonne; Soehnlein, Oliver; Lutgens, Esther; Heemskerk, Johan W M; Koenen, Rory R; Mayo, Kevin H; Hackeng, Tilman M; Weber, Christian

    2017-04-05

    Chemokines orchestrate leukocyte trafficking and function in health and disease. Heterophilic interactions between chemokines in a given microenvironment may amplify, inhibit, or modulate their activity; however, a systematic evaluation of the chemokine interactome has not been performed. We used immunoligand blotting and surface plasmon resonance to obtain a comprehensive map of chemokine-chemokine interactions and to confirm their specificity. Structure-function analyses revealed that chemokine activity can be enhanced by CC-type heterodimers but inhibited by CXC-type heterodimers. Functional synergism was achieved through receptor heteromerization induced by CCL5-CCL17 or receptor retention at the cell surface via auxiliary proteoglycan binding of CCL5-CXCL4. In contrast, inhibitory activity relied on conformational changes (in CXCL12), affecting receptor signaling. Obligate CC-type heterodimers showed high efficacy and potency and drove acute lung injury and atherosclerosis, processes abrogated by specific CCL5-derived peptide inhibitors or knock-in of an interaction-deficient CXCL4 variant. Atheroprotective effects of CCL17 deficiency were phenocopied by a CCL5-derived peptide disrupting CCL5-CCL17 heterodimers, whereas a CCL5 α-helix peptide mimicked inhibitory effects on CXCL12-driven platelet aggregation. Thus, formation of specific chemokine heterodimers differentially dictates functional activity and can be exploited for therapeutic targeting. Copyright © 2017, American Association for the Advancement of Science.

  10. Elucidation of the Ebola virus VP24 cellular interactome and disruption of virus biology through targeted inhibition of host-cell protein function.

    PubMed

    García-Dorival, Isabel; Wu, Weining; Dowall, Stuart; Armstrong, Stuart; Touzelet, Olivier; Wastling, Jonathan; Barr, John N; Matthews, David; Carroll, Miles; Hewson, Roger; Hiscox, Julian A

    2014-11-07

    Viral pathogenesis in the infected cell is a balance between antiviral responses and subversion of host-cell processes. Many viral proteins specifically interact with host-cell proteins to promote virus biology. Understanding these interactions can lead to knowledge gains about infection and provide potential targets for antiviral therapy. One such virus is Ebola, which has profound consequences for human health and causes viral hemorrhagic fever where case fatality rates can approach 90%. The Ebola virus VP24 protein plays a critical role in the evasion of the host immune response and is likely to interact with multiple cellular proteins. To map these interactions and better understand the potential functions of VP24, label-free quantitative proteomics was used to identify cellular proteins that had a high probability of forming the VP24 cellular interactome. Several known interactions were confirmed, thus placing confidence in the technique, but new interactions were also discovered including one with ATP1A1, which is involved in osmoregulation and cell signaling. Disrupting the activity of ATP1A1 in Ebola-virus-infected cells with a small molecule inhibitor resulted in a decrease in progeny virus, thus illustrating how quantitative proteomics can be used to identify potential therapeutic targets.

  11. Assembling a protein-protein interaction map of the SSU processome from existing datasets.

    PubMed

    Lim, Young H; Charette, J Michael; Baserga, Susan J

    2011-03-10

    The small subunit (SSU) processome is a large ribonucleoprotein complex involved in small ribosomal subunit assembly. It consists of the U3 snoRNA and ∼72 proteins. While most of its components have been identified, the protein-protein interactions (PPIs) among them remain largely unknown, and thus the assembly, architecture and function of the SSU processome remains unclear. We queried PPI databases for SSU processome proteins to quantify the degree to which the three genome-wide high-throughput yeast two-hybrid (HT-Y2H) studies, the genome-wide protein fragment complementation assay (PCA) and the literature-curated (LC) datasets cover the SSU processome interactome. We find that coverage of the SSU processome PPI network is remarkably sparse. Two of the three HT-Y2H studies each account for four and six PPIs between only six of the 72 proteins, while the third study accounts for as little as one PPI and two proteins. The PCA dataset has the highest coverage among the genome-wide studies with 27 PPIs between 25 proteins. The LC dataset was the most extensive, accounting for 34 proteins and 38 PPIs, many of which were validated by independent methods, thereby further increasing their reliability. When the collected data were merged, we found that at least 70% of the predicted PPIs have yet to be determined and 26 proteins (36%) have no known partners. Since the SSU processome is conserved in all Eukaryotes, we also queried HT-Y2H datasets from six additional model organisms, but only four orthologues and three previously known interologous interactions were found. This provides a starting point for further work on SSU processome assembly, and spotlights the need for a more complete genome-wide Y2H analysis.

  12. Assembling a Protein-Protein Interaction Map of the SSU Processome from Existing Datasets

    PubMed Central

    Baserga, Susan J.

    2011-01-01

    Background The small subunit (SSU) processome is a large ribonucleoprotein complex involved in small ribosomal subunit assembly. It consists of the U3 snoRNA and ∼72 proteins. While most of its components have been identified, the protein-protein interactions (PPIs) among them remain largely unknown, and thus the assembly, architecture and function of the SSU processome remains unclear. Methodology We queried PPI databases for SSU processome proteins to quantify the degree to which the three genome-wide high-throughput yeast two-hybrid (HT-Y2H) studies, the genome-wide protein fragment complementation assay (PCA) and the literature-curated (LC) datasets cover the SSU processome interactome. Conclusions We find that coverage of the SSU processome PPI network is remarkably sparse. Two of the three HT-Y2H studies each account for four and six PPIs between only six of the 72 proteins, while the third study accounts for as little as one PPI and two proteins. The PCA dataset has the highest coverage among the genome-wide studies with 27 PPIs between 25 proteins. The LC dataset was the most extensive, accounting for 34 proteins and 38 PPIs, many of which were validated by independent methods, thereby further increasing their reliability. When the collected data were merged, we found that at least 70% of the predicted PPIs have yet to be determined and 26 proteins (36%) have no known partners. Since the SSU processome is conserved in all Eukaryotes, we also queried HT-Y2H datasets from six additional model organisms, but only four orthologues and three previously known interologous interactions were found. This provides a starting point for further work on SSU processome assembly, and spotlights the need for a more complete genome-wide Y2H analysis. PMID:21423703

  13. Searching for cellular partners of hantaviral nonstructural protein NSs: Y2H screening of mouse cDNA library and analysis of cellular interactome.

    PubMed

    Rönnberg, Tuomas; Jääskeläinen, Kirsi; Blot, Guillaume; Parviainen, Ville; Vaheri, Antti; Renkonen, Risto; Bouloy, Michele; Plyusnin, Alexander

    2012-01-01

    Hantaviruses (Bunyaviridae) are negative-strand RNA viruses with a tripartite genome. The small (S) segment encodes the nucleocapsid protein and, in some hantaviruses, also the nonstructural protein (NSs). The aim of this study was to find potential cellular partners for the hantaviral NSs protein. Toward this aim, yeast two-hybrid (Y2H) screening of mouse cDNA library was performed followed by a search for potential NSs protein counterparts via analyzing a cellular interactome. The resulting interaction network was shown to form logical, clustered structures. Furthermore, several potential binding partners for the NSs protein, for instance ACBD3, were identified and, to prove the principle, interaction between NSs and ACBD3 proteins was demonstrated biochemically.

  14. Extraction and Analysis of Display Data

    NASA Technical Reports Server (NTRS)

    Land, Chris; Moye, Kathryn

    2008-01-01

    The Display Audit Suite is an integrated package of software tools that partly automates the detection of Portable Computer System (PCS) Display errors. [PCS is a lap top computer used onboard the International Space Station (ISS).] The need for automation stems from the large quantity of PCS displays (6,000+, with 1,000,000+ lines of command and telemetry data). The Display Audit Suite includes data-extraction tools, automatic error detection tools, and database tools for generating analysis spread sheets. These spread sheets allow engineers to more easily identify many different kinds of possible errors. The Suite supports over 40 independent analyses, 16 NASA Tech Briefs, November 2008 and complements formal testing by being comprehensive (all displays can be checked) and by revealing errors that are difficult to detect via test. In addition, the Suite can be run early in the development cycle to find and correct errors in advance of testing.

  15. Striatal Transcriptome and Interactome Analysis of Shank3-overexpressing Mice Reveals the Connectivity between Shank3 and mTORC1 Signaling

    PubMed Central

    Lee, Yeunkum; Kim, Sun Gyun; Lee, Bokyoung; Zhang, Yinhua; Kim, Yoonhee; Kim, Shinhyun; Kim, Eunjoon; Kang, Hyojin; Han, Kihoon

    2017-01-01

    Mania causes symptoms of hyperactivity, impulsivity, elevated mood, reduced anxiety and decreased need for sleep, which suggests that the dysfunction of the striatum, a critical component of the brain motor and reward system, can be causally associated with mania. However, detailed molecular pathophysiology underlying the striatal dysfunction in mania remains largely unknown. In this study, we aimed to identify the molecular pathways showing alterations in the striatum of SH3 and multiple ankyrin repeat domains 3 (Shank3)-overexpressing transgenic (TG) mice that display manic-like behaviors. The results of transcriptome analysis suggested that mammalian target of rapamycin complex 1 (mTORC1) signaling may be the primary molecular signature altered in the Shank3 TG striatum. Indeed, we found that striatal mTORC1 activity, as measured by mTOR S2448 phosphorylation, was significantly decreased in the Shank3 TG mice compared to wild-type (WT) mice. To elucidate the potential underlying mechanism, we re-analyzed previously reported protein interactomes, and detected a high connectivity between Shank3 and several upstream regulators of mTORC1, such as tuberous sclerosis 1 (TSC1), TSC2 and Ras homolog enriched in striatum (Rhes), via 94 common interactors that we denominated “Shank3-mTORC1 interactome”. We noticed that, among the 94 common interactors, 11 proteins were related to actin filaments, the level of which was increased in the dorsal striatum of Shank3 TG mice. Furthermore, we could co-immunoprecipitate Shank3, Rhes and Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) proteins from the striatal lysate of Shank3 TG mice. By comparing with the gene sets of psychiatric disorders, we also observed that the 94 proteins of Shank3-mTORC1 interactome were significantly associated with bipolar disorder (BD). Altogether, our results suggest a protein interaction-mediated connectivity between Shank3 and certain upstream regulators of mTORC1 that might contribute to the abnormal striatal mTORC1 activity and to the manic-like behaviors of Shank3 TG mice. PMID:28701918

  16. Integration of multiple biological features yields high confidence human protein interactome.

    PubMed

    Karagoz, Kubra; Sevimoglu, Tuba; Arga, Kazim Yalcin

    2016-08-21

    The biological function of a protein is usually determined by its physical interaction with other proteins. Protein-protein interactions (PPIs) are identified through various experimental methods and are stored in curated databases. The noisiness of the existing PPI data is evident, and it is essential that a more reliable data is generated. Furthermore, the selection of a set of PPIs at different confidence levels might be necessary for many studies. Although different methodologies were introduced to evaluate the confidence scores for binary interactions, a highly reliable, almost complete PPI network of Homo sapiens is not proposed yet. The quality and coverage of human protein interactome need to be improved to be used in various disciplines, especially in biomedicine. In the present work, we propose an unsupervised statistical approach to assign confidence scores to PPIs of H. sapiens. To achieve this goal PPI data from six different databases were collected and a total of 295,288 non-redundant interactions between 15,950 proteins were acquired. The present scoring system included the context information that was assigned to PPIs derived from eight biological attributes. A high confidence network, which included 147,923 binary interactions between 13,213 proteins, had scores greater than the cutoff value of 0.80, for which sensitivity, specificity, and coverage were 94.5%, 80.9%, and 82.8%, respectively. We compared the present scoring method with others for evaluation. Reducing the noise inherent in experimental PPIs via our scoring scheme increased the accuracy significantly. As it was demonstrated through the assessment of process and cancer subnetworks, this study allows researchers to construct and analyze context-specific networks via valid PPI sets and one can easily achieve subnetworks around proteins of interest at a specified confidence level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases

    PubMed Central

    2011-01-01

    Background Comprehensive understanding of molecular mechanisms underlying viral infection is a major challenge towards the discovery of new antiviral drugs and susceptibility factors of human diseases. New advances in the field are expected from systems-level modelling and integration of the incessant torrent of high-throughput "-omics" data. Results Here, we describe the Human Infectome protein interaction Network, a novel systems virology model of a virtual virus-infected human cell concerning 110 viruses. This in silico model was applied to comprehensively explore the molecular relationships between viruses and their associated diseases. This was done by merging virus-host and host-host physical protein-protein interactomes with the set of genes essential for viral replication and involved in human genetic diseases. This systems-level approach provides strong evidence that viral proteomes target a wide range of functional and inter-connected modules of proteins as well as highly central and bridging proteins within the human interactome. The high centrality of targeted proteins was correlated to their essentiality for viruses' lifecycle, using functional genomic RNAi data. A stealth-attack of viruses on proteins bridging cellular functions was demonstrated by simulation of cellular network perturbations, a property that could be essential in the molecular aetiology of some human diseases. Networking the Human Infectome and Diseasome unravels the connectivity of viruses to a wide range of diseases and profiled molecular basis of Hepatitis C Virus-induced diseases as well as 38 new candidate genetic predisposition factors involved in type 1 diabetes mellitus. Conclusions The Human Infectome and Diseasome Networks described here provide a unique gateway towards the comprehensive modelling and analysis of the systems level properties associated to viral infection as well as candidate genes potentially involved in the molecular aetiology of human diseases. PMID:21255393

  18. NR4A nuclear receptors are orphans but not lonesome.

    PubMed

    Kurakula, Kondababu; Koenis, Duco S; van Tiel, Claudia M; de Vries, Carlie J M

    2014-11-01

    The NR4A subfamily of nuclear receptors consists of three mammalian members: Nur77, Nurr1, and NOR-1. The NR4A receptors are involved in essential physiological processes such as adaptive and innate immune cell differentiation, metabolism and brain function. They act as transcription factors that directly modulate gene expression, but can also form trans-repressive complexes with other transcription factors. In contrast to steroid hormone nuclear receptors such as the estrogen receptor or the glucocorticoid receptor, no ligands have been described for the NR4A receptors. This lack of known ligands might be explained by the structure of the ligand-binding domain of NR4A receptors, which shows an active conformation and a ligand-binding pocket that is filled with bulky amino acid side-chains. Other mechanisms, such as transcriptional control, post-translational modifications and protein-protein interactions therefore seem to be more important in regulating the activity of the NR4A receptors. For Nur77, over 80 interacting proteins (the interactome) have been identified so far, and roughly half of these interactions has been studied in more detail. Although the NR4As show some overlap in interacting proteins, less information is available on the interactome of Nurr1 and NOR-1. Therefore, the present review will describe the current knowledge on the interactomes of all three NR4A nuclear receptors with emphasis on Nur77. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. High-throughput accurate-wavelength lens-based visible spectrometer.

    PubMed

    Bell, Ronald E; Scotti, Filippo

    2010-10-01

    A scanning visible spectrometer has been prototyped to complement fixed-wavelength transmission grating spectrometers for charge exchange recombination spectroscopy. Fast f/1.8 200 mm commercial lenses are used with a large 2160 mm(-1) grating for high throughput. A stepping-motor controlled sine drive positions the grating, which is mounted on a precision rotary table. A high-resolution optical encoder on the grating stage allows the grating angle to be measured with an absolute accuracy of 0.075 arc  sec, corresponding to a wavelength error ≤0.005 Å. At this precision, changes in grating groove density due to thermal expansion and variations in the refractive index of air are important. An automated calibration procedure determines all the relevant spectrometer parameters to high accuracy. Changes in bulk grating temperature, atmospheric temperature, and pressure are monitored between the time of calibration and the time of measurement to ensure a persistent wavelength calibration.

  20. Efficient Relaxation of Protein-Protein Interfaces by Discrete Molecular Dynamics Simulations.

    PubMed

    Emperador, Agusti; Solernou, Albert; Sfriso, Pedro; Pons, Carles; Gelpi, Josep Lluis; Fernandez-Recio, Juan; Orozco, Modesto

    2013-02-12

    Protein-protein interactions are responsible for the transfer of information inside the cell and represent one of the most interesting research fields in structural biology. Unfortunately, after decades of intense research, experimental approaches still have difficulties in providing 3D structures for the hundreds of thousands of interactions formed between the different proteins in a living organism. The use of theoretical approaches like docking aims to complement experimental efforts to represent the structure of the protein interactome. However, we cannot ignore that current methods have limitations due to problems of sampling of the protein-protein conformational space and the lack of accuracy of available force fields. Cases that are especially difficult for prediction are those in which complex formation implies a non-negligible change in the conformation of the interacting proteins, i.e., those cases where protein flexibility plays a key role in protein-protein docking. In this work, we present a new approach to treat flexibility in docking by global structural relaxation based on ultrafast discrete molecular dynamics. On a standard benchmark of protein complexes, the method provides a general improvement over the results obtained by rigid docking. The method is especially efficient in cases with large conformational changes upon binding, in which structure relaxation with discrete molecular dynamics leads to a predictive success rate double that obtained with state-of-the-art rigid-body docking.

  1. The pepATTRACT web server for blind, large-scale peptide-protein docking.

    PubMed

    de Vries, Sjoerd J; Rey, Julien; Schindler, Christina E M; Zacharias, Martin; Tuffery, Pierre

    2017-07-03

    Peptide-protein interactions are ubiquitous in the cell and form an important part of the interactome. Computational docking methods can complement experimental characterization of these complexes, but current protocols are not applicable on the proteome scale. pepATTRACT is a novel docking protocol that is fully blind, i.e. it does not require any information about the binding site. In various stages of its development, pepATTRACT has participated in CAPRI, making successful predictions for five out of seven protein-peptide targets. Its performance is similar or better than state-of-the-art local docking protocols that do require binding site information. Here we present a novel web server that carries out the rigid-body stage of pepATTRACT. On the peptiDB benchmark, the web server generates a correct model in the top 50 in 34% of the cases. Compared to the full pepATTRACT protocol, this leads to some loss of performance, but the computation time is reduced from ∼18 h to ∼10 min. Combined with the fact that it is fully blind, this makes the web server well-suited for large-scale in silico protein-peptide docking experiments. The rigid-body pepATTRACT server is freely available at http://bioserv.rpbs.univ-paris-diderot.fr/services/pepATTRACT. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Considerations for pattern placement error correction toward 5nm node

    NASA Astrophysics Data System (ADS)

    Yaegashi, Hidetami; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Koike, Kyohei; Maslow, Mark John; Timoshkov, Vadim; Kiers, Ton; Di Lorenzo, Paolo; Fonseca, Carlos

    2017-03-01

    Multi-patterning has been adopted widely in high volume manufacturing as 193 immersion extension, and it becomes realistic solution of nano-order scaling. In fact, it must be key technology on single directional (1D) layout design [1] for logic devise and it becomes a major option for further scaling technique in SAQP. The requirement for patterning fidelity control is getting savior more and more, stochastic fluctuation as well as LER (Line edge roughness) has to be micro-scopic observation aria. In our previous work, such atomic order controllability was viable in complemented technique with etching and deposition [2]. Overlay issue form major potion in yield management, therefore, entire solution is needed keenly including alignment accuracy on scanner and detectability on overlay measurement instruments. As EPE (Edge placement error) was defined as the gap between design pattern and contouring of actual pattern edge, pattern registration in single process level must be considerable. The complementary patterning to fabricate 1D layout actually mitigates any process restrictions, however, multiple process step, symbolized as LELE with 193-i, is burden to yield management and affordability. Recent progress of EUV technology is remarkable, and it is major potential solution for such complicated technical issues. EUV has robust resolution limit and it must be definitely strong scaling driver for process simplification. On the other hand, its stochastic variation such like shot noise due to light source power must be resolved with any additional complemented technique. In this work, we examined the nano-order CD and profile control on EUV resist pattern and would introduce excellent accomplishments.

  3. Examining Myddosome Formation by Luminescence-Based Mammalian Interactome Mapping (LUMIER).

    PubMed

    Wolz, Olaf-Oliver; Koegl, Manfred; Weber, Alexander N R

    2018-01-01

    Recent structural, biochemical, and functional studies have led to the notion that many of the post-receptor signaling complexes in innate immunity have a multimeric, multi-protein architecture whose hierarchical assembly is vital for function. The Myddosome is a post-receptor complex in the cytoplasmic signaling of Toll-like receptors (TLR) and the Interleukin-1 receptor (IL-1R), involving the proteins MyD88, IL-1R-associated kinase 4 (IRAK4), and IRAK2. Its importance is strikingly illustrated by the fact that rare germline mutations in MYD88 causing high susceptibility to infections are characterized by failure to assemble Myddosomes; conversely, gain-of-function MYD88 mutations leading to oncogenic hyperactivation of NF-κB show increased Myddosome formation. Reliable methods to probe Myddosome formation experimentally are therefore vital to further study the properties of this important post-receptor complex and its role in innate immunity, such as its regulation by posttranslational modification. Compared to structural and biochemical analyses, luminescence-based mammalian interactome mapping (LUMIER) is a straightforward, automatable, quantifiable, and versatile technique to study protein-protein interactions in a physiologically relevant context. We adapted LUMIER for Myddosome analysis and provide here a basic background of this technique, suitable experimental protocols, and its potential for medium-throughput screening. The principles presented herein can be adapted to other signaling pathways.

  4. Integrated Genomic and Network-Based Analyses of Complex Diseases and Human Disease Network.

    PubMed

    Al-Harazi, Olfat; Al Insaif, Sadiq; Al-Ajlan, Monirah A; Kaya, Namik; Dzimiri, Nduna; Colak, Dilek

    2016-06-20

    A disease phenotype generally reflects various pathobiological processes that interact in a complex network. The highly interconnected nature of the human protein interaction network (interactome) indicates that, at the molecular level, it is difficult to consider diseases as being independent of one another. Recently, genome-wide molecular measurements, data mining and bioinformatics approaches have provided the means to explore human diseases from a molecular basis. The exploration of diseases and a system of disease relationships based on the integration of genome-wide molecular data with the human interactome could offer a powerful perspective for understanding the molecular architecture of diseases. Recently, subnetwork markers have proven to be more robust and reliable than individual biomarker genes selected based on gene expression profiles alone, and achieve higher accuracy in disease classification. We have applied one of these methodologies to idiopathic dilated cardiomyopathy (IDCM) data that we have generated using a microarray and identified significant subnetworks associated with the disease. In this paper, we review the recent endeavours in this direction, and summarize the existing methodologies and computational tools for network-based analysis of complex diseases and molecular relationships among apparently different disorders and human disease network. We also discuss the future research trends and topics of this promising field. Copyright © 2015 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  5. When do latent class models overstate accuracy for diagnostic and other classifiers in the absence of a gold standard?

    PubMed

    Spencer, Bruce D

    2012-06-01

    Latent class models are increasingly used to assess the accuracy of medical diagnostic tests and other classifications when no gold standard is available and the true state is unknown. When the latent class is treated as the true class, the latent class models provide measures of components of accuracy including specificity and sensitivity and their complements, type I and type II error rates. The error rates according to the latent class model differ from the true error rates, however, and empirical comparisons with a gold standard suggest the true error rates often are larger. We investigate conditions under which the true type I and type II error rates are larger than those provided by the latent class models. Results from Uebersax (1988, Psychological Bulletin 104, 405-416) are extended to accommodate random effects and covariates affecting the responses. The results are important for interpreting the results of latent class analyses. An error decomposition is presented that incorporates an error component from invalidity of the latent class model. © 2011, The International Biometric Society.

  6. Health and Wages: Panel Data Estimates Considering Selection and Endogeneity

    ERIC Educational Resources Information Center

    Jackle, Robert; Himmler, Oliver

    2010-01-01

    This paper complements previous studies on the effects of health on wages by addressing the problems of unobserved heterogeneity, sample selection, and endogeneity in one comprehensive framework. Using data from the German Socio-Economic Panel (GSOEP), we find the health variable to suffer from measurement error and a number of tests provide…

  7. Advanced error diagnostics of the CMAQ and Chimere modelling systems within the AQMEII3 model evaluation framework

    EPA Science Inventory

    The work here complements the overview analysis of the modelling systems participating in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) by focusing on the performance for hourly surface ozone by two modelling systems, Chimere for Europe an...

  8. Modeling microbial communities: current, developing, and future technologies for predicting microbial community interaction.

    PubMed

    Larsen, Peter; Hamada, Yuki; Gilbert, Jack

    2012-07-31

    Never has there been a greater opportunity for investigating microbial communities. Not only are the profound effects of microbial ecology on every aspect of Earth's geochemical cycles beginning to be understood, but also the analytical and computational tools for investigating microbial Earth are undergoing a rapid revolution. This environmental microbial interactome, the system of interactions between the microbiome and the environment, has shaped the planet's past and will undoubtedly continue to do so in the future. We review recent approaches for modeling microbial community structures and the interactions of microbial populations with their environments. Different modeling approaches consider the environmental microbial interactome from different aspects, and each provides insights to different facets of microbial ecology. We discuss the challenges and opportunities for the future of microbial modeling and describe recent advances in microbial community modeling that are extending current descriptive technologies into a predictive science. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Prediction of missing common genes for disease pairs using network based module separation on incomplete human interactome.

    PubMed

    Akram, Pakeeza; Liao, Li

    2017-12-06

    Identification of common genes associated with comorbid diseases can be critical in understanding their pathobiological mechanism. This work presents a novel method to predict missing common genes associated with a disease pair. Searching for missing common genes is formulated as an optimization problem to minimize network based module separation from two subgraphs produced by mapping genes associated with disease onto the interactome. Using cross validation on more than 600 disease pairs, our method achieves significantly higher average receiver operating characteristic ROC Score of 0.95 compared to a baseline ROC score 0.60 using randomized data. Missing common genes prediction is aimed to complete gene set associated with comorbid disease for better understanding of biological intervention. It will also be useful for gene targeted therapeutics related to comorbid diseases. This method can be further considered for prediction of missing edges to complete the subgraph associated with disease pair.

  10. The NRF2-related interactome and regulome contain multifunctional proteins and fine-tuned autoregulatory loops.

    PubMed

    Papp, Diána; Lenti, Katalin; Módos, Dezső; Fazekas, Dávid; Dúl, Zoltán; Türei, Dénes; Földvári-Nagy, László; Nussinov, Ruth; Csermely, Péter; Korcsmáros, Tamás

    2012-06-21

    NRF2 is a well-known, master transcription factor (TF) of oxidative and xenobiotic stress responses. Recent studies uncovered an even wider regulatory role of NRF2 influencing carcinogenesis, inflammation and neurodegeneration. Prompted by these advances here we present a systems-level resource for NRF2 interactome and regulome that includes 289 protein-protein, 7469 TF-DNA and 85 miRNA interactions. As systems-level examples of NRF2-related signaling we identified regulatory loops of NRF2 interacting proteins (e.g., JNK1 and CBP) and a fine-tuned regulatory system, where 35 TFs regulated by NRF2 influence 63 miRNAs that down-regulate NRF2. The presented network and the uncovered regulatory loops may facilitate the development of efficient, NRF2-based therapeutic agents. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Mapping the local protein interactome of the NuA3 histone acetyltransferase

    PubMed Central

    Smart, Sherri K; Mackintosh, Samuel G; Edmondson, Ricky D; Taverna, Sean D; Tackett, Alan J

    2009-01-01

    Protein–protein interactions modulate cellular functions ranging from the activity of enzymes to signal transduction cascades. A technology termed transient isotopic differentiation of interactions as random or targeted (transient I-DIRT) is described for the identification of stable and transient protein–protein interactions in vivo. The procedure combines mild in vivo chemical cross-linking and non-stringent affinity purification to isolate low abundance chromatin-associated protein complexes. Using isotopic labeling and mass spectrometric readout, purified proteins are categorized with respect to the protein ‘bait’ as stable, transient, or contaminant. Here we characterize the local interactome of the chromatin-associated NuA3 histone lysine-acetyltransferase protein complex. We describe transient associations with the yFACT nucleosome assembly complex, RSC chromatin remodeling complex and a nucleosome assembly protein. These novel, physical associations with yFACT, RSC, and Nap1 provide insight into the mechanism of NuA3-associated transcription and chromatin regulation. PMID:19621382

  12. A comparative study of disease genes and drug targets in the human protein interactome

    PubMed Central

    2015-01-01

    Background Disease genes cause or contribute genetically to the development of the most complex diseases. Drugs are the major approaches to treat the complex disease through interacting with their targets. Thus, drug targets are critical for treatment efficacy. However, the interrelationship between the disease genes and drug targets is not clear. Results In this study, we comprehensively compared the network properties of disease genes and drug targets for five major disease categories (cancer, cardiovascular disease, immune system disease, metabolic disease, and nervous system disease). We first collected disease genes from genome-wide association studies (GWAS) for five disease categories and collected their corresponding drugs based on drugs' Anatomical Therapeutic Chemical (ATC) classification. Then, we obtained the drug targets for these five different disease categories. We found that, though the intersections between disease genes and drug targets were small, disease genes were significantly enriched in targets compared to their enrichment in human protein-coding genes. We further compared network properties of the proteins encoded by disease genes and drug targets in human protein-protein interaction networks (interactome). The results showed that the drug targets tended to have higher degree, higher betweenness, and lower clustering coefficient in cancer Furthermore, we observed a clear fraction increase of disease proteins or drug targets in the near neighborhood compared with the randomized genes. Conclusions The study presents the first comprehensive comparison of the disease genes and drug targets in the context of interactome. The results provide some foundational network characteristics for further designing computational strategies to predict novel drug targets and drug repurposing. PMID:25861037

  13. A network biology-based approach to evaluating the effect of environmental contaminants on human interactome and diseases.

    PubMed

    Iida, M; Takemoto, K

    2018-09-30

    Environmental contaminant exposure can pose significant risks to human health. Therefore, evaluating the impact of this exposure is of great importance; however, it is often difficult because both the molecular mechanism of disease and the mode of action of the contaminants are complex. We used network biology techniques to quantitatively assess the impact of environmental contaminants on the human interactome and diseases with a particular focus on seven major contaminant categories: persistent organic pollutants (POPs), dioxins, polycyclic aromatic hydrocarbons (PAHs), pesticides, perfluorochemicals (PFCs), metals, and pharmaceutical and personal care products (PPCPs). We integrated publicly available data on toxicogenomics, the diseasome, protein-protein interactions (PPIs), and gene essentiality and found that a few contaminants were targeted to many genes, and a few genes were targeted by many contaminants. The contaminant targets were hub proteins in the human PPI network, whereas the target proteins in most categories did not contain abundant essential proteins. Generally, contaminant targets and disease-associated proteins were closely associated with the PPI network, and the closeness of the associations depended on the disease type and chemical category. Network biology techniques were used to identify environmental contaminants with broad effects on the human interactome and contaminant-sensitive biomarkers. Moreover, this method enabled us to quantify the relationship between environmental contaminants and human diseases, which was supported by epidemiological and experimental evidence. These methods and findings have facilitated the elucidation of the complex relationship between environmental exposure and adverse health outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Identification of the interactome between fish plasma proteins and Edwardsiella tarda reveals tissue-specific strategies against bacterial infection.

    PubMed

    Li, Hui; Huang, Xiaoyan; Zeng, Zaohai; Peng, Xuan-Xian; Peng, Bo

    2016-09-01

    Elucidating the complex pathogen-host interaction is essential for a comprehensive understanding of how these remarkable agents invade their hosts and how the hosts defend against these invaders. During the infection, pathogens interact intensively with host to enable their survival, which can be revealed through their interactome. Edwardsiella tarda is a Gram-negative bacterial pathogen causing huge economic loss in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. E. tarda is an ideal model for host-pathogen investigation as it infects fish in three distinct steps: entering the host, circulating through the blood and establishing infection. We adopted a previous established proteomic approach that inactivated E. tarda cells and covalent crosslink fish plasma proteins were used to capture plasma proteins and bacterial outer membrane proteins, respectively. By the combinatorial use of proteomic and biochemical approaches, six plasma proteins and seven outer membrane proteins (OMPs) were identified. Interactions among these proteins were validated with protein-array, far-Western blotting and co-immunoprecipitation. At last, seventeen plasma protein-bacteria protein-protein interaction were confirmed to be involved in the interaction network, forming a complex interactome. Compared to our previous results, different host proteins were detected, whereas some of the bacterial proteins were similar, which indicates that hosts adopt tissue-specific strategies to cope with the same pathogen during infection. Thus, our results provide a robust demonstration of both bacterial initiators and host receptors or interacting proteins to further explore infection and anti-infective mechanisms between hosts and microbes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Novel candidate genes of the PARK7 interactome as mediators of apoptosis and acetylation in multiple sclerosis: An in silico analysis.

    PubMed

    Vavougios, George D; Zarogiannis, Sotirios G; Krogfelt, Karen Angeliki; Gourgoulianis, Konstantinos; Mitsikostas, Dimos Dimitrios; Hadjigeorgiou, Georgios

    2018-01-01

    currently only 4 studies have explored the potential role of PARK7's dysregulation in MS pathophysiology Currently, no study has evaluated the potential role of the PARK7 interactome in MS. The aim of our study was to assess the differential expression of PARK7 mRNA in peripheral blood mononuclears (PBMCs) donated from MS versus healthy patients using data mining techniques. The PARK7 interactome data from the GDS3920 profile were scrutinized for differentially expressed genes (DEGs); Gene Enrichment Analysis (GEA) was used to detect significantly enriched biological functions. 27 differentially expressed genes in the MS dataset were detected; 12 of these (NDUFA4, UBA2, TDP2, NPM1, NDUFS3, SUMO1, PIAS2, KIAA0101, RBBP4, NONO, RBBP7 AND HSPA4) are reported for the first time in MS. Stepwise Linear Discriminant Function Analysis constructed a predictive model (Wilk's λ = 0.176, χ 2 = 45.204, p = 1.5275e -10 ) with 2 variables (TIDP2, RBBP4) that achieved 96.6% accuracy when discriminating between patients and controls. Gene Enrichment Analysis revealed that induction and regulation of programmed / intrinsic cell death represented the most salient Gene Ontology annotations. Cross-validation on systemic lupus erythematosus and ischemic stroke datasets revealed that these functions are unique to the MS dataset. Based on our results, novel potential target genes are revealed; these differentially expressed genes regulate epigenetic and apoptotic pathways that may further elucidate underlying mechanisms of autorreactivity in MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Systems Biology Approach to Reveal Putative Host-Derived Biomarkers of Periodontitis by Network Topology Characterization of MMP-REDOX/NO and Apoptosis Integrated Pathways.

    PubMed

    Zeidán-Chuliá, Fares; Gürsoy, Mervi; Neves de Oliveira, Ben-Hur; Özdemir, Vural; Könönen, Eija; Gürsoy, Ulvi K

    2015-01-01

    Periodontitis, a formidable global health burden, is a common chronic disease that destroys tooth-supporting tissues. Biomarkers of the early phase of this progressive disease are of utmost importance for global health. In this context, saliva represents a non-invasive biosample. By using systems biology tools, we aimed to (1) identify an integrated interactome between matrix metalloproteinase (MMP)-REDOX/nitric oxide (NO) and apoptosis upstream pathways of periodontal inflammation, and (2) characterize the attendant topological network properties to uncover putative biomarkers to be tested in saliva from patients with periodontitis. Hence, we first generated a protein-protein network model of interactions ("BIOMARK" interactome) by using the STRING 10 database, a search tool for the retrieval of interacting genes/proteins, with "Experiments" and "Databases" as input options and a confidence score of 0.400. Second, we determined the centrality values (closeness, stress, degree or connectivity, and betweenness) for the "BIOMARK" members by using the Cytoscape software. We found Ubiquitin C (UBC), Jun proto-oncogene (JUN), and matrix metalloproteinase-14 (MMP14) as the most central hub- and non-hub-bottlenecks among the 211 genes/proteins of the whole interactome. We conclude that UBC, JUN, and MMP14 are likely an optimal candidate group of host-derived biomarkers, in combination with oral pathogenic bacteria-derived proteins, for detecting periodontitis at its early phase by using salivary samples from patients. These findings therefore have broader relevance for systems medicine in global health as well.

  17. Identification of Human Disease Genes from Interactome Network Using Graphlet Interaction

    PubMed Central

    Yang, Lun; Wei, Dong-Qing; Qi, Ying-Xin; Jiang, Zong-Lai

    2014-01-01

    Identifying genes related to human diseases, such as cancer and cardiovascular disease, etc., is an important task in biomedical research because of its applications in disease diagnosis and treatment. Interactome networks, especially protein-protein interaction networks, had been used to disease genes identification based on the hypothesis that strong candidate genes tend to closely relate to each other in some kinds of measure on the network. We proposed a new measure to analyze the relationship between network nodes which was called graphlet interaction. The graphlet interaction contained 28 different isomers. The results showed that the numbers of the graphlet interaction isomers between disease genes in interactome networks were significantly larger than random picked genes, while graphlet signatures were not. Then, we designed a new type of score, based on the network properties, to identify disease genes using graphlet interaction. The genes with higher scores were more likely to be disease genes, and all candidate genes were ranked according to their scores. Then the approach was evaluated by leave-one-out cross-validation. The precision of the current approach achieved 90% at about 10% recall, which was apparently higher than the previous three predominant algorithms, random walk, Endeavour and neighborhood based method. Finally, the approach was applied to predict new disease genes related to 4 common diseases, most of which were identified by other independent experimental researches. In conclusion, we demonstrate that the graphlet interaction is an effective tool to analyze the network properties of disease genes, and the scores calculated by graphlet interaction is more precise in identifying disease genes. PMID:24465923

  18. The Orphan Disease Networks

    PubMed Central

    Zhang, Minlu; Zhu, Cheng; Jacomy, Alexis; Lu, Long J.; Jegga, Anil G.

    2011-01-01

    The low prevalence rate of orphan diseases (OD) requires special combined efforts to improve diagnosis, prevention, and discovery of novel therapeutic strategies. To identify and investigate relationships based on shared genes or shared functional features, we have conducted a bioinformatic-based global analysis of all orphan diseases with known disease-causing mutant genes. Starting with a bipartite network of known OD and OD-causing mutant genes and using the human protein interactome, we first construct and topologically analyze three networks: the orphan disease network, the orphan disease-causing mutant gene network, and the orphan disease-causing mutant gene interactome. Our results demonstrate that in contrast to the common disease-causing mutant genes that are predominantly nonessential, a majority of orphan disease-causing mutant genes are essential. In confirmation of this finding, we found that OD-causing mutant genes are topologically important in the protein interactome and are ubiquitously expressed. Additionally, functional enrichment analysis of those genes in which mutations cause ODs shows that a majority result in premature death or are lethal in the orthologous mouse gene knockout models. To address the limitations of traditional gene-based disease networks, we also construct and analyze OD networks on the basis of shared enriched features (biological processes, cellular components, pathways, phenotypes, and literature citations). Analyzing these functionally-linked OD networks, we identified several additional OD-OD relations that are both phenotypically similar and phenotypically diverse. Surprisingly, we observed that the wiring of the gene-based and other feature-based OD networks are largely different; this suggests that the relationship between ODs cannot be fully captured by the gene-based network alone. PMID:21664998

  19. Interactome analysis of longitudinal pharyngeal infection of cynomolgus macaques by group A Streptococcus.

    PubMed

    Shea, Patrick R; Virtaneva, Kimmo; Kupko, John J; Porcella, Stephen F; Barry, William T; Wright, Fred A; Kobayashi, Scott D; Carmody, Aaron; Ireland, Robin M; Sturdevant, Daniel E; Ricklefs, Stacy M; Babar, Imran; Johnson, Claire A; Graham, Morag R; Gardner, Donald J; Bailey, John R; Parnell, Michael J; Deleo, Frank R; Musser, James M

    2010-03-09

    Relatively little is understood about the dynamics of global host-pathogen transcriptome changes that occur during bacterial infection of mucosal surfaces. To test the hypothesis that group A Streptococcus (GAS) infection of the oropharynx provokes a distinct host transcriptome response, we performed genome-wide transcriptome analysis using a nonhuman primate model of experimental pharyngitis. We also identified host and pathogen biological processes and individual host and pathogen gene pairs with correlated patterns of expression, suggesting interaction. For this study, 509 host genes and seven biological pathways were differentially expressed throughout the entire 32-day infection cycle. GAS infection produced an initial widespread significant decrease in expression of many host genes, including those involved in cytokine production, vesicle formation, metabolism, and signal transduction. This repression lasted until day 4, at which time a large increase in expression of host genes was observed, including those involved in protein translation, antigen presentation, and GTP-mediated signaling. The interactome analysis identified 73 host and pathogen gene pairs with correlated expression levels. We discovered significant correlations between transcripts of GAS genes involved in hyaluronic capsule production and host endocytic vesicle formation, GAS GTPases and host fibrinolytic genes, and GAS response to interaction with neutrophils. We also identified a strong signal, suggesting interaction between host gammadelta T cells and genes in the GAS mevalonic acid synthesis pathway responsible for production of isopentenyl-pyrophosphate, a short-chain phospholipid that stimulates these T cells. Taken together, our results are unique in providing a comprehensive understanding of the host-pathogen interactome during mucosal infection by a bacterial pathogen.

  20. Network-based association of hypoxia-responsive genes with cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Sheng; Oldham, William M.; Loscalzo, Joseph

    2014-10-01

    Molecular oxygen is indispensable for cellular viability and function. Hypoxia is a stress condition in which oxygen demand exceeds supply. Low cellular oxygen content induces a number of molecular changes to activate regulatory pathways responsible for increasing the oxygen supply and optimizing cellular metabolism under limited oxygen conditions. Hypoxia plays critical roles in the pathobiology of many diseases, such as cancer, heart failure, myocardial ischemia, stroke, and chronic lung diseases. Although the complicated associations between hypoxia and cardiovascular (and cerebrovascular) diseases (CVD) have been recognized for some time, there are few studies that investigate their biological link from a systems biology perspective. In this study, we integrate hypoxia genes, CVD genes, and the human protein interactome in order to explore the relationship between hypoxia and cardiovascular diseases at a systems level. We show that hypoxia genes are much closer to CVD genes in the human protein interactome than that expected by chance. We also find that hypoxia genes play significant bridging roles in connecting different cardiovascular diseases. We construct a hypoxia-CVD bipartite network and find several interesting hypoxia-CVD modules with significant gene ontology similarity. Finally, we show that hypoxia genes tend to have more CVD interactors in the human interactome than in random networks of matching topology. Based on these observations, we can predict novel genes that may be associated with CVD. This network-based association study gives us a broad view of the relationships between hypoxia and cardiovascular diseases and provides new insights into the role of hypoxia in cardiovascular biology.

  1. A comparative study of disease genes and drug targets in the human protein interactome.

    PubMed

    Sun, Jingchun; Zhu, Kevin; Zheng, W; Xu, Hua

    2015-01-01

    Disease genes cause or contribute genetically to the development of the most complex diseases. Drugs are the major approaches to treat the complex disease through interacting with their targets. Thus, drug targets are critical for treatment efficacy. However, the interrelationship between the disease genes and drug targets is not clear. In this study, we comprehensively compared the network properties of disease genes and drug targets for five major disease categories (cancer, cardiovascular disease, immune system disease, metabolic disease, and nervous system disease). We first collected disease genes from genome-wide association studies (GWAS) for five disease categories and collected their corresponding drugs based on drugs' Anatomical Therapeutic Chemical (ATC) classification. Then, we obtained the drug targets for these five different disease categories. We found that, though the intersections between disease genes and drug targets were small, disease genes were significantly enriched in targets compared to their enrichment in human protein-coding genes. We further compared network properties of the proteins encoded by disease genes and drug targets in human protein-protein interaction networks (interactome). The results showed that the drug targets tended to have higher degree, higher betweenness, and lower clustering coefficient in cancer Furthermore, we observed a clear fraction increase of disease proteins or drug targets in the near neighborhood compared with the randomized genes. The study presents the first comprehensive comparison of the disease genes and drug targets in the context of interactome. The results provide some foundational network characteristics for further designing computational strategies to predict novel drug targets and drug repurposing.

  2. A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1.

    PubMed

    DeMille, Desiree; Bikman, Benjamin T; Mathis, Andrew D; Prince, John T; Mackay, Jordan T; Sowa, Steven W; Hall, Tacie D; Grose, Julianne H

    2014-07-15

    Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein-protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase-deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis. © 2014 DeMille et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Complement evasion by Bordetella pertussis: implications for improving current vaccines.

    PubMed

    Jongerius, Ilse; Schuijt, Tim J; Mooi, Frits R; Pinelli, Elena

    2015-04-01

    Bordetella pertussis causes whooping cough or pertussis, a highly contagious disease of the respiratory tract. Despite high vaccination coverage, reported cases of pertussis are rising worldwide and it has become clear that the current vaccines must be improved. In addition to the well-known protective role of antibodies and T cells during B. pertussis infection, innate immune responses such as the complement system play an essential role in B. pertussis killing. In order to evade this complement activation and colonize the human host, B. pertussis expresses several molecules that inhibit complement activation. Interestingly, one of the known complement evasion proteins, autotransporter Vag8, is highly expressed in the recently emerged B. pertussis isolates. Here, we describe the current knowledge on how B. pertussis evades complement-mediated killing. In addition, we compare this to complement evasion strategies used by other bacterial species. Finally, we discuss the consequences of complement evasion by B. pertussis on adaptive immunity and how identification of the bacterial molecules and the mechanisms involved in complement evasion might help improve pertussis vaccines.

  4. Linking Proteomic and Transcriptional Data through the Interactome and Epigenome Reveals a Map of Oncogene-induced Signaling

    PubMed Central

    Huang, Shao-shan Carol; Clarke, David C.; Gosline, Sara J. C.; Labadorf, Adam; Chouinard, Candace R.; Gordon, William; Lauffenburger, Douglas A.; Fraenkel, Ernest

    2013-01-01

    Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting β-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets. PMID:23408876

  5. Prediction model of potential hepatocarcinogenicity of rat hepatocarcinogens using a large-scale toxicogenomics database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehara, Takeki, E-mail: takeki.uehara@shionogi.co.jp; Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, 7-6-8 Asagi, Ibaraki, Osaka 567-0085; Minowa, Yohsuke

    2011-09-15

    The present study was performed to develop a robust gene-based prediction model for early assessment of potential hepatocarcinogenicity of chemicals in rats by using our toxicogenomics database, TG-GATEs (Genomics-Assisted Toxicity Evaluation System developed by the Toxicogenomics Project in Japan). The positive training set consisted of high- or middle-dose groups that received 6 different non-genotoxic hepatocarcinogens during a 28-day period. The negative training set consisted of high- or middle-dose groups of 54 non-carcinogens. Support vector machine combined with wrapper-type gene selection algorithms was used for modeling. Consequently, our best classifier yielded prediction accuracies for hepatocarcinogenicity of 99% sensitivity and 97% specificitymore » in the training data set, and false positive prediction was almost completely eliminated. Pathway analysis of feature genes revealed that the mitogen-activated protein kinase p38- and phosphatidylinositol-3-kinase-centered interactome and the v-myc myelocytomatosis viral oncogene homolog-centered interactome were the 2 most significant networks. The usefulness and robustness of our predictor were further confirmed in an independent validation data set obtained from the public database. Interestingly, similar positive predictions were obtained in several genotoxic hepatocarcinogens as well as non-genotoxic hepatocarcinogens. These results indicate that the expression profiles of our newly selected candidate biomarker genes might be common characteristics in the early stage of carcinogenesis for both genotoxic and non-genotoxic carcinogens in the rat liver. Our toxicogenomic model might be useful for the prospective screening of hepatocarcinogenicity of compounds and prioritization of compounds for carcinogenicity testing. - Highlights: >We developed a toxicogenomic model to predict hepatocarcinogenicity of chemicals. >The optimized model consisting of 9 probes had 99% sensitivity and 97% specificity. >This model enables us to detect genotoxic as well as non-genotoxic hepatocarcinogens.« less

  6. Systematic Determination of Human Cyclin Dependent Kinase (CDK)-9 Interactome Identifies Novel Functions in RNA Splicing Mediated by the DEAD Box (DDX)-5/17 RNA Helicases.

    PubMed

    Yang, Jun; Zhao, Yingxin; Kalita, Mridul; Li, Xueling; Jamaluddin, Mohammad; Tian, Bing; Edeh, Chukwudi B; Wiktorowicz, John E; Kudlicki, Andrzej; Brasier, Allan R

    2015-10-01

    Inducible transcriptional elongation is a rapid, stereotypic mechanism for activating immediate early immune defense genes by the epithelium in response to viral pathogens. Here, the recruitment of a multifunctional complex containing the cyclin dependent kinase 9 (CDK9) triggers the process of transcriptional elongation activating resting RNA polymerase engaged with innate immune response (IIR) genes. To identify additional functional activity of the CDK9 complex, we conducted immunoprecipitation (IP) enrichment-stable isotope labeling LC-MS/MS of the CDK9 complex in unstimulated cells and from cells activated by a synthetic dsRNA, polyinosinic/polycytidylic acid [poly (I:C)]. 245 CDK9 interacting proteins were identified with high confidence in the basal state and 20 proteins in four functional classes were validated by IP-SRM-MS. These data identified that CDK9 interacts with DDX 5/17, a family of ATP-dependent RNA helicases, important in alternative RNA splicing of NFAT5, and mH2A1 mRNA two proteins controlling redox signaling. A direct comparison of the basal versus activated state was performed using stable isotope labeling and validated by IP-SRM-MS. Recruited into the CDK9 interactome in response to poly(I:C) stimulation are HSPB1, DNA dependent kinases, and cytoskeletal myosin proteins that exchange with 60S ribosomal structural proteins. An integrated human CDK9 interactome map was developed containing all known human CDK9- interacting proteins. These data were used to develop a probabilistic global map of CDK9-dependent target genes that predicted two functional states controlling distinct cellular functions, one important in immune and stress responses. The CDK9-DDX5/17 complex was shown to be functionally important by shRNA-mediated knockdown, where differential accumulation of alternatively spliced NFAT5 and mH2A1 transcripts and alterations in downstream redox signaling were seen. The requirement of CDK9 for DDX5 recruitment to NFAT5 and mH2A1 chromatin target was further demonstrated using chromatin immunoprecipitation (ChIP). These data indicate that CDK9 is a dynamic multifunctional enzyme complex mediating not only transcriptional elongation, but also alternative RNA splicing and potentially translational control. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Identification and characterization of moonlighting long non-coding RNAs based on RNA and protein interactome.

    PubMed

    Cheng, Lixin; Leung, Kwong-Sak

    2018-05-16

    Moonlighting proteins are a class of proteins having multiple distinct functions, which play essential roles in a variety of cellular and enzymatic functioning systems. Although there have long been calls for computational algorithms for the identification of moonlighting proteins, research on approaches to identify moonlighting long non-coding RNAs (lncRNAs) has never been undertaken. Here, we introduce a novel methodology, MoonFinder, for the identification of moonlighting lncRNAs. MoonFinder is a statistical algorithm identifying moonlighting lncRNAs without a priori knowledge through the integration of protein interactome, RNA-protein interactions, and functional annotation of proteins. We identify 155 moonlighting lncRNA candidates and uncover that they are a distinct class of lncRNAs characterized by specific sequence and cellular localization features. The non-coding genes that transcript moonlighting lncRNAs tend to have shorter but more exons and the moonlighting lncRNAs have a variable localization pattern with a high chance of residing in the cytoplasmic compartment in comparison to the other lncRNAs. Moreover, moonlighting lncRNAs and moonlighting proteins are rather mutually exclusive in terms of both their direct interactions and interacting partners. Our results also shed light on how the moonlighting candidates and their interacting proteins implicated in the formation and development of cancers and other diseases. The code implementing MoonFinder is supplied as an R package in the supplementary material. lxcheng@cse.cuhk.edu.hk or ksleung@cse.cuhk.edu.hk. Supplementary data are available at Bioinformatics online.

  8. Bioinformatics Analysis Reveals Distinct Molecular Characteristics of Hepatitis B-Related Hepatocellular Carcinomas from Very Early to Advanced Barcelona Clinic Liver Cancer Stages.

    PubMed

    Kong, Fan-Yun; Wei, Xiao; Zhou, Kai; Hu, Wei; Kou, Yan-Bo; You, Hong-Juan; Liu, Xiao-Mei; Zheng, Kui-Yang; Tang, Ren-Xian

    2016-01-01

    Hepatocellular carcinoma (HCC)is the fifth most common malignancy associated with high mortality. One of the risk factors for HCC is chronic hepatitis B virus (HBV) infection. The treatment strategy for the disease is dependent on the stage of HCC, and the Barcelona clinic liver cancer (BCLC) staging system is used in most HCC cases. However, the molecular characteristics of HBV-related HCC in different BCLC stages are still unknown. Using GSE14520 microarray data from HBV-related HCC cases with BCLC stages from 0 (very early stage) to C (advanced stage) in the gene expression omnibus (GEO) database, differentially expressed genes (DEGs), including common DEGs and unique DEGs in different BCLC stages, were identified. These DEGs were located on different chromosomes. The molecular functions and biology pathways of DEGs were identified by gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the interactome networks of DEGs were constructed using the NetVenn online tool. The results revealed that both common DEGs and stage-specific DEGs were associated with various molecular functions and were involved in special biological pathways. In addition, several hub genes were found in the interactome networks of DEGs. The identified DEGs and hub genes promote our understanding of the molecular mechanisms underlying the development of HBV-related HCC through the different BCLC stages, and might be used as staging biomarkers or molecular targets for the treatment of HCC with HBV infection.

  9. What model organisms and interactomics can reveal about the genetics of human obesity.

    PubMed

    Williams, Michael J; Almén, Markus S; Fredriksson, Robert; Schiöth, Helgi B

    2012-11-01

    Genome-wide association studies have identified a number of genes associated with human body weight. While some of these genes are large fields within obesity research, such as MC4R, POMC, FTO and BDNF, the majority do not have a clearly defined functional role explaining why they may affect body weight. Here, we searched biological databases and discovered 33 additional genes associated with human obesity (CADM2, GIPR, GPCR5B, LRP1B, NEGR1, NRXN3, SH2B1, FANCL, GNPDA2, HMGCR, MAP2K5, NUDT3, PRKD1, QPCTL, TNNI3K, MTCH2, DNAJC27, SLC39A8, MTIF3, RPL27A, SEC16B, ETV5, HMGA1, TFAP2B, TUB, ZNF608, FAIM2, KCTD15, LINGO2, POC5, PTBP2, TMEM18, TMEM160). We find that the majority have orthologues in distant species, such as D. melanogaster and C. elegans, suggesting that they are important for the biology of most bilateral species. Intriguingly, signalling cascade genes and transcription factors are enriched among these obesity genes, and several of the genes show properties that could be useful for potential drug discovery. In this review, we demonstrate how information from several distant model species, interactomics and signalling pathway analysis represents an important way to better understand the functional diversity of the surprisingly high number of molecules that seem to be important for human obesity.

  10. Overview of the Miniature Sensor Technology Integration (MSTI) spacecraft attitude control system

    NASA Technical Reports Server (NTRS)

    Mcewen, Rob

    1994-01-01

    Msti2 is a small, 164 kg (362 lb), 3-axis stabilized, low-Earth-orbiting satellite whose mission is missile booster tracking. The spacecraft is actuated by 3 reaction wheels and 12 hot gas thrusters. It carries enough fuel for a projected life of 6 months. The sensor complement consists of a Horizon Sensor, a Sun Sensor, low-rate gyros, and a high rate gyro for despin. The total pointing control error allocation is 6 mRad (.34 Deg), and this is while tracking a target on the Earth's surface. This paper describes the Attitude Control System (ACS) algorithms which include the following: attitude acquisition (despin, Sun and Earth acquisition), attitude determination, attitude control, and linear stability analysis.

  11. The foundations of plant intelligence.

    PubMed

    Trewavas, Anthony

    2017-06-06

    Intelligence is defined for wild plants and its role in fitness identified. Intelligent behaviour exhibited by single cells and systems similarity between the interactome and connectome indicates neural systems are not necessary for intelligent capabilities. Plants sense and respond to many environmental signals that are assessed to competitively optimize acquisition of patchily distributed resources. Situations of choice engender motivational states in goal-directed plant behaviour; consequent intelligent decisions enable efficient gain of energy over expenditure. Comparison of swarm intelligence and plant behaviour indicates the origins of plant intelligence lie in complex communication and is exemplified by cambial control of branch function. Error correction in behaviours indicates both awareness and intention as does the ability to count to five. Volatile organic compounds are used as signals in numerous plant interactions. Being complex in composition and often species and individual specific, they may represent the plant language and account for self and alien recognition between individual plants. Game theory has been used to understand competitive and cooperative interactions between plants and microbes. Some unexpected cooperative behaviour between individuals and potential aliens has emerged. Behaviour profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses.

  12. The foundations of plant intelligence

    PubMed Central

    2017-01-01

    Intelligence is defined for wild plants and its role in fitness identified. Intelligent behaviour exhibited by single cells and systems similarity between the interactome and connectome indicates neural systems are not necessary for intelligent capabilities. Plants sense and respond to many environmental signals that are assessed to competitively optimize acquisition of patchily distributed resources. Situations of choice engender motivational states in goal-directed plant behaviour; consequent intelligent decisions enable efficient gain of energy over expenditure. Comparison of swarm intelligence and plant behaviour indicates the origins of plant intelligence lie in complex communication and is exemplified by cambial control of branch function. Error correction in behaviours indicates both awareness and intention as does the ability to count to five. Volatile organic compounds are used as signals in numerous plant interactions. Being complex in composition and often species and individual specific, they may represent the plant language and account for self and alien recognition between individual plants. Game theory has been used to understand competitive and cooperative interactions between plants and microbes. Some unexpected cooperative behaviour between individuals and potential aliens has emerged. Behaviour profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses. PMID:28479977

  13. Host cell interactome of PA protein of H5N1 influenza A virus in chicken cells.

    PubMed

    Wang, Qiao; Li, Qinghe; Liu, Ranran; Zheng, Maiqing; Wen, Jie; Zhao, Guiping

    2016-03-16

    Influenza A virus (IAV) heavily depends on viral-host protein interactions in order to replicate and spread. Identification of host factors that interact with viral proteins plays crucial roles in understanding the mechanism of IAV infection. Here we report the interaction landscape of H5N1 IAV PA protein in chicken cells through the use of affinity purification and mass spectrometry. PA protein was expressed in chicken cells and PA interacting complexes were captured by co-immunoprecipitation and analyzed by mass spectrometry. A total of 134 proteins were identified as PA-host interacting factors. Protein complexes including the minichromosome maintenance complex (MCM), 26S proteasome and the coat protein I (COPI) complex associated with PA in chicken cells, indicating the essential roles of these functional protein complexes during the course of IAV infection. Gene Ontology and pathway enrichment analysis both showed strong enrichment of PA interacting proteins in the category of DNA replication, covering genes such as PCNA, MCM2, MCM3, MCM4, MCM5 and MCM7. This study has uncovered the comprehensive interactome of H5N1 IAV PA protein in its chicken host and helps to establish the foundation for further investigation into the newly identified viral-host interactions. Influenza A virus (IAV) is a great threat to public health and avian production. However, the manner in which avian IAV recruits the host cellular machinery for replication and how the host antagonizes the IAV infection was previously poorly understood. Here we present the viral-host interactome of the H5N1 IAV PA protein and reveal the comprehensive association of host factors with PA. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Characterization of the Human NEK7 Interactome Suggests Catalytic and Regulatory Properties Distinct from Those of NEK6

    PubMed Central

    2015-01-01

    Human NEK7 is a regulator of cell division and plays an important role in growth and survival of mammalian cells. Human NEK6 and NEK7 are closely related, consisting of a conserved C-terminal catalytic domain and a nonconserved and disordered N-terminal regulatory domain, crucial to mediate the interactions with their respective proteins. Here, in order to better understand NEK7 cellular functions, we characterize the NEK7 interactome by two screening approaches: one using a yeast two-hybrid system and the other based on immunoprecipitation followed by mass spectrometry analysis. These approaches led to the identification of 61 NEK7 interactors that contribute to a variety of biological processes, including cell division. Combining additional interaction and phosphorylation assays from yeast two-hybrid screens, we validated CC2D1A, TUBB2B, MNAT1, and NEK9 proteins as potential NEK7 interactors and substrates. Notably, endogenous RGS2, TUBB, MNAT1, NEK9, and PLEKHA8 localized with NEK7 at key sites throughout the cell cycle, especially during mitosis and cytokinesis. Furthermore, we obtained evidence that the closely related kinases NEK6 and NEK7 do not share common interactors, with the exception of NEK9, and display different modes of protein interaction, depending on their N- and C-terminal regions, in distinct fashions. In summary, our work shows for the first time a comprehensive NEK7 interactome that, combined with functional in vitro and in vivo assays, suggests that NEK7 is a multifunctional kinase acting in different cellular processes in concert with cell division signaling and independently of NEK6. PMID:25093993

  15. Altered Protein Interactions of the Endogenous Interactome of PTPIP51 towards MAPK Signaling

    PubMed Central

    Brobeil, Alexander; Chehab, Rajaa; Dietel, Eric; Gattenlöhner, Stefan; Wimmer, Monika

    2017-01-01

    Protein–protein interactions play a pivotal role in normal cellular functions as well as in carcinogenesis. The protein–protein interactions form functional clusters during signal transduction. To elucidate the fine calibration of the protein–protein interactions of protein tyrosine phosphatase interacting protein 51 (PTPIP51) a small molecule drug, namely LDC-3, directly targeting PTPIP51 is now available. Therefore, LDC-3 allows for the studying of the regulation of the endogenous interactome by modulating PTPIP51 binding capacity. Small interfering ribonucleic acid (siRNA) experiments show that the modification in PTPIP51 binding capacity is induced by LDC-3. Application of LDC-3 annuls the known regulatory phosphorylation mechanisms for PTPIP51 and consequently, significantly alters the assembly of the PTPIP51 associated protein complexes. The treatment of human keratinocytes (HaCaT cells) with LDC-3 induces an altered protein–protein interaction profile of the endogenous interactome of PTPIP51. In addition, LDC-3 stabilizes PTPIP51 within a mitogen activated protein kinase (MAPK) complex composed of Raf-1 and the scaffold protein 14-3-3, independent of the phosphorylation status of PTPIP51. Of note, under LDC-3 treatment the regulatory function of the PTP1B on PTPIP51 fails to impact the PTPIP51 interaction characteristics, as reported for the HaCaT cell line. In summary, LDC-3 gives the unique opportunity to directly modulate PTPIP51 in malignant cells, thus targeting potential dysregulated signal transduction pathways such as the MAPK cascade. The provided data give critical insights in the therapeutic potential of PTPIP51 protein interactions and thus are basic for possible targeted therapy regimens. PMID:28754031

  16. Minimum constitutive relation error based static identification of beams using force method

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Takewaki, Izuru

    2017-05-01

    A new static identification approach based on the minimum constitutive relation error (CRE) principle for beam structures is introduced. The exact stiffness and the exact bending moment are shown to make the CRE minimal for given displacements to beam damages. A two-step substitution algorithm—a force-method step for the bending moment and a constitutive-relation step for the stiffness—is developed and its convergence is rigorously derived. Identifiability is further discussed and the stiffness in the undeformed region is found to be unidentifiable. An extra set of static measurements is complemented to remedy the drawback. Convergence and robustness are finally verified through numerical examples.

  17. Synopsis of timing measurement techniques used in telecommunications

    NASA Technical Reports Server (NTRS)

    Zampetti, George

    1993-01-01

    Historically, Maximum Time Interval Error (MTIE) and Maximum Relative Time Interval Error (MRTIE) have been the main measurement techniques used to characterize timing performance in telecommunications networks. Recently, a new measurement technique, Time Variance (TVAR) has gained acceptance in the North American (ANSI) standards body. TVAR was developed in concurrence with NIST to address certain inadequacies in the MTIE approach. The advantages and disadvantages of each of these approaches are described. Real measurement examples are presented to illustrate the critical issues in actual telecommunication applications. Finally, a new MTIE measurement is proposed (ZTIE) that complements TVAR. Together, TVAR and ZTIE provide a very good characterization of network timing.

  18. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations.

    PubMed

    Barradas-Bautista, Didier; Fernández-Recio, Juan

    2017-01-01

    Next-generation sequencing (NGS) technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level.

  19. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations

    PubMed Central

    2017-01-01

    Next-generation sequencing (NGS) technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level. PMID:28841721

  20. Challenges in structural approaches to cell modeling

    PubMed Central

    Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A.

    2016-01-01

    Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. PMID:27255863

  1. Characterization of clinical signs in the human interactome.

    PubMed

    Chagoyen, Monica; Pazos, Florencio

    2016-06-15

    Many diseases are related by shared associated molecules and pathways, exhibiting comorbidities and common phenotypes, an indication of the continuous nature of the human pathological landscape. Although it is continuous, this landscape is always partitioned into discrete diseases when studied at the molecular level. Clinical signs are also important phenotypic descriptors that can reveal the molecular mechanisms that underlie pathological states, but have seldom been the subject of systemic research. Here, we quantify the modular nature of the clinical signs associated with genetic diseases in the human interactome. We found that clinical signs are reflected as modules at the molecular network level, to at least to the same extent as diseases. They can thus serve as a valid complementary partition of the human pathological landscape, with implications for etiology research, diagnosis and treatment. monica.chagoyen@cnb.csic.es Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.

    PubMed

    Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W

    2016-10-20

    RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Deconstruction of the beaten Path-Sidestep interaction network provides insights into neuromuscular system development

    PubMed Central

    Li, Hanqing; Watson, Ash; Olechwier, Agnieszka; Anaya, Michael; Sorooshyari, Siamak K; Harnett, Dermott P; Lee, Hyung-Kook (Peter); Vielmetter, Jost; Fares, Mario A; Garcia, K Christopher; Özkan, Engin

    2017-01-01

    An ‘interactome’ screen of all Drosophila cell-surface and secreted proteins containing immunoglobulin superfamily (IgSF) domains discovered a network formed by paralogs of Beaten Path (Beat) and Sidestep (Side), a ligand-receptor pair that is central to motor axon guidance. Here we describe a new method for interactome screening, the Bio-Plex Interactome Assay (BPIA), which allows identification of many interactions in a single sample. Using the BPIA, we ‘deorphanized’ four more members of the Beat-Side network. We confirmed interactions using surface plasmon resonance. The expression patterns of beat and side genes suggest that Beats are neuronal receptors for Sides expressed on peripheral tissues. side-VI is expressed in muscle fibers targeted by the ISNb nerve, as well as at growth cone choice points and synaptic targets for the ISN and TN nerves. beat-V genes, encoding Side-VI receptors, are expressed in ISNb and ISN motor neurons. PMID:28829740

  4. The cardiac TBX5 interactome reveals a chromatin remodeling network essential for cardiac septation

    PubMed Central

    Waldron, Lauren; Steimle, Jeffrey D.; Greco, Todd M.; Gomez, Nicholas C.; Dorr, Kerry M.; Kweon, Junghun; Temple, Brenda; Yang, Xinan Holly; Wilczewski, Caralynn M.; Davis, Ian J.; Cristea, Ileana M.; Moskowitz, Ivan P.; Conlon, Frank L.

    2016-01-01

    SUMMARY Human mutations in the cardiac transcription factor gene TBX5 cause Congenital Heart Disease (CHD), however the underlying mechanism is unknown. We report characterization of the endogenous TBX5 cardiac interactome and demonstrate that TBX5, long considered a transcriptional activator, interacts biochemically and genetically with the Nucleosome Remodeling and Deacetylase (NuRD) repressor complex. Incompatible gene programs are repressed by TBX5 in the developing heart. CHD missense mutations that disrupt the TBX5-NuRD interaction cause depression of a subset of repressed genes. Furthermore, the TBX5-NuRD interaction is required for heart development. Phylogenetic analysis showed that the TBX5-NuRD interaction domain evolved during early diversification of vertebrates, simultaneous with the evolution of cardiac septation. Collectively, this work defines a TBX5-NuRD interaction essential to cardiac development and the evolution of the mammalian heart, and when altered may contribute to human CHD. PMID:26859351

  5. Protein-mRNA interactome capture: cartography of the mRNP landscape

    PubMed Central

    Ryder, Sean P.

    2016-01-01

    RNA-binding proteins play a variety of roles in cellular physiology. Some regulate mRNA processing, mRNA abundance, and translation efficiency. Some fight off invader RNA through small RNA-driven silencing pathways. Others sense foreign sequences in the form of double-stranded RNA and activate the innate immune response. Yet others, for example cytoplasmic aconitase, act as bi-functional proteins, processing metabolites in one conformation and regulating metabolic gene expression in another. Not all are involved in gene regulation. Some play structural roles, for example, connecting the translational machinery to the endoplasmic reticulum outer membrane. Despite their pervasive role and relative importance, it has remained difficult to identify new RNA-binding proteins in a systematic, unbiased way. A recent body of literature from several independent labs has defined robust, easily adaptable protocols for mRNA interactome discovery. In this review, I summarize the methods and review some of the intriguing findings from their application to a wide variety of biological systems. PMID:29098073

  6. Visualisation and graph-theoretic analysis of a large-scale protein structural interactome

    PubMed Central

    Bolser, Dan; Dafas, Panos; Harrington, Richard; Park, Jong; Schroeder, Michael

    2003-01-01

    Background Large-scale protein interaction maps provide a new, global perspective with which to analyse protein function. PSIMAP, the Protein Structural Interactome Map, is a database of all the structurally observed interactions between superfamilies of protein domains with known three-dimensional structure in the PDB. PSIMAP incorporates both functional and evolutionary information into a single network. Results We present a global analysis of PSIMAP using several distinct network measures relating to centrality, interactivity, fault-tolerance, and taxonomic diversity. We found the following results: Centrality: we show that the center and barycenter of PSIMAP do not coincide, and that the superfamilies forming the barycenter relate to very general functions, while those constituting the center relate to enzymatic activity. Interactivity: we identify the P-loop and immunoglobulin superfamilies as the most highly interactive. We successfully use connectivity and cluster index, which characterise the connectivity of a superfamily's neighbourhood, to discover superfamilies of complex I and II. This is particularly significant as the structure of complex I is not yet solved. Taxonomic diversity: we found that highly interactive superfamilies are in general taxonomically very diverse and are thus amongst the oldest. Fault-tolerance: we found that the network is very robust as for the majority of superfamilies removal from the network will not break up the network. Conclusions Overall, we can single out the P-loop containing nucleotide triphosphate hydrolases superfamily as it is the most highly connected and has the highest taxonomic diversity. In addition, this superfamily has the highest interaction rank, is the barycenter of the network (it has the shortest average path to every other superfamily in the network), and is an articulation vertex, whose removal will disconnect the network. More generally, we conclude that the graph-theoretic and taxonomic analysis of PSIMAP is an important step towards the understanding of protein function and could be an important tool for tracing the evolution of life at the molecular level. PMID:14531933

  7. Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multibody docking server.

    PubMed

    Karaca, Ezgi; Melquiond, Adrien S J; de Vries, Sjoerd J; Kastritis, Panagiotis L; Bonvin, Alexandre M J J

    2010-08-01

    Over the last years, large scale proteomics studies have generated a wealth of information of biomolecular complexes. Adding the structural dimension to the resulting interactomes represents a major challenge that classical structural experimental methods alone will have difficulties to confront. To meet this challenge, complementary modeling techniques such as docking are thus needed. Among the current docking methods, HADDOCK (High Ambiguity-Driven DOCKing) distinguishes itself from others by the use of experimental and/or bioinformatics data to drive the modeling process and has shown a strong performance in the critical assessment of prediction of interactions (CAPRI), a blind experiment for the prediction of interactions. Although most docking programs are limited to binary complexes, HADDOCK can deal with multiple molecules (up to six), a capability that will be required to build large macromolecular assemblies. We present here a novel web interface of HADDOCK that allows the user to dock up to six biomolecules simultaneously. This interface allows the inclusion of a large variety of both experimental and/or bioinformatics data and supports several types of cyclic and dihedral symmetries in the docking of multibody assemblies. The server was tested on a benchmark of six cases, containing five symmetric homo-oligomeric protein complexes and one symmetric protein-DNA complex. Our results reveal that, in the presence of either bioinformatics and/or experimental data, HADDOCK shows an excellent performance: in all cases, HADDOCK was able to generate good to high quality solutions and ranked them at the top, demonstrating its ability to model symmetric multicomponent assemblies. Docking methods can thus play an important role in adding the structural dimension to interactomes. However, although the current docking methodologies were successful for a vast range of cases, considering the variety and complexity of macromolecular assemblies, inclusion of some kind of experimental information (e.g. from mass spectrometry, nuclear magnetic resonance, cryoelectron microscopy, etc.) will remain highly desirable to obtain reliable results.

  8. Rapid and accurate pyrosequencing of angiosperm plastid genomes

    PubMed Central

    Moore, Michael J; Dhingra, Amit; Soltis, Pamela S; Shaw, Regina; Farmerie, William G; Folta, Kevin M; Soltis, Douglas E

    2006-01-01

    Background Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20) System (454 Life Sciences Corporation), to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae) and Platanus occidentalis (Platanaceae). Results More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. Conclusion Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy observed in the GS 20 plastid genome sequence was generated for a significant reduction in time and cost over traditional shotgun-based genome sequencing techniques, although with approximately half the coverage of previously reported GS 20 de novo genome sequence. The GS 20 should be broadly applicable to angiosperm plastid genome sequencing, and therefore promises to expand the scale of plant genetic and phylogenetic research dramatically. PMID:16934154

  9. Intentionally flawed manuscripts as means for teaching students to critically evaluate scientific papers.

    PubMed

    Ferenc, Jaroslav; Červenák, Filip; Birčák, Erik; Juríková, Katarína; Goffová, Ivana; Gorilák, Peter; Huraiová, Barbora; Plavá, Jana; Demecsová, Loriana; Ďuríková, Nikola; Galisová, Veronika; Gazdarica, Matej; Puškár, Marek; Nagy, Tibor; Nagyová, Soňa; Mentelová, Lucia; Slaninová, Miroslava; Ševčovicová, Andrea; Tomáška, Ľubomír

    2018-01-01

    As future scientists, university students need to learn how to avoid making errors in their own manuscripts, as well as how to identify flaws in papers published by their peers. Here we describe a novel approach on how to promote students' ability to critically evaluate scientific articles. The exercise is based on instructing teams of students to write intentionally flawed manuscripts describing the results of simple experiments. The teams are supervised by instructors advising the students during manuscript writing, choosing the 'appropriate' errors, monitoring the identification of errors made by the other team and evaluating the strength of their arguments in support of the identified errors. We have compared the effectiveness of the method with a journal club-type seminar. Based on the results of our assessment we propose that the described seminar may effectively complement the existing approaches to teach critical scientific thinking. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):22-30, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  10. Application of Rapid Visco Analyser (RVA) viscograms and chemometrics for maize hardness characterisation.

    PubMed

    Guelpa, Anina; Bevilacqua, Marta; Marini, Federico; O'Kennedy, Kim; Geladi, Paul; Manley, Marena

    2015-04-15

    It has been established in this study that the Rapid Visco Analyser (RVA) can describe maize hardness, irrespective of the RVA profile, when used in association with appropriate multivariate data analysis techniques. Therefore, the RVA can complement or replace current and/or conventional methods as a hardness descriptor. Hardness modelling based on RVA viscograms was carried out using seven conventional hardness methods (hectoliter mass (HLM), hundred kernel mass (HKM), particle size index (PSI), percentage vitreous endosperm (%VE), protein content, percentage chop (%chop) and near infrared (NIR) spectroscopy) as references and three different RVA profiles (hard, soft and standard) as predictors. An approach using locally weighted partial least squares (LW-PLS) was followed to build the regression models. The resulted prediction errors (root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP)) for the quantification of hardness values were always lower or in the same order of the laboratory error of the reference method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Net Venn - An integrated network analysis web platform for gene lists

    USDA-ARS?s Scientific Manuscript database

    Many lists containing biological identifiers such as gene lists have been generated in various genomics projects. Identifying the overlap among gene lists can enable us to understand the similarities and differences between the datasets. Here, we present an interactome network-based web application...

  12. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion.

    PubMed

    Hovingh, Elise S; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.

  13. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion

    PubMed Central

    Hovingh, Elise S.; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed. PMID:28066340

  14. Inferring Mechanisms of Compensation from E-MAP and SGA Data Using Local Search Algorithms for Max Cut

    NASA Astrophysics Data System (ADS)

    Leiserson, Mark D. M.; Tatar, Diana; Cowen, Lenore J.; Hescott, Benjamin J.

    A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome.

  15. Inferring mechanisms of compensation from E-MAP and SGA data using local search algorithms for max cut.

    PubMed

    Leiserson, Mark D M; Tatar, Diana; Cowen, Lenore J; Hescott, Benjamin J

    2011-11-01

    A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods, which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome.

  16. Emory University: "LC-MS analysis of PRAS40 protein-protein interactions" | Office of Cancer Genomics

    Cancer.gov

    This study focuses on subcellular localization and interactome of nuclear PRAS40 in HeLa cells.  Read the abstract.  Experimental Approaches Read the detailed Experimental Approaches. If you cannot access the manuscript, or if you have additional questions, please email Andrei Ivanov.

  17. Force-controlled automatic microassembly of tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Zhao, Guoyong; Teo, Chee Leong; Hutmacher, Dietmar Werner; Burdet, Etienne

    2010-03-01

    This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.

  18. Exploring the cellular basis of human disease through a large-scale mapping of deleterious genes to cell types.

    PubMed

    Cornish, Alex J; Filippis, Ioannis; David, Alessia; Sternberg, Michael J E

    2015-09-01

    Each cell type found within the human body performs a diverse and unique set of functions, the disruption of which can lead to disease. However, there currently exists no systematic mapping between cell types and the diseases they can cause. In this study, we integrate protein-protein interaction data with high-quality cell-type-specific gene expression data from the FANTOM5 project to build the largest collection of cell-type-specific interactomes created to date. We develop a novel method, called gene set compactness (GSC), that contrasts the relative positions of disease-associated genes across 73 cell-type-specific interactomes to map genes associated with 196 diseases to the cell types they affect. We conduct text-mining of the PubMed database to produce an independent resource of disease-associated cell types, which we use to validate our method. The GSC method successfully identifies known disease-cell-type associations, as well as highlighting associations that warrant further study. This includes mast cells and multiple sclerosis, a cell population currently being targeted in a multiple sclerosis phase 2 clinical trial. Furthermore, we build a cell-type-based diseasome using the cell types identified as manifesting each disease, offering insight into diseases linked through etiology. The data set produced in this study represents the first large-scale mapping of diseases to the cell types in which they are manifested and will therefore be useful in the study of disease systems. Overall, we demonstrate that our approach links disease-associated genes to the phenotypes they produce, a key goal within systems medicine.

  19. TPT1 (tumor protein, translationally-controlled 1) negatively regulates autophagy through the BECN1 interactome and an MTORC1-mediated pathway.

    PubMed

    Bae, Seong-Yeon; Byun, Sanguine; Bae, Soo Han; Min, Do Sik; Woo, Hyun Ae; Lee, Kyunglim

    2017-05-04

    TPT1/TCTP (tumor protein, translationally-controlled 1) is highly expressed in tumor cells, known to participate in various cellular activities including protein synthesis, growth and cell survival. In addition, TPT1 was identified as a direct target of the tumor suppressor TP53/p53 although little is known about the mechanism underlying the anti-survival function of TPT1. Here, we describe a role of TPT1 in the regulation of the MTORC1 pathway through modulating the molecular machinery of macroautophagy/autophagy. TPT1 inhibition induced cellular autophagy via the MTORC1 and AMPK pathways, which are inhibited and activated, respectively, during treatment with the MTOR inhibitor rapamycin. We also found that the depletion of TPT1 potentiated rapamycin-induced autophagy by synergizing with MTORC1 inhibition. We further demonstrated that TPT1 knockdown altered the BECN1 interactome, a representative MTOR-independent pathway, to stimulate autophagosome formation, via downregulating BCL2 expression through activating MAPK8/JNK1, and thereby enhancing BECN1-phosphatidylinositol 3-kinase (PtdIns3K)-UVRAG complex formation. Furthermore, reduced TPT1 promoted autophagic flux by modulating not only early steps of autophagy but also autophagosome maturation. Consistent with in vitro findings, in vivo organ analysis using Tpt1 heterozygote knockout mice showed that autophagy is enhanced because of haploinsufficient TPT1 expression. Overall, our study demonstrated the novel role of TPT1 as a negative regulator of autophagy that may have potential use in manipulating various diseases associated with autophagic dysfunction.

  20. Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.

    PubMed

    Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J

    2009-01-01

    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair.

  1. Fault Tolerance in Protein Interaction Networks: Stable Bipartite Subgraphs and Redundant Pathways

    PubMed Central

    Brady, Arthur; Maxwell, Kyle; Daniels, Noah; Cowen, Lenore J.

    2009-01-01

    As increasing amounts of high-throughput data for the yeast interactome become available, more system-wide properties are uncovered. One interesting question concerns the fault tolerance of protein interaction networks: whether there exist alternative pathways that can perform some required function if a gene essential to the main mechanism is defective, absent or suppressed. A signature pattern for redundant pathways is the BPM (between-pathway model) motif, introduced by Kelley and Ideker. Past methods proposed to search the yeast interactome for BPM motifs have had several important limitations. First, they have been driven heuristically by local greedy searches, which can lead to the inclusion of extra genes that may not belong in the motif; second, they have been validated solely by functional coherence of the putative pathways using GO enrichment, making it difficult to evaluate putative BPMs in the absence of already known biological annotation. We introduce stable bipartite subgraphs, and show they form a clean and efficient way of generating meaningful BPMs which naturally discard extra genes included by local greedy methods. We show by GO enrichment measures that our BPM set outperforms previous work, covering more known complexes and functional pathways. Perhaps most importantly, since our BPMs are initially generated by examining the genetic-interaction network only, the location of edges in the protein-protein physical interaction network can then be used to statistically validate each candidate BPM, even with sparse GO annotation (or none at all). We uncover some interesting biological examples of previously unknown putative redundant pathways in such areas as vesicle-mediated transport and DNA repair. PMID:19399174

  2. Transformation of serum-susceptible Escherichia coli O111 with p16Slux plasmid to allow for real-time monitoring of complement-based inactivation of bacterial growth in bovine milk.

    PubMed

    Maye, S; Stanton, C; Fitzgerald, G F; Kelly, P M

    2016-01-01

    Complement activity has only recently been characterized in raw bovine milk. However, the activity of this component of the innate immune system was found to diminish as milk was subjected to heat or partitioning during cream separation. Detection of complement in milk relies on a bactericidal assay. This assay exploits the specific growth susceptibility of Escherichia coli O111 to the presence of complement. Practical application of the assay was demonstrated when a reduction in complement activity was recorded in the case of pasteurized and reduced-fat milks. This presented an opportunity to improve the functionality of the bactericidal assay by incorporating bioluminescence capability into the target organism. Following some adaptation, the strain was transformed by correctly integrating the p16Slux plasmid. Growth properties of the transformed strain of E. coli O111 were unaffected by the modification. The efficacy of the strain adaptation was correlated using the LINEST function analysis [r=0.966; standard error of prediction (SEy)=0.957] bioluminescence with that of bactericidal assay total plate counts within the range of 7.5 to 9.2 log cfu/mL using a combination of raw and processed milk samples. Importantly, the transformed E. coli O111 p16Slux strain could be identified in milk and broth samples using bioluminescence measurement, thus enabling the bactericidal assay-viability test to be monitored in real time throughout incubation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. A network medicine approach to quantify distance between hereditary disease modules on the interactome

    NASA Astrophysics Data System (ADS)

    Caniza, Horacio; Romero, Alfonso E.; Paccanaro, Alberto

    2015-12-01

    We introduce a MeSH-based method that accurately quantifies similarity between heritable diseases at molecular level. This method effectively brings together the existing information about diseases that is scattered across the vast corpus of biomedical literature. We prove that sets of MeSH terms provide a highly descriptive representation of heritable disease and that the structure of MeSH provides a natural way of combining individual MeSH vocabularies. We show that our measure can be used effectively in the prediction of candidate disease genes. We developed a web application to query more than 28.5 million relationships between 7,574 hereditary diseases (96% of OMIM) based on our similarity measure.

  4. MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for heterogeneous supercomputers.

    PubMed

    Ohue, Masahito; Shimoda, Takehiro; Suzuki, Shuji; Matsuzaki, Yuri; Ishida, Takashi; Akiyama, Yutaka

    2014-11-15

    The application of protein-protein docking in large-scale interactome analysis is a major challenge in structural bioinformatics and requires huge computing resources. In this work, we present MEGADOCK 4.0, an FFT-based docking software that makes extensive use of recent heterogeneous supercomputers and shows powerful, scalable performance of >97% strong scaling. MEGADOCK 4.0 is written in C++ with OpenMPI and NVIDIA CUDA 5.0 (or later) and is freely available to all academic and non-profit users at: http://www.bi.cs.titech.ac.jp/megadock. akiyama@cs.titech.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  5. Seeding for pervasively overlapping communities

    NASA Astrophysics Data System (ADS)

    Lee, Conrad; Reid, Fergal; McDaid, Aaron; Hurley, Neil

    2011-06-01

    In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms specifically designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes more important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.

  6. Big data mining powers fungal research: recent advances in fission yeast systems biology approaches.

    PubMed

    Wang, Zhe

    2017-06-01

    Biology research has entered into big data era. Systems biology approaches therefore become the powerful tools to obtain the whole landscape of how cell separate, grow, and resist the stresses. Fission yeast Schizosaccharomyces pombe is wonderful unicellular eukaryote model, especially studying its division and metabolism can facilitate to understanding the molecular mechanism of cancer and discovering anticancer agents. In this perspective, we discuss the recent advanced fission yeast systems biology tools, mainly focus on metabolomics profiling and metabolic modeling, protein-protein interactome and genetic interaction network, DNA sequencing and applications, and high-throughput phenotypic screening. We therefore hope this review can be useful for interested fungal researchers as well as bioformaticians.

  7. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities.

    PubMed

    Lapek, John D; Greninger, Patricia; Morris, Robert; Amzallag, Arnaud; Pruteanu-Malinici, Iulian; Benes, Cyril H; Haas, Wilhelm

    2017-10-01

    The formation of protein complexes and the co-regulation of the cellular concentrations of proteins are essential mechanisms for cellular signaling and for maintaining homeostasis. Here we use isobaric-labeling multiplexed proteomics to analyze protein co-regulation and show that this allows the identification of protein-protein associations with high accuracy. We apply this 'interactome mapping by high-throughput quantitative proteome analysis' (IMAHP) method to a panel of 41 breast cancer cell lines and show that deviations of the observed protein co-regulations in specific cell lines from the consensus network affects cellular fitness. Furthermore, these aberrant interactions serve as biomarkers that predict the drug sensitivity of cell lines in screens across 195 drugs. We expect that IMAHP can be broadly used to gain insight into how changing landscapes of protein-protein associations affect the phenotype of biological systems.

  8. Emory University: "LC-MS analysis of PRAS40 protein-protein interactions" | Office of Cancer Genomics

    Cancer.gov

    This study focuses on subcellular localization and interactome of nuclear PRAS40 in HeLa cells.  Read the abstract.  Experimental Approaches Read the detailed Experimental Approaches. If you cannot access the manuscript, or if you have additional questions, please email Andrei Ivanov. Data

  9. Use of The Yeast Two-Hybrid System to Identify Targets of Fungal Effectors

    USDA-ARS?s Scientific Manuscript database

    The yeast-two hybrid (Y2H) system is a binary method widely used to determine direct interactions between paired proteins. Although having certain limitations, this method has become one of the two main systemic tools (along with affinity purification/mass spectrometry) for interactome mapping in mo...

  10. The interactomic analysis reveals pathogenic protein networks in Phomopsis longicolla underlying seed decay of soybean

    USDA-ARS?s Scientific Manuscript database

    Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. This disease causes poor seed quality and is one of the most economically important diseases in soybean. The objectives of this study were to perform ...

  11. Competing endogenous RNA and interactome bioinformatic analyses on human telomerase.

    PubMed

    Arancio, Walter; Pizzolanti, Giuseppe; Genovese, Swonild Ilenia; Baiamonte, Concetta; Giordano, Carla

    2014-04-01

    We present a classic interactome bioinformatic analysis and a study on competing endogenous (ce) RNAs for hTERT. The hTERT gene codes for the catalytic subunit and limiting component of the human telomerase complex. Human telomerase reverse transcriptase (hTERT) is essential for the integrity of telomeres. Telomere dysfunctions have been widely reported to be involved in aging, cancer, and cellular senescence. The hTERT gene network has been analyzed using the BioGRID interaction database (http://thebiogrid.org/) and related analysis tools such as Osprey (http://biodata.mshri.on.ca/osprey/servlet/Index) and GeneMANIA (http://genemania.org/). The network of interaction of hTERT transcripts has been further analyzed following the competing endogenous (ce) RNA hypotheses (messenger [m] RNAs cross-talk via micro [mi] RNAs) using the miRWalk database and tools (www.ma.uni-heidelberg.de/apps/zmf/mirwalk/). These analyses suggest a role for Akt, nuclear factor-κB (NF-κB), heat shock protein 90 (HSP90), p70/p80 autoantigen, 14-3-3 proteins, and dynein in telomere functions. Roles for histone acetylation/deacetylation and proteoglycan metabolism are also proposed.

  12. Distinctive Behaviors of Druggable Proteins in Cellular Networks

    PubMed Central

    Workman, Paul; Al-Lazikani, Bissan

    2015-01-01

    The interaction environment of a protein in a cellular network is important in defining the role that the protein plays in the system as a whole, and thus its potential suitability as a drug target. Despite the importance of the network environment, it is neglected during target selection for drug discovery. Here, we present the first systematic, comprehensive computational analysis of topological, community and graphical network parameters of the human interactome and identify discriminatory network patterns that strongly distinguish drug targets from the interactome as a whole. Importantly, we identify striking differences in the network behavior of targets of cancer drugs versus targets from other therapeutic areas and explore how they may relate to successful drug combinations to overcome acquired resistance to cancer drugs. We develop, computationally validate and provide the first public domain predictive algorithm for identifying druggable neighborhoods based on network parameters. We also make available full predictions for 13,345 proteins to aid target selection for drug discovery. All target predictions are available through canSAR.icr.ac.uk. Underlying data and tools are available at https://cansar.icr.ac.uk/cansar/publications/druggable_network_neighbourhoods/. PMID:26699810

  13. Factors affecting interactome-based prediction of human genes associated with clinical signs.

    PubMed

    González-Pérez, Sara; Pazos, Florencio; Chagoyen, Mónica

    2017-07-17

    Clinical signs are a fundamental aspect of human pathologies. While disease diagnosis is problematic or impossible in many cases, signs are easier to perceive and categorize. Clinical signs are increasingly used, together with molecular networks, to prioritize detected variants in clinical genomics pipelines, even if the patient is still undiagnosed. Here we analyze the ability of these network-based methods to predict genes that underlie clinical signs from the human interactome. Our analysis reveals that these approaches can locate genes associated with clinical signs with variable performance that depends on the sign and associated disease. We analyzed several clinical and biological factors that explain these variable results, including number of genes involved (mono- vs. oligogenic diseases), mode of inheritance, type of clinical sign and gene product function. Our results indicate that the characteristics of the clinical signs and their related diseases should be considered for interpreting the results of network-prediction methods, such as those aimed at discovering disease-related genes and variants. These results are important due the increasing use of clinical signs as an alternative to diseases for studying the molecular basis of human pathologies.

  14. The nuclear DEK interactome supports multi-functionality.

    PubMed

    Smith, Eric A; Krumpelbeck, Eric F; Jegga, Anil G; Prell, Malte; Matrka, Marie M; Kappes, Ferdinand; Greis, Kenneth D; Ali, Abdullah M; Meetei, Amom R; Wells, Susanne I

    2018-01-01

    DEK is an oncoprotein that is overexpressed in many forms of cancer and participates in numerous cellular pathways. Of these different pathways, relevant interacting partners and functions of DEK are well described in regard to the regulation of chromatin structure, epigenetic marks, and transcription. Most of this understanding was derived by investigating DNA-binding and chromatin processing capabilities of the oncoprotein. To facilitate the generation of mechanism-driven hypotheses regarding DEK activities in underexplored areas, we have developed the first DEK interactome model using tandem-affinity purification and mass spectrometry. With this approach, we identify IMPDH2, DDX21, and RPL7a as novel DEK binding partners, hinting at new roles for the oncogene in de novo nucleotide biosynthesis and ribosome formation. Additionally, a hydroxyurea-specific interaction with replication protein A (RPA) was observed, suggesting that a DEK-RPA complex may form in response to DNA replication fork stalling. Taken together, these findings highlight diverse activities for DEK across cellular pathways and support a model wherein this molecule performs a plethora of functions. © 2017 Wiley Periodicals, Inc.

  15. Evidence for dynamically organized modularity in the yeast protein-protein interaction network

    NASA Astrophysics Data System (ADS)

    Han, Jing-Dong J.; Bertin, Nicolas; Hao, Tong; Goldberg, Debra S.; Berriz, Gabriel F.; Zhang, Lan V.; Dupuy, Denis; Walhout, Albertha J. M.; Cusick, Michael E.; Roth, Frederick P.; Vidal, Marc

    2004-07-01

    In apparently scale-free protein-protein interaction networks, or `interactome' networks, most proteins interact with few partners, whereas a small but significant proportion of proteins, the `hubs', interact with many partners. Both biological and non-biological scale-free networks are particularly resistant to random node removal but are extremely sensitive to the targeted removal of hubs. A link between the potential scale-free topology of interactome networks and genetic robustness seems to exist, because knockouts of yeast genes encoding hubs are approximately threefold more likely to confer lethality than those of non-hubs. Here we investigate how hubs might contribute to robustness and other cellular properties for protein-protein interactions dynamically regulated both in time and in space. We uncovered two types of hub: `party' hubs, which interact with most of their partners simultaneously, and `date' hubs, which bind their different partners at different times or locations. Both in silico studies of network connectivity and genetic interactions described in vivo support a model of organized modularity in which date hubs organize the proteome, connecting biological processes-or modules -to each other, whereas party hubs function inside modules.

  16. A Synthetic Coiled-Coil Interactome Provides Heterospecific Modules for Molecular Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinke, Aaron W.; Grant, Robert A.; Keating, Amy E.

    2010-06-21

    The versatile coiled-coil protein motif is widely used to induce and control macromolecular interactions in biology and materials science. Yet the types of interaction patterns that can be constructed using known coiled coils are limited. Here we greatly expand the coiled-coil toolkit by measuring the complete pairwise interactions of 48 synthetic coiled coils and 7 human bZIP coiled coils using peptide microarrays. The resulting 55-member protein 'interactome' includes 27 pairs of interacting peptides that preferentially heteroassociate. The 27 pairs can be used in combinations to assemble sets of 3 to 6 proteins that compose networks of varying topologies. Of specialmore » interest are heterospecific peptide pairs that participate in mutually orthogonal interactions. Such pairs provide the opportunity to dimerize two separate molecular systems without undesired crosstalk. Solution and structural characterization of two such sets of orthogonal heterodimers provide details of their interaction geometries. The orthogonal pair, along with the many other network motifs discovered in our screen, provide new capabilities for synthetic biology and other applications.« less

  17. Polyubiquitin-Photoactivatable Crosslinking Reagents for Mapping Ubiquitin Interactome Identify Rpn1 as a Proteasome Ubiquitin-Associating Subunit.

    PubMed

    Chojnacki, Michal; Mansour, Wissam; Hameed, Dharjath S; Singh, Rajesh K; El Oualid, Farid; Rosenzweig, Rina; Nakasone, Mark A; Yu, Zanlin; Glaser, Fabian; Kay, Lewis E; Fushman, David; Ovaa, Huib; Glickman, Michael H

    2017-04-20

    Ubiquitin (Ub) signaling is a diverse group of processes controlled by covalent attachment of small protein Ub and polyUb chains to a range of cellular protein targets. The best documented Ub signaling pathway is the one that delivers polyUb proteins to the 26S proteasome for degradation. However, studies of molecular interactions involved in this process have been hampered by the transient and hydrophobic nature of these interactions and the lack of tools to study them. Here, we develop Ub-phototrap (Ub PT ), a synthetic Ub variant containing a photoactivatable crosslinking side chain. Enzymatic polymerization into chains of defined lengths and linkage types provided a set of reagents that led to identification of Rpn1 as a third proteasome ubiquitin-associating subunit that coordinates docking of substrate shuttles, unloading of substrates, and anchoring of polyUb conjugates. Our work demonstrates the value of Ub PT , and we expect that its future uses will help define and investigate the ubiquitin interactome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Semi-supervised anomaly detection - towards model-independent searches of new physics

    NASA Astrophysics Data System (ADS)

    Kuusela, Mikael; Vatanen, Tommi; Malmi, Eric; Raiko, Tapani; Aaltonen, Timo; Nagai, Yoshikazu

    2012-06-01

    Most classification algorithms used in high energy physics fall under the category of supervised machine learning. Such methods require a training set containing both signal and background events and are prone to classification errors should this training data be systematically inaccurate for example due to the assumed MC model. To complement such model-dependent searches, we propose an algorithm based on semi-supervised anomaly detection techniques, which does not require a MC training sample for the signal data. We first model the background using a multivariate Gaussian mixture model. We then search for deviations from this model by fitting to the observations a mixture of the background model and a number of additional Gaussians. This allows us to perform pattern recognition of any anomalous excess over the background. We show by a comparison to neural network classifiers that such an approach is a lot more robust against misspecification of the signal MC than supervised classification. In cases where there is an unexpected signal, a neural network might fail to correctly identify it, while anomaly detection does not suffer from such a limitation. On the other hand, when there are no systematic errors in the training data, both methods perform comparably.

  19. Structure-Function Analysis of Chloroplast Proteins via Random Mutagenesis Using Error-Prone PCR.

    PubMed

    Dumas, Louis; Zito, Francesca; Auroy, Pascaline; Johnson, Xenie; Peltier, Gilles; Alric, Jean

    2018-06-01

    Site-directed mutagenesis of chloroplast genes was developed three decades ago and has greatly advanced the field of photosynthesis research. Here, we describe a new approach for generating random chloroplast gene mutants that combines error-prone polymerase chain reaction of a gene of interest with chloroplast complementation of the knockout Chlamydomonas reinhardtii mutant. As a proof of concept, we targeted a 300-bp sequence of the petD gene that encodes subunit IV of the thylakoid membrane-bound cytochrome b 6 f complex. By sequencing chloroplast transformants, we revealed 149 mutations in the 300-bp target petD sequence that resulted in 92 amino acid substitutions in the 100-residue target subunit IV sequence. Our results show that this method is suited to the study of highly hydrophobic, multisubunit, and chloroplast-encoded proteins containing cofactors such as hemes, iron-sulfur clusters, and chlorophyll pigments. Moreover, we show that mutant screening and sequencing can be used to study photosynthetic mechanisms or to probe the mutational robustness of chloroplast-encoded proteins, and we propose that this method is a valuable tool for the directed evolution of enzymes in the chloroplast. © 2018 American Society of Plant Biologists. All rights reserved.

  20. Inferring Mechanisms of Compensation from E-MAP and SGA Data Using Local Search Algorithms for Max Cut

    PubMed Central

    Leiserson, Mark D.M.; Tatar, Diana; Cowen, Lenore J.

    2011-01-01

    Abstract A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods, which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome. PMID:21882903

  1. Notch3 Interactome Analysis Identified WWP2 as a Negative Regulator of Notch3 Signaling in Ovarian Cancer

    PubMed Central

    Guan, Bin; Wu, Ren-Chin; Zhu, Heng; Blackshaw, Seth; Shih, Ie-Ming; Wang, Tian-Li

    2014-01-01

    The Notch3 signaling pathway is thought to play a critical role in cancer development, as evidenced by the Notch3 amplification and rearrangement observed in human cancers. However, the molecular mechanism by which Notch3 signaling contributes to tumorigenesis is largely unknown. In an effort to identify the molecular modulators of the Notch3 signaling pathway, we screened for Notch3-intracellular domain (N3-ICD) interacting proteins using a human proteome microarray. Pathway analysis of the Notch3 interactome demonstrated that ubiquitin C was the molecular hub of the top functional network, suggesting the involvement of ubiquitination in modulating Notch3 signaling. Thereby, we focused on functional characterization of an E3 ubiquitin-protein ligase, WWP2, a top candidate in the Notch3 interactome list. Co-immunoprecipitation experiments showed that WWP2 interacted with N3-ICD but not with intracellular domains from other Notch receptors. Wild-type WWP2 but not ligase-deficient mutant WWP2 increases mono-ubiquitination of the membrane-tethered Notch3 fragment, therefore attenuating Notch3 pathway activity in cancer cells and leading to cell cycle arrest. The mono-ubiquitination by WWP2 may target an endosomal/lysosomal degradation fate for Notch3 as suggested by the fact that the process could be suppressed by the endosomal/lysosomal inhibitor. Analysis of The Cancer Genome Atlas dataset showed that the majority of ovarian carcinomas harbored homozygous or heterozygous deletions in WWP2 locus, and there was an inverse correlation in the expression levels between WWP2 and Notch3 in ovarian carcinomas. Furthermore, ectopic expression of WWP2 decreased tumor development in a mouse xenograft model and suppressed the Notch3-induced phenotypes including increase in cancer stem cell-like cell population and platinum resistance. Taken together, our results provide evidence that WWP2 serves as a tumor suppressor by negatively regulating Notch3 signaling in ovarian cancer. PMID:25356737

  2. MitProNet: A Knowledgebase and Analysis Platform of Proteome, Interactome and Diseases for Mammalian Mitochondria

    PubMed Central

    Mao, Song; Chai, Xiaoqiang; Hu, Yuling; Hou, Xugang; Tang, Yiheng; Bi, Cheng; Li, Xiao

    2014-01-01

    Mitochondrion plays a central role in diverse biological processes in most eukaryotes, and its dysfunctions are critically involved in a large number of diseases and the aging process. A systematic identification of mitochondrial proteomes and characterization of functional linkages among mitochondrial proteins are fundamental in understanding the mechanisms underlying biological functions and human diseases associated with mitochondria. Here we present a database MitProNet which provides a comprehensive knowledgebase for mitochondrial proteome, interactome and human diseases. First an inventory of mammalian mitochondrial proteins was compiled by widely collecting proteomic datasets, and the proteins were classified by machine learning to achieve a high-confidence list of mitochondrial proteins. The current version of MitProNet covers 1124 high-confidence proteins, and the remainders were further classified as middle- or low-confidence. An organelle-specific network of functional linkages among mitochondrial proteins was then generated by integrating genomic features encoded by a wide range of datasets including genomic context, gene expression profiles, protein-protein interactions, functional similarity and metabolic pathways. The functional-linkage network should be a valuable resource for the study of biological functions of mitochondrial proteins and human mitochondrial diseases. Furthermore, we utilized the network to predict candidate genes for mitochondrial diseases using prioritization algorithms. All proteins, functional linkages and disease candidate genes in MitProNet were annotated according to the information collected from their original sources including GO, GEO, OMIM, KEGG, MIPS, HPRD and so on. MitProNet features a user-friendly graphic visualization interface to present functional analysis of linkage networks. As an up-to-date database and analysis platform, MitProNet should be particularly helpful in comprehensive studies of complicated biological mechanisms underlying mitochondrial functions and human mitochondrial diseases. MitProNet is freely accessible at http://bio.scu.edu.cn:8085/MitProNet. PMID:25347823

  3. Understanding the many-body expansion for large systems. II. Accuracy considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lao, Ka Un; Liu, Kuan-Yu; Richard, Ryan M.

    2016-04-28

    To complement our study of the role of finite precision in electronic structure calculations based on a truncated many-body expansion (MBE, or “n-body expansion”), we examine the accuracy of such methods in the present work. Accuracy may be defined either with respect to a supersystem calculation computed at the same level of theory as the n-body calculations, or alternatively with respect to high-quality benchmarks. Both metrics are considered here. In applications to a sequence of water clusters, (H{sub 2}O){sub N=6−55} described at the B3LYP/cc-pVDZ level, we obtain mean absolute errors (MAEs) per H{sub 2}O monomer of ∼1.0 kcal/mol for two-bodymore » expansions, where the benchmark is a B3LYP/cc-pVDZ calculation on the entire cluster. Three- and four-body expansions exhibit MAEs of 0.5 and 0.1 kcal/mol/monomer, respectively, without resort to charge embedding. A generalized many-body expansion truncated at two-body terms [GMBE(2)], using 3–4 H{sub 2}O molecules per fragment, outperforms all of these methods and affords a MAE of ∼0.02 kcal/mol/monomer, also without charge embedding. GMBE(2) requires significantly fewer (although somewhat larger) subsystem calculations as compared to MBE(4), reducing problems associated with floating-point roundoff errors. When compared to high-quality benchmarks, we find that error cancellation often plays a critical role in the success of MBE(n) calculations, even at the four-body level, as basis-set superposition error can compensate for higher-order polarization interactions. A many-body counterpoise correction is introduced for the GMBE, and its two-body truncation [GMBCP(2)] is found to afford good results without error cancellation. Together with a method such as ωB97X-V/aug-cc-pVTZ that can describe both covalent and non-covalent interactions, the GMBE(2)+GMBCP(2) approach provides an accurate, stable, and tractable approach for large systems.« less

  4. Challenges in structural approaches to cell modeling.

    PubMed

    Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A

    2016-07-31

    Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. FORTRAN Automated Code Evaluation System (faces) system documentation, version 2, mod 0. [error detection codes/user manuals (computer programs)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A system is presented which processes FORTRAN based software systems to surface potential problems before they become execution malfunctions. The system complements the diagnostic capabilities of compilers, loaders, and execution monitors rather than duplicating these functions. Also, it emphasizes frequent sources of FORTRAN problems which require inordinate manual effort to identify. The principle value of the system is extracting small sections of unusual code from the bulk of normal sequences. Code structures likely to cause immediate or future problems are brought to the user's attention. These messages stimulate timely corrective action of solid errors and promote identification of 'tricky' code. Corrective action may require recoding or simply extending software documentation to explain the unusual technique.

  6. Position Matters: Network Centrality Considerably Impacts Rates of Protein Evolution in the Human Protein–Protein Interaction Network

    PubMed Central

    Feyertag, Felix; Chakraborty, Sandip

    2017-01-01

    Abstract The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein–protein interaction data set and the human signal transduction network—a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. PMID:28854629

  7. Position Matters: Network Centrality Considerably Impacts Rates of Protein Evolution in the Human Protein-Protein Interaction Network.

    PubMed

    Alvarez-Ponce, David; Feyertag, Felix; Chakraborty, Sandip

    2017-06-01

    The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein-protein interaction data set and the human signal transduction network-a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Discriminating the hemolytic risk of blood type A plasmas using the complement hemolysis using human erythrocytes (CHUHE) assay.

    PubMed

    Cunnion, Kenji M; Hair, Pamela S; Krishna, Neel K; Sass, Megan A; Enos, Clinton W; Whitley, Pamela H; Maes, Lanne Y; Goldberg, Corinne L

    2017-03-01

    The agglutination-based cross-matching method is sensitive for antibody binding to red blood cells but is only partially predictive of complement-mediated hemolysis, which is important in many acute hemolytic transfusion reactions. Here, we describe complement hemolysis using human erythrocytes (CHUHE) assays that directly evaluate complement-mediated hemolysis between individual serum-plasma and red blood cell combinations. The CHUHE assay is used to evaluate correlations between agglutination titers and complement-mediated hemolysis as well as the hemolytic potential of plasma from type A blood donors. Plasma or serum from each type A blood donor was incubated with AB or B red blood cells in the CHUHE assay and measured for free hemoglobin release. CHUHE assays for serum or plasma demonstrate a wide, dynamic range and high sensitivity for complement-mediated hemolysis for individual serum/plasma and red blood cell combinations. CHUHE results suggest that agglutination assays alone are only moderately predictive of complement-mediated hemolysis. CHUHE results also suggest that plasma from particular type A blood donors produce minimal complement-mediated hemolysis, whereas plasma from other type A blood donors produce moderate to high-level complement-mediated hemolysis, depending on the red blood cell donor. The current results indicate that the CHUHE assay can be used to assess complement-mediated hemolysis for plasma or serum from a type A blood donor, providing additional risk discrimination over agglutination titers alone. © 2016 AABB.

  9. Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission

    USDA-ARS?s Scientific Manuscript database

    The transmission of viruses in the Luteoviridae, such as Cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus proteins, plant proteins, and aphid proteins. These viruses are retained in the phloem for aphid acquisition and are transmitted by aphids...

  10. Escherichia coli O157:H7 and rectoanal junction cell interactome

    USDA-ARS?s Scientific Manuscript database

    Introduction. Cattle are the primary E. coli O157 (O157) reservoir and principal source of human infection. The anatomical site of O157 persistence is the bovine recto-anal (RAJ) junction; hence, an in-depth understanding of O157-RAJ interactions will help develop novel modalities to limit O157 in c...

  11. Anticancer activity of galactoxyloglucan polysaccharide-conjugated doxorubicin nanoparticles: Mechanistic insights and interactome analysis.

    PubMed

    Joseph, Manu M; Aravind, S R; George, Suraj K; Raveendran Pillai, K; Mini, S; Sreelekha, T T

    2015-06-01

    Toxicity associated with chemotherapeutic drugs such as doxorubicin (Dox), is one of the major obstacles that is currently affecting patients. PST-Dox (Galactoxyloglucan, PST001-conjugated Dox) nanoparticles were synthesized by encapsulating Dox with polysaccharide PST001, isolated from Tamarindus indica (Ti) by ionic gelation with tripolyphosphate (TPP). Herein, we demonstrate a detailed mechanistic and interactome network analysis that is specific to PST-Dox action in cancer cells and normal lymphocytes. Our results show that PST-Dox is superior to its parental counterparts, exhibiting a greater cytotoxicity by the induction of apoptosis against a wide variety of cancers by enhanced cellular uptake of Dox from the nanoparticle conjugates. Also, PST-Dox nanoparticles were non-toxic to normal lymphocytes with limited immunostimulatory effects up to certain doses. Elucidation of molecular mechanism by whole genome microarray in cancer cells and lymphocytes revealed that a large number of genes were dysregulated specifically in cancer cells. Specifically, a unique target gene EGR1, contextually determined translational activation of P53 in the cancerous and non-cancerous cells. Most of the key downregulated genes were tyrosine kinases, indicating the potential inhibitory action of PST-Dox on tyrosine kinase oncogenic pathways. Western blotting of proteins corresponding to the genes that were altered at the genomic level was very well correlated in the majority of them, except in a few that demonstrated post-transcriptional modifications. The important findings and highly disciplined approaches highlighted in the present study will speed up the therapeutic potential of this augmented nanoparticle formulation for more robust clinical studies and testing in several cancers. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A quantification of the effectiveness of EPID dosimetry and software-based plan verification systems in detecting incidents in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojechko, Casey; Phillps, Mark; Kalet, Alan

    Purpose: Complex treatments in radiation therapy require robust verification in order to prevent errors that can adversely affect the patient. For this purpose, the authors estimate the effectiveness of detecting errors with a “defense in depth” system composed of electronic portal imaging device (EPID) based dosimetry and a software-based system composed of rules-based and Bayesian network verifications. Methods: The authors analyzed incidents with a high potential severity score, scored as a 3 or 4 on a 4 point scale, recorded in an in-house voluntary incident reporting system, collected from February 2012 to August 2014. The incidents were categorized into differentmore » failure modes. The detectability, defined as the number of incidents that are detectable divided total number of incidents, was calculated for each failure mode. Results: In total, 343 incidents were used in this study. Of the incidents 67% were related to photon external beam therapy (EBRT). The majority of the EBRT incidents were related to patient positioning and only a small number of these could be detected by EPID dosimetry when performed prior to treatment (6%). A large fraction could be detected by in vivo dosimetry performed during the first fraction (74%). Rules-based and Bayesian network verifications were found to be complimentary to EPID dosimetry, able to detect errors related to patient prescriptions and documentation, and errors unrelated to photon EBRT. Combining all of the verification steps together, 91% of all EBRT incidents could be detected. Conclusions: This study shows that the defense in depth system is potentially able to detect a large majority of incidents. The most effective EPID-based dosimetry verification is in vivo measurements during the first fraction and is complemented by rules-based and Bayesian network plan checking.« less

  13. The PoGO+ view on Crab off-pulse hard X-ray polarization

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Florén, H.-G.; Friis, M.; Jackson, M.; Kamae, T.; Kataoka, J.; Kawano, T.; Kiss, M.; Mikhalev, V.; Mizuno, T.; Tajima, H.; Takahashi, H.; Uchida, N.; Pearce, M.

    2018-06-01

    The linear polarization fraction (PF) and angle of the hard X-ray emission from the Crab provide unique insight into high-energy radiation mechanisms, complementing the usual imaging, timing, and spectroscopic approaches. Results have recently been presented by two missions operating in partially overlapping energy bands, PoGO+ (18-160 keV) and AstroSat CZTI (100-380 keV). We previously reported PoGO+ results on the polarization parameters integrated across the light curve and for the entire nebula-dominated off-pulse region. We now introduce finer phase binning, in light of the AstroSat CZTI claim that the PF varies across the off-pulse region. Since both missions are operating in a regime where errors on the reconstructed polarization parameters are non-Gaussian, we adopt a Bayesian approach to compare results from each mission. We find no statistically significant variation in off-pulse polarization parameters, neither when considering the mission data separately nor when they are combined. This supports expectations from standard high-energy emission models.

  14. Comparison of Normal and Breast Cancer Cell lines using Proteome, Genome and Interactome data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patwardhan, Anil J.; Strittmatter, Eric F.; Camp, David G.

    2005-12-01

    Normal and cancer cell line proteomes were profiled using high throughput mass spectrometry techniques. Application of both protein-level and peptide-level sample fractionation combined with LC-MS/MS analysis enabled the confident identification of 2,235 unmodified proteins representing a broad range of functional and compartmental classes. An iterative multi-step search strategy was used to identify post-translational modifications and detected several proteins that are preferentially modified in cancer cells. Information regarding both unmodified and modified protein forms was combined with publicly available gene expression and protein-protein interaction data. The resulting integrated dataset revealed several functionally related proteins that are differentially regulated between normal andmore » cancer cell lines.« less

  15. The in vivo mechanism of action of CD20 monoclonal antibodies depends on local tumor burden

    PubMed Central

    Boross, Peter; Jansen, J.H. Marco; de Haij, Simone; Beurskens, Frank J.; van der Poel, Cees E.; Bevaart, Lisette; Nederend, Maaike; Golay, Josée; van de Winkel, Jan G.J.; Parren, Paul W.H.I.; Leusen, Jeanette H.W.

    2011-01-01

    Background CD20 monoclonal antibodies are widely used in clinical practice. Antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity and direct cell death have been suggested to be important effector functions for CD20 antibodies. However, their specific contributions to the in vivo mechanism of action of CD20 immunotherapy have not been well defined. Design and Methods Here we studied the in vivo mechanism of action of type I (rituximab and ofatumumab) and type II (HuMab-11B8) CD20 antibodies in a peritoneal, syngeneic, mouse model with EL4-CD20 cells using low and high tumor burden. Results Interestingly, we observed striking differences in the in vivo mechanism of action of CD20 antibodies dependent on tumor load. In conditions of low tumor burden, complement was sufficient for tumor killing both for type I and type II CD20 antibodies. In contrast, in conditions of high tumor burden, activating FcγR (specifically FcγRIII), active complement and complement receptor 3 were all essential for tumor killing. Our data suggest that complement-enhanced antibody-dependent cellular cytotoxicity may critically affect tumor killing by CD20 antibodies in vivo. The type II CD20 antibody 11B8, which is a poor inducer of complement activation, was ineffective against high tumor burden. Conclusions Tumor burden affects the in vivo mechanism of action of CD20 antibodies. Low tumor load can be eliminated by complement alone, whereas elimination of high tumor load requires multiple effector mechanisms. PMID:21880632

  16. Comment on ''The velocity field due to an oscillating plate in an Oldroyd-B fluid'' by C.C. Hopkins and J.R. de Bruyn [Can. J. Phys. 92, 533 (2014)

    DOE PAGES

    Christov, Ivan C.

    2015-09-11

    We correct certain errors and ambiguities in the recent pedagogical article by Hopkins and de Bruyn. The early-time asymptotics of the solution to the transient version of Stokes’ second problem for an Oldroyd-B fluid in a half-space is presented, as Appendix A, to complement the late-time asymptotics given by Hopkins and de Bruyn.

  17. Measurement error in performance studies of health information technology: lessons from the management literature.

    PubMed

    Litwin, A S; Avgar, A C; Pronovost, P J

    2012-01-01

    Just as researchers and clinicians struggle to pin down the benefits attendant to health information technology (IT), management scholars have long labored to identify the performance effects arising from new technologies and from other organizational innovations, namely the reorganization of work and the devolution of decision-making authority. This paper applies lessons from that literature to theorize the likely sources of measurement error that yield the weak statistical relationship between measures of health IT and various performance outcomes. In so doing, it complements the evaluation literature's more conceptual examination of health IT's limited performance impact. The paper focuses on seven issues, in particular, that likely bias downward the estimated performance effects of health IT. They are 1.) negative self-selection, 2.) omitted or unobserved variables, 3.) mis-measured contextual variables, 4.) mismeasured health IT variables, 5.) lack of attention to the specific stage of the adoption-to-use continuum being examined, 6.) too short of a time horizon, and 7.) inappropriate units-of-analysis. The authors offer ways to counter these challenges. Looking forward more broadly, they suggest that researchers take an organizationally-grounded approach that privileges internal validity over generalizability. This focus on statistical and empirical issues in health IT-performance studies should be complemented by a focus on theoretical issues, in particular, the ways that health IT creates value and apportions it to various stakeholders.

  18. Guinea pig complement potently measures vibriocidal activity of human antibodies in response to cholera vaccines.

    PubMed

    Kim, Kyoung Whun; Jeong, Soyoung; Ahn, Ki Bum; Yang, Jae Seung; Yun, Cheol-Heui; Han, Seung Hyun

    2017-12-01

    The vibriocidal assay using guinea pig complement is widely used for the evaluation of immune responses to cholera vaccines in human clinical trials. However, it is unclear why guinea pig complement has been used over human complement in the measurement of vibriocidal activity of human sera and there have not been comparison studies for the use of guinea pig complement over those from other species. Therefore, we comparatively investigated the effects of complements derived from human, guinea pig, rabbit, and sheep on vibriocidal activity. Complements from guinea pig, rabbit, and human showed concentration-dependent vibriocidal activity in the presence of quality control serum antibodies. Of these complements, guinea pig complement was the most sensitive and effective over a wide concentration range. When the vibriocidal activity of complements was measured in the absence of serum antibodies, human, sheep, and guinea pig complements showed vibriocidal activity up to 40-fold, 20-fold, and 1-fold dilution, respectively. For human pre- and post-vaccination sera, the most potent vibriocidal activity was observed when guinea pig complement was used. In addition, the highest fold-increases between pre- and post- vaccinated sera were obtained with guinea pig complement. Furthermore, human complement contained a higher amount of V. cholerae- and its lipopolysaccharide-specific antibodies than guinea pig complement. Collectively, these results suggest that guinea pig complements are suitable for vibriocidal assays due to their high sensitivity and effectiveness to human sera.

  19. How psychotherapists handle treatment errors – an ethical analysis

    PubMed Central

    2013-01-01

    Background Dealing with errors in psychotherapy is challenging, both ethically and practically. There is almost no empirical research on this topic. We aimed (1) to explore psychotherapists’ self-reported ways of dealing with an error made by themselves or by colleagues, and (2) to reconstruct their reasoning according to the two principle-based ethical approaches that are dominant in the ethics discourse of psychotherapy, Beauchamp & Childress (B&C) and Lindsay et al. (L). Methods We conducted 30 semi-structured interviews with 30 psychotherapists (physicians and non-physicians) and analysed the transcripts using qualitative content analysis. Answers were deductively categorized according to the two principle-based ethical approaches. Results Most psychotherapists reported that they preferred to an disclose error to the patient. They justified this by spontaneous intuitions and common values in psychotherapy, rarely using explicit ethical reasoning. The answers were attributed to the following categories with descending frequency: 1. Respect for patient autonomy (B&C; L), 2. Non-maleficence (B&C) and Responsibility (L), 3. Integrity (L), 4. Competence (L) and Beneficence (B&C). Conclusions Psychotherapists need specific ethical and communication training to complement and articulate their moral intuitions as a support when disclosing their errors to the patients. Principle-based ethical approaches seem to be useful for clarifying the reasons for disclosure. Further research should help to identify the most effective and acceptable ways of error disclosure in psychotherapy. PMID:24321503

  20. Combining task analysis and fault tree analysis for accident and incident analysis: a case study from Bulgaria.

    PubMed

    Doytchev, Doytchin E; Szwillus, Gerd

    2009-11-01

    Understanding the reasons for incident and accident occurrence is important for an organization's safety. Different methods have been developed to achieve this goal. To better understand the human behaviour in incident occurrence we propose an analysis concept that combines Fault Tree Analysis (FTA) and Task Analysis (TA). The former method identifies the root causes of an accident/incident, while the latter analyses the way people perform the tasks in their work environment and how they interact with machines or colleagues. These methods were complemented with the use of the Human Error Identification in System Tools (HEIST) methodology and the concept of Performance Shaping Factors (PSF) to deepen the insight into the error modes of an operator's behaviour. HEIST shows the external error modes that caused the human error and the factors that prompted the human to err. To show the validity of the approach, a case study at a Bulgarian Hydro power plant was carried out. An incident - the flooding of the plant's basement - was analysed by combining the afore-mentioned methods. The case study shows that Task Analysis in combination with other methods can be applied successfully to human error analysis, revealing details about erroneous actions in a realistic situation.

  1. On the accuracy of personality judgment: a realistic approach.

    PubMed

    Funder, D C

    1995-10-01

    The "accuracy paradigm" for the study of personality judgment provides an important, new complement to the "error paradigm" that dominated this area of research for almost 2 decades. The present article introduces a specific approach within the accuracy paradigm called the Realistic Accuracy Model (RAM). RAM begins with the assumption that personality traits are real attributes of individuals. This assumption entails the use of a broad array of criteria for the evaluation of personality judgment and leads to a model that describes accuracy as a function of the availability, detection, and utilization of relevant behavioral cues. RAM provides a common explanation for basic moderators of accuracy, sheds light on how these moderators interact, and outlines a research agenda that includes the reintegration of the study of error with the study of accuracy.

  2. A High Performance Piezoelectric Sensor for Dynamic Force Monitoring of Landslide.

    PubMed

    Li, Ming; Cheng, Wei; Chen, Jiangpan; Xie, Ruili; Li, Xiongfei

    2017-02-17

    Due to the increasing influence of human engineering activities, it is important to monitor the transient disturbance during the evolution process of landslide. For this purpose, a high-performance piezoelectric sensor is presented in this paper. To adapt the high static and dynamic stress environment in slope engineering, two key techniques, namely, the self-structure pressure distribution method (SSPDM) and the capacitive circuit voltage distribution method (CCVDM) are employed in the design of the sensor. The SSPDM can greatly improve the compressive capacity and the CCVDM can quantitatively decrease the high direct response voltage. Then, the calibration experiments are conducted via the independently invented static and transient mechanism since the conventional testing machines cannot match the calibration requirements. The sensitivity coefficient is obtained and the results reveal that the sensor has the characteristics of high compressive capacity, stable sensitivities under different static preload levels and wide-range dynamic measuring linearity. Finally, to reduce the measuring error caused by charge leakage of the piezoelectric element, a low-frequency correction method is proposed and experimental verified. Therefore, with the satisfactory static and dynamic properties and the improving low-frequency measuring reliability, the sensor can complement dynamic monitoring capability of the existing landslide monitoring and forecasting system.

  3. Long-term effects of lactocrine-deficiency on the global porcine endometrial transcriptome and the microRNA-mRNA interactome at pregnancy day 13

    USDA-ARS?s Scientific Manuscript database

    Through lactocrine mechanisms, bioactive factors are transferred from mother to offspring as a specific consequence of nursing to support development. A large, long-term study in pigs showed that minimal colostrum consumption on the day of birth [postnatal day (PND) 0], reflected by low serum immuno...

  4. Plant peptides in defense and signaling.

    PubMed

    Marmiroli, Nelson; Maestri, Elena

    2014-06-01

    This review focuses on plant peptides involved in defense against pathogen infection and those involved in the regulation of growth and development. Defense peptides, defensins, cyclotides and anti-microbial peptides are compared and contrasted. Signaling peptides are classified according to their major sites of activity. Finally, a network approach to creating an interactomic peptide map is described. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Lysine methylation modulates the protein-protein interactions of yeast cytochrome C Cyc1p.

    PubMed

    Winter, Daniel L; Abeygunawardena, Dhanushi; Hart-Smith, Gene; Erce, Melissa A; Wilkins, Marc R

    2015-07-01

    In recent years, protein methylation has been established as a major intracellular PTM. It has also been proposed to modulate protein-protein interactions (PPIs) in the interactome. To investigate the effect of PTMs on PPIs, we recently developed the conditional two-hybrid (C2H) system. With this, we demonstrated that arginine methylation can modulate PPIs in the yeast interactome. Here, we used the C2H system to investigate the effect of lysine methylation. Specifically, we asked whether Ctm1p-mediated trimethylation of yeast cytochrome c Cyc1p, on lysine 78, modulates its interactions with Erv1p, Ccp1p, Cyc2p and Cyc3p. We show that the interactions between Cyc1p and Erv1p, and between Cyc1p and Cyc3p, are significantly increased upon trimethylation of lysine 78. This increase of interaction helps explain the reported facilitation of Cyc1p import into the mitochondrial intermembrane space upon methylation. This first application of the C2H system to the study of methyllysine-modulated interactions further confirms its robustness and flexibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation

    PubMed Central

    Lin-Moshier, Yaping; Keebler, Michael V.; Hooper, Robert; Boulware, Michael J.; Liu, Xiaolong; Churamani, Dev; Abood, Mary E.; Walseth, Timothy F.; Brailoiu, Eugen; Patel, Sandip; Marchant, Jonathan S.

    2014-01-01

    The two-pore channels (TPC1 and TPC2) belong to an ancient family of intracellular ion channels expressed in the endolysosomal system. Little is known about how regulatory inputs converge to modulate TPC activity, and proposed activation mechanisms are controversial. Here, we compiled a proteomic characterization of the human TPC interactome, which revealed that TPCs complex with many proteins involved in Ca2+ homeostasis, trafficking, and membrane organization. Among these interactors, TPCs were resolved to scaffold Rab GTPases and regulate endomembrane dynamics in an isoform-specific manner. TPC2, but not TPC1, caused a proliferation of endolysosomal structures, dysregulating intracellular trafficking, and cellular pigmentation. These outcomes required both TPC2 and Rab activity, as well as their interactivity, because TPC2 mutants that were inactive, or rerouted away from their endogenous expression locale, or deficient in Rab binding, failed to replicate these outcomes. Nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca2+ release was also impaired using either a Rab binding-defective TPC2 mutant or a Rab inhibitor. These data suggest a fundamental role for the ancient TPC complex in trafficking that holds relevance for lysosomal proliferative scenarios observed in disease. PMID:25157141

  7. The Two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation.

    PubMed

    Lin-Moshier, Yaping; Keebler, Michael V; Hooper, Robert; Boulware, Michael J; Liu, Xiaolong; Churamani, Dev; Abood, Mary E; Walseth, Timothy F; Brailoiu, Eugen; Patel, Sandip; Marchant, Jonathan S

    2014-09-09

    The two-pore channels (TPC1 and TPC2) belong to an ancient family of intracellular ion channels expressed in the endolysosomal system. Little is known about how regulatory inputs converge to modulate TPC activity, and proposed activation mechanisms are controversial. Here, we compiled a proteomic characterization of the human TPC interactome, which revealed that TPCs complex with many proteins involved in Ca(2+) homeostasis, trafficking, and membrane organization. Among these interactors, TPCs were resolved to scaffold Rab GTPases and regulate endomembrane dynamics in an isoform-specific manner. TPC2, but not TPC1, caused a proliferation of endolysosomal structures, dysregulating intracellular trafficking, and cellular pigmentation. These outcomes required both TPC2 and Rab activity, as well as their interactivity, because TPC2 mutants that were inactive, or rerouted away from their endogenous expression locale, or deficient in Rab binding, failed to replicate these outcomes. Nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca(2+) release was also impaired using either a Rab binding-defective TPC2 mutant or a Rab inhibitor. These data suggest a fundamental role for the ancient TPC complex in trafficking that holds relevance for lysosomal proliferative scenarios observed in disease.

  8. The amyloid interactome: Exploring protein aggregation

    PubMed Central

    Mastrokalou, Chara V.; Hamodrakas, Stavros J.

    2017-01-01

    Protein-protein interactions are the quintessence of physiological activities, but also participate in pathological conditions. Amyloid formation, an abnormal protein-protein interaction process, is a widespread phenomenon in divergent proteins and peptides, resulting in a variety of aggregation disorders. The complexity of the mechanisms underlying amyloid formation/amyloidogenicity is a matter of great scientific interest, since their revelation will provide important insight on principles governing protein misfolding, self-assembly and aggregation. The implication of more than one protein in the progression of different aggregation disorders, together with the cited synergistic occurrence between amyloidogenic proteins, highlights the necessity for a more universal approach, during the study of these proteins. In an attempt to address this pivotal need we constructed and analyzed the human amyloid interactome, a protein-protein interaction network of amyloidogenic proteins and their experimentally verified interactors. This network assembled known interconnections between well-characterized amyloidogenic proteins and proteins related to amyloid fibril formation. The consecutive extended computational analysis revealed significant topological characteristics and unraveled the functional roles of all constituent elements. This study introduces a detailed protein map of amyloidogenicity that will aid immensely towards separate intervention strategies, specifically targeting sub-networks of significant nodes, in an attempt to design possible novel therapeutics for aggregation disorders. PMID:28249044

  9. The nuclear F-actin interactome of Xenopus oocytes reveals an actin-bundling kinesin that is essential for meiotic cytokinesis

    PubMed Central

    Samwer, Matthias; Dehne, Heinz-Jürgen; Spira, Felix; Kollmar, Martin; Gerlich, Daniel W; Urlaub, Henning; Görlich, Dirk

    2013-01-01

    Nuclei of Xenopus laevis oocytes grow 100 000-fold larger in volume than a typical somatic nucleus and require an unusual intranuclear F-actin scaffold for mechanical stability. We now developed a method for mapping F-actin interactomes and identified a comprehensive set of F-actin binders from the oocyte nuclei. Unexpectedly, the most prominent interactor was a novel kinesin termed NabKin (Nuclear and meiotic actin-bundling Kinesin). NabKin not only binds microtubules but also F-actin structures, such as the intranuclear actin bundles in prophase and the contractile actomyosin ring during cytokinesis. The interaction between NabKin and F-actin is negatively regulated by Importin-β and is responsive to spatial information provided by RanGTP. Disconnecting NabKin from F-actin during meiosis caused cytokinesis failure and egg polyploidy. We also found actin-bundling activity in Nabkin's somatic paralogue KIF14, which was previously shown to be essential for somatic cell division. Our data are consistent with the notion that NabKin/KIF14 directly link microtubules with F-actin and that such link is essential for cytokinesis. PMID:23727888

  10. The Rab-binding Profiles of Bacterial Virulence Factors during Infection*

    PubMed Central

    So, Ernest C.; Schroeder, Gunnar N.; Carson, Danielle; Mattheis, Corinna; Mousnier, Aurélie; Broncel, Malgorzata; Tate, Edward W.; Frankel, Gad

    2016-01-01

    Legionella pneumophila, the causative agent of Legionnaire's disease, uses its type IV secretion system to translocate over 300 effector proteins into host cells. These effectors subvert host cell signaling pathways to ensure bacterial proliferation. Despite their importance for pathogenesis, the roles of most of the effectors are yet to be characterized. Key to understanding the function of effectors is the identification of host proteins they bind during infection. We previously developed a novel tandem-affinity purification (TAP) approach using hexahistidine and BirA-specific biotinylation tags for isolating translocated effector complexes from infected cells whose composition were subsequently deciphered by mass spectrometry. Here we further advanced the workflow for the TAP approach and determined the infection-dependent interactomes of the effectors SidM and LidA, which were previously reported to promiscuously bind multiple Rab GTPases in vitro. In this study we defined a stringent subset of Rab GTPases targeted by SidM and LidA during infection, comprising of Rab1A, 1B, 6, and 10; in addition, LidA targets Rab14 and 18. Taken together, this study illustrates the power of this approach to profile the intracellular interactomes of bacterial effectors during infection. PMID:26755725

  11. Preparation of Low Molecular Weight Chondroitin Sulfates, Screening of a High Anti-Complement Capacity of Low Molecular Weight Chondroitin Sulfate and Its Biological Activity Studies in Attenuating Osteoarthritis.

    PubMed

    Li, Lian; Li, Yan; Feng, Danyang; Xu, Linghua; Yin, Fengxin; Zang, Hengchang; Liu, Chunhui; Wang, Fengshan

    2016-10-11

    Chondroitin sulfate (CS) plays important roles in the complement system. However, the CS structure is complicated due to different sources and the number and positions of sulfate groups. The objective of this study was to prepare different low molecular weight chondroitin sulfates (LMWCSs) and to investigate the biological activity in anti-complement capacity. A series of LMWCSs was prepared from different sources and characterized by ultraviolet-visible (UV) spectroscopy, high-performance liquid chromatography (HPLC), size exclusion chromatography-multiangle laser light scattering (SEC-MALLS) and nuclear magnetic resonance (NMR) spectroscopy. Hemolytic, anti-complement 3 deposition capacity and cell viability assays were carried out to investigate the biological activities in vitro. The results showed that LMWCS prepared from shark cartilage with the oxidative degradation method (LMWCS-S-O) had the best anti-complement capacity. LMWCS-S-O could inhibit the alternative pathway of the complement system and protect chondrocytes from cell death. The attenuating effect of LMWCS-S-O on Osteoarthritis (OA) was investigated by destabilization of the medial meniscus (DMM) model in vivo. Functional wind-up, histological and C5b-9 analyses were used to evaluate the treatment effect on the OA model. In vivo results showed that LMWCS-S-O could attenuate OA. LMWCS-S-O with a high content of ΔDi-2,6diS and ΔDi-6S could be used for attenuating OA through regulating the complement system.

  12. [Renal risks of dietary complements: a forgotten cause].

    PubMed

    Dori, Olympia; Humbert, Antoine; Burnier, Michel; Teta, Daniel

    2014-02-26

    The use of dietary complements like vitamins, minerals, trace elements, proteins, aminoacids and plant-derived agents is prevalent in the general population, in order to promote health and treat diseases. Dietary complements are considered as safe natural products and are easily available without prescription. However, these can lead to severe renal toxicity, especially in cases of unknown pre-existing chronic kidney disease (CKD). In particular, Chinese herbs including aristolochic acid, high doses of vitamine C, creatine and protein complements may lead to acute and chronic renal failure, sometimes irreversible. Dietary complement toxicity should be suspected in any case of unexplained renal impairement. In the case of pre-existing CKD, the use of potentially nephrotoxic dietary complements should be screened for.

  13. Applicability of Glass Dosimeters for In-vivo Dosimetry in Brachytherapy

    NASA Astrophysics Data System (ADS)

    Moon, Sun Young; Son, Jaeman; Yoon, Myonggeun; Jeang, EunHee; Lim, Young Kyung; Chung, Weon Kyu; Kim, Dong Wook

    2018-06-01

    During brachytherapy, confirming the dose delivered is very important in order to prevent radiation-associated side effects. Therefore, we aimed to confirm the accuracy of dose delivery near the source by inserting glass dosimeters within the applicator. We created an alternative pelvic phantom with the same shape and internal structures as the usual patient. In addition, we created a tandem for insertion of the glass dosimeters and measured the dose near the source by inserting the glass dosimeters into the tandem and evaluating the accuracy of the dwell position and time through the dose near the source. Errors between the values obtained from the five glass dosimeters and the values from the treatment planning system were -6.27, -2.1, -4.18, 6.31, and -0.39%, respectively. The mean error was 3.85%. This value was acceptable considering that the error of the glass dosimeter itself is approximately 3%. Even though a complement of the applicator and the error calibration is required in order to apply this technique clinically, we believe that radiation accidents and overdoses can be prevented through in-vivo dosimetry using a glass dosimeter for brachytherapy.

  14. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing

    PubMed Central

    Bankevich, Anton; Nurk, Sergey; Antipov, Dmitry; Gurevich, Alexey A.; Dvorkin, Mikhail; Kulikov, Alexander S.; Lesin, Valery M.; Nikolenko, Sergey I.; Pham, Son; Prjibelski, Andrey D.; Pyshkin, Alexey V.; Sirotkin, Alexander V.; Vyahhi, Nikolay; Tesler, Glenn; Pevzner, Pavel A.

    2012-01-01

    Abstract The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V−SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online (http://bioinf.spbau.ru/spades). It is distributed as open source software. PMID:22506599

  15. [Severe familial hypercholesterolemia treatment].

    PubMed

    Vrablík, Michal; Freiberger, Tomáš; Bláha, Vladimír; Češka, Richard

    Familial hypercholesterolemia (FH) represents the most frequent of inborn errors of metabolism. It is a group of disorders with a codominant mode of inheritance characterized by marked elevations of LDL-cholesterol as well as atherosclerotic cardiovascular disease risk. Clinical (phenotypic) picture of FH varies widely depending on genotype and concomitant risk factors. Identification of most seriously affected FH individuals is necessary for proper clinical management. The therapeutic approach must be complex and comprehensive. The corner stone of pharmacotherapy is high-intensity statin therapy usually combined with ezetimibe (possibly complemented with bile acid sequestrant). Even this multi-drug combination do not lead majority of patients to their treatment goals. Thus, combinations with other pharmacological (PCSK9 inhibitors, apoB-100 anti-sense therapy, MTP inhibition) and non-pharmacological (LDL-apheresis, liver transplantation) approaches is being used.Key words: ezetimibe - LDL-apheresis - lomitapide - mipomersen - PCSK9 inhibitors - severe familial hypercholesterolemia - statins.

  16. Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Beloy, K.; Zhang, X.; McGrew, W. F.; Hinkley, N.; Yoon, T. H.; Nicolodi, D.; Fasano, R. J.; Schäffer, S. A.; Brown, R. C.; Ludlow, A. D.

    2018-05-01

    We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10-20 level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.

  17. Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock.

    PubMed

    Beloy, K; Zhang, X; McGrew, W F; Hinkley, N; Yoon, T H; Nicolodi, D; Fasano, R J; Schäffer, S A; Brown, R C; Ludlow, A D

    2018-05-04

    We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10^{-20} level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.

  18. Mapping the miRNA interactome by crosslinking ligation and sequencing of hybrids (CLASH)

    PubMed Central

    Helwak, Aleksandra; Tollervey, David

    2014-01-01

    RNA-RNA interactions play critical roles in many cellular processes but studying them is difficult and laborious. Here, we describe an experimental procedure, termed crosslinking ligation and sequencing of hybrids (CLASH), which allows high-throughput identification of sites of RNA-RNA interaction. During CLASH, a tagged bait protein is UV crosslinked in vivo to stabilise RNA interactions and purified under denaturing conditions. RNAs associated with the bait protein are partially truncated, and the ends of RNA-duplexes are ligated together. Following linker addition, cDNA library preparation and high-throughput sequencing, the ligated duplexes give rise to chimeric cDNAs, which unambiguously identify RNA-RNA interaction sites independent of bioinformatic predictions. This protocol is optimized for studying miRNA targets bound by Argonaute proteins, but should be easily adapted for other RNA-binding proteins and classes of RNA. The protocol requires around 5 days to complete, excluding the time required for high-throughput sequencing and bioinformatic analyses. PMID:24577361

  19. Network perturbation by recurrent regulatory variants in cancer

    PubMed Central

    Cho, Ara; Lee, Insuk; Choi, Jung Kyoon

    2017-01-01

    Cancer driving genes have been identified as recurrently affected by variants that alter protein-coding sequences. However, a majority of cancer variants arise in noncoding regions, and some of them are thought to play a critical role through transcriptional perturbation. Here we identified putative transcriptional driver genes based on combinatorial variant recurrence in cis-regulatory regions. The identified genes showed high connectivity in the cancer type-specific transcription regulatory network, with high outdegree and many downstream genes, highlighting their causative role during tumorigenesis. In the protein interactome, the identified transcriptional drivers were not as highly connected as coding driver genes but appeared to form a network module centered on the coding drivers. The coding and regulatory variants associated via these interactions between the coding and transcriptional drivers showed exclusive and complementary occurrence patterns across tumor samples. Transcriptional cancer drivers may act through an extensive perturbation of the regulatory network and by altering protein network modules through interactions with coding driver genes. PMID:28333928

  20. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: Linking systems biology with vaccine development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Leslie G.; Khare, Sangeeta; Lawhon, Sara D.

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhancedmore » approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic *sipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host's biosignatures to each infectious condition. Through this DBN computational approach, the method identified significantly perturbed pathways and GO category groups of genes that define the pathogenicity signatures of the infectious agent. Our preliminary results provide deeper understanding of the overall complexity of host innate immune response as well as the identification of host gene perturbations that defines a unique host temporal biosignature response to each pathogen. The application of advanced computational methods for developing interactome models based on DBNs has proven to be instrumental in elucidating novel host responses and improved functional biological insight into the host defensive mechanisms. Evaluating the unique differences in pathway and GO perturbations across pathogen conditions allowed the identification of plausible host pathogen interaction mechanisms. Accordingly, a systems biology approach to study molecular pathway gene expression profiles of host cellular responses to microbial pathogens holds great promise as a methodology to identify, model and predict the overall dynamics of the host pathogen interactome. Thus, we propose that such an approach has immediate application to the rational design of brucellosis and salmonellosis vaccines.« less

  1. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: linking systems biology with vaccine development.

    PubMed

    Adams, L Garry; Khare, Sangeeta; Lawhon, Sara D; Rossetti, Carlos A; Lewin, Harris A; Lipton, Mary S; Turse, Joshua E; Wylie, Dennis C; Bai, Yu; Drake, Kenneth L

    2011-09-22

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host-pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic ΔsipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host's biosignatures to each infectious condition. Through this DBN computational approach, the method identified significantly perturbed pathways and GO category groups of genes that define the pathogenicity signatures of the infectious agent. Our preliminary results provide deeper understanding of the overall complexity of host innate immune response as well as the identification of host gene perturbations that defines a unique host temporal biosignature response to each pathogen. The application of advanced computational methods for developing interactome models based on DBNs has proven to be instrumental in elucidating novel host responses and improved functional biological insight into the host defensive mechanisms. Evaluating the unique differences in pathway and GO perturbations across pathogen conditions allowed the identification of plausible host-pathogen interaction mechanisms. Accordingly, a systems biology approach to study molecular pathway gene expression profiles of host cellular responses to microbial pathogens holds great promise as a methodology to identify, model and predict the overall dynamics of the host-pathogen interactome. Thus, we propose that such an approach has immediate application to the rational design of brucellosis and salmonellosis vaccines. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Spoken Word Recognition Errors in Speech Audiometry: A Measure of Hearing Performance?

    PubMed Central

    Coene, Martine; van der Lee, Anneke; Govaerts, Paul J.

    2015-01-01

    This report provides a detailed analysis of incorrect responses from an open-set spoken word-repetition task which is part of a Dutch speech audiometric test battery. Single-consonant confusions were analyzed from 230 normal hearing participants in terms of the probability of choice of a particular response on the basis of acoustic-phonetic, lexical, and frequency variables. The results indicate that consonant confusions are better predicted by lexical knowledge than by acoustic properties of the stimulus word. A detailed analysis of the transmission of phonetic features indicates that “voicing” is best preserved whereas “manner of articulation” yields most perception errors. As consonant confusion matrices are often used to determine the degree and type of a patient's hearing impairment, to predict a patient's gain in hearing performance with hearing devices and to optimize the device settings in view of maximum output, the observed findings are highly relevant for the audiological practice. Based on our findings, speech audiometric outcomes provide a combined auditory-linguistic profile of the patient. The use of confusion matrices might therefore not be the method best suited to measure hearing performance. Ideally, they should be complemented by other listening task types that are known to have less linguistic bias, such as phonemic discrimination. PMID:26557717

  3. A device for high-throughput monitoring of degradation in soft tissue samples.

    PubMed

    Tzeranis, D S; Panagiotopoulos, I; Gkouma, S; Kanakaris, G; Georgiou, N; Vaindirlis, N; Vasileiou, G; Neidlin, M; Gkousioudi, A; Spitas, V; Macheras, G A; Alexopoulos, L G

    2018-06-06

    This work describes the design and validation of a novel device, the High-Throughput Degradation Monitoring Device (HDD), for monitoring the degradation of 24 soft tissue samples over incubation periods of several days inside a cell culture incubator. The device quantifies sample degradation by monitoring its deformation induced by a static gravity load. Initial instrument design and experimental protocol development focused on quantifying cartilage degeneration. Characterization of measurement errors, caused mainly by thermal transients and by translating the instrument sensor, demonstrated that HDD can quantify sample degradation with <6 μm precision and <10 μm temperature-induced errors. HDD capabilities were evaluated in a pilot study that monitored the degradation of fresh ex vivo human cartilage samples by collagenase solutions over three days. HDD could robustly resolve the effects of collagenase concentration as small as 0.5 mg/ml. Careful sample preparation resulted in measurements that did not suffer from donor-to-donor variation (coefficient of variance <70%). Due to its unique combination of sample throughput, measurement precision, temporal sampling and experimental versality, HDD provides a novel biomechanics-based experimental platform for quantifying the effects of proteins (cytokines, growth factors, enzymes, antibodies) or small molecules on the degradation of soft tissues or tissue engineering constructs. Thereby, HDD can complement established tools and in vitro models in important applications including drug screening and biomaterial development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A protein interaction network analysis for yeast integral membrane protein.

    PubMed

    Shi, Ming-Guang; Huang, De-Shuang; Li, Xue-Ling

    2008-01-01

    Although the yeast Saccharomyces cerevisiae is the best exemplified single-celled eukaryote, the vast number of protein-protein interactions of integral membrane proteins of Saccharomyces cerevisiae have not been characterized by experiments. Here, based on the kernel method of Greedy Kernel Principal Component analysis plus Linear Discriminant Analysis, we identify 300 protein-protein interactions involving 189 membrane proteins and get the outcome of a highly connected protein-protein interactions network. Furthermore, we study the global topological features of integral membrane proteins network of Saccharomyces cerevisiae. These results give the comprehensive description of protein-protein interactions of integral membrane proteins and reveal global topological and robustness of the interactome network at a system level. This work represents an important step towards a comprehensive understanding of yeast protein interactions.

  5. Mapping the interactome of HPV E6 and E7 oncoproteins with the ubiquitin-proteasome system.

    PubMed

    Poirson, Juline; Biquand, Elise; Straub, Marie-Laure; Cassonnet, Patricia; Nominé, Yves; Jones, Louis; van der Werf, Sylvie; Travé, Gilles; Zanier, Katia; Jacob, Yves; Demeret, Caroline; Masson, Murielle

    2017-10-01

    Protein ubiquitination and its reverse reaction, deubiquitination, regulate protein stability, protein binding activity, and their subcellular localization. These reactions are catalyzed by the enzymes E1, E2, and E3 ubiquitin (Ub) ligases and deubiquitinases (DUBs). The Ub-proteasome system (UPS) is targeted by viruses for the sake of their replication and to escape host immune response. To identify novel partners of human papillomavirus 16 (HPV16) E6 and E7 proteins, we assembled and screened a library of 590 cDNAs related to the UPS by using the Gaussia princeps luciferase protein complementation assay. HPV16 E6 was found to bind to the homology to E6AP C terminus-type Ub ligase (E6AP), three really interesting new gene (RING)-type Ub ligases (MGRN1, LNX3, LNX4), and the DUB Ub-specific protease 15 (USP15). Except for E6AP, the binding of UPS factors did not require the LxxLL-binding pocket of HPV16 E6. LNX3 bound preferentially to all high-risk mucosal HPV E6 tested, whereas LNX4 bound specifically to HPV16 E6. HPV16 E7 was found to bind to several broad-complex tramtrack and bric-a-brac domain-containing proteins (such as TNFAIP1/KCTD13) that are potential substrate adaptors of Cullin 3-RING Ub ligases, to RING-type Ub ligases implicated in innate immunity (RNF135, TRIM32, TRAF2, TRAF5), to the substrate adaptor DCAF15 of Cullin 4-RING Ub ligase and to some DUBs (USP29, USP33). The binding to UPS factors did not require the LxCxE motif but rather the C-terminal region of HPV16 E7 protein. The identified UPS factors interacted with most of E7 proteins across different HPV types. This study establishes a strategy for the rapid identification of interactions between host or pathogen proteins and the human ubiquitination system. © 2017 Federation of European Biochemical Societies.

  6. Preparation of Low Molecular Weight Chondroitin Sulfates, Screening of a High Anti-Complement Capacity of Low Molecular Weight Chondroitin Sulfate and Its Biological Activity Studies in Attenuating Osteoarthritis

    PubMed Central

    Li, Lian; Li, Yan; Feng, Danyang; Xu, Linghua; Yin, Fengxin; Zang, Hengchang; Liu, Chunhui; Wang, Fengshan

    2016-01-01

    Chondroitin sulfate (CS) plays important roles in the complement system. However, the CS structure is complicated due to different sources and the number and positions of sulfate groups. The objective of this study was to prepare different low molecular weight chondroitin sulfates (LMWCSs) and to investigate the biological activity in anti-complement capacity. A series of LMWCSs was prepared from different sources and characterized by ultraviolet-visible (UV) spectroscopy, high-performance liquid chromatography (HPLC), size exclusion chromatography-multiangle laser light scattering (SEC-MALLS) and nuclear magnetic resonance (NMR) spectroscopy. Hemolytic, anti-complement 3 deposition capacity and cell viability assays were carried out to investigate the biological activities in vitro. The results showed that LMWCS prepared from shark cartilage with the oxidative degradation method (LMWCS-S-O) had the best anti-complement capacity. LMWCS-S-O could inhibit the alternative pathway of the complement system and protect chondrocytes from cell death. The attenuating effect of LMWCS-S-O on Osteoarthritis (OA) was investigated by destabilization of the medial meniscus (DMM) model in vivo. Functional wind-up, histological and C5b-9 analyses were used to evaluate the treatment effect on the OA model. In vivo results showed that LMWCS-S-O could attenuate OA. LMWCS-S-O with a high content of ΔDi-2,6diS and ΔDi-6S could be used for attenuating OA through regulating the complement system. PMID:27727159

  7. The Ties that Bind (the Igh Locus).

    PubMed

    Krangel, Michael S

    2016-05-01

    Immunoglobulin heavy-chain locus V(D)J recombination requires a 3D chromatin organization which permits widely distributed variable (V) gene segments to contact distant diversity (D) and joining (J) gene segments. A recent study has identified key nodes in the locus interactome, paving the way for new molecular insights into how the locus is configured for recombination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The Ties That Bind: Mapping the Dynamic Enhancer-Promoter Interactome

    DOE PAGES

    Spurrell, Cailyn H.; Dickel, Diane E.; Visel, Axel

    2016-11-17

    Coupling chromosome conformation capture to molecular enrichment for promoter-containing DNA fragments enables the systematic mapping of interactions between individual distal regulatory sequences and their target genes. Here in this Minireview, we describe recent progress in the application of this technique and related complementary approaches to gain insight into the lineage- and cell-type-specific dynamics of interactions between regulators and gene promoters.

  9. A comparative approach expands the protein-protein interaction node of the immune receptor XA21 in wheat and rice

    PubMed Central

    Yang, Baoju; Ruan, Randy; Cantu, Dario; Wang, Xiaodong; Ji, Wanquan; Ronald, Pamela C; Dubcovsky, Jorge

    2016-01-01

    The rice (Oryza sativa) OsXA21 receptor kinase is a well-studied immune receptor that initiates a signal transduction pathway leading to resistance to Xanthomonas oryzae pv. oryzae. Two homologs of OsXA21 were identified in wheat (Triticum aestivum): TaXA21-like1 located in a syntenic region with OsXA21, and TaXA21-like2 located in a non-syntenic region. Proteins encoded by these two wheat genes interact with four wheat orthologs of known OsXA21 interactors. In this study, we screened a wheat yeast-two-hybrid (Y2H) library using the cytosolic portion of TaXA21-like1 as bait to identify additional interactors. Using full-length T. aestivum and T. monococcum proteins and Y2H assays we identified three novel TaXA21-like1 interactors (TaARG, TaPR2, TmSKL1) plus one previously known in rice (TaSGT1). An additional full-length wheat protein (TaCIPK14) interacted with TaXA21-like2 and OsXA21 but not with TaXA21-like1. The interactions of TaXA21-like1 with TmSKL1 and TaSGT1 were also observed in rice protoplasts using bimolecular fluorescence complementation (BiFC) assays. We then cloned the rice homologs of the novel wheat interactors and confirmed that they all interact with OsXA21. This last result suggests that inter-specific comparative interactome analyses can be used not only to transfer known interactions from rice to wheat, but also to identify novel interactions in rice. PMID:23957671

  10. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sung-Dong; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749; Cheon, So Yeong

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did notmore » inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model.« less

  11. C3 deficiency ameliorates the negative effects of irradiation of the young brain on hippocampal development and learning.

    PubMed

    Kalm, Marie; Andreasson, Ulf; Björk-Eriksson, Thomas; Zetterberg, Henrik; Pekny, Milos; Blennow, Kaj; Pekna, Marcela; Blomgren, Klas

    2016-04-12

    Radiotherapy in the treatment of pediatric brain tumors is often associated with debilitating late-appearing adverse effects, such as intellectual impairment. Areas in the brain harboring stem cells are particularly sensitive to irradiation (IR) and loss of these cells may contribute to cognitive deficits. It has been demonstrated that IR-induced inflammation negatively affects neural progenitor differentiation. In this study, we used mice lacking the third complement component (C3-/-) to investigate the role of complement in a mouse model of IR-induced injury to the granule cell layer (GCL) of the hippocampus. C3-/- and wild type (WT) mice received a single, moderate dose of 8 Gy to the brain on postnatal day 10. The C3-/- mice displayed 55 % more microglia (Iba-1+) and a trend towards increase in proliferating cells in the GCL compared to WT mice 7 days after IR. Importantly, months after IR C3-/- mice made fewer errors than WT mice in a reversal learning test indicating better learning capacity in C3-/- mice after IR. Notably, months after IR C3-/- and WT mice had similar GCL volumes, survival of newborn cells (BrdU), microglia (Iba-1) and astrocyte (S100β) numbers in the GCL. In summary, our data show that the complement system contributes to IR-induced loss of proliferating cells and maladaptive inflammatory responses in the acute phase after IR, leading to impaired learning capacity in adulthood. Targeting the complement system is hence promising for future strategies to reduce the long-term adverse consequences of IR in the young brain.

  12. Intelligence, Cognition, and Language of Green Plants.

    PubMed

    Trewavas, Anthony

    2016-01-01

    A summary definition of some 70 descriptions of intelligence provides a definition for all other organisms including plants that stresses fitness. Barbara McClintock, a plant biologist, posed the notion of the 'thoughtful cell' in her Nobel prize address. The systems structure necessary for a thoughtful cell is revealed by comparison of the interactome and connectome. The plant root cap, a group of some 200 cells that act holistically in responding to numerous signals, likely possesses a similar systems structure agreeing with Darwin's description of acting like the brain of a lower organism. Intelligent behavior requires assessment of different choices and taking the beneficial one. Decisions are constantly required to optimize the plant phenotype to a dynamic environment and the cambium is the assessing tissue diverting more or removing resources from different shoot and root branches through manipulation of vascular elements. Environmental awareness likely indicates consciousness. Spontaneity in plant behavior, ability to count to five and error correction indicate intention. Volatile organic compounds are used as signals in plant interactions and being complex in composition may be the equivalent of language accounting for self and alien recognition by individual plants. Game theory describes competitive interactions. Interactive and intelligent outcomes emerge from application of various games between plants themselves and interactions with microbes. Behavior profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses.

  13. Daily Orthogonal Kilovoltage Imaging Using a Gantry-Mounted On-Board Imaging System Results in a Reduction in Radiation Therapy Delivery Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Gregory A., E-mail: gregory.russo@bmc.org; Qureshi, Muhammad M.; Truong, Minh-Tam

    2012-11-01

    Purpose: To determine whether the use of routine image guided radiation therapy (IGRT) using pretreatment on-board imaging (OBI) with orthogonal kilovoltage X-rays reduces treatment delivery errors. Methods and Materials: A retrospective review of documented treatment delivery errors from 2003 to 2009 was performed. Following implementation of IGRT in 2007, patients received daily OBI with orthogonal kV X-rays prior to treatment. The frequency of errors in the pre- and post-IGRT time frames was compared. Treatment errors (TEs) were classified as IGRT-preventable or non-IGRT-preventable. Results: A total of 71,260 treatment fractions were delivered to 2764 patients. A total of 135 (0.19%) TEsmore » occurred in 39 (1.4%) patients (3.2% in 2003, 1.1% in 2004, 2.5% in 2005, 2% in 2006, 0.86% in 2007, 0.24% in 2008, and 0.22% in 2009). In 2007, the TE rate decreased by >50% and has remained low (P = .00007, compared to before 2007). Errors were classified as being potentially preventable with IGRT (e.g., incorrect site, patient, or isocenter) vs. not. No patients had any IGRT-preventable TEs from 2007 to 2009, whereas there were 9 from 2003 to 2006 (1 in 2003, 2 in 2004, 2 in 2005, and 4 in 2006; P = .0058) before the implementation of IGRT. Conclusions: IGRT implementation has a patient safety benefit with a significant reduction in treatment delivery errors. As such, we recommend the use of IGRT in routine practice to complement existing quality assurance measures.« less

  14. Daily orthogonal kilovoltage imaging using a gantry-mounted on-board imaging system results in a reduction in radiation therapy delivery errors.

    PubMed

    Russo, Gregory A; Qureshi, Muhammad M; Truong, Minh-Tam; Hirsch, Ariel E; Orlina, Lawrence; Bohrs, Harry; Clancy, Pauline; Willins, John; Kachnic, Lisa A

    2012-11-01

    To determine whether the use of routine image guided radiation therapy (IGRT) using pretreatment on-board imaging (OBI) with orthogonal kilovoltage X-rays reduces treatment delivery errors. A retrospective review of documented treatment delivery errors from 2003 to 2009 was performed. Following implementation of IGRT in 2007, patients received daily OBI with orthogonal kV X-rays prior to treatment. The frequency of errors in the pre- and post-IGRT time frames was compared. Treatment errors (TEs) were classified as IGRT-preventable or non-IGRT-preventable. A total of 71,260 treatment fractions were delivered to 2764 patients. A total of 135 (0.19%) TEs occurred in 39 (1.4%) patients (3.2% in 2003, 1.1% in 2004, 2.5% in 2005, 2% in 2006, 0.86% in 2007, 0.24% in 2008, and 0.22% in 2009). In 2007, the TE rate decreased by >50% and has remained low (P = .00007, compared to before 2007). Errors were classified as being potentially preventable with IGRT (e.g., incorrect site, patient, or isocenter) vs. not. No patients had any IGRT-preventable TEs from 2007 to 2009, whereas there were 9 from 2003 to 2006 (1 in 2003, 2 in 2004, 2 in 2005, and 4 in 2006; P = .0058) before the implementation of IGRT. IGRT implementation has a patient safety benefit with a significant reduction in treatment delivery errors. As such, we recommend the use of IGRT in routine practice to complement existing quality assurance measures. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Towards the 1-cm SARAL orbit

    NASA Astrophysics Data System (ADS)

    Zelensky, Nikita P.; Lemoine, Frank G.; Chinn, Douglas S.; Beckley, Brian D.; Bordyugov, Oleg; Yang, Xu; Wimert, Jesse; Pavlis, Despina

    2016-12-01

    We have investigated the quality of precise orbits for the SARAL altimeter satellite using Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) data from March 14, 2013 to August 10, 2014. We have identified a 4.31 ± 0.14 cm error in the Z (cross-track) direction that defines the center-of-mass of the SARAL satellite in the spacecraft coordinate system, and we have tuned the SLR and DORIS tracking point offsets. After these changes, we reduce the average RMS of the SLR residuals for seven-day arcs from 1.85 to 1.38 cm. We tuned the non-conservative force model for SARAL, reducing the amplitude of the daily adjusted empirical accelerations by eight percent. We find that the best dynamic orbits show altimeter crossover residuals of 5.524 cm over cycles 7-15. Our analysis offers a unique illustration that high-elevation SLR residuals will not necessarily provide an accurate estimate of radial error at the 1-cm level, and that other supporting orbit tests are necessary for a better estimate. Through the application of improved models for handling time-variable gravity, the use of reduced-dynamic orbits, and through an arc-by-arc estimation of the C22 and S22 coefficients, we find from analysis of independent SLR residuals and other tests that we achieve 1.1-1.2 cm radial orbit accuracies for SARAL. The limiting errors stem from the inadequacy of the DPOD2008 and SLRF2008 station complements, and inadequacies in radiation force modeling, especially with respect to spacecraft self-shadowing and modeling of thermal variations due to eclipses.

  16. Capturing volcanic plumes in 3D with UAV-based photogrammetry at Yasur Volcano - Vanuatu

    NASA Astrophysics Data System (ADS)

    Gomez, C.; Kennedy, B.

    2018-01-01

    As a precise volume of volcanic ash-plume is essential to understand the dynamic of gas emission, exchanges and the eruptive dynamics, we have measured in 3D using photogrammetry a small-size volcanic plume at the summit of Yasur Volcano, Vanuatu. The objective was to collect the altitude and planform shape of the plume as well as the vertical variations of the shape and size. To reach this objective, the authors have used the Structure from Motion photogrammetric method applied to a series of photographs captured in a very short period of time around and above the plume. A total of 146 photographs at 3000 × 4000 pixel were collected as well as the geolocation, the pitch, tilt and orientation of the cameras. The results revealed a "mushroom"-like shape of the plume with a narrow ascending column topped by a turbulent mixing zone. The volume of the plume was calculated to be 13,430 m3 ± 512 m3 (with the error being the cube of the linear error from the Ground Control Points) for a maximum height above the terrain of 63 m. The included error was also kept high because of the irregular distribution of the Ground Control Points that could not be collected in dangerous areas due to the ongoing eruption. Based on this research, it is therefore worth investigating the usage of multiple cameras to capture plumes in 3D over time and the method is also a good complement to the recent development of photogrammetry from space, which can tackle larger-scale eruption plumes.

  17. The Strategies to Homogenize PET/CT Metrics: The Case of Onco-Haematological Clinical Trials

    PubMed Central

    Chauvie, Stephane; Bergesio, Fabrizio

    2016-01-01

    Positron emission tomography (PET) has been a widely used tool in oncology for staging lymphomas for a long time. Recently, several large clinical trials demonstrated its utility in therapy management during treatment, paving the way to personalized medicine. In doing so, the traditional way of reporting PET based on the extent of disease has been complemented by a discrete scale that takes in account tumour metabolism. However, due to several technical, physical and biological limitations in the use of PET uptake as a biomarker, stringent rules have been used in clinical trials to reduce the errors in its evaluation. Within this manuscript we will describe shortly the evolution in PET reporting, examine the main errors in uptake measurement, and analyse which strategy the clinical trials applied to reduce them. PMID:28536393

  18. Complement Set Reference after Implicitly Small Quantities: An Event-Related Potentials Study

    ERIC Educational Resources Information Center

    Ingram, Joanne; Ferguson, Heather J.

    2018-01-01

    An anaphoric reference to the complement-set is a reference to the set that does not fulfil the predicate of the preceding sentence. Preferred reference to the complement-set has been found in eye movements when a character's implicit desire for a high amount has been denied using a negative emotion. We recorded event-related potentials to examine…

  19. Inactivation of complement by Loxosceles reclusa spider venom.

    PubMed

    Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T

    1979-07-01

    Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.

  20. A comprehensive strategy for the subtyping of patients with Fanconi anaemia: conclusions from the Spanish Fanconi Anemia Research Network.

    PubMed

    Antonio Casado, José; Callén, Elsa; Jacome, Ariana; Río, Paula; Castella, Maria; Lobitz, Stephan; Ferro, Teresa; Muñoz, Arturo; Sevilla, Julián; Cantalejo, Angeles; Cela, Elena; Cervera, José; Sánchez-Calero, Jesús; Badell, Isabel; Estella, Jesús; Dasí, Angeles; Olivé, Teresa; José Ortega, Juan; Rodriguez-Villa, Antonia; Tapia, María; Molinés, Antonio; Madero, Luis; Segovia, José C; Neveling, Kornelia; Kalb, Reinhard; Schindler, Detlev; Hanenberg, Helmut; Surrallés, Jordi; Bueren, Juan A

    2007-04-01

    Fanconi anaemia is a heterogeneous genetic disease, where 12 complementation groups have been already described. Identifying the complementation group in patients with Fanconi anaemia constitutes a direct procedure to confirm the diagnosis of the disease and is required for the recruitment of these patients in gene therapy trials. To determine the subtype of Fanconi anaemia patients in Spain, a Mediterranean country with a relatively high population (23%) of Fanconi anaemia patients belonging to the gypsy race. Most patients could be subtyped by retroviral complementation approaches in peripheral blood T cells, although some mosaic patients were subtyped in cultured skin fibroblasts. Other approaches, mainly based on western blot analysis and generation of nuclear RAD51 and FANCJ foci, were required for the subtyping of a minor number of patients. From a total of 125 patients included in the Registry of Fanconi Anaemia, samples from 102 patients were available for subtyping analyses. In 89 cases the subtype could be determined and in 8 cases exclusions of common complementation groups were made. Compared with other international studies, a skewed distribution of complementation groups was observed in Spain, where 80% of the families belonged to the Fanconi anaemia group A (FA-A) complementation group. The high proportion of gypsy patients, all of them FA-A, and the absence of patients with FA-C account for this characteristic distribution of complementation groups.

  1. Evasion of Complement-Mediated Lysis and Complement C3 Deposition Are Regulated by Francisella tularensis Lipopolysaccharide O Antigen1

    PubMed Central

    Clay, Corey D.; Soni, Shilpa; Gunn, John S.; Schlesinger, Larry S.

    2009-01-01

    The bacterium Francisella tularensis (Ft) is a potential weapon of bioterrorism when aerosolized. Macrophage infection is necessary for disease progression and efficient phagocytosis by human macrophages requires serum opsonization by complement. Microbial complement activation leads to surface deposition of a highly regulated protein complex resulting in opsonization or membrane lysis. The nature of complement component C3 deposition, i.e., C3b (opsonization and lysis) or C3bi (opsonization only) fragment deposition, is central to the outcome of activation. In this study, we examine the mechanisms of Ft resistance to complement-mediated lysis, C3 component deposition on the Ft surface, and complement activation. Upon incubation in fresh nonimmune human serum, Schu S4 (Ft subsp. tularensis), Fn (Ft subsp. novicida), and LVS (Ft subsp. holarctica live vaccine strain) were resistant to complement-mediated lysis, but LVSG and LVSR (LVS strains altered in surface carbohydrate structures) were susceptible. C3 deposition, however, occurred on all strains. Complement-susceptible strains had markedly increased C3 fragment deposition, including the persistent presence of C3b compared with C3bi, which indicates that C3b inactivation results in survival of complement-resistant strains. C1q, an essential component of the classical activation pathway, was necessary for lysis of complement-susceptible strains and optimal C3 deposition on all strains. Finally, use of Francisella LPS mutants confirmed O Ag as a major regulator of complement resistance. These data provide evidence that pathogenic Francisella activate complement, but are resistant to complement-mediated lysis in part due to limited C3 deposition, rapid conversion of surface-bound C3b to C3bi, and the presence of LPS O Ag. PMID:18832715

  2. Optimal economic order quantity for buyer-distributor-vendor supply chain with backlogging derived without derivatives

    NASA Astrophysics Data System (ADS)

    Teng, Jinn-Tsair; Cárdenas-Barrón, Leopoldo Eduardo; Lou, Kuo-Ren; Wee, Hui Ming

    2013-05-01

    In this article, we first complement an inappropriate mathematical error on the total cost in the previously published paper by Chung and Wee [2007, 'Optimal the Economic Lot Size of a Three-stage Supply Chain With Backlogging Derived Without Derivatives', European Journal of Operational Research, 183, 933-943] related to buyer-distributor-vendor three-stage supply chain with backlogging derived without derivatives. Then, an arithmetic-geometric inequality method is proposed not only to simplify the algebraic method of completing prefect squares, but also to complement their shortcomings. In addition, we provide a closed-form solution to integral number of deliveries for the distributor and the vendor without using complex derivatives. Furthermore, our method can solve many cases in which their method cannot, because they did not consider that a squared root of a negative number does not exist. Finally, we use some numerical examples to show that our proposed optimal solution is cheaper to operate than theirs.

  3. Different host complement systems and their interactions with saliva from Lutzomyia longipalpis (Diptera, Psychodidae) and Leishmania infantum promastigotes.

    PubMed

    Mendes-Sousa, Antonio Ferreira; Nascimento, Alexandre Alves Sousa; Queiroz, Daniel Costa; Vale, Vladimir Fazito; Fujiwara, Ricardo Toshio; Araújo, Ricardo Nascimento; Pereira, Marcos Horácio; Gontijo, Nelder Figueiredo

    2013-01-01

    Lutzomyia longipalpis is the vector of Leishmania infantum in the New World, and its saliva inhibits classical and alternative human complement system pathways. This inhibition is important in protecting the insect´s midgut from damage by the complement. L. longipalpis is a promiscuous blood feeder and must be protected against its host's complement. The objective of this study was to investigate the action of salivary complement inhibitors on the sera of different host species, such as dogs, guinea pigs, rats and chickens, at a pH of 7.4 (normal blood pH) and 8.15 (the midgut pH immediately after a blood meal). We also investigated the role of the chicken complement system in Leishmania clearance in the presence and absence of vector saliva. The saliva was capable of inhibiting classical pathways in dogs, guinea pigs and rats at both pHs. The alternative pathway was not inhibited except in dogs at a pH of 8.15. The chicken classical pathway was inhibited only by high concentrations of saliva and it was better inhibited by the midgut contents of sand flies. Neither the saliva nor the midgut contents had any effect on the avian alternative pathway. Fowl sera killed L. infantum promastigotes, even at a low concentration (2%), and the addition of L. longipalpis saliva did not protect the parasites. The high body temperature of chickens (40°C) had no effect on Leishmania viability during our assays. Salivary inhibitors act in a species-specific manner. It is important to determine their effects in the natural hosts of Leishmania infantum because they act on canid and rodent complements but not on chickens (which do not harbour the parasite). Moreover, we concluded that the avian complement system is the probable mechanism through which chickens eliminate Leishmania and that their high body temperature does not influence this parasite.

  4. Adjoint-Based Mesh Adaptation for the Sonic Boom Signature Loudness

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Sriram K.; Park, Michael A.

    2017-01-01

    The mesh adaptation functionality of FUN3D is utilized to obtain a mesh optimized to calculate sonic boom ground signature loudness. During this process, the coupling between the discrete-adjoints of the computational fluid dynamics tool FUN3D and the atmospheric propagation tool sBOOM is exploited to form the error estimate. This new mesh adaptation methodology will allow generation of suitable meshes adapted to reduce the estimated errors in the ground loudness, which is an optimization metric employed in supersonic aircraft design. This new output-based adaptation could allow new insights into meshing for sonic boom analysis and design, and complements existing output-based adaptation techniques such as adaptation to reduce estimated errors in off-body pressure functional. This effort could also have implications for other coupled multidisciplinary adjoint capabilities (e.g., aeroelasticity) as well as inclusion of propagation specific parameters such as prevailing winds or non-standard atmospheric conditions. Results are discussed in the context of existing methods and appropriate conclusions are drawn as to the efficacy and efficiency of the developed capability.

  5. Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network.

    PubMed

    Janet, Jon Paul; Chan, Lydia; Kulik, Heather J

    2018-03-01

    Machine learning (ML) has emerged as a powerful complement to simulation for materials discovery by reducing time for evaluation of energies and properties at accuracy competitive with first-principles methods. We use genetic algorithm (GA) optimization to discover unconventional spin-crossover complexes in combination with efficient scoring from an artificial neural network (ANN) that predicts spin-state splitting of inorganic complexes. We explore a compound space of over 5600 candidate materials derived from eight metal/oxidation state combinations and a 32-ligand pool. We introduce a strategy for error-aware ML-driven discovery by limiting how far the GA travels away from the nearest ANN training points while maximizing property (i.e., spin-splitting) fitness, leading to discovery of 80% of the leads from full chemical space enumeration. Over a 51-complex subset, average unsigned errors (4.5 kcal/mol) are close to the ANN's baseline 3 kcal/mol error. By obtaining leads from the trained ANN within seconds rather than days from a DFT-driven GA, this strategy demonstrates the power of ML for accelerating inorganic material discovery.

  6. Airborne Laser Altimetric Monitoring of the Rapid Evolution of Topography in the Long Valley, CA, Caldera

    NASA Technical Reports Server (NTRS)

    Rundle, John

    1998-01-01

    A consortium of investigators from several universities and Government agencies have conducted a series of aircraft topographic surveys over the Long Valley caldera, California. The region has a geologic history of extensive volcanism, and its central dome has recently been undergoing resurgent uplift episodes of up to 4 cm per year, a deformation rate that is still continuing. These surveys were conducted from the NASA WFF T39 jet aircraft, outfitted with a nadir-profiling altimetric laser (ATLAS), a GPS guidance system for in-flight precision navigation, two P-code GPS receivers, a Litton LTN92 inertial unit for attitude determination, and both video and still-frame aerial cameras. In addition, two base-station GPS receivers were deployed for post-flight differential navigation, complementing the permanent GPS station operated on the resurgent dome by JPL, and a kinematic automobile survey of roads crossing the area was conducted, thereby complementing the JPL kinematic GPS surveys of some of the same roads. Precision flying yielded multiple profiles along nearly identical paths, including crossing profiles over selected locations within the caidera and calibration flights over Mono Lake, and Lake Crowley. Data from the most recent survey in 1995 are at this time still being reduced, but the standard error of the mean is very low (< 3 mm), due to the high number of crossover points. We thus intend to evaluate the technique for measuring systematic changes in the dome height over time.

  7. The Breast Cancer DNA Interactome

    DTIC Science & Technology

    2014-12-01

    Research and Education 8. PERFORMING ORGANIZATION REPORT NUMBER Palo Alto, CA 94304 9 . SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10...act as a growth modulator (7- 9 ). While correlations between serum levels of IGFBP3 and breast cancer have yielded contradictory results (3-5, 10...receptor (EGFR), another breast cancer related gene. EGFR is located approximately 9 Mb from IGFBP3 on chromosome 7. To examine this long-range

  8. The TRiC/CCT chaperone is implicated in Alzheimer's disease based on patient GWAS and an RNAi screen in Aβ-expressing Caenorhabditis elegans.

    PubMed

    Khabirova, Eleonora; Moloney, Aileen; Marciniak, Stefan J; Williams, Julie; Lomas, David A; Oliver, Stephen G; Favrin, Giorgio; Sattelle, David B; Crowther, Damian C

    2014-01-01

    The human Aβ peptide causes progressive paralysis when expressed in the muscles of the nematode worm, C. elegans. We have exploited this model of Aβ toxicity by carrying out an RNAi screen to identify genes whose reduced expression modifies the severity of this locomotor phenotype. Our initial finding was that none of the human orthologues of these worm genes is identical with the genome-wide significant GWAS genes reported to date (the "white zone"); moreover there was no identity between worm screen hits and the longer list of GWAS genes which included those with borderline levels of significance (the "grey zone"). This indicates that Aβ toxicity should not be considered as equivalent to sporadic AD. To increase the sensitivity of our analysis, we then considered the physical interactors (+1 interactome) of the products of the genes in both the worm and the white+grey zone lists. When we consider these worm and GWAS gene lists we find that 4 of the 60 worm genes have a +1 interactome overlap that is larger than expected by chance. Two of these genes form a chaperonin complex, the third is closely associated with this complex and the fourth gene codes for actin, the major substrate of the same chaperonin.

  9. Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadi, Shahin; Gleich, David F.; Kolda, Tamara G.

    2015-11-01

    Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangularmore » AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.« less

  10. The RNA-binding protein LARP1 is a post-transcriptional regulator of survival and tumorigenesis in ovarian cancer

    PubMed Central

    Hopkins, Thomas G.; Mura, Manuela; Al-Ashtal, Hiba A.; Lahr, Roni M.; Abd-Latip, Normala; Sweeney, Katrina; Lu, Haonan; Weir, Justin; El-Bahrawy, Mona; Steel, Jennifer H.; Ghaem-Maghami, Sadaf; Aboagye, Eric O.; Berman, Andrea J.; Blagden, Sarah P.

    2016-01-01

    RNA-binding proteins (RBPs) are increasingly identified as post-transcriptional drivers of cancer progression. The RBP LARP1 is an mRNA stability regulator, and elevated expression of the protein in hepatocellular and lung cancers is correlated with adverse prognosis. LARP1 associates with an mRNA interactome that is enriched for oncogenic transcripts. Here we explore the role of LARP1 in epithelial ovarian cancer, a disease characterized by the rapid acquisition of resistance to chemotherapy through the induction of pro-survival signalling. We show, using ovarian cell lines and xenografts, that LARP1 is required for cancer cell survival and chemotherapy resistance. LARP1 promotes tumour formation in vivo and maintains cancer stem cell-like populations. Using transcriptomic analysis following LARP1 knockdown, cross-referenced against the LARP1 interactome, we identify BCL2 and BIK as LARP1 mRNA targets. We demonstrate that, through an interaction with the 3′ untranslated regions (3′ UTRs) of BCL2 and BIK, LARP1 stabilizes BCL2 but destabilizes BIK with the net effect of resisting apoptosis. Together, our data indicate that by differentially regulating the stability of a selection of mRNAs, LARP1 promotes ovarian cancer progression and chemotherapy resistance. PMID:26717985

  11. Interactome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperones.

    PubMed

    Watts, Joel C; Huo, Hairu; Bai, Yu; Ehsani, Sepehr; Jeon, Amy Hye Won; Won, Amy Hye; Shi, Tujin; Daude, Nathalie; Lau, Agnes; Young, Rebecca; Xu, Lei; Carlson, George A; Williams, David; Westaway, David; Schmitt-Ulms, Gerold

    2009-10-01

    The physiological environment which hosts the conformational conversion of the cellular prion protein (PrP(C)) to disease-associated isoforms has remained enigmatic. A quantitative investigation of the PrP(C) interactome was conducted in a cell culture model permissive to prion replication. To facilitate recognition of relevant interactors, the study was extended to Doppel (Prnd) and Shadoo (Sprn), two mammalian PrP(C) paralogs. Interestingly, this work not only established a similar physiological environment for the three prion protein family members in neuroblastoma cells, but also suggested direct interactions amongst them. Furthermore, multiple interactions between PrP(C) and the neural cell adhesion molecule, the laminin receptor precursor, Na/K ATPases and protein disulfide isomerases (PDI) were confirmed, thereby reconciling previously separate findings. Subsequent validation experiments established that interactions of PrP(C) with PDIs may extend beyond the endoplasmic reticulum and may play a hitherto unrecognized role in the accumulation of PrP(Sc). A simple hypothesis is presented which accounts for the majority of interactions observed in uninfected cells and suggests that PrP(C) organizes its molecular environment on account of its ability to bind to adhesion molecules harboring immunoglobulin-like domains, which in turn recognize oligomannose-bearing membrane proteins.

  12. A computational interactome for prioritizing genes associated with complex agronomic traits in rice (Oryza sativa).

    PubMed

    Liu, Shiwei; Liu, Yihui; Zhao, Jiawei; Cai, Shitao; Qian, Hongmei; Zuo, Kaijing; Zhao, Lingxia; Zhang, Lida

    2017-04-01

    Rice (Oryza sativa) is one of the most important staple foods for more than half of the global population. Many rice traits are quantitative, complex and controlled by multiple interacting genes. Thus, a full understanding of genetic relationships will be critical to systematically identify genes controlling agronomic traits. We developed a genome-wide rice protein-protein interaction network (RicePPINet, http://netbio.sjtu.edu.cn/riceppinet) using machine learning with structural relationship and functional information. RicePPINet contained 708 819 predicted interactions for 16 895 non-transposable element related proteins. The power of the network for discovering novel protein interactions was demonstrated through comparison with other publicly available protein-protein interaction (PPI) prediction methods, and by experimentally determined PPI data sets. Furthermore, global analysis of domain-mediated interactions revealed RicePPINet accurately reflects PPIs at the domain level. Our studies showed the efficiency of the RicePPINet-based method in prioritizing candidate genes involved in complex agronomic traits, such as disease resistance and drought tolerance, was approximately 2-11 times better than random prediction. RicePPINet provides an expanded landscape of computational interactome for the genetic dissection of agronomically important traits in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. DPDR-CPI, a server that predicts Drug Positioning and Drug Repositioning via Chemical-Protein Interactome.

    PubMed

    Luo, Heng; Zhang, Ping; Cao, Xi Hang; Du, Dizheng; Ye, Hao; Huang, Hui; Li, Can; Qin, Shengying; Wan, Chunling; Shi, Leming; He, Lin; Yang, Lun

    2016-11-02

    The cost of developing a new drug has increased sharply over the past years. To ensure a reasonable return-on-investment, it is useful for drug discovery researchers in both industry and academia to identify all the possible indications for early pipeline molecules. For the first time, we propose the term computational "drug candidate positioning" or "drug positioning", to describe the above process. It is distinct from drug repositioning, which identifies new uses for existing drugs and maximizes their value. Since many therapeutic effects are mediated by unexpected drug-protein interactions, it is reasonable to analyze the chemical-protein interactome (CPI) profiles to predict indications. Here we introduce the server DPDR-CPI, which can make real-time predictions based only on the structure of the small molecule. When a user submits a molecule, the server will dock it across 611 human proteins, generating a CPI profile of features that can be used for predictions. It can suggest the likelihood of relevance of the input molecule towards ~1,000 human diseases with top predictions listed. DPDR-CPI achieved an overall AUROC of 0.78 during 10-fold cross-validations and AUROC of 0.76 for the independent validation. The server is freely accessible via http://cpi.bio-x.cn/dpdr/.

  14. Examining the Interactome of Huperzine A by Magnetic Biopanning

    PubMed Central

    Guo, Wei; Liu, Shupeng; Peng, Jinliang; Wei, Xiaohui; Sun, Ye; Qiu, Yangsheng; Gao, Guangwei; Wang, Peng; Xu, Yuhong

    2012-01-01

    Huperzine A is a bioactive compound derived from traditional Chinese medicine plant Qian Ceng Ta (Huperzia serrata), and was found to have multiple neuroprotective effects. In addition to being a potent acetylcholinesterase inhibitor, it was thought to act through other mechanisms such as antioxidation, antiapoptosis, etc. However, the molecular targets involved with these mechanisms were not identified. In this study, we attempted to exam the interactome of Huperzine A using a cDNA phage display library and also mammalian brain tissue extracts. The drugs were chemically linked on the surface of magnetic particles and the interactive phages or proteins were collected and analyzed. Among the various cDNA expressing phages selected, one was identified to encode the mitochondria NADH dehydrogenase subunit 1. Specific bindings between the drug and the target phages and target proteins were confirmed. Another enriched phage clone was identified as mitochondria ATP synthase, which was also panned out from the proteome of mouse brain tissue lysate. These data indicated the possible involvement of mitochondrial respiratory chain matrix enzymes in Huperzine A's pharmacological effects. Such involvement had been suggested by previous studies based on enzyme activity changes. Our data supported the new mechanism. Overall we demonstrated the feasibility of using magnetic biopanning as a simple and viable method for investigating the complex molecular mechanisms of bioactive molecules. PMID:22615909

  15. The Co-Metabolism within the Gut-Brain Metabolic Interaction: Potential Targets for Drug Treatment and Design.

    PubMed

    Obrenovich, Mark; Flückiger, Rudolf; Sykes, Lorraine; Donskey, Curtis

    2016-01-01

    We know that within the complex mammalian gut is any number of metabolic biomes. The gut has been sometimes called the "second brain" within the "gut-brain axis". A more informative term would be the gut-brain metabolic interactome, which is coined here to underscore the relationship between the digestive system and cognitive function or dysfunction as the case may be. Co-metabolism between the host and the intestinal microbiota is essential for life's processes. How diet, lifestyle, antibiotics and other factors shape the gut microbiome constitutes a rapidly growing area of research. Conversely, the gut microbiome also affects mammalian systems. Metabolites of the gut-brain axis are potential targets for treatment and drug design since the interaction or biochemical interplay results in net metabolite production or end-products with either positive or negative effects on human health. This review explores the gut-brain metabolic interactome, with particular emphasis on drug design and treatment strategies and how commensal bacteria or their disruption lead to dysbiosis and the effect this has on neurochemistry. Increasing data indicate that the intestinal microbiome can affect neurobiology, from mental and even behavioral health to memory, depression, mood, anxiety, obesity, cravings and even the creation and maintenance of the blood brain barrier.

  16. Proteomic analyses of signalling complexes associated with receptor tyrosine kinase identify novel members of fibroblast growth factor receptor 3 interactome.

    PubMed

    Balek, Lukas; Nemec, Pavel; Konik, Peter; Kunova Bosakova, Michaela; Varecha, Miroslav; Gudernova, Iva; Medalova, Jirina; Krakow, Deborah; Krejci, Pavel

    2018-01-01

    Receptor tyrosine kinases (RTKs) form multiprotein complexes that initiate and propagate intracellular signals and determine the RTK-specific signalling patterns. Unravelling the full complexity of protein interactions within the RTK-associated complexes is essential for understanding of RTK functions, yet it remains an understudied area of cell biology. We describe a comprehensive approach to characterize RTK interactome. A single tag immunoprecipitation and phosphotyrosine protein isolation followed by mass-spectrometry was used to identify proteins interacting with fibroblast growth factor receptor 3 (FGFR3). A total of 32 experiments were carried out in two different cell types and identified 66 proteins out of which only 20 (30.3%) proteins were already known FGFR interactors. Using co-immunoprecipitations, we validated FGFR3 interaction with adapter protein STAM1, transcriptional regulator SHOX2, translation elongation factor eEF1A1, serine/threonine kinases ICK, MAK and CCRK, and inositol phosphatase SHIP2. We show that unappreciated signalling mediators exist for well-studied RTKs, such as FGFR3, and may be identified via proteomic approaches described here. These approaches are easily adaptable to other RTKs, enabling identification of novel signalling mediators for majority of the known human RTKs. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Rab-binding Profiles of Bacterial Virulence Factors during Infection.

    PubMed

    So, Ernest C; Schroeder, Gunnar N; Carson, Danielle; Mattheis, Corinna; Mousnier, Aurélie; Broncel, Malgorzata; Tate, Edward W; Frankel, Gad

    2016-03-11

    Legionella pneumophila, the causative agent of Legionnaire's disease, uses its type IV secretion system to translocate over 300 effector proteins into host cells. These effectors subvert host cell signaling pathways to ensure bacterial proliferation. Despite their importance for pathogenesis, the roles of most of the effectors are yet to be characterized. Key to understanding the function of effectors is the identification of host proteins they bind during infection. We previously developed a novel tandem-affinity purification (TAP) approach using hexahistidine and BirA-specific biotinylation tags for isolating translocated effector complexes from infected cells whose composition were subsequently deciphered by mass spectrometry. Here we further advanced the workflow for the TAP approach and determined the infection-dependent interactomes of the effectors SidM and LidA, which were previously reported to promiscuously bind multiple Rab GTPases in vitro. In this study we defined a stringent subset of Rab GTPases targeted by SidM and LidA during infection, comprising of Rab1A, 1B, 6, and 10; in addition, LidA targets Rab14 and 18. Taken together, this study illustrates the power of this approach to profile the intracellular interactomes of bacterial effectors during infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Submicron multi-bunch BPM for CLIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmickler, H.; Soby, L.; /CERN

    2010-08-01

    A common-mode free cavity BPM is currently under development at Fermilab within the ILC-CLIC collaboration. This monitor will be operated in a CLIC Main Linac multi-bunch regime, and needs to provide both, high spatial and time resolution. We present the design concept, numerical analysis, investigation on tolerances and error effects, as well as simulations on the signal response applying a multi-bunch stimulus. The proposed CERN linear collider (CLIC) requires a very precise measurement of beam trajectory to preserve the low emittance when transporting the beam through the Main Linac. An energy chirp within the bunch train will be applied tomore » measure and minimize the dispersion effects, which require high resolution (in both, time and space) beam position monitors (BPM) along the beam-line. We propose a low-Q waveguide loaded TM{sub 110} dipole mode cavity as BPM, which is complemented by a TM{sub 010} monopole mode resonator of same resonant frequency for reference signal purposes. The design is based on a well known TM{sub 110} selective mode coupling idea.« less

  19. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  20. A comparison of five serological tests for bovine brucellosis.

    PubMed Central

    Dohoo, I R; Wright, P F; Ruckerbauer, G M; Samagh, B S; Robertson, F J; Forbes, L B

    1986-01-01

    Five serological assays: the buffered plate antigen test, the standard tube agglutination test, the complement fixation test, the hemolysis-in-gel test and the indirect enzyme immunoassay were diagnostically evaluated. Test data consisted of results from 1208 cattle in brucellosis-free herds, 1578 cattle in reactor herds of unknown infection status and 174 cattle from which Brucella abortus had been cultured. The complement fixation test had the highest specificity in both nonvaccinated and vaccinated cattle. The indirect enzyme immunoassay, if interpreted at a high threshold, also exhibited a high specificity in both groups of cattle. The hemolysis-in-gel test had a very high specificity when used in nonvaccinated cattle but quite a low specificity among vaccinates. With the exception of the complement fixation test, all tests had high sensitivities if interpreted at the minimum threshold. However, the sensitivities of the standard tube agglutination test and indirect enzyme immunoassay, when interpreted at high thresholds were comparable to that of the complement fixation test. A kappa statistic was used to measure the agreement between the various tests. In general the kappa statistics were quite low, suggesting that the various tests may detect different antibody isotypes. There was however, good agreement between the buffered plate antigen test and standard tube agglutination test (the two agglutination tests evaluated) and between the complement fixation test and the indirect enzyme immunoassay when interpreted at a high threshold. With the exception of the buffered plate antigen test, all tests were evaluated as confirmatory tests by estimating their specificity and sensitivity on screening-test positive samples.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3539295

  1. An Induced Pluripotent Stem Cell Patient Specific Model of Complement Factor H (Y402H) Polymorphism Displays Characteristic Features of Age-Related Macular Degeneration and Indicates a Beneficial Role for UV Light Exposure.

    PubMed

    Hallam, Dean; Collin, Joseph; Bojic, Sanja; Chichagova, Valeria; Buskin, Adriana; Xu, Yaobo; Lafage, Lucia; Otten, Elsje G; Anyfantis, George; Mellough, Carla; Przyborski, Stefan; Alharthi, Sameer; Korolchuk, Viktor; Lotery, Andrew; Saretzki, Gabriele; McKibbin, Martin; Armstrong, Lyle; Steel, David; Kavanagh, David; Lako, Majlinda

    2017-11-01

    Age-related macular degeneration (AMD) is the most common cause of blindness, accounting for 8.7% of all blindness globally. Vision loss is caused ultimately by apoptosis of the retinal pigment epithelium (RPE) and overlying photoreceptors. Treatments are evolving for the wet form of the disease; however, these do not exist for the dry form. Complement factor H polymorphism in exon 9 (Y402H) has shown a strong association with susceptibility to AMD resulting in complement activation, recruitment of phagocytes, RPE damage, and visual decline. We have derived and characterized induced pluripotent stem cell (iPSC) lines from two subjects without AMD and low-risk genotype and two patients with advanced AMD and high-risk genotype and generated RPE cells that show local secretion of several proteins involved in the complement pathway including factor H, factor I, and factor H-like protein 1. The iPSC RPE cells derived from high-risk patients mimic several key features of AMD including increased inflammation and cellular stress, accumulation of lipid droplets, impaired autophagy, and deposition of "drüsen"-like deposits. The low- and high-risk RPE cells respond differently to intermittent exposure to UV light, which leads to an improvement in cellular and functional phenotype only in the high-risk AMD-RPE cells. Taken together, our data indicate that the patient specific iPSC model provides a robust platform for understanding the role of complement activation in AMD, evaluating new therapies based on complement modulation and drug testing. Stem Cells 2017;35:2305-2320. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  2. A High Performance Piezoelectric Sensor for Dynamic Force Monitoring of Landslide

    PubMed Central

    Li, Ming; Cheng, Wei; Chen, Jiangpan; Xie, Ruili; Li, Xiongfei

    2017-01-01

    Due to the increasing influence of human engineering activities, it is important to monitor the transient disturbance during the evolution process of landslide. For this purpose, a high-performance piezoelectric sensor is presented in this paper. To adapt the high static and dynamic stress environment in slope engineering, two key techniques, namely, the self-structure pressure distribution method (SSPDM) and the capacitive circuit voltage distribution method (CCVDM) are employed in the design of the sensor. The SSPDM can greatly improve the compressive capacity and the CCVDM can quantitatively decrease the high direct response voltage. Then, the calibration experiments are conducted via the independently invented static and transient mechanism since the conventional testing machines cannot match the calibration requirements. The sensitivity coefficient is obtained and the results reveal that the sensor has the characteristics of high compressive capacity, stable sensitivities under different static preload levels and wide-range dynamic measuring linearity. Finally, to reduce the measuring error caused by charge leakage of the piezoelectric element, a low-frequency correction method is proposed and experimental verified. Therefore, with the satisfactory static and dynamic properties and the improving low-frequency measuring reliability, the sensor can complement dynamic monitoring capability of the existing landslide monitoring and forecasting system. PMID:28218673

  3. Assessment of Complement Activation by Nanoparticles: Development of a SPR Based Method and Comparison with Current High Throughput Methods.

    PubMed

    Coty, Jean-Baptiste; Noiray, Magali; Vauthier, Christine

    2018-04-26

    A Surface Plasmon Resonance chip (SPR) was developed to study the activation of complement system triggered by nanomaterials in contact with human serum, which is an important concern today to warrant safety of nanomedicines. The developed chip was tested for its specificity in complex medium and its longevity of use. It was then employed to assess the release of complement fragments upon incubation of nanoparticles in serum. A comparison was made with other current methods assessing complement activation (μC-IE, ELISA). The SPR chip was found to give a consistent response for C3a release upon activation by nanoparticles. Results were similar to those obtained by μC-IE. However, ELISA detection of iC3b fragments showed an explained high non-specific background. The impact of sample preparation preceding the analysis was assessed with the newly develop SPR method. The removal of nanoparticles before analysis showed an important modification in the obtained response, possibly leading to false negative results. The SPR chip developed in this work allows for an automated assessment of complement activation triggered by nanoparticles with possibility of multiplexed analysis. The design of the chip proved to give consistent results of complement activation by nanoparticles.

  4. Progress and trends in complement therapeutics.

    PubMed

    Ricklin, Daniel; Lambris, John D

    2013-01-01

    The past few years have proven to be a highly successful and exciting period for the field of complement-directed drug discovery and development. Driven by promising experiences with the first marketed complement drugs, increased knowledge about the involvement of complement in health and disease, and improvements in structural and analytical techniques as well as animal models of disease, the field has seen a surge in creative approaches to therapeutically intervene at various stages of the cascade. An impressive panel of compounds that show promise in clinical trials is meanwhile being lined up in the pipelines of both small biotechnology and big pharmaceutical companies. Yet with this new focus on complement-targeted therapeutics, important questions concerning target selection, point and length of intervention, safety, and drug delivery emerge. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases and affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This chapter highlights the key changes in the field that shape our current perception of complement-targeted drugs and provides a brief overview of recent strategies and emerging trends. Selected examples of complement-related diseases and inhibitor classes are highlighted to illustrate the diversity and creativity in field.

  5. Progress and Trends in Complement Therapeutics.

    PubMed

    Ricklin, Daniel; Lambris, John D

    2013-01-01

    The past few years have proven to be a highly successful and exciting period for the field of complement-directed drug discovery and development. Driven by promising experiences with the first marketed complement drugs, increased knowledge about the involvement of complement in health and disease, and improvements in structural and analytical techniques as well as animal models of disease, the field has seen a surge in creative approaches to therapeutically intervene at various stages of the cascade. An impressive panel of compounds that show promise in clinical trials is meanwhile being lined up in the pipelines of both small biotechnology and big pharmaceutical companies. Yet with this new focus on complement-targeted therapeutics, important questions concerning target selection, point and length of intervention, safety, and drug delivery emerge. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases and affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This chapter highlights the key changes in the field that shape our current perception of complement-targeted drugs and provides a brief overview of recent strategies and emerging trends. Selected examples of complement-related diseases and inhibitor classes are highlighted to illustrate the diversity and creativity in field.

  6. A comprehensive strategy for the subtyping of patients with Fanconi anaemia: conclusions from the Spanish Fanconi Anemia Research Network

    PubMed Central

    Casado, José Antonio; Callén, Elsa; Jacome, Ariana; Río, Paula; Castella, Maria; Lobitz, Stephan; Ferro, Teresa; Muñoz, Arturo; Sevilla, Julián; Cantalejo, Ángeles; Cela, Elena; Cervera, José; Sánchez‐Calero, Jesús; Badell, Isabel; Estella, Jesús; Dasí, Ángeles; Olivé, Teresa; Ortega, Juan José; Rodriguez‐Villa, Antonia; Tapia, María; Molinés, Antonio; Madero, Luis; Segovia, José C; Neveling, Kornelia; Kalb, Reinhard; Schindler, Detlev; Hanenberg, Helmut; Surrallés, Jordi; Bueren, Juan A

    2007-01-01

    Background Fanconi anaemia is a heterogeneous genetic disease, where 12 complementation groups have been already described. Identifying the complementation group in patients with Fanconi anaemia constitutes a direct procedure to confirm the diagnosis of the disease and is required for the recruitment of these patients in gene therapy trials. Objective To determine the subtype of Fanconi anaemia patients in Spain, a Mediterranean country with a relatively high population (23%) of Fanconi anaemia patients belonging to the gypsy race. Methods Most patients could be subtyped by retroviral complementation approaches in peripheral blood T cells, although some mosaic patients were subtyped in cultured skin fibroblasts. Other approaches, mainly based on western blot analysis and generation of nuclear RAD51 and FANCJ foci, were required for the subtyping of a minor number of patients. Results and conclusions From a total of 125 patients included in the Registry of Fanconi Anaemia, samples from 102 patients were available for subtyping analyses. In 89 cases the subtype could be determined and in 8 cases exclusions of common complementation groups were made. Compared with other international studies, a skewed distribution of complementation groups was observed in Spain, where 80% of the families belonged to the Fanconi anaemia group A (FA‐A) complementation group. The high proportion of gypsy patients, all of them FA‐A, and the absence of patients with FA‐C account for this characteristic distribution of complementation groups. PMID:17105750

  7. Quantifying light exposure patterns in young adult students

    NASA Astrophysics Data System (ADS)

    Alvarez, Amanda A.; Wildsoet, Christine F.

    2013-08-01

    Exposure to bright light appears to be protective against myopia in both animals (chicks, monkeys) and children, but quantitative data on human light exposure are limited. In this study, we report on a technique for quantifying light exposure using wearable sensors. Twenty-seven young adult subjects wore a light sensor continuously for two weeks during one of three seasons, and also completed questionnaires about their visual activities. Light data were analyzed with respect to refractive error and season, and the objective sensor data were compared with subjects' estimates of time spent indoors and outdoors. Subjects' estimates of time spent indoors and outdoors were in poor agreement with durations reported by the sensor data. The results of questionnaire-based studies of light exposure should thus be interpreted with caution. The role of light in refractive error development should be investigated using multiple methods such as sensors to complement questionnaires.

  8. Quantifying light exposure patterns in young adult students

    PubMed Central

    Alvarez, Amanda A.; Wildsoet, Christine F.

    2014-01-01

    Exposure to bright light appears to be protective against myopia in both animals (chicks, monkeys) and children, but quantitative data on human light exposure are limited. In this study, we report on a technique for quantifying light exposure using wearable sensors. Twenty-seven young adult subjects wore a light sensor continuously for two weeks during one of three seasons, and also completed questionnaires about their visual activities. Light data were analyzed with respect to refractive error and season, and the objective sensor data were compared with subjects’ estimates of time spent indoors and outdoors. Subjects’ estimates of time spent indoors and outdoors were in poor agreement with durations reported by the sensor data. The results of questionnaire-based studies of light exposure should thus be interpreted with caution. The role of light in refractive error development should be investigated using multiple methods such as sensors to complement questionnaires. PMID:25342873

  9. [Does clinical risk management require a structured conflict management?].

    PubMed

    Neumann, Stefan

    2015-01-01

    A key element of clinical risk management is the analysis of errors causing near misses or patient damage. After analyzing the causes and circumstances, measures for process improvement have to be taken. Process management, human resource development and other established methods are used. If an interpersonal conflict is a contributory factor to the error, there is usually no structured conflict management available which includes selection criteria for various methods of conflict processing. The European University Viadrina in Frankfurt (Oder) has created a process model for introducing a structured conflict management system which is suitable for hospitals and could fill the gap in the methodological spectrum of clinical risk management. There is initial evidence that a structured conflict management reduces staff fluctuation and hidden conflict costs. This article should be understood as an impulse for discussion on to what extent the range of methods of clinical risk management should be complemented by conflict management.

  10. Feedback Error Learning Controller for Functional Electrical Stimulation Assistance in a Hybrid Robotic System for Reaching Rehabilitation

    PubMed Central

    Resquín, Francisco; Gonzalez-Vargas, Jose; Ibáñez, Jaime; Brunetti, Fernando; Pons, José Luis

    2016-01-01

    Hybrid robotic systems represent a novel research field, where functional electrical stimulation (FES) is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL) control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model. PMID:27990245

  11. Quantifying domain-ligand affinities and specificities by high-throughput holdup assay

    PubMed Central

    Vincentelli, Renaud; Luck, Katja; Poirson, Juline; Polanowska, Jolanta; Abdat, Julie; Blémont, Marilyne; Turchetto, Jeremy; Iv, François; Ricquier, Kevin; Straub, Marie-Laure; Forster, Anne; Cassonnet, Patricia; Borg, Jean-Paul; Jacob, Yves; Masson, Murielle; Nominé, Yves; Reboul, Jérôme; Wolff, Nicolas; Charbonnier, Sebastian; Travé, Gilles

    2015-01-01

    Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this aim, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to a thousand domain-motif equilibrium binding affinities per day. Extracts of overexpressed domains are incubated with peptide-coated resins and subjected to filtration. Binding affinities are deduced from microfluidic capillary electrophoresis of flow-throughs. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from Human Papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human PDZome. We obtained exquisite sequence-dependent binding profiles, describing quantitatively the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has a wide potential for quantifying the specificities of interactomes. PMID:26053890

  12. Enabling Large-Scale Design, Synthesis and Validation of Small Molecule Protein-Protein Antagonists

    PubMed Central

    Koes, David; Khoury, Kareem; Huang, Yijun; Wang, Wei; Bista, Michal; Popowicz, Grzegorz M.; Wolf, Siglinde; Holak, Tad A.; Dömling, Alexander; Camacho, Carlos J.

    2012-01-01

    Although there is no shortage of potential drug targets, there are only a handful known low-molecular-weight inhibitors of protein-protein interactions (PPIs). One problem is that current efforts are dominated by low-yield high-throughput screening, whose rigid framework is not suitable for the diverse chemotypes present in PPIs. Here, we developed a novel pharmacophore-based interactive screening technology that builds on the role anchor residues, or deeply buried hot spots, have in PPIs, and redesigns these entry points with anchor-biased virtual multicomponent reactions, delivering tens of millions of readily synthesizable novel compounds. Application of this approach to the MDM2/p53 cancer target led to high hit rates, resulting in a large and diverse set of confirmed inhibitors, and co-crystal structures validate the designed compounds. Our unique open-access technology promises to expand chemical space and the exploration of the human interactome by leveraging in-house small-scale assays and user-friendly chemistry to rationally design ligands for PPIs with known structure. PMID:22427896

  13. Computer applications making rapid advances in high throughput microbial proteomics (HTMP).

    PubMed

    Anandkumar, Balakrishna; Haga, Steve W; Wu, Hui-Fen

    2014-02-01

    The last few decades have seen the rise of widely-available proteomics tools. From new data acquisition devices, such as MALDI-MS and 2DE to new database searching softwares, these new products have paved the way for high throughput microbial proteomics (HTMP). These tools are enabling researchers to gain new insights into microbial metabolism, and are opening up new areas of study, such as protein-protein interactions (interactomics) discovery. Computer software is a key part of these emerging fields. This current review considers: 1) software tools for identifying the proteome, such as MASCOT or PDQuest, 2) online databases of proteomes, such as SWISS-PROT, Proteome Web, or the Proteomics Facility of the Pathogen Functional Genomics Resource Center, and 3) software tools for applying proteomic data, such as PSI-BLAST or VESPA. These tools allow for research in network biology, protein identification, functional annotation, target identification/validation, protein expression, protein structural analysis, metabolic pathway engineering and drug discovery.

  14. M-Finder: Uncovering functionally associated proteins from interactome data integrated with GO annotations

    PubMed Central

    2013-01-01

    Background Protein-protein interactions (PPIs) play a key role in understanding the mechanisms of cellular processes. The availability of interactome data has catalyzed the development of computational approaches to elucidate functional behaviors of proteins on a system level. Gene Ontology (GO) and its annotations are a significant resource for functional characterization of proteins. Because of wide coverage, GO data have often been adopted as a benchmark for protein function prediction on the genomic scale. Results We propose a computational approach, called M-Finder, for functional association pattern mining. This method employs semantic analytics to integrate the genome-wide PPIs with GO data. We also introduce an interactive web application tool that visualizes a functional association network linked to a protein specified by a user. The proposed approach comprises two major components. First, the PPIs that have been generated by high-throughput methods are weighted in terms of their functional consistency using GO and its annotations. We assess two advanced semantic similarity metrics which quantify the functional association level of each interacting protein pair. We demonstrate that these measures outperform the other existing methods by evaluating their agreement to other biological features, such as sequence similarity, the presence of common Pfam domains, and core PPIs. Second, the information flow-based algorithm is employed to discover a set of proteins functionally associated with the protein in a query and their links efficiently. This algorithm reconstructs a functional association network of the query protein. The output network size can be flexibly determined by parameters. Conclusions M-Finder provides a useful framework to investigate functional association patterns with any protein. This software will also allow users to perform further systematic analysis of a set of proteins for any specific function. It is available online at http://bionet.ecs.baylor.edu/mfinder PMID:24565382

  15. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism

    PubMed Central

    Miraoui, Hichem; Dwyer, Andrew A.; Sykiotis, Gerasimos P.; Plummer, Lacey; Chung, Wilson; Feng, Bihua; Beenken, Andrew; Clarke, Jeff; Pers, Tune H.; Dworzynski, Piotr; Keefe, Kimberley; Niedziela, Marek; Raivio, Taneli; Crowley, William F.; Seminara, Stephanie B.; Quinton, Richard; Hughes, Virginia A.; Kumanov, Philip; Young, Jacques; Yialamas, Maria A.; Hall, Janet E.; Van Vliet, Guy; Chanoine, Jean-Pierre; Rubenstein, John; Mohammadi, Moosa; Tsai, Pei-San; Sidis, Yisrael; Lage, Kasper; Pitteloud, Nelly

    2013-01-01

    Congenital hypogonadotropic hypogonadism (CHH) and its anosmia-associated form (Kallmann syndrome [KS]) are genetically heterogeneous. Among the >15 genes implicated in these conditions, mutations in FGF8 and FGFR1 account for ∼12% of cases; notably, KAL1 and HS6ST1 are also involved in FGFR1 signaling and can be mutated in CHH. We therefore hypothesized that mutations in genes encoding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations. Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members of the so-called “FGF8 synexpression” group and (2) validate the ability of a bioinformatics algorithm on the basis of protein-protein interactome data (interactome-based affiliation scoring [IBAS]) to identify high-quality candidate genes. On the basis of sequence homology, expression, and structural and functional data, seven genes were selected and sequenced in 386 unrelated CHH individuals and 155 controls. Except for FGF18 and SPRY2, all other genes were found to be mutated in CHH individuals: FGF17 (n = 3 individuals), IL17RD (n = 8), DUSP6 (n = 5), SPRY4 (n = 14), and FLRT3 (n = 3). Independently, IBAS predicted FGF17 and IL17RD as the two top candidates in the entire proteome on the basis of a statistical test of their protein-protein interaction patterns to proteins known to be altered in CHH. Most of the FGF17 and IL17RD mutations altered protein function in vitro. IL17RD mutations were found only in KS individuals and were strongly linked to hearing loss (6/8 individuals). Mutations in genes encoding components of the FGF pathway are associated with complex modes of CHH inheritance and act primarily as contributors to an oligogenic genetic architecture underlying CHH. PMID:23643382

  16. Immunological network signatures of cancer progression and survival

    PubMed Central

    2011-01-01

    Background The immune contribution to cancer progression is complex and difficult to characterize. For example in tumors, immune gene expression is detected from the combination of normal, tumor and immune cells in the tumor microenvironment. Profiling the immune component of tumors may facilitate the characterization of the poorly understood roles immunity plays in cancer progression. However, the current approaches to analyze the immune component of a tumor rely on incomplete identification of immune factors. Methods To facilitate a more comprehensive approach, we created a ranked immunological relevance score for all human genes, developed using a novel strategy that combines text mining and information theory. We used this score to assign an immunological grade to gene expression profiles, and thereby quantify the immunological component of tumors. This immunological relevance score was benchmarked against existing manually curated immune resources as well as high-throughput studies. To further characterize immunological relevance for genes, the relevance score was charted against both the human interactome and cancer information, forming an expanded interactome landscape of tumor immunity. We applied this approach to expression profiles in melanomas, thus identifying and grading their immunological components, followed by identification of their associated protein interactions. Results The power of this strategy was demonstrated by the observation of early activation of the adaptive immune response and the diversity of the immune component during melanoma progression. Furthermore, the genome-wide immunological relevance score classified melanoma patient groups, whose immunological grade correlated with clinical features, such as immune phenotypes and survival. Conclusions The assignment of a ranked immunological relevance score to all human genes extends the content of existing immune gene resources and enriches our understanding of immune involvement in complex biological networks. The application of this approach to tumor immunity represents an automated systems strategy that quantifies the immunological component in complex disease. In so doing, it stratifies patients according to their immune profiles, which may lead to effective computational prognostic and clinical guides. PMID:21453479

  17. The Ties That Bind: Mapping the Dynamic Enhancer-Promoter Interactome.

    PubMed

    Spurrell, Cailyn H; Dickel, Diane E; Visel, Axel

    2016-11-17

    Coupling chromosome conformation capture to molecular enrichment for promoter-containing DNA fragments enables the systematic mapping of interactions between individual distal regulatory sequences and their target genes. In this Minireview, we describe recent progress in the application of this technique and related complementary approaches to gain insight into the lineage- and cell-type-specific dynamics of interactions between regulators and gene promoters. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria.

    PubMed

    Boyle, Michelle J; Reiling, Linda; Feng, Gaoqian; Langer, Christine; Osier, Faith H; Aspeling-Jones, Harvey; Cheng, Yik Sheng; Stubbs, Janine; Tetteh, Kevin K A; Conway, David J; McCarthy, James S; Muller, Ivo; Marsh, Kevin; Anders, Robin F; Beeson, James G

    2015-03-17

    Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C') inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C' inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Serological and Genetic Evidence for Altered Complement System Functionality in Systemic Lupus Erythematosus: Findings of the GAPAID Consortium.

    PubMed

    Prechl, József; Papp, Krisztián; Hérincs, Zoltán; Péterfy, Hajna; Lóránd, Veronika; Szittner, Zoltán; Estonba, Andone; Rovero, Paolo; Paolini, Ilaria; Del Amo, Jokin; Uribarri, Maria; Alcaro, Maria Claudia; Ruiz-Larrañaga, Otsanda; Migliorini, Paola; Czirják, László

    2016-01-01

    Systemic lupus erythematosus is a chronic autoimmune disease with multifactorial ethiopathogenesis. The complement system is involved in both the early and late stages of disease development and organ damage. To better understand autoantibody mediated complement consumption we examined ex vivo immune complex formation on autoantigen arrays. We recruited patients with SLE (n = 211), with other systemic autoimmune diseases (n = 65) and non-autoimmune control subjects (n = 149). Standard clinical and laboratory data were collected and serum complement levels were determined. The genotype of SNP rs1143679 in the ITGAM gene was also determined. Ex vivo formation of immune complexes, with respect to IgM, IgG, complement C4 and C3 binding, was examined using a functional immunoassay on autoantigen microarray comprising nucleic acids, proteins and lipids. Complement consumption of nucleic acids increased upon binding of IgM and IgG even when serum complement levels were decreased due to consumption in SLE patients. A negative correlation between serum complement levels and ex vivo complement deposition on nucleic acid autoantigens is demonstrated. On the contrary, complement deposition on tested protein and lipid autoantigens showed positive correlation with C4 levels. Genetic analysis revealed that the non-synonymous variant rs1143679 in complement receptor type 3 is associated with an increased production of anti-dsDNA IgG antibodies. Notwithstanding, homozygous carriers of the previously reported susceptible allele (AA) had lower levels of dsDNA specific IgM among SLE patients. Both the non-synonymous variant rs1143679 and the high ratio of nucleic acid specific IgG/IgM were associated with multiple organ involvement. In summary, secondary complement deficiency in SLE does not impair opsonization of nucleic-acid-containing autoantigens but does affect other antigens and potentially other complement dependent processes. Dysfunction of the receptor recognizing complement opsonized immune complexes promotes the development of class-switched autoantibodies targeting nucleic acids.

  20. Ectromelia virus inhibitor of complement enzymes protects intracellular mature virus and infected cells from mouse complement.

    PubMed

    Moulton, Elizabeth A; Bertram, Paula; Chen, Nanhai; Buller, R Mark L; Atkinson, John P

    2010-09-01

    Poxviruses produce complement regulatory proteins to subvert the host's immune response. Similar to the human pathogen variola virus, ectromelia virus has a limited host range and provides a mouse model where the virus and the host's immune response have coevolved. We previously demonstrated that multiple components (C3, C4, and factor B) of the classical and alternative pathways are required to survive ectromelia virus infection. Complement's role in the innate and adaptive immune responses likely drove the evolution of a virus-encoded virulence factor that regulates complement activation. In this study, we characterized the ectromelia virus inhibitor of complement enzymes (EMICE). Recombinant EMICE regulated complement activation on the surface of CHO cells, and it protected complement-sensitive intracellular mature virions (IMV) from neutralization in vitro. It accomplished this by serving as a cofactor for the inactivation of C3b and C4b and by dissociating the catalytic domain of the classical pathway C3 convertase. Infected murine cells initiated synthesis of EMICE within 4 to 6 h postinoculation. The levels were sufficient in the supernatant to protect the IMV, upon release, from complement-mediated neutralization. EMICE on the surface of infected murine cells also reduced complement activation by the alternative pathway. In contrast, classical pathway activation by high-titer antibody overwhelmed EMICE's regulatory capacity. These results suggest that EMICE's role is early during infection when it counteracts the innate immune response. In summary, ectromelia virus produced EMICE within a few hours of an infection, and EMICE in turn decreased complement activation on IMV and infected cells.

  1. Words are not enough: nonword repetition as an indicator of arcuate fasciculus integrity during brain tumor resection.

    PubMed

    Sierpowska, Joanna; Gabarrós, Andreu; Fernandez-Coello, Alejandro; Camins, Àngels; Castañer, Sara; Juncadella, Montserrat; Morís, Joaquín; Rodríguez-Fornells, Antoni

    2017-02-01

    OBJECTIVE Subcortical electrical stimulation during brain surgery may allow localization of functionally crucial white matter fibers and thus tailoring of the tumor resection according to its functional limits. The arcuate fasciculus (AF) is a white matter bundle connecting frontal, temporal, and parietal cortical areas that is often disrupted by left brain lesions. It plays a critical role in several cognitive functions related to phonological processing, but current intraoperative monitoring methods do not yet allow mapping of this tract with sufficient precision. In the present study the authors aimed to test a new paradigm for the intraoperative monitoring of the AF. METHODS In this report, the authors studied 12 patients undergoing awake brain surgery for tumor resection with a related risk of AF damage. To preserve AF integrity and the cognitive processes sustained by this tract in the intraoperative context, the authors used real word repetition (WR) and nonword repetition (NWR) tasks as complements to standard picture naming. RESULTS Compared with the errors identified by WR or picture naming, the NWR task allowed the detection of subtle errors possibly related to AF alterations. Moreover, only 3 patients demonstrated phonological paraphasias in standard picture naming, and in 2 of these patients the paraphasias co-occurred with the total loss of WR and NWR ability. Before surgery, lesion volume predicted a patient's NWR performance. CONCLUSIONS The authors suggest that monitoring NWR intraoperatively may complement the standard naming tasks and could permit better preservation of the important language production functions subserved by the AF.

  2. [Fanconi Anemia, Complementation Group D1 Caused by Biallelic Mutations of BRCA2 Gene--Case Report].

    PubMed

    Puchmajerová, A; Švojgr, K; Novotná, D; Macháčková, E; Sumerauer, D; Smíšek, P; Kodet, R; Kynčl, M; Křepelová, A; Foretová, L

    2016-01-01

    Fanconi anemia is a rare autosomal recessive disorder, clinically and genetically heterogeneous, characterized by typical clinical features, such as short stature, microcephaly, skeletal abnormalities, abnormal skin pigmentations, developmental delay and congenital heart, kidney anomalies etc. Pancytopenia leading to bone marrow failure occurs in the first decade. Patients with Fanconi anemia have a high risk of hematologic malignancies and solid tumors. The diagnosis of Fanconi anemia is based on cytogenetic testing for increased rates of spontaneous chromosomal breakage and increased sensitivity to diepoxybutane or mitomycin C. Fanconi anemia is a heterogeneous disorder, at least 15 complementation groups are described, and 15 genes in which mutations are responsible for all of the 15 Fanconi anemia complementation groups have been identified. Unlike other Fanconi anemia complementation groups, for complementation group D1 (FANCD1), the bone marrow failure is not a typical feature, but early-onset leukemia and specific solid tumors, most often medulloblastoma and Wilms tumor, are typical for this complementation group.

  3. Complement deficiency predisposes for meningitis due to nongroupable meningococci and Neisseria-related bacteria.

    PubMed

    Fijen, C A; Kuijper, E J; Tjia, H G; Daha, M R; Dankert, J

    1994-05-01

    Nongroupable meningococci or bacteria related to the genus Neisseria rarely cause meningitis. Complement deficiency has been identified as a major predisposing factor for meningococcal disease. To assess whether patients with meningitis due to such strains have a complement deficiency, we studied 12 persons. Six patients had meningitis due to nongroupable strains of meningococci, and six patients had meningitis due to Moraxella species or Acinetobacter species. Inherited complement component C7 or C8 deficiency was found in two persons who had had meningitis due to nongroupable meningococci, and one C8-deficient person had had meningitis caused by Moraxella osloensis. Hypocomplementemia resulting from CSF drain-associated shunt nephritis was found in one person with meningitis due to Moraxella nonliquefaciens and in one person with meningitis due to Acinetobacter lwoffi. This rather high frequency of inherited or acquired complement deficiencies among patients with meningitis due to nongroupable meningococci, Moraxella species, and Acinetobacter species justifies the recommendation that such patients must be studied for complement deficiency.

  4. Exopolysaccharides Isolated from Hydrothermal Vent Bacteria Can Modulate the Complement System

    PubMed Central

    Courtois, Anthony; Berthou, Christian; Guézennec, Jean

    2014-01-01

    The complement system is involved in the defence against bacterial infection, or in the elimination of tumour cells. However, disturbances in this system contributes to the pathogenesis of various inflammatory diseases. The efficiency of therapeutic anti-tumour antibodies is enhanced when the complement system is stimulated. In contrast, cancer cells are able to inhibit the complement system and thus proliferate. Some marine molecules are currently being developed as new drugs for use in humans. Among them, known exopolyssacharides (EPSs) generally originate from fungi, but few studies have been performed on bacterial EPSs and even fewer on EPSs extracted from deep-sea hydrothermal vent microbes. For use in humans, these high molecular weight EPSs must be depolymerised. Furthermore, the over-sulphation of EPSs can modify their biological activity. The aim of this study was to investigate the immunodulation of the complement system by either native or over-sulphated low molecular weight EPSs isolated from vent bacteria in order to find pro or anti-activators of complement. PMID:24736648

  5. Efficient, ultra-high-affinity chromatography in a one-step purification of complex proteins

    PubMed Central

    Vassylyeva, Marina N.; Klyuyev, Sergiy; Vassylyev, Alexey D.; Wesson, Hunter; Zhang, Zhuo; Renfrow, Matthew B.; Wang, Hengbin; Higgins, N. Patrick; Chow, Louise T.; Vassylyev, Dmitry G.

    2017-01-01

    Protein purification is an essential primary step in numerous biological studies. It is particularly significant for the rapidly emerging high-throughput fields, such as proteomics, interactomics, and drug discovery. Moreover, purifications for structural and industrial applications should meet the requirement of high yield, high purity, and high activity (HHH). It is, therefore, highly desirable to have an efficient purification system with a potential to meet the HHH benchmark in a single step. Here, we report a chromatographic technology based on the ultra-high-affinity (Kd ∼ 10−14–10−17 M) complex between the Colicin E7 DNase (CE7) and its inhibitor, Immunity protein 7 (Im7). For this application, we mutated CE7 to create a CL7 tag, which retained the full binding affinity to Im7 but was inactivated as a DNase. To achieve high capacity, we developed a protocol for a large-scale production and highly specific immobilization of Im7 to a solid support. We demonstrated its utility with one-step HHH purification of a wide range of traditionally challenging biological molecules, including eukaryotic, membrane, toxic, and multisubunit DNA/RNA-binding proteins. The system is simple, reusable, and also applicable to pulldown and kinetic activity/binding assays. PMID:28607052

  6. MaxiK channel interactome reveals its interaction with GABA transporter 3 and heat shock protein 60 in the mammalian brain.

    PubMed

    Singh, H; Li, M; Hall, L; Chen, S; Sukur, S; Lu, R; Caputo, A; Meredith, A L; Stefani, E; Toro, L

    2016-03-11

    Large conductance voltage and calcium-activated potassium (MaxiK) channels are activated by membrane depolarization and elevated cytosolic Ca(2+). In the brain, they localize to neurons and astrocytes, where they play roles such as resetting the membrane potential during an action potential, neurotransmitter release, and neurovascular coupling. MaxiK channels are known to associate with several modulatory proteins and accessory subunits, and each of these interactions can have distinct physiological consequences. To uncover new players in MaxiK channel brain physiology, we applied a directed proteomic approach and obtained MaxiK channel pore-forming α subunit brain interactome using specific antibodies. Controls included immunoprecipitations with rabbit immunoglobulin G (IgG) and with anti-MaxiK antibodies in wild type and MaxiK channel knockout mice (Kcnma1(-/-)), respectively. We have found known and unreported interactive partners that localize to the plasma membrane, extracellular space, cytosol and intracellular organelles including mitochondria, nucleus, endoplasmic reticulum and Golgi apparatus. Localization of MaxiK channel to mitochondria was further confirmed using purified brain mitochondria colabeled with MitoTracker. Independent proof of MaxiK channel interaction with previously unidentified partners is given for GABA transporter 3 (GAT3) and heat shock protein 60 (HSP60). In human embryonic kidney 293 cells containing SV40 T-antigen (HEK293T) cells, both GAT3 and HSP60 coimmunoprecipitated and colocalized with MaxiK channel; colabeling was observed mainly at the cell periphery with GAT3 and intracellularly with HSP60 with protein proximity indices of ∼ 0.6 and ∼ 0.4, respectively. In rat primary hippocampal neurons, colocalization index was identical for GAT3 (∼ 0.6) and slightly higher for HSP60 (∼ 0.5) association with MaxiK channel. The results of this study provide a complete interactome of MaxiK channel the mouse brain, further establish the localization of MaxiK channel in the mouse brain mitochondria and demonstrate the interaction of MaxiK channel with GAT3 and HSP60 in neurons. The interaction of MaxiK channel with GAT3 opens the possibility of a role of MaxiK channel in GABA homeostasis and signaling. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. A bioinformatic and mechanistic study elicits the antifibrotic effect of ursolic acid through the attenuation of oxidative stress with the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in human hepatic stellate cells and rat liver

    PubMed Central

    He, Wenhua; Shi, Feng; Zhou, Zhi-Wei; Li, Bimin; Zhang, Kunhe; Zhang, Xinhua; Ouyang, Canhui; Zhou, Shu-Feng; Zhu, Xuan

    2015-01-01

    NADPH oxidases (NOXs) are a predominant mediator of redox homeostasis in hepatic stellate cells (HSCs), and oxidative stress plays an important role in the pathogenesis of liver fibrosis. Ursolic acid (UA) is a pentacyclic triterpenoid with various pharmacological activities, but the molecular targets and underlying mechanisms for its antifibrotic effect in the liver remain elusive. This study aimed to computationally predict the molecular interactome and mechanistically investigate the antifibrotic effect of UA on oxidative stress, with a focus on NOX4 activity and cross-linked signaling pathways in human HSCs and rat liver. Drug–drug interaction via chemical–protein interactome tool, a server that can predict drug–drug interaction via chemical–protein interactome, was used to predict the molecular targets of UA, and Database for Annotation, Visualization, and Integrated Discovery was employed to analyze the signaling pathways of the predicted targets of UA. The bioinformatic data showed that there were 611 molecular proteins possibly interacting with UA and that there were over 49 functional clusters responding to UA. The subsequential benchmarking data showed that UA significantly reduced the accumulation of type I collagen in HSCs in rat liver, increased the expression level of MMP-1, but decreased the expression level of TIMP-1 in HSC-T6 cells. UA also remarkably reduced the gene expression level of type I collagen in HSC-T6 cells. Furthermore, UA remarkably attenuated oxidative stress via negative regulation of NOX4 activity and expression in HSC-T6 cells. The employment of specific chemical inhibitors, SB203580, LY294002, PD98059, and AG490, demonstrated the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in the regulatory effect of UA on NOX4 activity and expression. Collectively, the antifibrotic effect of UA is partially due to the oxidative stress attenuating effect through manipulating NOX4 activity and expression. The results suggest that UA may act as a promising antifibrotic agent. More studies are warranted to evaluate the safety and efficacy of UA in the treatment of liver fibrosis. PMID:26347199

  8. A rapid microtiter plate serum bactericidal assay method for determining serum complement-mediated killing of Mannheimia haemolytica.

    PubMed

    Ayalew, Sahlu; Confer, Anthony W; Shrestha, Binu; Payton, Mark E

    2012-05-01

    In this study, we describe a rapid microtiter serum bactericidal assay (RMSBA) that can be used to measure the functionality of immune sera. It quantifies bactericidal activity of immune sera in the presence of complement against a homologous bacterium, M. haemolytica in this case. There is high correlation between data from RMSBA and standard complement-mediated bacterial killing assay (r=0.756; p<0.0001). The RMSBA activity of sera can be generated in less than 5 h instead of overnight incubation. RMSBA costs substantially less in terms of time, labor, and resources and is highly reproducible. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Intelligence, Cognition, and Language of Green Plants

    PubMed Central

    Trewavas, Anthony

    2016-01-01

    A summary definition of some 70 descriptions of intelligence provides a definition for all other organisms including plants that stresses fitness. Barbara McClintock, a plant biologist, posed the notion of the ‘thoughtful cell’ in her Nobel prize address. The systems structure necessary for a thoughtful cell is revealed by comparison of the interactome and connectome. The plant root cap, a group of some 200 cells that act holistically in responding to numerous signals, likely possesses a similar systems structure agreeing with Darwin’s description of acting like the brain of a lower organism. Intelligent behavior requires assessment of different choices and taking the beneficial one. Decisions are constantly required to optimize the plant phenotype to a dynamic environment and the cambium is the assessing tissue diverting more or removing resources from different shoot and root branches through manipulation of vascular elements. Environmental awareness likely indicates consciousness. Spontaneity in plant behavior, ability to count to five and error correction indicate intention. Volatile organic compounds are used as signals in plant interactions and being complex in composition may be the equivalent of language accounting for self and alien recognition by individual plants. Game theory describes competitive interactions. Interactive and intelligent outcomes emerge from application of various games between plants themselves and interactions with microbes. Behavior profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses. PMID:27199823

  10. Differential mechanisms of complement-mediated neutralization of the closely related paramyxoviruses simian virus 5 and mumps virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, John B.; Capraro, Gerald A.; Parks, Griffith D.

    2008-06-20

    The complement system is an important component of the innate immune response to virus infection. The role of human complement pathways in the in vitro neutralization of three closely related paramyxoviruses, Simian Virus 5 (SV5), Mumps virus (MuV) and Human Parainfluenza virus type 2 (HPIV2) was investigated. Sera from ten donors showed high levels of neutralization against HPIV2 that was largely complement-independent, whereas nine of ten donor sera were found to neutralize SV5 and MuV only in the presence of active complement pathways. SV5 and MuV neutralization proceeded through the alternative pathway of the complement cascade. Electron microscopy studies andmore » biochemical analyses showed that treatment of purified SV5 with human serum resulted in C3 deposition on virions and the formation of massive aggregates, but there was relatively little evidence of virion lysis. Treatment of MuV with human serum also resulted in C3 deposition on virions, however in contrast to SV5, MuV particles were lysed by serum complement and there was relatively little aggregation. Assays using serum depleted of complement factors showed that SV5 and MuV neutralization in vitro was absolutely dependent on complement factor C3, but was not dependent on downstream complement factors C5 or C8. Our results indicate that even though antibodies exist that recognize both SV5 and MuV, they are mostly non-neutralizing and viral inactivation in vitro occurs through the alternative pathway of complement. The implications of our work for development of paramyxovirus vectors and vaccines are discussed.« less

  11. Computational Framework for Analysis of Prey–Prey Associations in Interaction Proteomics Identifies Novel Human Protein–Protein Interactions and Networks

    PubMed Central

    Saha, Sudipto; Dazard, Jean-Eudes; Xu, Hua; Ewing, Rob M.

    2013-01-01

    Large-scale protein–protein interaction data sets have been generated for several species including yeast and human and have enabled the identification, quantification, and prediction of cellular molecular networks. Affinity purification-mass spectrometry (AP-MS) is the preeminent methodology for large-scale analysis of protein complexes, performed by immunopurifying a specific “bait” protein and its associated “prey” proteins. The analysis and interpretation of AP-MS data sets is, however, not straightforward. In addition, although yeast AP-MS data sets are relatively comprehensive, current human AP-MS data sets only sparsely cover the human interactome. Here we develop a framework for analysis of AP-MS data sets that addresses the issues of noise, missing data, and sparsity of coverage in the context of a current, real world human AP-MS data set. Our goal is to extend and increase the density of the known human interactome by integrating bait–prey and cocomplexed preys (prey–prey associations) into networks. Our framework incorporates a score for each identified protein, as well as elements of signal processing to improve the confidence of identified protein–protein interactions. We identify many protein networks enriched in known biological processes and functions. In addition, we show that integrated bait–prey and prey–prey interactions can be used to refine network topology and extend known protein networks. PMID:22845868

  12. Identification of LMO2 transcriptome and interactome in diffuse large B-cell lymphoma

    PubMed Central

    Cubedo, Elena; Gentles, Andrew J.; Huang, Chuanxin; Natkunam, Yasodha; Bhatt, Shruti; Lu, Xiaoqing; Jiang, Xiaoyu; Romero-Camarero, Isabel; Freud, Aharon; Zhao, Shuchun; Bacchi, Carlos E.; Martínez-Climent, Jose A.; Sánchez-García, Isidro; Melnick, Ari

    2012-01-01

    LMO2 regulates gene expression by facilitating the formation of multipartite DNA-binding complexes. In B cells, LMO2 is specifically up-regulated in the germinal center (GC) and is expressed in GC-derived non-Hodgkin lymphomas. LMO2 is one of the most powerful prognostic indicators in diffuse large B-cell (DLBCL) patients. However, its function in GC B cells and DLBCL is currently unknown. In this study, we characterized the LMO2 transcriptome and transcriptional complex in DLBCL cells. LMO2 regulates genes implicated in kinetochore function, chromosome assembly, and mitosis. Overexpression of LMO2 in DLBCL cell lines results in centrosome amplification. In DLBCL, the LMO2 complex contains some of the traditional partners, such as LDB1, E2A, HEB, Lyl1, ETO2, and SP1, but not TAL1 or GATA proteins. Furthermore, we identified novel LMO2 interacting partners: ELK1, nuclear factor of activated T-cells (NFATc1), and lymphoid enhancer-binding factor1 (LEF1) proteins. Reporter assays revealed that LMO2 increases transcriptional activity of NFATc1 and decreases transcriptional activity of LEF1 proteins. Overall, our studies identified a novel LMO2 transcriptome and interactome in DLBCL and provides a platform for future elucidation of LMO2 function in GC B cells and DLBCL pathogenesis. PMID:22517897

  13. A systems immunology approach identifies the collective impact of 5 miRs in Th2 inflammation.

    PubMed

    Kılıç, Ayşe; Santolini, Marc; Nakano, Taiji; Schiller, Matthias; Teranishi, Mizue; Gellert, Pascal; Ponomareva, Yuliya; Braun, Thomas; Uchida, Shizuka; Weiss, Scott T; Sharma, Amitabh; Renz, Harald

    2018-06-07

    Allergic asthma is a chronic inflammatory disease dominated by a CD4+ T helper 2 (Th2) cell signature. The immune response amplifies in self-enforcing loops, promoting Th2-driven cellular immunity and leaving the host unable to terminate inflammation. Posttranscriptional mechanisms, including microRNAs (miRs), are pivotal in maintaining immune homeostasis. Since an altered expression of various miRs has been associated with T cell-driven diseases, including asthma, we hypothesized that miRs control mechanisms ensuring Th2 stability and maintenance in the lung. We isolated murine CD4+ Th2 cells from allergic inflamed lungs and profiled gene and miR expression. Instead of focusing on the magnitude of miR differential expression, here we addressed the secondary consequences for the set of molecular interactions in the cell, the interactome. We developed the Impact of Differential Expression Across Layers, a network-based algorithm to prioritize disease-relevant miRs based on the central role of their targets in the molecular interactome. This method identified 5 Th2-related miRs (mir27b, mir206, mir106b, mir203, and mir23b) whose antagonization led to a sharp reduction of the Th2 phenotype. Overall, a systems biology tool was developed and validated, highlighting the role of miRs in Th2-driven immune response. This result offers potentially novel approaches for therapeutic interventions.

  14. RISE: a database of RNA interactome from sequencing experiments

    PubMed Central

    Gong, Jing; Shao, Di; Xu, Kui

    2018-01-01

    Abstract We present RISE (http://rise.zhanglab.net), a database of RNA Interactome from Sequencing Experiments. RNA-RNA interactions (RRIs) are essential for RNA regulation and function. RISE provides a comprehensive collection of RRIs that mainly come from recent transcriptome-wide sequencing-based experiments like PARIS, SPLASH, LIGR-seq, and MARIO, as well as targeted studies like RIA-seq, RAP-RNA and CLASH. It also includes interactions aggregated from other primary databases and publications. The RISE database currently contains 328,811 RNA-RNA interactions mainly in human, mouse and yeast. While most existing RNA databases mainly contain interactions of miRNA targeting, notably, more than half of the RRIs in RISE are among mRNA and long non-coding RNAs. We compared different RRI datasets in RISE and found limited overlaps in interactions resolved by different techniques and in different cell lines. It may suggest technology preference and also dynamic natures of RRIs. We also analyzed the basic features of the human and mouse RRI networks and found that they tend to be scale-free, small-world, hierarchical and modular. The analysis may nominate important RNAs or RRIs for further investigation. Finally, RISE provides a Circos plot and several table views for integrative visualization, with extensive molecular and functional annotations to facilitate exploration of biological functions for any RRI of interest. PMID:29040625

  15. HiQuant: Rapid Postquantification Analysis of Large-Scale MS-Generated Proteomics Data.

    PubMed

    Bryan, Kenneth; Jarboui, Mohamed-Ali; Raso, Cinzia; Bernal-Llinares, Manuel; McCann, Brendan; Rauch, Jens; Boldt, Karsten; Lynn, David J

    2016-06-03

    Recent advances in mass-spectrometry-based proteomics are now facilitating ambitious large-scale investigations of the spatial and temporal dynamics of the proteome; however, the increasing size and complexity of these data sets is overwhelming current downstream computational methods, specifically those that support the postquantification analysis pipeline. Here we present HiQuant, a novel application that enables the design and execution of a postquantification workflow, including common data-processing steps, such as assay normalization and grouping, and experimental replicate quality control and statistical analysis. HiQuant also enables the interpretation of results generated from large-scale data sets by supporting interactive heatmap analysis and also the direct export to Cytoscape and Gephi, two leading network analysis platforms. HiQuant may be run via a user-friendly graphical interface and also supports complete one-touch automation via a command-line mode. We evaluate HiQuant's performance by analyzing a large-scale, complex interactome mapping data set and demonstrate a 200-fold improvement in the execution time over current methods. We also demonstrate HiQuant's general utility by analyzing proteome-wide quantification data generated from both a large-scale public tyrosine kinase siRNA knock-down study and an in-house investigation into the temporal dynamics of the KSR1 and KSR2 interactomes. Download HiQuant, sample data sets, and supporting documentation at http://hiquant.primesdb.eu .

  16. TCTEX1D4 Interactome in Human Testis: Unraveling the Function of Dynein Light Chain in Spermatozoa

    PubMed Central

    Freitas, Maria João; Korrodi-Gregório, Luís; Morais-Santos, Filipa; da Cruz e Silva, Edgar

    2014-01-01

    Abstract Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function. PMID:24606217

  17. Magnetic nanoparticles to recover cellular organelles and study the time resolved nanoparticle-cell interactome throughout uptake.

    PubMed

    Bertoli, Filippo; Davies, Gemma-Louise; Monopoli, Marco P; Moloney, Micheal; Gun'ko, Yurii K; Salvati, Anna; Dawson, Kenneth A

    2014-08-27

    Nanoparticles in contact with cells and living organisms generate quite novel interactions at the interface between the nanoparticle surface and the surrounding biological environment. However, a detailed time resolved molecular level description of the evolving interactions as nanoparticles are internalized and trafficked within the cellular environment is still missing and will certainly be required for the emerging arena of nanoparticle-cell interactions to mature. In this paper promising methodologies to map out the time resolved nanoparticle-cell interactome for nanoparticle uptake are discussed. Thus silica coated magnetite nanoparticles are presented to cells and their magnetic properties used to isolate, in a time resolved manner, the organelles containing the nanoparticles. Characterization of the recovered fractions shows that different cell compartments are isolated at different times, in agreement with imaging results on nanoparticle intracellular location. Subsequently the internalized nanoparticles can be further isolated from the recovered organelles, allowing the study of the most tightly nanoparticle-bound biomolecules, analogous to the 'hard corona' that so far has mostly been characterized in extracellular environments. Preliminary data on the recovered nanoparticles suggest that significant portion of the original corona (derived from the serum in which particles are presented to the cells) is preserved as nanoparticles are trafficked through the cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. SInCRe—structural interactome computational resource for Mycobacterium tuberculosis

    PubMed Central

    Metri, Rahul; Hariharaputran, Sridhar; Ramakrishnan, Gayatri; Anand, Praveen; Raghavender, Upadhyayula S.; Ochoa-Montaño, Bernardo; Higueruelo, Alicia P.; Sowdhamini, Ramanathan; Chandra, Nagasuma R.; Blundell, Tom L.; Srinivasan, Narayanaswamy

    2015-01-01

    We have developed an integrated database for Mycobacterium tuberculosis H37Rv (Mtb) that collates information on protein sequences, domain assignments, functional annotation and 3D structural information along with protein–protein and protein–small molecule interactions. SInCRe (Structural Interactome Computational Resource) is developed out of CamBan (Cambridge and Bangalore) collaboration. The motivation for development of this database is to provide an integrated platform to allow easily access and interpretation of data and results obtained by all the groups in CamBan in the field of Mtb informatics. In-house algorithms and databases developed independently by various academic groups in CamBan are used to generate Mtb-specific datasets and are integrated in this database to provide a structural dimension to studies on tuberculosis. The SInCRe database readily provides information on identification of functional domains, genome-scale modelling of structures of Mtb proteins and characterization of the small-molecule binding sites within Mtb. The resource also provides structure-based function annotation, information on small-molecule binders including FDA (Food and Drug Administration)-approved drugs, protein–protein interactions (PPIs) and natural compounds that bind to pathogen proteins potentially and result in weakening or elimination of host–pathogen protein–protein interactions. Together they provide prerequisites for identification of off-target binding. Database URL: http://proline.biochem.iisc.ernet.in/sincre PMID:26130660

  19. Quantifying Pilot Contribution to Flight Safety During Dual Generator Failure

    NASA Technical Reports Server (NTRS)

    Etherington, Timothy J.; Kramer, Lynda J.; Kennedy, Kellie D.; Bailey, Randall E.; Last, Mary Carolyn

    2017-01-01

    Accident statistics cite flight crew error in over 60% of accidents involving transport category aircraft. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. No data currently exists that quantifies the contribution of the flight crew in this role. Neither does data exist for how often the flight crew handles non-normal procedures or system failures on a daily basis in the National Airspace System. A pilot-in-the-loop high fidelity motion simulation study was conducted by the NASA Langley Research Center in partnership with the Federal Aviation Administration (FAA) to evaluate the pilot's contribution to flight safety during normal flight and in response to aircraft system failures. Eighteen crews flew various normal and non-normal procedures over a two-day period and their actions were recorded in response to failures. To quantify the human's contribution, crew complement was used as the experiment independent variable in a between-subjects design. Pilot actions and performance when one of the flight crew was unavailable were also recorded for comparison against the nominal two-crew operations. This paper details diversion decisions, perceived safety of flight, workload, time to complete pertinent checklists, and approach and landing results while dealing with a complete loss of electrical generators. Loss of electrical power requires pilots to complete the flight without automation support of autopilots, flight directors, or auto throttles. For reduced crew complements, the additional workload and perceived safety of flight was considered unacceptable.

  20. The role of complement system in septic shock.

    PubMed

    Charchaflieh, Jean; Wei, Jiandong; Labaze, Georges; Hou, Yunfang Joan; Babarsh, Benjamin; Stutz, Helen; Lee, Haekyung; Worah, Samrat; Zhang, Ming

    2012-01-01

    Septic shock is a critical clinical condition with a high mortality rate. A better understanding of the underlying mechanisms is important to develop effective therapies. Basic and clinical studies suggest that activation of complements in the common cascade, for example, complement component 3 (C3) and C5, is involved in the development of septic shock. The involvement of three upstream complement pathways in septic shock is more complicated. Both the classical and alternative pathways appear to be activated in septic shock, but the alternative pathway may be activated earlier than the classical pathway. Activation of these two pathways is essential to clear endotoxin. Recent investigations have shed light on the role of lectin complement pathway in septic shock. Published reports suggest a protective role of mannose-binding lectin (MBL) against sepsis. Our preliminary study of MBL-associated serine protease-2 (MASP-2) in septic shock patients indicated that acute decrease of MASP-2 in the early phase of septic shock might correlate with in-hospital mortality. It is unknown whether excessive activation of these three upstream complement pathways may contribute to the detrimental effects in septic shock. This paper also discusses additional complement-related pathogenic mechanisms and intervention strategies for septic shock.

Top